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ARTICLE

Study of 300,486 individuals identifies 148
independent genetic loci influencing general
cognitive function
Gail Davies1, Max Lam et al.#

General cognitive function is a prominent and relatively stable human trait that is associated

with many important life outcomes. We combine cognitive and genetic data from the

CHARGE and COGENT consortia, and UK Biobank (total N= 300,486; age 16–102) and find

148 genome-wide significant independent loci (P < 5 × 10−8) associated with general cogni-

tive function. Within the novel genetic loci are variants associated with neurodegenerative

and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure.

Gene-based analyses find 709 genes associated with general cognitive function. Expression

levels across the cortex are associated with general cognitive function. Using polygenic

scores, up to 4.3% of variance in general cognitive function is predicted in independent

samples. We detect significant genetic overlap between general cognitive function, reaction

time, and many health variables including eyesight, hypertension, and longevity. In conclusion

we identify novel genetic loci and pathways contributing to the heritability of general cog-

nitive function.
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Some individuals have generally higher cognitive function
than others. These individual differences are quite persistent
across the life course from later childhood onwards. Indi-

viduals with higher measured general cognitive function tend to
live longer and be less deprived. Retaining general cognitive
function is an important aspect of healthy ageing. The population
variance in this medically- and socially-important trait has
environmental and genetic aetiologies. The details of the genetic
contributions are, as-yet, poorly understood.

Since the discovery of general cognitive ability (or ‘g’) in 19041,
hundreds of studies have replicated the finding that around 40%
of the variance in subjects’ scores on a diverse battery of
cognitive tests can be accounted for by a single general factor2.
Some variance is also attributable to individual cognitive
domains (e.g., reasoning, memory, processing speed, and
spatial ability), and some is attributable to specific cognitive skills
associated with individual mental tests. However, all cognitive tests
rely to a greater or lesser extent on general cognitive ability for
successful execution. Figure 1 illustrates and explains this hier-
archical model of cognitive ability differences3. Therefore, using a
general cognitive function phenotype in a genetically-informative
design is supported by the observation that the well-established
positive manifold of cognitive tests may be represented by a sub-
stantially heritable, higher-order, latent general cognitive function
phenotype2,4,5.

There are two commonly-used routes that are used to obtain
general cognitive ability scores for each participant in a sample.
First, if all members of a sample have taken the same set of
diverse cognitive tests, then a data reduction procedure (such as
principal components analysis (PCA) or factor analysis) can be
applied. Typically, this finds that all tests load on (i.e.,
correlate positively with) the first unrotated component, or
factor, and scores on this component can be calculated for each
person; this gives each person a g score. Second, some mental tests
—usually those involving complex mental work, and often those
with a variety of item types—have a high g loading2. That is, scores
on some individual cognitive tests can be used to obtain an
acceptable proxy for general cognitive ability. An example of the
latter is the Moray House Test of verbal and numerical reasoning,
which has a high correlation with a PCA-derived general cognitive
function score6.

General cognitive function is peerless among human psycho-
logical traits in terms of its empirical support and importance
for life outcomes7,8. Individuals who have higher cognitive func-
tion in childhood and adolescence tend to stay longer in educa-
tion, gain higher educational qualifications, progress to more
professional and better-paid jobs, live healthier lives, and live
longer. Individual differences in general cognitive function show
phenotypic and genetic stability across most of the life course9–11.
The phenotypic correlation between general cognitive function
scores on the same people at age 11 and age 70–80 years is almost
0.7, and remains above 0.5 when age 11 versus age 90 scores are
correlated.

Twin studies find that general cognitive function has a herit-
ability of more than 50% from adolescence through adulthood to
older age4,5,12. SNP-based estimates of heritability for general
cognitive function are about 20–30%13. However, these estimates
might increase to about 50% when family-based designs are
used to retain the contributions made by rarer SNPs14. To date,
little of this substantial heritability has been explained, i.e., only a
few relevant genetic loci have been discovered (Table 1; Supple-
mentary Fig. 1). As has been found with other highly polygenic
traits, a limitation on uncovering relevant genetic loci is
sample size15; to date, there have been fewer than 100,000 indi-
viduals in studies of general cognitive function13,16. The MTAG
(multi-trait analysis of genome-wide association studies) method
has been used to corral cognitive function and associated traits to
expand the number of loci associated with general cognitive
function17. However, the present study uses only cognitive
function phenotypes, and amasses a total sample size of over
300,000.

The present study also tests for genetic contributions to reaction
time, and examines its genetic relationship with general
cognitive function. Reaction time is both phenotypically and
genetically correlated with general cognitive function, and
accounts for some of its association with health18–20. By making
these comparisons between general cognitive function and reac-
tion time, we identify regions of the genome that have a shared
correlation with general cognitive function and more elementary
cognitive tasks21.

