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Abstract 

 

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used 

therapeutic agents around the world, commonly used to reduce pain. These work by targeting 

cyclooxygenase (COX) enzymes, which are responsible for the production of inflammatory 

mediators. There are adverse effects with the use of NSAIDs, including gastrointestinal 

bleeding, renal disease, and cardiovascular effects. Hence, there has been a rise in the 

development of alternatives to traditional NSAIDs. Olive oil is a main component of the 

Mediterranean diet, and is reputable as part of a healthy lifestyle. Phenolic compounds 

derived from Olea europaea contribute to the antioxidant, anti-microbial, and anti-

inflammatory properties of extra virgin olive oil. However, specific mechanisms of action are 

not yet clear. A previous study found that oleocanthal (OLEO), a phenolic compound derived 

from the olive, had similar effects to ibuprofen, a commonly used NSAID. There are a 

multitude of additional compounds in the olive that have yet to be investigated. In this 

project, it was sought to identify potential olive derived compounds with the ability to inhibit 

COX enzymes to be used in anti-inflammatory therapeutics. The mechanisms of COX 

inhibition were also studied using in silico approaches. 

 

Following a literature review on COX proteins and olive compounds in Chapter 1, a 

description of computational theory surrounding the in silico methods employed in this thesis 

are presented in Chapter 2. In Chapter 3, a comprehensive literature search was performed to 

create a library of olive compounds, focussing on the class of phenolics for the purpose of 

this project.  

 

The structure of human COX-1 was constructed using homology modelling methods in 

Chapter 4, followed by virtual screening of the olive phenolic library using molecular 

docking to determine the COX inhibitory potential of all identified ligands. From the docking 

study, it was determined that 1-oleyltyrosol (1OL) and ligstroside derivative 2 (LG2) 

demonstrated the greatest binding affinity to both COX-1 and COX-2. Further screening of 

the compound library was performed by analysing their biological availability in Chapter 5. 

From examination of absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

properties of the library, a novel phenolic compound—methyl malate-β-hydoxytyrosol ester 
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(MMHTE)—was found to both fulfil ADMET criteria and demonstrate strong binding to 

COX-1 and COX-2. These phenolic compounds were selected for further analysis using 

molecular dynamics simulations. To complement the ADMET data, a preliminary study on 

membrane permeability was performed. This was conducted using steered MD simulations of 

these compounds through a 1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer, 

followed by umbrella sampling simulations of OLEO and MMHTE to estimate the free 

energy of membrane permeation.  

 

Chapter 6 presents a detailed study on the mechanisms of COX inhibition by these selected 

compounds using MD simulations. Classical MD simulations were carried out on COX-1 and 

COX-2 complexed with 1OL, LG2, OLEO, MMHTE, as well as their native ligands that 

were present in the crystal structure. The stability and backbone fluctuation of these 

complexes were determined. Protein dynamics were examined using essential dynamics 

methods and network analysis, which identified that the N-terminal epidermal growth factor-

like domain and membrane bound domains of COX-1 and -2 exhibited altered motions when 

ligands were bound. Distinct dynamical modules were identified, as well as the finding that 

COX-2 inter-residue communications were more sensitive to ligand binding compared to 

COX-1. The residue contributions to binding free energy were computed using Molecular 

Mechanics-Poisson Boltzmann Surface Area (MM-PPBSA) methods. 

 

Through this research, novel olive phenolic compounds were identified which may possess 

COX inhibitory properties. Future work may provide additional details of the mechanism of 

COX inhibition, as well as the synthesis of these novel compounds for in vitro and in vivo 

validation. Furthermore, it may be demonstrated that olive-derived compounds present a 

possible avenue for the development of more effective and safe therapeutics in inflammation, 

as well as provide mechanisms for the anti-inflammatory effects of low dosage dietary COX 

inhibitors. 
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1. Introduction 

The cyclooxygenase (COX) enzymes are involved in a wide range of physiologic and 

pathologic processes, and are the target of non-steroidal anti-inflammatory drugs (NSAIDs). 

In this chapter, a brief introduction describing the role of COX enzymes is discussed in 

Section 1.1.  The structure and function of the protein is described, as well as its mechanism 

of action and a brief discussion of the history regarding inhibitors of this protein. COX 

inhibitors are discussed in further detail in Section 1.2. In Section 1.3, an introduction into 

olives and their potent compounds are presented, as well as a discussion of their COX 

inhibitory potential. Section 1.4 describes the role of computational methods in drug 

discovery, particularly in COX inhibitory drugs. The hypothesis and aims of this project are 

presented in Section 1.5.   

 

1.1 Role of cyclooxygenase enzymes in inflammation 

1.1.1 Structure and function of cyclooxygenase enzymes  

COX enzymes, also known as prostaglandin endoperoxide H synthases, are responsible for 

the production of mediators that drive the inflammatory process. This involves the production 

of prostaglandins, which are synthesised from COX catalysed pathways. NSAIDs are among 

the most widely used therapeutics globally, and are well characterised in their ability to 

inhibit COX isoforms COX-1 and COX-2.  

 

In general, COX-1 is constitutively expressed and present in nearly all tissues, whereas COX-

2 is induced during inflammation [1]. COX-1 has a role in the production of prostaglandins 

involved in various physiological functions, such as the maintenance of renal function and 

mucosal production in the gastrointestinal (GI) tract [2-4]. Conversely, COX-2 expression is 

induced by cytokines and inflammatory stimuli, facilitating the development of pain, 

inflammation, and fever, as well as being implicated in some cancers [4]. A third isoform, 

COX-3, is a variant of COX-1 expressed in the brain and heart, and possesses 

cyclooxygenase activity 80% lower than that of COX-1 [5]. COX-3 has been suggested to 

contribute to the synthesis of prostanoids in inflammation; however its function is not clearly 

understood in humans [5-7]. 
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COX enzymes are membrane-bound in the endoplasmic reticulum and are comprised of three 

independent folding units: an epidermal growth factor (EGF) domain, a membrane-binding 

domain (MBD), and large globular enzymatic domain [8]. There are two adjacent but distinct 

active sites for peroxidase and COX activity, with the COX active site lined by a long, 

hydrophobic channel [8].  

 

COX-1 and COX-2 isoenzymes are highly conserved and are structurally homologous, 

sharing a 60% sequence identity [9]. COX-1 and COX-2 contain 576 and 587 amino acids, 

respectively. The enzymes are almost identical sequentially, with the exception of an 

insertion found in COX-2 after THR 106 which has no equivalent residue in COX-1, and an 

18 amino acid insertion after the C-terminus of COX-2 [9]. Thus, the main differences reside 

in four areas: first, differing lengths of signal peptides are present in both isoforms; second, 

the presence of an additional 18 amino acid insertion in COX-2 after the C-terminus; third, 

differences in the sequence between the isoforms at MBD; and finally, COX-1 is 

glycosylated at three sites, while COX-2 is variably glycosylated at two to four sites [9-11]. 

 

1.1.2  Prostaglandin production by COX enzymes 

Vital to the inflammatory process, prostanoids are a subclass of eicosanoids which are 

signalling molecules involved in the oxidation of polyunsaturated fatty acids. These consist 

of prostaglandins, thromboxanes, and prostacyclin. The synthesis of prostanoids occurs in 

three steps: 1) mobilisation of a fatty acid substrate, usually arachidonic acid (AA) from 

membrane phospholipids catalysed by phospholipase A2; 2) transformation of AA to 

prostaglandin endoperoxidase H2 (PGH2) through a prostaglandin endoperoxide H synthase 

(PGHS); 3) conversion of PGH2 to specific prostanoids via synthases and specific isomerases 

[12]. 

 

Prostaglandins are hormone-like factors mediating autocrine and paracrine signalling in many 

physiological and pathological processes. They are implicated in diseases such as cancer, 

inflammation, cardiovascular disease, and hypertension [13]. Generally, prostaglandins 

produced by COX-1 play a role in physiological homeostasis, while those produced by COX-

2 contribute to inflammatory effects.  
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Prostaglandin E2 (PGE2)  is one of the main prostaglandins mediating the inflammatory 

process. It dilates small blood vessels, leading to redness and heat as the increased vascular 

permeability causes swelling of tissues [6, 14]. Pain is induced through a sensitising action on 

the peripheral terminals of sensory nerves [6, 14]. PGE2 also acts on neurons, contributing to 

systemic responses of inflammation such as fatigue, fever, and pain hypersensitivity [6, 13, 

14].  

 

As well as inflammatory responses PGE2 has been shown to influence a range of other 

biological processes. The diversity in the effects of PGE2 can be attributed in part to four E-

type prostaglandin receptors (EP1-4) which are heterogeneously coupled to intracellular 

signal transduction pathways [13]. It has been suggested that PGE2 may have an 

immunomodulatory effect at multiple levels within the immune system, since prostaglandin 

receptors have been found to be present on major subsets of cells involved in the adaptive 

immune response, including T, B, and dendritic cells, [13, 15]. Furthermore, PGE2 has been 

observed to have multiple and apparently opposing effects as both a dilator and constrictor in 

vascular smooth muscle [13, 16, 17].  

 

In the kidney, PGE2 production is critical for renal function by maintaining renal blood flow 

and glomerular filtration rate during physiological stress [13, 18]. The transport of salt and 

water is modulated in the distal tubule, stimulating the release of renin [18]. PGE2 has also 

shown to contribute to the maintenance of blood pressure, especially in a high salt setting [13, 

19]. 

 

1.1.3 Development of anti-inflammatory drugs 

Salicylates have been used for pain relief since ancient times. Salicylate-rich plants were 

described to have the ability to alleviate pain. Stone tablets from the Assyrians of the 

Sumerian period noted the use of willow leaves, and in ancient Egypt, the Ebers papyrus 

dating back 3,500 years referred to the application of myrtle leaves for rheumatic pains [20, 

21].  Hippocrates recommended the use of willow bark around 400 BC; this became part of 

Western medicine throughout classical antiquity and the Middle Ages [21]. Plants containing 

salicylates were also used for therapeutic purposes throughout China and other parts of Asia 

[21]. 

 



 

20 

 

It was not until 1763 that the first scientific descriptions of the beneficial effects of willow 

bark were given. In a letter to the Royal Society, the Reverend Edward Stone of Chipping 

Norton in Oxfordshire, England described the successful treatment of 50 patients with fever 

with doses of 1 dram (1.8g) of powdered willow bark [22]. As chemical techniques 

developed in the 18
th

 and 19
th

 centuries, scientists were able to characterise the compounds 

extracted from the willow bark. In 1828, Johann Büchner isolated and named salicin, 

meaning “willow” in Latin [20].  A year later, Henri Leroux isolated a pure crystalline form, 

and salicyclic acid was generated by Raffaele Piria in 1838 [20, 23]. Physicians began 

prescribing the purified compounds, with Thomas Maclagan describing the beneficial effects 

for patients with rheumatism in The Lancet in 1876 [20, 24].  

 

Investigating a less irritating replacement for salicyclic acid, Felix Hoffman, a German 

chemist working for the Bayer Company, modified the structure of salicyclic acid to obtain 

acetylsalicyclic acid in 1897 [20, 23]. The drug was named aspirin, and the first mass 

marketing of a pharmaceutical agent occurred as Bayer spread information about aspirin to 

30,000 doctors [23]. In 1904, the powdered form of aspirin was replaced with a tablet, and 

the drug became a part of everyday life [23].  

 

From the 1950s onwards, other drugs sharing anti-inflammatory and analgesic effects were 

discovered, such as ibuprofen and naproxen, and called ‘non-steroidal, anti-inflammatory 

drugs’ (NSAIDs) [21]. In 1971, John Vane first described the mechanism of action of aspirin 

and aspirin-like drugs, demonstrating that the decreased production of prostaglandins was 

achieved by the inhibition of COX enzymes [25]. Later, the COX enzymes were found to 

exist in two forms: COX-1 in 1976, and COX-2 in 1991 [4]. NSAIDs remain among the most 

widely used therapeutic agents globally, used by approximately 30 million people daily and 

accounting for approximately 60% of the over-the-counter analgesic market in the US [3, 26, 

27]. 

 

1.2 COX inhibitors 

NSAIDs describe a diverse class of drugs that function by competitively inhibiting 

cyclooxygenase enzymes to produce analgesic and antipyretic effects. NSAIDs are widely 

used around the world, and are a recommended therapy for patients with osteoarthritis and 

rheumatoid arthritis [3, 28-30]. 
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1.2.1 Complications associated with NSAID usage 

While NSAIDs are commonly used for pain relief, there are important adverse side effects 

associated with long-term use. These include GI complications, renal toxicity, exacerbated 

hypertension, and cardiovascular events [3, 31]. The use of these drugs is further complicated 

by the fact that many patients with chronic conditions requiring NSAIDs, particularly the 

elderly, have comorbidities that increase the risk of complications [32].  

  

Traditional NSAIDs have been found to be associated with GI complications, with the risk of 

upper GI complications increasing by 3- to 5-fold [33]. COX-1 derived PGE2 plays a 

protective role in maintaining the integrity of the gastric mucosa, and adverse effects of the 

GI tract are associated with inhibition of prostaglandins by non-selective NSAIDs [13, 34]. 

NSAID usage has previously been suggested as one of the most common causes of gastric 

injury in the United States, with 1998 estimates stating that approximately 100,000 people 

were hospitalised annually due to GI complications [35, 36]. The mortality rate is reported to 

be approximately 5% [36, 37]. 

 

The use of NSAIDs is associated with an increased risk of cardiovascular complications, such 

as myocardial infarction, heart failure, and hypertension [38]. The mechanism for this action 

has been suggested to affect COX inhibition by the imbalance of COX-2-regulated 

production of pro-aggregatory thromboxane in platelets, and anti-aggregatory prostaglandin 

I2 [3, 39]. 

 

1.2.2 Selective COX inhibitors 

Since COX-2 is induced by inflammatory stimuli, it was suggested that the anti-inflammatory 

actions of NSAIDs are due to COX-2 inhibition, while the unwanted side effects are due to 

inhibition of COX-1. In the early 2000’s, COX-2 selective NSAIDs were seen as an 

alternative to traditional NSAIDs, having a similar efficacy and enhanced GI tolerability [3]. 

However,  it was later found with the use of COX-2 selective drugs, there was a significant 

increase in the risk of vascular events [40]. 

 

The Vioxx GI Outcomes Research (VIGOR) study compared the efficacy and adverse effects 

of rofecoxib, a selective COX-2 inhibitor, with non-selective naproxen in patients with 

rheumatoid arthritis [41]. There was a four-fold increase in the incidence of myocardial 
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infarction in the rofecoxib group compared to naproxen [41]. From the Adenomatous Polyp 

Prevention on Vioxx (APPROVe) study, it was further confirmed that the use of rofecoxib in 

patients with a history of colorectal adenomas was associated with an increased 

cardiovascular risk of almost two-fold compared to the placebo [42]. Following these studies, 

rofecoxib was voluntarily withdrawn from the market in 2004 [3]. Another selective COX-2 

inhibitor, valdecoxib was subsequently withdrawn in 2005 [43]. As a consequence, there was 

a reduction in the number of prescriptions for all NSAIDs in the following years [3, 43, 44].  

 

Listed on 74 national Essential Medicines Lists (EMLs), diclofenac is the most commonly 

used NSAID worldwide, having a market share close to that of the next three most popular 

drugs combined [45]. Diclofenac and exoricoxib are considered “high risk” for 

cardiovascular complications, and these two drugs combined account for one-third of the 

market across 15 countries with no difference across high- and low-income countries [45]. A 

study by McGettigan et al. suggested that diclofenac be removed from EMLs since it carried 

a cardiovascular risk similar to that of rofecoxib, which was withdrawn from global markets 

due to cardiovascular toxicity [45]. Despite naproxen having the lowest cardiovascular risk, 

51 of the countries listing diclofenac on their EML did not list naproxen, and it is only listed 

in 27 out of 86 national EMLs published or updated since 2007 [45]. Meta-analyses of 

published studies have found that there are no significant differences in effectiveness of pain 

relief between NSAIDs at standard doses [3].  

 

 
Figure 1.1: Chemical structures of COX-2 selective inhibitors rofecoxib (A) and celecoxib 

(B), and non-selective NSAIDs diclofenac (C) and naproxen (D). 
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Through these findings, the main assumption became that increased COX-1 selectivity was 

associated with increased risk of GI complications, while increased COX-2 selectivity was 

associated with increased risk of cardiovascular toxicity [46]. However, further evidence 

suggests that risks associated with NSAID usage are more complex, with COX selectivity 

alone being insufficient to determine risk. The increased cardiovascular risk can be attributed 

to all NSAIDs, both COX-2 selective and non-selective [47]. This could be due to both types 

of drugs reducing the amount of prostaglandin I2 (PGI2), which is an anti-thrombotic and 

anti-platelet hormone, thereby increasing platelet activity [46]. The action of NSAIDs, rather 

than COX-2 selective inhibitors, could be another mechanism for increased cardiovascular 

risk. This mechanism reduces levels of thromboxane A2 (TXA2),  a metabolite produced by 

COX-2 thereby possibly indicating reduced platelet activation [46]. Both NSAIDs and COX-

2 selective drugs have been shown to dose-dependently increase blood pressure, adding to the 

risk of thrombosis [46]. Furthermore, the Prospective Randomized Evaluation of Celecoxib 

Integrated Safety versus Ibuprofen or Naproxen (PRECISION) trial found that celecoxib, a 

COX-2 selective inhibitor, was not associated with increased cardiovascular events compared 

to non-selective NSAIDs ibuprofen and naproxen [48]. This thesis proposes that alternative 

approaches to COX inhibition should be considered, rather than allowing the COX-selectivity 

of a drug to define its side effects [46].  

 

While the usage of NSAIDs is associated with adverse side effects as mentioned above, low 

dosages have been known to confer health benefits. In particular, aspirin has been shown to 

be beneficial for cardiovascular health when administered in low doses [49]. With an 

increasing intake of aspirin or ibuprofen, a significant decline in the risk of the four major 

types of cancer: colon, breast, lung, and prostate cancer [50]. Reductions in the risk of 

oesophageal, stomach, and ovarian cancers were also observed, with protective effects more 

apparent after five or more years of use [50]. These results were attributed to the role of 

COX-2 overexpression and increased prostaglandin synthesis in carcinogenesis and 

metastasis [50, 51]. NSAID usage has also been shown to reduce the secretion of amyloid-

beta peptides implicated in Alzheimer’s disease [52].  
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1.3 Olive-derived compounds and their anti-inflammatory action 

Olive oil, obtained from the fruits or drupes of Olea europaea, is a key component of the 

Mediterranean diet, and has been used for centuries as a preventative and therapeutic 

commodity. The Mediterranean diet was first identified in the Seven Countries Study as 

having potential to increase longevity [53]. A diet rich in extra virgin olive oil (EVOO) has 

been shown to benefit health through the prevention and reduction of hypertension, 

cardiovascular risk, oxidative stress, obesity, type 2 diabetes, cancer, and inflammatory 

processes [54]. 

 

EVOO is produced by direct pressing or centrifugation of the olives [55]. Many of the health 

benefits of EVOO are attributed to its high phenolic compound content, consisting of 

antioxidant, anti-inflammatory, anti-cancer, and antimicrobial properties. EVOO contains 

approximately 10 times more simple phenolics compared to refined olive oil [56]. There are a 

wide range of phenolic compounds present in the olive, with the major classes being simple 

phenols, secoiridoids and polyphenols [57]. Oleuropein and hydroxytyrosol have been 

identified as being among the major phenolic compounds identified in olive cultivars, and are 

the subjects of investigation for their pharmacological effects [58, 59].  

 

Olive phenolic compounds possess potent antioxidant activities, scavenging free radicals and 

removing reactive oxygen species (ROS) to reduce oxidative stress within cells. A range of 

diseases depends on the imbalance in ROS, such as the oxidation of low density lipoproteins 

in the formation of atherosclerotic lesions [60]. Oleuropein and olive leaf extract have been 

demonstrated to act as a skin protectant, preventing ultraviolet B radiation-induced damage 

and carcinogenesis in mice, as well as reducing MMP-2, MMP-9, MMP-13, VEGF, and 

COX-2 in the skin [61, 62]. Some olive phenolic compounds have strong anti-inflammatory 

effects both in vitro and in vivo, such as through the inhibition of platelet aggregation [63], 

and by reducing the production of inflammatory mediators in monocytes [64].  
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Figure 1.2: Chemical structure of olive phenolic compounds oleuropein (A), hydroxytyrosol 

(B), and oleocanthal (C). 

 

In the search for naturally derived compounds with pharmacological properties, oleocanthal 

has recently become a compound of interest. Anti-cancer properties have been observed, 

demonstrating anti-proliferative effects and encouraging cell apoptosis in various human 

cancer cell lines [65-67]. Oleocanthal has also been investigated in neurodegeneration, for its 

anti-aggregation activities on tau protein implicated in Alzheimer’s disease [68]. In vitro 

studies by Li et al. showed that oleocanthal is able to inhibit the polymerisation of tau protein 

through a covalent mechanism [69]. In the landmark study by Beauchamp et al., oleocanthal 

was found to share similar pharmacological activity to the non-steroidal anti-inflammatory 

drug ibuprofen [70]. Like ibuprofen, oleocanthal was shown to non-selectively inhibit COX-1 

and COX-2 [70]. Oleocanthal is responsible for the distinct throat irritation of EVOO (oleo- 

for olive, -canth- for sting, -al for aldehyde), a property that Beauchamp et al. noted was 

similar to the ingestion of ibuprofen solutions [70, 71]. 

 

With a daily ingestion of 50 g of EVOO containing 200 μg per ml of oleocanthal of which 

60-90% is absorbed, Beauchamp et al. noted that this would correspond to an intake of up to 

9 mg per day, equivalent to approximately 10% of the ibuprofen dosage for pain relief—a 

low dosage [70]. The discovery of the COX inhibitory potential of oleocanthal provided a 

link in the mechanism of health benefits attributed to the Mediterranean diet.  It is therefore 

plausible that low, chronic consumption of naturally occurring COX inhibitors, such as those 
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derived from the olive, may reduce inflammation over time, and hence contribute to the 

reduced development of chronic inflammatory disease.  

1.4 Computational studies in drug discovery 

Experimental methods for the determination of the ability of a drug to affect a target include 

enzyme activity assays, which can be determined by absorbance or fluorescence [72].  Since 

there are a large number of phenolic compounds in the olive, it would not be feasible to test 

these experimentally. Therefore, in silico methods were utilised in this thesis. This included 

molecular docking and dynamic simulations, which has become an evolving area of research 

proving to be useful in drug discovery methods. Molecular modelling methods have become 

a powerful tool for building, visualising, and analysing processes on a molecular level. With 

an ever increasing amount of biological data becoming available, computational methods 

have become an important step in drug design. 

Previous computational studies have elucidated the structure and function of the COX 

proteins in detail. A study by Nina et al. used computational approaches to the study 

association of COX-1 with the membrane bilayer, and provided insight into the mechanism 

proposed in 1994 of the enzyme being anchored via one leaflet of the bilayer [73]. An 

advanced computational technique—metadynamics simulations—was employed by 

Limongelli et al. to simulate the dissociation of a selective inhibitor in both COX-1 and 

COX-2 to find a previously unreported binding mode in COX-2 [74]. This aided in 

explaining the time-dependent inhibitory behaviour of COX-2 selective inhibitors [74]. Also 

utilising advanced computational approaches, Lei at al. employed Born-Oppenheimer 

molecular dynamics simulations with ab initio quantum mechanical/molecular mechanical 

potential and umbrella sampling to study the detailed mechanism of the biochemical action of 

aspirin [75]. 

Molecular docking involves predicting the binding affinity and orientation of putative 

inhibitors in a selected macromolecular target. These methods have led to two general classes 

of selective COX-2 inhibitors, diarylheterocycles and methanesulfonanilides [76]. Selective 

COX-2 inhibitors mainly fall into the diarylheterocycle family, characterised by two vicinal 

(adjacent) aryl groups attached to an unsaturated central ring, such as in rofecoxib and 

celecoxib (Figure 1.1 A and B, respectively). A computational method that has become 

increasingly popular in drug design is the use of quantitative structure-activity relationships 

(QSAR). Using structural features of known active and inactive compounds, putative 
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pharmacophore models are generated for potential inhibitors. In conjunction with molecular 

docking methods, this technique has been utilised in the development of novel COX 

inhibitors [77-80].  

However, there are limitations that must be taken into account in docking studies. Since there 

is a high computational cost in considering the flexibility of both the receptor and ligand, a 

common approach was the treatment of the protein as a rigid structure [81-83]. More 

recently, the flexibility of the receptor is able to be modelled by allowing the movement of 

side chains in programs such as AutoDock 4.0 [84]. Other challenges include the sampling 

accuracy of the docking algorithm and choice of scoring function [85]. A common approach 

to determine the accuracy of the docking program is to compare predicted docking modes 

with experimentally determined ones [86].  

While molecular dynamics simulation can be utilised to describe more biologically relevant 

systems, it is necessary to also consider the limitations of this technique. These mainly occur 

due to the size of the system and length of the possible simulation, as requirements for 

computational resources increase with these factors. For example, some biological processes 

such as protein folding can occur on microsecond timescales, while classical simulations are 

typically run on nanosecond timescales [87]. Generally, molecular dynamics simulations are 

extremely useful for providing insight into time-dependent fluctuations and conformational 

changes in systems that are useful in understanding their functions, especially in drug-target 

binding [88].  

Despite the challenges, computational tools have almost become routine, and many drugs 

developed in part by structure-based drug design methods are in late-stage clinical trials or 

have reached the market [81, 88]. In silico methods are a complementary technique to 

traditional experiments, reducing the amount of work required and gaining insight into 

interactions at an atomistic level. 

1.5 Hypothesis and aims 

We hypothesise that olive derived compounds provide a viable basis for the development of 

therapeutics in inflammatory processes. Therefore, the specific aims of this project are to: 

- Identify appropriate candidate compounds as inhibitors of target proteins in 

inflammation  

- Examine in silico mechanisms of inhibition, involving protein-ligand complexes 

implicated in inflammatory pathways through molecular simulations 
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2. Computational theory 

Computational techniques are a useful tool that allows examination of atomic level 

interactions that occur between proteins and drug targets. This chapter provides an overview 

of computational methods used to investigate biological systems, particularly those of protein 

and ligand drug targets. Basic theory around these techniques will be discussed, as well as a 

brief description of the methods used in this thesis.  

 

Following development of the olive compound library, computational methods utilised 

include: homology modelling to construct human COX-1, followed by docking to propose 

the ligands most likely to bind strongly to the COX enzymes amongst the olive library. 

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was 

performed on the selected ligands to further narrow the candidates, and molecular dynamics 

(MD) simulations on the top ligands to delve into molecular mechanisms of action. This 

involved essential dynamics, network analysis, and molecular mechanics Poisson-Boltzmann 

surface area (MM-PBSA) to study protein dynamics and residue-level interactions from the 

MD trajectories. MD was also performed on the top ligands to examine their membrane 

permeation process as an adjunct to the ADMET property analysis. 

 
Figure 2.1: Graphical summary of methods used 
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2.1 Molecular docking 

In drug discovery research, the screening of a large number of compounds is often required 

for a particular protein target. Molecular docking is one of the tools employed that can 

enhance the rate of this screening. Initially, molecular docking was used for the prediction 

and reproduction of protein-ligand complexes [89-92]. This subsequently led to the 

development of molecular docking as a technique in drug discovery for the identification and 

optimisation of lead compounds, in many cases by the screening of databases. The 

development of combinatorial chemistry has led to the application of molecular docking in 

aiding the design of libraries to pre-screen compound databases in silico [89]. 

 

There are two main parts to docking programs: the search of the configurational and 

conformational degrees and freedom, and the scoring or evaluation function [89]. Force fields 

refer to parameters that can be used to describe the energy of a protein, and are utilised in 

molecular docking methods. The potential energy is often defined using a molecular 

mechanics force field, and the search algorithm thoroughly searches the conformational space 

of the ligand based on potential energy of its intra and inter-molecular interactions to 

determine the global energy minimum. In rigid docking, different positions for the ligand in 

the active site of the receptor are explored using translational and rotational degrees of 

freedom [89]. For flexible ligand docking which was performed in this thesis, the exploration 

of torsional degrees of freedom of the ligand was added to the process [89]. Scoring functions 

assess both the steric and chemical complementarity between the ligand and receptor [89]. 

 

In Chapter 4, the molecular docking calculations performed utilised the quantum mechanics-

polarized ligand docking (QPLD) protocol implemented in the Schrodinger Suite [93, 94]. In 

this method, the docking was carried out with the extra precision (XP) docking protocol of 

Glide, which was previously demonstrated to consistently predict ligand binding poses with 

90.0% accuracy [95, 96]. It has also been shown that Glide is able to predict experimental 

poses of ligands with RMSDs ranging from 1.5 to 2 Å [96, 97]. In a 2004 study evaluating a 

dataset of 150 protein-ligand complexes, it was found that Glide was able to correctly 

identify the crystallographic pose within 2.0 Å in 61% of the cases, compared to other 

docking programs: 48% with GOLD and 45% with ICM [96, 98].  

 

Glide works by performing a systematic search of the conformational, orientation, and 

positional space of the docked ligand using the OPLS-AA (Optimized Potentials for Liquid 
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Simulations) force field [99]. Monte Carlo sampling is then used to further refine the best 

possible conformation [96, 100]. The scoring function of Glide is based on an empirically 

based function by Eldridge et al. [101]. 

 

The QPLD docking algorithm incorporates quantum mechanical/molecular mechanical 

(QM/MM) calculations to further take into the account electric charges in protein-ligand 

docking. In this method, only ligands are treated as the quantum region, as fixed charges of 

ligands obtained from force field parameterization are replaced with QM/MM calculations in 

the protein environment [94]. The protein is treated with classical molecular mechanics 

defined by the OPLS force field. 

 

2.2 ADMET prediction 

Drug discovery is a complex process involving disease selection, target identification, hit 

discovery, lead optimisation, pre-clinical, and clinical trials [102]. Estimation of permeation 

and excretion rates of drugs is of key importance. In 1991, approximately 40% of attrition for 

all candidate drugs was related to adverse pharmacokinetic and bioavailability results [103]. 

Experimental measures of permeability such as the parallel artificial membrane permeability 

assay (PAMPA) and cell based Caco-2 assay have assisted in reducing drug attrition rates 

[104-107]. The development of combinatorial chemistry and high-throughput screening has 

significantly increased the need for initial data on absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) of compounds. Hence, in silico approaches have been 

developed to accelerate the drug discovery process. In Chapter 5, the pharmacokinetic and 

bioavailable properties of olive phenolic compounds were estimated using BIOVIA 

Discovery Studio (San Diego, US). Based on experimental assay results, training sets are 

used to develop linear response models with quantitative structure-property relationships 

(QSAR), which can be used to make predictions on molecules of interest [108]. 

 

Physiochemical properties have a major impact on the pharmacokinetic and metabolic fate of 

drugs in the body.  Lipophilicity is a key parameter that can determine the membrane 

permeability, which is related to drug absorption, distribution, and route of drug clearance in 

the body. One of the main measures of lipophilicity is the partition coefficient in an 

octanol/water system, frequently expressed as log P [108].  Other properties commonly 
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calculated include solubility, acid strength (pKa), hydrogen bonding capacity, and 

permeability [108]. 

 

As well as membrane permeability, biological events can affect drug absorption such as the 

influence of drug transporters and metabolism. Models can be based on descriptors such as 

log P or polar surface area, which describes the hydrogen-bonding potential of a compound 

[109]. It is important to consider the plasma protein binding ability of a drug, since they are 

able to bind to a variety of particles in the blood, including red blood cells, platelets, and 

proteins such as albumin [110]. Binding to these factors would render the drug unable to pass 

through membranes and act on their intended drug target [110].  Blood brain barrier (BBB) 

penetration profiles may also be considered when assessing drugs to determine its ability to 

target or avoid the brain [108]. The metabolism of drugs primarily occurs in the liver. The 

most important enzymes involved in this process are the cytochrome P450s (CYPs), 

particularly CYP3A4, CYP2D6, CYP2C9 and CYP2C19 in humans [108]. QSAR models 

have also been used to predict hepatotoxicity, which is a major factor in the high attrition rate 

of drugs [111, 112]. 

 

To gain further insight into the permeability process of olive compounds, molecular 

dynamics simulations were utilised to examine the permeation mechanism of selected 

compounds, and to obtain a qualitative description of the forces and energies involved in 

permeation through a simple model lipid bilayer. This will be discussed in section 2.4.4 

below. 

