
Influence-oriented Community Analysis in
Social Networks

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Xinjue Wang

B.Sc.,

Department of Computer Science and Technology,

Zhuhai College of Jilin University,

Jinwan, Zhuhai, China.

M.Sc.,

School of Science,

College of Science, Engineering and Health

RMIT University,

Melbourne, Victoria, Australia.

School of Science

College of Science, Engineering and Health

RMIT University

March 20, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/159140481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For my loving parents,

and my dear maternal and paternal grandparents.

i

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has

been carried out since the official commencement date of the approved research program;

and, any editorial work, paid or unpaid, carried out by a third party is acknowledged.

Xinjue Wang

School of Science RMIT University

March 20, 2018

ii

Acknowledgments

I would like to express my special thanks of gratitude to my supervisors Dr. Ke Deng

and Dr. Jianxin Li who generously gave me guidance and helped me through the Ph.D.

candidature. Secondly, I would also like to thank Assoc. Prof. Xiuzhen Zhang and Prof.

Timos Sellis who guided me into the realm of research and gave me the golden opportunity

to do wherever my passion lies. Finally, I would like to thank my parents and friends who

supported me along this journey.

iii

Credits

Portions of the material in this thesis have previously appeared in the following publica-

tions:

• J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu. Most influential community

search over large social networks. In 33rd IEEE International Conference on Data

Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages 871–882,

2017. doi: 10.1109/ICDE.2017.136. URL https://doi.org/10.1109/ICDE.2017.136

• X. Wang, K. Deng, J. Li, J. X. Yu, C. S. Jensen, and X. Yang. Targeted influence

minimization in social networks. In 22nd Pacific-Asia Conference on Knowledge

Discovery and Data Mining, PAKDD 2018, Melbourne, Australia, Proceedings

• J. Li, X. Wang, K. Deng, T. Sellis, J. X. Yu, and F. Xia. Efficient diverse influence

maximization in social networks. submitted to IEEE Transaction on Knowledge and

Data Engineering, under review

• X. Wang, K. Deng, J. Li, J. X. Yu, C. S. Jensen, and X. Yang. Efficient targeted in-

fluence minimization in big social networks. submitted to World Wide Web Journal,

under review

iv

https://doi.org/10.1109/ICDE.2017.136

Contents

1 Introduction 5

1.1 Literature Review . 6

1.1.1 Influence Maximization . 6

1.1.2 Social Community Detection . 7

1.1.3 Diversified Influence Analysis . 8

1.1.4 Influence Minimization . 9

1.2 Research Questions . 11

1.2.1 Most Influential Community Search 11

1.2.2 Diverse Influence Maximization . 12

1.2.3 Targeted Influence Minimization . 13

1.3 Thesis Organization . 14

2 Most Influential Community Search over Large Social Networks 15

2.1 Problem Definition . 15

2.2 Baseline Solution . 18

2.3 Index-based Influential Community Search 19

2.3.1 Indexing Maximal r-Cliques . 19

2.3.2 Sequential-Order based Search . 20

2.3.3 Improved Sequential-Order based Search 21

2.3.4 Best-First based Search . 23

2.3.5 Fast Best-First based Search . 24

2.4 C-Tree Index Construction . 25

2.4.1 Revisiting Maximal Cliques Enumeration 25

2.4.2 Algorithm of Constructing C-Tree 26

2.4.3 Optimizing C-Tree . 28

2.5 Experimental Study . 29

2.5.1 Data Sets and Parameter Settings 29

2.5.2 Efficiency Evaluation of Influential Community Search 31

2.5.3 Effective Evaluation of Community Influence Spread 32

2.5.4 Effective Evaluation of maximal kr-clique Community Model 33

2.5.5 Efficiency Evaluation of Scalability 34

v

2.5.6 Time and Space Cost Evaluation of Building C-Tree 34

2.5.7 Additional Evaluation . 35

2.5.8 Case Study . 37

2.6 Conclusions . 37

3 Efficient Diverse Influence Maximization 41

3.1 Problem Definition . 41

3.1.1 Preliminary . 41

3.1.2 Diverse Influence Maximization . 42

3.2 Monotone and Submodularity . 43

3.3 Solution Frameworks . 44

3.4 Quick Aggregated Influence Calculation . 46

3.4.1 Path Transformation . 46

3.4.2 PSP-Tree . 46

3.5 Experimental Study . 50

3.5.1 Evaluation of Effectiveness . 51

3.5.2 Evaluation of Efficiency . 54

3.5.3 Other Evaluations . 56

3.6 Conclusions . 58

4 Targeted Influence Minimization in Social Networks 59

4.1 Problem Definition . 59

4.1.1 Diffusion Model . 59

4.1.2 Targeted Influence Minimization . 60

4.2 Budget Unconstrained Solution . 61

4.3 Budget Constrained Solution . 63

4.3.1 Greedy Algorithm . 64

4.4 Sampling-based Solution . 64

4.4.1 Minimum Influence Path . 65

4.4.2 Sampling-based Greedy Algorithm 66

4.5 Experimental Study . 68

4.5.1 Evaluation of Effectiveness . 69

4.5.2 Evaluation of Efficiency . 71

4.6 Conclusion . 71

5 Conclusion and Future Works 73

Bibliography 75

vi

List of Figures

1.1 An example illustrating diverse influence maximization. 12

2.1 An Example Social Network Graph . 16

2.2 Example of C-Tree . 20

2.3 Community Size Distribution. 30

2.4 Search time. 32

2.5 Influential Scores over Different Datasets . 33

2.6 Scalability Evaluation . 34

2.7 C-tree storage requirement. 35

2.8 C-tree construction time. 36

2.9 Influential Ratio in Ground truth Community Datasets 36

2.10 Time Cost of Basic vs. Index Methods . 36

2.11 The top 2 influential co-authoring groups . 38

3.1 Measuring precision of seeds. 48

3.2 Measuring precision of nodes activated by the seeds. 49

3.3 Measuring recall of seeds. 52

3.4 Measuring recall of nodes activated by the seeds. 53

3.5 Efficiency of proposed algorithms. 55

3.6 Impact of λ, δ and data size. 57

4.1 A social network and an instance graph. 60

4.2 Influence minimization, unconstrained budget. 63

4.3 Reverse influence paths. 66

4.4 Remaining influence from I on T when varying k. 69

4.5 Remaining influence of I on T when varying |T |. 69

4.6 Remaining influence of I on T when varying |I| 70

4.7 #edges deleted for unconstrained budget. 70

4.8 Time cost when varying k. 70

4.9 Time cost when varying |T |. 71

4.10 Time cost when varying I. 71

vii

List of Tables

2.1 Statistical Information of the Datasets . 31

3.1 Statistics of data sets. 50

viii

Abstract

The emergence of online social networks has fundamentally changed the way people com-

municate with each other. Scholars have never ceased devoting their time and energy to

the phenomenon since its emergence. Among researches around the social network,

• One line of study that draws a large amount of attention recently is the discovery

of communities, i.e. relatively densely connected sub-networks. Discovering such

structures or communities provides insight into the relationship between individuals

and composition of a social network. However, these studies mainly focus on the

inner connection between individuals inside a community structure and neglect the

external influence of a community as a whole.

• Another line of study in the field of the social network is influence analysis which

analyze the ability of individuals to convince other users to adopt a new product

(or an innovative idea, a service, a political opinion, etc.) with word-of-mouth effect

which propagates information through network structures that can trigger cascades

of further adoptions. However, these studies mainly focus on the relationship be-

tween individuals and the information diffusion process and neglect the community

structures in a social network.

There is a lack of studies that analyze the social influence of communities, which is

fundamentally important for understanding the relationship between network structures

and the information diffusion among it and has many practical applications. For example,

a company may try to find the most influential community to advertise their products;

an organization may intend to initiate a campaign in hope to attract more diverse cus-

tomers, i.e., maximizing the number of influenced communities instead of customers; an

association may hope to minimize the influence of a malicious information spread by one

of its opponents, so that the community consisted of its core customers would be affected

the least.

To fill in this meaningful blank, in this thesis, we intend to analyze communities on

the aspect of social influence and solve three research questions as follows. First, how to

identify the communities with the dense intra-connections and the highest outer influence

on the users outside the communities? Second, how to maximize both the spread and the

CHAPTER 0: LIST OF TABLES

diversity of the diffusion at the end of the information propagation by selecting a fixed

number of influential users from a social network to spread the information. The higher

diversity means more communities are influenced. Third, how to minimize the influence of

a set of initial active nodes, which has been infected by a piece of malicious information,

over a target community? The aim is to protect from this disinformation, by deleting a

fixed number of edges in a social network.

To address the first research question, we propose a new metric to measure the like-

lihood of the community to attract the other users outside the community within the

social network, i.e., the community’s outer influence. There are lots of applications that

need to rank the communities using their outer influence, e.g., Ads trending analytics, so-

cial opinion mining and news propagation pattern discovery by monitoring the influential

communities. We refer to such problem as Most Influential Community Search. While

the most influential community search problem in large social networks is essential in var-

ious applications, it is mostly ignored by the academic research community. In this work,

we systematically investigate this problem. Firstly, we propose a new community model,

maximal kr-Clique community, which has desirable characters, i.e., society, cohesiveness,

connectivity, and maximum. And then, we developed a novel tree-based index structure,

denoted as C-Tree, to maintain the offline computed r-cliques. To efficiently search the

most influential maximal kr-clique communities with the maximum outer influence, we de-

veloped four advanced index-based algorithms, which can improve the search performance

of non-indexed solution by about 200 times. The efficiency and effectiveness of construct-

ing index structure and evaluating the search algorithms have been verified using six real

datasets including Facebook, Google+, Gowalla, Twitter, Youtube, and Amazon. A small

case study shows the value of the most influential communities using DBLP data.

To solve the second research question, we investigate Diverse Influence Maximization

(DIM) to efficiently find k nodes which, at the end of propagation process, can maximize

the number of activated nodes and the diversity of the activated nodes. In this work,

an evaluation metric has been proposed to balance the two objectives. To address the

computational challenges, we develop two efficient algorithms and one advanced PSP-Tree

index. The effectiveness and efficiency of our DIM solution are verified by the extensive

experimental studies on five real-world social network datasets.

To address the last research question, we study the community-targeted influence

minimization problem. Unlike previous influence minimization work, this study considers

the influence minimization concerning a particular group of social network users, called

targeted influence minimization. Thus, the objective is to protect a set of users, called

target nodes, from malicious information originating from another group of users, called

active nodes. This study also addresses two fundamental, but largely ignored, issues in

different influence minimization problems: (i) the impact of a budget on the solution;

(ii) robust sampling. To this end, two scenarios are investigated, namely unconstrained

2 (June 25, 2018)

SECTION 0.0: LIST OF TABLES

and constrained budget. Given an unconstrained budget, we provide an optimal solu-

tion; Given a constrained budget, we show the problem is NP-hard and develop a greedy

algorithm with an (1− 1
e)-approximation. More importantly, to solve the influence mini-

mization problem in large, real-world social networks, we propose a robust sampling-based

solution with a desirable theoretic bound. Extensive experiments using real social network

datasets offer insight into the effectiveness and efficiency of the proposed solutions.

3 (June 25, 2018)

CHAPTER 1
Introduction

The emergence of online social networks has fundamentally changed the way people com-

municate with each other. Social networks, such as Facebook, Twitter, and Google Plus,

not only bring people together but also carry all kinds of social entities into an ever narrow

space. Two most important social entities in our modern life are buyer and seller or, in a

contemporary term, customer, and company. Social networks have revolutionized the way

industries maintain relationships with their (potential) customers. Since the appearance of

social networks, we have seen fewer and fewer street questionnaires being handed out and

focus groups being held. Meanwhile, more and more companies turn to social networks

when it comes to collecting feedback of a certain commodity. In addition, businesses are

able to effectively campaign for their new products on social networks thanks to the study

of influence maximization (IM) problem.

In a social network, people tend to form into small groups out of their similar interest

or property in certain social aspect. People inside these small groups tend to have a closer

relationship than ones who are outside of these groups. Scholars call these small groups

communities or relatively densely connected sub-networks [Newman 2006]. Discovery of

such network structures or communities becomes more and more important in recent years

since they offer much more valuable information for companies than individuals in a social

network alone. With community information, businesses are able to identify social groups

and target different groups of people for their different products.

However, these are just a taste of what social networks can provide for our modern

life. The much more impactful applications in this area have yet to be unearthed. Both

influence and community are important aspects of a social network. Nonetheless, like two

sides of a coin, they are essential to be studied together. Analyzing communities on the

aspect of social influence is fundamentally important for understanding the relationship

between network structures and the information diffusion among it, and would enable

various practical applications. For example, in a social network, with the information of

5

CHAPTER 1: INTRODUCTION

community and information diffusion, a company could find the most influential commu-

nity to advertise their products; an organization is able to initiate a campaign in hope

to attract more diverse customers, i.e. a large number of communities instead of a large

number of customers; an association is capable of minimizing the influence of a malicious

information spread by one of its opponents, so that the community consisted of its core

customers would be affected the least.

Unfortunately, none of the above scenarios are able to be implemented yet, as there

is a lack of studies that analyze communities from the aspect of social influence.

1.1 Literature Review

1.1.1 Influence Maximization

Kempe et al. [Kempe et al. 2003b] proposed two discrete influence spread models, Indepen-

dent Cascade (IC) model and Linear Thresholds model. Based on the two widely-accepted

models, there are lots of work focusing on influence maximization problem, e.g., [Domin-

gos and Richardson 2001, Richardson and Domingos 2002, Barbieri et al. 2012, Chen et al.

2014, Aslay et al. 2014, Chen et al. 2015]. Their target is to select a limited number of

nodes from a social network where the selected nodes can influence the maximal number of

nodes in the social network. The relationship between the selected nodes is not required,

i.e., it is very likely the users represented by the selected nodes don’t know the existence

of the others.

The influence maximization problem was proposed in [Domingos and Richardson

2001, Richardson and Domingos 2002]. The two proposed methods are probabilistic and

had no bounded influence spread guarantee. Kempe et. al. [Kempe et al. 2003b] proposed

two discrete influence spread models, Independent Cascade (IC) model and Linear Thresh-

olds model. They proved the influence maximization problem using the two models can

be solved by a greedy algorithm with 1− 1
e approximation ratio. Recently, the problem of

influence maximization are also investigated in the other different aspects. E.g., [Barbieri

et al. 2012, Chen et al. 2014, Aslay et al. 2014, Chen et al. 2015] studied the problem of

topic-aware influence maximization. the assumption is that the influence of social users

may be weighted differently for different topics, which would produce different selections

of the k seed users. [Li et al. 2014a] studied the location-aware influence maximization

problem, i.e., given a query region, how to find the k seed nodes that can influence the

maximum number of nodes in the query region. [Feng et al. 2014] considered novelty

decay in influence maximization and [Liu et al. 2012, Gomez-Rodriguez and Schölkopf

2012] considered time constraint in influence maximization. Both of them are trying to

modify the influence propagation model, e.g., IC model. The most relevant work is [Tang

et al. 2014a] that is to seek diverse seed nodes. It assumes that if the k seed nodes are di-

verse, then their influenced nodes would be also diverse. This assumption is questionable

6 (June 25, 2018)

SECTION 1.1: LITERATURE REVIEW

because two neighbor nodes may influence different sets of nodes due to the direction of

social influence in a social network.

1.1.2 Social Community Detection

A great deal of work has been devoted to find communities in large networks, and much of

this has been devoted to formalize the intuition that a community is a set of nodes that has

more and/or better links between its members than with the remainder of the network.

To design effective community discovery models, Newman and Girvan in [Newman and

Girvan 2004] proposed a quantitative measure, called modularity, to assess the quality of

community structures, and formulated community discovery as an optimization problem.

Its key idea is similar to graph partitioning, which iteratively removes the edge with the

highest betweenness score. Betweenness based community detection metric was also stud-

ied by Girvan and Newman in [Girvan and Newman 2002]. Ruan and Zhang [Ruan and

Zhang 2007] proposed a more efficient spectral algorithm to find high quality communities

by applying k-way partitioning and recursive 2-way partitioning strategies [White and

Smyth 2005]. Satuluri and Parthasarathy in [Satuluri and Parthasarathy 2009] developed

efficient Markov clustering algorithms to identify communities by using stochastic flow

technique. The key idea in it is to enhance flow to well-connected nodes, i.e., rich get

richer and poor get poorer. All the above implicit community detection models focused

on the global connectivity of the social network, by which a specified number of partitions

(communities) are generated. The discovered communities often have small cohesiveness.

Another line of work is to discover communities based on explicit community model like

k-core [Li et al. 2014b] and k-truss [Huang et al. 2014]. The k-core of a graph is the largest

subgraph within which each node has at least k connections. In the induced subgraph

(i.e., a k-core community), since it only requires each node has k neighbors, two nodes

may have large hops (i.e., less cohesive). Given a graph G, the k-truss of G is the largest

subgraph in which every edge is contained in at least (k−2) triangles within the subgraph.

The k-truss is a type of cohesive subgraph defined based on triangle which models the

stable relationship among three nodes. With edge connectivity constraints, the induced

subgraph (i.e., a k-truss community) is connected and cohesive. But the connectivity is

so strong that k-truss can only be used to discover communities of very small size (i.e.,

not a society). LPA [Raghavan et al. 2007] has been evaluated and recommended to be

the better choice as an accurate and efficient community detection technique in the recent

studies [Wang et al. 2015] as well as [Leung et al. 2009]. It works as follows. Each node

in a social network is first given a unique label. At every iteration, each node is updated

by choosing the label which most of its neighbors have. If a node happens to be multiple

labels, then one of these would be selected randomly. After several iterations, the commu-

nities will be uncovered via the labels where each label represents a community. Besides

LPA, there is a considerable amount of research devoting towards community detection

7 (June 25, 2018)

CHAPTER 1: INTRODUCTION

models and algorithms, e.g., with edge content consideration in [Qi et al. 2012], with clique

definition and parallel algorithm in [Gregori et al. 2013]. More details can be referred to

the survey works in [Leskovec et al. 2010, Wang et al. 2015]. In this work, we propose a

new explicit community model, called k-r Maximal Cliques (krMC), which is based on the

concept of maximal cliques [Bron and Kerbosch 1973]. Compared to k-core and k-truss,

the krMC community model concurrently has the desirable characters including society,

cohesiveness, connectivity, and maximum.

1.1.3 Diversified Influence Analysis

The database community has recently studied the keyword search result diversification

problem in [Demidova et al. 2010, Drosou and Pitoura 2009, Liu et al. 2009, Vieira et al.

2011b;a, Yu et al. 2009, Zhao et al. 2011]. Given a very large database, an exploratory

query can easily lead to a vast answer set. Typically, an answer’s relevance to the query

is based on top-k or tf-idf. As a way of increasing user satisfaction, different result di-

versification techniques have been proposed including some system based on ones taking

into account query parameters, evaluation algorithms, and dataset properties. For many

of these, a max-sum type objective function is usually used. Other than those discussed

above, there are many recent works studying result diversification in different settings via

different approaches and through different perspectives. The reader is referred to [Agrawal

et al. 2009, Drosou and Pitoura 2010] for a good summary of this field. All the above

diversification works take a query and the query-relevant result candidates as input and

select a diverse set as output. However, the input of our proposed diversified influence

maximization problem is the whole social network and a user-specified budget k. In this

case, every node in the social network may be a candidate. In addition, our problem is

to address the diversification of influenced node sets activated by the k-vertex set, rather

than measuring the diversity of the k-vertices as [Tang et al. 2014a]. Furthermore, our

work is also different from minimum dominating set problem [Basuchowdhuri and Ma-

jumder 2014, Zhao et al. 2014] that selects a minimum number of nodes from a network

so that any node in the network is either in this minimum node set or is adjacent to at

least one node of this set. Different from [Basuchowdhuri and Majumder 2014, Zhao et al.

2014], we can only select a limited number of nodes (e.g., k is often much small than the

minimum dominating set size) and need to evaluate their influenced nodes’ diversity via

an information diffusion model. Therefore, our investigated problem in this thesis is more

challenging than the diversified result search problem and the minimum dominating set

problem.