Domain 1
e.g., Reasoning

Domain 2
e.g., Speed

Domain 3
e.g., Memory

Domain 4
e.g., Spatial
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Fig. 1 The hierarchical model of cognitive function variance. At level 1, individuals differ in specific tests that assess the various cognitive domains. Scores
on all the tests correlate positively. It is found that there are especially strong correlations among the tests of the same domain, so a latent trait at the
domain level can be extracted to represent this common variance. It is then found that individuals who do well in one domain also tend to do well in the
other domains, so a general cognitive latent trait called g can be extracted. This model allows researchers to partition cognitive performance variance into
these different levels. They can then explore the causes and consequences of variance at different levels of cognitive specificity-generality. For example,
there are genetic and ageing effects on g and on some specific domains, such as memory and speed of processing. Note that the specific-test-level variance
contains variation in the performance of skills that are specific to the individual test and also contains error variance. (Reproduced, with permission, from
ref. 3)
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Results
General cognitive function phenotypes. The psychometric
characteristics of the general cognitive component from each cohort
in the CHARGE consortium are shown in Supplementary Note 1.
In order to address the fact that different cohorts had applied dif-
ferent cognitive tests, we previously showed that two general cog-
nitive function components extracted from different sets of
cognitive tests on the same participants correlate highly13.
The cognitive test from the large UK Biobank sample was the so-
called ‘fluid’ test, a 13-item test of verbal-numerical reasoning,
which has a high genetic correlation with general cognitive func-
tion22. With the CHARGE and COGENT samples’ general cogni-
tive function scores and UK Biobank’s verbal-numerical reasoning
scores, there were 300,486 participants included in the present
report’s meta-analysis of genome-wide association studies
(GWASs). Note that we included four UK Biobank samples, i.e.
three assessment centre-tested samples, and one online-tested
sample. The genetic correlation between CHARGE’s-COGENT’s
general cognitive function component and UK Biobank’s verbal-
numerical reasoning test, calculated for the present study
using linkage disequilibrium score (LDSC) regression, was esti-
mated at 0.87 (SE= 0.03). This indicates very substantial overlap
between the genetic variants associated with cognitive function in
these two groups.

SNP-based meta-analyses of cognitive function GWASs. We
performed an N-weighted meta-analysis of general cognitive
function which included all of the CHARGE, COGENT, and UK
Biobank samples. Meta-analysis of the results for the general
cognitive function GWASs found 11,600 significant (P < 5 × 10−8)
SNP associations, and 21,855 at a suggestive level (1 × 10−5 > P ≥
5 × 10−8); see Fig. 2a, Supplementary Fig. 2a, and Supplementary
Data 1 and 2. There were 434 ‘independent’ significant SNPs;
see Methods section for description of independent SNP
selection criteria, distributed within 148 loci across all autosomal
chromosomes. Note that, for consistency, we use the term ‘inde-
pendent’ here according to the definition that is used in the
relevant analysis package. A comparison of these 148 loci with
results from the largest previous GWASs of cognitive function16,
and educational attainment24, and an MTAG analysis of cognitive
function17—all of which included a subsample of individuals
contributing to the present study—confirmed that 11 of 18, 24 of
74, and 89 of 187 of these were, respectively, genome-wide sig-
nificant in the present study (Supplementary Data 3). Of the 148
loci found in the present study, 58 have not been reported pre-
viously in other GWA studies of cognitive function or educational
attainment (novel loci are indicated in Supplementary Data 4).
One hundred and seventy-eight lead SNPs were identified within
these 148 loci.

For the 434 independent significant SNPs and tagged SNPs, a
summary of previous SNP associations is listed in Supplementary
Data 5. They have been associated with many physical
(e.g., BMI, height, weight), medical (e.g., lung cancer, Crohn’s
disease, blood pressure), and psychiatric (e.g., bipolar
disorder, schizophrenia, autism) traits. Of the 58 new loci,
we highlight previous associations with schizophrenia
(2 loci), Alzheimer’s disease (1 locus), and Parkinson’s disease
(1 locus).

We sought to identify independent significant and tagged SNPs
within the 148 significant genomic risk loci associated with
general cognitive function that are potentially functional (Fig. 3a;
Supplementary Data 4). See Methods section for further details.
Across many of the loci there is clear evidence of functionality
including involvement in gene regulation, deleterious SNPs,
eQTLs, and regions of open chromatin.

General cognitive function gene-based and gene-set results. A
gene-based association analysis identified 709 genes as sig-
nificantly associated with general cognitive function (Fig. 2b;
Supplementary Fig. 2b; Supplementary Data 6). These 709 genes
were compared to gene-based associations from previous studies
of general cognitive function and educational attainment13,16,17,25;
418 were replicated in the present study, and 291 were novel.
The 291 new gene-based associations are highlighted in Supple-
mentary Data 6. Several of the specific genes associated with
general cognitive function are considered in detail in the Discus-
sion, below.

Gene-set analysis identified seven significant gene sets
associated with general cognitive function: neurogenesis (P=
1.57 × 10−9), regulation of nervous system development (P=
7.52 × 10−7), neuron projection (P= 7.89 × 10−7), positive reg-
ulation of nervous system development (P= 9.42 × 10−7),
neuron differentiation (P= 1.68 × 10−6), regulation of cell
development (P= 1.93 × 10−6), and dendrite (P= 3.52 × 10−6)
(Supplementary Data 7). Gene-property analysis can show if
tissue-specific expression levels are associated with a gene’s
association with a phenotype. This analysis indicated a
significant association between transcription levels in all brain
regions—except the brain spinal cord and cervical c1—and
the association with general cognitive function. In addition,
expression levels in the pituitary were associated with gene-based
association with general cognitive function; these results
indicate that the genes with the highest expression levels in these
regions were those showing the greatest associations with general
cognitive function. (Fig. 3b, c; Supplementary Table 1; Supple-
mentary Data 8). The significance of this relationship was greatest
in the cerebellum and the cortex.