 

2.3 Computational methods for studying protein structure 

Computational techniques are being increasingly used to complement experiments. With 

increasing computational power and improvement in theoretical algorithms, computational 

modelling is being frequently applied to study the structure and function of biological 

macromolecules on a physical basis that is not accessible using traditional experimental 

techniques. These methods allow for the examination of interactions that dictate the 

behaviour of nanoscale systems, allowing behaviour to be observed at an atomic level. This 

section provides an overview of the computational methodologies commonly used to 

investigate biological systems, such as the interaction between drugs and protein targets. 
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2.3.1 Homology modelling 

Obtaining a reliable 3-dimensional structure of macromolecules is crucial for the 

understanding of protein-ligand complex formation. While a lack of knowledge of 3D 

structures has previously impeded efforts in determining the binding specificities of ligands 

with protein targets, the increase in modelling software and growing number of known 

protein structures is rendering homology modelling an increasingly popular and reliable 

method for obtaining 3D coordinates of proteins [113]. Homology modelling techniques are 

based on the fact that evolutionarily related proteins share a similar structure [114]. In 

proteins, the structural conformation is more highly conserved than its amino acid sequence, 

with small or medium changes in a sequence usually having little impact on the 3D structure 

[115]. Example applications of homology modelling include hypotheses in drug design, 

ligand binding site, substrate specificity, and function annotation [113]. Homology modelling 

can also be used to provide starting models for solving structures from X-ray crystallography, 

NMR, and electron microscopy [116]. 

 

Protein structures obtained using homology modelling methods have been successfully used 

in docking [117-119]. However, it is worth noting that the reliability of docking results is 

heavily dependent on the quality of the homology model. A study by McGovern and Shoichet 

compared the quality of docking results when ligand bound or apo crystallographic 

structures, or homology modelled structures were used as templates [120]. While ligand 

bound and apo crystallographic structures tended to yield more successful docking 

calculations, homology models produced enrichment factors of ten or better in eight of the 

ten systems studied [120]. Where modelled conformations showed poorer discrimination 

between ligands and decoys, it was often attributed to changes in the geometry of the binding 

site. This study highlighted that the quality of docking results can be influenced by slight 

conformational changes, emphasising the importance of selecting appropriate templates for 

modelling proteins. In general, it was found that homology models constructed with a 

template of high sequence similarity often performed better [120]. As well as sequence 

identity, crystal structures of a higher quality should be selected [121]. 

 

In this thesis, a lack of experimental structures for human COX-1 rendered it necessary to 

construct a predicted model using homology modelling methods. This technique uses one or 

more existing experimental structures similar to the protein of interest to serve as a template 

structure, such that the protein model of a target sequence can be constructed. This involves 4 
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main steps: template identification, target-template sequence alignment, model building, and 

model evaluation. Modeller 9.16 was used to construct the model [122].  

2.3.1.1 Template identification 

The initial step of homology modelling involves the identification of a suitable template for 

the query sequence. The target sequence, the structure to be modelled, is used as a query to 

search a structural database to identify a suitable template sequence that has an 

experimentally determined structure. Structural databases such as the Protein Data Bank 

(PDB) are searched for an appropriate sequence [123]. 

2.3.1.2 Target-template sequence alignment 

A determinant of the quality of a model is the identity between template and target sequences. 

A target-template sequence identity of between 30 and 40%, sequence alignment can be 

performed using BLAST, FASTA, and SSEARCH sequence alignment methods [124, 125]. 

A pairwise alignment is carried out between the target and template sequences to obtain an 

optimal alignments [126]. This can identify the most conserved and variable regions among 

the two sequences, which can provide information about their evolutionary relationships. 

 

When the sequence similarity is between the range of 10 to 30%, or the “twilight zone”, 

profile sequence methods can be used to increase the accuracy of the sequence alignment 

[127, 128]. Multiple sequence alignment can be performed using a number of related 

sequences, which allows the derivation of position-specific scoring matrices [129]. This can 

be performed using PSI-BLAST, which implements a heuristic search algorithm for short 

motifs [130]. 

2.3.1.3 Model building 

Following sequence alignment, model building can be carried out. This utilises atomic and 

residual information extracted from the aligned sequences, and focusses on four aspects: 

backbone construction, side chain modelling, loop modelling, and model optimisation [126].  

 

In this study, Modeller v9.16 was used to build the homology model of human COX-1 in 

Chapter 4, which was subsequently used for molecular dynamics simulations in Chapter 6 

[122]. Modeller initially generates restraints on the structure of the target sequence using its 

alignment to related protein structures as a guide, derived from assuming similar 

corresponding distances between aligned residues in the template and target structures [131]. 

These restraints usually incorporate stereochemical restraints on bond lengths, bond angles, 
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dihedral angles, and non-bonded atom-atom contacts from a molecular mechanics force field 

[131, 132]. The resulting model is derived by minimisation of violations from all restraints 

[131]. 

2.3.1.4 Model evaluation 

After a model has been built, it is important that the model be checked for possible errors. A 

sequence identity of greater than 30% is generally a good indicator of the expected accuracy 

of the model [131]. If the sequence identity falls below 30%, the model evaluation methods 

may be useful to determine whether errors have occurred [115]. 

 

Tools such as PROCHECK and WHATCHECK assess the stereochemistry of a model—such 

as bonds, bond angles, dihedral angles, and non-bonded atom-atom distances—to determine 

whether a model satisfies the restraints used to calculate it [133, 134]. Ramachandran plots 

are a technique used to visualise the distributions of φ and ψ torsional angles in the protein 

structure, which are parameters important for protein folding [135]. In proteins, φ angles 

generally remain within the range of -60° to -150°, while ψ angles are between -60° and 120° 

[135, 136]. 

 

To assess the template alignment, or whether a correct template was used, tools such as 

ProSA and Verify3D can be used [137, 138]. These tools calculate a pseudo energy profile of 

a model, reporting the energy for each position in the model such that peaks in the profile 

frequently correspond to errors [131]. 

2.3.2 Molecular mechanics and dynamics 

Molecular modelling is a major field describing a range of techniques that are applied to 

model the behaviour of molecules. The advantage of molecular modelling lies in the ability to 

explore the changes in a controlled system of atomic detail over timescales reaching femto, 

micro, or milliseconds, at various environmental conditions which cannot be performed using 

conventional experiments.  

 

One of the main approaches in studying the dynamics of biological systems is molecular 

mechanics-based classical MD. In this thesis, MD simulations were utilised in Chapter 6 to 

investigate the mechanism of COX complexed with olive ligands. Classical MD simulations 

were performed for COX-1 and COX-2 with each of the phenolic ligands selected from 
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docking and ADMET procedures. Simulations were carried out using the GROMACS 

software package [139]. 

2.3.2.1 Force fields and potential energy function 

Force fields are a set of rules or parameters that dictate the properties of each molecule within 

the simulated system. These calculate the potential energy of a system of atoms, such as in a 

biological system, as well as incorporating geometric and energy-related parameters to study 

structure-activity relationships and mimic experimental observations [140-142]. While force 

fields are complex equations, the simplicity of its representation of molecular features 

ensures that energy and force calculations are fast, even for large systems [142].  

 

Force field parameters descriptors for atoms include the atomic mass, partial charges, van der 

Waals radius, bond angle, bond length, and dihedral angles. Different force fields vary in 

their parameterisation, rendering then not necessarily interchangeable. Additionally, not all 

force fields allow representation of all molecule types [142]. Despite this, simulations 

performing using modern force-fields are normally equivalent [142, 143]. The four most 

commonly used force fields in structural biology are OPLS, CHARMM, AMBER, and 

GROMOS [141, 143-147]. 

 

Force field descriptions involve potential energy functions due to bonded (       ) and non-

bonded (          ) interactions between atoms of a system. Bonded interactions describe 

bond stretching, valence angle bending, and the rotation of dihedral angles. Non-bonded 

interactions are described by electrostatic and van der Waals interactions. 
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The total potential energy function is described with: 
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                                  (2.3) 

 

Where         represents the total energy contribution from bonded interactions,            

from non-bonded interactions, and        describing other terms that may be specific to a 

force field [148]. 

 

The first term in Equation 2.1 resembles Hooke’s law for the potential energy of a spring, 

describing the stretching of bonds in a quadratic form. A sum for all bonded pairs of atoms 

are represented, where   is the bond length, and    and    describe the stiffness and 

equilibrium length, respectively. The second term describes the bending of the angle ( ) that 

is formed between triplets of consecutively bonded atoms, with    and    describing the 

stiffness and equilibrium geometry of the angle, respectively. The third term is a quadratic 

equation describing the energetics associated with the rotation of the dihedral angle formed 

by quadruplets of consecutively bonded atoms. A cosine function is used due to the periodic 

nature of dihedral rotations, where   is the value of the dihedral,    forms the energetic 

parameter determining the barrier height,   is the periodicity, and    is the phase. 

 

The non-bonded or intermolecular interactions are described by Equation 2.2. The first term 

is the van der Waals term, representing the attractive and repulsive nature of the atoms.      is 

the strength of the Lennard-Jones interaction and         defines the distance at which the 

Lennard-jones energy is at a minimum, with both these terms based on the types of the two 

interacting atoms   and  . The interatomic distance is defined with    , while    and    are the 

parameters describing the effective charges on atoms   and  . These charges are partial atomic 

charges, representing the overall charge distribution of a molecule. 

 

Differences between commonly used force fields are included into the term        

accordingly. For example, CHARMM includes an additional Urey-Bradley angle term 

providing additional degrees of freedom for an accurate reproduction of vibrational spectra 

during parameterisation. Other differences involve the various scaling constants applied to 

Lennard-Jones and Coulomb interactions between atom pairs applied by each force field 

[149]. 
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To complete the force field parameters, the potential energy functions discussed above must 

be accompanied with a set of parameters describing the energetic and geometric properties of 

interacting particles. The optimisation of force field parameters is important to ensure the 

simulations replicate experimental data. Data required may involve experimental 

spectroscopic, thermodynamic, crystallographic, or quantum mechanical methods. 

 

Another aspect of force fields that must be considered in bimolecular simulations is the 

treatment of solvation.  The selection of force field may indirectly determine the water model 

that is to be used, since most force fields have been developed in conjunction with a specific 

water model. For example, the TIP3P water model is developed with AMBER, CHARMM, 

and OPLS force fields, while GROMOS uses the SPC and F3C water models. 

2.3.2.2 Equations of motion 

In MD, atoms and bonds are considered as solid balls that are connected by springs which 

oscillate within an optimal distance. MD is based on numerical integration of Newton’s law 

of motion,     . Through this, accelerations and velocities are calculated, updating the 

position of atoms to produce a trajectory that describes their progress over time. The equation 

of motion is described with: 

 

 
  

  
 

    

    (2.4) 

 

where    is the force acting on each atom  ,    is the mass, and    is the position. Given the 

positions and velocities at time  , the idea is to find the positions and velocities at time 

     , where    is the time interval or time step between two snapshots of the simulation. In 

order to avoid instability, the time step must be smaller the fastest movement in the system, 

but large enough to avoid unnecessary computation. This step is the major bottleneck of the 

simulation procedure [142]. Usually, the time step is between 1 and 2 fs for atomistic 

simulations. 

 

To calculate the positions and velocities at time      , Equation 2.1 is solved using an 

integration scheme. Commonly used is the Verlet algorithm, which requires the knowledge of 

current positions,  ( ); acceleration  ( ); and the position from the previous step  (     ) 

[150]. The position of the next step can be found with: 
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  (     )    ( )   (     )      ( ) (2.5) 

 

While the velocities do not appear in the Verlet integration algorithm, they can be calculated 

by using  (     ) and  (     ) to perform a Taylor series expansion about  ( ) to give: 
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  (2.6) 

 

The advantage of this method lies in that it is straightforward, and is computationally more 

conservative. However, its precision is compromised, and the lack of an explicit velocity term 

complicates the calculation of velocities. To address this issue, the original Verlet algorithm 

was improved on over the years, producing the leap-frog integration technique. In this 

method, the following relationships are utilised: 
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The velocities  (  
 

 
  ) are initially calculated with velocities at time   

 

 
   and 

accelerations at time   as shown in Equation 2.7. Positions  (     ) are subsequently 

deduced from the velocities with positions at time  ( ) with Equation 2.8. Velocities are 

computed mid-step with: 
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Thus, the velocity of the particle is calculated at   
 

 
   such that it “leaps-over” its position. 

This enables the velocities to be explicitly calculated, however they are not calculated at the 

same time as their positions. 

2.3.2.3 Periodic boundary conditions 

The use of period boundary conditions enables a simulation to be performed using a 

relatively small number of particles, such that the forces experienced by the particles were as 

if they were in bulk fluid. For example, a cubic box of particles is replicated in all directions 

to produce a periodic array. During the simulation, if a particle were to leave the box it would 

be replaced by an image particle from the opposite side, ensuring a constant number of 
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particles present within the central box [151]. Depending on the system to be studied, there 

are several types of space-filling boxes that may be more computationally efficient. Examples 

include the cubic unit cell, rhombic dodecahedron, and truncated octahedron. 

2.3.2.4 Non-bonded interactions 

One of the most computationally expensive parts of the simulation is the calculation of non-

bonded energies and forces. A common approach is the minimum image convention, which 

considers the nearest image of each particle for the calculation of short-range non-bonded 

interaction terms [152]. Another method commonly used is applying the non-bonded cut-off, 

or potential truncation method. This ignores interactions between pairs of atoms that are 

further apart than the cut-off, since the greatest contribution of forces comes from 

neighbouring particles. However, this method can become computationally expensive and 

erroneous as the size of the system increases. 

 

To address some of these issues, Ewald sums treat the system as infinitely periodic and 

calculates interaction energies and forces between the cut-off length with the Ewald 

algorithm [153]. While original Ewald sums are computationally expensive, further 

improvements have been made such as the Particle-Mesh Ewald (PME) method [154]. This 

enables rigorous treatment of long-range electrostatics with greater computational efficiency 

[155] 

2.3.3 Thermodynamic ensembles 

During MD simulations, it is necessary to control the temperature and pressure of the system. 

This may be due to factors such as solute drift and friction of particles within the unit cell that 

may introduce thermodynamic errors. Thus, it may be desired for simulations to be 

performed in different ensembles, such as the canonical (NVT) and isothermal-isobaric 

ensemble (NPT), such that simulation data may be more relevant to experimental data. 

2.3.3.1 Temperature coupling 

Commonly used methods for controlling the temperature of the system include the Berendsen 

and Nosé-Hoover schemes [156-158]. The Berendsen temperature coupling scheme replicates 

weak coupling with first-order kinetics to an external heat bath. Deviations from a given 

temperature    are corrected with: 
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where a deviation in temperature decays exponentially with a time constant τ. The velocities 

of each particle is scaled at every time step with a time-dependent factor λ: 
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 (2.8) 

 

where    is the scaling time constant, which is close to the temperature coupling time 

constant. The change in temperature is less than the scaling energy, as the kinetic energy 

change is partially redistributed between the kinetic energy and potential energy. The 

Berendsen temperature coupling method is efficient for stabilising a system at a target 

temperature. 

 

The Nosé-Hoover temperature coupling algorithm improves descriptions for canonical 

ensemble simulations. This approach was first proposed by Nosé, and later modified by 

Hoover [157, 158]. The Nosé-Hoover method is an extension of Berendsen, introducing a 

thermal reservoir in addition to a friction constant ξ. Thus, the equation of motion of particles 

from Equation 2.4 is rewritten as: 
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where the motion for ξ is given by: 

 

 
  

  
 

 

 
(    ) (2.10) 

 

The reference temperature is denoted by   , while   is the current instantaneous temperature 

of the system, and   is the coupling strength. The main difference between the Berendsen 

and Nosé-Hoover approaches is that the Berendsen algorithm more rapidly reaches the target 

temperature and relaxes the system, while the Nosé-Hoover method takes a longer amount of 

time and oscillates around the required ensemble. 
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2.3.3.2 Pressure coupling 

Pressure coupling may also be necessary to correctly represent a molecular system. Two of 

the most common approaches are the Berendsen barometer and the Parrinello-Rahman 

algorithm [156, 159]. These methods can be combined with previously described temperature 

coupling methods. In the Berendsen pressure coupling algorithm, the change in pressure 

towards a given reference temperature    is: 

 

 
  

  
 

    

  
 (2.11) 

 

With this method, the box length is rescaled at each time step by a scaling matrix    as the 

pressure moves the system towards   , and each element of    is given as: 

 

       
  

   
[    ] (2.12) 

 

where   is the isothermal compressibility of the system, equivalent to 4.6 × 10
-5

 bar
-1

 for 

water at 1 atm and 300 K. 

 

The Parrinello-Rahman algorithm extends the Nosé-Hoover temperature coupling algorithm 

to provide a more accurate description of pressure coupling within the system. Box vectors 

are given by the matrix  : 

 

 
   

            (      ) (2.13) 

 

where   represents the volume of the box, and   representing a matrix parameter 

determining coupling strength.   and      denote the current and reference pressures, 

respectively. The equations of motion are also altered accordingly. 
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A combination of the Parrinello-Rahman algorithm with the Nosé-Hoover ensemble allows 

an accurate isothermal-isobaric ensemble to be generated, with a disadvantage of being 

slower to produce a desired ensemble. The Berendsen coupling method has the advantage of 

faster kinetics, with a possible disadvantage of reduced accuracy. 

2.4 Analyses of MDS trajectories 

MD simulations generate a wealth of data. This section describes the applications of 

trajectory data generated from the MD simulations that were utilised in this thesis. In Chapter 

6 following classical MD simulations, the motions of the COX proteins were explored using 

essential dynamics, and the protein communication network examined using MONETA. The 

individual residue contributions to binding of these olive ligands were studied using MM-

PBSA techniques. Also utilising molecular dynamics methodologies, the permeation of olive 

ligands through the lipid membrane were studied as a complement to ADMET data in 

Chapter 5. This involved performing steered molecular dynamics simulations, followed by 

umbrella sampling. These techniques will be discussed in this section. 

2.4.1 Essential dynamics  

Some features of protein function can only be understood when dynamic properties are 

considered. For example, the diffusion of small substrates through haem-dependent enzymes 

depends on the transient appearance of channels in the protein structure [142, 160, 161]. 

Knowledge of dynamics may be necessary to describe motions involved in relevant 

conformational states of functional importance. Extracting information from a trajectory 

where a range of conformations are explored can lead to a better understanding of the 

biological function of proteins. Hence, principal components analysis (PCA) has commonly 

become employed to determine the most important motions in proteins. 

 

PCA is a multivariate statistical technique that reduces the number of dimensions required to 

describe protein dynamics by filtering observed motions from the largest to smallest spatial 

scales [162-165]. PCA extracts important elements of data using either a covariance or 

correlation matrix, which is constructed from atomic coordinates describing atomic 

displacements that comprise a trajectory [166]. An eigenvalue decomposition is performed on 

the matrix, producing a complete set of eigenvectors and corresponding eigenvalues that 

describe a portion of the motion, with larger eigenvalues denoting motions of a larger spatial 

scale [163]. Applying PCA to a protein trajectory is termed ‘essential dynamics’, since the 

most essential motions are extracted from a set of sampled conformations [167]. In Chapter 6, 
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essential dynamics was examined using g_covar and g_anaeig tools implemented in 

GROMACS. 

2.4.2 Network analysis 

Allostery is one of the ways in which protein function is modified. Allosteric events perturb 

the protein structure, propagating energetic strain that can lead to the shape and properties of 

binding sites to change. Using conformational ensembles computed from MD trajectories, 

data was analysed and extracted to determine residue interactions and dynamical correlations 

between residues or domains. This was performed using the MONETA program package 

[168]. MONETA was developed to identify clusters of locally coupled residues, and chains 

of non-covalently connected residues displaying concerted motions at long range. 

 

Similar to essential dynamics mentioned above, the identification of clusters of locally 

coupled residues involves PCA. These regions, called independent dynamic segments (IDSs), 

are clusters of residues in which highly concerted atomic fluctuations are observed 

independent from the rest of the protein. To identify the IDSs, the statistical technique Local 

Feature Analysis (LFA) is adapted for analysing fluctuations in atomic coordinates in MD 

simulations [169, 170]. Originally developed for image analysis, LFA extracts local outputs 

of reduced dimensionality from global PCA modes.  

 

Communication pathways or chains of residues with high communication propensities are 

also identified with this analysis are also identified. These are defined based on a measure of 

communication propensity [171]. The communication between two residues is estimated as 

fast when their commute time   (   ) is small. The commute time is expressed as a variance 

of inter-residue distance over the trajectory [172]: 

 

   (   )  〈(     ̅  )
 
〉 (2.16) 

 

where     |     | represents the distance between Cα atoms of residues   and  .  

 

2.4.3 MM-PBSA: Per-residue energy decomposition 

Per-residue decomposition analysis was performed to obtain a quantitative description of the 

energetic contribution of each amino acid with the ligands considered in the study. As evident 

from previous studies, binding free energy calculations and its per-residue decomposition 
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methods are crucial for determining the binding mechanisms of protein–protein or protein–

ligand complexes [116, 173].   

 

The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method is a 

technique which evaluates the standard free energies or binding free energies of complexes 

by considering the initial and final sates of the system [174, 175]. Using data from a MD 

simulation where the protein complex has been simulated in a periodic water box with water 

and counterions, the structures are post-processed removing solvent and counterion 

molecules. The free energy   is calculated according to: 

 

                          (2.17) 

 

where    is the calculated average free energy, and      is the average molecular 

mechanical energy,              is the molecular solvation free energy, and      is the 

solute entropy. The average molecular mechanical energy is defined as: 

 

                                   (2.18) 

 

where      ,       ,      ,     , and       represent the bond, angle, torsion, van der 

Waals, and electrostatic terms in the molecular mechanical force field, respectively. While 

MM-PBSA is computationally efficient to perform, limitations of MM-PBSA must be 

considered. These include the lack of consideration for specific water interactions, and its 

sensitivity to the trajectory and induced fit effects [174]. Despite these uncertainties, MM-

PBSA can provide useful estimates of binding free energy and has been applied to evaluate 

the relative stabilities of different biomolecular structures [176-179]. 

 

In Chapter 6, the g_mmpbsa tool implemented with GROMACS was used to calculate the 

contribution of individual residues in COX to ligand binding affinity [180]. This tool utilises 

Adaptive Poisson-Boltzmann Solver (APBS) packages to calculate enthalpic components of 

the interaction [181]. 

 

The free energy of solvation refers to the energy required for a solute to be transferred from 

vacuum into solvent. The MM-PBSA model calculates this using an implicit solvent model 

[181], expressed as: 
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                             (2.19) 

 

where        and           refer to electrostatic and non-electrostatic contributions, 

respectively.        is estimated by solving the Poisson-Boltzmann equation [181] 

 

   [ ( )   ( )]   ( ) ( )     [ ( )]  
    ( )

  
   (2.20) 

 

where  ( ) denotes the electrostatic potential,   ( ) the dielectric constant, and   ( ) is the 

fixed charge density. The term    refers to the reciprocal of the Debye length, which is 

dependent on the ionic strength of the solution. The non-electrostatic term of solvation free 

energy           incorporates attractive and repulsive forces between the solvent and solute 

generated by cavity formation, as well as van der Waals interactions [182]  

 

                        (2.21) 

 

where         is the work done by the solute to create a cavity in the solvent, and      is the 

attractive van der Waals energy between solvent and solute. A range of models can be used to 

estimate these terms, such as solvent accessible surface area (SASA) only, solvent accessible 

volume (SAV) only, SASA-SAV model, and combining these models with the Weeks-

Chandler-Andersen (WCA) theory in the SASA-SAV-WCA non-polar model [180]. The 

g_mmpbsa tool enables decomposition of the binding energy on a per residue basis. The 

   ,       , and           terms are initially calculated for individual atoms in the bound 

and unbound forms, and their subsequent contribution to the binding energy    
   of residue 

x is calculated with: 
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  (2.22) 

 

where   
      and   

    
 represent the energy of atom i from x residue in bound and unbound 

forms, respectively, and n describes the total number of atoms in the residue. The sum of 

energy contributions over all residues is equivalent to the total binding energy of the 

complex. 
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2.4.4 Umbrella sampling 

Predicting the rate of permeation of substances across cell membranes is important to drug 

design. To estimate the permeability of olive compounds to a lipid bilayer, MDS was used to 

estimate the free energy profile of the system around local minima, or the potential of mean 

force (PMF). However, for biological processes such as protein binding or membrane 

permeation the various minima can be separated by large energy barriers. This results in a 

failure of regular MD to adequately describe the energy surface. One method of obtaining 

sufficient sampling is umbrella sampling [183]. This introduces a biasing potential  (  ) to 

ensure membrane permeation is sampled along the reaction coordinate. Using an example of 

two interacting particles, the biasing potential would force prescribed separation distances to 

be sampled. 

 

   (  )   (  )   (  ) (2.23) 

 

Several simulations are carried out along the reaction coordinate by applying the bias  (  ). 

Each new position is called a ‘window’. The particle at the reaction coordinate location of 

each specified window is often restrained with a harmonic potential. From the probability 

distributions calculated from MD, the effects of the restraints are analytically removed, then 

combined into a single PMF describing the complete interval of the coordinate using post-

treatment analysis [107]. This can be done using the Weighted Histogram Analysis Method 

(WHAM) [184]. 
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3. Olive Phenolic library 

Manuscript published in association with this chapter: 

 

Bonvino NP, Liang J, McCord ED, Zafiris E, Benetti N, Ray NB, Hung A, Boskou D, 

Karagiannis TC, OliveNet™: A Comprehensive Library of Compounds from Olea 

europaea. Database, 2018. 2018: p.bay106-bay106. 

 

3.1 Introduction 

Phenolic compounds derived from Olea europaea have demonstrated potent antioxidant and 

anti-inflammatory properties which may aid in the prevention of several chronic disease 

states. The characterisation and biological validation of compounds within the olive are being 

increasingly researched. However, the diversity and complexity of structures means their 

identification and quantification is challenging. Consequently, only a subset of phenolic 

compounds has been explored for biological activity and potential health effects. Although 

information describing the identification of olive-derived compounds is available, these are 

not easily searchable.  

 

Therefore, as part of a wider project we developed a database of all compounds found in the 

olive: OliveNet. Data from published reports concerned with the identification and biological 

effects of compounds in O. europaea was sourced and critically assessed to construct the 

database. OliveNet consists of compounds divided into 13 main classes, including olive 

phenolics. For this study, compounds identified within this class were used to inform initial in 

silico analyses. Compounds found within the olive fruit, leaf, and pressed oil were obtained, 

as well as those found in wastewater and pomace produced during olive oil production. 

 

The OliveNet library is freely available at www.mccordresearch.com.au [185]. 

 

3.2 Methods 

Compounds were identified from a comprehensive review of scientific publications, 

including journal articles and books. The literature search was performed in PubMed and 

SciDirect from January—July 2016, using the search terms (“olea europeaea”, “olive”, 

“phenol”, “polyphenol”).  

http://www.mccordresearch.com.au/
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Original publications were selected based on the analytical methods used to identify and 

quantify the compounds present in the natural olive matrices. These involved a range of 

extraction processes, analytical separation, and quantification techniques. Generally, HPLC 

coupled with mass spectrometry/gas chromatography (GC-MS) was employed to separate 

and then quantify the unsaponificable compounds, including the phenolics [186-188]. High 

resolution multinuclear (1H, 13C, 31P) NMR was also used for elucidation of isolated 

compounds [189-191]. These techniques represent a higher sensitivity compared to other 

spectrophotometric techniques that have several limitations associated with their application 

[192]. If the methodology was not sufficiently documented or was considered inadequate, the 

paper was not included as a seminal reference. Information regarding known biological and 

pharmacological activity of the compounds was included. 

 

Compound structures were obtained from PubChem where available, or if unavailable, drawn 

in ChemBioDraw Ultra 14.0 (PerkinElmer, Massachusetts, USA) as provided in the seminal 

reference [193]. All structures were saved as sdf files. 

 

Resulting compounds were compiled and classified into classes and subclasses according to 

their chemical structure. A graph depicting phenolic compounds within their subclasses was 

drawn as a network graph using Gephi 0.9.1 [194]. Gephi is an open source software package 

used to explore and manipulate networks for graph and network analysis [194]. A graph 

dataset was required for the generation of a network graph. This was constructed by defining 

subclasses and individual compounds as ‘nodes’, and compounds within their subclasses as 

‘edges’. Node and edge matrices were constructed and imported into Gephi to generate the 

network graph. 

 

3.3 Results and discussion 

As a result of the comprehensive review, a total of 222 phenolic compounds were identified. 

Structurally, phenolic compounds are characterised by an aromatic ring with one or more 

hydroxyl groups. These were divided into 13 subclasses: simple phenols, methoxyphenols, 

hydroxybenzoic acids, hydroxyphenylacetic acids, hydroxycinnamic acids, secoiridoids, 

glucosides, flavonoids, hydroxyisochromans, coumarins, irridoids, lignans, and phenolic fatty 

acid esters as shown in Figure 3.1. The full phenolic database is shown in Appendix 9.1. 
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Figure 3.1: Subclasses of phenolic compounds identified in the OliveNet database. 222 

phenolic compounds found through literature searches are categorised into 13 subclasses. 

Each ball is representative of a single compound. Representative chemical structures, key 

information, and the number of compounds found within each class, are shown. 

 

 

Phenolic compounds contribute the stability of olive oil through resistance of oxidative 

rancidity [195]. Shown to be strong antioxidants and radical scavengers, phenolic compounds 

also possess important biological effects [196]. Oleuropein, hydroxytyrosol, and tyorosol are 

amongst the most common compounds investigated for their biological activities [196]. 

Numerous studies have examined their antioxidant properties, which have been mainly 

attributed to their othodiphenolic structure [196]. These compounds have also been 
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researched for their microbial properties, with hydroxytyrosol and oleuropein possessing 

antimicrobial activity against American Type Culture Collection (ATCC) and clinical 

bacterial strains [196]. 

 

Common disease states such as cancer, cardiovascular disease, arthritis, and 

neurodegenerative disease are known to be associated with chronic inflammation [197-201]. 

In vivo and in vitro studied have suggested that dietary intake of EVOO, which contains 

substantial concentrations of phenolic compounds, may reduce inflammatory responses in the 

body, thus reducing the risk of developing inflammatory diseases [197, 202-204]. 

Oleocanthal has previously been found to inhibit both COX-1 and COX-2 in a dose 

dependent manner similar to ibuprofen [70]. Oleocanthal can also attenuate inflammatory 

mediators such as inducible nitric oxide synthase (iNOS) which contribute to the 

pathogenesis of joint degenerative disease [205]. Furthermore, oleocanthal has been found to 

reduce markers of inflammation in Alzheimer’s disease, and possesses anti-proliferative 

effects in human breast and prostate cancer lines [206, 207]. 

 

As a consequence of the variability and complexity of phenolic content among cultivars and 

limitations associated with analytical methodologies, research has only been focussed on a 

few compounds. Of the phenolic compounds identified in OliveNet, 45% are currently not 

commercially available (Table A1.1, Appendix 9.1). The presentation of uncharacterised 

compounds through the OliveNet library forms the basis for the validation of these 

compounds in their potential action against various disease states, such as inflammatory 

diseases. 

 

3.4 Conclusion 

In this chapter, a comprehensive literature search was performed to compile a database of 

olive phenolic compounds, which were classified according to their chemical structures. The 

OliveNet database forms a useful resource for those conducting research on O. europaea, and 

could form the basis of investigation for the biological effects of compounds or the synthesis 

of novel compounds. For the purpose of this study, olive phenolic compounds identified here 

form the basis of in silico analysis regarding potential COX inhibitory activity. Molecular 

docking of olive phenolic compounds with COX-1 and COX-2 proteins will be discussed in 

the next chapter.  
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4. Molecular docking 

4.1 Introduction 

An important tool in structure based drug design is molecular docking. This allows the 

interactions between a ligand and protein to be modelled at the atomic level, aiding in the 

characterisation of small molecule behaviour and examination of biochemical processes. To 

examine the COX inhibitory potential of all olive phenolic ligands identified in the library, 

molecular docking was employed to determine the binding affinity and orientation of ligands 

in the COX-1 and COX-2 active site. Using molecular docking, the olive phenolics were 

screened and ranked to produce lead compounds. 

 

A reliable protein structure is essential for determining atomistic drug interactions. This 

chapter describes the initial generation of a model of human COX-1, followed by virtual 

screening of the olive library using a range of docking methods. 

 

4.2 Methods 

4.2.1 Homology modelling 

Since there is currently no human x-ray crystal structure available for COX-1 in the Protein 

Data Bank (PDB), the structure was generated using homology modelling techniques. The 

amino acid sequence of COX-1 was retrieved from UniProt (ID: P23219). The template 

structure was identified using the blastp (protein-protein BLAST) algorithm, selecting the 

structure with the highest sequence identity [124]. The selected template structure (1CQE) 

was of ovine COX-1, had a resolution of 3.1 Å and 93% sequence identity. The homology 

model of COX-1 was built with Modeller 9.16, using the partial sequence (PRO 32—PRO 

583), with ten models generated [122].  The models were evaluated based on the lowest 

Modeller zDOPE score and RMSD values [122]. The stereochemical quality of the model 

was then validated using PROCHECK and ProSA [133, 137]. The recent deposit of human 

COX2 was obtained from PDB, with accession code 5F1A (2.38 Å).  

 

Prior to docking, the two structures were optimized to adopt energetically stable 

conformations using Schrodinger’s Protein Preparation Wizard [208]. It involves the addition 
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and optimization of hydrogen bonds, termini capping, creation of disulphide bonds, followed 

by restrained minimization using the OPLS-AA (2005) force field to obtain the optimized 

geometry of the protein [99].  

