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Abstract Volatility has evolved as an attractive new asset class of its own. The most
common instruments for trading volatility are variance swaps. Mean returns of DAX
and ESX variance swaps over the time period of 1995 to 2004 are strongly negative,
and only part of the negative premium can be explained by the negative correlation
of variance swap returns with stock market indices. We analyze the implications of
this observation for optimal portfolio composition. Mean-variance efficient portfolios
are characterized by sizable short positions in variance swaps. Typically, the stock
index is also sold short to achieve a better portfolio diversification. To capture het-
erogeneous preferences for higher moments, we use a variant of the polynomial goal
programming method. We assume that investors strive for a high Sharpe ratio, high
skewness, and low kurtosis. Our analysis reveals that it is often not possible to achieve
a balanced tradeoff between Sharpe ratio and skewness. Investors are advised to hold
the extreme portfolios (Sharpe ratio driven, skewness driven, or kurtosis driven) and
avoid the middle ground. This “all-or-nothing” characteristic is reflected in jumps of
asset weights when certain thresholds of preference parameters are crossed. These
empirical findings can explain why many investors are so reluctant to implement
option-based short-selling strategies.
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1 Introduction

In addition to its prominent role as a financial risk measure, volatility has evolved
to become an established asset class of its own. Volatility can be traded by creating
contracts whose payoff depends on the volatility realized during the time to maturity.
The buyer of the contract is “long volatility” and receives a payment from the seller
when realized volatility is high. The seller, who is “short volatility”, benefits from a
low realized volatility. There are various volatility instruments, each of which differ
in the details of the payoff function.

Initially, the main motive for trading volatility was to manage risk exposure in op-
tion positions and to control the vega exposure independently of the position’s delta
and gamma. The growth of the volatility trading segment attracted the interest of other
market participants, who were particularly interested in the strong negative correla-
tion between volatility movements and stock index returns. One common explanation
for this phenomenon is the so-called leverage effect, which occurs where the risk of
the equity position increases when stock prices fall and the market value of debt stays
constant. The opposite relationship holds when stock prices rise, thus decreasing the
leverage ratio in market value terms.1 According to this explanation, the negative
correlation is stock return driven. In contrast, the competing feedback hypothesis as-
sumes that volatility changes are the reason for this effect: higher volatility induces
a higher risk premium and, therefore, higher discount rates, thus lowering funda-
mental stock values. Another explanation why volatility and stock prices should be
negatively correlated is to prevent arbitrage opportunities in options markets in the
presence of a volatility skew (see Hafner 2004, p. 46). From an investor’s point of
view, it seems attractive that the negative correlation between volatility and stock
index returns is particularly pronounced in stock market downturns, thus offering
protection against stock market losses when such is needed most. This is one reason
why financial advisors often recommend the 90/10 rule of investing, i.e., 10% of a
stock portfolio should be invested in volatility.

Empirical studies, however, indicate that this kind of downside or crash pro-
tection might be expensive. The volatility risk premium is found to be strongly
negative in the US as well as in the European stock markets (see, e.g., Jack-
werth and Rubinstein 1996; Chernov and Ghysels 2000; Coval and Shumway 2001;
Pan 2002; Bakshi and Kapadia 2003; Eraker et al. 2003; Driessen and Maen-
hout 2003; Doran and Ronn 2004a; Doran and Ronn 2004b; Bondarenko 2004;
Moise 2004; Santa-Clara and Yan 2004; Carr and Wu 2005; Hafner and Wallmeier
2007). This means that long volatility positions provide expected returns below the
risk-free interest rate. There is some evidence that the magnitude of the premium
depends on the level of implied volatility and the time to maturity (see Bliss and
Panigirtzoglou 2004), the buying pressure for index puts (see Bollen and Whaley

1This relationship between stock returns and leverage corresponds to an argument by Welsh (2004) who
proposes that changes in leverage are only due to changes in the market value of equity. See also Bessler
et al. (2008) for European evidence. However, according to empirical findings of Figlewski and Wang
(2000), the leverage changes cannot fully explain the extent of the negative correlation of stock return and
volatility changes.
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2004) and the uncertainty of forward volatility (see Carr and Wu 2005). The esti-
mated premium has significant temporal dependencies (see Bollerslev et al. 2005;
Santa-Clara and Yan 2004). All in all, the negative premium appears too large to be
explained by the negative covariance with market returns within standard (partial)
equilibrium models (see Carr and Wu 2005; Hafner and Wallmeier 2007). Conse-
quently, selling volatility on a regular basis might be a profitable strategy. This is
compatible with the finding of Bondarenko (2004) that the variance risk factor ac-
counts for a considerable portion of historical hedge fund returns.2

It is interesting that a strategy of systematically selling volatility earns, on average,
a positive risk premium. The economic rationale behind this empirical observation is
that investors receive a premium for providing other market participants with insur-
ance against potential market losses. However, the return distribution of short volatil-
ity is negatively skewed (see Carr and Wu 2005; Hafner and Wallmeier 2007), which
means that the strategy will cause substantial losses if volatility suddenly rises. His-
torically, this has happened in situations of financial crisis. A prominent example is
the collapse of the Long Term Capital Management (LTCM) hedge fund. LTCM had
built up large short positions in equity volatility previous to the Asian and Russian
crisis in 1997/1998. When volatility dramatically increased, LTCM suffered huge
losses. The losses from short volatility trades were estimated to be about US$1.3
billion, i.e., roughly 30% of LTCM’s total loss (see Lowenstein 2000).