Table 1 Details of GWA studies of general cognitive function to date, including the present study

Author; doi Year N GWAS-sig SNP hits GWAS-sig gene hits SNP-based h2

Davies et al. (2011)86 2011 3511 0 1 gene 0.51 (0.11)
Lencz et al. (2013)87 2013 5000 0 NA NA
Benyamin et al. (2014)88 2014 17,989 0 0 0.46 (0.06)
Kirkpatrick et al. (2014)89 2014 7100 0 0 0.35 (0.11)
Davies et al. (2015)25 2015 53,949 3 loci (13 SNPs) 1 gene 0.29 (0.05)
Davies et al. (2016); results for ‘fluid’ test 2016 36,035 3 loci (149 SNPs) 7 loci 17 genes 0.31 (0.02)
Trampush et al. (2017)64 2017 35,298 2 loci (7 SNPs) 3 loci 7 genes 0.22 (0.01)
Sniekers et al. (2017)16 2017 78,308 18 loci (336 SNPs) 47 genes 0.20 (0.01)
Davies et al. (2018); present study 2018 300,486 148 loci (11,600 SNPs) 709 genes 0.25 (0.006)

For SNP-based heritability, the value from the largest sample is given
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SNP-based heritability of general cognitive function. We esti-
mated the proportion of variance explained by all common
SNPs using GCTA-GREML in four of the largest
individual samples: English Longitudinal Study of Ageing
(ELSA: N= 6661, h2= 0.12, SE= 0.06), Understanding Society
(N= 7841, h2= 0.17, SE= 0.04), UK Biobank Assessment Centre
(N= 86,010, h2= 0.25, SE= 0.006), and Generation Scotland
(N= 6,507, h2= 0.20, SE= 0.0523) (Table 2). Genetic correla-
tions for general cognitive function amongst these cohorts, esti-
mated using bivariate GCTA-GREML, ranged from rg= 0.88 to
1.0 (Table 2). These results indicate that the same genetic variants

contribute to phenotypic differences in general cognitive
function across each of these three samples. We investigated the
genetic contribution to the stability of individual differences in
people’s verbal-numerical reasoning, by examining data from
those individuals in UK Biobank who completed the test on
two occasions (mean time gap= 4.93 years). We found a sig-
nificant and perfect genetic correlation of rg= 1.0 (SE= 0.02).

Polygenic profile scores and genetic correlations. After
omitting them from the meta-analysis of GWASs, we created
general cognitive function polygenic profile scores in three of the
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General cognitive function: gene-based results
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larger cohorts: ELSA, Generation Scotland, and Understanding
Society. The polygenic profile score for general cognitive
function explained 2.63% of the variance in ELSA (β= 0.17,
SE= 0.01, P= 1.70 × 10−51), 3.73% in Generation Scotland
(β= 0.20, SE= 0.01, P= 5.02 × 10−68), and 4.31% in

Understanding Society (β= 0.22, SE= 0.01, P= 6.17 × 10−88).
Full results for all five thresholds are shown in Supplementary
Table 2.

We tested the genetic correlations between general cognitive
function and 52 health-related traits. Thirty-six of these health-
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related traits were significantly genetically correlated with
general cognitive function (Supplementary Data 9). We report
significant genetic correlations between general cognitive function
and: hypertension (rg=−0.15, SE= 0.02), grip strength
(right hand: rg= 0.09, SE= 0.02), wearing glasses or
contact lenses (rg= 0.28, SE= 0.04), short-sightedness (rg=
0.32, SE= 0.03), long-sightedness (rg=−0.21, SE= 0.05),
heart attack (rg=−0.17, SE= 0.03), angina (rg=−0.18,
SE= 0.03), lung cancer (rg=−0.26, SE= 0.05), and osteoarthri-
tis (rg=−0.24, SE= 0.04). We also report a significant
genetic correlation with major depressive disorder (rg=−0.30,
SE= 0.04); this result strengthens previously-reported non-
significant correlations of around −0.1016,17. We also note the

Table 2 Genetic correlations and heritability estimates of a
general cognitive function component in three United
Kingdom cohorts

Cohort ELSA US GS

ELSA 0.12 (0.06)
US 1.0 (0.33) 0.17 (0.04)
GS 1.0 (0.38) 0.88 (0.24) 0.20 (0.05)

Below the diagonal, genetic correlations (standard error) of general cognitive function amongst
three cohorts are shown: ELSA English Longitudinal Study of Ageing, GS Generation Scotland,
US Understanding Society. SNP-based heritability (standard error) estimates appear on the
diagonal
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important genetic association between general cognitive function
and longevity (rg= 0.17, SE= 0.06).

Reaction time results. GWAS results for mean reaction time
uncovered 2022 significant SNPs in 42 independent genomic loci

(Fig. 4a; Supplementary Fig. 2c; Supplementary Data 10). Sug-
gestive findings are presented in Supplementary Data 11. Both of
the significant loci previously reported for this phenotype were
replicated13. SNPs within the 42 independent genomic loci
showed clear evidence of functionality (Fig. 5a; Supplementary
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Fig. 5 Functional analyses of reaction time. Analyses include reaction time-associated SNPs, independent significant SNPs, and all SNPs in LD with
independent significant SNPs. Functional consequences of SNPs on genes (a) indicated by functional annotation assigned by ANNOVAR. MAGMA gene-
property analysis results; results are shown for average expression of 30 general tissue types (b) and 53 specific tissue types (c). The dotted line indicates
the Bonferroni-corrected α level
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Data 12). Using gene-based GWA, a total of 191 genes attained
statistical significance (Fig. 4b; Supplementary Fig. 2d; Supple-
mentary Data 13), replicating 18 of the 23 genome-wide sig-
nificant genes found previously for this phenotype13. Gene-set
analysis identified no gene sets associated with reaction time
(Supplementary Data 14). Gene-property analysis indicated a role
for genes expressed in the brain (P= 4.66 × 10−13), with this link
between gene transcription levels and gene-based association with
reaction time being found across the cortex (Fig. 5b, c; Supple-
mentary Table 3; Supplementary Data 15). Gene transcription
levels observed in the pituitary gland were also linked to gene-
based associations with differences in reaction time
(P= 7.60 × 10−4).