4.2.2 Ligand preparation 

The database of phenolic compounds identified within Olea europaea was prepared for 

docking studies using the LigPrep utility of Schrodinger’s package [209]. It generates all 

possible tautomeric, stereochemical and ionization variants of the input molecules, followed 

by energy minimization to obtain structures with optimized geometry. Ligands with a molar 

mass of < 500 g/mol were employed for docking. 

 

We also compiled published inhibition data for putative COX inhibitors where enzyme 

immunoassay kits were used, and where reported IC50 values were comparable among assays. 

These compounds were intended to aid our docking setting selections following generation of 

correlation plots between published IC50 values and calculated binding energy. These 

compounds were obtained from PubChem and underwent preparation within the LigPrep 

utility.   

4.2.3 Molecular docking 

Ligand-protein docking utilized the quantum mechanics-polarized ligand docking (QMPLD) 

protocol from the Schrodinger Suite [94]. Receptor grid generation of the enzyme active site 

was conducted within the docking suite of Maestro [93]. Native ligands were present in the 

active site of both crystallised structures of COX-1 and COX-2. The native COX-1 ligand 

flurbiprofen (FLP) present in the template structure was centroid to the docking box. The 

active site of COX-2 was centred on active site residues Tyr385, Ser530, Arg120, and 

Tyr355, since the native bound salicylate (SAL) was too small to adequately dock larger 

ligands. An extensive search on the centroid box was performed within 2 x 2 x 2 nm
3
 of these 

coordinates. Flexibility of the hydroxyl groups of residues at the binding site was allowed, 

while the rest of the protein was rigid. Docking was carried out using the extra precision (XP) 

docking protocol of Glide. After initial docking in XP mode, the atomic charges of the ligand 

were calculated in the binding pocket with the QMPLD workflow. The new charges were 

generated using semi-empirical methods based on the Mulliken charge model [210]. A 

maximum of 5 poses per ligand was selected for redocking in XP mode, and final pose 

selection was based on van der Waals and electrostatic interactions 
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The R
2
 values reported in Figure 4.2 were determined by linear regression using GraphPad 

Prism 6.0.  

 

The root mean square deviation (RMSD) of the native and docked ligands was measured in 

Maestro using the superposition feature, whilst the ligand interaction tool was used to analyse 

ligand-residue contacts. Figures were generated using VMD 1.9.1 [211]. All computation 

works were performed on a Windows 7 workstation equipped with an Intel Core i5 

(3.00GHz) and 8GB of RAM.  

 

4.3 Results and discussion 

4.3.1 Homology model generation and quality 

While the ovine x-ray crystal structure of COX-1 has been available since 1994, the crystal 

structure of human COX-1 (hCOX-1) is not yet available [212].  PDB structure 1CQE (ovine 

ortholog) was selected as the template for the generation of hCOX-1, since it had the highest 

sequence identity (93%) following the BLAST-protein search. Most residues were conserved 

between the template and target sequence following alignment. The stereochemical quality of 

the model was examined using Procheck (Table 4.1), which demonstrated 92.6% of residues 

were in the most favoured regions, while 7.4% were within the allowed regions of the 

Ramachandran plot. This analysis suggested that the quality of the model was comparable to 

refined structures, where more than 90% of residues in the most favoured regions deemed a 

reliable model [213]. 

 

 

Table 4.1: Statistical values of non-glycine and non proline residues in Ramachandran plot 

obtained from Procheck 

Residues in most favoured regions 92.6% 

Residues in allowed regions 7.4% 

Residues in generously allowed regions 0.00% 

Resides in disallowed regions 0.00% 
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Figure 4.1: Validation of homology model structure using Procheck. Ramachandran plot 

shows structural validation of COX-1 homology model, with the most favoured regions, 

allowed regions and generously allowed regions depicted in red, yellow and light brown, 

respectively. Glycine residues are shown as triangles. 

 

4.3.2 Optimization of docking protocol 

In order to optimise the docking protocol, a reference set of published inhibition data for 

COX-1 and COX-2 inhibitors was assembled (Appendix 9.2.1). Data using enzyme 

immunoassay kits was selected to limit variability in data. Correlation plots comparing 

published IC50 values against predicted energy of interaction with the docking program were 

generated. Several docking methods were tested, and the quantum mechanics-polarised 

ligand (QMPLD) protocol  provided the best correlation between these two sets of data [94]. 

R
2
 values of 0.6048 and 0.6852 for COX-1 and COX-2 respectively were produced (Figure 

4.2). This method has been used in previous studies [214]. 
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Additionally, the QMPLD docking protocol reliably predicted the experimentally observed 

native ligands. RMSD values of less than 2 Å are generally considered acceptable [96]. The 

RMSD values between the native and docked FLP ligand was 0.51 Å for COX-1, whilst 

salicylate had an RMSD of 0.48 Å for COX-2 (Figure 4.3).  

 
Figure 4.2: Standard curve comparing experimental pIC50 values to Glide energies predicted 

by QMPLD for COX-1 (A) and COX-2 (B). Error bars indicate the standard deviation of 

pIC50 values for experimental binding affinities. 

 

 
Figure 4.3: Native and docked complex of COX-1 (A) with FLP and COX-2 (B) with 

salicylate. The molecular surface of active site residues is displayed with a mesh 

representation. 
 

4.3.3 Predicted top binding compounds 

Docking was performed using the QMPLD method. 159 phenolic compounds with a 

molecular mass of less than 500 g/mol identified in olea were docked to COX-1 and COX-2. 

This was due to the likelihood that larger compounds, such as oleuropein, are largely 

metabolised following ingestion [215]. Of these 159 compounds, 155 docked to COX-1 and 

132 to COX-2. Of the 13 chemical classes in which the compounds are classified, six classes 

contained ligands that are amongst the top ten in predicted binding energy. Some compounds 
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produced comparable docking affinities to some putative COX inhibitors (Table 4.2 and 4.3). 

These six classes were: phenolic fatty acid esters, secoiridoids, hydroxycinnamic acids, 

flavonoids, glucosides, and lignans (Figure 4.4). 

 

 

Figure 4.4: Average Glide energy of olive compounds in phenolic subclasses docked to 

COX-1 and COX-2. Error bars indicate standard error. 

 

Tables 4.2 and 4.3 list the top 10 binding compounds with the strongest Glide energy to 

COX-1 and COX-2 respectively. The full table of docking results is shown in Appendix 

9.2.2. Figure 4.5 depicts the 2D ligand interaction diagrams of the two strongest binding 

ligands to COX-1 and COX-2 (A-D), as well as oleocanthal (E-F) based on its known COX 

inhibitory behaviour [70]. 

 

For COX-1, phenolic fatty acid ester is the top binding compound. This may be owing to its 

long unsaturated tail, bearing resemblance to the native fatty acid substrates of COX. 

Secoiridoids are vastly over-represented, accounting for six out of the top ten ligands. 

Hydroxycinnamic acids comprise the remaining top binding ligands, which are structurally 

similar to the secoiridoids with the exception of having a carbonyl (C=O) group instead of an 

ester. 
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For COX-2, there is a greater diversity of chemical classes amongst the top ten. While 

secoirioids were still prominent and 1-oleyltyrosol again was one of the top binding 

compounds, remaining classes composing the top ligands were glucosides, lignans, and 

flavonoids. This suggests that COX-2 is more liable to interact with a larger range of olive 

compounds, while COX-1 is largely dominated by the secoiridoids. 

 

When the top twenty ligands are taken into consideration for binding to COX, secoiridoids 

were again vastly represented. In COX-1, fourteen ligands were in this class, compared to 

twelve for COX-2. All top six classes of ligands were represented in the twenty strongest 

binding ligands to COX-2, while only four in COX-1. When the strongest binding 

compounds were extended to include the top thirty, it was apparent that secoiridoids still 

dominated the majority of strong binding compounds with twenty to COX-1 and nineteen to 

COX-2. While there more classes of olive phenolics represented in the top thirty binding 

compounds to COX-1, the number of top binding compounds was more concentrated 

amongst the top six classes in COX-2. Glucosides and lignans were better represented in top 

binding to COX-2. Through this it is further demonstrated that there is a trend for COX-2 to 

bind to a larger range of olive compounds. 
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Table 4.2: Top 10 greatest binding scores to COX-1 

Ligand Glide 

energy 

(kcal/mol) 

MW Class Compound structure 

1-oleyltyrosol -51 389 Phenolic fatty 

acid ester 

 
 

Ligstroside 

derivative 2 

-48 453 Secoiridoids 

 
Rosmarinic acid -47 361 Hydroxycinnamic 

acids 

 
Oleuropeindial 

(keto form) 

-45 378 Secoiridoids 

 
10-Hydroxy 

oleuropein 

aglycone 

-45 394 Secoiridoids 

 
Oleacein  -44 321 Secoiridoids 

 
Caftaric acid -44 312 Hydroxycinnamic 

acids 

 
Demethyloleurope

in aglycone (enol 

form) 

-43 364 Secoiridoids 

 
Deoxyloganic acid 

lauryl ester 

-43 408 Phenolic fatty 

acid ester 

 

 
Methyl malate-

hydroxytyrosol 

ester 

-43 284 Secoiridoids 

 

Note: For comparison, Glide energies for the following ligands are provided as follows: 

native ligand (FLP = -42 kcal/mol); non-selective NSAIDs (ibuprofen = -33 kcal/mol) 

(naproxen = -37 kcal/mol); COX-2 selective NSAIDs (rofecoxib = -18 kcal/mol) (celecoxib = 

-20 kcal/mol). 
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Table 4.3: Top 10 greatest binding scores to COX-2 

Ligand Glide 

energy 

(kcal/mol) 

MW Class Compound structure 

Ligstroside 

derivative 2 

-50 453 Secoiridoids 

 
1-oleyltyrosol -44 389 Phenolic fatty 

acid ester 

 
 

Hydroxytyrosol 

diglucoside  

-44 478 Glucosides 

 
Luteolin-4’-O-

glucoside 

-42 448 Flavonoids 

 
10-Hydroxy-10-

methyl oleuropein 

aglycone  

-41 408 Secoiridoids 

 
Oleuropeindial-

Lactone 

-40 378 Secoiridoids 

 
Berchemol -40 376 Lignans 

 
Hydroxytyrosol-3-

β-glucoside 

-40 316 Glucosides 

 
(+)-1-

Acetoxypinoresino

l-4"-O-methyl 

ether 

-39 431 Lignans 

 
Oleuropeindial 

(keto form) 

-39 378 Secoiridoids 

 

Note: For comparison, the Glide energies for the following ligands are provided as follows: 

native ligand (SAL = -27 kcal/mol); non-selective NSAIDs (ibuprofen = -16 kcal/mol) 

(naproxen = -18 kcal/mol); COX-2 selective NSAIDs (rofecoxib = -34 kcal/mol) (celecoxib = 

-39 kcal/mol).  
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Figure 4.5: 2D Ligand interaction diagram for COX-1 and COX-2 with 1-oleyltyrosol (A, 

B), ligstroside derivative 2 (C, D), and oleocanthal (E, F) showing protein residues located 

within 0.4 nm of the ligand. Hydrogen bonds are represented by purple arrows, pi-cation by 

red lines, and pi-pi stacking by green lines. Residues shown in green are hydrophobic, blue 

are polar, purple are positively charged, and red are negatively charged. Glycine residues are 

shown in white. Residue numbering for COX-1 is equivalent to COX-2 when 31 is added. 
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4.3.4 Overall trends in predicted ligand-COX interactions 

The docking demonstrates that overall, the majority of olive phenolics bind with a marginally 

higher affinity to COX-1 than COX-2 (Figure 4.4). The main residues implicated in binding 

with COX-1 and COX-2 shown in this data are ARG 120, TYR 355, TYR 385, and SER 530. 

The location of these residues is depicted in Figure 4.6. Some of these active site residues of 

the cyclooxygenase proteins have been studied in some detail.  

 
Figure 4.6: 3-dimensional structure COX-2, with active site residues ARG 120, TYR 355, 

TYR 385, and SER 530 shown in orange. 

 

With its native ligand, the majority of interactions between arachidonic acid and COX-1 

involve hydrophobic residues. TYR 385 abstracts the proS hydrogen from C-13 of 

arachidonate; GLY 533 and TYR 348 orient C-13 of arachidonate for hydrogen abstraction; 

ARG 120 facilitates the electrostatic interaction with the carboxylate anion of arachidonate; 

and VAL 349, TRP 387, and LEU 534 dictate the orientation of arachidonate such that an 

optimal arrangement is achieved to yield PGG2 [216].  

 

In COX-1, ARG 120 is situated near the entrance of the main binding channel within ionic 

bond distance to its natural substrate arachidonic acid and has a role in catalytic efficiency 

[217, 218]. In COX-2, ARG 120 has been suggested to have less influence on the chemical 

kinetic activity of the protein [218]. Its role involves the formation of an ion pair with the 

carboxylate group of NSAIDs. The mutation of ARG 120 decreases the inhibitory effect of 

these NSAIDs but increases the potency of inhibitors of COX-1 lacking the carboxylic acid 

moiety [218, 219]. 
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Located on the opposite side of the channel from ARG 120, TYR 355 dictates the 

stereospecificity of the enzymes towards NSAIDs [9, 220, 221]. It has also been suggested to 

contribute to the negative allosteric effect of arachidonate in COX-1 [220, 222]. Acetylation 

by aspirin occurs at SER 530 [223]. It was previously found that TYR 385 and SER 530 are 

able to cooperate in the chelation of negative charges, determining the selectivity of aspirin 

for covalent modification of SER 530 [224]. The mutation of TYR 385 to PHE reduces 

aspirin acetylation of SER 530 by more than 90% [224, 225]. It was proposed that hydrogen 

bonding by TYR 385 stabilises the negative charge of the tetrahedral intermediate that is 

developed during SER 530 acetylation [224, 225]. The crystal structure of diclofenac bound 

to COX-2 shows that the ligand binds in an inverted conformation compared to arachidonic 

acid, with its carboxylate group hydrogen bonded to TYR 385 and SER 530, rather than ARG 

120 [224]. 

 

Phenolic ligands docked to COX-1 demonstrate a pattern of binding to some key binding site 

residues. The ligands ligstroside derivative 2, rosmarinic acid, oleuropeindial, and 10-

hydroxyoleuropein aglycone are ranked 2-5 of the phenolic ligands, forming hydrogen bonds 

with ARG 120 and MET 522. With the exception of oleuropeindial, these highly ranking 

ligands also demonstrated hydrogen bond formation with GLY 526. Further, pi-alkyl bonds 

were formed with VAL 349.   

 

As there was a much greater diversity of ligand classes found in the top ten ranking ligands 

for COX-2, trends in residue interactions were not as apparent in COX-2 compared to COX-

1. The top 5 ranking ligands (ligstroside derivative 2, 1-olyltyrosol, hydroxytyrosol 

diglucoside, luteolin-4’-O-glucoside, and 10-hydroxy-10-methyl oleuropein aglycone) 

formed H-bonds with SER 119 and LYS 83 in COX-1. In COX-2, an additional side pocket 

is present that is not accessible to ligands binding to COX-1. The residues located in this 

pocket include VAL 523, ARG 513, and VAL 434 [9].  

 

An absence of interactions with these residues among strong binding ligands suggests that 

olive phenolics may bind to COX proteins non-selectively. In other studies, structure-activity 

relationships (SAR) have previously found that the length of the S-alkyl chain is a 

determinant of potency for COX-2 selectivity, with heptyl chains being optimal. Potency and 

selectivity for COX-2 was enhanced when a triple bond was inserted into the heptyl chain, 

and also in sulfides compared to corresponding sulfoxides or sulfones [216, 226]. As the top 
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binding ligands do not tend to display this structural pattern, it is further suggested that olive 

phenolic ligands are binding non-selectively to COX-1 and COX-2. Nevertheless, 1-

oleyltyrosol (with a long hydrophobic tail, similar to those described in the literature 

mentioned here) is predicted to bind strongly to both COX-1 and COX-2. This suggests that 

this ligand may be in the vicinity to potentially access the unique COX-2 side pocket. 

Molecular dynamics simulations may be able to shed light on the motions of this ligand 

subsequent to binding and assess the ligand’s capability to access the COX-2 side pocket. 

 

The following sections will describe docking results of selected ligands from the top docking 

subclasses of phenols. 

4.3.5 Interactions with specific ligand classes 

4.3.5.1 Hydroxycinnamic acids 

 

Table 4.4: Ligand interactions with selected hydroxycinnamic acids 

Ligand Glide 

energy 

(kcal/mol) 

H-bond Pi-pi 

stacking 

Pi-cation Salt bridge 

Rosmarinic 

acid 

COX-1 -47 ARG 83, THR 

89, ARG 120 

x2, TYR 355 

  ARG 120 

COX-2 -34   LYS 83 ARG 120 

Caftaric acid COX-1 -44 ARG 120, 

SER 353 

  ARG 120 

COX-2 -27 LYS 83, ARG 

120 x2 

  LYS 83 x2 

Chlorogenic 

acid 

COX-1 -34 GLU 524 x2    

COX-2 -39 GLU 524   ARG 120 

 

Hydroxycinnamic acids demonstrated a preference for binding to COX-1. ARG 120 was 

shown to form hydrogen bonds and salt bridges with the ligands. Rosmarinic acid 

demonstrated a strong binding affinity of -47 kcal/mol to COX-1 and -34 kcal/mol to COX-2, 

forming salt bridges with ARG 120 in both proteins. Caftaric acid had a preference for 

binding to COX-1 compared to COX-2, with a Glide energy of -44 kcal/mol with COX-1 and 

-27 with COX-2. While caftaric acid had a higher number of hydrogen bonds and salt bridge 

formation with COX-2, COX-1 demonstrated a higher binding affinity. This may be due to 
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differing orientations of the ligand, with its position in COX-1 resulting in hydrophobic 

interactions with more residues compared to COX-2. In contrast, chlorogenic acid 

demonstrated a higher affinity for binding with COX-2 compared to COX-1; -39 kcal/mol 

and -34 kcal/mol respectively. A combination of salt bridge and hydrogen bond formation in 

COX-2 may have contributed to the stronger binding energy. 

4.3.5.2 Flavonoids 

 

Table 4.5: Ligand interactions with selected flavonoids 

Ligand Glide 

energy 

(kcal/mol) 

H-bond Pi-pi 

stacking 

Pi-cation Salt bridge 

Methoxyluteolin 

COX-1 -38 
ARG 120, 

MET 522    

COX-2 -16 LYS 83 TYR 355 
  

Luteolin-4’-O-

glucoside 

COX-1 -33 ARG 83 TYR 355 
  

COX-2 -42 
LYS 83, 

PHE 470 
TYR 115 

  

Delphinidin 

COX-1 -31 
ARG 120, 

MET 522    

COX-2 -32 
LYS 83, 

GLU 524 
TYR324 x2 

LYS 83, 

ARG 120  

 

Like the hydroxycinnamic acids, flavonoids demonstrated a stronger preference for binding 

to COX-1 compared to COX-2. Methoxyluteolin exhibited a large difference in its preference 

for COX-1 binding; -38 kcal/mol to COX-1 compared to -16 kcal/mol to COX-2. Pi-pi 

stacking observed with TYR 355 in COX-2 is absent in COX-1, as well as a hydrogen bond 

formed with LYS 83. With COX-1, methoxyluteolin forms hydrogen bonds with ARG 120 

and MET 522. The interactions with COX-2 are located near the entrance of the active site, 

with the hydroxyl group forming a H-bond with LYS 83 being exposed to solvent. 

Methoxyluteolin is positioned deeper in the active site of COX-1, having more hydrophobic 

interactions with residues within the protein, contributing to its higher binding affinity. 

Luteolin-4’-O-glucoside exhibited higher binding affinity to COX-2 compared to COX-1. 

While pi-pi stacking was shown in both interactions, an additional hydrogen bond was 

observed with COX-2. Delphinidin had a similar binding affinity to both COX-1 and COX-2. 

While there were more pi-pi stacking and pi-cation interactions with COX-2, a greater 

amount of hydrophobic interactions were observed with COX-1. 
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4.3.5.3 Lignans 

 

Table 4.6: Ligand interactions with selected lignans 

Ligand Glide 

energy 

H-bond Pi-pi 

stacking 

Pi-cation Salt bridge 

D-(+)-Erythro-

1-(4-hydroxy-3-

methoxy)- 214 - 

phenyl-1,2,3-

propantriol  

COX-1 -33 
MET 522, 

SER 530 x2    

COX-2 -28 SER 530 
   

Berchemol 

COX-1 -31 

ARG 120, 

TYR 355, 

SER 530 
 

ARG 120 
 

COX-2 -40 SER 119 TYR 115 LYS 83 
 

Pinoresinol 

COX-1 -26 
ARG 120, 

SER 530  
ARG 120 

 

COX-2 -3 ARG 120 TYR 355 LYS 83 
 

 

Of the ten lignans, all bound to COX-1 while six bound to COX-2 with varying preference 

for each isoenzyme. D-(+)-Erythro-1-(4-hydroxy-3-methoxy)-214-phenyl-1,2,3-propantriol 

bound to both COX-1 and COX-2, with an affinity of -33 and -28 kcal/mol respectively. SER 

530 formed hydrogen bonds in interactions with both proteins, with additional hydrogen 

bonds with SER 530 and MET 522 potentially contributing to a slightly higher binding 

affinity with COX-1. Berchemol demonstrated a stronger binding affinity to COX-2, having a 

Glide energy of -40 kcal/mol compared to -31 kcal/mol in COX-1. ARG 120 formed a 

hydrogen bond and pi-cation interactions in COX-1, while SER 119, TYR 115, and LYS 83 

in COX-2 formed a hydrogen bond and pi-pi stacking, as well as pi-cation interactions. 

Despite a range of molecular interactions of pinoresinol with COX-2, the binding affinity 

exhibited was much lower compared to COX-1. Pinoresinol bound to COX-1 with an affinity 

of -26 kcal/mol, compared to -3 kcal/mol in COX-2. ARG 120 was again implicated in these 

interactions. 

4.3.5.4 Glucosides 

 

Table 4.7: Ligand interactions with selected glucosides 

Ligand Glide 

energy 

H-bond Pi-pi 

stacking 

Pi-cation Salt bridge 

Hydroxytyrosol 

diglucoside  
COX-1 -38 

ARG 83, 

GLU 524 x2    



 

66 

 

COX-2 -44 

LYS 83 x2, 

PHE 470, 

GLU 524 x2 

TRP 100 
  

Salidroside 

COX-1 -31 ARG 120 
   

COX-2 -32 

LYS 83, 

TYR 115, 

GLU 524 
 

LYS 83 
 

Hydroxytyrosol-

3-β-glucoside 

COX-1 -25 
TYR 385, 

MET 522    

COX-2 -40 LYS 83 
  

ARG 120 x2 

 

All eight glucosides bound to COX-1, while four bound to COX-2 with similar or greater 

affinity compared to COX-1. Hydroxytyrosol diglucoside bound strongly to both COX-1 and 

COX-2 with a Glide energy of -38 and -44 kcal/mol respectively. GLU 524 formed two 

hydrogen bonds in interactions with both proteins. Residue 83, being arginine in COX-1 and 

lysine in COX-2 formed hydrogen bonds with hydroxytyrosol diglucoside. Interactions with 

COX-2 exhibited additional hydrogen bonds and pi-pi stacking with TRP 100, contributing to 

its slightly stronger binding energy. Salidroside interacted with both COX isoenzymes with 

similar Glide energy; -31 kcal/mol with COX-1 and -32 kcal/mol with COX-2. Differing 

interactions were observed, with a hydrogen bond with ARG 120 coupled with more 

hydrophobic residue interactions in COX-1, and a higher number of hydrogen bonds and pi-

cation interactions in COX-2. Hydroxytyrosol-3-β-glucoside demonstrated a greater affinity 

for COX-2; -40 kcal/mol compared to -25 kcal/mol in COX-1. While hydrogen bonds were 

involved in binding with both enzymes, ARG 120 formed two salt bridge interactions with 

the ligand only in COX-2. 

4.3.5.5 Secoiridoids 

 

Table 4.8: Ligand interactions with selected secoiridoids 

Ligand Glide 

energy 

H-bond Pi-pi 

stacking 

Pi-cation Salt 

bridge 

Ligstroside derivative 

2 

COX-1 -48 

ARG 120 

x2, MET 

522 
 

ARG 120 
 

COX-2 -50 

LYS 83, 

ARG 120, 

TYR 385, 

MET 522 

TYR 355 
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Oleocanthal 

COX-1 -42 
    

COX-2 -30 
LYS 83, 

ARG 120    

Hydroxytyrosol 

acyclodihydroelenolate 

COX-1 -42 
ARG 120, 

GLU 524    

COX-2 -23 
SER 119, 

ARG 120    

10-Hydroxy-10-methyl 

oleuropein aglycone  
COX-1 -39 GLU 493    

 COX-2 -41 LYS 83  LYS 83  

 

Having the greatest overall binding, a stronger affinity for binding to COX-1 was also 

observed in the secoiridoids. Ligstroside derivative 2 bound very strongly to both COX-1 and 

COX-2, producing a binding affinity of -48 kcal/mol and -50 kcal/mol respectively. ARG 120 

and MET 522 formed hydrogen bonds with ligstroside derivative 2 in both isoforms of COX. 

In COX-1, the phenol ring formed pi-cation interactions with ARG 120, while TYR 355 in 

COX-2 engaged in pi-pi stacking. In both instances, ligstroside derivative 2 was able to 

penetrate deep into the binding pocket of the COX isoenzymes. Oleocanthal bound with a 

stronger affinity for COX-1; -42 kcal/mol compared to -30 kcal/mol in COX-2. While there 

were hydrogen bonds present in binding with COX-2 that were absent in COX-1, oleocanthal 

was positioned deeper within the binding site where a greater number of hydrophobic 

interactions with residues occurred. Hydroxytyrosol acyclodihydroelenolate demonstrated a 

preference for binding to COX-1, producing a binding affinity of -42 kcal/mol compared to -

23 kcal/mol in COX-2. ARG 120 formed hydrogen bonds in both enzymes, as well as GLU 

524 in COX-1 and SER 119 in COX-2. 10-hydroxy-10-methyl oleuropein aglycone bound to 

COX-2 with a slightly stronger affinity compared to COX-1, potentially due to the pi-cation 

interaction formed with LYS 83 in COX-2 which is absent in COX-1. 

 

Secoiridoids produced a majority of the overall greatest binding affinity scores, with 

ligstroside derivative 2 being the strongest binding ligand to COX-2 and second strongest to 

COX-1. Ligands were found to bind on the internal surface of the constriction at the base of 

the funnel-shaped entrance to the COX active site. The constriction is composed of the 

residues ARG 120, TYR 355, and GLU 524 [9]. In interactions with secoiridoids, the phenol 

ring engaged in pi-pi stacking and pi-cation interactions with ARG 120 and TYR 355 with 

both COX isomers (Figure 4.5). These interactions are not consistently present in binding of 
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the same ligands to COX-2; instead, ARG 120 forms H-bonds with the alkoxy group of the 

backbone bond structure in COX-2, instead of the carbonyl group in COX-1. 

4.3.5.6 Phenolic fatty acid esters 

 

Table 4.9: Ligand interactions with phenolic fatty acid esters 

Ligand Glide 

energy 

H-bond Pi-pi 

stacking 

Pi-cation Salt bridge 

1-oleyltyrosol 

COX-1 -51 GLU 524 
 

ARG 120 
 

COX-2 -44 SER 119 
 

LYS 83 
 

Deoxyloganic 

acid lauryl ester 

COX-1 -43 
THR 89, 

ARG 120    

COX-2 -35 ARG 120 
  

LYS 83 

 

Both phenolic fatty acid esters bound with a high affinity to COX-1 and COX-2. 1-

oleyltyrosol bound with the highest affinity to COX-1, producing a Glide energy of -51 

kcal/mol in COX-1 and -44 kcal/mol in COX-2. The phenol ring engaged in pi-cation 

interactions with both enzymes. Deoxyloganic acid lauryl ester bound to COX-1 and COX-2 

with a binding affinity of -43 and -35 kcal/mol respectively. ARG 120 formed hydrogen 

bonds in both interactions, while THR 89 formed a hydrogen bond in COX-1 and LYS 83 

formed a salt bridge in COX-2. 

 

4.4 Conclusion 

Overall, the olive phenolic compounds suggested non-specific inhibition of COX 

isoenzymes, with the predicted binding scores suggesting a marginally greater affinity for 

COX-1. The secoiridoids were the class of phenolic compounds producing the greatest 

binding affinity scores, with COX-2 suggested to bind to a greater ranger of ligand classes 

compared to COX-1.  

 

The strongest binding secoiridoid was ligstroside derivative 2, which demonstrated a high 

binding affinity to both COX-1 and COX-2 (Table 4.2 and 4.3). 1-oleyltyrosol is a phenolic 

fatty acid, the structure of which bears resemblance to the native fatty acid substrates of 

COX. Its structure enables binding in a manner similar to other fatty acids such as 

arachidonic acid, α-linolenic acid, and palmitic acid [227]. Possessing a long chain, 1-

oleyltyrosol binding strongly to both COX-1 and COX-2 may suggest that the additional side 
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pocket in the COX-2 active site could be exploited by this and other similar olive phenolic 

compounds. While the present docking results did not predict this, other conformations 

should be explored in future work. For both compounds identified as the strongest binders in 

this docking study, there is little known about their biological activity. 1-oleyltyrosol was 

identified to be present in the seed of the olive fruit and leaves [228, 229], and displays weak 

antibacterial activity [230]. Ligstroside derivative 2 was identified in olive pomace and 

wastewater [231]. Both these compounds are present in the olive in low concentrations. 

 

Close examination of specific interactions between the top ranked ligands and COX-1 and 

COX-2 indicated instances where interactions are formed with COX-2 residues that are 

absent in COX-1, and vice versa. These specific residues and interactions could be further 

investigated to determine whether they could be exploited to enhance specificity. The 

docking performed here provides an initial screening step in understanding the inhibitory 

potential of olive phenolic ligands in COX-1 and COX-2 enzymes. It is possible that 

physiological interactions between COX enzymes and potential inhibitors may involve 

kinetic parameters that are not directly apparent from structures, as docking methods utilise a 

static protein structure [232].  

 

In the landmark paper by Beauchamp et al. found that oleocanthal was able to inhibit COX-1 

and COX-2 in a manner similar to ibuprofen [70]. Responsible for the stinging sensation 

following ingestion of olive oil, this compound has become of interest in naturally occurring 

compounds with pharmacological properties over the years [233, 234]. Here, oleocanthal was 

ranked as the 12
th

 strongest binder to COX-1 and 44
th

 strongest to COX-2 (Table A2.3h, 

Appendix 9.2.2).  

 

From the 159 compounds docked, 1-oleyltyrosol and ligstroside derivative 2, as well as 

oleocanthal for its prevalence in literature were ultimately chosen for further analysis. The 

next chapter will detail further screening of the olive phenolic library based on bioavailable 

characteristics, as well as simulations of compounds of interest to examine membrane 

permeability. Mechanisms of inhibition of these olive compounds using molecular dynamic 

simulations will be discussed in Chapter 6.  
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5. ADMET & preliminary 

study in membrane 

permeability 

5.1 Introduction 

The successful development of a drug relies critically on understanding its pharmacokinetics 

and potential toxicity. This chapter describes the analysis of absorption, distribution, 

metabolism, excretion and toxicity (ADMET) properties for compounds in the phenolic 

library, followed by the selection of the most suitable candidate compounds based on both 

docking and ADMET scores. 

 

To reach their intended target, most drugs need to pass through at least one cellular 

membrane. As an adjunct to the membrane permeability of selected compounds was 

investigated by simulating the process of membrane diffusion at an atomic level using steered 

molecular dynamics (SMD) simulations. This was followed by umbrella sampling to estimate 

approximate permeation potentials of mean force (PMF) for the main compounds of interest. 

These techniques provide insight into the bioavailability of olive phenolic compounds.  

 

5.2 Methods 

5.2.1 ADMET 

The ADMET properties of each phenolic compound was measured to assess the 

pharmacokinetic attributes of the compound within the human body using the ‘ADMET 

Descriptors’ function within Discovery Studio 4.1 (BIOVIA Discovery Studio, San Diego, 

US). The module is used to quantitatively predict properties by a set of rules that specify 

ADMET characteristics. For obtained hits, some important ADMET descriptors—for 

example: human intestinal absorption, aqueous solubility, blood brain barrier (BBB), plasma 

protein binding, and hepatotoxicity were calculated. Human intestinal absorption and aqueous 
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solubility descriptors predict the absorption and solubility, respectively [235, 236]. BBB, 

plasma protein binding, and hepatotoxicity descriptors predict blood brain penetration of a 

molecule after oral administration, binding to carrier proteins in the blood, and potential 

human hepatotoxicity [237, 238]. The compounds that fulfilled the acceptable criteria for 

these descriptors were subsequently selected for molecular docking studies. 