8 (June 25, 2018)

SECTION 1.1: LITERATURE REVIEW

1.1.4 Influence Minimization

In this section, we briefly introduce the related work in influence minimization which

has attracted the attention of research community in the past decade. While the influ-

ence maximization is irrelevant to this work, we concisely discuss the targeted influence

maximization which concerns the influence to a targeted set of nodes in social networks.

Overall Influence Minimization

The first track of studies aims to find a certain number of edges in social networks such

that, by deleting these edges, the influence of any information in social networks is mini-

mized [Kimura et al. 2007] [Kimura et al. 2008] [Khalil et al. 2013]. No source nodes and

targeted nodes are specified.

Kimura et al. have introduced the influence minimization problem [Kimura et al.

2008]. They define contamination degree of social networks as the average influence of

some information to each individual node. Given a budget, they aim to find the set of

edges is social networks such that the number of edges is no more than budget and, if the

selected edges are deleted, the contamination degree of the social networks is minimized

where information diffusion model is Independent Cascade (IC) [Kempe et al. 2003a].

They have proposed a greedy algorithm which iteratively selects the next best edge to be

removed base on the contamination degree reduced. To improve the processing efficiency,

they estimate the contamination degree by adapting the bond percolation method [Kimura

et al. 2007].

In [Khalil et al. 2013], Khalil et al. define spread susceptibility of social networks as∑
i∈V fi(S) where fi(S) is the number of nodes influenced by node i after deleting a set

of edges, denoted as S, in social networks. Given a vector of information propagation

probabilities and a positive integer as budget, they aim to select a set of edges in social

networks such that the number of edges is no more than budget and, if the selected edges

are deleted, the spread susceptibility is minimized. They have proposed a greedy algorithm

which computes the loss of susceptibility by removing each edge; delete the one leading to

the maximum loss; this operation is performed iteratively until the budget limit is reached.

They have discussed two information diffusion models, i.e., Independent Cascade (IC) and

Linear Threshold (LT) [Kempe et al. 2003a]. If LT is applied, fi(S) is a monotone and

supermodular function; but it is not true for IC. Therefore, if LT is applied, the greedy

algorithm is (1 − 1/e) of the optimal according to [Nemhauser et al. 1978]. Wang et al.

solve the similar problem using IC with the aim to minimize the influence of negative

information in the network by deleting nodes [Wang et al. 2013].

9 (June 25, 2018)

CHAPTER 1: INTRODUCTION

Source Influence Minimization

The second track of studies assume that initially, a specific set of nodes have some informa-

tion to be spread; the aim is to delete a certain number of edges social networks such that

the influence of information in the social networks is minimized. In particular, the topics

of information is considered in [Yao et al. 2015] and the spread of counter-information

from competitors in the same period of time is considered in [Luo et al. 2014] [Song et al.

2017].

Luo et al. have investigated a different influence minimization problem considering the

influences of two opposite campaigns in a given time period [Luo et al. 2014]. They assume

once a node becomes active to the information from one campaign, it will not change back

to be inactive and will not be active to the information from another campaign. Given

a positive integer as budget and a set of nodes in a social network which are active for

campaign A, they aim to select another set of nodes R where the number of nodes in R

is subject to the budget, and the number of nodes activated by campaign A is minimized.

A greedy algorithm has been proposed with a new time-aware influence diffusion model

CTMCDM (Continuous-Time Multiple Campaign Diffusion Model) which is adapted from

the diffusion model introduced in [Rodriguez et al. 2014]. The greedy algorithm iteratively

adds into R (empty initially) the next best node according to the objective function,

i.e., selecting this node for campaign B will lead to the number of nodes activated for

campaign A minimized. They prove the objective function is a monotone and submodular.

Therefore, the solution greedy algorithm is (1−1/e) of the optimal [Nemhauser et al. 1978].

Yao et al. solve the influence minimization problem under the Topic-aware Indepen-

dent Cascade (TIC) diffusion model [Yao et al. 2015]. Given a set of infected nodes by

a textual message in social networks and a budget, they aim to select a set of uninfected

nodes where the number is not more than the budget; if the set of selected nodes are

deleted, the number of ultimately infected nodes by the message in the social network is

minimized. Specifically, the probability that passing the message from an infected node

a to an uninfected node b considers whether b are interested in the message based on the

log of past propagation. They have proposed to iteratively delete the node which has the

current highest score. The score is measured with either betweenness or out-degree.

With both source and targeted nodes specified, the targeted influence minimization

can be viewed as a new version of influence minimization where source nodes are specified

as discussed in section 1.1.4. The most relevant work is [Yao et al. 2015] where the edges

in social networks have varying weights for different textual messages to be spread. That

is, when the message is given, the social network is fixed. In this situation, this situation is

same as a special case of our problem where the targeted nodes are all other nodes besides

the source nodes. The following two points make this study different from existing studies.

First, the existing studies including [Yao et al. 2015] assume that the budget is insufficient

even though it is not always true. This study addresses this issue for solving the targeted

10 (June 25, 2018)

SECTION 1.2: RESEARCH QUESTIONS

influence minimization. Second, the existing studies including [Yao et al. 2015] directly

apply greedy algorithm which can also be used to solve our problem; however, we observe

that the greedy algorithm is hard to handle large social media. This motivates sampling

techniques in our solution in targeted influence minimization.

1.2 Research Questions

In this thesis, we intend to conduct community analysis from the aspect of social influence

and find solutions to three research questions as follows.

Given a social network,

1. How to identify the communities with the dense intra-connections and the highest

outer influence to the users outside the communities?

2. How to maximize both the spread and the diversity of the diffusion at the end of the

information propagation by selecting a fixed number of influential users from a social

network to spread the information? (A higher diversity means more communities

are influenced at the end of the information propagation.)

3. How to minimize the influence of a set of initial active nodes, which has been infected

by malicious information, over a target community, which we aim to protect from

this disinformation by deleting a fixed number of edges in a social network?

1.2.1 Most Influential Community Search

First, we try to study communities from the perspective of influence maximization. Pre-

cisely, we target to address a significant and novel problem of identifying a number of

closely related nodes (i.e., at least k) that can influence the maximal number of outer

nodes in the social network. It is denoted as most influential community search. The

selected k nodes must be cohesive enough, i.e., they could constitute a community. A

new explicit community model is defined based on the concept of maximal cliques [Bron

and Kerbosch 1973], called maximal kr-Clique community. The maximal kr-Clique com-

munity model has the desirable characters, i.e., society, cohesiveness, connectivity, and

maximum. In specific, a maximal kr-Clique community is defined as a connected and

induced subgraph that consists of at least k nodes (society), the shortest path of any two

nodes is not larger than r (cohesiveness and connectivity), and it is not a subgraph of

another community (maximum).

Even though discovering the most influential communities are important in various

applications, it is largely ignored by the research community. In this work, we study, for

the first time, the influential community search problem in large social networks. The

influence of a community is measured by its influence on the users in the social network

11 (June 25, 2018)

CHAPTER 1: INTRODUCTION

outside the community based on the widely-accepted influence propagation model, i.e.,

the independent cascading model (IC-model) [Kempe et al. 2003b]. Our proposed most

influential community search problem is fundamentally different from the classic influ-

ence maximization and the typical community detection. First, the problem of influence

maximization aims to select a limited number of nodes (i.e., at most k) from a social

network where the selected nodes can influence the maximal number of nodes in the social

network [Chen et al. 2010, Kimura and Saito 2006, Leskovec et al. 2007]. They did not

consider the social distance among the selected k nodes. But in our problem, we require

the selected nodes must be within r-hop distance in the social network, which provides

a new way to understand the social influence at the community level, rather than at the

individual node level. It can help a group of people to know their collaborative effect on

influencing the external members. Second, several explicit models can be used to define

communities, e.g., k-core [Li et al. 2014b] and k-truss [Huang et al. 2014]. For k-core, the

community may be lack of cohesiveness because the number of hops of two members of

a community may be enormous. For k-truss, its connectivity requirement of the commu-

nity is too strong to be practical in discovering reasonably large communities. But our

proposed maximal kr-clique community model can address all the shortcomings well.

It is an NP-hard problem to search the most influential communities. To improve

the search efficiency, this work has deliberately developed index structure and search algo-

rithms. We would like to point out that our designed index structure and search algorithms

are independent of community models, which is further verified in our experiments. That

is to say, our index would support the most influential community search where other

explicit community models such as k-core and k-truss are applied.

1.2.2 Diverse Influence Maximization

The second problem we intend to solve is diversified influence maximization, in which we

contemplate influence maximization problem from the aspect of the community. More

specifically, the aim is to select k nodes such that the number of activated nodes and

the diversity of the activated nodes can be maximized. Figure 1.1 shows an example

v1

v2

v6

v5

v7

v4

v3

0.4

0.2 0.4

0.4

0.4 0.2

0.3

DB Scholars

DM Scholars

AI Scholars

Figure 1.1: An example illustrating diverse influence maximization.

12 (June 25, 2018)

SECTION 1.2: RESEARCH QUESTIONS

where nodes represent the scholars in different research communities, e.g., v1, v2, and v3

in Database (DB), v4 and v5 in Data Mining (DM), v6 and v7 in Artificial Intelligence

(AI). The weight of an (DB), edge represents the influence probability of connected nodes.

The weight of edges within the same community is higher than that across communities.

Assume we want to find one scholar (i.e., k = 1) to advertise call-for-paper for a conference.

Based on IC model, v1 will be selected as the seed for IM problem. However, for the DIM

problem, it is easy to see that selecting v2 is better than selecting v1 due to considering the

diversity of influenced nodes in the social network. If we take v2 as the seed, v2’s influence

can be propagated into community DB and DM because v3 in community DB can be

influenced by v2 with the maximum probability 0.4 and v4 in community DM can get the

influence from v2 with the maximum probability 0.2. If we take v1 as the seed, v1 can also

successfully influence two nodes v2 and v3. But v1’s influence is constrained in community

DB only. The maximum probability that v1 influences v4 is 0.4×0.2 = 0.08. With such

low probability, it is unlikely for v4 to adopt the information from v1. In other words, the

information of call-for-paper cannot be propagated from v1 to community DM. This work

is the first effort to formally investigate diverse influence maximization problem.

1.2.3 Targeted Influence Minimization

Finally, we consider the influence minimization problem from the perspective of the com-

munity. We propose, define, and solve a new problem of so-called targeted influence

minimization. This problem and its solutions are relevant to many applications. For

example, a government agent may want to shield young social network users from pornog-

raphy or recruitment to terrorism; or a company may initiate a campaign to protect their

customers from defamatory information spread by their competitors. The targeted influ-

ence minimization problem can be briefly described as follows: given a set of source nodes

I with information to be spread and a set of target nodes T in a social network, the aim

is to find the minimum set of edges under a budget constraint such that deleting these

edges minimizes the influence from I to T . The deletion of an edge (u1,u2) can be consid-

ered as persuading u1 does not spread any information to u2, or u2 does not accept any

information from u1. Note that T may include all nodes other than I in a social network

in the extreme case. Suppose a set of nodes I regularly spread information for business

B1. A competitor B2 may initiate a campaign to prevent such information from a set of

target nodes T , such as the customers of B2. To do that, it needs to find a set of edges

under the campaign budget such that these edges will not pass any information related

to B1. As a consequence, the influence from I to T can be reduced to the minimum level.

All existing studies on influence minimization simply assume the budget is insufficient

and provide a greedy algorithm. However, this assumption is not always true. We develop

an optimal solution to completely block propagated information for the target users if

the budget is sufficient. Otherwise, the problem is proved to be NP-hard, and a greedy

13 (June 25, 2018)

CHAPTER 1: INTRODUCTION

algorithm is developed. To meet the time requirement in handling large social network

data, a novel sampling-based solution is provided.

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 discusses the technologies required and used

for solving for the most influential community search problem. Chapter 3 provides depth

analysis of the diversified influence maximization problem. Chapter 4 discusses the answer

to the targeted influence minimization problem in detail. Chapter 5 conclude the thesis.

14 (June 25, 2018)

CHAPTER 2
Most Influential Community Search over

Large Social Networks

2.1 Problem Definition

A social network is modeled as a directed graph G = (V,E, P), where V is a set of

nodes representing a set of social users, E is a set of edges representing user-to-user

friendship relationships, and Puv is a set of weights associated with edges in E, each of

which represents the influence probability that user u can influence user v in G.

Definition 1. (kr-Clique Community) Given a social network G=(V , E,P), and integers

k and r, a kr-clique community is an induced subgraph Ckr = (V kr, Ekr) of G that meets

the following constraints:

• Society - Ckr contains at least k nodes;

• Cohesiveness and Connectivity - any two nodes in Ckr can be reached at most r

hops via their shortest path in the subgraph Ckr. Thus, it always holds that Ckr

must be connected.

A kr-clique community Ckr is a maximal kr-clique community if there is no existing

another kr-clique community Ckr
′

that is a subgraph of Ckr.

Example 1. Consider a small social network shown in Figure 2.1. Suppose, for instance,

that r = 2 and k = 4, then by definition the subgraph induced by node set {3, 4, 5, 13,

14} is a maximal kr-clique community. Although the subgraph induced by node set {3,

4, 5, 13} satisfies the criteria of k and r, it is not a maximal kr-clique community because

it is contained in another kr-clique community induced by the node set {3, 4, 5, 13, 14}.
There are 19 maximal kr-clique communities, among which six communities contain five

15

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

1

2

3

5
6

7

8

9

10 11

12

13

14

15

16

17
18

19
20

21

22

23

24

25

26

27

28

29

30

31

3233

34 35

4

Figure 2.1: An Example Social Network Graph

nodes in their communities. We have marked the six communities with different symbols

in Figure 2.1 (the six communities have been annotated by different colors or lines).

There are many methods to model the process of influence propagation. In this

paper, we adopt the widely-accepted the Linear Threshold (LT) model [Chen et al. 2010,

Kempe et al. 2003b]. To measure the influence of a community, we first take all the

community members as activated nodes. We assume that an outer node of a community

Ckr (i.e. outside of Ckr) can be activated if and only if the nodes in the community have

an aggregated influence probability no less than a threshold ∆ to the outer node.

Definition 2. (Aggregated Influence Probability)

Pr(v|V (C)) = 1−
∏

u∈V (C)

(1− Pu→v)) (2.1)

where Pu→v is the influence probability of the path from u to v. It is computed by

multiplying the probabilities on the edges along the maximum influence path from u to v

where the maximum influence path has been evaluated in [Lee and Chung 2015].

Definition 3. (The Outer Influence of a Maximal kr-Clique Community) Given a social

network G = (V,E, P) and a maximal kr-clique community C, the influence score of C

is measured by the number of outer nodes to be successfully activated by C in the social

network G. It is defined as below:

Score(C) = |{v|v ∈ V (G) \ V (C) ∧ Pr(v|V (C)) ≥ ∆}| (2.2)

where Pr(v|V (C)) is the aggregated influence probability that V (C) can influence to v,

and ∆ is a threshold parameter to judge if a node can or cannot be activated. It is learnt

from historical actions the social users taken in the social network based on the work in

[Goyal et al. 2010]. Thus, ∆ is a system setting parameter in this paper.

16 (June 25, 2018)

SECTION 2.1: PROBLEM DEFINITION

Example 2. Consider a maximal kr-clique community induced by {3, 4, 5, 13, 14} in

Figure 2.1. To make the example concise, we assume that each edge has equal influence

probability (e.g., 0.5). For a node, we ignore its influenced nodes if its influence probability

less than a value (e.g., 0.15) to the nodes, which just use to simplify the example here.

If we say a node can be influenced by a community, then the community should have

influence probability to the node by at least a threshold value (e.g., ∆=0.4). So, we have

the influenced list for each node as follows.

Node Influenced Nodes with Probability

3 (1, 0.5), (2, 0.5)

4 (1, 0.25), (2, 0.25), (6, 0.25), (9, 0.25), (15, 0.25), (16, 0.25)

5 (6, 0.5), (7, 0.25), (8, 0.25), (9, 0.5), (10, 0.25), (11, 0.25),

(15, 0.25), (21, 0.25)

13 (9, 0.25), (15, 0.5), (16, 0.25), (17, 0.25), (21, 0.25)

14 (15, 0.25), (16, 0.5), (17, 0.25), (18, 0.5)

Since ∆ is set as 0.4, we can see nodes {1, 2, 6, 9, 15, 16} can be successfully influenced

by the community induced by the node set {3, 4, 5, 13, 14}. Besides those, nodes {17,

21} can also be influenced based on the aggregated influence, i.e., node 17 (or 21) can be

influenced with probability 1− (1− 0.25)(1− 0.25) = 0.44 by nodes 13 and 17 (or nodes

5 and 13). Therefore, the influence of the community can be scored as eight.

Problem statement. Given a social network G = (V,E, P), and an integer k, our target

is to find the maximal kr-clique community C satisfying:

arg maxV (C)⊆V (G)Score(C) (2.3)

subject to

|V (C)| ≥ k, ∀u, v ∈ V (C) |sp(u, v)| ≤ r

where |V (C)| is the number of vertices in C, |sp(u, v)| represents the length of the

shortest path between the vertices u and v, and r is a system setting parameter. Based

on our statistic on the datasets as shown in Figure 2.3, most communities only contain

less than 10 nodes when r = 1and the duplicate ratio between the nodes in any two

communities is nearly 95% when r = 3. It only makes much sense for r to take the value

of 2 in such settings. It is meaningless to ask users to specify this parameter, which is

demonstrated in our experiments - Figure 2.3.

Therefore, the target of this work is to search the maximal kr-cliques that have the

maximum outer influence score from the given social network. We refer the problem

as most influential community search in this paper. The returned result may be more

than one most influential communities if there are several maximal kr-cliques where their

maximum outer influence scores are same. As discussed in [Feige 2004, Wang et al.

2016b], the maximal clique problem (MCP) has been proved to be an NP-hard problem.

17 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

Our most influential community search problem is more complicated and thus difficult to

solve because we not only need to identify the maximal cliques with their size no less than

k, but also computing their outer influenced node sets. Therefore, our problem in this

paper is also an NP-hard problem.

2.2 Baseline Solution

To address the most influential community search problem, the basic solution is to first

sort the nodes in V (G) by their individual influence score and then check the sorted nodes

one by one in the descending order. For each node, we need to compute its maximal kr-

cliques and calculate the outer influence score of each found maximal kr-cliques. After

all the nodes have been checked, we compare their outer influence scores and return the

maximal kr-clique with the maximum score as the most influential community.

Algorithm 1 Basic Solution

Input: A social graph G = (V,E, P) and an integer k
Output: A set C of Most influential maximal kr-clique communities

1: Offline compute the influence score of each node in V ;
2: Get a list L with the nodes sorted by their influence scores;
3: Transform G to Gr using the system setting r;
4: for all u ∈ L do
5: Compute the maximal kr-cliques containing u from Gr;
6: Calculate the outer influence score of each maximal kr-clique;
7: Update C by writing the maximal kr-cliques with the maximum score;
8: next k score ← add the next k nodes’ individual influence score in L;
9: if the score in C > next k score then

10: return C;
11: end if
12: end for
13: return C;

The baseline algorithm is presented in Algorithm 1. Here, the influenced node list

and their score for each node have been offline computed and maintained. As such, the

time complexity of the algorithm mainly consists of the following parts. The first part is

to list all maximal cliques that would be O(3n/3) using the state-of-the-art algorithm in

[Tomita et al. 2006]. Based on the community size distribution as shown in Figure 2.3, the

number of generated k-communities would be in the complexity of O(lognk). To evaluate

the outer influence score of each community, we need to find the influence path from every

community node to the outer nodes as discussed in [Lee and Chung 2015]. The computa-

tional complexity would be O(kn). Therefore, the least time complexity of Algorithm 1

would be O(3n/3 + knlognk). From the analytics, we can see that the main bottleneck of

the algorithm is the maximal clique generation part and the second main cost is spent on

the outer influence computation part. This two challenging parts are addressed by the

our designed tree-based index and advanced algorithms, respectively.