The SNP-based heritability of reaction time was 7.42% (SE=
0.29). It should be noted that this estimate is likely to be an
underestimation due to the method used (LD score regression)26.
Significant overlap was found between the genetic architecture of
reaction time and these health outcomes: ADHD, bipolar
disorder, schizophrenia, subjective wellbeing, hand grip strength,
sleep duration, maternal longevity, hypertension and neuroticism
(Supplementary Data 9). The polygenic score for reaction time
explained 0.43% of the general cognitive function variance in
ELSA (P= 1.42 × 10−9), 0.56% in Generation Scotland (P=
2.49 × 10−11), and 0.26% in Understanding Society (P= 1.50 × 10
−6). The full results for all five thresholds can be found in
Supplementary Table 2.

We found a genetic correlation (rg) of 0.247 (P= 1.28 × 10−30)
between reaction time and general cognitive function.
Overlapping results between the two phenotypes were explored
further.

Of the 11,600 genome-wide significant SNPs for general cognitive
function, 8269 had a consistent direction of effect with reaction
time (sign test, P= 2.2 × 10−16) (Supplementary Data 1). For reac-
tion time, 1070 of the 2022 significant SNPs were consistent
for direction of effect with general cognitive function (sign test, P=
0.0071) (Supplementary Data 10). One hundred and sixty
SNPs were genome-wide significant for both general cognitive
function and reaction time, with 82 consistent for direction of
effect (sign test, NS) (Supplementary Data 16). These over-
lapping genome-wide findings are located within six genomic
loci (genomic loci: 13, 15, 19, 28, 69, 133; see Supplementary Data 4
for details of loci); two of these are novel loci for general
cognitive function. In the gene-based analyses of both the
general cognitive function and reaction time phenotypes, there
were 39 overlapping significant genes; 13 of these are newly-
identified associations with general cognitive function (Supplemen-
tary Data 17).

Discussion
In these meta-analyses of genome-wide association studies for
both general cognitive function and reaction time (N= 300,486;
N= 330,069, respectively), we make several original contribu-
tions. We report 148 genome-wide significant loci for general
cognitive function, of which 58 loci have not been reported
before. We report 42 genome-wide significant loci for
reaction time, of which 40 have not been reported previously.
We also report 291 gene-based associations for general
cognitive function, and 173 for reaction time, which have not
been reported already. Of these genome-wide significant results,
six loci and 39 gene-based associations are genome-wide sig-
nificant for both general cognitive function and reaction time.
We are able to predict, using polygenic scoring, up to 4.31 and
0.56% of the general cognitive function variance in an indepen-
dent sample, for general cognitive function and reaction time
polygenic scores, respectively. We present original and updated

estimates of genetic correlations with many health traits for both
general cognitive function and reaction time. Gene-set analyses
identified significant associations for general cognitive function
with gene-sets involved in neural and cell development. Sig-
nificant enrichments were observed with genes expressed in the
cerebellum and the brain’s cortex for both general cognitive
function and reaction time.

Upon additional exploration of the 58 newly-associated
genetic loci, we find that many contain genes that are of further
interest. All of the genes discussed below are also genome-wide
significant in the general cognitive function gene-based associa-
tion analysis (P < 2.75 × 10−6; Supplementary Data 6). Sig-
nificant gene-based associations with general cognitive function
have also been previously reported for GATAD2B, SLC39A1, and
AUTS216,17.

GATAD2B and SLC39A1 are located on chromosome 1; locus
11. Mutations in GATAD2B have been linked to intellectual
disability27. SLC39A1 has been implicated in Alzheimer’s Dis-
ease28. The ATXN1 gene (chromosome 6; locus 60), encodes a
protein containing a polyglutamine tract that has previously been
associated with Spinocerebellar Ataxia 129. ATXN1L, ATXN2L,
and ATXN7L2 were also located in significant loci that have
previously been associated with cognitive function, intelligence,
or educational attainment16,17,24. The DCDC2 gene (chromosome
6; locus 64) has previously been associated with cortical mor-
phology30, dyslexia31, and normal variation in reading and spel-
ling32, but not with general cognitive function. TTBK1
(chromosome 6; locus 66) encodes a neuron-specific serine/
threonine and tyrosine kinase, which regulates phosphorylation
of tau33. Genetic variants in this gene have been associated with
Alzheimer's disease34. AUTS2 (chromosome 7; locus 72) is
implicated in a number of neurological disorders35. Mutations in
CWF19L1 (chromosome 10; locus 91) have been associated
with spinocerebellar ataxia and intellectual disability36.
RBFOX1 (chromosome 16; locus 121) encodes a mRNA-splicing
factor that interacts with ATXN237, and mutations in this
gene lead to neurodevelopmental disorders38. Locus 131, on
chromosome 17, has previously been associated with
Smith-Magenis Syndrome39. The most significantly-associated
SNP (P= 2.2 × 10−8) in this locus lies in an intron of the
RAI1 gene. RAI1 encodes a protein containing a polymorphic
polyglutamine tract that is expressed mainly in neuronal
tissues. Variants in the gene are also associated with
schizophrenia40.