5.2.2 Steered molecular dynamics and umbrella sampling 

All steered molecular dynamics (SMD) simulations were performed using GROMACS 4.6.5 

software package [139, 239]. The membrane bilayer topology was obtained from Lipidbook 

[240, 241]. The 1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC) membrane consisted of 72 

lipids per leaflet and each system was hydrated with ~6100 water molecules. The system 

corresponded to cell dimensions of 5.2 × 5.2 × 11.5 nm
3
. Due to the periodic boundary 

conditions, the membrane spanned the x-y-plane in a continuous manner. Simulations were 

run using TIP3P water [242] and CHARMM27 lipid parameters [243-245]. Small-molecular 

parameters were generated using SwissParam [246]. The ligand was positioned above the 

membrane at a distance equivalent to half the thickness of the membrane (~1.5 nm). MD 

simulations were performed under the isothermal-isobaric (NPT) ensemble using the 

GROMACS 4.6.5 package [139, 239] and CHARMM27 force field [243, 245]. A steepest-

descent minimisation scheme was initially applied to the system. The temperature was kept 

stable at 310K using the Nose-Hoover ensemble [157, 158, 247], and the pressure was 

controlled semi-isotropically by a Parrinello-Rahman barostat [159, 248, 249]. All bond 

lengths were constrained by LINCS algorithms [250].  Long-range electrostatic forces were 

evaluated using the particle-mesh Ewald scheme (grid spacing 0.12 nm) [154], while short-

range non-bonded interactions were calculated using a cut-off ratio of 1.4 nm for both 

Coulomb and van der Waals potentials. The spring constant was set to 1000 kJ/mol/nm and a 

pull rate of 0.01 nm/ps was implemented. The time length for the simulations was 800 ps for 

olive phenolic ligands, and 1000 ps for H33342 and propidium. The mean force profile for 

each ligand was calculated by averaging the outcome of 10 independent runs.  

 

The free energy of methyl malate-β-hydroxytyrosol ester and oleocanthal across the bilayer 

was computed from the potential of mean force (PMF) using umbrella sampling. SMD 

simulations pulling the molecule through the membrane beginning and ending in the aqueous 

phase was conducted as described above. 30 configurations were generated along the z-axis 

direction (reaction coordinate). The z coordinates of centre of mass (COM) distance between 
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the ligand and membrane in each configuration differed by about 0.1 nm. Each window was 

equilibrated for 100 ps, and a production run of 10 ns was continued for sampling. The PMF 

profile was calculated using the Weighted Histogram Analysis Method (WHAM) [184], 

implemented in GROMACS package as ‘g_wham’ [251]. 

 

5.3 Results and Discussion 

5.3.1 Phenolic ADMET 

The results presented in Figure 5.1 describe the ADMET properties of all olive phenolic 

compounds in terms of their ability to be absorbed into the gastrointestinal tract, and their 

blood brain barrier penetration. These parameters were calculated based on their logP value 

and polar surface area. LogP describes the logarithm of the octanol/water partition 

coefficient, providing a measure of the lipophilicity of a compound. Lipophilicity is one of 

the most critical parameters for passive membrane partitioning, with an increased logP 

enhancing permeability [252]. The logP value of a compound also has importance in the 

prediction of biological activities, and toxicological end points [253]. 

 
Figure 5.1: Polar Surface Area (PSA) vs logP for olive phenolics showing 95% and 99% 

confidence limits, denoted by ellipses corresponding to blood brain barrier (BBB) and 

intestinal absorption models. 



 

73 

 

Of the 222 phenolic compounds analysed, 107 were found to fall within in 99% confidence 

limit for intestinal absorption, and this fell to 100 for the 95% confidence limit. For BBB 

penetration, 88 were within the 99% confidence limit, and 68 within the 95% confidence 

limit. Other biological parameters relating to ADMET were also calculated with Discovery 

Studio. 214 were found to not be inhibitors of cytochrome P450 2D6, 154 to be non-

hepatotoxic, and 192 to be low binders of plasma protein.  

 

In the search for a novel compound with potential COX inhibitory activity, the results from 

docking and ADMET were combined. A list of strong binders which were ADMET approved 

was curated. Compounds were considered ADMET acceptable if they fell within both 99 and 

95 confidence limits for intestinal absorption. The list was further refined based on 

commercial availability. Oleocanthal (OLEO) was chosen as a point of comparison based on 

its known ibuprofen-like activity and prevalence in literature [70]. Methyl malate-β-

hydroxytyrosol ester (MMHTE) was found to be the only compound that bound with a strong 

affinity to both COX-1 and COX-2 compared to OLEO, as well as fulfilling ADMET criteria 

and being non-commercially available (Table A1.1, Appendix 9.1).  

 

Table 5.1: Docking summary for MMHTE and OLEO 

 

 

 

Phenolic ligand MW 

COX-1 Docking COX-2 Docking 

Rank 
Energy 

(kcal/mol) 
Rank 

Energy 

(kcal/mol) 

 

MMHTE

 

284 10 -43 34 -33 

 

OLEO 

 

305 12 -42 44 -30 
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Table 5.2: ADMET summary for MMHTE and OLEO 

 

 
MMHTE OLEO 

Human intestinal absorption Yes Yes 

Blood brain barrier penetration No Yes 

Hepatototoxicity No No 

Cytochrome P450 2D6 inhibition No No 

Plasma protein binding No No 

 

 
Figure 5.2: Polar Surface Area (PSA) vs logP for MMHTE and OLEO showing 95% and 

99% confidence limits, denoted by ellipses corresponding to blood-brain barrier (BBB) and 

intestinal absorption models 

 

Human intestinal absorption is one of the major factors affecting oral absorption, an 

important step in the early phase of lead discovery and optimisation [254, 255]. Through 

Discovery Studio, it was found that both MMHTE and OLEO were predicted to be absorbed 

in the intestinal tract (Figure 5.2). Blood brain barrier (BBB) penetration is an important 

property in the design of drugs for targeting or avoiding the brain [254]. MMHTE had a logP 

value of 0.86 and PSA of 1.15 nm
2
, and these values for OLEO were 2.34 and 0.82 nm

2
. 

OLEO was predicted to fall within the confidence limits for BBB penetration, while MMHTE 

was at the margin of, but not within these limits (Figure 5.2).  
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More than 90% of market withdrawals are due to drug toxicity, with hepatotoxicity being a 

major cause for the high attrition rate of drugs [254, 256]. MMHTE and OLEO were 

predicted to be non-hepatotoxic (Table 5.2). The human cytochromes P450 (CYPs) are a 

factor in the prediction of drug metabolism, as drugs are mainly broken down into harmless 

soluble metabolites excreted through urine or bile. More than 90% of approved therapeutic 

drugs are metabolised by five major isoforms: CYP1A2, 2C9, 2C19, 2D6, and 3A4 [254, 

257]. It was predicted that both MMHTE and OLEO are classified as inhibitors of the CYP 

2D6 enzyme (Table 5.2). 

 

As there is a high concentration of plasma proteins found in the bloodstream, the degree to 

which candidate drugs bind to these proteins can affect the efficiency of their distribution. 

The plasma protein binding for MMTHE and OLEO were predicted to be false, suggesting 

that these compounds can efficiently reach their targets for the exertion of pharmacological 

effects (Table 5.2).  

 

Oleocanthal has an absorption in the human body of 60—90% and has been studied for its 

anti-inflammatory and anti-cancer properties [70, 258, 259]. It has also been investigated in 

brain health, linked to a reduced risk of Alzheimer’s disease (AD) [233, 260]. A 2013 study 

by Abuznait et al. enhanced clearance of β-amyloid, one of the characteristic proteins that 

accumulate in AD [260]. The various biological effects of oleocanthal indicate its ability to 

be absorbed through the gastrointestinal tract, as well as the potential penetration of the BBB. 

MMHTE is a novel compound, and its biological effects have not yet been studied. The 

ADMET results outline above indicate that there may be some similarities to oleocanthal.  

 

Further work will involve analysing the ADMET properties of the olive phenolic library 

using other ADMET programs to obtain additional biological parameters such as Caco-2 and 

MDCK cell permeability, human Ether-a-go-go Related Gene (hERG) inhibition, and P-

glycoprotein inhibition. This can be done using SwissADME and Schrodinger’s QikProp 

[261, 262]. 

 

The potential bioavailability of these two compounds is further investigated SMD 

simulations, which will be presented in the next section. 
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5.3.2 Steered dynamics simulations 

The potential bioavailability of MMHTE and OLEO was further investigated using SMD 

simulations. As well as these two compounds, positive and negative controls were also 

selected based on the ADMET results and known biological activity. ADMET data showed 

that hydroxytyrosol fell within the limits for intestinal absorption and BBB penetration, while 

elenolic acid diglucoside was well outside (Figure 5.1). These olive phenolic compounds 

were selected as positive and negative controls, respectively. Hoescht 33342 is biologically 

known to be membrane permeable, while propidium is known to be non-permeable to cells 

[263, 264]. Hence, these compounds were selected as additional positive and negative 

controls, respectively.  

 
Figure 5.3: Compounds used for SMD simulations – methyl malate-β-hydroxytyrosol ester 

(A), oleocanthal (B), hydroxytyrosol (C), elenolic acid diglucoside (D), propidium (E), and 

Hoescht 33342 (F). 
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The profiles for the average pulling force over 10 runs of SMD simulations for each ligand 

passing through the DOPC membrane are presented in Figure 5.4. Increased force appears as 

the ligands begin to enter the membrane, implying energy barriers are encountered. As 

ligands travel through the lipid bilayers, pulling force either plateaus or further increases, 

before decreasing and returning to zero as ligands exit the membrane and reenter the water 

phase. An peak occurs as ligands approach the phosphocholine group of the lipid bilayer, 

suggesting that another energy barrier is encountered. As the force approaches zero, it is 

suggested that ligands have completeley passed through the lipid bilayer, hence returning to 

the water phase. HT, OLEO, and MMHTE demonstrate similar force profiles, while EADG, 

H33342, and propidium demonstrate higher force peaks. 

 

Figure 5.4: Force profile as ligands are pulled through DOPC membrane with respect to 

position of the ligand along the bilayer normal (z) for methyl malate-β-hydroxytyrosol ester 

(MMHTE), oleocanthal (OLEO), hydroxytyrosol (HT), elenoic acid diglucoside (EADG), 

Hoescht 33342 (H33342), and propidium. Forces are shown as an average of ten runs for 

each ligand, with error bars showing the standard error of every second data point. 

 

The force profile of HT shown in Figure 5.4 demonstrates that it is able to easily pass through 

the lipid bilayer, with the least force required out of all the ligands. The maximum force of 

202 kJ/mol/nm occurs at ~300 ps, as HT passes through phosphocholine head groups and 

approaches the fatty acid tails of the membrane. The force gradually decreases as HT exits 

the membrane.  
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MMHTE also demonstrates a small force barrier for the penetration of the DOPC membrane. 

Two peaks are observed as the ligand enters and exits the lipid membrane at ~200 and ~500 

ps, reaching maximum forces of 224 kJ/mol/nm and 262 kJ/mol/nm respectively. As 

MMHTE travels through the membrane, the force plateaus at ~180 kJ/mol/nm, indicating 

some lipophilicity of MMHTE. Figure 5.5 presents the various orientations assumed by 

MMHTE as it passes through the DOPC membrane. As the ligand enters the membrane, the 

phenol head group is orientated downwards. Following entry of the membrane, MMHTE 

assumes a flat position. Gradually, MMHTE turns and orients itself such that the tail of the 

ligand exits the membrane first. 

 

Figure 5.5: Permeation of MMHTE through DOPC membrane at 146 (A), 253 (B), 434 (C), 

and 608 (D) ps. 

 

Similar to MMHTE, OLEO also demonstrated that a relatively small amount of force was 

required to penetrate the membrane. Initially, there is a slightly higher force barrier 

encountered as OLEO enters the membrane, reaching a peak of 330 kJ/mol/nm at ~200 ps. 

This force quickly decreases, plateauing at ~180 kJ/mol/nm from ~300—500 ps, before 

entering a slight blip at ~500 ps as the ligand exits the membrane. The orientations of OLEO 

as it passes through the membrane are shown in Figure 5.6 below. As OLEO enters the 

membrane, it assumes a folded position with neither head nor tail pointing downwards. 

Similar to MMHTE, OLEO assumes a flat positions as it moves through the fatty layer. This 

flat position is retained until the ligand exits the membrane, led by the tail-end of the 

compound. 

 

 



 

79 

 

 
 

Figure 5.6: Permeation of OLEO through DOPC membrane at 110 (A), 232 (B), 462 (C), 

and 582 (D) ps. 

 

Elenolic acid diglucoside (EADG) is an olive phenolic compound, classified as a secoiridoid 

and found in the olive fruit, leaf, and pomace [265-267]. With a molecular weight of 553 

g/mol, EADG is a larger compound compared to oleocanthal and MMHTE (305 g/mol and 

284 g/mol respectively). EADG has a high polar surface area of 2.55 nm
2
 and low logP of 

3.06, placing it outside the limits for intestinal absorption and BBB penetration in Figure 5.1. 

The low lipophilicity of this compound suggests that it may not pass through the cell 

membrane easily, hence SMD simulations were performed with EADG as a means of 

negative control. As expected, the force profile for EADG reaches a higher magnitude 

compared to the other olive phenolic compounds. As with the other ligands, two peaks occur 

at ~300 and ~500 ps, with the maximum force being 433 kJ/mol/nm. It should be noted that 

the DOPC membrane is severely disrupted as EADG is passing through. To allow the 

membrane to recover, SMD simulation of EADG was also conducted with a pull rate reduced 

by a magnitude of 10 (1.0 nm/ns) (Figure A3.2, Appendix 9.3.2). While the force value 

calculated here should not be taken as a direct quantitative measure, for the purposes of this 

section the significantly higher force is interpreted to mean that a greater force is required for 

this compound to pass through the membrane, compared to other olive phenolic compounds 

of interest. 

 

Propidium iodide is a commonly used fluorescent stain for the detection of dead cells in a 

population, since it is not permeant to live cells [263]. Thus, propidium was used as an 

additional negative control in this study. Its force profile demonstrates that greater force is 

required to pass through the membrane. A peak force of 462 kJ/mol/nm occurs at the 

midpoint of the simulation. Unlike the other compounds, the shape of the force profile shows 

a single peak. Rather than encountering force barriers around the phosphocholine head 
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groups as observed with other compounds, the largest force barrier occurs at the midpoint of 

the lipid bilayer. This may demonstrate the lipophobic nature of the compound. 

 

Hoescht stains are blue fluorescent dyes, with Hoescht 33342 (H33342) commonly used to 

stain DNA [268]. It works by binding to the minor groove of double stranded DNA and is 

known to be cell-permeable in both live and fixed cells [264]. The force profile for H33342 

shown in Figure 5.3 shows that although the initial force barrier is larger (403 kJ/mol/nm at 

~350 ps), this quickly decreases, and a plateau persists between ~400-700 ps at ~300 

kJ/mol/min, before peaking again as the ligand exits the membrane at ~700 ps and rapidly 

decreasing as H33342 re-enters the water phase. Taking longer to exit, the persistent force 

plateau observed as the ligand traverses the lipid bilayer is suggestive of its lipophilic 

properties, aided in part by the ethyl group present in its structure (Figure 5.2F) [269].  

 

In a study by Fox et al., the interaction of two NSAIDs, salicylate and ibuprofen, with 

vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were examined using 

optical-trapping confocal Raman microscopy [270]. While the membrane was permeable to 

both drugs, it was found that ibuprofen preferentially accumulates in the membrane while 

salicylate does not. This suggested that ibuprofen localises in the hydrophobic acyl chain 

region of the membrane, whereas salicylate is weakly associated with the phospholipid 

headgroups [270]. These results are in qualitative agreement with the force profile presented 

in Figure 5.4. The plateaus observed for OLEO and MMHTE agree with the behaviour of 

ibuprofen. An MD simulation study of NSAIDs in lipid membranes noted that compared to 

aspirin, lipid interactions with ibuprofen were largely governed by the hydrophobic tail rather 

than the polar headgroup, even when ibuprofen was charged [271]. Displaying similar 

behaviour to the weaker association of salicylate with the membrane, this trend was not seen 

in the force profile of HT (Figure 5.4) [270]. To further elucidate the membrane penetrating 

properties of OLEO and MMHTE, the PMF was subsequently calculated. 

 

5.3.3 Umbrella sampling 

Umbrella sampling was performed for OLEO and MMHTE to calculate the potential of mean 

force (PMF). 
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Figure 5.7: Potential mean force curve for MMHTE and OLEO pulled through DOPC 

membrane (symmetrised). Error bars are standard deviations calculated from 200 

bootstrapped PMFs. 

 

Figure 5.7 presents the symmetrised PMF curves for the penetration of MMHTE and OLEO 

through the DOPC lipid bilayer. It was found that OLEO produced a ΔG of 14.13 kcal/mol, 

and MMHTE yielded a ΔG of 9.40 kcal/mol. Consistent with the force curve in Figure 5.4, 

these two olive phenolic compounds have a similar amount of force required to penetrate the 

lipid bilayer, with OLEO requiring marginally greater force.  

 

PMF was determined by pulling the ligand across the entire membrane, then symmetrising 

the resulting profile, such that the profiles were adjusted to be identical on both sides of the 

membrane centre starting and ending at 0. This method has previously been shown to 

produce a more accurate result compared to simulating over half the range for twice as long 

i.e. from one side to the membrane centre [107]. 
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Figure 5.8: Potential mean force curve for MMHTE (A) and OLEO (B) pulled through 

DOPC membrane with each window simulated for varying lengths, prior to symmetrisation. 

 

Prior to symmetrising, the degree of asymmetry suggested accumulated error (Figure 5.8). 

The asymmetry between the two end points is ~3 kcal/mol, potentially indicating slow 

converging orthogonal degrees of freedom [107]. This may be due to residual disturbance to 

the membrane structure from the starting states generated with SMD. To rectify this, a longer 

equilibration of the starting states may be required [107, 272]. This will be done in further 

work. 

 

A study by Boggara and Krishnamoorti calculated PMFs of aspirin and ibuprofen in bilayers 

of dipalmitoylphosphatidycholine (DPPC) [271]. Using the GROMOS force field with the 

simple-point charge water model, the PMF was calculated for one monolayer and assumed to 

apply to the other monolayer. The trends in K values obtained from MD results of the study 

agreed with experimental trends [271]. In an anionic environment, the ΔG of ibuprofen was 

found to be -36.6 ± 3.0 kJ/mol (equivalent to 8.75 ± 0.72 kcal/mol) [271]. This value 

approximately agrees with the ΔG value for MMHTE of 9.40 kcal/mol (Figure 5.7). 

Although the calculated ΔG for OLEO slightly deviates from these values (14.13 kcal/mol), 

further equilibration of these simulations may provide more accurate estimates in further 

work.  

 

It has been suggested that membrane fluidity may be a prerequisite of COX binding [273, 

274]. The flexibility of COX proteins at the junction between the membrane bound domain 

and the catalytic domain substrates provide an access path to the cyclooxygenase active site 

from within the lipid bilayer [212, 275]. Additionally, the inhibition of facilitated sulfate 

transport may contribute to the toxicity of NSAIDs on gastromucosal cells [276-278]. One of 
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the suggested mechanisms for the gastrointestinal (GI) toxicity of traditional NSAIDs was the 

direct interaction of the drugs with zwitterionic phospholipids lining the GI mucosa [279, 

280]. Therefore, understanding the interaction between potential COX inhibitors with 

membranes gains further importance for predicting the biological activity of these 

compounds.  

 

5.4 Conclusion 

In this chapter, the full library of olive phenolic compounds was analysed for their ADMET 

properties. Combining the results of the ADMET study and docking results obtained in 

Chapter 4 resulted in the selection of a novel compound which demonstrated favourable 

ADMET properties and strong binding to COX-1 and COX-2: methyl malate-β-

hydroxytyrosol ester (MMHTE).  

Following selection of the compounds of interest, a preliminary study of membrane 

permeability was performed. SMD simulations were performed to assess the force required to 

penetrate a DOPC membrane. Umbrella sampling was performed for MMHTE and 

oleocanthal to produce a potential mean force (PMF) curve for penetration of the DOPC 

membrane. While the PMF provided a more quantitative energy estimate, a longer 

equilibration time may be required for a more reliable estimate. Further work is required and 

will be conducted in future studies. For this study, it is shown that MMHTE and oleocanthal 

require similar amounts of force to pass through a lipid bilayer, which is as expected due to 

their similar molecular structure. 

The membrane permeability of olive compounds has important implications for their 

bioavailability and toxicity, as well as their potential efficacy in accessing the COX active 

site for potential modulation of the protein. In the following chapter, the molecular 

mechanism for the COX inhibitory potential of the olive compounds selected in these 

chapters will be examined. 
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6. Molecular dynamics 

simulation 

6.1 Introduction 

Molecular dynamics (MD) simulation is a technique that can be used to effectively 

understand the structure and function of macromolecules. Using MD simulations, this chapter 

examines the dynamic properties of COX-1 and COX-2 bound to olive phenolic ligands 

selected from the previous chapters. This includes oleocanthal (OLEO), 1-oleyltyrosol (1OL), 

ligstroside derivative 2 (LG2), and methyl malate-β-hydroxytyrosol ester (MMHTE). The 

native ligands present within the original crystal structures of the protein were also included, 

being flurbiprofen (FLP) in COX-1 and salicylate (SAL) in COX-2. While the COX enzymes 

are monotopic membrane proteins, the membrane is excluded from simulations in this 

chapter for computational efficiency. The extraction of COX from the membrane is unlikely 

to induce a major conformational change altering the native membrane-bound structure, as 

the catalytic domain is structurally homologous to the soluble enzyme canine 

myeloperoxidase [8, 281].  

 

The dynamical response of the protein to binding of different ligands may offer alternative 

quantitative or semi-quantitative measures which might correlate with the biological activity 

of the ligand. The COX protein channel undergoes structural fluctuations, such as through 

reduced disorder in helix D residues upon ligand binding to COX-2 [282]. The shift in 

orientation of this helix enables the opening and closure of the gate region in the active site of 

both COX-1 and COX-2 [74, 283]. Protein dynamics has been shown to play a role in 

protein-ligand interactions, determining the binding affinity for a ligand [284]. Additionally, 

it has been suggested that allosteric perturbations can change the relative distributions of 

states within an ensemble [285].  

 

Thus, further predictive measures are proposed based on structural changes in order to 

complement more traditional measures of bioactivity based on ligand binding energy. This 

involves performing classical MDS, as well as employing additional analytical methods using 
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MD data such as essential dynamics (ED), network analysis, and Molecular Mechanics-

Poisson Boltzmann Surface Area (MM-PBSA) calculations. This chapter will describe the 

use of these techniques to elucidate the mechanism for the binding of selected olive 

compounds to COX proteins. 

 

6.2 Methods 

6.2.1 MD simulation procedure 

MD simulations were conducted using GROMACS 4.6.5 software package to further 

investigate the dynamics of the binding mode of ligands determined from molecular docking 

[139, 239]. The topology files of COX-1 and -2, as well as the ligands, were generated using 

pdb2gmx within Gromacs and SwissParam respectively [246]. MD simulations were run 

using the CHARMM27 force field [243, 245]. Both COX-1 and COX-2 complexes were 

solvated using TIP3P water [242] in a truncated octahedron period box, with a minimum of 

1.2 nm distance between any protein complex atom to the closest  box edge. Chloride 

counterions were added to the solvated system to neutralise the charge. Energy minimisation 

was performed on the system using a steepest-descent gradient method for a maximum of 

50,000 steps.  Next, each protein-ligand complex was restrained using an isothermal-

isochoric (NVT) ensemble for 100 ps. This was followed by pressure stabilisation using the 

isothermal-isobaric ensemble (NPT) for 100 ps.  

 

MD simulations were performed for 100 ns with a time-step of 2 fs. The temperature was 

kept stable at 300 K using velocity rescaling with a stochastic term [286], and the pressure 

controlled isotropically at 1.0 bar using a Parrinello-Rahman barostat [159, 248, 249]. 

Trajectories were written every 10 ps. Each production run was submitted in triplicate, with 

velocities randomly generated according to a Maxwell distribution. All bond lengths were 

constrained by the LINCS algorithm [250].  Long-range electrostatic forces were evaluated 

using the particle-mesh Ewald scheme (PME) (grid spacing 0.16 nm) [154], while short-

range nonbonded interactions were calculated using cutoff ratios of 1.4 nm for both Coulomb 

and van der Waals potentials.  

 

Molecular dynamics parameters (mdp) files used for the energy minimization, NVT, NPT 

and production runs are provided in Appendix 9.4.1. Root mean square deviation (RMSD) 
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and root mean square fluctuation (RMSF) were calculated. Protein structures were visualised 

using visual molecular dynamics (VMD) 1.9.1 [211]. 

  

MDS applications were completed on computing platforms provided by Victorian Life 

Sciences Computation Initiative (VLSCI) and National Computational Infrastructure (NCI), 

specifically IBM Blue Gene/Q (Avoca) and IBM iDataplex x86 system (Barcoo) from 

VLSCI, and an Intel Xeon Sandy Bridge and Broadwell processor cluster (Raijin) at NCI.  

6.2.2 Essential dynamics analysis 

Utilising principal component analysis (PCA), ED was used to filter large-scale concerted 

motions from the MD trajectories of COX complexes [166, 287]. Three independent 10 ns 

segments from each triplicate trajectory with different initial atomic velocities were 

concatenated to obtain a single 30 ns trajectory, representing different sampling directions 

around the starting structure. A covariance matrix was generated from the atomic fluctuations 

in the trajectory, which was then diagonalized to obtain a set of eigenvectors and 

corresponding eigenvalues. For the COX complexes, the protein and hydrogen covariance 

matrices were built and diagonalized using the g_covar tool within the GROMACS package. 

Projections of trajectories onto the eigenvectors were performed using the g_anaeig tool 

within GROMACS. The concerted motions were visualised using a Tcl script combined with 

VMD to plot porcupine representations of the motions [211, 288]. 

6.2.3 Network analysis 

Modular NETwork Analysis (MONETA) was used with the MD data of COX complexes to 

build and analyse intermolecular communications between the residues of COX-1 and -2 in 

their bound and unbound forms [168]. MONETA builds a modular network representation of 

a protein, composing clusters of residues representing independent dynamic segments (IDSs) 

and chains of residues representing communication pathways (CPs). IDSs were identified 

using Local Feature Analysis (LFA), a statistical method based on PCA that transforms 

global modes of the protein into ‘local modes’ to describe local dynamical behaviour 

independent from the rest of the protein motions [169, 170]. Calculations were performed on 

a 10 ns segment of trajectories of the apo forms of COX, as well as COX bound to each 

ligand.  

 

Distance matrices comprised of the average smallest distance between each Cα residue pair 

were computed using the Cpptraj module of AMBER 12 [289, 290] and the g_mdmat tool 
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implemented in GROMACS 5.0.5 [139, 291]. Pairs of residues were considered neighbours if 

the average smallest distance between them was lower than a threshold of 0.37 nm. 

MONETA employs the concept of communication propensity to characterise CPs [171]. CPs 

are grown so that any two adjacent residues are connected by non-covalent interactions, and 

that every residue in the CP is connected to any other point by a short commute time (CT). 

Non-bonded interactions along the trajectory were computed using LIGPLOT [292]. Two 

residues were considered interacting when they formed at least one non-bonded interaction 

for at least 50% of the simulation time. The CT threshold value was 0.1 for all studied 

systems. 

 

The protein structure, interactions, and communication paths were visualised with PyMOL 

and Gephi modules incorporated in MONETA [168, 194].  Protein visualisation was also 

performed using VMD 1.9.1 [211]. 

6.2.4 MM-PBSA: Per-residue energy decomposition 

Per-residue decomposition analysis was performed to obtain a quantitative description of the 

energetic contribution of each amino acid with the ligands considered. As evident from 

previous studies, binding free energy calculations and their per-residue decomposition 

methods are crucial for determining the binding mechanisms of protein–protein or protein–

ligand complexes [116, 173].   

 

MM-PBSA calculations were performed on three independent 1 ns segments of the generated 

trajectory with different initial atomic velocities, and an average was taken. It has been found 

that this method generates more accurate calculations than analysing a single trajectory 

spanning a longer timeframe [293]. This is likely due to an amplification of force field errors 

along the MD simulation time frames, rather than errors in non-converged energy in the 

system [293, 294]. 

 

Calculations were performed using the g_mmpbsa tool [180, 181]. Contributions from the 

electrostatic energy, van der Waals energy, and polar solvation energy terms were calculated 

using adaptive Poisson-Boltzmann Solver [295]. For MM-PBSA calculation, the grid spacing 

was set to 0.05 nm. Values of 80 and 2 were taken for solvent dielectric constant and solute 

dielectric constant respectively. The non-polar energy contribution was approximated using 
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solvent-accessible surface area (SASA). Probe radius for SASA estimation was set to 

0.14 nm. Entropic energy terms were not included in the calculation.  

 

6.3 Results and discussion 

6.3.1 Comparison of ligand effects on overall protein structure and motions: RMSD and 

RMSF 

To assess the stability of the protein-ligand complexes, they were each independently 

simulated in triplicate in a water box for 100 ns. RMSD for the protein relative to backbone 

atoms are shown in Figure 6.1. Each curve was calculated as an average over the three 

trajectories at each time point. The graph shows that the structural drift for each protein-

ligand complex is relatively consistent, producing an RMSD of approximately 0.30 nm in 

COX-1 and 0.25 nm in COX-2.The standard error for the RMSD of the protein complexes is 

shown in Figure A4.1 in Appendix 9.4.2. 

 

The RMSD for COX-1 and COX-2 begins to stabilise at around 15 ns, an indication that the 

chemical and physical properties of the system have equilibrated. After 15 ns, the average 

RMSD of the COX-1 complexes are: 0.30 nm in its apo form, 0.31 nm for FLP, 0.30 nm for 

1OL, 0.31 for LG2, 0.29 for OLEO, and 0.28 for MMHTE. For COX-2, the average RMSD 

values are: 0.24 in its apo form, 0.28 for SAL, 0.23 for 1OL, 0.23 for LG2, 0.23 for OLEO, 

and 0.27 for MMHTE. Thus, COX-1 exhibits more consistent RMSD values irrespective of 

ligand, while COX-2 exhibits a greater spread of average RMSD values, and is more 

sensitive to ligand type. 

 

 
Figure 6.1: RMSD of backbone atoms of COX-1 (A) and COX-2 (B) bound to olive ligands 

for 100 ns: apo (blue), native ligand (red), 1-oleyltyrosol (green), ligstroside derivative 2 

(purple), oleocanthal (orange), and methyl malate-β-hydroxytyrosol ester (grey). 
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Figure 6.2: RMSF for backbone atoms of COX-1 (A) and COX-2 (B) for bound olive 

ligands for 100 ns: apo (blue), native ligand (red), 1-oleyltyrosol (green), ligstroside 

derivative 2 (purple), oleocanthal (orange), and methyl malate-β-hydroxytyrosol ester (grey). 

In (C) and (D) the average values of 5 residues are taken to produce a “moving average” of 

RMSF values, with the RMSF values for the apo form subtracted from ligand bound forms. 

 

 
Figure 6.3: RMSF for apo form of COX-1 (A) and COX-2 (B). Colour scale bar indicates 

root mean square fluctuation in nm. 

 

Root mean square fluctuation (RMSF) is a measure of flexibility of the backbone chain per 

residue, calculated by taking into account the fluctuation of the protein with respect to its 

average structure. This is shown in Figure 6.2, and the standard error of these plots shown in 

Figure A4.1 in Appendix 9.4.2. The RMSF graphs shown in Figure 6.2 demonstrate that the 
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greatest flexibility was in the first 100 residues of the protein. Other residues demonstrate a 

higher rigidity, and likely contribute to the stability of the protein. To illustrate the location of 

these residues within the protein, Figure 6.3 depicts ribbon structures of COX-1 and COX-2 

colour coded according to RMSF. It can be observed that the first 100 residues have higher 

flexibility, with this region corresponding to the N-terminal epidermal growth factor (EGF)-

like domain and the membrane binding domain (MBD). The larger C-terminal globular 

catalytic domain containing the active site was shown to be structurally stable with 

comparatively lower fluctuation for both COX-1 and COX-2 throughout the span of the 

simulation. 

 

In Figure 6.2 C and D, a “moving average” of RMSF values was produced. This was done by 

taking the average of five sequential residues in a set, with each set beginning with the next 

residue. This was followed by a subtraction of these values for the apo form from ligand 

bound forms. Through this, noise is reduced to demonstrate differences in RMSF values that 

can be attributed to different ligands bound to COX-1 and COX-2 relative to their apo forms. 

The greatest peaks and troughs of RMSF differences tend to follow the fluctuations observed 

in their graphs for the original RMSF (Figure 6.2A and B). This indicates that structural 

changes occurring due to the type of bound ligand are occurring at residues that contain the 

greatest deviation from the average structure. While there tends to be little difference in 

RMSF values for most residues, it can be noted that the N-terminal residues of COX-2 bound 

to OLEO display a similar RMSF to that of the apo form (Figure 6.2D). This may suggest 

that binding to OLEO does not significantly alter the flexibility of the EGF-like domain in 

COX-2. 