18 (June 25, 2018)

SECTION 2.3: INDEX-BASED INFLUENTIAL COMMUNITY SEARCH

2.3 Index-based Influential Community Search

In this section, we first propose a tree structure, called C-tree, to index maximal r-cliques

induced from V (G). We show that C-tree is compact and any kr-cliques can be generated

efficiently by using the C-tree.Then we propose four efficient search algorithms based on C-

tree, which are sequential-order based (SO) search, improved sequential-order based (SO+)

search, best-first based (BF) search, and fast best-first based (BF+) search. The first two

algorithms evaluate the community candidates supported by C-Tree in a sequential order.

They can avoid some common nodes’ influence computation. The last two algorithms

probe the community candidates in a priority of their upper bound scores, by which they

can filter much more nodes in their influence computation.

2.3.1 Indexing Maximal r-Cliques

We can pre-store all maximal r-cliques, which can avoid the online computation of maximal

r-cliques in baseline solution. However, if we simply store all these maximal cliques as the

maximal kr-clique influential community candidates to be searched by users, the space

cost would be expensive because generally there are a large number of maximal cliques

in a social network. But we know, these maximal cliques may contain lots of overlaps or

duplicate nodes. Therefore, to effectively maintain the communities and support efficient

search, we propose an effective tree index based on the relations of the communities, which

is called as C-Tree. Our tree-based index can also significantly reduce the computational

cost because it can reduce a large number of influence evaluation for the duplicate nodes

among overlapped communities.

Definition 4. (C-Tree) Given a social network G and a system setting parameter r, we

have all its maximal r-cliques C = {C1, C2, ..., Cnc} that may contain many duplicate

nodes. The C-Tree T (C) of C is defined as:

• The root of T (C) is a virtual node;

• The node in T (C) is a node set or a single node. An internal node is the maximum

intersection of all the maximal r-cliques in the subtree rooted at the internal node.

For any leaf node, it does not have intersection with its siblings;

• Each path from the root of T (C) to a leaf node is a maximal r-cliques community.

Figure 2.2 presents the C-Tree for the small social network in Figure 2.1. For instance,

the community induced by {3, 4, 5, 13, 14} can be easily identified from the most left

path in Figure 2.2.

19 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

{1,2,3,4}

-C1

{5}

{4} {10,11}

{13,14}

{3}

-C2

{15}

-C7

{6,9}

-C4

{15}

-C5

{9}

-C6

{6,7,8}

-C3

{25}

{29}

{32}
{27}

{24,26}

-C13

{32}

-C14

{30}

-C18

{33}

-C15

{30}

-C17

{27,28,30}

-C16

{16}

{15}

{17,18}

{19}

-C9

{14}

-C10

{4,13,14}

-C8

{17,18,20}

-C11

{21,22,23,24}

-C12

{29,33,34,35}

-C19

Figure 2.2: Example of C-Tree

2.3.2 Sequential-Order based Search

Since each path from the root to the leaf node represents a community, we can directly

access each path and find all the nodes in the corresponding community of the path.

Obviously, some nodes will be re-accessed in many times because they are shared by

multiple communities. To avoid this, we propose a stack-based algorithm to access the

nodes in the C-Tree index, which maintains the shared nodes in a stack until all the

communities containing them are dealt with. As such, we can retrieve each community

from the index tree in the depth-first-order and calculate its influential score based on

Definition 3. Therefore, we call the community search method as Sequential Order based

search, denoted as SO.

The detailed procedure is presented in Algorithm 2. Here, we utilize two stacks to

implement the depth-first tree traversal. The tree traversal starts from the root node (i.e.,

vroot) of the index tree T . At Line 5, we get the node u at the top position of Stack

A. And then we check if u can be added into Stack B, as shown in Line 7-Line 20. If u

is a child of the top node in B and it is also an internal node, i.e., u.children() 6= null,

then we just explore u′s children nodes in the tree T , as shown in Line 8-Line 11. Here,

the node set in Stack B is only a subset of a community or multiple communities. If

u has been identified as a leaf node, i.e., u.children()==null, then we can see that the

nodes in B and node u are on the same path, i.e., it is a complete community Ctemp

based on Definition 4. At the moment, we also check the community size. When the

size of the community Ctemp is no less than the required size k, we compute its influential

Score(Ctemp) by calling Function Computing Score(Ctemp) and record the more influential

community C via comparison, which is described in Line 13-Line 17. When u is not a

child of the node B.top(), it says that all communities containing the node B.top() have

20 (June 25, 2018)

SECTION 2.3: INDEX-BASED INFLUENTIAL COMMUNITY SEARCH

Algorithm 2 SO Algorithm
Input: C-Tree T of a social network G w.r.t. r, an integer k
Output: A set C of Most influential maximal kr-clique communities

1: New two stacks A and B, set Score(Cmax) as zero;
2: Get the root node vroot of the C-Tree T ;
3: A.push(vroot);
4: while A is not empty or B is not empty do
5: u = A.pop();
6: if B is not empty then
7: if u is a child of B.top() and u.children() 6=null then
8: B.push(u);
9: for v ∈ u.children() do

10: A.push(v);
11: end for
12: else if u is a child of B.top() and u.children()==null then
13: if B.size≥ k-1 then
14: Ctemp = B ∪ {u};
15: Score(Ctemp) = Computing Score(Ctemp);
16: C ← Ctemp if Score(Cmax) < Score(Ctemp);
17: end if
18: else
19: B.pop();
20: end if
21: else
22: B.push(u);
23: for v ∈ u.children() do
24: A.push(v);
25: end for
26: end if
27: end while
28: return C;

been processed. In this case, we only need to pop it out from Stack B. The algorithm will

be terminated until all communities in the index tree are visited. At the end, the most

influential community C will be returned.

2.3.3 Improved Sequential-Order based Search

In this section, we propose two upper bound based pruning properties, which can improve

the efficiency of sequential-order based search by pruning more insignificant community

candidates, which is denoted as SO+.

Before providing the first upper bound, let’s review the important property in influ-

ence maximization problem. This is because the influence of a community in this work

is calculated by the maximum influence spread of the community minus the community

members. The following property has been proved in many works [Kempe et al. 2003b,

Chen et al. 2012; 2009].

21 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

Property 1. The influence maximization f() is a monotonic and submodular function.

I.e., for any two sets S and X, f(S ∪X) + f(S ∩X) ≤ f(S) + f(X) always holds.

Now, we can prove Property 2. Consider two communities C1 and C2. Their max-

imum common part is denoted as C1,2 = C1 ∩ C2. To be simple, we let S1 = C1 \ C1,2,

S2 = C2 \ C1,2, and X = C1,2. Our target is to look for the condition that guarantees

f(S1∪X) - (S1∪X) is equal to or larger than f(S2∪X) - (S2∪X) with less computation.

Property 2. (Tight Upper Bound) If f(S1|X) - S1 ≥ f(S2)-S2, then we can directly

conclude that f(S1∪X) - (S1∪X) ≥ f(S2∪X) - (S2∪X) without computing f(S2∪X).

That is to say, C1 is more influential than C2. That is to say, we only maintain C1 as the

most influential community candidate w.r.t. C2.

Proof. Since X is a subset of S1, there is no overlap between S1 and X. So S1 ∪X can

be rewritten as S1 +X. f(S1 ∪X) - (S1 ∪X) - [f(S2 ∪X) - (S2 ∪X)] can be rewritten as

f(S1 ∪X) - (S1 +X) - [f(S2 ∪X) - (S2 +X)] = f(S1 ∪X) - S1 - f(S2 ∪X) + S2. Based

on Property ??, we have f(S2 ∪X) ≤ f(S2) + f(X) - f(S2 ∩X) = f(S2) + f(X) where

f(S2 ∩X) is zero because S2 ∩X is null. Therefore, we have f(S1 ∪X) - S1 - f(S2 ∪X)

+ S2 ≥ f(S1 ∪X) - S1 - (f(S2) + f(X)) + S2 = f(S1 ∪X) - f(X) - S1 - f(S2) + S2 =

f(S1|X) - S1 - (f(S2)-S2), which satisfies our pre-condition.

Property 3. (Loose Upper Bound) Consider any set of nodes, e.g., S2 = {uij} and the

reachable node set R(uij) of node uij . The upper bound of the influence (f(S2)− S2) for

S2 is |{∪R(uij)} \ Ci|, denoted as UB(S2).

According to Property 2 and Property 3, sometimes we do not need to evaluate the

influence spread of the vertice for a whole community. Based on the partial evaluation,

we can filter more insignificant community candidates.

The detailed procedure of the improved sequential-order based search is presented in

Algorithm 3. Different from Algorithm 2, Algorithm 3 will check the pruning conditions,

i.e., the loose upper bound and the tight upper bound. If the new generated community

can be filtered by using the upper bounds, then we don’t need to compute its influential

score. The efficiency can be improved due to the following two main reasons: (1) if we

know some nodes can be activated above a threshold by Ctemp \X, these nodes must be

successfully activated above the same threshold by its super-set Ctemp. Therefore, we can

exclude these nodes from the computing process of Computing Score(Ctemp); (2) Even if

we cannot filter the community Ctemp by the partial result of Computing Score(Ctemp\X),

the intermediate results of Computing Score(Ctemp \X) can continuously be used to make

calculation for Computing Score(Ctemp). We don’t need to do Computing Score(Ctemp)

from scratch.

22 (June 25, 2018)

SECTION 2.3: INDEX-BASED INFLUENTIAL COMMUNITY SEARCH

Algorithm 3 SO+ Algorithm

1: The codes same to Line 1-Line 13 in Algorithm 2;
2: if B.size≥ k-1 then
3: Ctemp = B ∪ {u};
4: if Score(C) ≥ UB(Ctemp) then
5: Do nothing;
6: else
7: for all Cmax ∈ C do
8: X = Cmax ∩ Ctemp;
9: if Score(Cmax) ≥ Computing Score(Ctemp \X) then

10: Do nothing;
11: else
12: Score(Ctemp) = Computing Score(Ctemp);
13: C: Cmax ← Ctemp if Score(Cmax) < Score(Ctemp);
14: end if
15: end for
16: end if
17: end if
18: The codes same to Line 18-Line 27 in Algorithm 2;
19: return C;

2.3.4 Best-First based Search

The performance of SO+ is very sensitive to the influential score of the first probed

community, it has to evaluate the communities in the C-Tree in a sequential order. If the

first community is lucky to be the most influential one, then it can improve the efficiency

a lot. Otherwise, it cannot prune any community, e.g., when the most not-influential one

appears at the first place. To effectively access C-Tree with a “good” order, we develop

an efficient best-first search algorithm (denoted as BF) in this section. From Property 3,

we know that for node uij in a community Ci and the reachable node set R(uij) of uij ,

the influence for Ci is bounded by |{∪R(uij)} \ Ci|, denoted as UB(Ci).

Lemma 1. Assume we have computed the influence Score(C1) of a community C1 based

on Definition 3 at one moment. For any other communities Ci that have not been visited,

we can skip Ci without computation if Score(C1) ≥ UB(Ci).

The key idea of the BF approach is to find all community candidates with their size

no less than k from the C-Tree index. And then it sorts these communities by their

upper bound values and maintain them in an ordered queue Q. Every time, we pop the

community candidate Cx from the top position of Q, which should have the highest upper

bound value. We then calculate its influential score. If the computed score of Cx is no

less than the upper bound of the next community in Q, then we can say Cx would be the

most influential community. Otherwise, we need to use the calculated real score to replace

the upper bound value of Cx, and add it back to Q. The process will be repeated until

the most influential community is found.

23 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

Algorithm 4 BF Algorithm
Input: C-Tree T of a social network G w.r.t. r, an integer k
Output: A set C of Most influential maximal kr-clique communities

1: New two stacks A and B, and new a queue Q;
2: The codes same to Line 2-Line 13 in Algorithm 2;
3: if B.size≥ k-1 then
4: Ctemp = B ∪ {u};
5: Ctemp.ub = UB(Ctemp);
6: Ctemp.score = null;
7: Add Ctemp into Q and sort the communities by upper bounds;
8: end if
9: The codes same to Line 18-Line 27 in Algorithm 2;

10: found = false, C = null;
11: repeat
12: Cx = Q.pop();
13: if Cx.score is not null then
14: C← Cx;
15: found = true;
16: else
17: Cx.score = Computing Score(Cx);
18: if Cx.score ≥ Q.top().ub then
19: C← Cx;
20: found = true;
21: else
22: Cx.ub = Cx.score;
23: Add Cx back to the ordered queue Q;
24: end if
25: end if
26: until found
27: return C;

The detailed procedure is presented in Algorithm 4. In Line 1-Line 9, we access the

C-Tree index and generate an ordered queue containing all the community candidates

with their size no less than the parameter k. In Line 10-Line 26, we check the community

candidates based on their upper bound values in the queue. For a probed community

candidate Cx, we compute its influential score at Line 17. Line 9 is used to update the

upper bound value of a community using its real influential score that has been computed.

2.3.5 Fast Best-First based Search

To further accelerate the efficiency of community search, in this section we develop a more

fast best-first based approach, which is denoted as BF+.

The key idea of BF+ is to maintain a pre-computed list. The list contains the C-Tree

leaf node IDs where each leaf node ID represents the corresponding community of the

path from root to the leaf node. And the list is sorted by the upper bound value of the

influence of the community. We compute and sort the list through offline computation.

When a user issues a community search query by specifying the parameter k, we first

24 (June 25, 2018)

SECTION 2.4: C-TREE INDEX CONSTRUCTION

access the list in the ascending order. For each leaf node, we can locate its corresponding

community by traversing the path from the tree root to the leaf node in the C-Tree.

Thus, the first visited community should have the highest upper bound value on the

influence. And then, we calculate the real influential score of the community if the visited

community contains no less than k members. Otherwise, we discard the community and

probe the next community in the ordered list. After that, we measure the real influential

score of the community with the upper bound value of the next community. If the real

influential score of the community is no less than the upper bound value of the next one,

then the current community is the most influential community, i.e., the algorithm can be

terminated. Otherwise, we use the real score of the community to replace its upper bound

value. The correctness has been proved in Lemma 1. We repeat the above procedure

until the termination condition is true. The algorithm is similar to the procedures in

Line 10-Line 26 in Algorithm 4.

2.4 C-Tree Index Construction

Now we show how to efficiently construct C-Tree index. We first show the procedure of

enumerating all the maximal cliques for a social graph by revisiting the work in [Tomita

et al. 2006]. And then, we present the algorithm of index construction and discuss the

complexity of building and maintaining the C-Tree index.

2.4.1 Revisiting Maximal Cliques Enumeration

To generate maximal r-cliques from a graph G, we first transform the graph into r-hop

based graph Gr where we create a direct edge for any two nodes if their shortest distance

is no more than r in G. Then, we recursively call a function Clique Generation to produce

the maximal r-cliques. We implement Clique Generation by revisiting the state-of-the-art

algorithm for maximal clique enumeration proposed in [Tomita et al. 2006]. Its efficiency

has been further verified in [Eppstein et al. 2010].

The detailed procedure is presented in Algorithm 5. In Function Clique Generation,

it maintains three node sets: R, P and X. The nodes in R form a partial clique to be

expanded. P contains the nodes that are adjacent to all the nodes in R in the new graph

Gr and are potential candidates to be added to the maximal clique. X contains the nodes

such that (1) they are adjacent to all the nodes in R in the new graph Gr , and (2) they

have been traversed to form maximal cliques in any previous level of recursion. Adding

any node in X to the current partial clique R will result in duplicate cliques. Therefore,

nodes in X must be excluded from R. P and X together cover the nodes that are adjacent

to all nodes in R in the new graph Gr. When both P and X become empty (Line 4),

R cannot be further expanded. Thus, we output R as a maximal clique (Line 5-Line 7).

To make sense, we are only interested in the communities with one or two nodes. If R

25 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

Algorithm 5 EnumkrMC()

Input: A social graph G = (V,E) and a system setting parameter r
Output: maximal r-clique set C
1: Transform G to Gr regards r;
2: C ← Clique Generation(φ, V , φ);
3: Function Clique Generation(node set R, node set P , node set X)
4: if P == φ and X == φ then
5: if |R| ≥ 3 then
6: add R as a maximal clique into C;
7: end if
8: else
9: u← argmaxv∈P∪X{|P ∩Nr(v)|};

10: for all v ∈ P \Nr(u) do
11: num = numini;
12: Clique Generation(R ∪ {v}, P ∩Nr(v), X ∩Nr(v));
13: P ← P \ {v};
14: X ← X ∪ {v};
15: end for
16: end if
17: return C;

can be further expanded, then we recursively adds a node from the candidate nodes in P

to expand the current partial clique R. Each time a vertex v is added into R, we refine

P and X by keeping only the nodes that are also adjacent to v (Line 12) and invoke the

function Clique Generation recursively. P and X are updated after each recursive call

(Line 13-Line 14). The pivot node u in Line 9 is used to reduce the computational cost

of Clique Generation. In principal, every node in P or X can be chosen as a pivot node.

Here, we choose the one with the maximum number of neighbors in P because such a pivot

node is shown to be computation effective in [Eppstein et al. 2010, Yuan et al. 2015].

2.4.2 Algorithm of Constructing C-Tree

Theorem 2. Constructing C-Tree is an NP-Hard problem.

Proof. Consider we have a community tree T . Constructing C-Tree can be equivalently

transformed to a minimization problem, i.e., minimizing
∑

n1,n2∈T |n1 ∩ n2| with regard

to ∪ni∈T {ni} = V (G) and ∪vj∈path(ni) is a community. Therefore, the problem of con-

structing C-Tree can be reduced to the generalized assignment problem that is a NP-hard

problem.

By reviewing the procedure of generating maximal cliques in [Tomita et al. 2006],

we can see the maximal cliques are generated in the recursive process and the nearly

generated cliques may have high chance to be overlapped. As such, the overlapped part

is the frequent node set in the local social network portion covering the nearly maximal

cliques. However, it cannot provide direct help for us because the sequence of generated

26 (June 25, 2018)

SECTION 2.4: C-TREE INDEX CONSTRUCTION

cliques are very sensitive to the selection of the nodes to be probed in the procedure of

clique generation [Tomita et al. 2006]. We can not assume it can probe the best node

every time.

To address this challenge, we propose a novel technique to identify the local-frequent

nodes, which is then used to construct the C-Tree with regards to a set of communities.

Definition 5. (Node Duplicate Frequency NDF) Consider all the maximal r-cliques C =

{C1, C2, ..., Cnc} in a social network G. For any node u ∈ Ci, its node duplicate frequency

NDF (u) is the number of communities in C that contain node u.

Property 4. (Local Most Duplicate Node) Given a subset of communities Csub ⊆ C, the

local most duplicate node u in Csub is the node with the maximum frequency occurring in

Csub, denoted as NDFCsub(u).

The above property is easy to be concluded. We do not prove it in this paper. Assume

we maintain the community information by using node list data structure, i.e., community

Ci: members u1, u2, For each community, we can sort its node list based on the NDF

score of the nodes. After that, we can first identify the most duplicate nodes via the

NDF scores of nodes. In the other words, if a node is highly duplicated in communities,

then the node will appear at the top position in their community node lists. By doing

this, we can select the node with the most duplicates and add it as an internal node into

the C-Tree. We then exclude the node from the related communities and deal with these

communities with the remaining nodes under the subtree rooted at the added internal

node in C-Tree. For the other communities that do not contain the node at their top

positions, we will deal with them based on their shared nodes at their top positions in a

similar way. At the next iteration, we re-calculate the local most duplicate node for each

branch of communities based on Property 4. The local most duplicate node is taken as

a new internal node grouping such communities. As such, the C-Tree can be constructed

level by level, while the duplicates can be maximally reduced. This is because the local

most duplicate nodes have high chance to be shared by multiple communities.

Example 3. (C-Tree) Figure 2.2 presents the C-Tree for the small social network in

Figure 2.1 based on Property 4. Here, we only maintain the communities with no less than

four members. Firstly, since node 25 in Figure 2.2 has the most duplicate frequency, we

create a new internal node {25} including the communities {C13, C14, C18, C15, C17, C16}.
And then, we deal with node 5 in Figure 2.2 due to its high duplicate frequency, which

results in a new addition of node {5}. The new internal node includes the communities

{C2, C7, C4, C5, C6, C3}. Similarly, we can calculate the duplicate frequencies of the

nodes and select the new internal nodes for the remaining communities. After that,

the first level of the tree is constructed. In the following iterations, we can repeat the

above procedures for each subset of communities and build the tree level by level. The

27 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

construction algorithm can be terminated until there is no duplicate among sibling nodes

in the tree.