Of the seven significant gene sets identified, one was a new
finding: ‘positive regulation of nervous system development’. A
more detailed description of this gene-set is: ‘any process that
activates, maintains or increases the frequency, rate or extent of
nervous system development, the origin and formation of ner-
vous tissue’. The remaining six gene-sets showed replication with
previous studies of general cognitive function and/or educa-
tion16,17,24. Only one, ‘regulation of cell development’, was sig-
nificant across all four studies16,17,24. Identification of these gene
sets is consistent with genes associated with cognitive function
regulating the generation of cells within the nervous system,
including the formation of neuronal dendrites.

A number of not-previously-reported genetic correlations with
cognitive function were found here, including with cardiovascular
variables. For example, it is already known that there is a phe-
notypic association between cognitive function in youth and the
development of hypertension by age 50 years41; we found a
genetic correlation of −0.15. Other genetic correlations between
cardiovascular variables and cognitive function were angina (rg=
−0.18) and heart attack (rg=−0.17); again, there are known to
be phenotypic associations between prior cognitive functioning
and various cardiovascular outcomes41,42.
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The genetic correlations between general cognitive function and
eyesight were in opposite directions depending on the reported
reason for wearing glasses or contact lenses; this was despite an
overall positive genetic correlation between general cognitive
function and wearing glasses (rg= 0.28). The result for myopia
(short-sightedness; rg= 0.32) was consistent with previous evidence
of a positive phenotypic43 and genetic44 correlation between this
trait and cognitive function. Less genetic work has investigated the
links between hyperopia (long-sightedness) and cognitive function,
although our finding, a genetic correlation of rg=−0.21, was
consistent with the negative phenotypic association between these
variables reported in previous literature45.

We have investigated the six regions of the genome identified
as having a shared effect between general cognitive function and
more elementary cognitive tasks. Locus 13 on chromosome 1
contains the NMNAT2 gene. NMNAT2 is involved with Waller-
ian degeneration46,47; this is a neurodegenerative process which
occurs after axonal injury in both the peripheral and central
nervous system. Locus 15 on chromosome 2 contains
ENSG00000271894, a non-coding RNA gene. SLC4A10 and DPP4
are located on chromosome 2 (locus 28). Variants in both
SLC4A10 and DPP4 have been linked to schizophrenia48,49;
hippocampal volume has also been linked to variants in DPP450.
A variant of FOXO3 (chromosome 6; locus 69) has been shown to
be associated with longevity in humans51,52; it is found in most
centenarians across a variety of populations. MAPT, WNT3,
CRHR1, KANSL1, and NSF are located on chromosome 17, locus
133; genetic variants within these genes have been linked to
Alzheimer’s disease in APOE e4 carriers53, Parkinson’s
disease54–56, neuroticism57, infant head circumference58, intra-
cranial volume59, and subcortical brain region volumes60.
Researchers following up the present study's results could prior-
itise the genetic loci uncovered herein that are associated with
general cognitive function and reaction time (Supplementary
Data 16 and 17), as well as those that are also associated with
brain-related measures in other large GWASs. Such variants,
being associated with multiple cognitive and neurological phe-
notypes, might help to prioritise potentially causal variants, and
help to identify how differences in genotypic sequence are linked
to such phenotypic consequences.

We note limitations with the cognitive phenotypes studied. For
general cognitive function, phenotypic heterogeneity is a limita-
tion, due to different tests being used in most samples. We also
note the small number of cognitive tests being used in the con-
struction of the general cognitive function phenotype in some
cohorts. However, we were able to investigate this further by
estimating genetic correlations for general cognitive function
amongst some of the larger cohorts. These demonstrated strong
positive genetic correlations that ranged from rg= 0.88–1.0
(Table 2). There were slight differences in the test questions and
the testing environment for the UK Biobank’s ‘fluid’ (verbal-
numerical reasoning) test in the assessment centre versus
the online version. We used a bivariate GREML analysis
to investigate the genetic contribution to the stability of
individual differences in people’s verbal-numerical reasoning;
we report a significant perfect genetic correlation. The UK Bio-
bank’s reaction time variable is based on only four trials per
participant; this is far fewer trials than would typically be
measured. For example, other large UK surveys have used 40
trials in choice RT procedures61,62.

Both the overall size of the present study’s meta-analysis of
GWASs and the inclusion of a single large sample, UK Biobank,
are strengths, which contributed to the abundance of new
findings. When compared to an analysis of only UK
Biobank herein, the current meta-analysis adds 92 independent
significant loci, 51 of which are novel. Yet, as genome-wide

studies of other complex traits continue to increase up to
and beyond a million individuals, an even larger sample size
will be required in order to seek replication of these findings,
identify new associations, and generate stronger polygenic pre-
dictions15,63 (Supplementary Fig. 1).

When compared to previous large studies of cognitive function
and education, we replicate a large proportion, but not all, of the
previously-reported significant findings. These differences in
reported findings might be explained partly by differences in
study populations (including age, social status, and ethnicity),
phenotypes, and analysis methods. Whereas we know that there is
sample overlap in the studies described, each comprises a unique
set of contributing cohorts. As described above, there is sub-
stantial variation in the cognitive tests that contribute to
the construction of a general cognitive function phenotype.
Cognitive function is not as simple to measure as, say, height,
and it is far from being standardised. This limitation
applies across the GWAS meta-analysis studies, as well as within
them. The use of different analysis methods—for example
MTAG, which includes phenotypes other than the target phe-
notype—might also contribute to the different findings that
have been reported. Finally, it is also possible that, although
specific loci reached genome-wide significance in particular stu-
dies, there are false positives, highlighting the importance of well-
powered replication studies.