The negative skewness in the return distribution of a (short) volatility trading strat-
egy makes the volatility asset class different from traditional investment vehicles,
such as stocks and bonds, which has several important implications for asset allo-
cation and risk management. First, higher moments, such as skewness and kurtosis,
need to be considered in the asset allocation decision process in addition to the first
two moments of the portfolio return distributions. Second, in managing the risk of a
short variance strategy, risk measures able to quantify the financial impact of poten-
tially damaging events should be used, one of which is the conditional value at risk
(CVaR). Third, losses from a short variance strategy are potentially unlimited.3 One
way to alleviate the effects of an adverse market movement is to hedge part of the
tail risk of the strategy, e.g., by buying out-of-the-money variance call options. These
options are now regularly traded in the OTC market.

Although there are many studies on the variance risk premium, the implications for
investors have rarely been addressed in any detail to date. To draw any conclusions
from the negative risk premium from an investor’s point of view, it is necessary to
specifically analyze optimal portfolio composition in a realistic setting and this is ex-
actly the focus of our research. We are particularly interested in the tradeoff between
Sharpe ratio, skewness, and kurtosis. This tradeoff is important not only for the short
volatility strategy presented here, but also for many other hedge fund strategies that

2See also Le Moigne and Savaria (2006), who identify volatility as an important attribute in explaining
cross-sectional variations in hedge fund returns, and Füss and Kaiser (2007), who analyze comovements
between hedge fund strategies and different asset classes.
3In practice, variance contracts often exhibit a cap of 2.5 times the current swap rate.
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produce heavily skewed return distributions.4 In general, such strategies are charac-
terized by small profits in “normal” situations and potentially large losses when some
rare event occurs.

The results of our analysis suggest that it is often not possible to achieve a balanced
tradeoff between Sharpe ratio, skewness, and kurtosis. Investors are advised to hold
the extreme portfolios—Sharpe ratio driven, skewness driven or kurtosis driven—and
avoid the middle ground. This “all-or-nothing” characteristic is reflected in jumps of
asset weights when certain thresholds of preference parameters are crossed. These
empirical findings can explain why many investors are so reluctant to implement
option-based short-selling strategies.

The remainder of the paper is organized as follows. In the next section, we intro-
duce variance swaps as an investment instrument. We synthetically derive values of
variance swaps over the time period from 1995 to 2004 using tick-by-tick data for
options on the German stock index DAX and the European index Euro STOXX 50
(ESX). The historical variance swap returns serve as a basis for our portfolio analy-
sis (Sect. 3). The mean-variance framework (Sect. 3.1) ignores the return properties
of negative skewness and excess kurtosis. These are taken into account implicitly in
expected utility maximization (Sect. 3.2) and explicitly in the polynomial goal pro-
gramming (PGP) optimization (Sect. 3.3). The paper concludes with a brief summary
of our findings.

2 Variance swap returns

2.1 Variance swaps and valuation

Variance swaps, also known as variance contracts, offer pure exposure to the real-
ized future variance. The payment at expiration is equal to the difference between the
annualized variance of log stock returns and the swap rate fixed at the outset of the
contract. If this difference is positive, the swap buyer receives payment from the swap
seller. If it is negative, the swap seller receives payment from the buyer. The swap rate
is chosen such that the contract has zero present value. Thus, the swap rate can be
interpreted as the risk-neutral expectation of the unconditional future variance. Vari-
ance swaps on the most common stock indices now have an active over-the-counter
market. This market growth occurred as the result of theoretical research deriving
a robust replication strategy. This strategy consists of a continuously adjusted stock
holding and a static options portfolio including long positions in out-of-the-money
(OTM) options for all strikes from zero to infinity (see Neuberger 1994). Based on
this replication, we can express the fair swap delivery price KVARS as:

KVARS = 2

T
erT

(∫ F0(T )

0

1

K2
P0(K,T )dK +

∫ ∞

F0(T )

1

K2
C0(K,T )dK

)
, (1)

4In analyzing hedge fund returns, Bondarenko (2004) finds a significant relation to variance returns. This
indicates that short variance strategies are in part responsible for skewness and kurtosis in hedge fund
returns.



Optimal investments in volatility 151

where C0(K,T ) and P0(K,T ) denote the current market price of a put and a call
option of strike K and maturity T , r is the risk-free rate, and F0(T ) is the stock’s
T -maturity forward price. We assume that there is no credit risk involved. According
to (1), the replication portfolio includes out-of-the-money put and call options with
weights inversely proportional to the square of their strike. This weighting scheme
is necessary to obtain a constant portfolio exposure with respect to realized variance
independent of stock price moves (see Demeterfi et al. 1999 for a detailed derivation
and economic motivation).

In a perfect market, the replication is exact if options with arbitrary strikes are
available and the stock price process is continuous. If stock price jumps occur and
the number of strike prices is limited, the formula still offers a good approximation
in realistic settings (see Carr and Wu 2005). Our comparison with OTC quotes from
two major investment banks in November and December 2004 confirms that the the-
oretical values from (1) are close to market prices. With the exception of 2 days,
the theoretical values always fall into the spread between bid and ask quotes. This
spread seems sufficiently narrow (about one volatility point) to make the comparison
meaningful.

To employ (1) in the empirical analysis, we first estimate the strike price structure
of implied volatilities (“smile”). The strike-dependent implied volatilities are then
inserted into the Black–Scholes formula (or, equivalently, the Black (1976) model, if
forward prices for the underlying asset are used) to obtain the strike price structure of
option prices C0(K,T ) and P0(K,T ).