Algorithm 6 CTree()

Input: Maximal r-clique community set C = {C1, C2, ..., Cnc
} and a tree root vroot

Output: a C-Tree T

1: while C is not empty do
2: Calculate the NDF score for each node in C;
3: Sort the nodes in each community by their NDF scores;
4: Get node u where NDFC(u) ≥ NDFC(u′|u′ ∈ \u);
5: Add u as a child node into vroot in T ;
6: Get the subset Cu of communities with u at their top positions and remove u from Cu;

{Incur a recursive process for each subset of communities}
7: u.CTree(Cu, u);
8: C ← C \ Cu;
9: end while

10: return The tree T with the root node vroot;

The detailed procedure is presented in Algorithm 6. The key idea of this algorithm

is to select the most duplicate node u for classifying the communities to be processed.

Obviously, the communities can be splitted into two sets: one set of communities contains

u at their top positions, and another set of communities does not. For the previous one

set, we take u and add it as a child node of the current root, as shown in Line 5. And

we remove u from the set Cu of communities. After that, we re-call a recursive process to

deal with the new community subset Cu where u is taken as the new root. For the latter

set, i.e., C \ Cu, we repeat the steps in Line 2-Line 8. When all subsets become empty, the

whole recursive algorithm can be terminated. At the end, the C-Tree can be obtained via

the root node vroot.

2.4.3 Optimizing C-Tree

To further reduce the duplicate nodes in C-Tree, we develop an iterative procedure to

optimize the C-Tree. The key idea is to check the nodes with high duplicate frequency

in the C-Tree built in Section 2.4.2 and identify each node that the optimal benefit of

changing it is larger than the cost. For each node u to be checked, its optimal benefit can

only be calculated based on the branches containing node u.

Example 4. (C-Tree Optimization) Take node 4 in Figure 2.2 as an example. We can see

the related branches are C2, C7, C4, C8 and C1 in Figure 2.2. If we group these branches

based on node 4, then the optimal benefit is that we can reduce two duplicates of node 4

(coming from C8 and C1) and reduce one duplicate for nodes 13, 14, 15. Therefore, the

total optimal benefit of changing node 4 is weighted as 5. Note that the optimal benefit

is only the upper bound value of changing the node. Similarly, we also need to calculate

the cost based on the branches containing node u. Consider node 4 in Figure 2.2 as an

28 (June 25, 2018)

SECTION 2.5: EXPERIMENTAL STUDY

example again. If we group these branches based on node 4, then the cost is that we need

to bring new duplicates for nodes 5, 15 and 16 because they are the ancestors of the tree

nodes containing node 4. Therefore, the cost of changing node 4 is weighted as 3. Since

the optimal benefit is larger than the cost, we will try to change the C-Tree by adjusting

the position of node 4. If the exact benefit is still larger than the exact cost, then we

update and generate a new version of C-Tree. Otherwise, we still keep the current version

of the C-Tree.

Algorithm 7 CTreeOptimization()

Input: A C-Tree T
Output: An optimized C-Tree T ′

1: S ← Get the nodes with duplicates in T ;
2: while S is not empty do
3: u = argmaxv∈S{Benefit(v, T)− Cost(v, T)};
4: if Benefit(u, T)− Cost(u, T) > 0 then
5: T ′ ← Refine(T, u);
6: S′ ← Get the nodes with duplicates in T ′;
7: S = S′ ∩ S;
8: end if
9: S = S \ {u};

10: end while
11: return The refined tree T ′;

Algorithm 7 presents the detailed procedure of optimizing C-Tree. Here, we use a

candidate set S to maintain the nodes that need to be refined. At the beginning, S

only contains the nodes with duplicates in the generated C-Tree T . We will reduce the

candidate set S through iterations. At each iteration, we select node u that can bring the

maximal gain to the tree refinement (Line 3). We refine the tree T into T ′ based on the

adjustment of node u (Line 5). At the next iteration, we only need to consider the nodes

that appear as the duplicate nodes in T ′ and T (Line 6-Line 7). The algorithm can be

terminated until the candidate set becomes empty.

2.5 Experimental Study

All experiments have been conducted on a Red Hat Enterprise Linux Server (7.2), with

792GB RAM and Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GH shared by the school of

science, RMIT. The algorithms are implemented using Python 2.7. The average experi-

mental results of 200 runs with different data inputs at the same settings are reported.

2.5.1 Data Sets and Parameter Settings

To evaluate the proposed new community model, index and search algorithms, we selected

four real social network datasets of different sizes. The basic information is shown in

29 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

10
0

10
3

10
6

10
9

10
0

10
1

10
2

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

(a) Facebook r=1

10
0

10
3

10
6

10
9

10
0

10
1

10
2

10
3

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

Exp−100
Exp−200
Exp−300

(b) Facebook r=2

10
0

10
3

10
6

10
9

10
0

10
1

10
2

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

(c) Google+ r=1

10
0

10
3

10
6

10
9

10
0

10
1

10
2

10
3

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)
Exp−100
Exp−200
Exp−300

(d) Google+ r=2

10
0

10
3

10
6

10
9

10
0

10
1

10
2

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

(e) Gowalla r=1

10
0

10
3

10
6

10
9

10
0

10
1

10
2

10
3

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

Exp−100
Exp−200
Exp−300

(f) Gowalla r=2

10
0

10
3

10
6

10
9

10
0

10
1

10
2

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

(g) Twitter r=1

10
0

10
3

10
6

10
9

10
0

10
1

10
2

10
3

Community Size(k)

C
o
u
n
t(

s
iz

e
 >

=
 k

)

Exp−100
Exp−200
Exp−300

(h) Twitter r=2

Figure 2.3: Community Size Distribution.

30 (June 25, 2018)

SECTION 2.5: EXPERIMENTAL STUDY

Datasets #nodes #Edges Avg Degree

Facebook 4,039 176,468 43.69
Google+ 23,628 78,388 3.32
Gowalla 69,097 351,452 5.09
Twitter 486,879 4,293,610 8.82
Youtube 52,675 636,864 12.10
Amazon 317,194 1,745,870 5.50

Table 2.1: Statistical Information of the Datasets

Table 3.1. Figure 2.3 illustrates the distribution of community size where x-axis is the

community size and y-axis indicates the number of communities whose size is greater

than the corresponding value in x-axis. For each dataset, we have produced three sets of

communities, denoted as Exp-100, Exp-200 and Exp-300, where each node is constrained

to be included in at most 100, 200 and 300 communities respectively. When r = 1, the size

of all communities is less than 80. When r = 2, the size of most communities (99%) is in

between 100 and 500. The proposed methods aim to handle the complex situation where

the search space consists of a large number of large communities. So, the experiments

focus on the situation when r = 2.

2.5.2 Efficiency Evaluation of Influential Community Search

In this subsection, we test the efficiency of the proposed search algorithms (i.e., SO, SO+,

BF and BF+) based on the C-tree (ktree = 20). Figure 2.4 illustrates the test results when

the community size k = {20, 40, 60, 80, 100}. When k = 20, it means the query concerns

the communities of size no less than 20 only. The communities with smaller size (< 20)

will be ignored. According to the test results in Figure 2.4, BF and BF+ are much faster

than SO and SO+ for Facebook and Google+ datasets. This is because BF and BF+

first probe the community with the highest upper bound value. The probed community

with the higher bound may have a relatively big influential score and thus it can be used

to prune lots of communities with smaller upper bound. In contrast, SO and SO+ probe

the communities maintained in C-tree in a sequential order. Interestingly, however, BF

consumes the similar time as SO+ for Gowalla and Twitter. Look closely, this is because

BF needs to sort all the community candidates first based on their upper bounds and then

compute the most influential community. Different from BF, SO+ only scans the C-tree

once.

As the improved version of BF, BF+ pre-sorts the communities in the C-tree by their

31 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

0

180

360

540

720

20 40 60 80 100
k

T
im

e
 (

s
)

SO SO+ BF BF+

(a) Facebook

0

600

1200

1800

2400

20 40 60 80 100
k

T
im

e
 (

s
)

SO
SO+
BF
BF+

(b) Google+

0

120

240

360

20 40 60 80 100
k

T
im

e
 (

s
)

SO
SO+
BF
BF+

(c) Gowalla

0

180

360

540

20 40 60 80 100
k

T
im

e
 (

s
)

SO
SO+
BF
BF+

(d) Twitter

Figure 2.4: Search time.

upper bounds where each community is represented by a C-tree node ID. For each ID,

we online obtain its corresponding community by accessing its subtree and its ancestor

nodes in the C-tree. As a result, we have a sorted ID list to guide the search of the most

influential community. The test results show that BF+ is much faster than BF in most

cases. In particular, when k = 20, the time consumed by BF is about 622 times of that by

BF+ for Facebook, 28 times for Twitter data, and 5.7-8.2 times for Google+ and Gowalla.

2.5.3 Effective Evaluation of Community Influence Spread

In this subsection, we conducted two studies on the influence spread of returned influential

communities. The first study is to report the influence of the most influential community

whose size is no less than a given parameter k (i.e., ≥ k). The second study is to report

the influence of the most influential community whose size is in a range [k1, k2) (i.e., ≥ k1

and < k2). In Figure 2.5, the test results for k = {20, 40, 60, 80, 100} are presented in (a)

and the results for four ranges [20,40), [40,60), [60,80) and [80,100] are presented in (b).

Surprisingly, we notice that the numbers of nodes influenced at different settings of k and

32 (June 25, 2018)

SECTION 2.5: EXPERIMENTAL STUDY

0

1000

2000

3000

4000

20 40 60 80 100
k

#
 o

f
In

fl
u
e
n
c
e
d Facebook

Google+
Gowalla
Twitter

(a) Normal Query

0

1000

2000

3000

4000

20 40 60 80 100
k

#
 o

f
In

fl
u
e
n
c
e
d Facebook

Google+
Gowalla
Twitter

(b) Range Query

Figure 2.5: Influential Scores over Different Datasets

[k1, k2) are almost same. It shows that the most influential community can influence 3932-

4010 persons in Facebook, 3661-3693 persons in Google+, 2509-2522 persons in Gowalla,

and 320-371 persons in Twitter. This result delivers two important messages: (i) the

influence spread of a community is very sensitive to the types of social networks; and (ii)

the communities of smaller size can have the similar influence spread as the ones of larger

size.

2.5.4 Effective Evaluation of maximal kr-clique Community Model

The recent study in [Wang et al. 2015] comprehensively assessed eight community detec-

tion models over different types of datasets. It concluded that LPA (Lable Propagation

Algorithms) is the most reliable model in generating the desirable communities. In this

subsection, we aim to verify the robustness of krMC community. For this purpose, we

identify communities using LPA in the same datasets and treat those communities as the

desirable communities. To check to which extent the krMC community are desirable, we

compare our krMC communities against the communities using LPA based on Normalized

Mutual Information (NMI). The score of NMI stands for the agreement of two sets of

results and is defined as

NMI =
−2

∑
i,j Nijlog

NijNt

Ni∗N∗j∑
iNi∗log

Ni∗
Nt

+
∑

j N∗jlog
N∗j
Nt

N is the confusion matrix whose element Nij is the number of the shared members between

a krMC community Ci and a LPA community Cj . Ni∗ and N∗j are the sum over row i

and column j respectively, and Nt =
∑

i

∑
j Nij . The experimental results show NMI

score can achieve about 99% for Twitter, 89% for Gowalla, 70% for Facebook and 63% for

Google+. The higher scores tested in different datasets verify that our proposed krMC

community model is reliable and desirable.

33 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

2.5.5 Efficiency Evaluation of Scalability

0

1800

3600

5400

7200

1x 5x 10x 20x
Size

T
im

e
 (

s
)

SO
SO+
BF
BF+

(a) k=50

0

600

1200

1800

2400

3000

1x 5x 10x 20x
Size

T
im

e
 (

s
)

SO
SO+
BF
BF+

(b) k=100

Figure 2.6: Scalability Evaluation

To further evaluate the performance of our proposed index and algorithms, We tested

the time cost when we increased the data size by 5 times, 10 times and 20 times on Twitter

dataset, as shown in Figure 2.6. When k is 50, the time cost of SO was increased linearly.

But the increasing trend lines of the other three algorithms grow slowly. When k becomes

100, the three algorithms SO, SO+ and BF performed similary when the data size is 1

time, 5 times and 10 times, respectively. But when the data size is 20 times, SO+ and BF

were much better than SO. In all the situations, BF+ performed the best in a stable status.

This is because BF+ is able to filter lots of time-consuming community identification and

influence spread evaluations.

2.5.6 Time and Space Cost Evaluation of Building C-Tree

Given a social network, the minimal duplicate community tree (C-tree) is generated for

maintaining communities with less storage requirement. The key optimization to C-tree

is to reduce the duplicates of nodes appearing in different communities. As discussed in

section 2.4, C-tree is constructed using a greedy algorithm which processes nodes in the

order of their duplicate level. A node has the higher duplicate level if it is the member of

more communities. C-tree is further refined by giving the higher processing order to the

node which has the relatively lower duplicate level but can more reduce duplicate nodes.

Figure 2.7 compares the storage requirements of maintaining communities with C-

tree and without C-tree. The x-axis indicates the minimum community size that the

C-tree supports, denoted as ktree, i.e., only the communities containing more than ktree

nodes are retrievable from the C-tree; y-axis indicates the storage requirement with C-tree

(color section of each bar) and without C-tree (the entire bar). In Figure 2.7, we observe

that the storage requirement can be reduced about 75% for Facebook, 65% for Google+,

34 (June 25, 2018)

SECTION 2.5: EXPERIMENTAL STUDY

0.0

0.5

1.0

1.5

2.0

2.5

3.0

20 40 60 80 100
r-clique size

S
iz

e
 (

M
B

)

Exp-100
Exp-200
Exp-300

(a) Facebook

0

5

10

15

20 40 60 80 100
r-clique size

S
iz

e
 (

M
B

)

Exp-100
Exp-200
Exp-300

(b) Google+

0

25

50

75

20 40 60 80 100
r-clique size

S
iz

e
 (

M
B

)

Exp-100
Exp-200
Exp-300

(c) Gowalla

0

200

400

600

20 40 60 80 100
r-clique size

S
iz

e
 (

M
B

)
Exp-100
Exp-200
Exp-300

(d) Twitter

Figure 2.7: C-tree storage requirement.

66% for Gowalla and 65% for Twitter using C-tree. Clearly, the storage requirement

decreases when ktree increases because the quantity of communities decreases. Similarly,

the quantity of communities decreases from Exp-300 to Exp-100 and thus the storage

requirement decreases from Exp-300 to Exp-100. Less storage requirement means less

computation time is requirement. Figure 2.8 reports the construction time of C-tree.

When ktree increases from 20 to 100 for a given social network, it consumes less time to

construct C-tree.

2.5.7 Additional Evaluation

In this subsection, we tested the outer influence spread of communities by using two

ground truth datasets - Youtube and Amazon. They have already presented the ground

truth communities in the datasets. The evaluation tells us that how much percentage

the ground truth communities can influence the outer node set that exceeds their own

sizes by 1 times (1x), 5 times (5x), 10 times (10x) and 50 times (50x). The majority of

the communities can influence their outer nodes between 1 time and 5 times. There are

35 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

0

30

60

90

20 40 60 80 100
r-clique size

T
im

e
 (

s
)

Exp-100
Exp-200
Exp-300

(a) Facebook

0

240

480

720

20 40 60 80 100
r-clique size

T
im

e
 (

s
)

Exp-100
Exp-200
Exp-300

(b) Google+

0

120

240

360

20 40 60 80 100
r-clique size

T
im

e
 (

s
)

Exp-100
Exp-200
Exp-300

(c) Gowalla

0

600

1200

1800

2400

20 40 60 80 100
r-clique size

T
im

e
 (

s
)

Exp-100
Exp-200
Exp-300

(d) Twitter

Figure 2.8: C-tree construction time.

0.00

0.25

0.50

0.75

1.00

1x 5x 10x 50x
Size

S
p
re

a
d
 R

a
ti
o Amazon

Youtube

Figure 2.9: Influential Ratio in
Ground truth Community Datasets

0

2400

4800

7200

9600

Face. Gplu. Gowa. Twit.
Data Set

T
im

e
 (

s
)

Basic SO+ BF+

Figure 2.10: Time Cost of Basic vs.
Index Methods

36 (June 25, 2018)

SECTION 2.6: CONCLUSIONS

5%-12% communities that can influence 5-10 times of their community sizes. Only a few

communities can influence up to 50 times. For SO and SO+, they have to check every

maximal kr-clique communities, but for BF and BF+, it only checks a few communities.

This is the reason that BF and BF+ performed much better than SO and SO+.

Since the basic algorithm needs to calculate the communities, it is clear for us to know

that it is much slower than the other algorithms. To verify this, we compared the time cost

of the basic algorithms with that of SO+ and BF+ over the four real datasets. Figure 2.10

reports their time costs when k is 20. The basic algorithm is slower than SO+ by about

5-7 times on Gowalla and Twitter, about 1.5 times on Google+ and Facebook. This is

mainly because Google+ and Facebook have more edges with high bidirected influence

probability. In this situation, SO+ also needs to consume lots of time cost on the influence

computation. As such, the acceleration of SO+ is just 1.5 times regards Basic. In all the

datasets, BF+ outperformed the other two algorithms greatly, which is faster than Basic

by about 200 times and SO+ by about 50-100 times.

2.5.8 Case Study

We conducted a case study based on the co-authorship network and citation network in

database research areas1. Our study focuses on the 19,853 papers published by 22,250

authors in the top-10 DB conferences/journals (i.e., SIGMOD, VLDB, PVLDB, ICDE,

EDBT, CIKM, TODS, VLDB J., SIGMOD Rec., and TKDE). The citations in 4,943

papers involves 4,558 authors. The influence of a researcher to another one is learnt by

the citation relationships and the order of their names appearing in the cited papers.

Figure 2.11 presents the top-2 most influential communities where k = 2 and r = 2.

The results illustrates that Philip S. Yu and Beng Chin Ooi have strong relation via M.

Tamer Zsu, which cannot be detected by k-truss. The small case study also verifies that

the most influential communities identified did report the collaborative groups with the

well recognized influence in the real world. We highlighted the top-six contributors in each

community. For instance, Philip A. Bernstein can independently influence 621 authors and

Umeshwar Dayal can independently influence 515 authors, which brings benefit to Top-1

community; David J. DeWitt can independently influence 734 and Michael J. Carey can

independently influence 722, which brings benefit to Top-2 community.

2.6 Conclusions

In this work, we investigated a novel and significant problem of searching the most influen-

tial maximal kr-clique communities in a large social network, which is a NP-hard problem

and has various important applications in real life. This is the first work to discover

communities via their outer influence. Compared with the existing community models,

1http://dblp.uni-trier.de/xml/

37 (June 25, 2018)

CHAPTER 2: MOST INFLUENTIAL COMMUNITY SEARCH OVER LARGE SOCIAL

NETWORKS

Richard T. Snodgrass Timos K. Sellis

M. Tamer zsu
Victor Vianu

T. Y. Cliff Leung

Kenneth A. Ross

Beng Chin Ooi

Guy M. Lohman

Elisa Bertino
Masaru Kitsuregawa

David B. Lomet

Philip A. Bernstein

Kian-Lee Tan

Douglas Stott Parker Jr.

Umeshwar Dayal

Sudha Ram

Raghu Ramakrishnan

Patrick Valduriez

Christian S. Jensen

Serge Abiteboul

Michael J. Franklin

Alberto O. Mendelzon

Philip S. Yu

(a) Top-1

Guy M. Lohman

Nelson Mendona Mattos

Michael J. Carey

Jeffrey F. Naughton

Hamid Pirahesh
Laura M. Haas

Jennifer Widom

Linda G. DeMichiel

Raymond A. Lorie

Donald D. Chamberlin

Jim Melton

Roberta Cochrane

Joseph M. Hellerstein

Rakesh Agrawal

David J. DeWitt

Theo Hrder

C. Mohan

Bruce G. Lindsay 0001

Serge Rielau

Brian T. Tran

Yun Wang

Peter M. Schwarz Bernhard Mitschang

(b) Top-2

Figure 2.11: The top 2 influential co-authoring groups

38 (June 25, 2018)

SECTION 2.6: CONCLUSIONS

such as k-core and k-truss, our proposed maximal kr-clique community model has more

desirable characters. These modelling contributions provide a new aspect for users and

companies to understand the communities and their influence in the social network at the

community level. In addition, we has developed tailored C-Tree index and efficient search

algorithms to enable the most influential community search in large social networks. The

robustness of the maximal kr-clique community model has been verified through the case

study of a real world application. The efficiency of the C-Tree index and search algorithms

have been tested on six real world social networks.