 

The bottom of the NSAID binding site of COX-2 can assume two possible conformations 

[275]. These involve helix D, the first half of which comprises residues 107-116 and lies in 

the same plane as other helices of the domain, being proposed to interact with the membrane 

[275]. Residues 117-121 comprise the second half of the helix, which extends out of the 

plane of the membrane to form part of the cyclooxygenase active site [275].  The structural 

changes involved in the open binding site are from the second half of helix D located in the 

binding site, rather than the membrane binding function of the protein [275]. The ability of 

the protein to transition from open to closed forms enables substrates and inhibitors to access 

the internal binding site from within the membrane [275]. From the RMSF graphs in Figures 

6.2 and 6.3, residues 117-121 of the second half of helix D demonstrate greater flexibility in 
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COX-2 bound to LG2 and MMHTE. A similar trend is observed in COX-1, with a greater 

difference observed in COX-1 bound to LG2. This may suggest that the binding site assumes 

different conformations when bound to these two ligands compared to other olive phenolic 

ligands. 

6.3.2 Essential dynamics analysis 

Motions of the protein were analysed to extract the most essential movements which might be 

central to the function of the protein.  

6.3.2.1 Conformational sampling 

Conformations explored in MD simulations are only a subset of those possible that the 

protein can assume. To correlate MD data with characteristics of the protein, it must be 

ensured that there is sufficient sampling efficiency. To do this, principal components analysis 

(PCA) was used to investigate the conformational sampling. The advantage of utilising PCA 

in finding large scale motions in protein structures is that most of the fluctuations are able to 

be captured in the first few principal modes, enabling analyses in only a few dimensions for 

easier visual inspection of results [296]. In this analysis, the first 10 eigenvectors are shown 

to contribute to approximately 80% and 70% of total fluctuation in COX-1 and COX-2 

respectively (Figure A4.2, Appendix 9.4.3). 

 

Insufficient sampling often leads to protein motions along principal components resembling 

random diffusion, providing a less accurate description of protein behaviour. More 

specifically, the first few principal components of protein simulations resemble cosines, 

where this sampling bears more resemblance to random diffusion rather than relevant 

motions [296]. In this study, the cosine content of the first 10 principal components from 

PCA analysis of single replicas and concatenated trajectories were calculated (Table A4.1, 

Appendix 9.4.3). These values range from 0 and 1, with 0 indicating no cosine and 1 

indicating a perfect cosine. It has previously been shown that a cosine content close to 1 may 

be representative of insufficient sampling where large scale motions along the eigenvector 

resemble random diffusion [297]. The cosine content of the first three principal components 

is generally lower in the concatenated trajectory compared to single replicas, suggesting that 

a higher number of MD simulations is more effective in obtaining reliable conformational 

sampling.  
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Another technique for investigating the sufficiency of conformation sampling is to examine 

principal modes of conformational space explored after dividing the simulation into two or 

more parts [296]. This is examined with the subspace overlap of the first few principal 

modes, where a wide region of the conformational space should be sampled with a partial 

overlap between different trajectories [296]. This is demonstrated by 2D plots of PCA-1 

against PCA-2 and PCA-3 in Figure 6.4A and B, as well as in Figure A4.3 in Appendix 9.4.3 

for all other ligands.  These plots show that COX-1 and COX-2 occupy a distinct region re-

sampled by replicas. These plots also show that there is generally more variation along the 

first principal component, especially in COX-2 where the plots tend to occupy a more 

flattened elliptical area compared to COX-1. 

 

In addition, the projection and its corresponding distribution along each principal component 

was measured. Figure 6.4 shows the first, second, and twentieth projection for COX-2 apo 

along with their corresponding distributions (C-H). The first three projections and 

distributions for all apo and bound forms of COX-1 and COX-2 are shown in Figure A4.3 in 

Appendix 9.4.3. These results indicate that the distribution of motion along the first few 

principal components is anharmonic, producing two or more distinct peaks. In comparison, 

the twentieth principal component displays a narrow Gaussian shape—indicative of more 

random motion. Hence, it was determined that the first three principal components of the 

concatenated trajectory can be used as a reference conformational space for subsequent 

analysis of protein dynamics. 
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Figure 6.4: 2D projection for COX-2 apo along PC-1 against PC-2 (A), and PC-1 against 

PC-3 (B). Projection of motion for PC-1 (C), PC-2 (E), and PC-20 (G), along with their 

respective distribution (D, F, H) is shown. 
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6.3.2.2 Concerted motions along the first eigenvector 

Essential dynamics analyses identified a number of segments which tend to move in 

concerted “blocks” in both COX-1 and COX-2. In this section we focus on several such 

blocks, especially for those for which there is some known functional significance. These 

include residues 32-85 (N-terminal epidermal growth factor-like domain, which is presently 

named “EGF block”), and 86-115 (membrane binding domain; “MBD block”). Further 

blocks of residues identified by essential dynamics and show significant motion, but which 

are not presently known for particular functions, are named simply as follows: 126-171 (C-

terminal globular catalytic domain; “GCD1 block”), 209-229 (“GCD2”), and 235-290 

(“GCD3”). Smaller blocks which move in concert within the above-defined larger ones have 

letters appended to their names alphabetically.  

 

The overall concerted motions of each eigenvector may be described in terms of the relative 

rotations and translations of these blocks. Changes in the nature of the concerted motions of 

these blocks upon binding could suggest change in functional properties associated with those 

clusters of residues. The movements of residues in these corresponding blocks for the first 

eigenvector of each complex are described in the following section.  

 

The movements of amino acid residues of the protein are described with respect to a 

perspective in which the first principal axis is aligned parallel to the page. Motion of blocks 

of residues within all three eigenvectors is shown in Table A4.4 of Appendix 9.4.3. The 

magnitude of motion is described relative to the magnitude of displacement observed within 

each eigenvector of the protein, and may be depicted using porcupine plots, where the motion 

vectors are centred at each amino acid. These porcupine representations are shown in Figure 

6.5 and Appendix 9.4.3, Figure A4.5. A table describing the values of colours pertaining to 

the magnitude of movement for each representation is listed in Table A4.2 of Appendix 9.4.3.  
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Figure 6.5: Porcupine plot of movement in the first eigenvector of COX-1 and COX-2 in its 

apo form, and bound to OLEO. Blocks of residues showing concerted movement are also 

depicted. Each coloured segment represents a block, with the surface of active site residues 

coloured in orange. Each block represented by a different colour: EGF block (blue), MBD 

block (red), GCD1 (yellow), GCD2 (green), and GCB3 (purple). 
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EGF block 

Corresponding to the EGF-like domain of the proteins, EGF block residues were shown to be 

the most dynamic of the whole protein. These residues demonstrated the most movement in 

all bound and unbound forms of COX-1 and COX-2. Concerted movement occurred in 

segments within this group of residues. Thus, the EGF block was further divided into 3 

smaller sections: EGFa spanning residues 32-47, EGFb spanning 48-69, and EGFc spanning 

70-85.  

 

In the apo form of COX-1, segment EGFc moved in an anticlockwise direction. For COX-1 

bound to FLP, EGF block residues of the first eigenvector demonstrated upward 

anticlockwise motion with a large magnitude. For COX-1 bound to 1OL, movement of EGF 

block residues in was concerted in the first eigenvector at segments EGFb and EGFc, moving 

in a clockwise direction upwards and downwards respectively. For COX-1 bound to OLEO, 

EGFa and EGFb moved as a unit in an anticlockwise direction with a large magnitude, and 

EGFc was moved upwards. COX-1 bound to MMHTE displayed movement in EGFc 

residues, moving upwards with a large magnitude in the first eigenvector. 

 

In COX-2, residues in the EGF block moved as a whole unit rather than segments as 

observed in COX-1. EGF block residues of the apo form of COX-2 moved with a small 

magnitude in a downward clockwise direction in the first eigenvector. For COX-2 bound to 

SAL, clockwise displacement was observed. COX-2 bound to 1OL demonstrated a smaller 

magnitude of displacement, with EGF block residues rotating in an anticlockwise direction in 

the first eigenvector. In COX-2 bound to LG2, there was clockwise movement of a moderate 

magnitude. For COX-2 bound to OLEO, residues of the EGF block moved in an 

anticlockwise direction. In COX-2 bound to MMHTE, residues displayed movement of a 

larger magnitude, moving in a clockwise direction. 

MBD block 

The MBD of the COX proteins comprises four short, consecutive, amphipathic α-helices. 

Three of these helices lie in the same plane, while the fourth helix protrudes upwards into the 

catalytic domain [9]. 

 

Movement of MBD block residues was not observed in the first eigenvector for the apo form 

of COX-1 and COX-1 bound to 1OL, however movement did appear in other eigenvectors. 

There was moderate movement was observed in the first eigenvector of COX-1 bound to 
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FLP. MBD block residues moved with an upward motion of a large magnitude in the first 

eigenvector in COX-1 bound to OLEO. COX-1 bound to LG2 and MMHTE did not display 

concerted motion of MBD block residues. 

 

MBD block residues displayed movement across all forms of COX-2, with the exception of 

COX-2 bound to 1OL. Upward motion of a moderate magnitude was observed in the first 

eigenvector of the apo form. Upward motion was also observed in the first eigenvector of 

COX-2 bound to SAL, as well as the in COX-2 bound to MMHTE. Moderate anticlockwise 

motion of these residues was observed in the first eigenvector of both COX-2 bound to LG2 

and OLEO.  

GCD1 block 

As with the EGF block, GCD1 block residues also displayed concerted motion in segments. 

The residues of GCD1 block were divided into segments GCD1a spanning residues 126-171, 

GCD1b spanning 134-148, and GCD1c spanning residues 149-171. 

 

For block 3 residues in COX-1, segment GCD1b displayed the most movement. In the apo 

form, GCD1b residues rotated in a clockwise direction in the first eigenvector. In COX-1 

bound to LG2, GCD1b residues displayed a moderate magnitude of motion downwards in the 

first eigenvector. A moderate magnitude of motion was also observed for residues of segment 

GCD1b in COX-1 bound to OLEO, with upward translation in the first eigenvector. 

Segments GCD1a and GCD1b moved in unison in the first eigenvector of COX-1 bound to 

1OL, where these residues moved downward with a moderate magnitude. For COX-1 bound 

to FLP, segment GCD1b moved in an anticlockwise direction. Residues of GCD1 block did 

not display concerted motion in COX-1 bound to MMHTE. 

GCD2 block 

Residues of GCD2 block in COX-1 displayed movement in the apo form and COX-1 bound 

to FLP, moving in an anticlockwise direction. These residues moved upwards with a 

moderate magnitude in COX-1 bound to 1OL. GCD2 block residues did not display 

concerted movement in forms of COX-1 bound to LG2, OLEO, and MMHTE. 

 

For COX-2, residues in GCD2 block only displayed movement in the first eigenvector when 

bound to LG2 and OLEO, moving anticlockwise with a small magnitude in both cases. 
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GCD3 block 

The movement of residues in GCD3 block was also divided into segments, with GCD3a 

spanning residues 233-264, and GCD3b spanning 265-290. 

 

In COX-1, GCD3 block residues moved as a single unit. Downward motion was observed in 

the apo form and COX-1 bound to FLP. For COX-1 bound to 1OL, GCD3 block residues 

moved upwards with a small magnitude. Concerted motion of GCD3 block residues was not 

observed in COX-1 bound to LG2, OLEO, and MMHTE. 

 

For COX-2 bound to 1OL, GCD3 block residues also moved as a single unit, translating in a 

downward motion with a small magnitude. Segment GCD3a displayed concerted motion in 

the apo form of the protein, as well as in COX-2 bound to MMHTE where upward motion of 

a small magnitude was observed. GCD3 block residues in COX-2 bound to LG2 all moved in 

a downward anticlockwise motion. It was observed that residues of segment GCD3a moved 

with a small magnitude of motion, while residues of GCD3b moved with a moderate 

magnitude of motion. Movement of GCD3 block residues in the first eigenvector was not 

observed in COX-2 bound to SAL and OLEO. 

6.3.2.3 Overall characteristics of ligand-dependent concerted motions 

The analysis of porcupine representations of protein motion in Figures 6.6 and Figure A4.5 in 

Appendix 9.4.3 show that movements of COX-1 and COX-2 do not appear to differ between 

the various ligand bound forms, nor between the unbound forms. Movement around the 

active site tended to be more conserved and restricted. The residues surrounding the outside 

of the protein appeared to display larger fluctuations, moving with a greater displacement 

compared to the rest of the protein. Residues moved with concerted motion in blocks of 

residues, with two of these blocks corresponding to the EGF domain and MBD of the COX 

proteins. The large fluctuation of these residues is consistent with RMSF data (Figures 6.2 

and 6.3). 

 

Along with the catalytic domain, the EGF domain forms the dimer interface, placing the two 

MBDs in a homodimer approximately 25 Å apart [9]. While it is unclear whether EGF 

domains have functional significance, they are commonly found in several families of 

membrane proteins and secreted proteins [9, 298]. Typically occurring in the primary 

sequence N-terminal to a membrane anchor, EGF domains are always located on the 
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extracytoplasmic face of the membrane [9]. It has been suggested that EGF domains of COX 

proteins play a role in the integration into the lipid bilayer [248, 299].  

 

The MBD of COX contains four α-helices, one of which is merges upwards into the catalytic 

domain. Aromatic and hydrophobic residues of these helices form a large hydrophobic 

surface on the exterior of the protein, which interacts with the hydrophobic interior of the 

bilayer [300]. The depth of the COX membrane binding surface is only adequate for 

interaction with one leaflet of the lipid bilayer, representing a monotopic mechanism for 

integrating into the membrane [300]. 

 

The essential dynamics analysis performed in this section identified that residues of the EGF 

domain and MBD in blocks 1 and 2 of COX display concerted movements. These 

movements may have an effect on dimerization and membrane insertion of COX-1 and COX-

2. While residues of GCD1-3 blocks are not known to have any functional significance, these 

blocks may form “dynamical domains” that contain functional modules. Residues that 

function together may be linked using this analysis, which may not be obvious from 

examination of protein structure alone. Further work will be required to elucidate the 

implications of these dynamical domains.  

6.3.3 Network analysis using MONETA 

The intra-protein communication pathways of all bound and unbound forms of COX were 

characterised using MONETA. A residue communication network was constructed based on 

the geometry of the protein, exploring long-range interactions and dynamical correlations to 

generate clusters of interacting residues calculated from MD trajectories. 

6.3.3.1 Independent Dynamic Segments 

Identification of Independent Dynamic Segments (IDSs) is based on Local Feature Analysis 

(LFA), a statistical technique that was originally developed for image analysis [169]. LFA 

extracts outputs of reduced dimensionality from PCA and was adapted to study essential 

dynamics in proteins, and implemented in MONETA to identify locally coupled residues, or 

IDSs [168]. 
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Fig 6.6: IDS of COX2 apo (A) and COX2 bound to oleocanthal (B). Individual IDSs are 

shown by coloured segments along the protein. 

 

Similar to essential dynamics described in the previous section, LFA also utilises PCA to 

examine the dynamical behaviour of protein. In the case of LFA, regions fluctuating as 

independent units away from the rest of the protein were identified, with these IDSs 

describing 80% of the total atomic fluctuation. These patterns are shown in Figure 6.6 for the 

apo form of COX-2 and COX-2 bound to OLEO. It can be seen that the various IDSs are 

located around the outside of the protein away from the active site, with regions that overlap 

with the blocks identified in essential dynamics. In particular, overlapping residues occur in 

blocks 1 and 2 corresponding to the EGF and MBD, supporting the dynamic nature of these 

domains within COX. Residues of GCD1-3 blocks, which are currently not known to have 

any significant functions within COX, were also found to be included in the IDSs identified 

by MONETA, further suggesting that there may be implications for dynamical domains 

within proteins.  It is believed that IDSs may play a crucial role in binding or allosteric 

propagation by shifting their energy content [301-303]. 

6.3.3.2 Protein communication network 

Figure 6.7 represents the intra-protein network graph in the apo form of COX-2 and COX-2 

bound to OLEO. Each residue is represented by a node linked by an edge indicating a 

connection—or communication path (CP)—between residues, such as peptide bonds or non-

covalent interactions. Remaining network graphs for all forms of COX are shown in Figure 

A4.6 in Appendix 9.4.4. Network metrics describing these graphs are listed in Table A4.5 in 

Appendix 9.4.4. 
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Figure 6.7: Communication pathway network for COX-2 in its apo form (A) and bound to 

OLEO (B). Nodes are coloured according to degree with red indicating that a residue has a 

higher number of connections. Nodes are labelled with their corresponding residue number, 

with a larger font indicating higher degrees. 

 

From examination of the network graphs, changes in the communication network are more 

apparent in COX-2 compared to COX-1. In general, the apo form of COX-2 forms larger 

clusters of well-connected residues, the communications of which are disrupted when ligands 

are bound to the protein. The number of CPs diminishes as ligands are bound. The apo form 

of COX-2 contains 12,805 CPs, which is reduced when COX-2 is bound to SAL (9,937), 

1OL (9,728), LG2 (9,940), OLEO (9,463), and MMHTE (8,340). These characteristics 

indicate that ligand binding causes a global perturbation in the communication network of 

COX-2. The most well-connected residues of the network are located away from the active 

site. This suggests that even if a well-connected residue were to be removed or altered, there 

may not be a significant impact on the ligand binding ability of COX isoenzymes.  

 

Characteristics of communications between residues of the protein network were described 

by metrics measuring the influence of each node within the graph. The number of 

connections of a single node is described by degrees, as shown in Figure 6.7 for COX-2 in its 

apo form and bound to OLEO.  Betweenness centrality measures how often a node appears 

on the shortest paths between nodes in the network. Residues with a high betweenness 

centrality may act as bottlenecks in a network that when disrupted, may render 
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communication within the protein network less efficient. Eigencentrality, or eigenvector 

centrality, is a measure of the node’s importance based on how well connected a particular 

node is to other well-connected nodes.  Closeness centrality refers to the average distance 

from a single node to all other nodes in the network.  Another measure of importance is 

PageRank, which is based on the Google Algorithm to determine the probability of being at a 

page after a number of clicks [304]. 

 

Network metrics were examined for residues with known functions: the active site, 

peroxidase active site, EGF, MBD, and glycosylated residues. These values were expressed 

as a percentage change with respect to the apo form of COX-1 and COX-2, shown in Figure 

6.8. Network metrics for these residues are listed in Table A4.6 in Appendix 9.4.4. From 

Figure 6.8 it can be observed that in general the degrees (A and B), betweenness centrality (C 

and D), and eigencentrality (E and F) tend to have fewer and sharper peaks in COX-2 

compared to COX-1. This suggests that ligand binding has a greater influence on fewer 

residues in COX-2, showing more localised effects on these network properties of functional 

residues. For closeness centrality, COX-1 and COX-2 display a similar number of peaks with 

similar sharpness, with COX-2 generally displaying decreased closeness centrality as ligands 

are bound to the protein. There was no apparent trend in PageRank values (G and H). 
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Figure 6.8: Percentage change in network metrics for functional residues of COX-1 (A, C, E, 

G, I) and COX-2 (B, D, F, H, J). Each ligand bound form of COX is represented by colours: 

native ligand (blue), 1OL (red), LG2 (green), OLEO (purple), and MMHTE (orange). Five 

clusters on each graph depict metrics for functional residues of COX: the active site (AS), 

peroxidase active site (POX), EGF domain, MBD, and glycosylated residues (GLY). 

Network metrics shown are shown as a percentage change with respect to apo: degrees (A-

B), betweenness centrality (C-D), eigencentrality (E-F), closeness centrality (G-H), and 

PageRank (I-J). 
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Residues of the active site generally displayed a decrease in degrees after ligand binding for 

both COX-1 and COX-2, indicating that the communication of residues within the active site 

may be disrupted. An increase in the degrees of active site residues for COX-1 bound to FLP 

and MMHTE is observed, with HIS 513 displaying larger changes that are not present in the 

other ligands. While this is not observed in COX-2, binding to SAL causes a larger increase 

in degrees for the residues LEU 352 and PHE 518 of the active site. In general, the 

betweenness centrality of active site residues fluctuated moderately, with more localised 

peaks occurring. In COX-1, binding to FLP, 1OL, and LG2 displayed an increased 

betweenness centrality for ARG 120, while this value for LEU 352 in COX-2 was drastically 

increased with the protein bound to 1OL and LG2 compared to apo. Eigencentrality was 

mostly increased in ligand bound forms of COX-1, with greater peaks observed for LEU 93 

of COX-1 bound to OLEO, and HIS 513 bound to MMHTE. There was modest fluctuation in 

the eigencentrality of active site residues in COX-2, displaying a general decrease with 

respect to apo. LEU 93 of COX-2 also had an increased eigencentrality when bound to 1OL 

and LG2. For closeness centrality, active site residues consistently had a decreased value 

when ligands were bound to COX-2. In COX-1, these values for the protein bound to FLP. 

MMHTE, and OLEO were increased, while closeness centrality decreased for COX-1 bound 

to 1OL and LG2. Across the ligand bound forms of COX-1, residue ARG 120 exhibited an 

increased value. 

 

Compared to the apo form, residues of the peroxidase active site in ligand bound COX-1 

generally exhibited increased network metrics. In particular, FLP and MMHTE bound COX-

1 displayed higher degrees and closeness centrality compared to other ligands.  On the other 

hand, peroxidase active site residues of ligand bound COX-2 displayed more moderate 

changes. ILE 274 in COX-2 bound to OLEO was observed to exhibit greatly increased values 

compared to other ligands for degrees, eigencentrality, and closeness centrality. Wang et al. 

found that bioflavonoids were able to bind to the peroxidase active site, functioning as 

reducing co-substrates for the COX enzymes [305]. This occurs through direct interaction 

with haematin, facilitating the electron transfer from bioflavonoids to haematin. When PGG2 

was used as a substrate, bioflavonoids were able to simulate the catalytic activity of COX-1 

and -2 [305]. This may suggest that phenolic compounds may modulate the activity of COX 

through binding to sites distance from the main catalytic site, and changes associated with the 

peroxidase active site residues may have an effect on its function. 

 



 

105 

 

The EGF domain and MBD domain of the COX proteins displayed more moderate 

fluctuations in network metrics compared to the active site and peroxidase active site. Like 

other regions of the protein, FLP and MMHTE bound forms were observed to have increased 

values for degrees, eigencentrality, and closeness centrality in COX-1. In COX-1 bound to 

OLEO, ASP 52 was observed to have higher degrees compared to other ligands and residues. 

In the MBD of COX-2, VAL 103 was observed to have increased degrees and closeness 

centrality, as well as in FLP and OLEO bound protein for betweenness centrality and 

eigencentrality. Glycosylated residues did not display obvious trends in the fluctuation of 

network metrics with respect to apo, with the exception of a decreased closeness centrality in 

COX-2 which was also observed with other regions of the protein. 

 

The identification of concerted motion and communication networks in proteins provides a 

technique for the characterisation of protein behaviour, allowing examination of more subtle 

changes that may not be immediately observable with conventional MD analysis methods. 

MONETA is a tool that can be used for identifying allosteric communication pathways, and 

further experiments are required to probe their existence in COX based on the network 

connections identified in this present study. MONETA has previously been useful for 

identifying changes in proteins with large conformational changes, as well as 

communications between spatially distant residues [306]. In the modular network analysis 

shown in this section, changes in network properties of residue communication network were 

identified. Further research may be necessary to examine the implications of these subtle 

changes in protein networks. 

6.3.4 Residue contributions to binding free energy: MM-PBSA 

Using trajectory data, the key residues contributing to ligand binding were elucidated using 

the MM-PBSA tool in GROMACS. 
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Figure 6.9: Residue contributions to binding of olive ligands to selected areas of COX-1 (A) 

and COX-2 (B) proteins.  Each bound ligand is represented by colours: native ligand (blue), 

1OL (red), LG2 (green), OLEO (purple), and MMHTE (orange). Error bars are pooled 

standard deviation from triplicate trajectories. 
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Figure 6.9 describes the per-residue contributions to the protein-ligand interactions to provide 

further insight into key interactions between the selected olive phenolic compounds and 

COX-1 and COX-2 enzymes. It is observed that there are three main regions along the amino 

acid sequence where more favourable and non-favourable interactions are occurring. Figure 

6.9 shows these selected regions, while the full graph is shown in Figure A4.7 in Appendix 

9.4.5. The main areas of residues contributing to ligand binding to COX-1 and COX-2 are 

residue numbers 82-121, 346-391, and 509-538. A more negative energy contribution 

corresponds to a more favourable interaction, while a more positive energy indicates 

contribution to a less favourable interaction with a specified protein residue. 

 

 
 

Figure 6.10: Residue contribution in kJ/mol to binding of olive ligands with COX-1: FLP 

(A), 1OL (B), LG2 (C), OLEO (C), and MMHTE (E). Residues are coloured according to 

their energy contribution in kJ/mol, coloured from blue to red with red indicating a more 

favourable contribution. 
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Figure 6.11: Residue contribution to binding of olive ligands with COX-2: SAL (A), 1OL 

(B), LG2 (C), OLEO (C), and MMHTE (E). Residues are coloured according to their energy 

contribution in kJ/mol, coloured from blue to red with red indicating a more favourable 

contribution. 
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6.3.4.1 Favourable residue interactions 

Residues contributing favourably to binding of ligands to both COX-1 and COX-2 included 

LEU 93, VAL 116, LEU 352, and ALA 527. These interactions are depicted in Figures 6.10 

and 6.11. 2D ligand interaction diagrams showing hydrogen bonds in these interactions are 

shown in Figures A4.8 and A4.9 in Appendix 9.4.5. ALA 527 contributed particularly 

favourable for ligand interaction, particularly in COX-1 for FLP (-6.76 kJ/mol) and LG2 (-

6.75kJ/mol). ALA 527 forms part of the small hydrophobic pocket present in COX-2, along 

with VAL 349, SER 530, and LEU 531. In COX-2, ALA 527 had an energy contribution of -

7.25 kJ/mol to binding with LG2. VAL 116 and LEU 352 also contributed favourably to 

ligand binding in both COX-1 and COX-2.  

 

Other residues also contributing favourably to ligand interactions in both COX-1 and COX-2 

include VAL 349, TYR 355, LEU 359, TYR 385, TRP 387. VAL 349 is located in the side 

pocket of COX-2. Mutagenesis of this residue resulted in alteration in the side pocket of 

COX-2 altering the kinetics of inhibition by indomethacin [307]. VAL 349 is also implicated 

in the ability of naproxen to bind to COX-2, with V349I and V349L mutants causing more 

sensitive inhibition [308]. Naproxen has also been shown to interact with LEU 359 and TRP 

387, with TRP 387 interactions seemingly unique among carboxylate-containing compounds 

[308]. TYR 355 is situated on the opposite side from ARG 120, located at the entrance of the 

channel. Modification of TYR 355 in COX-1 has been suggested to alter the stereochemical 

specificity towards inhibitors containing 2-phenylpropionic acid groups, such as ibuprofen 

and flurbiprofen [300]. TYR 385 was shown to play a critical role in the acetylation of COX-

2 by aspirin due to its hydrogen bonds possessing the ability to stabilise the negative charge 

of the tetrahedral intermediate formed during acetylation of SER 530 [225]. 

Favourable interactions were also observed with MET 522, GLY 526, and LEU 531. GLY 

526 is situated on a helix between VAL 523 and SER 530, and has an important role in the 

positioning of reacting fatty acid intermediates in COX-2 [309]. MET 522 and GLY 526 are 

also implicated in COX-2 inhibition of diclofenac [224]. The rotation of LEU 531 is 

implicated in the binding of oxicams, a class of NSAIDs, by opening a novel pocket not 

utilised in the binding of other NSAIDs [310, 311]. LEU 531 also plays a minor role in 

aligning arachidonic acid optimally below TYR 385 for hydrogen abstraction [311]. 
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6.3.4.2 Unfavourable energy contributions 

Interestingly, ARG 120 was found to contribute unfavourably to protein interaction with all 

ligands in both isoenzymes, having high positive energy contributions ranging from 4.26 to 

8.99 kJ/mol in COX-1, and 3.88 to 6.41 in COX-2 for LG2, oleocanthal, and MMHTE in 

COX-2. Similarly, GLU 524 is found to contribute unfavourably to protein interaction to 

ligands, particularly in COX-2 with oleocanthal (7.33 kJ/mol) and MMHTE (6.59 kJ/mol). 

SER 530 interactions are also shown to be unfavourable, especially with 1OL in COX-1 (5.57 

kJ/mol), and MMHTE in COX-2 (3.55 kJ/mol).  

ARG 120 is known to be important in the function of the cyclooxygenase enzyme, with 

appropriate positioning of the carboxylate of arachidonate to interact with this residue 

necessary for conversion to PGG2 [220]. ARG 120 forms the most critical residue for binding 

of arachidonate binding in COX-1, forming an ionic linkage with the carboxylate group of 

arachidonate [220, 312]. It has been suggested that interactions of the carboxylate group of 

inhibitors with this residue is essential for time-dependent inhibition [312]. The Km for 

arachidonate in a R120Q mutant of oPGHS-1 is 500-1000 times higher than that of native 

oPGHS-1 [312]. On the other hand, a R120Q mutant of hPGHS-2 has a similar Km to that of 

native hPGHS-2, suggesting that hydrophobic residues of the active site may have a more 

significant effect in substrate binding [220, 313]. This may explain the slightly elevated 

interaction free energy between ARG 120 and olive ligands in COX-1 compared to COX-2.  

Residues ARG 120 and GLU 524 are located in the binding site of COX-1 and COX-2, 

forming part of a restriction at the entrance along with TYR 355 [224]. SER 530 forms the 

site of acetylation in the mechanism of aspirin inhibition. SER 530 is situated below TYR 

385, positioned such that its acetylation results in a blockage of access to the upper part of the 

binding channel [300].  There two residues have been found to cooperate in the chelation of 

negative charges, having a role in determining the selectivity of aspirin for covalent 

modification of SER 530 [224]. It was found that a mutation of ARG 120 to alanine had no 

effect on diclofenac inhibition of COX-2, however the S530A mutation produced a dramatic 

attenuation [224]. 

While these residues are shown here to contribute unfavourably to the ligand interaction, it 

may be that they instead have a role in maintaining the shape of the binding pocket and 

facilitate the orientation of ligands for an interaction more essential for catalysis. A crystal 

structure of ovine PGHS-1/S-flurbiprofen inhibitor complex demonstrates the formation of a 
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salt bridge between the carboxylate group of GLU 524 and ARG 120 [300]. In a mutagenesis 

study, it was concluded that GLU 524 does not play a role in either catalysis or substrate 

binding [312]. In the same study, the role of ARG 120 was determined to be for the affinity 

of the enzyme for arachidonate, rather than catalysis [312].  

Additionally, crystallographic waters are present in the vicinity of residues with unfavourable 

energy contributions, including ARG 120. The energy contribution of water molecules are 

only indirectly taken into account in MM-PBSA methods, as solvent is represented as a 

continuous medium rather than an ensemble of explicit solvent molecules [314]. In MD 

simulations of COX-1 with carboxylated inhibitors, it was shown that a network of water 

molecules form a bridge between the guanidine head of ARG 120 and the hydroxyl group of 

SER 530 to enhance the polar interactions of the inhibitors [315]. The water bridge in the 

COX-1 binding pocket was shown to aid in stabilising the protein in an open conformation by 

preventing the LEU 531 side chain from rotating back into the closed conformation [315]. 

Since water molecules may play a role in mediating key interactions between the ligand and 

protein, further work may be required to take this into account. 

Another known caveat of the MM-PBSA method is the lack of conformational entropy. Only 

the local stiffness of the utilised binding conformation is considered, while information on 

possible conformational changes of the ligand or protein is excluded from analysis [314]. 

Compared to other methods, MM-PBSA produces energies with poor precision, often better 

than docking but worse than free energy perturbation methods [314, 316]. Nevertheless, it is 

a useful tool for the understanding of affinities and trends observed in docking studies, as 

well as highlighting key residues contributing to ligand interactions. 

6.3.4.3 Ligand interactions 

There were some minor differences in residue interactions between COX-1/2 and various 

ligands. For the native ligands, interactions with FLP in COX-1 were not significantly 

different from other ligands. With COX-2, SAL displayed some less favourable interaction 

with residues LEU 93, VAL 116 and ARG 513. While there was a positive energy 

contribution to GLU 524 with olive ligands, this was not the case with SAL where there was -

0.58 kJ/mol of energy contributed towards the interaction.  

1OL had more favourable energy contributions from ILE112, PHE 381, and LEU 354 in 

COX-1 compared to other residues. Its interaction with SER 530 was observed to be less 

favourable, with an energy contribution of 5.57 kJ/mol in 1OL compared to approximately 
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1.50 kJ/mol with other ligands. In interactions with COX-2, there were more negative energy 

contributions with residues PRO 86, PHE 99, VAL 103, LEU 108, and ILE 112. Along with 

SAL, 1OL displayed less positive energy contributions with ARG 120 compared to other 

olive ligands, for example 0.38 kJ/mol in SAL compared to 6.42 kJ/mol in MMHTE. While 

other ligands had a favourable interaction with LEU 352 ranging from -4.88 to -2.76 kJ/mol, 

energy contribution of this residue towards 1OL was of a lesser magnitude (-0.01 kJ/mol). 