2.2 Data and estimation

Our database contains all reported transactions of the two stock index options and
futures with the highest trading volume in Europe. Option and future data for the
German stock index DAX are available from January 1995 to December 2004; those
on the Euro STOXX 50 index (ESX) from January 2000 to December 2004. Both
European-style options (ODAX and OESX) are traded on the joint German and Swiss
options and futures exchange Eurex.5

To calculate an implied volatility for each transaction, it is crucial to accurately
match the corresponding forward price. As we use time-stamped tick-by-tick data,
matching of option and future prices is straightforward. We employ the method of
Hafner and Wallmeier (2001) to account for dividend effects and to ensure put-call-
parity consistent estimates of implied volatilities.

For each trading day and each time to maturity available on that day, we estimate
a smooth curve of implied volatilities across strike prices. Let K denote the strike
price of an option with time to maturity T − t . Each trade is assigned a moneyness
according to:

M
(
t, T ,Ft (T ),K

) = ln( K
Ft (T )

)√
T − t

,

where Ft(T ) is the (intraday) forward price at the time of this trade.

5We are very grateful to the Eurex for providing the data.
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Suppressing the arguments of moneyness, we chose the cubic regression function:

σ = β0 + β1M + β2M
2 + β3D · M3 + ε, (2)

where σ is the implied volatility, βi, i = 0,1,2,3 are regression coefficients, ε is a
random error, and D is a dummy variable that assumes the value of 1 for positive
moneyness and 0 otherwise. The dummy variable accounts for the asymmetry pat-
tern of implied volatilities around the at-the-money strike (M = 0). Typically, the
“smile” is better characterized by a “skew,” with the negative relation between im-
plied volatility and moneyness extending clearly beyond M = 0. Only when the call
(put) is deeply out-of-the-money (in-the-money), does the implied volatility function
dip to a minimum before eventually rising slightly. A quadratic or cubic regression
without differentiating between M ≤ 0 and M > 0 will not capture this increase. The
regression function of (2) is twice differentiable, which ensures that the correspond-
ing risk-neutral density is continuous.

The smile estimation derived from (2) is based on all trades on one day in op-
tions with the same time to maturity. To obtain an estimate of the smile for a given,
prespecified time to maturity of x calendar days, we linearly interpolate between
the implied variances of the two neighboring maturities that are available (see, e.g.,
Wilmott 1998, p. 290). In this study, we choose τ = 45 because ODAX and OESX
option series with lifetimes between 30 and 60 days are the most liquid contracts,
which ensures an accurate estimation of the smile. The average R2 coefficient over
all trading days of one year is 92% in 1995 and larger than 95% in all later years.

We assume that the smile function of (2) is valid in a moneyness range between the
lowest and highest moneyness of all observations. Outside this range, following Carr
and Wu (2005) and Jiang and Tian (2005), we assume that implied volatilities are con-
stant at the volatility level of the relevant moneyness boundary. This corresponds to
a conservative estimate of the fair values of options deeply in and out-of-the-money.
Other extrapolation techniques would provide higher variance swap rates and (even)
lower variance returns.

Having estimated the smile structure, we convert implied volatilities from the
regression function of (2) into call and put option prices (functions C0(K,T ) and
P0(K,T )). It is then straightforward to numerically calculate the integrals in (1). The
calculations result in an estimate of the variance swap value for each trading day in
the sample period.

2.3 Return distributions

Institutional investors typically hold a variance swap position over a certain horizon.
We, therefore, assume a buy-and-hold strategy over the lifetime of each contract (45
days). To obtain a complete picture of possible returns over this holding period, we
assume that one contract is bought on each trading day during the period under study.
The resulting return series is strongly autocorrelated because of overlapping return
periods (day 1 to 45, day 2 to 46, etc.). We account for this problem by using serial-
dependence-adjusted Newey/West (1987) standard errors (with a lag of 33 trading
days, corresponding to 45 calendar days). As a robustness check, we repeated all
tests for nonoverlapping periods and obtained similar standard error estimates.
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Table 1 Summary statistics for log index returns and log returns of variance swaps on the DAX and ESX
index with a time to maturity of 45 calendar days. Robust t -statistics are calculated using the Newey–West
estimator for the standard deviation with a lag of 33

DAX ESX

95–04 95–99 00–04 00–04

rS Mean 0.008 0.022 −0.013 0.012

Median 0.022 0.029 <−0.001 −0.006

Minimum −0.437 −0.337 −0.437 −0.340

Maximum 0.249 0.245 0.249 0.221

Std. dev. 0.089 0.075 0.102 0.078

Skewness −0.902 −0.848 −0.670 −0.554

Kurtosis 1.898 2.219 0.992 0.964

rVARS Mean −0.271 −0.235 −0.307 −0.360

Median −0.324 −0.259 −0.387 −0.419

Minimum −1.569 −1.569 −1.547 −1.658

Maximum 1.586 1.087 1.586 1.295

Std. dev. 0.498 0.472 0.521 0.510

Skewness 0.560 0.176 0.890 0.676

Kurtosis 3.690 2.781 1.475 3.545

Corr −0.476 −0.421 −0.574 −0.534

Table 1 presents summary statistics of the distribution of DAX and ESX index log
returns (rS ) and variance swap log returns (rVARS). The mean variance swap returns
are significantly negative in all time periods,6 implying that the variance swap rates
overestimate the subsequently realized variance. Indeed, it is well known that ATM-
implied volatility tends to be higher than subsequently realized volatility. Due to the
option’s smile, variance swap rates are even higher than the ATM variance, which
increases the spread further. As shown in Table 1, it was more profitable to initiate a
short position in DAX variance swaps in the second period (2000 to 2004) than in the
first period (1995 to 1999). In the second period, however, it would have been even
more advantageous to shorten ESX variance swaps. The mean log return for 45-day
ESX variance swaps in the period from 2000 to 2004 is minus 36.0%, whereas it is
only minus 30.7% for DAX variance swaps. These results indicate that, on average,
investors are willing to accept a heavily negative risk premium in exchange for being
long in realized variance. Equivalently, investors who are providing insurance to the
market, i.e., sellers of variance, require a significantly positive risk premium.