Gene-based analysis has been shown to increase the power to
detect associations, because the multiple testing burden is
reduced, and the effects of multiple SNPs are combined together.
From these gene-based analyses, the association of a gene with
general cognitive function does not imply that it is causally
related to this phenotype, only that the gene is in a region of
strong association within a locus. These loci may contain multiple
associated genes; therefore, we note that all of the associated genes
that we reported may not be independent findings. However, we
note that gene-based testing will not be able to detect associations
that fall outside of the gene-body. This means that, if SNPs in
promoter regions harbour variants that are causal to differences
in general cognitive function or reaction time, they will be missed
in our gene-based analyses.

General cognitive function has prominence and pervasiveness
in the human life course, and it is important to understand the
environmental and genetic origins of its variation in the popu-
lation4. The unveiling here of many genetic loci, genes, and
genetic pathways that contribute to its heritability (Fig. 2; Sup-
plementary Data 1, 6 and 7)—which it shares, as we find here,
with many health outcomes, longevity, brain structure, and pro-
cessing speed—provides a foundation for exploring the
mechanisms that bring about and sustain cognitive efficiency
through life.

Methods
Participants and cognitive phenotypes. The present study includes 300,486
individuals of European ancestry from 57 population-based cohorts brought
together by the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE), the Cognitive Genomics Consortium (COGENT) consortia, and UK
Biobank (Supplementary Note 2). All individuals were aged between 16 and 102
years. Exclusion criteria included clinical stroke (including self-reported stroke) or
prevalent dementia (Supplementary Data 18).

General cognitive function, unlike height for example, is not measured the same
way in all samples. Here, this was mitigated by applying a consistent method of
extracting a general cognitive function component from cognitive test data in the
cohorts of the CHARGE and COGENT consortia; all individuals were of European
ancestry (Supplementary Note 1).

For each of the CHARGE and COGENT cohorts, a general cognitive function
component phenotype was constructed from a number of cognitive tasks. Each
cohort was required to have tasks that tested at least three different cognitive
domains. We avoided taking more than one cognitive test score from any
individual cognitive test. Principal component analysis was applied to the cognitive
test scores to derive a measure of general cognitive function. Principal component
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analyses results for the CHARGE cohorts were checked by one author (IJD) to
establish the presence of a single component. The scree slope was examined, the
percentage of variance accounted for by the first unrotated principal component
was noted, and it was checked that all tests had sufficient loading on the first
unrotated principal component. Scores on the first unrotated component were used
as the cognitive phenotype (general cognitive function). Principal component
analyses for the COGENT cohorts are described in Trampush et al. (pp. 337–338,
and Supplementary Table 1)64.

UK Biobank participants were asked 13 multiple-choice questions that assessed
verbal and numerical reasoning (VNR: UK Biobank calls this the ‘fluid’ cognitive
test). The VNR score was the number of questions answered correctly in 2 min.
Four samples of UK Biobank participants with verbal-numerical reasoning scores
were used in the current analyses. The first sample (VNR Assessment Centre)
consists of UK Biobank participants who completed the verbal-numerical
reasoning test at baseline in assessment centres (n= 107,586). The second UK
Biobank sample (VNR T2) consists of participants who did not complete the
verbal-numerical reasoning test at baseline but did complete this test at the first
repeat assessment visit in assessment centres (n= 11,123). The third UK Biobank
sample (VNR MRI) consists of participants who did not complete the verbal-
numerical reasoning test at a previous testing occasion but did complete the test at
the imaging visit in assessment centres (n= 3002). The fourth UK Biobank sample
(VNR Web-Based) consists of participants who did not complete the verbal-
numerical reasoning test at any assessment centre visit, but did complete this test
during the web-based cognitive assessment online (n= 46,322). Details of the
cognitive phenotypes for all cohorts can be found in Supplementary Note 1.

At the baseline UK Biobank assessment, 496,790 participants completed the
reaction time test. Details of the test can be found in Supplementary Note 1. A
sample of 330,069 UK Biobank participants with scores on both the reaction time
test and genotyping data was used in this study.

Genome-wide association analyses. Genotype–phenotype association analyses
were performed within each cohort, using an additive model, on imputed SNP
dosage scores. Adjustments for age, sex, and population stratification were included
in the model for each cohort. Cohort-specific covariates—for example, site or
familial relationships—were also fitted as required. Cohort-specific quality control
procedures, imputation methods, and covariates are described in Supplementary
Data 19. Quality control of the cohort-level summary statistics was performed
using the EasyQC software65, which implemented the exclusion of SNPs with
imputation quality <0.6 and minor allele count <25.

General cognitive function meta-analysis. A meta-analysis including all the
CHARGE-COGENT and UK Biobank summary results was performed using the
METAL package with a sample-size weighted model implemented (http://www.
sph.umich.edu/csg/abecasis/Metal).

Reaction time genome-wide association analysis. The GWAS of reaction time
from the UK Biobank sample was performed using the BGENIE v1.2 analysis
package (https://jmarchini.org/bgenie/). A linear SNP association model was tested
which accounted for genotype uncertainty. Reaction time was adjusted for the
following covariates: age, sex, genotyping batch, genotyping array, assessment
centre, and 40 principal components.