In COX-1 interactions with LG2, there were more favourable interactions with PRO 84, LEU 

115 and VAL 119, where energy contributions from those residues with other ligands were 

not apparent. Stronger energies were also observed with LEU 93 and VAL 116. Energy 

contribution of GLU 524 was negative with all ligands, except for LG2 where there was a 

positive energy contribution of 3.54 kJ/mol. While all ligands had strong interactions with 

ARG 120 and ILE 523, energy contributions with LG2 were more exaggerated, being the 

most positive and most negative respectively. Similarly, in COX-2 more negative energy 

contributions were observed in interactions with LG2 for residues VAL 349, LEU 352, TYR 

355, and TYR 385. Interaction with ALA 527 was very favourable, producing an energy 

contribution of -7.25 kJ/mol. 

For OLEO, there was a slightly more favourable energy interaction with LEU 117 in COX-1. 

Energy contributions with SER 353 were positive for all ligands in COX-1, except for OLEO 

where a negative energy contribution of -1.99 kJ/mol was observed. Interactions with COX-2 

residues were largely similar to other ligands. Along with MMHTE, a more positive 

contribution was observed with GLU 524, producing energy of 7.33 kJ/mol. 

Interactions with COX-1 and MMHTE were largely similar to other ligands. While ARG 83 

had a slightly positive contribution with most ligands, a negative energy contribution of -1.83 

kJ/mol was observed with MMHTE. Slightly more positive energies were observed for GLU 

510 and GLU 520. In COX-2, a more positive energy contribution of 6.59 kJ/mol with ARG 

120 was shown, as well as a slightly higher energy of 1.19 kJ/mol with SER 353 compared to 

other ligands. 

6.3.4.4 Contrasting COX-1 and COX-2 

One of the main differences between the two COX isoforms is the substitution of valine with 

isoleucine in COX-1. Being located at the entrance of the binding pocket, this residue plays a 

key role in determining the selectivity of a residue to either COX-1 or COX-2. This 

substitution causes the COX-2 active site to be roughly 20% larger than that of COX-1, as the 
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bulkier side chain of ILE 523 sterically inhibits access to the side pocket in the binding site 

[275, 317]. The volume of the inhibitor binding site and secondary pocket in COX-2 was 

calculated to be 394 Å
3
 in COX-2, while the volume of the binding site of COX-1 was 316 

Å
3
 [232, 318]. The MM-PBSA data shown here indicates that ligands bind strongly with ILE 

523 in COX-1, with ILE 523 contributing favourably, especially in the binding of LG2 with 

an energy contribution of -8.03 kJ/mol. Interaction energy is also favourable with other 

ligands (FLP -2.36; 1OL -2.85; oleocanthal -4.02; MMHTE -4.46 kJ/mol). In COX-2, VAL 

523 also contributes favourably to the ligand interaction, albeit to a lesser degree (SAL -2.63; 

1OL -0.15; LG2 -3.99; oleocanthal -0.37; MMHTE -4.12 kJ/mol). 

 

In COX-2, ILE 434 in COX-1 in replaced with valine, which allows neighbouring PHE 518 

to swing out of the way to further enable access to the side cavity [317]. The PBSA data 

shows that PHE 518 consistently contributes approximately -2 kJ/mol towards interactions 

with COX-1, while in COX-2 energy contribution ranges from -0.02 kJ/mol with 1OL to 

approximately -3 kJ/mol with LG2 and MMHTE. This variation between the isoforms may 

suggest that the movement of PHE 518 in COX-1 is more restricted than in COX-2, where 

the orientation of the side chain may be more flexible. 

 

Another key difference between COX-1 and COX-2 is that of the replacement of arginine 

with histidine at residue 513 in COX-1. Rather than altering the shape of the binding pocket, 

the chemical environment is changed, allowing polar moieties to interact in the side pocket of 

COX-2 [317]. This is also shown in the PBSA data, where HIS 513 in COX-1 does not 

contribute strongly to the interaction (approximately -0.20 kJ/mol) compared to ARG 513 in 

COX-2. Energy contribution with this residue is stronger with 1OL (-2.20 kJ/mol), LG2 (-

2.48 kJ/mol), oleocanthal (-1.71 kJ/mol), and MMHTE (-2.31 kJ/mol).  

 

6.4 Conclusion 

In this chapter, the mechanisms of selected olive compounds binding to COX were studied 

using MD simulations to examine their inhibitory potential. Additional metrics 

complementing binding free energy were calculated to determine the influence of ligand 

binding on the protein. The stability of protein-ligand complexes was studied using classical 

MD simulations, and functional insights into the structure of the protein were gained through 

examining protein dynamics with porcupine plot analysis and modular network analysis. The 
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contribution of individual residues to ligand binding was analysed using MM-PBSA 

methods. 

Essential dynamics and network analysis identified distinct dynamical modules, which show 

some differences in motions depending on apo or ligand binding forms. Some of these 

dynamical modules might have functional consequences, especially in those of ligands 

affection motions in the EGF and MBD modules. 

Network analysis showed that COX-2 inter-residue connectivity was generally more sensitive 

to ligand binding than COX-1. COX-2 demonstrated far greater disturbances in network 

properties compared to COX-1, although these changes were localised at a few distinct 

residues. 

It was found through MM-PBSA that some residues of known importance for binding, such 

as ARG 120, paradoxically contributed unfavourably in terms of free energies. Rather than 

direct binding with ligands, the importance of ARG 120 may instead lie in maintaining 

structural integrity of the binding site. It may also be plausible that ARG 120 forms vital 

indirect interactions with ligands via water or ion molecules. This requires further exploration 

with more rigorous free energy methods. 
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7. Conclusions 

In this thesis, computational techniques were employed to examine the potential of olive 

derived compounds in inhibiting COX-1 and COX-2 enzymes. Following the creation of an 

olive phenolic library, compounds were screened using docking and ADMET methods to 

select candidate compounds for further analysis using MD simulations. Molecular docking 

against the COX isoenzymes yielded two novel phenolic compounds: 1-oleyltyrosol and 

ligstroside derivative 2. Based on both ADMET and docking analysis, methyl malate-β-

hydroxytyrosol ester was another novel compound that was selected for further analysis. 

Along with oleocanthal, an initial insight was gained in the membrane permeability of these 

compounds using steered MD simulations and umbrella sampling. 

 

As well as the native ligands, olive phenolic compounds bound to COX-1 and COX-2 

proteins were analysed using MD simulations to study the mechanisms of COX inhibition. It 

was found that in addition to being the most flexible, the MBD and EGF-like domain of the 

COX proteins displayed dynamic behaviour where differences in concerted motion were 

observed. Additional dynamical domains of unknown functional significance were also 

identified, which may be explored in further work. Residue communication networks of the 

different forms of COX were also examined, which demonstrated that residues of COX-2 

exhibited greater disturbances in connectivity at distinct residues compared to COX-1. MM-

PBSA elucidated the energy contribution of individual residues to binding of phenolic 

ligands. While key binding site residues were highlighted, it was revealed that some residues 

of known importance contributed unfavourably to ligand binding, such as ARG 120. Further 

examination using more rigorous free energy methods may be required. 

 

In addition to further examination of the protein dynamics and network as mentioned above, 

future research would also focus on refining the membrane permeability study of the olive 

ligands. The work presented in Chapter 5 would be performed with adjustments to 

parameters, such as longer equilibration times, for the production of a more accurate estimate 

of free energy. MMHTE has been shown in this study to be a promising candidate as a 

potential therapeutic in COX inhibition. Since it is not yet commercially available, this 
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compound was selected to be synthesised. Future studies will be performed utilising this 

compound in in vitro studies. 

 

Overall, this thesis has identified potential candidate compounds for the inhibition of COX 

enzymes, as well as the elucidation of mechanisms of action using in silico methodologies. 

With further work using in vivo and in vitro studies, novel olive phenolic compounds may 

provide an alternative in anti-inflammatory therapies. In addition, this study has provided 

further insight into the mechanism of more subtle, acute benefits that may be accumulative 

with consistent consumption of dietary phenolics.  
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9. Appendix 

9.1 Olive phenolic library 

Table A1.1: Phenolic compounds found in the olive 

Compound Class 
MW 

Olive matrix Commer

cial 

availabil

ity (Y/N) Olive fruit Leaf Pomace 
Wastewate

r 

Extra-virgin 

oil  

Simple phenols 

Hydroxytyrosol 154 
De Marco, 

2007 

Savarese, 

2007 

Lozano-

Sanchez, 

2011 
 

Dierkes, 

2012 
Y 

Homovanillyl alcohol 168 
 

Eyles, 

2007   

Boskou, 

2006 
Y 

Tyrosol 138 
Romero, 

2002  

Lozano-

Sanchez, 

2011 

Artajo, 

2006 
Suarez, 2008 Y 

Syringaldehyde 182 
   

Boskou, 

2006  
Y 

3,4-

Dihydroxyphenylglycol 
171 

Marsilio, 

2005     
Y 

Catechol 110 
Romero, 

2002   

Lozano-

Sanchez, 

2011 

Brenes, 2004 Y 

Phenol 94 
    

Vichi, 2008 Y 

p-cresol 108 
   

Artajo, 

2006 
Vichi, 2008 Y 

m-cresol 108 
    

Vichi, 2008 Y 

o-cresol 108 
    

Vichi, 2008 Y 

4-Ethylguaiacol 152 
   

Lozano-

Sanchez, 

2011 

Vichi, 2008 Y 

4-Ethylphenol 122 
    

Vichi, 2008 Y 

4-Vinylguaiacol 150 
   

Limiroli, 

1996 
Vichi, 2008 Y 

4-Vinylphenol 120 
  

Obeid, 

2007  
Vichi, 2008 Y 

4-Methylcatechol 124 
  

Obeid, 

2007   
Y 

3,4,5-Trimethoxybenzoic 

acid 
212 

  

Obeid, 

2007   
Y 

3,4-Dimethoxybenzoic 

acid 
182 

  

Obeid, 

2007   
Y 

2,6-Dimethoxybenzoic 

acid 
182 

  

Obeid, 

2007   
Y 

4-Hydroxybenzaldehyde 122 
     

Y 

Hydroxybenzoic acids 

Syringic acid 198 
Ryan, 

1999  

Alu'datt, 

2010  
Cioffi, 2010 Y 
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Quinic acid 192 
 

Quirante

s-Pine, 

2013 

Lozano-

Sanchez, 

2011 

Lozano-

Sanchez, 

2011 
 

Y 

2,3-dihydrocaffeic acid 182 
Owen, 

2003    

Bendini, 

2007 
Y 

Shikimic acid 174 
  

Peralbo-

Molina, 

2012 
  

Y 

Gallic acid 170 
McDonald, 

2001  

Peralbo-

Molina, 

2012 
 

Cioffi, 2010 Y 

Vanillic acid 168 
Romero, 

2002  

Peralbo-

Molina, 

2012 

De Marco, 

2007 

De la Torre-

Carbot, 2005 
Y 

Phloretic acid 166 
Owen, 

2003     
Y 

Protocatechuic acid 154 
Boskou, 

2006  

Alu'datt, 

2010   
Y 

Gentisic acid 154 
    

Bendini, 

2007 
Y 

4-hydroxybenzoic acid 138 
Boskou, 

2006 

Quirante

s-Piné, 

2013 

Alu'datt, 

2010  

Caponio, 

2005 
Y 

2,4 dihydroxybenzoic 

acid 
154 

McDonald, 

2001    

Carrasco-

Pancorbo, 

2005 

Y 

2,6-Dihydroxybenzoic 

acid 
154 

Bianco, 

2003    

Bianco, 

2003 
Y 

4-O-methyl-D-

glucuronic acid 
208 

Guinda, 

2010     
Y 

Hydroxyphenylacetic acids 

p-Hydroxyphenylacetic 

acid 
152 

Boskou, 

2006  

Cardoso, 

2005  

Caponio, 

2005 
Y 

3,4-

Dihydroxyphenylacetic 

acid 

168 
Boskou, 

2006    

Bendini, 

2007 
Y 

4-Hydroxy-3-methoxy-

phenylacetic acid 
182 

    

Bendini, 

2007 
Y 

Homoveratric acid 196 
Bianco, 

2003    

Bianco, 

2003 
Y 

Homovanillic acid 182 
Ryan, 

2002   

Artajo, 

2006  
Y 

2,5-

Dihydroxyphenylacetic 

acid 

168 
  

Obeid, 

2007   
Y 

Hydroxycinnamic acids 

Rosmarinic acid 361 
  

Peralbo-

Molina, 

2012 
  

Y 

Chlorogenic acid 354 
Ryan, 

2003  

Cardoso, 

2005   
Y 

Sinapic acid 224 
Ryan, 

1999  

Alu'datt, 

2010   
Y 
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Ferulic acid 194 
Boskou, 

2006 
Li, 2003 

Peralbo-

Molina, 

2012 
 

Cioffi, 2010 Y 

Caffeic acid 180 
De Marco, 

2007  

Obeid, 

2007 

Mulinacci, 

2001 

Mateos, 

2001 
Y 

p-Coumaric acid 164 
Ryan, 

2002 

Quirante

s-Pine, 

2013 

Peralbo-

Molina, 

2012 

Suarez, 

2010 

De la Torre-

Carbot, 2005 
Y 

o-Coumaric acid 164 
McDonald, 

2001  

Peralbo-

Molina, 

2012 
 

Mateos, 

2001 
Y 

m-Coumaric acid 164 
Bianco, 

2000    

Caponio, 

1999 
Y 

Dihydro-p-coumaric acid 166 
  

Obeid, 

2007   
Y 

Hydroxycaffeic acid 196 
    

Caponio, 

1999 
Y 

Cinnamic acid 148 
Boskou, 

2006  

Peralbo-

Molina, 

2012 
 

Mateos, 

2001 
Y 

Caffeoylglucose 342 
  

Obeid, 

2007   
Y 

Caftaric acid 312 
  

Obeid, 

2007   
Y 

β-Hydroxy verbascoside 641 
     

N 

Flavonoids 

Hesperidin 610 
Kalua, 

2006  

Alu'datt, 

2010   
Y 

Rutin 610 
De Marco, 

2007 

Savarese, 

2007 

Cardoso, 

2005 

Mulinacci, 

2001  
Y 

Luteolin-7,4-O-

diglucoside 
609 

 

Quirante

s-Pine, 

2013 
   

N 

Vicenin-2 595 
Bouaziz, 

2005     
Y 

Cyanidin-3-O-rutinoside 595 
Romero, 

2002     
Y 

Scolymoside 594 
Bouaziz, 

2010 

Quirante

s-Pine, 

2013 

Cardoso, 

2005   
Y 

Luteolin-4'-O-rutinoside 594 
  

Obeid, 

2007   
N 

Lucidumoside C 584 
 

Quirante

s-Pine, 

2013 
   

Y 

Isorhoifolin 578 
Romero, 

2002 

Quirante

s-Pine, 

2013 

Obeid, 

2007   
Y 

Quercetin-3-O-glucoside 464 
Bouaziz, 

2005     
Y 

Chrysoeriol-7-O-

glucoside 
462 

Bouaziz, 

2005 

Altıok, 

2008    
Y 

Cyanidin-3-O-glucoside 449 
Romero, 

2002     
Y 

Luteolin-7-O-glucoside 448 
De Marco, 

2007 

Laguerre, 

2009 

Cardoso, 

2005 

Mulinacci, 

2001 

Yorulamz, 

2011 
Y 
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Luteolin-4’-O-glucoside 448 
De Marco, 

2007 

Quirante

s-Pine, 

2013 

Cardoso, 

2005   
Y 

Luteolin-6-C-glucoside 448 
Bouaziz, 

2005     
Y 

Luteolin-7-O-rutinoside 595 
Bouaziz, 

2005     
Y 

Luteolin-3′,7-O-

diglucoside 
611 

  

Obeid, 

2007   
Y 

Luteolin-8-C-glucoside 448 
  

Obeid, 

2007   
Y 

Quercitrin 448 
De Marco, 

2007  

Obeid, 

2007   
Y 

Apigenin-7-O-glucoside 432 
Obeid, 

2007 

Obeid, 

2007 

Peralbo-

Molina, 

2012 

Suarez, 

2010  
Y 

Taxifolin 304 
 

Japón-

Luján, 

2007 

Peralbo-

Molina, 

2012 
 

Bendini, 

2007 
Y 

Quercetin 302 
Rigane, 

2011 

Obeid, 

2007 

Alu'datt, 

2010   
Y 

Chrysoeriol 300 
Bouaziz, 

2005    

Dierkes, 

2012 
Y 

Diosmetin 300 
 

Meirinho

s, 2005    
Y 

Methoxyluteolin 316 
    

De la Torre-

Carbot, 2005 
Y 

Cyanidin (cation) 287 
Ryan, 

1999     
Y 

Eriodictyol 287 
 

Hvattum, 

2002    
Y 

Luteolin 286 
Ryan, 

2002 

Obeid, 

2007 

Lozano-

Sanchez, 

2011 

Lozano-

Sanchez, 

2011 

Fu, 2009 Y 

Quercetin 3-O-

rutinoside 
611 

Vlahov, 

1992     
Y 

Apigenin 270 
Bouaziz, 

2005 

Obeid, 

2007 

Lozano-

Sanchez, 

2011 

Lozano-

Sanchez, 

2011 

Fu, 2009 Y 

Delphinidin 303 
  

Obeid, 

2007   
Y 

Delphinidin-3-O-

glucoside 
465 

  

Obeid, 

2007   
Y 

Hesperitin 302 
  

Obeid, 

2007   
Y 

Apigenin-7-O-rutinoside 579 
  

Obeid, 

2007   
Y 

Lignans 

Syringaresinol 418 
 

Christop

horidou, 

2005 
  

Garcia-

Villalba, 

2010 

Y 

1-Acetoxypinoresinol 416 
Lopez, 

2008  

Lozano-

Sanchez, 

2011 

Suarez, 

2010 
Fu, 2009 Y 

Pinoresinol 358 
Bonoli, 

2004  

Suarez, 

2010 

Suarez, 

2010 
Fu, 2009 Y 
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Hydroxypinoresinol 374 
    

Obeid, 2007 Y 

Berchemol 376 

Christopho

ridou, 

2005 
    

Y 

3-Acetyloxy berchemol 418 
  

Obeid, 

2007   
N 

(-)-Olivil 376 
 

Tsukamo

to, 1984    
Y 

(+)-Fraxiresinol-1-β-D-

glucopyranoside 
537 

 

Bianco, 

1993    
N 

D-(+)-Erythro-1-(4-

hydroxy-3-methoxy)- 

214 - phenyl-1,2,3-

propantriol 

214 
Obeid, 

2007  

Obeid, 

2007  
Obeid, 2007 N 

(+)-1-

Acetoxypinoresinol-4"-

O-methyl ether 

431 
 

Tsukamo

to, 1984    
N 

(+)-1-

Hydroxypinoresinol-4"-

O-methyl ether 

404 
 

Tsukamo

to, 1984    
N 

(+)-1-

Acetoxypinoresinol-4'-β-

D-glucopyranoside-4"-

O-methyl ether 

594 
 

Tsukamo

to, 1984    
N 

(+)-1-

Hydroxypinoresinol-4'-

β-D-glucopyranoside 

537 
 

Tsukamo

to, 1984    
N 

(+)-1-

Acetoxypinoresinol-4'-β-

D-glucopyranoside 

578 
 

Tsukamo

to, 1984    
N 

Hydroxy-isochromans 

1-(3’-Methoxy-4’-

hydroxy)- phenyl-6,7-

dihydroxyisochroman 

288 
 

Bianco, 

2002   

Bianco, 

2001 
N 

1-Phenyl-6,7-

dihydroxyisochroman 
242 

 

Bianco, 

2002   

Bianco, 

2001 
N 

Secoiridoids 

                   
105

9 

Cardoso, 

2006  

Cardoso, 

2006   
N 

Oleuropein pentamer 
269

2 

Cardoso, 

2006  

Cardoso, 

2006   
N 

Oleuropein tetramer 
215

4 

Cardoso, 

2006  

Cardoso, 

2006   
N 

Oleuropein trimer 
161

6 

Cardoso, 

2006  

Cardoso, 

2006   
N 

Oleuropein dimer 
107

6 

Cardoso, 

2006  

Cardoso, 

2006   
N 

            -Methyl 

oleoside 

107

2 
Silva, 2006 

    
N 

Oleuropein diglucoside 702 
Bouaziz, 

2010 

Molina-

Alcaidea, 

1996 

Cardoso, 

2005   
N 



 

139 

 

   -          702 
Di Donna, 

2007     
N 

          686 
Bouaziz, 

2010 

Ryan, 

2002 

Obeid, 

2007   
N 

10-Hydroxyoleuropein 556 
Cardoso, 

2005 

Caruso, 

2000 

Peralbo-

Molina, 

2012 
  

Y 

Dihydro-oleuropein 544 
Obeid, 

2007  

Peralbo-

Molina, 

2012 
  

N 

Oleuropein 540 
De Marco, 

2007 

Di Nino, 

1997 

Cardoso, 

2005 

Suarez, 

2010 

Bianco, 

1998 
Y 

Oleuroside 540 
De Marco, 

2007 

Di Nino, 

1997 

Obeid, 

2007   
N 

Oleuroside-10-carboxylic 

acid 
585 

  

Obeid, 

2007  
Obeid, 2007 N 

Oleuropein-3'-O-β-D-

glucopyranoside 
540 

  

Obeid, 

2007   
N 

Ligstroside-3'-O-β-D-

glucopyranoside 
524 

  

Obeid, 

2007   
N 

Demethyloleuropein 526 
De Marco, 

2007 

Savarase, 

2007   

Bianco, 

1998 
N 

Oleoside dimethylester 418 
  

Peralbo-

Molina, 

2012 
  

N 

Elenolic acid glucoside 404 
De Marco, 

2007 

Ryan, 

2002 

Cardoso, 

2005   
N 

Elenolic acid diglucoside 553 
  

Obeid, 

2007   
N 

Secologanic acid 375 
  

Peralbo-

Molina, 

2012 
  

N 

Secologanol 390 
    

Fu, 2009 Y 

Secologanin 388 
  

Peralbo-

Molina, 

2012 
  

Y 

Oleuropein aglycone 

(3,4-DHPEA-EA) 
378 

De Marco, 

2007  

Cardoso, 

2005 

Suarez, 

2010 
Fu, 2009 N 

7-Deoxyloganic acid 360 
  

Peralbo-

Molina, 

2012 
  

N 

Oleacein (Dialdehydic 

form of 

decarboxymethyl 

Oleuropein aglycon) 

321 
    

Karkoula, 

2012 
Y 

3,4-DHPEA-EDA 

(Oleuropein-aglycone di-

aldehyde) 

320 
De Marco, 

2007  

Peralbo-

Molina, 

2012 

Suarez, 

2010  
N 

Cornoside 316 
Bianchi, 

2003     
Y 
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Oleocanthal 

(Dialdehydic form of 

decarboxymethyl 

Ligstroside aglycon) 

305 
    

Smith, 2005 Y 

p-HPEA-EDA 304 
Obeid, 

2007  

Peralbo-

Molina, 

2012 

Suarez, 

2010 

Perez-

Trujillo, 

2010 

N 

Elenolic acid 242 
De Marco, 

2007  

Peralbo-

Molina, 

2012 

Mulinacci, 

2001 

Dierkes, 

2012 
Y 

Elenolic acid methylester 256 
 

Gariboldi

, 1986   

Dierkes, 

2012 
N 

Dialdehydic elenolic acid 

decarboxymethyl 
184 

  

Lozano-

Sanchez, 

2011 

Lozano-

Sanchez, 

2011 
 

N 

Dialdehydic elenolic 

ester decarboxymethyl 
198 

  

Lozano-

Sanchez, 

2011 
  

N 

Methyl malate-

hydroxytyrosol ester 
284 

Bianco, 

2006     
N 

Oleuricine A 716 
 

Wang, 

2009    
N 

Oleuricine B 716 
 

Wang, 

2009    
N 

Hydroxytyrosil-elenolate 392 
 

Gariboldi

, 1986    
N 

10-Hydroxy oleuropein 

aglycone 
394 

    

Garcia-

Villalba, 

2010 

N 

10-Hydroxy oleuropein 

aglycone 

decarboxymethyl 

336 
  

Obeid, 

2007   
N 

10-Hydroxy-10-methyl 

oleuropein aglycone 
408 

  

Obeid, 

2007   
N 

Monoaldehydic form of 

Ligstroside aglycon 
365 

Kanakis, 

2013    

Kanakis, 

2013 
N 

Monoaldehydic form of 

Oleuropein aglycon 
380 

Kanakis, 

2013    

Kanakis, 

2013 
N 

Oleuropeindial (enol 

form) 
378 

Obeid, 

2007     
N 

demethyloleuropein 

aglycone (enol form) 
364 

Obeid, 

2007     
N 

Demethyloleuropein 

aglycone 
364 

Obeid, 

2007     
N 

Demethyloleuropein 526 
Obeid, 

2007     
N 

Demethyloleuropein 

aglycone dialdehyde 
364 

Obeid, 

2007     
N 

3,4-DHPEA-DEDA 

(Oleuropein aglycone 

decarboxymethyl 

dialdehyde form) 

320 
Obeid, 

2007   

Scalzo, 

1993  
N 



 

141 

 

3,4-DHPEA-DEDA 

(acetal) 
366 

Obeid, 

2007     
N 

Oleuropeindial (keto 

form) 
378 

Obeid, 

2007     
N 

Oleuropeindial 

(Cannizzaro-like 

product of 

oleuropeindial) 

396 
Obeid, 

2007     
N 

Oleuropeindial - Lactone 

(Cannizzaro-like 

product of 

oleuropeindial) 

378 
Obeid, 

2007     
N 

Elenolic acid dialdehyde 242 
Obeid, 

2007     
N 

DEDA 

(Decarboxymethyl 

elenolic acid dialdehyde) 

184 
Obeid, 

2007     
N 

Hydroxytyrosol acetate 196 
Morello, 

2004 

Quirante

s-Pine, 

2013 
  

Brenes, 1999 Y 

DEDA acetal 230 
Obeid, 

2007     
N 

Demethyl elenolic acid 228 
Obeid, 

2007     
N 

Tyrosol acetate 222 
    

Mateos, 

2001 
Y 

Ligstroside 524 
De Marco, 

2007 

Savarase, 

2007  

De Marco, 

2007  
Y 

Ligstroside aglycone 

methyl acetal 
376 

  

Obeid, 

2007   
N 

Ligstroside aglycone 380 
 

Savarase, 

2007    
N 

Demethylligstroside 510 
Sivakumar, 

2005     
N 

Ligstroside derivative 1 523 
  

Cardoso, 

2011   
N 

Ligstroside derivative 2 453 
  

Cardoso, 

2011   
N 

Ligstroside derivative 3 685 
  

Cardoso, 

2011   
N 

Ligstroside derivative 4 847 
  

Cardoso, 

2011   
N 

Ligstroside derivative 5 909 
  

Cardoso, 

2011   
N 

Jaspolyoside 926 
 

Perez-

Bonilla, 

2011 
   

N 

Jaspolyanoside 911 
 

Perez-

Bonilla, 

2011 
   

N 

Isojaspolyoside A 926 
 

Perez-

Bonilla, 

2011 
   

N 



 

142 

 

(+)-Cycloolivil 376 
 

Tsukamo

to, 1984    
Y 

Hemiacetal of 

dialdehydic oleuropein 

aglycone 

decarboxymethyl 

334 

Christopho

ridou, 

2005 
    

N 

Hemiacetal of 

dialdehydic ligstroside 

aglycone 

decarboxymethyl 

318 

Christopho

ridou, 

2005 
    

N 

7"-S-Hydroxyoleuropein 557 
Di Donna, 

2007 

Quirante

s-Pine, 

2013 
   

N 

Oleuropein-3"-Methyl 

ether 
555 

  

Obeid, 

2007   
N 

3,4-DHPEA-DETA 350 
  

Obeid, 

2007   
N 

Decarboxymethyl 

ligstroside aglycone 
304 

    

Lozano-

Sanchez, 

2010 

N 

Hydroxytyrosol 

acyclodihydroelenolate 
382 

Obeid, 

2007  

Obeid, 

2007   
N 

Hydroxytyrosil elenolate 364 
  

Obeid, 

2007   
N 

Coumarins 

Esculin 340 
 

Tsukamo

to, 1984    
Y 

Esculetin 178 
 

Tsukamo

to, 1984    
Y 

Scopoletin 192 
 

Tsukamo

to, 1984    
Y 

Scopolin 354 
 

Tsukamo

to, 1984    
Y 

Irridoids 

Loganic acid 375 
  

Peralbo-

Molina, 

2012 
  

Y 

Loganin 390 
  

Peralbo-

Molina, 

2012 
  

Y 

Glucosides 

Hydroxytyrosol 

rhamnoside 
301 

  

Peralbo-

Molina, 

2012 
  

N 

β-Hydroxy-acetoside 640 
Cecchi, 

2013     
N 

Verbascoside 624 
Rigane, 

2011 

Laguerre, 

2009 

Cardoso, 

2005 

Mulinacci, 

2001  
Y 

Oxidized verbascoside 623 
  

Cardoso, 

2005   
N 

Isoverbascoside 624 
Obeid, 

2007 

Laguerre, 

2009 

Innocenti, 

2006   
Y 
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Oxidized isoverbascoside 623 
  

Cardoso, 

2005   
N 

Acetoside 623 
 

Ryan, 

1999 

Rodriguez, 

2009   
Y 

Isoacteoside 625 
  

Obeid, 

2007   
Y 

Suspensaside 641 
  

Rodriguez, 

2009   
Y 

Hellicoside 657 
  

Rodriguez, 

2009   
Y 

Orbanchoside 623 
  

Rodriguez, 

2009   
N 

Wedelosin 758 
  

Rodriguez, 

2009   
N 

Oleoside-11-Methylester 403 
  

Peralbo-

Molina, 

2012 
  

Y 

6'-O-[(2E)-2,6-Dimethyl-

8-hydroxy- 2-

octenoyloxy]-

secologanoside 

559 
 

Karioti, 

2006    
N 

4' 

-O-β-D-Glucosyl-9-O-

(6''-

deoxysaccharosyl)olivil 

851 
 

Schumac

her, 2002    
N 

Verucosin 345 
   

Christopho

ridou, 

2005 
 

N 

Quercetin-3-rhamnoside 449 
Savarese, 

2007      

Quercetin-7-O-glucoside 464 
Bouaziz, 

2005     
Y 

Caffeoyl-6'-

secologanoside 
552 

Obeid, 

2007  

Obeid, 

2007 

Obeid, 

2007  
N 

Comselogoside 536 
Obeid, 

2007  

Obeid, 

2007   
N 

Oleoside 390 
Bouaziz, 

2010 

Obeid, 

2007 

Cardoso, 

2005  
Fu, 2009 Y 

Secologanoside 390 
 

Obeid, 

2007   
Fu, 2009 N 

Hydroxytyrosol- ′-β-

glucoside 
316 

Cardoso, 

2005 

Savarese, 

2007 

Cardoso, 

2005  

Bianco, 

1998 
N 

Hydroxytyrosol-3-β-

glucoside 
316 

Rubio-

Senet, 

2013 

Savarese, 

2007 

Rubio-

Senet, 

2013 
 

Bianco, 

1998 
N 

Hydroxytyrosol-4-β-

glucoside 
316 

Rubio-

Senet, 

2013 

Savarese, 

2007 

Rubio-

Senet, 

2013 
 

Bianco, 

1998 
N 

Hydroxytyrosol 

diglucoside 
478 

  

Peralbo-

Molina, 

2012 
  

N 

Salidroside 300 
Romero, 

2002  

Peralbo-

Molina, 

2012 
  

Y 
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6'-β-D-Glucopyranosyl 

oleoside 
553 

Savarese, 

2007  

Obeid, 

2007   
N 

6'-Rhamnopyranosyl 

oleoside 
537 

Savarese, 

2007  

Obeid, 

2007   
N 

Methoxyphenols 

Guaiacol 124 
    

Reiners, 

1998 
Y 

2-Methoxy-4-vinylphenol 150 
   

Poerschma

nn, 2013  
Y 

Isoeugenol 165 
   

Poerschma

nn, 2013  
Y 

Homovanillin 166 
   

Poerschma

nn, 2013  
Y 

Phenolic fatty acid esters 

1-oleyltyrosol 389 
Maestrodu

ran, 1994     
N 

Deoxyloganic acid lauryl 

ester 
408 

  

Rigane, 

2011   
N 

 

 

9.2 Molecular docking 

9.2.1 Inhibitory data for common COX inhibitors 

Table A2.1: Maximal inhibitory data for common COX-1 inhibitors 

PubChem CID Common name pIC50 PubChem AID 

2662 Celecoxib 4.83 161333; 161494; 392041 

3033 Diclofenac 7.92 312490; 348028; 392041 

3177 Dup-697 6.09 161655; 161679; 161680 

3672 Ibuprofen 5.52 161666; 161679 

5090 Rofecoxib 4.49 161496 

156391 Naproxen 5.49 161655; 161679; 161680 

443373 SC-57666 4.52 332217; 370919  

445154 Resveratrol 6.01 332217; 370919 

 