The sample Pearson correlation coefficient of rS and rVARS is given as Corr in
Table 1. As expected, it is significantly negative in all cases.

The payoff and discrete return distributions of DAX and ESX variance swaps are
clearly nonnormal: they show positive skewness and excess kurtosis. The log trans-

6There is only one mean return (DAX, period 2000–2004) that is not statistically significant at the 5%
level.
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Fig. 1 Histogram of 45 calendar day log returns of DAX variance swaps (left graph) and ESX variance
swaps (right graph) over the sample periods 1995–2004 (DAX) and 2000–2004 (ESX)

formation of discrete returns to continuously compounded returns, however, reduces
the skewness estimate for DAX (ESX) variance swap returns in the period from 1995–
2004 (2000–2004) from 2.689 (2.282) to 0.560 (0.676) and the kurtosis estimate from
13.246 (8.793) to 3.690 (3.545). The log return distributions appear close to normal,
although standard tests (Jarque–Bera test, Kolmogorov–Smirnov goodness-of-fit test,
etc.) reject normality. Figure 1 illustrates these findings by showing the empirical den-
sity functions for the log returns of DAX and ESX variance swaps along with normal
distributions having the same means and the same variances as those estimated from
the samples. The distributions of DAX and ESX log variance swap returns are in most
cases close to each other (see Fig. 2). In some cases, however, they deviate greatly.
For example, during the period July 30 to September 10, 2001, the log return of DAX
variance swaps was significantly higher than the log return of ESX variance swaps
(points marked as crosses in the figure). Investors who bought variance swaps in this
period realized substantial profits, since September 11 is within the swap’s time to
maturity, so that realized variance was extremely high.7

3 Portfolio analysis

3.1 Mean-variance efficient portfolios

Given the historical return distributions, the interesting question from an investor
perspective is how to structure a portfolio in order to profit from the attractive return
opportunities that arise from either selling variance swaps or from the diversifica-
tion benefit that buying positions provide. To tackle this question, we first compare

7See Hafner and Wallmeier (2007) for a description of variance swap rates during other crises.
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Fig. 2 Log return variance swap DAX versus log return variance swap ESX within the period 2000–2004.
The crosses mark all dates where September 11 is within the swap’s time to maturity

mean-variance efficient portfolios with and without variance swaps, and second, an-
alyze optimal portfolios under power utility.8 In Sect. 3.3, we explicitly include the
investor’s skewness and kurtosis preferences by using the polynomial goal program-
ming method. Our asset universe always consists of variance swaps, the underlying
stock index, and the risk-free asset.9

In Sect. 2, we defined variance swap returns as the ratio of realized variance and
the present value of the delivery price KVARS. We thus assume that the buyer of the
swap makes an up-front payment of e−rT KVARS in order to receive a payment of
1 euro times realized variance at delivery. In reality, though, except for the margin
requirements, there is no cost involved in entering into the variance swap contract.
Since there is no initial investment, we cannot characterize the profit or loss in relative
terms; nor can we determine the weight of variance swaps in the investor’s portfolio.
To overcome this problem, we “deleverage” the contract by introducing an up-front
payment in the form of a risk-free investment. The proceeds of the risk-free asset
increase the net payoff at maturity. An investment of e−rT KVARS appears to be the
natural choice because this amount corresponds to the present value of a net payoff
equal to the realized variance. However, this still implies a high degree of leverage
compared to investing in stocks, as is evident from the higher return fluctuations.
Therefore, as an alternative, we assume a risk-free investment of f · e−rT KVARS,
where f is chosen such that the volatility of variance swap returns is equal to the
index return volatility in our sample period. This makes it easier to interpret the port-

8These analyses are based on discrete returns as required by the usual calculations in portfolio theory.
9We follow an absolute-performance approach. See Illmer and Marty (2007) for an analysis of the return
decomposition of absolute-performance multi-asset class portfolios.
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Fig. 3 Mean variance analysis of DAX and variance swap investments. The expected (excess) returns and
variances are estimated from the sample of return observations in all intervals of 45 days in the period
from 1995 to 2004

folio weights of variance swaps and to compare them to the weights of stocks. It is
evident, that the set of mean variance efficient portfolios will be the same for any
value of f as long as the risk-free asset is part of the asset universe. We refer to
the first return definition (f = 1) as HL (high leverage) and to the second definition
(same volatility as stock index) as LL (low leverage).

Figure 3 illustrates the mean-variance analysis for the LL case using estimates
from our sample period. The asset universe consists of the DAX index (weight xS ),
the DAX variance swap (xVARS), and the risk-free asset (xrf ). The sample average
and the sample standard deviation of DAX returns over all 45-day intervals in the
period from 1995 to 2004 were 0.76% and 8.66%, respectively. Over the same set
of intervals, an LL mean return of −2.05% was observed for DAX variance swaps.
Line (1) is the efficient frontier without considering variance swaps (xS + xrf = 1),
whereas Line (2) represents all combinations of DAX and variance swaps without the
risk-free asset (xVARS + xS = 1). If we allow all three assets to enter the portfolio, we
obtain the new efficient Line (5). All portfolios on this line are characterized by the
same ratio xVARS/xS but with different weights of the risk-free asset. Prespecifying
the weight xrf and maximizing the Sharpe ratio, we obtain one point on the efficient
Line (5). For instance, Line (4) with tangency portfolio T1 represents all portfolios
with xrf = 1.1, Line (3) with tangency portfolio T2 represents all portfolios with
xrf = 2. As we move along the efficient line toward combinations of higher risk and
return, the short sales of the risky part of the portfolio increase, meaning that the
sum xVARS + xS becomes more negative. Similarly, the weight of the risk-free asset
increases. This increase results in a riskier portfolio because the risk-free investment
is financed by short selling risky assets. In the HL case of our return definition, we
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Table 2 Characteristics of mean-variance efficient portfolios. Case 1 is based on sample estimates of
mean returns, standard deviations, and the correlation coefficient. Cases 2 and 3 result from increasing
or decreasing the mean return of variance swaps by twice the standard error of the mean estimate. SR0
denotes the Sharpe ratio without variance swaps; SR is the Sharpe ratio including variance swaps