Genomic risk loci characterization using FUMA. Genomic risk loci were defined
from the SNP-based association results, using FUnctional Mapping and Annota-
tion of genetic associations (FUMA)23. Firstly, independent significant SNPs were
identified using the SNP2GENE function and defined as SNPs with a P-value of
≤5 × 10−8 and independent of other genome wide significant SNPs at r2 < 0.6.
Using these independent significant SNPs, tagged SNPs to be used in subsequent
annotations were identified as all SNPs that had a MAF ≥ 0.0005 and were in LD of
r2 ≥ 0.6 with at least one of the independent significant SNPs. These tagged SNPs
included those from the 1000 genomes reference panel and need not have been
included in the GWAS performed in the current study. Genomic risk loci that were
250 kb or closer were merged into a single locus. Lead SNPs were also identified
using the independent significant SNPs and were defined as those that were
independent from each other at r2 < 0.1.

Comparison with previous findings. Previous evidence of association for each of
the 148 genetic loci identified herein as being associated with general cognitive
function was sought in the largest published GWASs of general cognitive func-
tion16,17 and education24. We performed look-ups on all tagged SNPs (r2 > 0.6)
within each locus, including all 1000 genomes SNPs, and classed any tagged SNP
previously reported as genome-wide significant, as replication. Details of these
findings are presented in Supplementary Data 3.

Gene-based analysis implemented in FUMA. Gene-based analysis has been
shown to increase the power to detect genotype-phenotype association because the
multiple testing burden is reduced, and the effect of multiple SNPs is combined
together66. Gene-based analysis was conducted using MAGMA67. The test carried

out using MAGMA, as implemented in FUMA, was the default SNP-wise test using
the mean χ2 statistic derived on a per gene basis. SNPs were mapped to genes based
on genomic location. All SNPs that were located within the gene-body were used to
derive a P-value describing the association found with general cognitive function
and reaction time. The SNP-wise model from MAGMA was used and the NCBI
build 37 was used to determine the location and boundaries of 18,199 autosomal
genes. Linkage disequilibrium within and between each gene was gauged using the
1000 genomes phase 3 release68. A Bonferroni correction was applied to control for
multiple testing; the genome-wide significance threshold was P < 2.75 × 10−6.

Estimation of SNP-based heritability. The proportion of variance explained by all
common SNPs was estimated using univariate GCTA-GREML analyses69 in four of
the largest individual cohorts: ELSA, Understanding Society, UK Biobank, and
Generation Scotland. Sample sizes for all of the GCTA analyses in these cohorts
differed from the association analyses, because one individual was excluded from
any pair of individuals who had an estimated coefficient of relatedness of >0.025 to
ensure that effects due to shared environment were not included. The same cov-
ariates were included in all GCTA-GREML analyses as for the SNP-based asso-
ciation analyses.

Univariate Linkage Disequilibrium Score regression. Univariate LDSC regres-
sion was performed on the summary statistics from the GWAS on general cog-
nitive function and reaction time. The heritability Z-score provides a measure of
the polygenic signal found in each data set. Values greater than four indicate that
the data are suitable for use with bivariate LDSC regression70. The mean χ2 statistic
indicates the inflation of the GWAS test statistics that, under the null hypothesis of
no association (i.e., no inflation of test statistics), would be one. An inflation in the
test statistics can indicate population stratification, cryptic relatedness, or the
presence of many alleles each with a small effect. The intercept of the LDSC
regression can detect the difference between inflation due to stratification and
cryptic relatedness, and the inflation due to a polygenic signal. This is because the
inflation in test statistics attributable to stratification, drift, and cryptic relatedness
will not correlate with LD, whereas inflation due to polygenicity will. The LDSC
regression intercept, therefore, captures the inflation in the χ2 statistics that is not
due to stratification or other confounds.

For each GWAS, an LD regression was carried out by regressing the GWA test
statistics (χ2) on to each SNP’s LD score, which is the sum of squared correlations
between the minor allele frequency count of a SNP with the minor allele frequency
count of every other SNP. This regression allows for the estimation of heritability
from the slope, and a means to detect residual confounders using the intercept. For
general cognitive function, we report an LD score regression intercept of 1.058 (SE
= 0.011) and a ratio of 0.0659; this indicates that only 6.6% of the inflation
observed can be ascribed to causes other than a polygenic signal. For reaction time,
we report an LD score regression intercept of 1.02 (SE= 0.009) and a ratio 0.0475;
this indicates that only 4.75% of the inflation observed can be ascribed to causes
other than a polygenic signal.

LD scores and weights were downloaded from (http://www.broadinstitute.org/
~bulik/eur_ldscores/) for use with European populations. A minor allele frequency
cut-off of >0.1 and an imputation quality score of >0.9 were applied to the GWAS
summary statistics. Following this, SNPs were retained if they were found in
HapMap 3 with MAF >0.05 in the 1000 Genomes EUR reference sample. Following
this, indels and structural variants were removed along with strand ambiguous
variants. SNPs whose alleles did not match those in the 1000 Genomes were also
removed. As the presence of outliers can increase the standard error in LDSC score
regression70 and so SNPs where χ2 > 80 were also removed.