39 (June 25, 2018)

CHAPTER 3
Efficient Diverse Influence Maximization

3.1 Problem Definition

3.1.1 Preliminary

A social network is modeled as a directed graph G = (V,E,w), where a node in V

represents one social media user, the edge (u, v) in E represents the (follower, followee)

relationship, and wu,v represents the propagation probability along edge (u, v). Note edge

(u, v) is directional, v is an out-neighbor of u and u is an in-neighbor of v. There are

different diffusion models used to define influence propagation process. Without loss of

generality, we adopt the Independent Cascade (IC) diffusion model [Chen et al. 2010,

Kempe et al. 2003b]. Initially, every node is inactive. If a node u is selected as a seed,

u becomes active and attempts to activate one of its inactive out-neighbors. The newly

activated nodes will attempt to activate their inactive out-neighbors. Regardless of success

or not, the same node will never get second chance to activate the same inactive out-

neighbor. This process terminates when no more inactive nodes can be activated. In

particular, we say a node v is successfully activated by a set S of seeds if and only if

the overall influence from S to v is above a given threshold. In addition, the success of

node u in activating out-neighbor v only depends on Pu,v which allows us to evaluate the

influence of seeds to other nodes via the maximum influence path [Liu et al. 2014].

In social networks, the subset of nodes S ⊆ V , which are active initially before

influence propagation process, are known as seeds. Each seed spreads influence to inactive

nodes in the social networks. For an inactive node v, we define the aggregated probability

that v is activated by the seeds in S:

Definition 6. (Aggregated Influence Probability)

Pr(v|S) = 1−
∏
u∈S

(1− Pr(pu,v)). (3.1)

41

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

where pu,v is the maximum influential path from u to v. Suppose pu,v is {u, vi, · · · , vj , v)}.
Pr(pu,v) is the probability that u can influence v along the path pu,v, i.e., Pr(pu,v) =

wu,vi × · · · × wvj ,v. Since pu,v is the maximum influential path, Pr(pu,v) is greater than

that along any other path from u to vin the social network.

Definition 7. (Activated Nodes) Given a set of seeds S, the nodes activated by S are a

subset of nodes:

σ(S) =
⋃

v∈V,Pr(v|S)≥δ

{v}. (3.2)

where δ is the activation threshold.

Definition 8. (Influence Maximization (IM)) Given a social network G = (V,E) and an

integer k, the influence maximization is to find a set of nodes S ⊆ V , known as seeds, such

that, if only the nodes in S are active initially, the number of nodes activated by S, at

the end of information propagation process following one diffusion model, is maximized.

arg max
S⊆V,|S|≤k

{|σ(S)|}. (3.3)

3.1.2 Diverse Influence Maximization

Given a set of seeds S, we define the diversity of the nodes activated by S. As we know,

the nodes in social networks can be grouped into different communities. The community

can be defined differently in different applications such as based on the research field of

researchers in the example in Figure ?? or based on the connection density in the social

networks. The communities are unnecessary to be disjoint. If the activated users are from

more communities, it implies the higher diversity. The diversity is evaluated as follows:

Definition 9. (Diversity Function) Suppose the nodes in a social network G = (V,E)

have been organized into m communities, denoted as C = {C1, ...Cm}. Given a set of

seeds S, the diversity of nodes activated by S is defined as:

D(S) =
∑
Ci∈C

√ ∑
vj∈Ci∩σ(S)

r(vj) (3.4)

where vj is a node activated by S (i.e., vj ∈ σ(S)) and a member in community Ci, r(vj)

represents the importance of vj in social networks.

D(S) is greater when the diversity of activated nodes increases. Specifically, when

activating a node from a new community (i.e., this community does not have any activated

node yet), the higher score is awarded. For the other nodes from the same community, the

award for activating them decreases by applying the square root operator. The similar

idea has been used in document summarization [Lin and Bilmes 2011]. For node vj , the

importance in social networks r(vj) can be the degree of vj , or the PageRank score of vj ,

or any other user-defined score function. In this work, r(vj) is set as 1 by default.

42 (June 25, 2018)

SECTION 3.2: MONOTONE AND SUBMODULARITY

Definition 10. (Diverse Influence Maximization (DIM)) Given a social network G =

(V,E) and an integer k, the DIM query is to find a set of seeds S ⊆ V satisfying:

φ(S) = arg max
S⊆V,|S|≤k

{(1− λ)
|σ(S)|
|V |

+ λ
D(σ(S))

D(V)
}. (3.5)

where σ(S) represents the set of nodes activated by S, D(σ(S)) represents the diversity of

σ(S); λ ∈ [0, 1] is the trade-off parameter to balance the two objectives, i.e., the number of

activated nodes and the diversity of the activated nodes; |V | and D(V) are the constants

for normalization.

3.2 Monotone and Submodularity

The evaluation metric φ(.) of diverse influence maximization is monotonous and submod-

ular. To prove this, we show that |σ(.)| and D(.) in Equation 3.5 are monotonous and

submodular respectively. Given any tradeoff parameter λ ≥ 0, the aggregation function

of two monotonous and submodular functions is still monotonous and submodular.

Lemma 3. |σ(.)| is monotonous and submodular.

The influence maximization using LT models has been proved (Theorem 2.2 in [Kempe

et al. 2003b], Theorem 2 in [Liu et al. 2012]). it is not obvious for the adapted function

|σ(.)| to be true. Therefore, we summarize the proof as below.

Each social network can be treated as a random graph. Each edge (u, v) ∈ E is

associated with a random Bernoulli variable governed by wu,v, which controls the likeli-

hood u activates v. Let X denote the entire probability space constituting all possible

determined influence propagation graphs. A determined influence propagation graph is

generated by flipping a coin of bias wu,v for every edge (u, v) ∈ E to determine if (u, v)

exists in the determined graph. Then we have Pr(v|S) =
∑

x∈X P (x)I(S, v, x), where

P (x) is the probability of a possible determined graph x, and I(S, v, x) is an indicator to

say if v can be reached from one of nodes in S in the determined graph x. If the indicator

is true, then I(S, v, x) equals 1. Otherwise, I(S, v, x) equals 0. As σ(S) is a node set⋃
v∈V,Pr(v|S)≥δ{v} based on Definition 3.2, the size of the node set |σ(S)| is equivalent to∑
v∈V {1|

∑
x∈X P (x)I(S, v, x) ≥ δ}.

We can safely say the function |σ(.)| is monotone if the inequality |σ(S∪{u})| ≥ |σ(S)|
holds. It is easy to verify the inequality via comparing their alternatives

∑
v∈V {1|

∑
x∈X P (x)I(S∪

{u}, v, x) ≥ δ} and
∑

v∈V {1|
∑

x∈X P (x)I(S, v, x) ≥ δ}. Here, if I(S, v, x) equals 1, i.e., v

is reachable from S in the possible graph x, then I(S∪{u}, v, x) must be 1. Conversely, it

doesn’t hold, i.e., if I(S ∪{u}, v, x) is 1, then I(S, v, x) may be 0 or 1. Since P (x) ∈ (0, 1],∑
x∈X P (x) I(., v, x) is monotonous. Thus,

∑
v∈V {1|

∑
x∈X P (x) I(S ∪ {u}, v, x) ≥ δ} is

always no less than
∑

v∈V {1|
∑

x∈X P (x) I(S, v, x) ≥ δ}.

43 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

Let S ⊆ T ⊆ V , u ∈ V and u /∈ T . We first consider a determined graph x ∈ X.

Rx(S ∪ {u}) − Rx(S) is the set of nodes reachable from u, but not reachable from S, in

the determined graph x. As S ⊆ T , we have Rx(S ∪ {u}) − Rx(S) must have equal or

more additional reachable nodes than Rx(T ∪{u})−Rx(T). Thus |Rx(.)| is a submodular

function. Noticing that |σ(.)| is a non-negative linear combination of submodular func-

tions Rx(.) over the determined graph space X with the threshold δ. Thus |σ(.)| is also

submodular. Thus, the proof can be concluded.

Lemma 4. D(.) is monotonous and submodular.

Since σ(.) is a monotone and submodular function to be proved in Lemma 3, we have

∆(u|S) ≥ ∆(u|T) for any S ⊆ T ⊆ V and u ∈ V \ T where ∆(u|S) = σ(S ∪ {u})− σ(S)

representing the set of nodes that are activated by u, but not by S.

SinceD(S) is defined as
∑m

i=1

√∑
vj∈Ci∩σ(S) r(vj), if we supposeDi =

√∑
vj∈Ci∩σ(S) r(vj),

then D(S) can be expressed as
∑m

i=1Di. If we can prove that Di(.) is a monotone and

submodular function, then D(.) must be based on the general submodular property. We

can prove Di(.) being a monotone and submodular function by proving
∑

vj∈Ci∩σ(S) r(vj)

because applying the square root to a monotone submodular function yields a submodular

function, and summing them all together retains submodularity.

From ∆(u|S) = σ(S ∪ {u})− σ(S), we can get
∑

vj∈Ci∩σ(S∪{u}) r(vj)−
∑

vj∈Ci∩σ(S)

r(vj) =
∑

vj∈Ci∩∆(u|S) r(vj). Similarly, we can get that
∑

vj∈Ci∩σ(T∪{u}) r(vj)−
∑

vj∈Ci∩σ(T)

r(vj) =
∑

vj∈Ci∩∆(u|T) r(vj). Because ∆(u|S) ≥ ∆(u|T) holds, we have that
∑

vj∈Ci∩∆(u|S)

r(vj) ≥
∑

vj∈Ci∩∆(u|T) r(vj) for the same community Ci. Thus, for any S ⊆ T ⊆ V and u ∈
V \ T , it can conclude that

∑
vj∈Ci∩σ(S∪{u}) r(vj)−

∑
vj∈Ci∩σ(S) r(vj) ≥

∑
vj∈Ci∩σ(T∪{u})

r(vj)−
∑

vj∈Ci∩σ(T) r(vj). Therefore, we can see that
∑

vj∈Ci∩σ(S) r(vj) satisfies the sub-

modular property. Obviously, it also satisfies the monotone property. Lemma 4 can be

proved.

3.3 Solution Frameworks

This section proposes two solutions of DIM problem.

Greedy Algorithm

The monotone and submodularity property of φ(.) shown in Section 3.2 guarantees that

the greedy algorithm of DIM problem is with (1− 1
e − ε)-approximation.

Suppose there are m communities in social networks. Initially, the seed set S is empty.

The greedy algorithm runs by k iterations. At iteration i, if u leads to the maximal diverse

influence gain, denoted as ∆(u), a node u is selected as a seed and inserted into S (denoted

as Si−1 before inserting the new seed at iteration i). The diverse influence gain is defined

44 (June 25, 2018)

SECTION 3.4: SOLUTION FRAMEWORKS

as

∆(u|Si) = φ(Si−1 ∪ {u})− φ(Si−1). (3.6)

In this work, φ(.) is calculated based on the sampling technique discussed in [Chen et al.

2010, Kempe et al. 2003b]. The time complexity of the greedy algorithm is O(kn2 · 1
2ε2
log nη)

where n is the number of nodes in the social network, ε and η are two sampling parameters

in [Chen et al. 2010, Kempe et al. 2003b]. The complexity consists of two parts: the first

one O(kn) means that the algorithm needs to run k iterations and, at each iteration, it

requires to probe each node in the social network; the second part O(n · 1
2ε2
log nη) means

that the estimation of φ(S) needs to check each node in the social network to determine

whether it can be activated in the sampled graphs of size 1
2ε2
log nη . The error bound of the

greedy algorithm is (1− 1
e − ε) where (1− 1

e) comes from the greedy approximation and

ε comes from the sampling approximation.

Upper Bound Algorithm

To improve the efficiency of the greedy algorithm, we develop an upper bound based

approach in order to reduce the unnecessary computations as much as possible. Next, we

show the existence of upper bound.

Lemma 5. Given any node u, if it is selected as a seed at one of k iterations, the diverse

influence gain cannot exceed the diverse influence gain if u is the first selected seed.

Since φ(.) has been proved to be monotonous and submodular in Section 3.2, we can

derive that ∆(u|Si−1) ≥ ∆(u|Si) for any node u ∈ V \ Si where Si−1 ⊆ Si. Let ∆i(u)

denote the diverse influence gain of u at iteration i. If ∆i(u) is greater than ∆i(v) for any

v ∈ V \ Si, v 6= u, u is selected as a seed at iteration i. Thus, we have ∆i−1(u) ≥ ∆i(u).

It means that the diverse influence gain by selecting a node as a new seed in the earlier

steps must be not less than that by selecting it in the later steps. In addition, it is easy to

see ∆0(u) = φ(u). So ∆0(u) is the upper bound of the diverse influence gain by selecting

u as a seed at any of the k iterations.

According to Lemma 5, if the diverse influence gain of node u at iteration i, denoted

as ∆i(u), is known, we can safely prune any node if the upper bound of its diverse influence

gain is less than ∆i(u). Furthermore, the upper bounds provide the probing priority for

the nodes not pruned. That is, the nodes with higher upper bounds should be evaluated

earlier.

The time complexity of the upper bound based greedy algorithm is O(k#num · n ·
1

2ε2
log nη) where #num is the maximum number of nodes to be evaluated until a successful

seed is selected at each iteration and #num is often much smaller than n. The upper

bound based greedy algorithm is more efficient while it also keeps the same (1 − 1
e − ε)-

approximation. The detailed algorithm is omitted here due to space restrictions.

45 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

3.4 Quick Aggregated Influence Calculation

The tree-based model has been used in solving influence maximization [Chen et al. 2010,

Li et al. 2014a, Lee and Chung 2015]. In this work, we adopt this model to calculate the

aggregated influence of seeds to any other node in social networks. Before introducing our

model, we first transform the most influential path to the equivalent shortest path.

3.4.1 Path Transformation

Given two nodes u, v over a directed graph G, there is no existing work that clearly shows

how to find the most influential path from u to v. One way is to search from u in the

best first fashion until v is reached. However, it requires visiting a lot of irrelevant nodes.

In addition, it is challenging to maintain the most influential paths between all pairs of

nodes in a large graph. To address the two issues, we transform the most influential paths

to the equivalent shortest paths. As such, we can utilize the existing techniques dealing

with shortest paths between nodes in graph database.

To guarantee the equal transformation, we make mathematical conversion of the

weights associated with the edges. For each edge (u, v), we transform the original weight

wu,v to log(wu,v). By doing this, we can calculate the influence probability along a

path p by computing the sum of transformed weights of the edges in the path, A =∑
(i,j)∈p log(wi,j), and the influence probability is eA. This transformation makes the

conversion from the multiplication operation to addition operation.

Most techniques regarding the shortest paths in graph database prefer to locate the

path with the minimum weight. However, the most influential path is the path with the

maximum value. Furthermore, as the edge weight is in (0, 1], its log value is negative.

Therefore, a further adaption is to change the negative value to a positive value by adding

a minus sign. As a result, finding the most influential path from u to v is equivalent to

look for the shortest path from u to v.

3.4.2 PSP-Tree

To estimate the influence of a seed set S, a shortest path tree can be constructed for every

node v in the social network G. The root of the tree is v. For any node u in the tree, the

path to the root is unique. This path corresponds to the shortest path from u to v. So,

the influence of u to v (i.e., Pr(pu,v)) can be calculated. The shortest path tree can be

viewed as the compressed version of shortest paths from all other nodes to v by merging

the same node appearing in different paths. Given a set of seeds S and a node v, the

aggregated influence of S to v can be computed by finding seeds in the tree. For each

seed, the influence to v is calculated and then compute the aggregated influence according

to Equation 3.1.

46 (June 25, 2018)

SECTION 3.4: QUICK AGGREGATED INFLUENCE CALCULATION

Building and maintaining complete shortest path trees is time and space consuming.

To handle this issue, we develop an adapted shortest path tree. The idea is to partition

social networks into disjoint subgraphs, and then construct the shortest path trees off-line

within each subgraph. As a result, the shortest path between nodes within a subgraph

can be obtained directly while the shortest path between nodes in different subgraph is

reconstructed on-the-fly. Note that the subgraphs are unnecessarily equivalent to commu-

nities. Since the adapted tree is a fraction of the complete shortest path tree, it is called

partial shortest path tree (PSP-Tree).

Definition 11. (Boundary Nodes and Inner Nodes) Given any subgraph gi with nodes

Vi, the boundary nodes of gi are the subset of nodes in Vi having direct connections with

the nodes in other subgraphs. The remaining nodes in Vi are the inner nodes that are not

boundary nodes.

PSP-Tree Construction

The PSP-Tree can be constructed in the following steps. First, all edges in social network

G change the direction and the resultant subgraph is denoted as G′; for each node u, the

shortest paths from u to all other nodes in the same subgraph can be identified using

single source shortest path algorithm; it is easy to prove the shortest path from u to v

in G′ is the same path from v to u is G. Second, the social network is partitioned into a

number of subgraphs by cutting edges [Buluç et al. 2016]. Third, for each node v in each

subgraph g, the shortest paths from all other nodes to v obtained in the first step are

processed to construct a shortest path tree with v as root. This is correct in concept but

not convenient in practice. In this work, the shortest path tree is constructed by using

single source shortest path algorithm in G′ to find all shortest paths from v to all other

nodes in C.

Aggregated Influence Computation with PSP-Tree

Once PSP-Trees have been constructed, it can be used to support computing the aggre-

gated influence from any set of seeds S to any node v in social networks. For each seed

u ∈ S, Pr(pu,v) is computed. Two situations need to be considered:

• If u and v are in the same subgraph, the shortest path from u to v can be directly

retrieved from the PSP-Tree with root v and thus Pr(pu,v) is obtained.

• If u and v are in different subgraphs, the shortest path from u to v is reconstructed

by visiting a derived graph. Specifically, the derived graph consists of u, v and the

boundary nodes of all subgraphs. For a pair of boundary nodes in the same subgraph,

an edge is created and the weight is the shortest path distance between them. For a

pair of boundary nodes in different subgraphs, if there is an edge between them in

47 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(a) Facebook-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(b) Citation-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(c) Gowalla-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(d) Youtube-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(e) Amazon-Seeds

Figure 3.1: Measuring precision of seeds.

48 (June 25, 2018)

SECTION 3.4: QUICK AGGREGATED INFLUENCE CALCULATION

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(a) Facebook-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(b) Citation-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(c) Gowalla-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(d) Youtube-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

P
re

c
is

io
n

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(e) Amazon-Influencees

Figure 3.2: Measuring precision of nodes activated by the seeds.

49 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

the original social network, the edge is retained; otherwise, there is no edge between

them in the derived graph. From u to each boundary node of the same subgraph

as u, an edge is created and the weight is the shortest path distance from u to the

boundary node. From each boundary node of the same subgraph as v to v, an edge

is created and the weight is the shortest path distance from the boundary node to v.

In the derived graph, the shortest path from u to v is identified and thus Pr(pu,v)

is obtained.

Once Pr(pu,v) is computed for every u ∈ S, the aggregated influence from S to v,

i.e., Pr(v|S), can be obtained by applying Equation (3.1).

3.5 Experimental Study

We have conducted extensive experimental study to evaluate the effectiveness and effi-

ciency of the proposed solution of DIM problem. All these experiments are tested on a

Red Hat Enterprise Linux Server (7.2), with 792GB RAM and Intel(R) Xeon(R) CPU E5-

2690 v2 @ 3.00GH shared by the school of science, RMIT. The algorithms are implemented

using Python 2.7.

Data Sets.

Five real-world social network data sets are tested. They are downloaded from Stanford

Large Network Dataset Collection 1. The statistics of the data sets are shown in Table 3.1.