Case 1: Base case

SR0 SR xVARS xS xrf LL: HL:
xVARS

xS

xVARS
xS

DAX 95-04 0.0876 0.2394 <0 <0 >1 6.1140 0.9655

DAX 95-99 0.3632 0.3743 <0 >0 <1 −0.3394 −0.0566

DAX 00-04 −0.1336 0.3728 <0 <0 >1 1.1667 0.1709

ESX 00-04 −0.1740 0.5924 <0 <0 >1 1.2438 0.1816

Case 2: Higher return of variance swap (+2 STD)

SR0 SR xVARS xS xrf LL: HL:
xVARS

xS

xVARS
xS

DAX 95-04 0.0876 0.0885 <0 >0 <1 −0.1888 −0.0298

DAX 95-99 0.3632 0.4143 >0 >0 <1 0.4814 0.0803

DAX 00-04 −0.1336 0.1399 <0 <0 >1 0.3055 0.0448

ESX 00-04 −0.1740 0.3059 <0 <0 >1 0.8882 0.1297

Case 3: Lower return of variance swap (−2 STD)

SR0 SR xVARS xS xrf LL: HL:
xVARS

xS

xVARS
xS

DAX 95-04 0.0876 0.4413 <0 <0 >1 3.0466 0.4811

DAX 95-99 0.3632 0.5260 <0 >0 <1 −3.1768 −0.5301

DAX 00-04 −0.1336 0.6683 <0 <0 >1 1.4188 0.2079

ESX 00-04 −0.1740 0.8980 <0 <0 >1 1.4043 0.2050

obtain the same efficient Line (5). The efficient portfolios vary merely by a different
ratio of variance swap and stock index weights.

Table 2 summarizes characteristics of mean-variance efficient portfolios, where
we restrict portfolio weights to a range between −3.0 and 3.0.10 The first part of
the table (Case 1) is based on sample estimates of mean returns, standard deviations,
and the correlation coefficient. To examine the sensitivity of the results to errors in
the estimated variance risk premium, we then either increase (Case 2) or decrease
(Case 3) the mean return of variance swaps by twice the Newey–West standard er-
ror of the mean estimate. Leaving all other input parameters constant, we obtain the

10It is reasonable to restrict the magnitude of individual asset positions and the extent to which investors
are allowed to sell assets short. Most institutional investors have to meet such restrictions. We assume
that the individual long and short positions cannot be larger than three times as much as net investment.
However, our results are robust with respect to the values of the upper and lower boundaries.
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results shown in the second and third part of Table 2. SR0 denotes the Sharpe ratio
without variance swaps; SR is the Sharpe ratio of efficient portfolios including vari-
ance swaps. It is important to note that our allocation analysis does not take general
equilibrium conditions into account. Because variance swaps are, on aggregate, in
zero net supply, large positive or negative weights of these instruments are generally
not compatible with general equilibrium.

The weight of variance swaps is negative, with the exception of the first subperiod
for DAX swap returns in Case 2. Typically, the stock index also enters the efficient
portfolios with a negative weight. This short selling of the stock index matches the
short position in variance swaps because in this way, investors benefit from the neg-
ative correlation by achieving better diversification. In Case 2, however, selling the
index short is appropriate only in the second subperiod. The Sharpe ratio (SR) for
DAX is 0.37 in both subperiods, but only 0.24 in the full sample, which is due to
the different portfolio structures in the two subperiods. In fact, a long index position
is required in the first period and a short position in the second period to reach the
higher Sharpe ratio of 0.37. If we construct only one portfolio for the entire sample
period, it would be suboptimal in both subperiods.

The optimal ratio of xVARS and xS varies widely along time period and underlying
index. In Cases 1 and 3, the variance swap weight typically exceeds the stock index
weight. Interestingly, the short position in variance swaps is not necessarily extended
when assuming more strongly negative variance swap returns. For instance, over the
full period of DAX returns, efficient portfolios are characterized by a ratio xVARS/xS

of 6.1, compared to 3.0 in Case 2. Thus, variance swaps are sold less aggressively
compared to the underlying index, although the absolute variance risk premium has
increased. The explanation for this counterintuitive observation is that the risk re-
duction resulting from less divergent weights xVARS and xS is larger than the loss in
expected return.

3.2 Backtesting under power utility

In Table 3, we present optimal portfolio weights for an investor who maximizes ex-
pected utility based on the power utility function with risk aversion parameter α. As
in the previous section, we differentiate between three cases. In the base case, the
bivariate distribution of excess returns of variance swaps and the underlying stock
index is set equal to the observed distribution in the sample period. The columns
“+2 STD” result from shifting all variance swap returns by twice the Newey–West
adjusted standard error of the volatility risk premium. In the case of “−2 STD,” the
adjustment shifts in the opposite direction so that the negative risk premium becomes
even larger. The table is based on variance swaps that are levered so that their sample
return volatility equals the volatility of the stock index return (LL, see definition in
previous section). As before, the portfolio weights are restricted to lower and upper
bounds of −3.0 and 3.0, respectively.