Table A2.2: Maximal inhibitory data for common COX-2 inhibitors 

PubChem CID Common name pIC50 PubChem AID 

2244 Aspirin 5.612 649270; 494635 

2662 Celecoxib 7.115 649270; 1125534 

3672 Ibuprofen 5.941 494635; 443725 

5090 Rofecoxib 6.381 1125534; 724444 

156391 Naproxen 4.942 724444; 587449 

445154 Resveratrol 6.002 289279 
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9.2.2 Glide energy values for all olive phenolics to COX-1 and COX-2 

Table A2.3a: Glide energy values for simple phenols 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Hydroxytyrosol -25.793 -22.835 

Hydroxytyrosol acetate  -33.633 -30.276 

Tyrosol acetate  -38.545 -26.245 

Homovanillyl alcohol -26.521 -22.246 

Tyrosol  -21.946 -21.249 

Syringaldehyde  -31.248 -23.576 

3,4-Dihydroxyphenylglycol -26.317 -21.336 

Catechol -21.198 -20.306 

Phenol -18.624 -19.287 

p-cresol -20.984 -21.39 

m-cresol -20.499 -20.771 

o-cresol -21.599 -19.031 

4-Ethylguaiacol -26.092 -22.513 

4-Ethylphenol -23.361 -20.197 

4-Vinylguaiacol -25.448 -22.776 

4-Vinylphenol -19.647 -22.616 

4-Methylcatechol -23.463 -23.131 

3,4,5-Trimethoxybenzoic acid -30.07 -21.691 

3,4-Dimethoxybenzoic acid -29.354 -20.856 

2,6-Dimethoxybenzoic acid -28.799 -18.148 

4-Hydroxybenzaldehyde -22.345 -23.03 

 

Table A2.3b: Glide energy values for hydroxybenzoic acids 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Syringic acid  -30.082 -20.603 

Quinic acid  -28.679 -14.147 

2,3-dihydrocaffeic acid -32.855 -23.753 

Shikimic acid -26.019 -23.685 

Gallic acid  -26.925 -18.698 

Vanillic acid -27.074 -19.318 

Phloretic acid -29.041 -21.047 

Protocatechuic acid -24.64 -19.297 

Gentisic acid  -24.705 -17.7 

4-hydroxybenzoic acid -24.049 -20.941 

2,4 dihydroxybenzoic acid -25.367 -23.958 

2,6-Dihydroxybenzoic acid -24.972 -15.181 

4-O-methyl-D-glucuronic acid -16.17 N/A 

3,4-dihydroxyphenylethyl 4-formyl -3- -41.404 N/A 
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formylmethyl-4-hexenoate 

4-hydroxyphenylethyl 4-formyl -3-

formylmethyl-4-hexenoate 

-38.095 N/A 

 

Table A2.3c: Glide energy values for hydroxyphenylacetic acids 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

p-Hydroxyphenylacetic acid -26.789 -17.634 

3,4-Dihydroxyphenylacetic acid -28.266 -19.638 

4-Hydroxy-3-methoxy-phenylacetic acid  -31.033 -19.389 

Homoveratric acid -32.921 -26.703 

Homovanillic acid  -29.916 -22.037 

2,5-Dihydroxyphenylacetic acid -29.003 -15.314 

 

Table A2.3d: Glide energy values for hydroxycinnamic acids 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Rosmarinic acid -47.359 -33.965 

Chlorogenic acid -33.93 -38.948 

Sinapic acid -35.45 -23.094 

Ferulic acid -32.578 -22.715 

Caffeic acid -30.285 -20.614 

p-Coumaric acid -27.78 -18.149 

o-Coumaric acid -29.063 -21.458 

m-Coumaric acid -28.412 -22.435 

Dihydro-p-coumaric acid -29.513 -21.047 

Hydroxycaffeic acid -29.938 -24.327 

Cinnamic acid -26.671 -18.82 

Caffeoylglucose -33.1 -34.194 

Caftaric acid -44.118 -26.471 

 

Table A2.3e: Glide energy values for flavonoids 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Quercetin-3-O-glucoside -31.025 N/A 

Chrysoeriol-7-O-glucoside -36.912 -29.258 

Cyanidin-3-O-glucoside -17.559 -5.546 

Luteolin-7-O-glucoside -34.11 -38.19 

Luteolin-4’-O-glucoside -32.51 -42.307 

Luteolin-6-C-glucoside N/A -8.989 

Luteolin-8-C-glucoside N/A N/A 
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Quercetin-3-rhamnoside -15.864 N/A 

Quercetin-7-O-glucoside -31.838 N/A 

Quercitrin N/A N/A 

Apigenin-7-O-glucoside -42.693 N/A 

Taxifolin -36.837 -25.505 

Quercetin -37.581 -32.21 

Chrysoeriol -26.775 -15.527 

Diosmetin -37.694 -14.046 

Methoxyluteolin -37.829 -15.94 

Cyanidin (cation) -28.554 -31.798 

Eriodictyol -34.389 -26.867 

Luteolin -35.87 -31.249 

Apigenin -29.846 -13.708 

Delphinidin -31.314 -31.481 

Delphinidin-3-O-glucoside -17.408 -3.801 

Hesperitin -35.649 -25.266 

 

Table A2.3f: Glide energy values for lignans 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Syringaresinol -28.202 -17.701 

1-Acetoxypinoresinol -8.022 N/A 

Pinoresinol -26.272 -3.106 

Hydroxypinoresinol -33.612 N/A 

Berchemol -31.434 -40.041 

3-Acetyloxy berchemol -25.851 -27.856 

(-)-Olivil -30.699 N/A 

D-(+)-Erythro-1-(4-hydroxy-3-methoxy)- 

214 - phenyl-1,2,3-propantriol  

-32.532 -27.779 

(+)-1-Acetoxypinoresinol-4"-O-methyl 

ether 

-30.251 -39.494 

(+)-1-Hydroxypinoresinol-4"-O-methyl 

ether 

-39.448 N/A 

 

Table A2.3g: Glide energy values for hydroxy-isochromans 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

1-(3’-Methoxy-4’-hydroxy)- phenyl-6,7-

dihydroxyisochroman 

-27.18 -20.492 

1-Phenyl-6,7-dihydroxyisochroman -20.536 -11.946 
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Table A2.3h: Glide energy values for secoiridoids 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Elenolic acid glucoside -19.212 -19.172 

Secologanic acid -14.816 N/A 

Secologanol -27.035 -29.139 

Secologanin -25.574 N/A 

Secologanoside -28.068 -5.008 

Methyl malate-hydroxytyrosol ester -43.03 -32.925 

Oleuropein aglycone (3,4-DHPEA-EA) -38.088 -33.702 

7-Deoxyloganic acid -25.114 -11.685 

Oleacein (Dialdehydic form of 

decarboxymethyl Oleuropein aglycon) 

-44.865 -34.428 

3,4-DHPEA-EDA (Oleuropein-aglycone 

di-aldehyde) 

-42.234 -36.475 

Cornoside -34.365 -11.717 

Oleocanthal (Dialdehydic form of 

decarboxymethyl Ligstroside aglycon) 

-42.425 -30.408 

p-HPEA-EDA -42.425 -30.408 

Elenolic acid -18.761 -11.183 

Dialdehydic elenolic acid 

decarboxymethyl  

-22.577 -24.075 

Hydroxytyrosil-elenolate -35.757 -36.375 

10-Hydroxy oleuropein aglycone -45.202 -38.795 

10-Hydroxy oleuropein aglycone 

decarboxymethyl 

-40.335 -32.177 

10-Hydroxy-10-methyl oleuropein 

aglycone  

-38.715 -40.673 

Monoaldehydic form of Ligstroside 

aglycon 

-38.796 -26.739 

Monoaldehydic form of Oleuropein 

aglycon 

-27.634 -33.922 

Oleuropeindial (enol form) -41.052 -27.813 

demethyloleuropein aglycone (enol form) -43.261 -34.088 

Demethyloleuropein aglycone -40.345 -36.147 

Demethyloleuropein aglycone dialdehyde -35.221 -34.088 

3,4-DHPEA-DEDA (Oleuropein 

aglycone decarboxymethyl dialdehyde 

form) 

-39.665 -34.663 

3,4-DHPEA-DEDA (acetal) -40.584 -33.613 

Oleuropeindial (keto form) -45.252 -39.385 

Oleuropeindial (Cannizzaro-like product 

of oleuropeindial) 

-35.834 -35.639 

Oleuropeindial - Lactone (Cannizzaro-

like product of oleuropeindial) 

-37.689 -40.125 

Elenolic acid dialdehyde -27.784 -18.019 

DEDA (Decarboxymethyl elenolic acid -24.116 -22.513 
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dialdehyde)  

DEDA acetal  -31.296 -22.547 

Oleoside-11-Methylester -22.977 -32.621 

Demethyl elenolic acid -25.833 -17.567 

(+)-Cycloolivil -21.807 N/A 

Oleoside dimethylester -25.639 -17.307 

Oleanolic acid demethyl N/A N/A 

Hemiacetal of dialdehydic oleuropein 

aglycone decarboxymethyl 

-36.984 -36.487 

Hemiacetal of dialdehydic ligstroside 

aglycone decarboxymethyl 

-34.032 N/A 

Dialdehydic elenolic ester 

decarboxymethyl  

-22.98 -26.047 

Elenolic acid methylester -15.632 N/A 

Ligstroside aglycone -37.703 -34.122 

Ligstroside derivative 2 -48.222 -49.682 

Ligstroside aglycone methyl acetal -40.105 -35.28 

3,4-DHPEA-DETA -40.784 -31.546 

Decarboxymethyl ligstroside aglycone -42.425 -33.763 

Hydroxytyrosol acyclodihydroelenolate -42.071 -23.099 

Hydroxytyrosol elenolate -35.757 -36.375 

 

Table A2.3i: Glide energy values for coumarins 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Esculin -38.905 -30.335 

Esculetin -24.749 -25.235 

Scopoletin -28.289 -25.334 

Scopolin -19.65 -34.739 

 

Table A2.3j: Glide energy values for irridoids 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Loganic acid -14.176 N/A 

Loganin -29.453 -26.266 

 

Table A2.3k: Glide energy values for glucosides 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Verucosin -24.374 N/A 

Oleoside -35.417 N/A 
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Hydroxytyrosol rhamnoside  -31.813 -28.606 

Hydroxytyrosol-1′-β-glucoside -31.554 N/A 

Hydroxytyrosol-3-β-glucoside -25.303 -39.91 

Hydroxytyrosol-4-β-glucoside -26.997 N/A 

Hydroxytyrosol diglucoside  -37.63 -43.855 

Salidroside -31.292 -31.509 

 

Table A2.3l: Glide energy values for methoxyphenols 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

Guaiacol -22.192 N/A 

2-Methoxy-4-vinylphenol -24.445 N/A 

Isoeugenol -25.7 N/A 

Homovanillin -28.446 -23.912 

 

Table A2.3m: Glide energy values for phenolic fatty acid esters 

Ligand 
Glide Energy (kcal/mol) 

COX-1 COX-2 

1-oleyltyrosol -50.865 -43.895 

Deoxyloganic acid lauryl ester -43.078 -34.807 

 

9.3 Membrane permeability simulations 

9.3.1 mdp files for SMD and umbrella sampling 

9.3.1.1 SMD energy minimisation  
; minim.mdp - used as input into grompp to generate em.tpr 
; Parameters describing what to do, when to stop and what to save 
integrator  = steep     ; Algorithm (steep = steepest descent 
minimization) 
emtol       = 1000.0    ; Stop minimization when the maximum force < 
1000.0 kJ/mol/nm 
emstep      = 0.01      ; Energy step size 
nsteps      = 50000     ; Maximum number of (minimization) steps to 
perform 
 
; Parameters describing how to find the neighbors of each atom and how to 
calculate the interactions 
nstlist     = 1         ; Frequency to update the neighbor list and long 
range forces 
ns_type     = grid      ; Method to determine neighbor list (simple, grid) 
rlist       = 1.4       ; Cut-off for making neighbor list (short range 
forces) 
coulombtype = PME       ; Treatment of long range electrostatic 
interactions 
rcoulomb    = 1.4       ; Short-range electrostatic cut-off 
rvdw        = 1.4       ; Short-range Van der Waals cut-off 
pbc         = xyz       ; Periodic Boundary Conditions 
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9.3.1.2 SMD equilibration  
title       = NPT Equilibration  
define      = -DPOSRES          ; position restrain the protein 
; Run parameters 
integrator  = md                ; leap-frog integrator 
nsteps      = 50000             ; 2 * 50000 = 100 ps 
dt          = 0.002             ; 2 fs 
; Output control 
nstxout     = 1000              ; save coordinates every 2 ps 
nstvout     = 1000              ; save velocities every 2 ps 
nstenergy   = 1000              ; save energies every 2 ps 
nstlog      = 1000              ; update log file every 2 ps 
; Bond parameters 
continuation         = yes       ; Initial simulation  
constraint_algorithm = lincs     ; holonomic constraints  
constraints          = all-bonds ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter           = 1         ; accuracy of LINCS 
lincs_order          = 4         ; also related to accuracy 
; Neighborsearching 
cutoff-scheme   = Verlet 
ns_type     = grid              ; search neighboring grid cels 
nstlist     = 20                ; 40 fs 
rlist       = 1.4               ; short-range neighborlist cutoff (in nm) 
rcoulomb    = 1.4               ; short-range electrostatic cutoff (in nm) 
rvdw        = 1.4               ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME           ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4             ; cubic interpolation 
fourierspacing  = 0.16          ; grid spacing for FFT 
; Temperature coupling is on 
tcoupl      = V-rescale             ; modified Berendsen thermostat  
tc-grps     = DOPC_LIG   Water     ; two coupling groups - more accurate 
tau_t       = 0.1       0.1         ; time constant, in ps 
ref_t       = 310       310         ; reference temperature, one for each 
group, in K 
; Pressure coupling is on 
pcoupl              = Berendsen     ; Pressure coupling on in NPT, also 
weak coupling 
pcoupltype          = semiisotropic ; not uniform scaling of x-y-z box 
vectors 
tau_p               = 2.0 2.0          ; time constant, in ps 
ref_p               = 1.0 1.0          ; reference pressure (in bar) 
compressibility     = 4.5e-5 4.5e-5   ; isothermal compressibility, bar^-1 
refcoord_scaling    = com 
; Periodic boundary conditions 
pbc     = xyz                   ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres          ; account for cut-off vdW scheme 
; Velocity generation 
gen_vel     = no                ; Velocity generation is off afer NVT 
; COM motion removal 
; These options remove COM motion of the system 
nstcomm         = 10 
comm-mode       = Linear 
comm-grps       = System  

 

9.3.1.3 SMD pulling simulation 
title       = Umbrella pulling simulation  
define      = -DPOSRES_B 
; Run parameters 
integrator  = md 
dt          = 0.002 
tinit       = 0 
nsteps      = 400000    ; 2 * 400000 = 800 ps 
nstcomm     = 10 
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; Output parameters 
nstxout     = 5000      ; every 10 ps 
nstvout     = 5000  
nstfout     = 500 
nstxtcout   = 500       ; every 1 ps 
nstenergy   = 500 
; Bond parameters 
constraint_algorithm    = lincs 
constraints             = all-bonds 
continuation            = no       ; not continuing from NPT  
; Single-range cutoff scheme 
cutoff-scheme   = Verlet 
nstlist     = 5  ; 10 fs 
ns_type     = grid  ; search neighbouring grid cells 
rlist       = 1.4 ; short-range neighborlist cutoff (in nm) 
rcoulomb    = 1.4 ; short-range electrostatic cutoff (in nm) 
rvdw        = 1.4 ; short-range van der Waals cutoff (in nm) 
; PME electrostatics parameters 
coulombtype     = PME ; Particle Mesh Ewald for long-range electrostatics 
fourierspacing  = 0.12 
fourier_nx      = 0 
fourier_ny      = 0 
fourier_nz      = 0 
pme_order       = 4 ; cubic interpolation 
ewald_rtol      = 1e-5 
optimize_fft    = yes 
; Berendsen temperature coupling is on in two groups 
Tcoupl      = Nose-Hoover 
tc_grps     = DOPC_LIG   Water  
tau_t       = 0.5       0.5 
ref_t       = 310       310 
; Pressure coupling is on 
Pcoupl          = Parrinello-Rahman  
pcoupltype      = semiisotropic ; not uniform scaling of x-y-z box vectors 
tau_p           = 1.0 1.0      
compressibility = 4.5e-5   4.5e-5   
ref_p           = 1.0 1.0 
refcoord_scaling = com 
; Velocity generation 
gen_vel     = yes        ; assign velocities from Maxwell distribution 
gen_seed    = -1  ; generate random velocities with each run 
gen_temp    = 310  ; so that first step will be randomised 
; Periodic boundary conditions are on in all directions 
pbc     = xyz 
; Long-range dispersion correction 
DispCorr    = EnerPres 
; Pull code 
pull_nstxout    = 500          ; every 1 ps 
pull_nstfout    = 500          ; every 1 ps 
pull            = umbrella 
pull_geometry   = direction 
pull_dim        = N N Y 
pull_vec1       = 0 0 -1 ; pull down z-axis 
pull_start      = yes       ; define initial COM distance > 0 
pull_ngroups    = 1 
pull_group0     = DOPC 
pull_group1     = LIG 
pull_rate1      = 0.01      ; 0.01 nm per ps = 10 nm per ns 
pull_k1         = 1000      ; kJ mol^-1 nm^-2 

 

9.3.1.4 Umbrella sampling equilibration 
title       = Umbrella pulling simulation  
define      = -DPOSRES_B 
; Run parameters 
integrator  = md 
dt          = 0.002 
tinit       = 0 
nsteps      = 50000     ; 100 ps  
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nstcomm     = 10 
; Output parameters 
nstxout     = 5000      ; every 10 ps 
nstvout     = 5000  
nstfout     = 5000 
nstxtcout   = 5000 
nstenergy   = 5000 
; Bond parameters 
constraint_algorithm    = lincs 
constraints             = all-bonds 
continuation            = no 
; Single-range cutoff scheme 
cutoff-scheme   = Verlet 
nstlist     = 5 
ns_type     = grid  
rlist       = 1.4 
rcoulomb    = 1.4 
rvdw        = 1.4 
; PME electrostatics parameters 
coulombtype     = PME 
fourierspacing  = 0.12 
fourier_nx      = 0 
fourier_ny      = 0 
fourier_nz      = 0 
pme_order       = 4 
ewald_rtol      = 1e-5 
optimize_fft    = yes 
; Berendsen temperature coupling is on in two groups 
Tcoupl      = Nose-Hoover 
tc_grps     = DOPC_LIG   Water  
tau_t       = 0.5       0.5 
ref_t       = 310       310 
; Pressure coupling is on 
Pcoupl          = Parrinello-Rahman  
pcoupltype      = semiisotropic  ; not uniform scaling 
tau_p           = 1.0 1.0     
compressibility = 4.5e-5   4.5e-5   
ref_p           = 1.0 1.0 
refcoord_scaling = com 
; Generate velocities is on  
gen_vel     = yes  
; Periodic boundary conditions are on in all directions 
pbc     = xyz 
; Long-range dispersion correction 
DispCorr    = EnerPres 
; Pull code 
pull            = umbrella 
pull_geometry   = distance 
pull_dim        = N N Y 
pull_start      = yes  
pull_ngroups    = 1 
pull_group0     = DOPC  
pull_group1     = LIG  
pull_init1      = 0 
pull_rate1      = 0.0 
pull_k1         = 1000      ; kJ mol^-1 nm^-2 
pull_nstxout    = 1000      ; every 2 ps 
pull_nstfout    = 1000      ; every 2 ps 

 

9.3.1.5 Umbrella sampling simulation 
title       = Umbrella pulling simulation  
define      = -DPOSRES_B 
; Run parameters 
integrator  = md 
dt          = 0.002 
tinit       = 0 
nsteps      = 5000000   ; 10 ns  
nstcomm     = 10 
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; Output parameters 
nstxout     = 50000     ; every 100 ps 
nstvout     = 50000  
nstfout     = 5000 
nstxtcout   = 5000      ; every 10 ps 
nstenergy   = 5000 
; Bond parameters 
constraint_algorithm    = lincs 
constraints             = all-bonds 
continuation            = yes 
; Single-range cutoff scheme 
cutoff-scheme   = Verlet 
nstlist     = 5 
ns_type     = grid  
rlist       = 1.4 
rcoulomb    = 1.4 
rvdw        = 1.4 
; PME electrostatics parameters 
coulombtype     = PME 
fourierspacing  = 0.12 
fourier_nx      = 0 
fourier_ny      = 0 
fourier_nz      = 0 
pme_order       = 4 
ewald_rtol      = 1e-5 
optimize_fft    = yes 
; Berendsen temperature coupling is on in two groups 
Tcoupl      = Nose-Hoover 
tc_grps     = DOPC_LIG   Water  
tau_t       = 0.5       0.5 
ref_t       = 310       310 
; Pressure coupling is on 
Pcoupl          = Parrinello-Rahman  
pcoupltype      = semiisotropic  
tau_p           = 1.0  1.0      
compressibility = 4.5e-5  4.5e-5 
ref_p           = 1.0  1.0 
refcoord_scaling = com 
; Generate velocities is off 
gen_vel     = no  
; Periodic boundary conditions are on in all directions 
pbc     = xyz 
; Long-range dispersion correction 
DispCorr    = EnerPres 
; Pull code 
pull            = umbrella 
pull_geometry   = direction 
pull_dim        = N N Y 
pull_vec1 = 0 0 -1 
pull_start      = yes  
pull_ngroups    = 1 
pull_group0     = DOPC  
pull_group1     = LIG 
pull_init1      = 0 
pull_rate1      = 0.0 
pull_k1         = 1000      ; kJ mol^-1 nm^-2 
pull_nstxout    = 1000      ; every 2 ps 
pull_nstfout    = 1000      ; every 2 ps 
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9.3.2 Additional plots for SMD simulation and umbrella sampling 

 

Figure A3.1: Force profile as ligands are pulled through DOPC membrane with respect to 

time for methyl malate-β-hydroxytyrosol ester (MMHTE), oleocanthal (OLEO), 

hydroxytyrosol (HT), elenoic acid diglucoside (EADG), Hoescht 33342 (H33342), and 

propidium. Forces are shown as an average of ten runs for each ligand. 

 

 
Figure A3.2: Force profile for elenolic acid diglucoside passing through DOPC membrane 

with a pull rate of 1.0 nm/ns with respect to time. 
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9.4 Molecular dynamics simulation 

9.4.1 mdp files for classical MD simulations 

9.4.1.1 Energy minimisation 
title  = Minimization ; Title of run 
 
; Parameters describing what to do, when to stop and what to save 
integrator = steep  ; Algorithm (steep = steepest descent 
minimization) 
emtol  = 1000.0   ; Stop minimization when the maximum force 
< 10.0 kJ/mol 
emstep      = 0.01      ; Energy step size 
nsteps  = 50000    ; Maximum number of (minimization) steps to 
perform 
energygrps = Protein ; Which energy group(s) to write to disk 
 
; Parameters describing how to find the neighbors of each atom and how to 
calculate the interactions 
nstlist      = 1      ; Frequency to update the neighbor list 
and long range forces 
cutoff-scheme   = Verlet 
ns_type      = grid  ; Method to determine neighbor list 
(simple, grid) 
rlist      = 1.0  ; Cut-off for making neighbor list 
(short range forces) 
coulombtype     = PME  ; Treatment of long range 
electrostatic interactions 
rcoulomb     = 1.0  ; long range electrostatic cut-off 
rvdw      = 1.0  ; long range Van der Waals cut-off 
pbc          = xyz   ; Periodic Boundary Conditions 

9.4.1.2 NVT 
title       = Protein-ligand complex NVT equilibration  
define      = -DPOSRES  ; position restrain the protein and ligand 
; Run parameters 
integrator  = md        ; leap-frog integrator 
nsteps      = 50000     ; 2 * 50000 = 100 ps 
dt          = 0.002     ; 2 fs 
; Output control 
nstxout     = 500       ; save coordinates every 1.0 ps 
nstvout     = 500       ; save velocities every 1.0 ps 
nstenergy   = 500       ; save energies every 1.0 ps 
nstlog      = 500       ; update log file every 1.0 ps 
energygrps  = Protein 
; Bond parameters 
continuation    = no            ; first dynamics run 
constraint_algorithm = lincs    ; holonomic constraints  
constraints     = all-bonds     ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter      = 1             ; accuracy of LINCS 
lincs_order     = 4             ; also related to accuracy 
; Neighborsearching 
cutoff-scheme   = Verlet 
ns_type         = grid      ; search neighboring grid cells 
nstlist         = 10        ; 20 fs, largely irrelevant with Verlet 
rcoulomb        = 1.4       ; short-range electrostatic cutoff (in nm) 
rvdw            = 1.4       ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME       ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4         ; cubic interpolation 
fourierspacing  = 0.16      ; grid spacing for FFT 
; Temperature coupling 
tcoupl      = V-rescale                     ; modified Berendsen 
thermostat 
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tc-grps     = Protein_LIG Water_and_ions    ; two coupling groups - more 
accurate 
tau_t       = 0.1   0.1                     ; time constant, in ps 
ref_t       = 300   300                     ; reference temperature, one 
for each group, in K 
; Pressure coupling 
pcoupl      = no        ; no pressure coupling in NVT 
; Periodic boundary conditions 
pbc         = xyz       ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres  ; account for cut-off vdW scheme 
; Velocity generation 
gen_vel     = yes       ; assign velocities from Maxwell distribution 
gen_temp    = 300       ; temperature for Maxwell distribution 
gen_seed    = -1        ; generate a random seed 

9.4.1.3 NPT 
title       = Protein-ligand complex NPT equilibration  
define      = -DPOSRES  ; position restrain the protein and ligand 
; Run parameters 
integrator  = md        ; leap-frog integrator 
nsteps      = 50000     ; 2 * 50000 = 100 ps 
dt          = 0.002     ; 2 fs 
; Output control 
nstxout     = 500       ; save coordinates every 1.0 ps 
nstvout     = 500       ; save velocities every 1.0 ps 
nstenergy   = 500       ; save energies every 1.0 ps 
nstlog      = 500       ; update log file every 1.0 ps 
energygrps  = Protein LIG 
; Bond parameters 
continuation    = yes           ; first dynamics run 
constraint_algorithm = lincs    ; holonomic constraints  
constraints     = all-bonds     ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter      = 1             ; accuracy of LINCS 
lincs_order     = 4             ; also related to accuracy 
; Neighborsearching 
cutoff-scheme   = Verlet 
ns_type         = grid      ; search neighboring grid cells 
nstlist         = 10        ; 20 fs, largely irrelevant with Verlet 
rcoulomb        = 1.4       ; short-range electrostatic cutoff (in nm) 
rvdw            = 1.4       ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME       ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4         ; cubic interpolation 
fourierspacing  = 0.16      ; grid spacing for FFT 
; Temperature coupling 
tcoupl      = V-rescale                     ; modified Berendsen 
thermostat 
tc-grps     = Protein_LIG Water_and_ions    ; two coupling groups - more 
accurate 
tau_t       = 0.1   0.1                     ; time constant, in ps 
ref_t       = 300   300                     ; reference temperature, one 
for each group, in K 
; Pressure coupling 
pcoupl      = Parrinello-Rahman             ; pressure coupling is on for 
NPT 
pcoupltype  = isotropic                     ; uniform scaling of box 
vectors 
tau_p       = 2.0                           ; time constant, in ps 
ref_p       = 1.0                           ; reference pressure, in bar 
compressibility = 4.5e-5                    ; isothermal compressibility 
of water, bar^-1 
refcoord_scaling    = com 
; Periodic boundary conditions 
pbc         = xyz       ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres  ; account for cut-off vdW scheme 
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; Velocity generation 
gen_vel     = no        ; velocity generation off after NVT  

9.4.1.4 MD run 
title       = Protein-ligand complex MD simulation  
; Run parameters 
integrator  = md        ; leap-frog integrator 
nsteps      = 50000000   ; 2 * 50000000 = 100000 ps (100 ns) 
dt          = 0.002     ; 2 fs 
; Output control 
nstxout             = 0         ; suppress .trr output  
nstvout             = 0         ; suppress .trr output 
nstenergy           = 5000      ; save energies every 10.0 ps 
nstlog              = 5000      ; update log file every 10.0 ps 
nstxout-compressed  = 5000      ; write .xtc trajectory every 10.0 ps 
compressed-x-grps   = System 
energygrps          = Protein LIG 
; Bond parameters 
continuation    = no            ; first dynamics run 
constraint_algorithm = lincs    ; holonomic constraints  
constraints     = all-bonds     ; all bonds (even heavy atom-H bonds) 
constrained 
lincs_iter      = 1             ; accuracy of LINCS 
lincs_order     = 4             ; also related to accuracy 
; Neighborsearching 
cutoff-scheme   = Verlet 
ns_type         = grid      ; search neighboring grid cells 
nstlist         = 10        ; 20 fs, largely irrelevant with Verlet 
rcoulomb        = 1.4       ; short-range electrostatic cutoff (in nm) 
rvdw            = 1.4       ; short-range van der Waals cutoff (in nm) 
; Electrostatics 
coulombtype     = PME       ; Particle Mesh Ewald for long-range 
electrostatics 
pme_order       = 4         ; cubic interpolation 
fourierspacing  = 0.16      ; grid spacing for FFT 
; Temperature coupling 
tcoupl      = V-rescale                     ; modified Berendsen 
thermostat 
tc-grps     = Protein_LIG Water_and_ions    ; two coupling groups - more 
accurate 
tau_t       = 0.1   0.1                     ; time constant, in ps 
ref_t       = 300   300                     ; reference temperature, one 
for each group, in K 
; Pressure coupling  
pcoupl      = Parrinello-Rahman             ; pressure coupling is on for 
NPT 
pcoupltype  = isotropic                     ; uniform scaling of box 
vectors 
tau_p       = 2.0                           ; time constant, in ps 
ref_p       = 1.0                           ; reference pressure, in bar 
compressibility = 4.5e-5                    ; isothermal compressibility 
of water, bar^-1 
; Periodic boundary conditions 
pbc         = xyz       ; 3-D PBC 
; Dispersion correction 
DispCorr    = EnerPres  ; account for cut-off vdW scheme 
; Velocity generation 
gen_vel     = yes        ; assign velocities from Maxwell distribution 
gen_seed    = -1  ; generate random velocities with each run 
gen_temp    = 300  ; so that first step will be randomised 
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9.4.2 RMSD and RMSF error 

 
Figure A4.1: Standard error for 100 ns trajectories of COX-1 (A, C, E) and COX-2 (B, D, F) 

proteins bound to olive ligands: apo (blue), native ligand (red), 1-oleyltyrosol (green), 

ligstroside derivative 2 (purple), oleocanthal (orange), and methyl malate-β-hydroxytyrosol 

ester (grey). The standard error for the RMSD of backbone atoms is shown (A-B). RMSF for 

the protein fit to the backbone is shown with respect to time. Standard error in RMSF for 

protein fit to the protein backbone is shown with respect to residue (C-D). The standard error 

for the difference in RMSF when values for the apo form is substracted from ligand bound 

forms of the protein is also shown with respect to residue (E-F). 
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9.4.3 Essential Dynamics 

9.4.3.1 Essential dynamics values 

 

Table A4.1a: Cosine content for triplicate and concatenated trajectories for COX-1 

Traj 1 2 3 4 5 6 7 8 9 10 

             

Apo 1-01 0.825 0.374 0.198 0.000 0.015 0.080 0.115 0.028 0.026 0.000 

Apo 1-02 0.880 0.387 0.056 0.002 0.087 0.075 0.122 0.002 0.126 0.004 

Apo 1-03 0.941 0.151 0.060 0.034 0.039 0.000 0.068 0.001 0.074 0.003 

Apo 1-cat 0.264 0.203 0.143 0.028 0.103 0.007 0.000 0.015 0.035 0.029 

             

FLP 1-01 0.827 0.465 0.291 0.007 0.066 0.008 0.005 0.002 0.044 0.002 

FLP 1-02 0.906 0.471 0.239 0.269 0.000 0.029 0.005 0.024 0.001 0.018 

FLP 1-03 0.928 0.508 0.270 0.008 0.049 0.003 0.003 0.008 0.010 0.006 

FLP 1-cat 0.518 0.415 0.270 0.047 0.014 0.002 0.126 0.015 0.107 0.001 

             

1OL 1-01 0.916 0.337 0.249 0.281 0.308 0.066 0.003 0.036 0.023 0.152 

1OL 1-02 0.880 0.687 0.286 0.019 0.031 0.123 0.017 0.044 0.014 0.072 

1OL 1-03 0.865 0.618 0.113 0.192 0.003 0.068 0.052 0.012 0.000 0.024 

1OL 1-cat 0.557 0.397 0.107 0.389 0.016 0.051 0.027 0.053 0.002 0.000 

             