Data Sets #nodes #Edges Avg Degree

Facebook 4,039 88,234 21.8
Citation (DBLP) 4,558 217,984 47.8
Gowalla 69,097 351,452 5.1
Youtube 52,675 636,864 12.1
Amazon 317,194 1,745,870 5.5
DBLP 260,998 1,900,118 7.3

Table 3.1: Statistics of data sets.

1http://snap.stanford.edu/data/index.html

50 (June 25, 2018)

SECTION 3.5: EXPERIMENTAL STUDY

Baselines and Our Solutions

We have implemented two baseline algorithms, i.e., IM and Heuristic, and the proposed

algorithm, i.e., DIV(.).

• IM is the solution developed for influence maximization problem [Chen et al. 2010,

Kempe et al. 2003b]. Given a seed u, the set of activated nodes by u is denoted as

Inf(u). Given another node u′, the new nodes activated by u′ is Inf(u’)/Inf(u). For

the node selected as the next seed, it must be able to activate the maximum number

of new nodes in social networks.

• Heuristic is an adapted version of IM, which checks the nodes with one more hop.

Given a seed u, the set of activated nodes by u is denoted as Inf(u) and the unacti-

vated neighbors of Inf(u) is denoted as NB(Inf(u)). Given another node u′, the new

nodes purely activated by u′ is Inf(u’)/{NB(Inf(u)),Inf(u)}. For the node selected

as the next seed, it must be able to purely activate the maximum number of new

nodes in social networks.

• DIV(LPA) and DIV(Louvain) is our DIM solutions using community detection

method LPA and Louvain respectively. Note that community detection method

is orthogonal to DIM solution and thus does not impact the evaluation. No mat-

ter how the communities are specified/defined, our DIM solution is aware of the

communities and the baselines are not.

We compare the seeds and the nodes activated by the seeds using our solution and the

baselines in terms of effectiveness. We also test the efficiency with and without PSP-Tree.

The performance is reported when parameter λ in Equation 3.5 and δ in Equation 3.2

vary. By default, parameter λ is set as 0.5 and parameter δ is set as 0.2.

3.5.1 Evaluation of Effectiveness

The objective is to find k seeds that can activate the maximum number of nodes in social

networks and the activated nodes are as diverse as possible. The effectiveness test is to

check whether our solutions show advantage towards the objective compared with the

baselines. .

Precision

The precision is measured by comparing the seeds returned by IM and Heuristic against

that of DIV(LPA) and DIV(Louvain) respectively. For example, the seed set returned by

IM is im and the seed set returned by DIV(.) is div, the precision of IM vs. DIV(LPA) is
|im∩div|
|im| . If the precision is smaller, only a smaller fraction of IM solution (i.e., baselines)

51 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(a) Facebook-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(b) Citation-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(c) Gowalla-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(d) Youtube-Seeds

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(e) Amazon-Seeds

Figure 3.3: Measuring recall of seeds.

52 (June 25, 2018)

SECTION 3.5: EXPERIMENTAL STUDY

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(a) Facebook-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(b) Citation-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(c) Gowalla-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(d) Youtube-Influencees

0.0
0.2
0.4
0.6
0.8
1.0

50 100 150 200
Seed Size

R
e
c
a
ll

IM vs DIV(LPA)
IM vs DIV(Louvain)
Heuristic vs DIV(LPA)
Heuristic vs DIV(Louvain)

(e) Amazon-Influencees

Figure 3.4: Measuring recall of nodes activated by the seeds.

53 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

overlaps the DIM solution (i.e., our methods); it implies IM problem is less similar to DIM

problem.

For each data set, the seed sets returned by IM, Heuristic, DIV(LPA) and DIV(Louvain)

are compared, and the test results are presented in Figure 3.1 where k varies from 50 to

200. In Facebook, IM can identify 30%-50% of seeds returned by DIV(.) when k is 50 or

100. When k is 150 or 200, IM can identify about 20% of seeds returned by DIV(.). In all

settings of k, Heuristic can identify about 10% of seeds returned by DIV(.). The similar

trend can be observed for other three data sets. The activated nodes by seeds using IM

and Heuristic are compared with that using DIV(LPA) and DIV(Louvain) respectively.

The test results are presented in Figure 3.2. When k is 50 or 100, the precision of IM

and Heuristic for Facebook, Citation and Youtube reaches 50%; the precision is about

20%-40% for Gowalla and about 30% for Amazon. When k is 150 or 200, the precisions

are becoming much smaller for all data sets. The test results clearly indicate that DIM

problem is significantly different from IM problem.

Recall

The recall is measured by comparing the seeds returned by IM and Heuristic against

that of DIV(LPA) and DIV(Louvain) respectively. The recall of IM vs. DIV(LPA) is
|im∩div|
|div| . If the recall is smaller, IM solution (i.e., baselines) returns a smaller fraction

of DIM solution (i.e., our methods); it implies IM solution is less effective to solve DIM

problem.

The recall in terms of seeds is presented in Figure 3.3. For all five data sets, the recall

of IM is lower than 55% and the recall of Heuristic is lower than 30% except Citation

dataset. The recall in terms of the nodes activated by the seeds is presented in Figure 3.4.

In the dense data sets Facebook and Citation, IM can activate about 50% nodes among all

nodes activated by DIV(.). Heuristic can activate about 40% except k=50. For the other

three data sets, IM and Heuristic have less recall values. This test results demonstrates

the significance of specifically designed solutions for DIM, that is, DIVs cannot be replaced

by IM solution, i.e., IM and Heuristic.

3.5.2 Evaluation of Efficiency

We evaluate the scalability of GR (greedy algorithm), UB (upper bound algorithm), and

IDX (PSP-Tree supported upper bound algorithm) at different settings of k. Figure 3.5

reports the time consumed using different algorithms for solving DIM problem. The LPA

generated communities and the Louvain generated communities are tested. However, the

reported time does not include time for community detection since it is orthogonal to DIM

solution. That is, community detection algorithm LPA and Louvain have been performed

offline and the generated communities have been maintained.

54 (June 25, 2018)

SECTION 3.5: EXPERIMENTAL STUDY

0

1800

3600

5400

7200

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(a) Facebook(LPA)

0

1800

3600

5400

7200

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(b) Facebook(Louvain)

0

1800

3600

5400

7200

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(c) Citation(LPA)

0

1800

3600

5400

7200

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(d) Citation(Louvain)

0

120

240

360

480

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(e) Gowalla(LPA)

0

120

240

360

480

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(f) Gowalla(Louvain)

0

6

12

18

24

0 50 100 150 200
Seed Size

T
im

e
 (

h
)

GR UB IDX

(g) Youtube(LPA)

0

6

12

18

24

0 50 100 150 200
Seed Size

T
im

e
 (

h
)

GR UB IDX

(h) Youtube(Louvain)

0

300

600

900

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(i) Amazon(LPA)

0

300

600

900

0 50 100 150 200
Seed Size

T
im

e
 (

s
)

GR UB IDX

(j) Amazon(Louvain)

Figure 3.5: Efficiency of proposed algorithms.

55 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

As shown in Figure 3.5, IDX outperforms the other two algorithms by about 8-40

times on all data sets (except Citation). The next one is UB. GR performance is the

worst in all situations. For Citation, UB is better than IDX when k is 50, 100, and 150.

But when k increases up to 160, IDX performs much better than UB. When k is 200,

IDX is about 2.5 times faster than UB. This is because Citation is a dense social network.

The dense social network tends to have more computation for intra-community nodes.

Additionally, we observe that each algorithm performs similarly over the same data set

with LPA and Louvain.

3.5.3 Other Evaluations

This subsection presents the evaluation results when we vary the tradeoff parameter λ,

the threshold parameter δ and the data size. Due to the limited space, we just report

partial results in this paper.

Varying λ

In this test, the accuracy of the activated nodes using DIV(LPA) and IM is evaluated. The

accuracy is measured by F-measure where F = 2 ∗ precision∗recall
precision+recall . The higher F-measure

means the activated nodes are more diverse. The test results are shown in Figure 3.6(a)

when λ varies from 0.25 to 1. In the situation λ = 1, it means the diversity is the only

factor to be considered. When λ = 0.25, it means the diversity is considered less while the

number of nodes activated is considered more. By default, k = 100 and δ = 0.2. F-score

decreases with the increase of λ value for all five data sets. And the decreasing trend goes

slowly before λ = 0.5 and goes sharply after λ = 0.5.

IM aims to activate maximum number of nodes in social networks and DIV aims to

activate maximum number of nodes which are from more communities. Compared with

IM, DIV has to sacrifice a certain number of activated nodes to ensure they are from

more communities. The ratios between the number of activated nodes using DIV and

that using IM at different settings are reported in Figure 3.6(b). When λ is between 0.25

and 0.75, the number of activated nodes using DIV is 75% of that using IM for all data

sets. When λ is 1, the ratio is 75% in four data sets and 40% in Youtube.

Varying δ

In the test, k = 100 and λ = 0.5 are set. As shown in Figure 3.6(c), F-score increases

when δ varies from 0.2 to 0.5. The results depict that it is easy for IM to activate diverse

nodes when the higher value is set to δ. We also evaluate the time consumed by different

algorithms over Amazon when δ changes. The test results are shown in Figure 3.6(d).

The performance of UB is accelerated with higher δ value, but the performance of IDX

is affected slightly by δ. Clearly, IDX always outperforms UB.

56 (June 25, 2018)

SECTION 3.5: EXPERIMENTAL STUDY

0.00

0.25

0.50

0.75

1.00

0.25 0.5 0.75 1

F
-s
c
o
re

Amaz. Cita. Face.

Gowa. Yout.

(a) F-Score of IM vs. DIV

0.00

0.25

0.50

0.75

1.00

0.25 0.5 0.75 1

S
p
re

a
d
 R

a
ti
o

Amaz. Cita. Face.
Gowa. Yout.

(b) Influence ratio of DIV vs. IM

0.00

0.25

0.50

0.75

1.00

0.2 0.3 0.4 0.5

F
-s
c
o
re

Amaz. Cita. Face.

Gowa. Yout.

(c) F-Score of IM vs. DIV

0

120

240

360

480

0.1 0.2 0.3 0.4 0.5

T
im

e
 (

s
)

IDX
UB

(d) Time cost with δ

0

600

1200

1800

1x 2x 5x 25x
Size

T
im

e
 (

s
)

IDX
UB

(e) Varying data size

Figure 3.6: Impact of λ, δ and data size.

57 (June 25, 2018)

CHAPTER 3: EFFICIENT DIVERSE INFLUENCE MAXIMIZATION

Varying Data Size

We generate three synthetic datasets based on Amazon data in order to evaluate the

scalability of the proposed algorithms in terms of the size of social networks. The three

data sets have size 2 times, 5 times and 25 times of the size of the original Amazon data

set shown in Table 3.1. Figure 3.6(e) illustrates UB consumes 600 seconds when data size

is 2 times and it consumes 1800 seconds when the data size is 25 times. Obviously, while

the data size increases by about 12 times, the consumed time increases by 3 times only.

IDX performs much better and the trending slope is very small.

3.6 Conclusions

This work has studied diverse influence maximization (DIM) problem to find k influen-

tial users as seeds from social networks such that diverse influence, i.e., the number of

influenced users and the number of influenced communities, is maximized at the end of in-

formation propagation process. DIM provides a new perspective to evaluate the influence

over social networks, that is, the information spread is not once-off process because some

influenced users may become new seeds later to actively spread information. To handle the

conflicting nature of the number of influenced users and the number of influenced commu-

nities, we have provided an evaluation metric to balance the weight between them. More

importantly, we prove that the evaluation metric possesses the monotone and submodu-

larity property. It allows greedy algorithm to be applied with reasonable approximation

bound. To enable quick response to DIM query, the upper bound of diverse influence has

been found and explored to minimize the seed candidates. In particular, we have designed

PSP-Tree index to quickly compute the diverse influence of seed candidates. On the five

real world data sets, the effectiveness of DIM has been verified by comparing with IM and

efficiency of our solution has been demonstrated by varying a set of parameters. In short,

this study has filled the gap in influence maximization research by breaking through the

current limit and it sheds light to social network research where information diffusion is

essential.

58 (June 25, 2018)

CHAPTER 4
Targeted Influence Minimization in

Social Networks

4.1 Problem Definition

A social network is modeled as a directed graph G = (V,E), where V is a set of nodes

and E ⊆ V × V is a set of edges. A set of nodes I ⊆ V are called active nodes and have

information to be diffused in the social network. Another set of nodes T ⊆ V , I ∩ T = ∅,
are called target nodes and are the recipients of interest.

4.1.1 Diffusion Model

We assume the Linear Threshold (LT) diffusion model [Kempe et al. 2003a]. Thus, each

edge (u, v) comes with a weight bu,v ∈ [0, 1] to represent the influence u has on v. If a

message is from u, the influence of this message on v is added by bu,v. If the message

is from all neighbors of v, denoted as Adj(v), then influence, v.inf of the message on v

is
∑

u∈Adj(v) bu,v. An activation threshold, v.τ , is associated with v. If v.inf ≥ v.τ , v is

activated; otherwise, v is not activated.

It has been shown that diffusion in the LT model is equivalent to the process of

reachability under random choice of live edges in graph instances [Kempe et al. 2003a].

Given a graph G = (V,E), each node v ∈ V selects at most one of its incoming edges

at random, choosing the edge connecting u to v with probability bu,v and not choosing

any other edge with probability 1 −
∑

u∈Adj(v) bu,v; the chosen edge is called live. After

processing each node in V this way, a graph instance Gx containing only the live edges

and all the nodes in G is generated. In Gx, suppose a set of nodes I are active initially;

an inactive node u ∈ V ends up as active if and only if Gx contains a path from any node

in I to u.

59

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

The set of all graph instances that can be generated from G is denoted as χG. The

influence of I to a set of nodes T ⊆ (V \ I) in graph G under the LT diffusion model is

defined as follows:

ΛG(I, T) =
∑

Gx∈χG

Prob[Gx]rGx(I, T), (4.1)

where rGx(I, T) is the number of nodes in T reachable from any node in I in graph instance

Gx, and Prob[Gx] is the probability of graph instance Gx.

A

B

D

E

F

G
J

H

K

0.1

0.2

0.7

0.1

0.5

0.2

0.2

0.4

0.5

0.8

0.10.3

0.6

0.3

0.2

C

A

B

D

E

F

G
J

H

KC

(b)(a)

Figure 4.1: A social network and an instance graph.

Figure 4.1(a) illustrates a social network, and an instance graph using the LT diffusion

model is shown in Figure 4.1(b). The probability of the instance graph is 0.000504.

Suppose I = {A,B,C} and T = {K,J,H}. Then K and H are reachable from A, while

J is not reachable from any node in I.

4.1.2 Targeted Influence Minimization

A social network G = (V,E) from which a subset of edges S ⊆ E has been deleted is

denoted as G(S).

Definition 12 (Targeted Influence Minimization (TIMin)). Given a social network G =

(V,E), a set of active nodes I ⊆ V , a set of target nodes T ⊆ {V \ I} and a positive real

number k as a budget, suppose S = {S1, S2, · · · , Sn} contains all possible sets of edges

where |Si| ≤ k, 1 ≤ i ≤ n;

• if there does not exist Si ∈ S such that ΛG(Si)(I, T) = 0, TIMin aims to find the set

S∗ ∈ S such that ΛG(S∗)(I, T) is minimal;

60 (June 25, 2018)

SECTION 4.2: BUDGET UNCONSTRAINED SOLUTION

• if a set Si ∈ S exist such that ΛG(Si)(I, T) = 0, TIMin aims to find a set S∗ ∈ S such

that ΛG(S∗)(I, T) = 0 and |S∗| is minimal.

In the former case, the budget is insufficient to completely block the information

propagation from I to T . In the latter case, the budget is sufficient to do so. As an

example, consider Figure 4.1, where I = {A,B,C} and T = {K,J,H}. A budget k = 2

is insufficient to completely block the information propagation from I to T . Thus, TIMin

aims to find the set of edges S∗ such that ΛG(S∗)(I, T) is minimized. Given a budget of

k = 10, there are many sets of edges that, if deleted, will completely block the information

propagation from I to T . In this situation, among all such sets of edges, TIMin aims to

find one with the minimum number of edges.

Given active nodes I and target nodes T , we initially need to determine whether the

budget k is sufficient or not since this is not known in advance. This leads to the following

processing framework.

1. The first stage solves the influence minimization with am unconstrained budget,

defined as follows.

min |Si|

s.t. ΛG(Si)(I, T) = 0 ∧ Si ⊂ S
(4.2)

If |Si| ≤ k, the problem is solved by returning Si because the budget is sufficient to

completely block the information propagation from I to T ; otherwise, we go to the

second stage.

2. The second stage solves the influence minimization with a budget k, defined as

follows.

min
Si

ΛG(Si)(I, T)

s.t. |Si| ≤ k ∧ Si ⊂ S
(4.3)

4.2 Budget Unconstrained Solution

We first examine whether the budget is sufficient to completely block the information

propagation from I to T . For this purpose, TIMin with unconstrained budget (i.e., k =∞)

is solved as a minimum cut or maximum flow problem. Let s and t be a source node and

sink node in a flow network, respectively. In optimization theory, the max-flow min-

cut theorem states that the maximum amount of flow passing from the source to the

sink is equal to the total weight of the edges in the minimum cut, i.e., equal to the

smallest total weight of the edges that, if removed, would disconnect the source from the

sink [Papadimitriou and Steiglitz 1998]. If multiple sources and multiple sinks exist, the

problem is transformed into a single-source and single-sink maximum flow problem by

61 (June 25, 2018)

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

adding two new nodes: one connecting all source nodes and the other connecting all sink

nodes; the weights of the new edges connected to the two new nodes are ∞.

Lemma 6. Given a social network G = (V,E), a set of source nodes I ⊆ V , and a set

of target nodes T ⊆ {V \ I}, the influence minimization is equivalent to the minimum cut

problem if budget k =∞.

Proof. By Definition 12, influence minimization with an unconstrained budget is to iden-

tify the minimum set of edges S∗ to delete such that by deleting which ΛG(S∗)(I, V) = 0.

As introduced in Section 4.1, the influence from source nodes is computed using Equa-

tion 4.1. If there is path from any node in I to any node in T , a graph instance exists

where Prob[Gx] > 0 and rGx(I, T) > 0, and thus Λ(I, V) > 0. So, Λ(I, V) = 0 holds

only if all possible paths from any node in I to any node in T are blocked. In this situa-

tion, no instance graph may have a path from any node in I to any node in T such that

ΛG(S∗)(I, V) = 0.

Therefore, influence minimization with an unconstrained budget is to find a minimum

set of edges that, if deleted, disconnect I and T . This is equivalent to the single-source,

single-sink minimum cut problem if I and T each contain one node; otherwise, it is equiv-

alent to the multi-source, multi-sink minimum cut problem, which can be transformed

into a single-source, single-sink minimum cut problem as discussed above.

In Figure 4.2, influence minimization with an unconstrained budget is modeled as

a single-source, single-target minimum cut problem. Specifically, a node s is added and

linked to all the active nodes in I, and a node t is added and linked to all the target nodes

in T . The weight of each edge is infinity.

The minimum cut or maximum flow problem is well studied [Papadimitriou and

Steiglitz 1998]. We adopt Dinic’s algorithm to solve this problem [?]. Dinic’s algorithm

uses the concept that a flow is maximum if no path from s to t exists in the residual

graph. Given a flow network, if there exists an s-t path, then the algorithm constructs

a residual graph based on by applying for the weight reduction on each edge in the s-t

path. The weight to be reduced is the smallest weight on the edges in the path and the

updated weights are called forward capacity. Meanwhile, the residual graph also records

a backforward capacity for each edge in the s-t path. The backforward capacity for an

edge increments by 1 if its forward capacity decreases by 1 where the initial backforward

capacity on each edge is zero. To improve the efficiency, Dinic’s algorithm further proposes

the concept of level graph. Each node u in the level graph has an attribute with its

shortest distance to s in the residual graph, which maintains information to accelerate

the computation of s-t path. If there exists an s-t path left in the residual graph, then it

updates the residual graph as well as the level graph. The algorithm stops when no s-t

path is left in the residual graph.