The results can be summarized as follows: In the base case, the weights xVARS

are all negative. The size of the short position decreases with a higher degree of risk
aversion. The weight of the variance swap is always lowest in the case of “−2 STD”
and highest in the case of “+2 STD.” During the second subperiod, the investor also
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Table 3 Optimal portfolio weights under power utility for different risk aversion coefficients α. The “Base
case” is based on sample estimates of mean returns, standard deviations, and the correlation coefficient.
“+2 STD” and “−2 STD” result from increasing or decreasing the mean return of variance swaps by twice
the standard error of the mean estimate.

α DAX 1995–2004

Base case +2 STD −2 STD

xVARS xS xrf xVARS xS xrf xVARS xS xrf

1 −1.56 −0.31 2.87 −0.10 0.89 0.21 −1.73 −0.27 3.00

1.5 −1.22 −0.25 2.47 −0.08 0.60 0.48 −1.58 −0.42 3.00

2 −0.98 −0.20 2.18 −0.06 0.45 0.61 −1.44 −0.56 3.00

5 −0.44 −0.09 1.53 −0.03 0.18 0.85 −0.73 −0.33 2.06

10 −0.22 −0.04 1.26 −0.01 0.09 0.92 −0.39 −0.17 1.56

α DAX 1995–1999

Base case +2 STD −2 STD

xVARS xS xrf xVARS xS xrf xVARS xS xrf

1 −0.21 2.87 −1.66 0.80 3.20 −3.00 −2.65 0.65 3.00

1.5 −0.23 2.17 −0.94 1.13 2.87 −3.00 −2.33 0.41 2.92

2 −0.21 1.71 −0.50 1.34 2.66 −3.00 −1.88 0.37 2.51

5 −0.12 0.73 0.39 0.73 1.30 −1.03 −0.84 0.19 1.65

10 −0.06 0.37 0.69 0.37 0.66 −0.03 −0.43 0.10 1.33

α DAX 2000–2004

Base case +2 STD −2 STD

xVARS xS xrf xVARS xS xrf xVARS xS xrf

1 −1.19 −0.81 3.00 −0.40 −1.60 3.00 −1.64 −0.36 3.00

1.5 −1.10 −0.90 3.00 −0.30 −1.10 2.40 −1.43 −0.57 3.00

2 −1.05 −0.95 3.00 −0.23 −0.83 2.06 −1.30 −0.70 3.00

5 −0.67 −0.69 2.36 −0.10 −0.34 1.44 −1.01 −0.98 2.99

10 −0.34 −0.34 1.68 −0.05 −0.17 1.22 −0.53 −0.50 2.03

α ESX 2000–2004

Base case +2 STD −2 STD

xVARS xS xrf xVARS xS xrf xVARS xS xrf

1 −1.64 −0.36 3.00 −0.81 −1.19 3.00 −2.18 0.18 3.00

1.5 −1.42 −0.58 3.00 −0.87 −1.13 3.00 −1.85 −0.15 3.00

2 −1.31 −0.69 3.00 −0.89 −1.11 3.00 −1.64 −0.36 3.00

5 −1.08 −0.92 3.00 −0.73 −0.85 2.58 −1.20 −0.80 3.00

10 −0.70 −0.65 2.35 −0.37 −0.43 1.80 −0.99 −0.88 2.87

takes a short position in stocks, but its weight is smaller than xVARS. Since the optimal
portfolio typically contains short positions in the index and in variance swaps, the
risk-free asset often has a large weight. Our analysis of the period from 1995 to 1999
reveals substantially different results. The weights of the short position in variance
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swaps are rather small, and the risky part of the portfolio is strongly concentrated in
long index holdings. This phenomenon is undoubtedly due to the high stock returns
during that period of “irrational exuberance.” Overall, the results are similar to the
preceding mean variance analysis.

3.3 Polynomial goal programming

Maximization of expected utility is based on the return distribution as a whole, and,
therefore, implicitly takes into account the higher moments, such as skewness and
kurtosis. However, it is generally not obvious how to adjust the risk-aversion parame-
ter in the utility function to capture heterogeneous investor preferences with respect
to the different moments of the return distribution. To explicitly control the influence
of higher moments, we use polynomial goal programming (PGP), which was intro-
duced by Lai (1991) and later applied by Chunhachinda et al. (1997), Prakash et al.
(2003), Sun and Yuxing (2003), Canela and Colla (2004), and Davies et al. (2004).
This method allows us to incorporate different objectives whose relative importance
depends on individual preference parameters. We assume that investors aim at a high
Sharpe ratio (SR), a high (positive) skewness (SK), and a low kurtosis (KT), where

SR = E[R]
σ

; SK = E[(R − E[R])3]
σ 3

; KT = E[(R − E[R])4]
σ 4

.

R denotes excess returns and σ is the standard deviation of R. To discover an op-
timal tradeoff between these objectives, the investor needs to balance a gain in one
objective against a loss in another. We assume that the investor’s overall assessment is
based on the discrepancy between the degree of actual achievement and the maximal
degree of achievement (SRmax, SKmax, KTmin) that is possible if one objective alone
is considered. Since Sharpe ratio, skewness, and kurtosis are of different magnitudes,
we need to rescale these measures to make them comparable. Therefore, we express
the discrepancies between the maximal degree and the actual degree of achievement
in relative terms. Our overall objective function to be minimized is defined as:

Z(xVARS, xS) = (
1 + dSR(xVARS, xS)

)α + (
1 + dSK(xVARS, xS)

)β

+ (
1 + dKT(xVARS, xS)

)γ
, (3)

where

dSR(xVARS, xS) = SRmax − SR(xVARS, xS)

SRmax , (4)

dSK(xVARS, xS) = SKmax − SK(xVARS, xS)

SKmax , (5)

dKT(xVARS, xS) = KT(xVARS, xS) − KTmin

KTmin
. (6)
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The parameters α ≥ 0, β ≥ 0, and γ ≥ 0 express the investor’s preference with re-
spect to the Sharpe ratio, skewness, and kurtosis.11 The weight of the risk-free asset
is given by xrf = 1 − xVARS − xS .