Genetic correlations. Genetic correlations were estimated using two methods,
bivariate GCTA-GREML71 and LDSC70. Bivariate GCTA was used to calculate
genetic correlations between phenotypes and cohorts where the genotyping data
were available. This method was used to calculate the genetic correlations between
different cohorts for the general cognitive function phenotype. It was also
employed to investigate the genetic contribution to the stability of the same UK
Biobank’s participants’ verbal-numerical reasoning test scores in the assessment
centre and then in web-based, online testing. In cases where only GWA summary
results were available, bivariate LDSC was used to estimate genetic correlations
between two traits. This was used to estimate the degree of overlap between
polygenic architecture of the traits. Bivariate LDSC regression was used to estimate
genetic correlations between general cognitive function, reaction time, and the
following health outcomes: ADHD, age at menarche, age at menopause, Alzhei-
mer's disease, anorexia nervosa, bipolar disorder, BMI, bone density femoral neck,
bone density lumbar spine, coronary artery disease, HbA1c, HDL cholesterol,
hippocampal volume, intracranial volume, LDL cholesterol, longevity, lung cancer,
major depression, neuroticism, schizophrenia, smoking status, triglycerides, type 2
diabetes, waist-hip ratio, autism spectrum disorder, birth weight, depressive
symptoms, hypertension, pulse wave arterial stiffness, angina, heart attack, parental
longevity, forced expiratory volume in 1-second (FEV1), hand grip strength,
happiness, health satisfaction, heel bone mineral density, osteoarthritis, overall
health rating, wearing of glasses or contact lenses, long-sightedness, short-sight-
edness, sleep duration, sleeplessness/insomnia, and subjective wellbeing. For
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Alzheimer’s disease, a 500-kb region surrounding APOE was excluded and the
analysis re-run (Alzheimer’s disease (500 kb)). Supplementary Data 20 provides
further details on the sources of the GWAS summary statistics.

Polygenic prediction. Polygenic profile score analyses were used to predict cog-
nitive test performance in Generation Scotland, the English Longitudinal Study of
Ageing, and Understanding Society. Polygenic profiles were created in PRSice72

using results of a general cognitive function meta-analysis that excluded the
Generation Scotland, the English Longitudinal Study of Ageing, and Under-
standing Society cohorts. Polygenic profiles were also created in these cohorts
based on the UK Biobank GWA reaction time results. SNPs with a MAF < 0.01
were removed prior to creating the polygenic profiles. Clumping was used to obtain
SNPs in linkage disequilibrium with an r2 < 0.25 within a 250 kb window. Polygenic
profile scores were created at P-value thresholds of 0.01, 0.05, 0.1, 0.5, and 1 (all
SNPs), based on the significance of the association in the general cognitive function
and reaction time GWAS. Linear regression models were used to examine the
associations between the polygenic profile and cognitive ability in GS, ELSA, and
US, adjusting for age at measurement, sex, and the first 10 (GS), 15 (ELSA), and 20
(US) genetic principal components to adjust for population stratification. The false
discovery rate (FDR) method was used to correct for multiple testing across the
polygenic profiles at all five thresholds73.

Functional annotation implemented in FUMA23. The independent significant
SNPs and those in LD with the independent significant SNPs were annotated for
functional consequences on gene functions using ANNOVAR74 and the Ensembl
genes build 85. A CADD score75, RegulomeDB score76, and 15-core chromatin
states77–79 were obtained for each SNP. eQTL information was obtained from the
following databases: GTEx (http://www.gtexportal.org/home/), BRAINEAC (http://
www.braineac.org/), Blood eQTL Browser (http://genenetwork.nl/
bloodeqtlbrowser/), and BIOS QTL browser (http://genenetwork.nl/
biosqtlbrowser/). Functionally-annotated SNPs were then mapped to genes based
on physical position on the genome, eQTL associations (all tissues) and chromatin
interaction mapping (all tissues). Intergenic SNPs were mapped to the two closest
up- and down-stream genes which can result in their being assigned to multiple
genes.

Gene-set analysis implemented in FUMA. In order to test whether the polygenic
signal measured in each of the GWASs clustered in specific biological pathways, a
competitive gene-set analysis was performed. Gene-set analysis was conducted in
MAGMA67 using competitive testing, which examines if genes within the gene set
are more strongly associated with each of the cognitive phenotypes than other
genes. Such competitive tests have been shown to control for Type 1 error rate as
well as facilitating an understanding of the underlying biology of cognitive dif-
ferences80,81. A total of 10,891 gene-sets (sourced from Gene Ontology82, Reac-
tome83, and, SigDB84) were examined for enrichment of general cognitive function
and reaction time. A Bonferroni correction was applied to control for the multiple
tests performed on the 10,891 gene sets available for analysis.

Gene-property analysis implemented in FUMA. A gene-property analysis was
conducted using MAGMA in order to indicate the role of particular tissue types
that influence differences in general cognitive function and reaction time. The goal
of this analysis was to test if, in 30 broad tissue types and 53 specific tissues, tissue-
specific differential expression levels were predictive of the association of a gene
with general cognitive function and reaction time. Tissue types were taken from the
GTEx v6 RNA-seq database85 with expression values being log2 transformed with a
pseudocount of 1 after winsorising at 50, with the average expression value being
taken from each tissue. Multiple testing was controlled for using a Bonferroni
correction.

Data availability. The GWAS summary results for all significant and suggestive
SNPs for general cognitive function and reaction time are available in Supple-
mentary Data 1, 2, 10 and 11. The full GWAS summary results for Reaction Time
are available to download here: http://www.ccace.ed.ac.uk/node/335. Access to the
full GWAS summary results for general cognitive function can be requested by
application to the chairs of the CHARGE and COGENT consortia.
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