62 (June 25, 2018)

SECTION 4.3: BUDGET CONSTRAINED SOLUTION

A

B

C

D

E

F

G

J

H

K

s

t

+∞

+∞

+∞

+∞

+∞

+∞

Figure 4.2: Influence minimization, unconstrained budget.

The complexity of Dinic’s algorithm is O(min{V 2/3, E1/2}E) if I and T each contains

only one node; otherwise, it is O(E3/2). In Figure 4.2, the set of edges returned is

S∗ = {(A,D), (B,D), (E,F)} and |S∗| = 3. If budget k ≥ |S∗|, the budget is sufficient to

completely block the influence from I to T .

4.3 Budget Constrained Solution

Theorem 7. TIMin with an insufficient budget k is NP-hard.

Proof. TIMin with an insufficient budget k is an instance of the maximum coverage prob-

lem that is known to be NP-hard [Vazirani 2013]. Given a number k and a number of

sets (the sets may have elements in common), the maximum coverage problem aims to

select at most k sets such that the maximum number of unique elements are covered, i.e.,

the cardinality of the union of the selected sets is maximized. In TIMin, we take each

edge e as a distinct set number. And the set contains the corresponding paths passing

e from the source nodes I to the target nodes T in all instance graphs. The generated

sets may have duplicate paths. Suppose the corresponding sets of all edges are known

and the paths have the uniform probability. TIMin with insufficient budget k aims to

select at most k edges which, if deleted, the maximum number of paths from I to T are

blocked. Therefore, TIMin with insufficient budget k is the same as identifying the best

k sets in the maximum coverage problem. So, TIMin with budget k can be proved to be

an NP-hard problem using a reduction from the well-known NP-hard problem.

63 (June 25, 2018)

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

Due the result in Theorem 7, we provide a greedy algorithm to solve targeted influence

minimization with an insufficient budget.

4.3.1 Greedy Algorithm

The greedy algorithm searches for a set of edges S ⊆ E such that |S| ≤ k and the following

objective function is maximized.

f(S) = ΛG(I, T)− ΛG(S)(I, T), (4.4)

where ΛG(., .) is computed using Equation 4.1.

The greedy algorithm proceeds iteratively. Initially, S is empty. In each iteration, it

computes the value of each edge e in G(S) as follows.

value(e) = ΛG(S)(I, T)− ΛG(S′)(I, T), (4.5)

where S′ = S ∪ {e}. The value of e, value(e), is the reduction of influence from I to

T with and without e in G(S). Among all edges, the one with the maximum value, say

e∗, is deleted. Then e∗ is inserted into S, and the remaining budget is decremented by

1. The process terminates when the remaining budget reaches 0. The greedy algorithm

is an (1 − 1
e)-approximation (≈0.632-approximation) since the objective function is non-

negative, monotonous, and submodular [Khalil et al. 2013].

4.4 Sampling-based Solution

It is prohibitively expensive to directly generate all graph instances and compute the

value of each edge in each iteration. Therefore, we devise a sampling-based solution. The

solution is inspired by a recent influence maximization study [Tang et al. 2014b], but

significant adaptions are required.

Reverse Influence Set (RIS)

Tang et al. [2014b] aim to select at most k nodes with maximum influence in a social

network. The method is based on RIS that computes the influence of nodes using graph

instances. Specifically, the reverse reachable (RR) node set for each node in each graph

instance is generated. Given a node v in graph instance Gx, the RR set contains all nodes

in Gx that can reach v. Using the sampling method, a number of nodes are randomly

selected from V ; the RR set for each node is generated using a randomly selected graph

instance. So, a number of random RR sets are obtained. If a node u has a great impact

on other nodes, u will have high probability of appearing in the random RR sets. As

a result, the problem is transformed to the maximum coverage problem of identifying at

most k nodes that cover the maximum number of the random RR sets. It has been shown

64 (June 25, 2018)

SECTION 4.4: SAMPLING-BASED SOLUTION

that if the number of random RR sets θ is no less than (8+2ε)|V |
ln |V |+ln(

|V |
k

)+ln 2

OPTkε2
, then

RIS returns an (1− 1/e− ε)-approximate solution with at least 1− |V |−1 probability (ε ∈
(0,1)) [Borgs et al. 2014].

4.4.1 Minimum Influence Path

RIS cannot be applied to our problem without significant modification due to two reasons.

• The random RR set is about node-to-node reachability. In our problem, however, we

delete the edges to make reachable-nodes unreachable. While it is straightforward to

determine node-to-node reachability, it is more difficult to identify edges the deletion

of which makes reachable-nodes unreachable. The reason is that there may be many

different paths between two reachable nodes, so deleting an edge does not necessarily

block the reachability.

• The random RR set is for the reachability of any node. In our problem, however,

only the source nodes I and the target nodes T are relevant.

We propose a novel sampling-based method called Minimum Influence Path (MIP)

to solve TIMin. The idea is to exploit the fact that each node in a graph instance under

the LT diffusion model has at most one incoming edge. Specifically, each node v ∈ V in

the graph instance generation process picks at most one of its incoming edges at random,

selecting the edge from w ∈ Adj(v) with probability bw,v, and selecting no edge with

probability 1−
∑

w∈Adj(v) bw,v. Figure 4.1 (b) shows an example.

As a result, for two nodes v and u, if v is reachable from u in the graph instance, it

is easy to observe that the following properties hold: (i) there is one and only one path

from u to v in the graph instance, and (ii) the path is acyclic. Therefore, the information

propagation from u to v in this graph instance can be blocked by removing any edge in

the path. On the other hand, if v is not reachable from u in the graph instance by deleting

an edge e, this does not indicate that v is not reachable from u in other graph instances.

However, if v is not reachable from u in many graph instances by deleting e, this implies

that the information propagation from v to u is less likely to happen even though it is

not impossible. So, the problem is to delete those edges that block the paths from source

nodes to target nodes are blocked in many graph instances.

On the other hand, if v is not reachable from u in the graph instance, the information

propagation is blocked without deleting any edge. This may occur for two reasons. First, v

is not reachable from u in graphG. Second, v is not reachable from u in this graph instance.

If v is not reachable from u in many graph instances, this implies that the information

propagation from v to u is less likely to happen even though it is not impossible.

65 (June 25, 2018)

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

Given a node in v ∈ T , the minimum influence path in a graph instance is the path to

v from any node u ∈ I with the fewest edges. Figure 4.3 (a) shows a graph instance where

I = {u1, u2, u3} and T = {v1, v2, v3, v4}. The minimum influence path from I to each

target node is shown in Figure 4.3 (b). The minimum influence path to v1 is (e1, e2, e3).

Cutting any edge in the minimum influence path will prevent I from reaching v1 in this

graph instance. Intuitively, the edge appearing in more minimum influence paths is more

likely to, if deleted, lead to the more influence reduction. In this graph instance, edge

e5 appears in the minimum influence paths of v2 and v3 such that deleting e5 prevents

I from reaching two nodes. If deleting e5 prevents I from reaching many nodes in T in

other graph instances, e5 is likely to be the edge in the solution of MIP.

e22e16 e19 e21
v4

(b)(a)

(e12,e13,e14,e15, e5)

(e8, e9, e10, e11, e5)

(e1, e2, e3)e11

e12 e13 e14
e15

e2 e3
e4 e5

e6 e7

e8 e9 e10

e1

v3

v2

v1

v3

u3u2
u1

v2

v1

Figure 4.3: Reverse influence paths.

4.4.2 Sampling-based Greedy Algorithm

The pseudo-code of the sampling-based greedy algorithm is presented in Algorithm 8.

First, we randomly generate a graph instance in lines 8–8. One node in T is selected

randomly in line 8, and the minimum influence path of this node is generated in line 8.

This way, θ nodes have been sampled, and the minimum influence path is generated for

each of them. Note that a graph instance is more likely to be selected if the probability of

the graph instance is high. If deleting an edge can prevent I from reaching many nodes in

T in many graph instances, this edge is more likely to appear in the minimum influence

paths. So, the problem is transformed to the maximum coverage problem of selecting at

most k edges to cover the sampled nodes as many as possible. In our solution, we assume

that the specified budget is sufficient, otherwise, the budget unconstrained solution is

applied. To this end, the incremental solution of maximum coverage problem, known as

incrementalMC(M), is applied in line 8.

66 (June 25, 2018)

SECTION 4.4: SAMPLING-BASED SOLUTION

Algorithm 8 Sampling-based Solution

Input: G = (V,E), I, T, k, θ
Output: S∗

i← 0
M ← ∅
while i ≤ θ do

j ← 0
// generate a graph instance i

foreach v ∈ V do
if generateEdge() then

randomly select w ∈ Adj(v) with probability bw,v

end

end
u← randomly select a node in V
u.M ← minInfPath(u)
M ←M ∪ u.M
i← i+ 1

end
S∗ ← incrementalMC(M)

return S∗

The maximum coverage problem is solved using an adapted greedy algorithm that

is aware of the budget sufficiency. The pseudo-code is presented in Algorithm 9. The

generated minimum influence paths and the corresponding reverse minimum influence

paths are used. For each minimum influence path, the algorithm maintains a node v ∈ I
and the list of the edges in the path. For each reverse minimum influence path, it maintains

an edge e and a list of the nodes each of which has e in its minimum influence path. The

reverse influence minimum paths are constructed while the influence minimum paths are

generated (line 9). First, the edge with the longest reverse minimum influence paths is

moved to solution S∗ (lines 9–9). Then, the nodes in the reverse minimum influence path

are processed by finding their minimum influence paths and removing them (line 9); for

any edge in the minimum influence paths, its reverse minimum influence paths is found

and updated (lines 9–9). The process is repeated until k edges are selected (line 9) or

no complete path exists in the remaining influence minimum paths (line 9). The budget

sufficiency awareness is implemented by checking whether no complete path exists.

Theorem 8. If |S∗| ≤ k, the probability that the information propagation from I to T is

completely blocked is at most 1
n ; the |S∗| is an 1

n -approximation of the optimal solution.

Proof. The proof is based on Theorem 3.1 provided by ?. In the theorem, consider an

arbitrary unweighted multigraph G = (V,E) with edge connectivity λ and choose a subset

67 (June 25, 2018)

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

Algorithm 9 Incremental Maximum Coverage

Input: Mip

Output: S∗

i = 0

RMip ← construct reverse minimum influence path

S∗ ← ∅
while i ≤ k do

if no complete path in Mip then
break;

end
rpe ← the longest path in RMip

delete rpe from RMip

S∗ ← S∗ ∪ e
foreach v ∈ pe do

delete path pv from Mip

foreach e ∈ pv do
rpe ← delete v from rpe

end

end

end
return S∗

S ⊆ E by indicating each edge e ∈ E in set S independently with probability p. If

p ≥ 20logn
λ then the sampled subgraph G′ = (V, S) is connected with probability at least

1− 1
n .

In this work, each reverse influence path can be modeled as a small graph. Given

sets I and T of source and sink nodes, we build a multigraph. As such, the targeted

influence minimization from I to T can be transformed into reducing the connectivity

of the sampled subgraph G′. Cutting the selected subset S can guarantee that G′ is

connected with probability at most 1
n if |S| ≤ k. Otherwise, the probability of being

disconnected is at most 1− k
|S|(1−

1
n).

4.5 Experimental Study

We evaluate the effectiveness and efficiency of our proposed algorithms by comparing with

two heuristic algorithms called Random and Weight. Random selects edges randomly until

budget k is used. Weight selects edges with largest edge weights. Their performance are

evaluated in different parameter settings using three real-world networks: Wiki with 7,115

nodes and 103,689 edges, Ego-twitter with 23,370 nodes and 33,101 edges, and Epinions

with 75,879 nodes and 508,837 edges. All the three datasets are downloaded from the

68 (June 25, 2018)

SECTION 4.5: EXPERIMENTAL STUDY

Stanford Dataset Collection1.

4.5.1 Evaluation of Effectiveness

Varying k: Figure 4.4 shows the experimental results when varying k while the source

node set I and the target node set T are fixed in size at 500 unless stated otherwise.

The source and target nodes are selected randomly. The study shows that Greedy and

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
k (Wiki)

In
flu

en
ce Greedy

Random
Sampling
Weight

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
k (Ego−twitter)

In
flu

en
ce Greedy

Random
Sampling
Weight

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
k (Epinions)

In
flu

en
ce Greedy

Random
Sampling
Weight

Figure 4.4: Remaining influence from I on T when varying k.

Sampling are able to greatly reduce the influence of I on T for all three datasets given

a sufficiently large value of k. When k is above 100, both solutions are able to reduce

the influence by up to 80%. Next, Random and Weight can slightly reduce the influence

in Wiki. They do not work for Ego-twitter and Epinions. Random and Weight cannot

block the influence well because the selection of their deleted edges are not relevant to

target users. However, this matter is taken into account in Greedy and Sampling. So the

influences minimized by Greedy or Sampling are always larger than that of Random or

Weight.

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
|T| (Wiki)

In
flu

en
ce

Greedy
Random
Sampling
Weight 0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
|T| (Ego−twitter)

In
flu

en
ce

Greedy
Random
Sampling
Weight 0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
|T| (Epinions)

In
flu

en
ce

Greedy
Random
Sampling
Weight

Figure 4.5: Remaining influence of I on T when varying |T |.

Varying T : We randomly select 500 nodes as the source node set I and set k as 500.

Figure 4.5 shows the results when we increase the target node set from 100 to 500 nodes.

Greedy and Sampling are still able to reduce the remaining influence from I on T by

deleting at most 500 edges. Random is the worst for all datasets. Weight performs better

than Random in Wiki only. The resultant observation is quite interesting. Our proposed

1http://snap.stanford.edu/data/

69 (June 25, 2018)

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

solutions Greedy and Sampling are quite stable at blocking the influence of the source

nodes on the target nodes at a certain level.

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
|I| (Wiki)

In
flu

en
ce

Greedy
Random
Sampling
Weight 0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
|I| (Ego−twitter)

In
flu

en
ce

Greedy
Random
Sampling
Weight 0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
|I| (Epinions)

In
flu

en
ce

Greedy
Random
Sampling
Weight

Figure 4.6: Remaining influence of I on T when varying |I|

0

5000

10000

15000

100 200 300 400 500
|I| (|T|=200)

|S
*|

Ego−twitter
Epinions
Wiki

0

5000

10000

15000

100 200 300 400 500
|T| (|I|=500)

|S
*|

Ego−twitter
Epinions
Wiki

Figure 4.7: #edges deleted for unconstrained budget.

100
102
104
106

0 100 200 300
k (Wiki)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

100
102
104
106

0 100 200 300
k (Ego−twitter)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

100
102
104
106

0 100 200 300
k (Epinions)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

Figure 4.8: Time cost when varying k.

Varying I: Figure 4.6 shows the results when we vary the size of the source set I for

k = 500 and |T | = 200. In this study, Greedy and Sampling can reduce the remaining

influence to 0.2 in Wiki, which is a dense graph. For Ego-twitter and Epinions, their

performance varies more. Thus, Greedy performs better on Ego-twitter, and Sampling

does well on Epinions. However, Random and Weight have the worst performance in all

three datasets.

Budget Unconstrained Evaluation: As shown in Figure 4.7, we can see that the

influence from I to T can be blocked completely by deleting a certain number of edges.

When |I| = 500, |T | = 100, it requires 243 edges for Ego-Twitter. But more edges must be

deleted for Epinions and Wiki because Ego-Twitter dataset is much sparse than Epinions

70 (June 25, 2018)

SECTION 4.6: CONCLUSION

100

102

104

106

100 200 300 400 500
|T| (Wiki)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

100

102

104

106

100 200 300 400 500
|T| (Ego−twitter)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

100

102

104

106

100 200 300 400 500
|T| (Epinions)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

Figure 4.9: Time cost when varying |T |.

or Wiki datasets. In order to minimize the influence of I on T in the same parameter

settings, it has to delete more edges so that all the paths connecting from I to T can

be disconnected. However, when |T | becomes large, it is quite challenging to completely

block the initial users’ influence on the target users because a large number of edges need

to be deleted. Our sampling solution can be applied to block the majority of the influence.

100

102

104

106

100 200 300 400 500
|I| (Wiki)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

100

102

104

106

100 200 300 400 500
|I| (Ego−twitter)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

100

102

104

106

100 200 300 400 500
|I| (Epinions)

T
im

e
(s

)

Greedy
Random
Sampling
Weight

Figure 4.10: Time cost when varying I.

4.5.2 Evaluation of Efficiency

We evaluate the efficiency of the four solutions when varying k, T , and I. Figures 4.8–4.10

present the results. Our sampling solution is capable of outperforming the greedy solution

by 2 orders of magnitude in all datasets. Both solutions are stable in performance when

we increase k. But the time cost of Greedy grows with the increase of T or I. Compared

with Greedy and Sampling, Random and Weight have the best efficiency because their

deleted edges can be found without too much computation. But, as we have seen, their

lack of effectiveness render them of little use. Therefore, the sampling solution is the best

choice for targeted influence minimization in terms of effectiveness and efficiency.

4.6 Conclusion

In this work, we propose and formalize the problem of targeted influence minimization

in social networks that has not previously been studied. We present different solutions

that address the computational challenges associated with this problem. We report on

71 (June 25, 2018)

CHAPTER 4: TARGETED INFLUENCE MINIMIZATION IN SOCIAL NETWORKS

empirical studies showing that the proposed solution is capable of quickly blocking 80% or

more the influence of source users on target users. The proposed sampling-based solution

is efficient when applied to large scale social networks. This is very important because

system need to be able to quickly identify the set of edges to be deleted in order to block

the source users’ influence. A less efficient solution may enable the source users to activate

additional users as new source users, who can then spread the malicious information and

this way influence the target users.

72 (June 25, 2018)

CHAPTER 5
Conclusion and Future Works

“We know very little, and yet it is astonishing that we

know so much, and still more astonishing that so little

knowledge can give us so much power.”

–Bertrand Russell

In this thesis, we analyze communities where social influence plays an essential role

and solve three research questions as follows.

First, we have investigated a novel and significant problem of searching the most

influential maximal kr-clique communities in a vast social network, which is an NP-hard

problem and has various essential applications in real life. This is the first work to discover

communities via their outer influence. Compared with the existing community models,

such as k-core and k-truss, our proposed maximal kr-clique community model has more

desirable characters. These modelling contributions provide a new aspect for users and

companies to understand the communities and their influence in the social network at

the community level. In addition, we have developed tailored C-Tree index and efficient

search algorithms to enable the most influential community search in large social net-

works. Interestingly, once the community model has been explicitly defined, no matter

the maximal kr-clique communities or any previous model, the proposed index and the

search algorithms still work with easy adaption. The robustness of the maximal kr-clique

community model has been verified through the case study of a real-world application.

The efficiency of the C-Tree index and search algorithms have been tested on six real

world social networks.

Secondly, we have studied diverse influence maximization (DIM) problem to find

k influential users as seeds from social networks such that diverse influence, i.e., the

number of influenced users and the number of influenced communities, is maximized at

the end of information propagation process. DIM provides a new perspective to evaluate

the influence over social networks, that is, the information spread is not once-off process

73

CHAPTER 5: CONCLUSION AND FUTURE WORKS

because some influenced users may become new seeds later to actively spread information.

To handle the conflicting nature of the number of influenced users and the number of

influenced communities, we have provided an evaluation metric to balance the weight

between them. More importantly, we prove that the evaluation metric possesses the

monotone and submodularity property. It allows a greedy algorithm to be applied with

reasonable approximation bound. To enable quick response to DIM query, the upper

bound of diverse influence has been found and explored to minimize the seed candidates.

In particular, we have designed PSP-Tree index to quickly compute the diverse influence of

seed candidates. On the five real-world data sets, the effectiveness of DIM has been verified

by comparing with IM and efficiency of our solution has been demonstrated by varying a

set of parameters. In short, this study has filled the gap in influence maximization research

by breaking through the current limit and it sheds light to social network research where

information diffusion is essential.