The ratios dSR, dSK , and dKT , according to (4)–(6) are invariant with respect
to multiplying xVARS and xS by the same constant c > 0. Such a transformation
changes portfolio variance by the factor c2, meaning that the solution of the PGP
optimization problem is compatible with any degree of portfolio variance. The de-
sired level of variance is achieved simply by adjusting the weight of the risk-free
asset without changing the structure of the risky subportfolio. Thus, we can pre-
specify the variance without restricting the solution space. For convenience, we
choose σ 2 = 1. As before, the expected values needed as input parameters are es-
timated by the respective mean values of the historical return sample. In addition
to the parameters entering in the mean-variance optimization, the parameter set
also includes the skewness and kurtosis of variance swap and underlying index re-
turns as well as the comovements E[(RVARS − E[RVARS])x, (RS − E[RS])y] with
(x, y) ∈ {(1,2), (2,1), (1,3), (3,1), (2,2)}.

Figure 4 illustrates some important elements of the optimization results for DAX
variance swaps over the entire period from 1995 to 2004. Since short selling is al-
lowed, the asset weights for portfolios with the same variance are given by an ellipse
that is concentric about the point of the minimum variance portfolio characterized by
xVARS = xS = 0 (and, therefore, xrf = 1). The ellipse shown in Fig. 4(a) represents a
portfolio variance of 1. At this high volatility of 100%, the asset weights are rather
extreme. However, as previously mentioned, it is only the ratio of asset weights that
is of any consequence to our analysis and their magnitude can easily be scaled down
to be compatible with a lower variance.

On the line in Fig. 4(a), we highlight the portfolio compositions resulting from
separately optimizing one of the objectives, i.e., either Sharpe ratio, skewness, or
kurtosis.12 As is already known from the mean-variance analysis in Sect. 3.1, the
portfolio with the highest Sharpe ratio is short in variance swaps as well as in the
underlying index, with a much larger (negative) weight on variance swaps. Maxi-
mizing portfolio skewness results in a completely different portfolio, which is at the
opposite side of the isovariance ellipse. The KTmin portfolios are again very differ-
ent from both the SRmax and SKmax portfolios, graphically illustrating the extent to
which the three objectives conflict. The conflict between the skewness and Sharpe
ratio objectives is also apparent from the different alignment of the isovariance lines
of 1−dSR = SR/SRmax and 1−dSK = SK/SKmax against xVARS in Fig. 4(b). The best
portfolio with respect to skewness provides almost the worst results with respect to
the Sharpe ratio, and vice versa.

The investor’s optimal portfolio depends on his or her preference structure, as rep-
resented by the triple (α,β, γ ). Figure 4(c) shows how the asset weights xVARS and
xS depend on β when the other parameters are fixed at α = 1 and γ = 0. In the case

11Skewness preference is an implication of decreasing absolute risk aversion. The experimental and em-
pirical evidence of preference for positively skewed returns is summarized in Harvey et al. (2004). For a
discussion of kurtosis preference, see Dittmar (2002).
12There are two portfolios with minimal kurtosis, since KT(xVARS, xS) = KT(−xVARS,−xS).
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Fig. 4 PGP optimization for portfolios of DAX, DAX variance swaps and the risk-free asset based on
historical returns over the time period from 1995 to 2004. The lines show the coordinates of all unit
variance portfolios. In figs. (a), (b) and (d), the solid lines always represent the same set of unit variance
portfolios, whereas the coordinates of the remaining portfolios are represented by broken lines

of β = 0, the Sharpe ratio is the only relevant objective, so that the asset weights cor-
respond to the SRmax portfolio. With increasing β , skewness becomes increasingly
important relative to the Sharpe ratio. At first, the extent of short selling stocks rises
without significant change in the variance swap position. The optimal portfolio thus
moves from the point SRmax in Fig. 4(a) in the direction of the lower KTmin port-
folio. This smooth adjustment stops when β exceeds a level of about 1.32. At this
threshold, the portfolio weights jump to the SKmax portfolio composition. The reason
for this abrupt rearrangement of the optimal portfolio is that the objective function
Z(xVARS, xS) has two local minima, one where the positive variance swap weight is
large, and the other where the negative weight is large (see Fig. 4(d). Portfolios with
xVARS in-between these values do not appear to be attractive. For β lower than 1.32,
the investor chooses the “left” local minimum which represents a structure close to
the SRmax portfolio, and for β higher than 1.32, the investor chooses the “right” local
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minimum, which is almost identical to the SKmax portfolio. Thus, the tradeoff be-
tween Sharpe ratio and skewness seems to be such that investors cannot always find a
reasonable compromise between the two. The crux of the matter is that investors are
faced with a decision between two real alternatives so that the optimization problem
resembles an “all or nothing” decision.

To further investigate this observation, Fig. 4(e) plots the relative degree of
achievement of the Sharpe ratio objective (measured by 1−dSR = SR/SRmax) against
the degree of achievement of the skewness objective (measured by 1 − dSK =
SK/SKmax) for all portfolios with a one unit variance. Given an arbitrary level of
skewness achievement, investors will always prefer the portfolio with a higher Sharpe
ratio. Therefore, only the upper line is relevant and might be called “efficient.” On the
extreme left, the Sharpe ratio has a maximum; on the extreme right, skewness has a
maximum. The efficient line is concave to its left and convex to its right. Starting
on the left, skewness can at first be improved without much loss in Sharpe ratio.
However, the higher the slope coefficient (in absolute terms) of the efficient line, the
more “expensive,” in terms of Sharpe ratio, a further increase in portfolio skewness
becomes. If an investor is willing to pay this price, it makes sense to go even a step
further and choose a portfolio near SKmax because the slope eventually diminishes
again, rendering a further increase in skewness less costly. With increasing β in the
setting (α = 1, β, γ = 0), the optimal portfolio moves from SRmax to T (β = 1.32)
and then jumps to a point near SKmax. The middle part of the efficient line is a no-
man’s land: those who venture beyond T will not stop until reaching SKmax.

If we include kurtosis preference in the analysis, the portfolio structure once again
does not shift continuously toward the kurtosis minimal portfolio, but instead exhibits
a pronounced jump at a certain γ threshold (see Fig. 4(e)). As is already known, in
the case of α = 1 and β = 1.33, the optimal portfolio without considering kurtosis
(γ = 0) is close to the SKmax portfolio. The asset weights are stable as long as γ

is below 0.21, but as soon as γ exceeds this threshold, the optimal solution shifts
to one of the two KTmin portfolios. In the case of DAX variance swaps, the KTmin

portfolio with negative asset weights is chosen since it represents a more attractive
combination of skewness and Sharpe ratio.

The corresponding results for portfolios composed of the European index ESX and
the ESX variance swaps are shown in Fig. 5. These results are based on the shorter
time period of 2000 to 2004. The main observations are very similar to the DAX
analysis. In particular, there is once again, a sharp distinction between skewness-
driven optimal portfolios and Sharpe-ratio-driven investments, a distinction that per-
sists even if the investor population represents a continuum of α and β preferences
(see the jump of asset weights in Fig. 5(c)). If we incorporate kurtosis preference
into the optimization, investors with a strong preference for low kurtosis will select
the better of the two KTmin portfolios. However, once again, the transition from the
SKmax to the KTmin portfolio is very abrupt, which means that the mixture of both
portfolios is unattractive.

4 Conclusion

Mean returns of DAX and ESX variance swaps for the time period from 1995
to 2004 were strongly negative. This is in accordance with the observation of
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Fig. 5 PGP optimization for portfolios of ESX, ESX variance swaps, and the risk-free asset based on
historical returns over the time period from 1995 to 2004. The lines show the coordinates of all unit
variance portfolios. In figs. (a), (b), and (d), the solid lines always represent the same set of unit variance
portfolios, whereas the coordinates of the remaining portfolios are represented by broken lines

a negative volatility risk premium reported in previous studies for the United
States and Europe. Part of the negative premium can be attributed to the nega-
tive correlation of variance swap returns with stock market index returns. How-
ever, beta alone does not suffice to explain its magnitude (see Carr and Wu 2005;
Hafner and Wallmeier 2007). As a consequence, mean-variance efficient portfolios
are characterized by sizable short positions in variance swaps. Typically, the stock
index is also sold short to take advantage of the negative return correlation with vari-
ance swaps and in that way achieve better portfolio diversification. These results are
robust with respect to reasonable estimation errors for expected returns. Results are
similar if we take the perspective of an investor who maximizes expected power util-
ity.

Because expected utility maximization is based on the entire return distribution,
it implicitly takes higher moments such as skewness and kurtosis into account. It
is not surprising, however, that merely one risk-aversion parameter cannot capture
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investors’ heterogeneous preferences with respect to the higher moments of the port-
folio return distribution. To explicitly control such preferences, we use a variant of the
polynomial goal programming method (PGP) proposed by Lai (1991). This method
attempts to find an investor-specific optimal combination for achieving different ob-
jectives. In our analysis, we assume that investors strive for a high Sharpe ratio, high
skewness, and low kurtosis, which is in agreement with standard assumptions on the
economic behavior of investors. Unfortunately, the individual objectives are in seri-
ous conflict. In particular, the short positions required to profit from negative variance
swap returns inevitably lead to an undesired negative skewness. Our analysis shows
that it is often not possible to achieve a balanced tradeoff between Sharpe ratio and
skewness. Investors tend to the extreme portfolios (Sharpe ratio driven, skewness
driven, or kurtosis driven) and avoid the middle ground. This “all-or-nothing” char-
acteristic is reflected in jumps of asset weights when certain thresholds of preference
parameters are crossed.

In this study, we did not investigate whether the variance risk premium can be
viewed as adequate compensation for negative skewness and excess kurtosis. An
equilibrium model incorporating higher moments of return distributions is needed
to answer this question. However, our analysis clearly shows to what degree a short-
selling strategy implies a negatively skewed distribution. It is, therefore, important to
implement effective risk-management procedures.

An important question for practitioners is whether the negative risk premium for
realized variance is a temporary phenomenon or results from a structural imbalance
that is likely to persist into the future. On the one hand, an increasing number of
hedge funds are willing to exploit the risk premium and act as variance sellers. On the
other hand, the vast majority of market participants, including most large institutional
investors, are still reluctant to sell variance because it implies selling large amounts
of out-of-the-money put options. This view is supported by the stability of the smile
structure during recent years. Thus, there is some reason to believe that our analysis
of historical returns is indicative of future return distributions and relevant for current
investor decisions.
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