Finally, we have proposed and formalize the problem of targeted influence minimiza-

tion in social networks which has not previously been studied. We present different solu-

tions that address the computational challenges associated with this problem. We report

on empirical studies showing that the proposed solution is capable of quickly blocking

80% or more the influence of source users on target users. The proposed sampling-based

solution is efficient when applied to large-scale social networks. It is critical because the

system needs to be able to quickly identify the set of edges to be deleted to block the

influence of source users. A less efficient solution may enable the source users to activate

additional users as new source users, who can then spread the malicious information and

this way influence the target users.

As to future works, we would like to consider the topic information along with the

community structure when searching for the most influential community, maximizing the

diversity of the social influence, and minimizing the influence on a target community.

Since the influence propagation can be measured accurately with the topic information of

a spreading message.

74 (June 25, 2018)

Bibliography

R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In

Proceedings of the Second International Conference on Web Search and Web Data

Mining, WSDM 2009, Barcelona, Spain, February 9-11, 2009, pages 5–14, 2009. doi:

10.1145/1498759.1498766. URL http://doi.acm.org/10.1145/1498759.1498766.

Ç. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online topic-aware influence

maximization queries. In EDBT, pages 295–306, 2014.

N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence propagation models.

In ICDM, pages 81–90, 2012.

P. Basuchowdhuri and S. Majumder. Finding influential nodes in social networks us-

ing minimum k-hop dominating set. In Applied Algorithms - First International

Conference, ICAA 2014, Kolkata, India, January 13-15, 2014. Proceedings, pages

137–151, 2014. doi: 10.1007/978-3-319-04126-1 12. URL http://dx.doi.org/10.1007/

978-3-319-04126-1 12.

C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier. Maximizing social influence in nearly

optimal time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages

946–957, 2014. doi: 10.1137/1.9781611973402.70. URL http://dx.doi.org/10.1137/1.

9781611973402.70.

C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (algorithm 457).

Commun. ACM, 16(9):575–576, 1973.

A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in

graph partitioning. In Algorithm Engineering - Selected Results and Surveys, pages

117–158. 2016. doi: 10.1007/978-3-319-49487-6 4. URL http://dx.doi.org/10.1007/

978-3-319-49487-6 4.

S. Chen, J. Fan, G. Li, J. Feng, K. Tan, and J. Tang. Online topic-aware influence

maximization. PVLDB, 8(6):666–677, 2015.

75

http://doi.acm.org/10.1145/1498759.1498766
http://dx.doi.org/10.1007/978-3-319-04126-1_12
http://dx.doi.org/10.1007/978-3-319-04126-1_12
http://dx.doi.org/10.1137/1.9781611973402.70
http://dx.doi.org/10.1137/1.9781611973402.70
http://dx.doi.org/10.1007/978-3-319-49487-6_4
http://dx.doi.org/10.1007/978-3-319-49487-6_4

CHAPTER 5: BIBLIOGRAPHY

W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In

SIGKDD, pages 199–208, 2009.

W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral

marketing in large-scale social networks. In SIGKDD, pages 1029–1038, 2010.

W. Chen, T. Lin, and C. Yang. Efficient topic-aware influence maximization using pre-

processing. CoRR, abs/1403.0057, 2014.

Y. Chen, W. Peng, and S. Lee. Efficient algorithms for influence maximization in social

networks. Knowl. Inf. Syst., 33(3):577–601, 2012.

E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. DivQ : diversification for keyword

search over structured databases. In Proceeding of the 33rd International ACM SI-

GIR Conference on Research and Development in Information Retrieval, SIGIR 2010,

Geneva, Switzerland, July 19-23, 2010, pages 331–338, 2010. doi: 10.1145/1835449.

1835506. URL http://doi.acm.org/10.1145/1835449.1835506.

P. M. Domingos and M. Richardson. Mining the network value of customers. In SIGKDD,

pages 57–66, 2001.

M. Drosou and E. Pitoura. Diversity over continuous data. IEEE Data Eng. Bull., 32(4):

49–56, 2009. URL http://sites.computer.org/debull/A09dec/drosou-paper1.pdf.

M. Drosou and E. Pitoura. Search result diversification. SIGMOD Record, 39(1):41–

47, 2010. doi: 10.1145/1860702.1860709. URL http://doi.acm.org/10.1145/1860702.

1860709.

D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs in

near-optimal time. In Algorithms and Computation - Part I, pages 403–414, 2010. doi:

10.1007/978-3-642-17517-6 36. URL http://dx.doi.org/10.1007/978-3-642-17517-6 36.

U. Feige. Approximating maximum clique by removing subgraphs. SIAM J. Discrete

Math., 18(2):219–225, 2004. doi: 10.1137/S089548010240415X. URL http://dx.doi.

org/10.1137/S089548010240415X.

S. Feng, X. Chen, G. Cong, Y. Zeng, Y. M. Chee, and Y. Xiang. Influence maximization

with novelty decay in social networks. In Proceedings of the Twenty-Eighth AAAI

Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,

pages 37–43, 2014. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/

view/8485.

M. Girvan and M. Newman. Community structure in social and biological networks.

PNAS, 99(12):7821–7826, 2002. doi: 10.1073/pnas.122653799.

76 (June 25, 2018)

http://doi.acm.org/10.1145/1835449.1835506
http://sites.computer.org/debull/A09dec/drosou-paper1.pdf
http://doi.acm.org/10.1145/1860702.1860709
http://doi.acm.org/10.1145/1860702.1860709
http://dx.doi.org/10.1007/978-3-642-17517-6_36
http://dx.doi.org/10.1137/S089548010240415X
http://dx.doi.org/10.1137/S089548010240415X
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8485
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8485

SECTION 5.0: BIBLIOGRAPHY

M. Gomez-Rodriguez and B. Schölkopf. Influence maximization in continuous time diffu-

sion networks. In ICML, 2012.

M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics

of diffusion networks. In Proceedings of the 28th International Conference on Machine

Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 561–

568, 2011.

A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities in social

networks. In Proceedings of the Third International Conference on Web Search and

Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6, 2010, pages 241–

250, 2010. doi: 10.1145/1718487.1718518. URL http://doi.acm.org/10.1145/1718487.

1718518.

E. Gregori, L. Lenzini, and S. Mainardi. Parallel (k)-clique community detection on

large-scale networks. IEEE Trans. Parallel Distrib. Syst., 24(8):1651–1660, 2013.

X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community in

large and dynamic graphs. In SIGMOD, pages 1311–1322, 2014. doi: 10.1145/2588555.

2610495. URL http://doi.acm.org/10.1145/2588555.2610495.

D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a

social network. In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 137–146. ACM, 2003a.

D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through

a social network. In SIGKDD, pages 137–146, 2003b.

E. Khalil, B. Dilkina, and L. Song. CUTTINGEDGE: Influence Minimization in Networks.

Cc.Gatech.Edu, pages 1–13, 2013. URL http://www.cc.gatech.edu/grads/e/ekhalil3/

pdfs/CuttingEdge.pdf.

M. Kimura and K. Saito. Tractable models for information diffusion in social networks.

In PKDD, pages 259–271, 2006.

M. Kimura, K. Saito, and R. Nakano. Extracting influential nodes for information diffusion

on a social network. In Proceedings of the Twenty-Second AAAI Conference on Artificial

Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 1371–1376,

2007. URL http://www.aaai.org/Library/AAAI/2007/aaai07-217.php.

M. Kimura, K. Saito, and H. Motoda. Minimizing the Spread of Contamination by Block-

ing Links in a Network. Aaai, pages 1175–1180, 2008. URL http://www.aaai.org/

Papers/AAAI/2008/AAAI08-186.pdf.

77 (June 25, 2018)

http://doi.acm.org/10.1145/1718487.1718518
http://doi.acm.org/10.1145/1718487.1718518
http://doi.acm.org/10.1145/2588555.2610495
http://www.cc.gatech.edu/grads/e/ekhalil3/pdfs/CuttingEdge.pdf
http://www.cc.gatech.edu/grads/e/ekhalil3/pdfs/CuttingEdge.pdf
http://www.aaai.org/Library/AAAI/2007/aaai07-217.php
http://www.aaai.org/Papers/AAAI/2008/AAAI08-186.pdf
http://www.aaai.org/Papers/AAAI/2008/AAAI08-186.pdf

CHAPTER 5: BIBLIOGRAPHY

J. Lee and C. Chung. A query approach for influence maximization on specific users in

social networks. IEEE Trans. Knowl. Data Eng., 27(2):340–353, 2015. doi: 10.1109/

TKDE.2014.2330833. URL http://dx.doi.org/10.1109/TKDE.2014.2330833.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, and N. S. Glance.

Cost-effective outbreak detection in networks. In SIGKDD, pages 420–429, 2007.

J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical comparison of algorithms for

network community detection. In Proceedings of the 19th International Conference

on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,

pages 631–640, 2010. doi: 10.1145/1772690.1772755. URL http://doi.acm.org/10.1145/

1772690.1772755.

I. X. Leung, P. Hui, P. Lio, and J. Crowcroft. Towards real-time community detection in

large networks. Physical Review, 79(6), 2009.

G. Li, S. Chen, J. Feng, K. Tan, and W. Li. Efficient location-aware influence maximiza-

tion. In SIGMOD, pages 87–98, 2014a.

J. Li, X. Wang, K. Deng, T. Sellis, J. X. Yu, and F. Xia. Efficient diverse influence

maximization in social networks. submitted to IEEE Transaction on Knowledge and

Data Engineering, under review.

J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu. Most influential community

search over large social networks. In 33rd IEEE International Conference on Data

Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages 871–882,

2017. doi: 10.1109/ICDE.2017.136. URL https://doi.org/10.1109/ICDE.2017.136.

R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic graphs. IEEE

Trans. Knowl. Data Eng., 26(10):2453–2465, 2014b. doi: 10.1109/TKDE.2013.158.

URL http://dx.doi.org/10.1109/TKDE.2013.158.

H. Lin and J. A. Bilmes. A class of submodular functions for document summarization.

In The 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland,

Oregon, USA, pages 510–520, 2011. URL http://www.aclweb.org/anthology/P11-1052.

B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization in social

networks. In ICDM, pages 439–448, 2012.

B. Liu, G. Cong, Y. Zeng, D. Xu, and Y. M. Chee. Influence spreading path and its

application to the time constrained social influence maximization problem and beyond.

IEEE Trans. Knowl. Data Eng., 26(8):1904–1917, 2014. doi: 10.1109/TKDE.2013.106.

URL http://dx.doi.org/10.1109/TKDE.2013.106.

78 (June 25, 2018)

http://dx.doi.org/10.1109/TKDE.2014.2330833
http://doi.acm.org/10.1145/1772690.1772755
http://doi.acm.org/10.1145/1772690.1772755
https://doi.org/10.1109/ICDE.2017.136
http://dx.doi.org/10.1109/TKDE.2013.158
http://www.aclweb.org/anthology/P11-1052
http://dx.doi.org/10.1109/TKDE.2013.106

SECTION 5.0: BIBLIOGRAPHY

Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation. PVLDB, 2(1):

313–324, 2009. URL http://www.vldb.org/pvldb/2/vldb09-500.pdf.

C. Luo, K. Cui, X. Zheng, and D. Zeng. Time critical disinformation influence minimiza-

tion in online social networks. Proceedings - 2014 IEEE Joint Intelligence and Security

Informatics Conference, JISIC 2014, pages 68–74, 2014. doi: 10.1109/JISIC.2014.20.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for max-

imizing submodular set functionsi. Mathematical Programming, 14(1):265–294, 1978.

M. E. Newman. Modularity and community structure in networks. Proceedings of the

national academy of sciences, 103(23):8577–8582, 2006.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in net-

works. Physical Review E, 69(026113), 2004.

C. H. Papadimitriou and K. Steiglitz. 6.1 The Max-Flow, Min-Cut Theorem. Dover, 1998.

G. Qi, C. C. Aggarwal, and T. S. Huang. Community detection with edge content in

social media networks. In ICDE, pages 534–545, 2012.

U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect com-

munity structures in large-scale networks. Physical Review, 76(3), 2007.

M. Richardson and P. M. Domingos. Mining knowledge-sharing sites for viral marketing.

In SIGKDD, pages 61–70, 2002.

M. G. Rodriguez, J. Leskovec, D. Balduzzi, and B. Schölkopf. Uncovering the structure

and temporal dynamics of information propagation. Network Science, 2(01):26–65, 2014.

J. Ruan and W. Zhang. An efficient spectral algorithm for network community discovery

and its applications to biological and social networks. In IEEE ICDM, pages 643–648,

2007. doi: 10.1109/ICDM.2007.72. URL http://dx.doi.org/10.1109/ICDM.2007.72.

V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: ap-

plications to community discovery. In ACM SIGKDD, pages 737–746, 2009. doi:

10.1145/1557019.1557101. URL http://doi.acm.org/10.1145/1557019.1557101.

C. Song, W. Hsu, and M. L. Lee. Temporal influence blocking: minimizing the effect

of misinformation in social networks. In Proceedings of the 2017 IEEE 33rd IEEE

International Conference on Data Engineering. IEEE, 2017.

F. Tang, Q. Liu, H. Zhu, E. Chen, and F. Zhu. Diversified social influence maximization.

In ASONAM, pages 455–459, 2014a.

79 (June 25, 2018)

http://www.vldb.org/pvldb/2/vldb09-500.pdf
http://dx.doi.org/10.1109/ICDM.2007.72
http://doi.acm.org/10.1145/1557019.1557101

CHAPTER 5: BIBLIOGRAPHY

Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time complexity

meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD international

conference on Management of data, pages 75–86. ACM, 2014b.

E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating

all maximal cliques and computational experiments. Theor. Comput. Sci., 363(1):28–42,

2006. doi: 10.1016/j.tcs.2006.06.015. URL http://dx.doi.org/10.1016/j.tcs.2006.06.015.

V. V. Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava, C. T.

Jr., and V. J. Tsotras. On query result diversification. In Proceedings of the 27th

International Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Han-

nover, Germany, pages 1163–1174, 2011a. doi: 10.1109/ICDE.2011.5767846. URL

http://dx.doi.org/10.1109/ICDE.2011.5767846.

M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava, C. T.

Jr., and V. J. Tsotras. Divdb: A system for diversifying query results. PVLDB, 4(12):

1395–1398, 2011b. URL http://www.vldb.org/pvldb/vol4/p1395-vieira.pdf.

M. Wang, C. Wang, J. X. Yu, and J. Zhang. Community detection in social networks:

An in-depth benchmarking study with a procedure-oriented framework. PVLDB, 8(10):

998–1009, 2015. URL http://www.vldb.org/pvldb/vol8/p998-wang.pdf.

S. Wang, X. Zhao, Y. Chen, Z. Li, K. Zhang, and J. Xia. Negative Influence Minimizing by

Blocking Nodes in Social Networks. Workshops at the Twenty- . . . , pages 134–136, 2013.

URL http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/viewFile/7046/6748.

X. Wang, K. Deng, J. Li, J. X. Yu, C. S. Jensen, and X. Yang. Targeted influence mini-

mization in social networks. In 22nd Pacific-Asia Conference on Knowledge Discovery

and Data Mining, PAKDD 2018, Melbourne, Australia, Proceedings.

X. Wang, Y. Zhang, W. Zhang, and X. Lin. Distance-aware influence maximization in

geo-social network. In 32nd IEEE International Conference on Data Engineering, ICDE

2016, Helsinki, Finland, May 16-20, 2016, pages 1–12, 2016a. doi: 10.1109/ICDE.2016.

7498224. URL http://dx.doi.org/10.1109/ICDE.2016.7498224.

Y. Wang, S. Cai, and M. Yin. Two efficient local search algorithms for maximum weight

clique problem. In Proceedings of the Thirtieth AAAI Conference on Artificial Intel-

ligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 805–811, 2016b. URL

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915.

S. White and P. Smyth. A spectral clustering approach to finding communities in graph.

In SIAM- SDM, pages 274–285, 2005. doi: 10.1137/1.9781611972757.25. URL http:

//dx.doi.org/10.1137/1.9781611972757.25.

80 (June 25, 2018)

http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1109/ICDE.2011.5767846
http://www.vldb.org/pvldb/vol4/p1395-vieira.pdf
http://www.vldb.org/pvldb/vol8/p998-wang.pdf
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/viewFile/7046/6748
http://dx.doi.org/10.1109/ICDE.2016.7498224
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
http://dx.doi.org/10.1137/1.9781611972757.25
http://dx.doi.org/10.1137/1.9781611972757.25

SECTION 5.0: BIBLIOGRAPHY

Q. Yao, R. Shi, C. Zhou, P. Wang, and L. Guo. Topic-aware Social Influence Minimization.

In Proceedings of the 24th International Conference on World Wide Web - WWW ’15

Companion, number 1, pages 139–140, New York, New York, USA, 2015. ACM Press.

ISBN 9781450334730. doi: 10.1145/2740908.2742767. URL http://dl.acm.org/citation.

cfm?doid=2740908.2742767.

C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes variety to make a world:

diversification in recommender systems. In EDBT 2009, 12th International Con-

ference on Extending Database Technology, Saint Petersburg, Russia, March 24-26,

2009, Proceedings, pages 368–378, 2009. doi: 10.1145/1516360.1516404. URL http:

//doi.acm.org/10.1145/1516360.1516404.

L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search.

In IEEE ICDE, pages 387–398, 2015. doi: 10.1109/ICDE.2015.7113300. URL http:

//dx.doi.org/10.1109/ICDE.2015.7113300.

F. Zhao, X. Zhang, A. K. H. Tung, and G. Chen. BROAD: diversified keyword search

in databases. PVLDB, 4(12):1355–1358, 2011. URL http://www.vldb.org/pvldb/vol4/

p1355-zhao.pdf.

J. H. Zhao, Y. Habibulla, and H. Zhou. Statistical mechanics of the minimum dominating

set problem. CoRR, abs/1410.4607, 2014. URL http://arxiv.org/abs/1410.4607.

81 (June 25, 2018)

http://dl.acm.org/citation.cfm?doid=2740908.2742767
http://dl.acm.org/citation.cfm?doid=2740908.2742767
http://doi.acm.org/10.1145/1516360.1516404
http://doi.acm.org/10.1145/1516360.1516404
http://dx.doi.org/10.1109/ICDE.2015.7113300
http://dx.doi.org/10.1109/ICDE.2015.7113300
http://www.vldb.org/pvldb/vol4/p1355-zhao.pdf
http://www.vldb.org/pvldb/vol4/p1355-zhao.pdf
http://arxiv.org/abs/1410.4607

	Introduction
	Literature Review
	Influence Maximization
	Social Community Detection
	Diversified Influence Analysis
	Influence Minimization

	Research Questions
	Most Influential Community Search
	Diverse Influence Maximization
	Targeted Influence Minimization

	Thesis Organization

	Most Influential Community Search over Large Social Networks
	Problem Definition
	Baseline Solution
	Index-based Influential Community Search
	Indexing Maximal r-Cliques
	Sequential-Order based Search
	Improved Sequential-Order based Search
	Best-First based Search
	Fast Best-First based Search

	C-Tree Index Construction
	Revisiting Maximal Cliques Enumeration
	Algorithm of Constructing C-Tree
	Optimizing C-Tree

	Experimental Study
	Data Sets and Parameter Settings
	Efficiency Evaluation of Influential Community Search
	Effective Evaluation of Community Influence Spread
	Effective Evaluation of maximal kr-clique Community Model
	Efficiency Evaluation of Scalability
	Time and Space Cost Evaluation of Building C-Tree
	Additional Evaluation
	Case Study

	Conclusions

	Efficient Diverse Influence Maximization
	Problem Definition
	Preliminary
	Diverse Influence Maximization

	Monotone and Submodularity
	Solution Frameworks
	Quick Aggregated Influence Calculation
	Path Transformation
	PSP-Tree

	Experimental Study
	Evaluation of Effectiveness
	Evaluation of Efficiency
	Other Evaluations

	Conclusions

	Targeted Influence Minimization in Social Networks
	Problem Definition
	Diffusion Model
	Targeted Influence Minimization

	Budget Unconstrained Solution
	Budget Constrained Solution
	Greedy Algorithm

	Sampling-based Solution
	Minimum Influence Path
	Sampling-based Greedy Algorithm

	Experimental Study
	Evaluation of Effectiveness
	Evaluation of Efficiency

	Conclusion

	Conclusion and Future Works
	Bibliography