LG2 1-01 0.436 0.378 0.019 0.021 0.011 0.008 0.002 0.006 0.028 0.087 

LG2 1-02 0.847 0.496 0.343 0.044 0.060 0.209 0.016 0.008 0.080 0.094 

LG2 1-03 0.875 0.424 0.031 0.128 0.022 0.071 0.026 0.003 0.040 0.045 

LG2 1-cat 0.257 0.342 0.045 0.135 0.003 0.037 0.001 0.007 0.002 0.045 

             

OLEO 1-01 0.863 0.564 0.016 0.031 0.000 0.011 0.000 0.000 0.054 0.053 

OLEO 1-02 0.775 0.497 0.247 0.163 0.128 0.018 0.050 0.028 0.004 0.000 

OLEO 1-03 0.908 0.032 0.031 0.000 0.023 0.001 0.000 0.050 0.051 0.044 

OLEO 1-cat 0.000 0.006 0.000 0.143 0.093 0.108 0.048 0.001 0.018 0.037 

             

MMHTE 1-01 0.798 0.065 0.045 0.061 0.031 0.021 0.011 0.000 0.149 0.023 

MMHTE 1-02 0.571 0.508 0.391 0.418 0.009 0.001 0.037 0.100 0.000 0.001 

MMHTE 1-03 0.888 0.287 0.158 0.306 0.070 0.014 0.118 0.001 0.074 0.028 

MMHTE 1-cat 0.442 0.284 0.134 0.280 0.034 0.001 0.105 0.016 0.004 0.019 
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Table A4.1b: Cosine content for triplicate and concatenated trajectories for COX-2 

Traj 1 2 3 4 5 6 7 8 9 10 

                      

Apo 2-01 0.014 0.026 0.056 0.064 0.010 0.030 0.002 0.014 0.010 0.018 

Apo 2-02 0.822 0.705 0.175 0.069 0.000 0.013 0.070 0.033 0.005 0.037 

Apo 2-03 0.756 0.081 0.043 0.033 0.006 0.000 0.008 0.071 0.003 0.016 

Apo 2-cat 0.447 0.582 0.107 0.000 0.082 0.039 0.001 0.016 0.029 0.001 

             

SAL 2-01 0.721 0.691 0.016 0.004 0.019 0.002 0.170 0.097 0.026 0.013 

SAL 2-02 0.130 0.227 0.000 0.001 0.000 0.048 0.082 0.015 0.003 0.031 

SAL 2-03 0.876 0.044 0.227 0.023 0.001 0.061 0.013 0.002 0.101 0.014 

SAL 2-cat 0.727 0.539 0.052 0.114 0.191 0.112 0.012 0.002 0.007 0.012 

             

1OL 2-01 0.820 0.029 0.045 0.003 0.021 0.059 0.009 0.037 0.000 0.003 

1OL 2-02 0.766 0.175 0.002 0.001 0.010 0.002 0.011 0.011 0.009 0.081 

1OL 2-03 0.819 0.631 0.007 0.004 0.030 0.010 0.002 0.001 0.004 0.037 

1OL 2-cat 0.274 0.183 0.001 0.342 0.022 0.142 0.018 0.001 0.002 0.081 

             

LG2 2-01 0.875 0.112 0.068 0.033 0.017 0.002 0.000 0.000 0.010 0.003 

LG2 2-02 0.512 0.172 0.000 0.120 0.000 0.000 0.038 0.002 0.012 0.009 

LG2 2-03 0.684 0.370 0.142 0.075 0.061 0.000 0.012 0.000 0.011 0.001 

LG2 2-cat 0.032 0.005 0.027 0.006 0.000 0.022 0.119 0.070 0.041 0.030 

             

OLEO 2-01 0.863 0.564 0.016 0.031 0.000 0.011 0.000 0.000 0.054 0.053 

OLEO 2-02 0.775 0.497 0.247 0.163 0.128 0.018 0.050 0.028 0.004 0.000 

OLEO 2-03 0.908 0.032 0.031 0.000 0.023 0.001 0.000 0.050 0.051 0.044 

OLEO 2-cat 0.000 0.006 0.000 0.143 0.093 0.108 0.048 0.001 0.018 0.037 

             

MMHTE 2-01 0.287 0.452 0.000 0.053 0.000 0.002 0.015 0.020 0.000 0.005 

MMHTE 2-02 0.808 0.005 0.086 0.052 0.015 0.025 0.000 0.008 0.002 0.000 

MMHTE 2-03 0.425 0.085 0.008 0.005 0.049 0.005 0.204 0.000 0.034 0.035 

MMHTE 2-cat 0.312 0.351 0.092 0.023 0.003 0.022 0.001 0.000 0.038 0.003 
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Figure A4.2: Eigenvalues (A, B) and cumulative contribution (C, D) for COX-1 and COX-2 

in its apo form (blue), and bound to its native ligand (red), 1OL (green), LG2 (purple), OLEO 

(orange), and MMHTE (black). 
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Table A4.2: Colour scale values for porcupine plots 

 Eigenvector COX1 COX2 

APO 1 0.25-13.55 0.15-9.15 

2 0.14-7.98 0.50-20.14 

3 1.85-16.28 1.03-21.32 

 

FLP/SAL 1 0.19-12.20 0.39-15.79 

2 0.21-9.69 0.56-22.17 

3 0.08-8.86 1.19-9.39 

 

1OL 1 0.11-14.59 0.07-14.80 

2 0.13-10.21 0.21-14.40 

3 0.26-6.43 0.13-5.58 

 

LG2 1 0.66-13.49 0.05-9.01 

2 0.55-11.44 1.24-8.07 

3 0.12-9.49 1.16-9.42 

 

OLEO 1 0.17-12.16 0.57-11.38 

2 0.14-7.33 0.14-7.21 

3 0.03-4.48 0.23-8.89 

 

MMHTE 1 0.78-12.01 0.20-24.04 

2 0.68-22.42 0.16-8.08 

3 1.30-14.22 0.14-9.37 
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9.4.3.1 2D projection plots 

 
Figure A4.3a: 2D plot for PC-1 against PC-2 for COX-1 complexes 
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Figure A4.3b: 2D plot for PC-1 against PC-3 for COX-1 complexes 
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Figure A4.3c: 2D plot for PC-1 against PC-2 for COX-2 complexes 
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Figure A4.3d: 2D plot for PC-1 against PC-3 for COX-2 complexes 
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9.4.3.1 Projection and distribution graphs 

 
Figure A4.4a: Projection and distribution for COX-1 in its apo form of PCA-1, PCA-2, 

PCA-3, and PCA-20. 
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Figure A4.4b: Projection and distribution for COX-1 bound to FLP of PCA-1, PCA-2, PCA-

3, and PCA-20. 
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Figure A4.4c: Projection and distribution for COX-1 bound to 1OL of PCA-1, PCA-2, PCA-

3, and PCA-20. 
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Figure A4.4d: Projection and distribution for COX-1 bound to LG2 of PCA-1, PCA-2, PCA-

3, and PCA-20. 
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Figure A4.4e: Projection and distribution for COX-1 bound to OLEO of PCA-1, PCA-2, 

PCA-3, and PCA-20. 
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Figure A4.4f: Projection and distribution for COX-1 bound to MMHTE of PCA-1, PCA-2, 

PCA-3, and PCA-20. 
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Figure A4.4g: Projection and distribution for COX-2 in its apo form of PCA-1, PCA-2, 

PCA-3, and PCA-20. 
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Figure A4.4h: Projection and distribution for COX-2 bound to SAL of PCA-1, PCA-2, PCA-

3, and PCA-20. 
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Figure A4.4i: Projection and distribution for COX-2 bound to 1OL of PCA-1, PCA-2, PCA-

3, and PCA-20. 
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Figure A4.4j: Projection and distribution for COX-2 bound to LG2 of PCA-1, PCA-2, PCA-

3, and PCA-20. 
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Figure A4.4k: Projection and distribution for COX-2 bound to OLEO of PCA-1, PCA-2, 

PCA-3, and PCA-20. 
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Figure A4.4l: Projection and distribution for COX-2 bound to MMHTE of PCA-1, PCA-2, 

PCA-3, and PCA-20. 
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9.4.3.1 Porcupine plots 

Figure A4.5a: Porcupine plots for the first three eigenvectors of the apo form of COX-1 and 

COX-2 
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Figure A4.5b: Porcupine plots for the first three eigenvectors of COX-1 and COX-2 bound 

to their native ligands (FLP and SAL respectively) 
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Figure A4.5c: Porcupine plots for the first three eigenvectors of COX-1 and COX-2 bound to 

1OL 
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Figure A4.5d: Porcupine plots for the first three eigenvectors of COX-1 and COX-2 bound 

to LG2 
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Figure A4.5e: Porcupine plots for the first three eigenvectors of COX-1 and COX-2 bound to 

OLEO 
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Figure A4.5f: Porcupine plots for the first three eigenvectors of COX-1 and COX-2 bound to 

MMHTE 
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9.4.3.1 Movements observed within porcupine plots 

 

Table A4.3: Blocks of residues and segments of concerted motion as identified with principal 

components analysis of essential dynamics of proteins 

Residues Segment 

A B C 

Block 1 32-85 32-47 48-69 70-85 

Block 2 86-115    

Block 3 126-171 126-133 134-148 149-171 

Block 4 209-229    

Block 5 235-290 233-264 265-290  
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Table A4.4a: Concerted movements of blocks of residues in COX-1 bound to various ligands 

COX-

1 

 APO FLP 1OL LG2 OLEO MMHTE 

Block 

1 

E1 1C=ACW L-UP-ACW 1B=U-CW; 

1C=D-CW 

1B+C=L-

UP-ACW 

1A+B=L-

ACW; 

1C=L-UP 

1C=L-UP 

E2 1B=UP; 

1C=M-

ACW 

1A=S; 

1C=S 

M-ACW 1A+B=L-

UP-CW 

1A+B=M-

ACW; 

1C=UP 

1A=S 

E3 1A=S M-CW 1C=L-CW 1B=M-UP-

ACW 

M-CW 1A+B=S-

UP-ACW; 

1C=M-UP 

Block 

2 

E1   M     L-UP   

E2 M-CW  S-UP  M-CW   

E3   M-UP M-UP   M-DN   

Block 

3 

E1 3B=CW 3B=ACW 3A+B=M-

DN 

3B=M-DN 3B=M-UP   

E2 3B=M-UP 3C=S  3B=M-UP 3B=M-UP   

E3       3B=M-DN-

CW 

3A+B=M-

UP 

  

Block 

4 

E1 ACW ACW M-UP       

E2     M-UP-CW   

E3         M-ACW   

Block 

5 

E1 M-DN DN S-UP     

E2  5A=S   5A=S-DN-

ACW; 

5B=M-DN 

  

E3         S-UP   

Note: Magnitude of motion is denoted by S, M, and L for small, moderate, and large 

respectively. Upward and downward movement is denoted by UP and DN. CW denotes 

clockwise motion, and ACW denotes anticlockwise motion. 
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Table A4.4b: Concerted movements of blocks of residues in COX-2 bound to various 

ligands 

COX-

2 

  APO SAL 1OL LG2 OLEO MMHTE 

Block 

1 

 

 

E1 DN-CW CW ACW M-CW M-ACW M-CW 

E2 S-CW S-CW S CW M-CW L-ACW 

E3 S-DN L-DN S-ACW M-CW S-ACW L-ACW 

Block 

2 

 

 

E1 M-UP S-UP   M-ACW M-ACW M-UP 

E2  S-UP S     

E3    M-DN   M-CW S-UP 

Block 

3 

 

 

E1 3B=M-UP   S 3A=S-UP; 

3B=M-

CW; 

3C=M-UP 

S-DN S 

E2     3A+B=S-

ACW; 

3C=M-UP 

M 

E3 3C=M-

ACW 

      S-UP S-DN 

Block 

4 

 

 

E1       S-ACW S-ACW   

E2      S-UP 

E3         S-ACW   

Block 

5 

 

 

E1 5A=S   S-DN 5A=S-DN-

ACW; 

5B=M-

DN-ACW 

  5A=S-UP 

E2     5A=S-DN S 

E3 5B=L       M-DN S-UP 

Note: Magnitude of motion is denoted by S, M, and L for small, moderate, and large 

respectively. Upward and downward movement is denoted by UP and DN. CW denotes 

clockwise motion, and ACW denotes anticlockwise motion. 
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9.4.4 Modular network analysis 

9.4.4.1 Metrics for overall graphs 

Table A4.5a: Overall metric values for COX-1 network analysis 

 
APO FLP 1OL LG2 OLEO MMHTE 

Nodes 552 552 552 552 552 552 

Edges 8419 9293 6874 7248 6420 7756 

Average 

Degree 
26.011 29.054 20.667 21.812 19.022 23.547 

Avg. 

Weighted 

Degree 

39.489 49.902 33.384 35.159 31.739 37.21 

Network 

Diameter 
13 11 15 13 13 10 

Graph 

Density 
0.047 0.053 0.038 0.04 0.035 0.043 

Modularity 0.637 0.59 0.717 0.711 0.68 0.676 

Connected 

Components 
1 1 1 1 1 1 

Avg. 

Clustering 

Coefficient 

0.613 0.634 0.623 0.628 0.609 0.621 

Avg. Path 

Length 
4.366 3.882 5.082 4.924 4.647 4.082 
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Table A4.5b: Overall metric values for COX-2 network analysis 

 
APO SAL 1OL LG2 OLEO MMHTE 

Nodes 552 552 552 552 552 552 

Edges 14165 11271 11062 10795 10531 9488 

Average 

Degree 
46.395 36.004 32.246 34.203 34.286 30.217 

Avg. 

Weighted 

Degree 

61.178 50.504 49.746 48.931 45.895 42.696 

Network 

Diameter 
11 12 9 12 17 14 

Graph 

Density 
0.084 0.65 0.064 0.062 0.062 0.055 

Modularity 0.509 0.576 0.597 0.655 0.574 0.59 

Connected 

Components 
1 1 1 1 1 1 

Avg. 

Clustering 

Coefficient 

0.626 0.624 0.635 0.637 0.631 0.641 

Avg. Path 

Length 
3.174 3.726 3.542 3.79 4.429 4.422 
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9.4.4.1 Protein communication network graphs 

 

 
Figure A4.6a: Communication pathway network for COX-1 in its apo form 
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Figure A4.6b: Communication pathway network for COX-1 bound to FLP 
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Figure A4.6c: Communication pathway network for COX-1 bound to 1OL 
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Figure A4.6d: Communication pathway network for COX-1 bound to LG2 
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Figure A4.6e: Communication pathway network for COX-1 bound to OLEO 
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Figure A4.6f: Communication pathway network for COX-1 bound to MMHTE 
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Figure A4.6g: Communication pathway network for COX-2 in its apo form 
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Figure A4.6h: Communication pathway network for COX-2 bound to SAL 
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Figure A4.6i: Communication pathway network for COX-2 bound to 1OL 
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Figure A4.6j: Communication pathway network for COX-2 bound to LG2 
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Figure A4.6k: Communication pathway network for COX-2 bound to OLEO 
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Figure A4.6l: Communication pathway network for COX-2 bound to MMHTE 
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9.4.4.1 Network metrics for functional residues 

 

Table A4.6a: Degrees for COX-1 residues 

Residue APO FLP 1OL LG2 OLEO MMHTE 

Active site 

93 12 16 13 14 22 29 

116 16 16 11 13 14 32 

117 14 17 15 17 20 34 

120 12 28 12 23 20 28 

205 27 54 17 26 17 48 

209 18 29 6 3 4 31 

344 35 80 27 31 44 55 

345 59 69 19 33 41 54 

348 56 72 22 43 54 38 

349 40 52 17 33 44 37 

352 28 25 18 18 41 28 

353 31 30 13 22 42 23 

355 18 30 17 18 31 29 

359 15 17 17 9 29 21 

381 55 46 34 15 28 73 

384 24 30 31 16 26 66 

385 42 31 29 9 23 37 

387 33 58 21 6 15 17 

513 5 16 4 4 4 26 

518 26 8 15 9 12 21 

523 31 17 32 15 12 30 

526 14 17 27 15 27 44 

527 23 21 27 21 24 44 

530 16 19 24 14 17 47 

531 28 17 29 11 21 41 

533 9 9 11 9 4 27 

534 16 17 17 13 13 25 

Peroxidase site 

203 54 87 24 31 27 57 

207 13 48 21 14 5 67 

211 13 14 6 3 2 30 

222 4 12 3 3 2 11 

240 9 54 31 24 19 39 

274 4 3 2 4 4 2 

290 14 27 15 16 18 31 

388 19 40 20 15 17 18 

391 27 51 38 5 27 16 

409 31 48 12 17 21 31 

504 43 27 22 19 12 71 

EGF 
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32 1 2 1 3 1 1 

35 8 18 6 5 14 38 

38 6 9 11 8 11 31 

41 7 27 15 14 23 33 

44 6 9 4 7 3 6 

47 5 24 10 10 16 40 

50 5 7 5 5 7 13 

53 3 4 3 6 4 6 

56 4 11 8 10 4 20 

59 8 15 12 13 11 35 

62 8 13 8 7 7 19 

65 9 11 12 11 9 19 

68 10 19 16 10 15 15 

71 12 16 15 15 10 29 

72 10 13 17 17 11 21 

MBD 

73 4 4 11 12 9 15 

76 8 5 17 17 11 28 

79 8 5 11 10 9 23 

82 7 2 10 11 8 16 

85 5 3 4 5 7 16 

88 11 11 8 9 12 25 

91 9 9 8 11 13 31 

94 11 12 9 8 12 21 

97 7 10 3 9 7 15 

100 17 21 12 17 20 38 

103 14 15 11 17 9 27 

106 20 12 14 19 8 33 

109 20 21 14 17 18 46 

Glycosylation 

68 10 19 16 10 15 15 

144 6 5 4 9 6 11 

410 41 42 15 16 18 31 

580 64 60 46 43 56 47 
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Table A4.6b: Betweenness centrality for COX-1 residues 

Residue APO FLP 1OL LG2 OLEO MMHTE 

Active site 

93 1691.14 527.37 10464.89 1828.82 4122.11 653.20 

116 267.45 31.62 190.89 71.89 111.19 156.63 

117 442.33 64.01 933.83 1315.79 4002.58 1148.96 

120 41.59 5605.79 9884.64 5373.77 2083.04 559.68 

205 11.42 558.26 3.10 66.80 44.81 430.01 

209 139.85 78.44 0.00 21.57 1.98 289.17 

344 474.96 5473.86 7892.39 3452.91 1978.99 5112.05 

345 5338.44 1725.01 2091.80 1436.74 636.71 613.33 

348 25449.16 5738.12 1038.46 17655.66 17907.25 79.78 

349 1711.07 1139.31 184.29 2305.49 980.35 28.49 

352 550.11 738.57 1364.42 385.79 764.30 62.97 

353 2869.09 4653.96 94.54 2332.54 2916.64 201.21 

355 16768.98 4668.21 5622.27 12522.16 5788.20 3408.19 

359 975.25 873.30 360.51 406.16 6720.45 2632.10 

381 8759.08 12358.13 2754.20 11639.14 2380.54 4350.87 

384 384.75 1478.96 889.60 6495.91 1556.87 1539.13 

385 2985.97 1201.43 24289.51 2364.54 27736.47 442.33 

387 624.98 3931.77 7755.10 9565.03 258.43 47.18 

513 4.00 377.70 136.48 11.34 152.88 56.84 

518 305.48 182.83 1459.28 704.58 1286.00 84.00 

523 134.69 357.44 563.67 335.44 114.70 12.38 

526 45.42 234.09 1622.80 1499.63 2835.10 388.78 

527 634.36 539.86 250.66 2376.69 1057.65 758.61 

530 107.25 1803.01 210.54 368.53 3073.69 567.61 

531 1006.77 848.08 301.86 2.53 433.18 505.80 

533 0.93 0.00 0.19 0.21 1.25 6.72 

534 3365.66 3610.19 1127.31 399.04 460.11 1241.52 

Peroxidase site 

203 309.76 2161.55 30.92 454.02 341.20 842.27 

207 121.08 1183.38 18.97 328.98 8.07 15836.27 

211 1075.87 1896.50 2318.26 1117.50 1351.22 1437.79 

222 25.89 103.25 82.88 203.17 0.00 0.50 

240 1.12 243.78 75.43 8.05 31.44 62.06 

274 4.39 1.95 236.56 2.77 57.47 0.00 

290 1.76 50.29 56.17 304.58 47.38 546.47 

388 155.89 4696.74 145.67 367.70 4225.33 511.73 

391 216.39 1163.33 1393.72 0.45 1292.13 71.84 

409 1021.04 1104.95 144.05 377.22 47.71 2288.85 

504 224.75 448.72 50.23 168.04 35.76 453.54 

EGF 

32 0.00 0.00 0.00 2.36 0.00 0.00 

35 409.54 65.38 115.73 227.69 49.66 102.00 
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38 25.00 1.20 377.13 404.28 18.97 8.49 

41 8896.76 987.33 5757.36 13377.56 7104.36 111.99 

44 257.38 18.80 7.74 26.55 13.92 0.00 

47 6254.52 724.35 462.48 94.43 2669.77 113.75 

50 544.17 560.83 730.92 0.17 492.71 344.22 

53 0.42 1.80 0.58 0.37 408.09 0.00 

56 591.41 11.10 23.61 84.03 2.90 1.59 

59 454.61 27.22 52.24 502.01 832.91 660.58 

62 276.41 89.26 3.55 1.51 3.98 25.43 

65 2.80 13.68 53.98 2.20 1.10 2.50 

68 1919.10 218.01 1391.09 0.81 1584.01 1.22 

71 2012.01 4872.92 206.46 201.30 251.40 3417.35 

72 215.35 309.01 1729.70 1905.66 153.22 15.61 

MBD 

73 124.23 312.68 98.59 638.58 431.18 328.50 

76 620.37 1.50 1612.16 1870.18 1708.37 2049.94 

79 620.37 7.47 701.44 38.03 91.84 23.57 

82 3364.83 0.00 577.61 5215.62 825.28 176.95 

85 717.89 17.70 244.59 1547.39 458.41 787.32 

88 6387.68 318.43 0.00 213.40 197.97 527.77 

91 38.68 0.00 0.00 2013.51 204.90 1478.52 

94 212.59 10.31 1.27 6.60 13.78 43.74 

97 82.67 5.35 11.99 211.07 8.03 8.91 

100 1438.18 1902.17 2571.01 1391.00 1380.09 548.26 

103 62.27 202.55 1742.05 249.79 14.15 345.14 

106 5288.81 64.89 1643.38 2457.57 92.49 847.52 

109 386.59 789.37 2423.43 1279.17 968.82 723.82 

Glycosylation 

68 1919.10 218.01 1391.09 0.81 1584.01 1.22 

144 24.47 990.35 325.63 900.00 1378.58 38.03 

410 77.08 70.46 141.10 23.53 54.02 99.64 

580 1118.76 339.94 921.10 4141.76 1851.93 87.96 
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Table A4.6c: Eigencentrality for COX-1 residues 

Residue APO FLP 1OL LG2 OLEO MMHTE 

Active site 

93 0.0074 0.0106 0.0064 0.0102 0.1047 0.0077 

116 0.0070 0.0069 0.0051 0.0090 0.0204 0.0089 

117 0.0061 0.0072 0.0069 0.0122 0.0309 0.0101 

120 0.0050 0.0159 0.0073 0.0160 0.0303 0.0081 

205 0.2344 0.4093 0.0597 0.1936 0.1823 0.3464 

209 0.1381 0.2510 0.0158 0.0033 0.0088 0.1149 

344 0.2105 0.6083 0.1588 0.2156 0.4455 0.3019 

345 0.4181 0.5265 0.0467 0.1850 0.4236 0.3350 

348 0.3437 0.5580 0.0792 0.2541 0.5453 0.1250 

349 0.2036 0.3985 0.0302 0.1599 0.4345 0.1009 

352 0.1300 0.1102 0.0248 0.0603 0.4179 0.0569 

353 0.1356 0.1577 0.0174 0.0768 0.4047 0.0274 

355 0.0322 0.0946 0.0196 0.0327 0.2089 0.0438 

359 0.0442 0.0764 0.0336 0.0256 0.1681 0.0695 

381 0.1771 0.1100 0.0581 0.0158 0.0583 0.2928 

384 0.0708 0.0465 0.0571 0.0157 0.0557 0.2485 

385 0.1403 0.0977 0.0618 0.0085 0.0635 0.1163 

387 0.1160 0.3321 0.0520 0.0094 0.0669 0.0230 

513 0.0047 0.0102 0.0035 0.0016 0.0025 0.0760 

518 0.0625 0.0026 0.0263 0.0084 0.0212 0.0250 

523 0.0788 0.0140 0.0710 0.0251 0.0266 0.1488 

526 0.0199 0.0100 0.0540 0.0160 0.0493 0.1212 

527 0.0477 0.0142 0.0587 0.0233 0.0441 0.1734 

530 0.0253 0.0150 0.0498 0.0121 0.0307 0.1478 

531 0.0609 0.0220 0.0599 0.0097 0.0399 0.1079 

533 0.0090 0.0054 0.0210 0.0078 0.0051 0.0359 

534 0.0398 0.0283 0.0300 0.0103 0.0199 0.0363 

Peroxidase site 

203 0.5101 0.6708 0.0791 0.2842 0.3083 0.4231 

207 0.0832 0.3792 0.0684 0.0838 0.0213 0.4455 

211 0.0109 0.0370 0.0036 0.0014 0.0018 0.0497 

222 0.0012 0.0070 0.0009 0.0012 0.0007 0.0053 

240 0.0469 0.3825 0.4097 0.2680 0.1526 0.1133 

274 0.0012 0.0016 0.0008 0.0039 0.0018 0.0006 

290 0.1686 0.2357 0.1683 0.1650 0.2349 0.3103 

388 0.0687 0.1603 0.0469 0.0319 0.0800 0.0582 

391 0.0900 0.3657 0.0953 0.0099 0.1858 0.0453 

409 0.2910 0.3992 0.0349 0.0783 0.2474 0.1597 

504 0.1247 0.0239 0.0504 0.0392 0.0196 0.4359 

EGF 

32 0.0002 0.0004 0.0002 0.0012 0.0005 0.0009 

35 0.0024 0.0075 0.0029 0.0020 0.0144 0.0351 
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38 0.0018 0.0042 0.0054 0.0034 0.0112 0.0271 

41 0.0023 0.0119 0.0084 0.0074 0.0224 0.0318 

44 0.0020 0.0040 0.0021 0.0043 0.0015 0.0026 

47 0.0013 0.0109 0.0041 0.0047 0.0156 0.0359 

50 0.0012 0.0023 0.0014 0.0019 0.0031 0.0094 

53 0.0007 0.0008 0.0008 0.0023 0.0018 0.0014 

56 0.0009 0.0050 0.0034 0.0047 0.0024 0.0187 

59 0.0024 0.0064 0.0067 0.0074 0.0099 0.0243 

62 0.0025 0.0051 0.0046 0.0040 0.0049 0.0092 

65 0.0032 0.0044 0.0074 0.0068 0.0067 0.0070 

68 0.0034 0.0078 0.0092 0.0062 0.0127 0.0063 

71 0.0039 0.0064 0.0084 0.0088 0.0067 0.0178 

72 0.0034 0.0049 0.0100 0.0101 0.0077 0.0081 

MBD 

73 0.0012 0.0011 0.0059 0.0069 0.0050 0.0031 

76 0.0021 0.0010 0.0093 0.0098 0.0065 0.0045 

79 0.0021 0.0011 0.0054 0.0052 0.0047 0.0034 

82 0.0018 0.0004 0.0049 0.0054 0.0041 0.0030 

85 0.0013 0.0006 0.0017 0.0022 0.0057 0.0032 

88 0.0043 0.0050 0.0035 0.0048 0.0185 0.0057 

91 0.0041 0.0046 0.0035 0.0067 0.0199 0.0082 

94 0.0048 0.0100 0.0038 0.0047 0.0194 0.0057 

97 0.0026 0.0034 0.0008 0.0055 0.0063 0.0029 

100 0.0075 0.0108 0.0059 0.0112 0.0334 0.0085 

103 0.0063 0.0054 0.0057 0.0122 0.0077 0.0093 

106 0.0098 0.0046 0.0073 0.0142 0.0065 0.0144 

109 0.0090 0.0083 0.0072 0.0127 0.0246 0.0138 

Glycosylation 

68 0.0034 0.0078 0.0092 0.0062 0.0127 0.0063 

144 0.0037 0.0013 0.0013 0.0044 0.0033 0.0028 

410 0.3936 0.3520 0.0577 0.0815 0.2129 0.1225 

580 0.5569 0.4832 0.1548 0.2576 0.5127 0.3539 

 

 

 

  



 

209 

 

Table A4.6d: Closeness centrality for COX-1 residues 

Residue APO FLP 1OL LG2 OLEO MMHTE 

Active site 

93 0.2457 0.2317 0.1817 0.2148 0.2701 0.2005 

116 0.1873 0.2457 0.1912 0.1876 0.2385 0.1885 

117 0.1877 0.2460 0.1940 0.2024 0.2645 0.1966 

120 0.1709 0.3043 0.2260 0.2132 0.2446 0.1945 

205 0.2807 0.3301 0.2315 0.2452 0.2448 0.3183 

209 0.2796 0.3078 0.2218 0.2161 0.2291 0.2982 

344 0.3034 0.3382 0.2195 0.2528 0.2886 0.2912 

345 0.3230 0.3096 0.2025 0.2469 0.2845 0.2840 

348 0.3550 0.3487 0.2024 0.2788 0.3215 0.2425 

349 0.3071 0.3049 0.1946 0.2453 0.2855 0.2389 

352 0.2972 0.2794 0.2036 0.2325 0.2849 0.2410 

353 0.3013 0.2897 0.1910 0.2379 0.2817 0.2325 

355 0.2850 0.2821 0.1964 0.2399 0.2769 0.2418 

359 0.2793 0.2734 0.1948 0.2306 0.2704 0.2397 

381 0.3461 0.3756 0.2569 0.2583 0.2839 0.3360 

384 0.3043 0.3399 0.2509 0.2578 0.2803 0.3080 

385 0.3321 0.3395 0.2814 0.2485 0.3131 0.2914 

387 0.3034 0.3681 0.2710 0.2668 0.2680 0.2613 

513 0.2099 0.2611 0.1903 0.1723 0.2053 0.2702 

518 0.2633 0.2507 0.2445 0.1902 0.2580 0.2543 

523 0.2644 0.2928 0.2375 0.2157 0.2407 0.2533 

526 0.2409 0.2939 0.2609 0.2267 0.2686 0.2811 

527 0.2877 0.3032 0.2360 0.2285 0.2505 0.2855 

530 0.2730 0.3161 0.2357 0.2122 0.2534 0.2850 

531 0.2888 0.3251 0.2366 0.2070 0.2407 0.2871 

533 0.2523 0.2766 0.2188 0.2068 0.1962 0.2428 

534 0.2985 0.3222 0.2258 0.2122 0.2299 0.2449 

Peroxidase site 

203 0.3037 0.3725 0.2336 0.2610 0.2748 0.3217 

207 0.2912 0.3474 0.2276 0.2391 0.2356 0.3537 

211 0.2488 0.3082 0.2080 0.2151 0.2175 0.2773 

222 0.2002 0.2676 0.1807 0.1899 0.1459 0.2299 

240 0.2114 0.2800 0.2075 0.2049 0.1999 0.2459 

274 0.1842 0.2068 0.1554 0.1673 0.1543 0.1548 

290 0.2517 0.3082 0.1995 0.2243 0.2104 0.3031 

388 0.2931 0.3611 0.2367 0.2464 0.2826 0.3075 

391 0.2829 0.3510 0.2532 0.2267 0.2894 0.2725 

409 0.2571 0.3115 0.2192 0.2118 0.2300 0.2763 

504 0.2903 0.2776 0.2261 0.2319 0.2334 0.2995 

EGF 

32 0.1477 0.1892 0.1136 0.1381 0.1511 0.1874 

35 0.1919 0.2177 0.1549 0.1570 0.1866 0.2346 
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38 0.1749 0.1972 0.1469 0.1578 0.1792 0.2313 

41 0.1769 0.2423 0.1621 0.1757 0.2123 0.2346 

44 0.1345 0.2107 0.1269 0.1379 0.1507 0.1894 

47 0.1512 0.2416 0.1320 0.1412 0.1893 0.2355 

50 0.1167 0.2118 0.1144 0.1311 0.1507 0.2292 

53 0.1046 0.1753 0.1027 0.1311 0.1505 0.1867 

56 0.1326 0.2124 0.1290 0.1413 0.1542 0.2300 

59 0.1228 0.2132 0.1372 0.1458 0.1808 0.2335 

62 0.1225 0.2127 0.1320 0.1378 0.1556 0.2048 

65 0.1359 0.1962 0.1441 0.1380 0.1559 0.1921 

68 0.1526 0.2130 0.1503 0.1379 0.1811 0.1919 

71 0.1386 0.2152 0.1372 0.1457 0.1619 0.2354 

72 0.1360 0.2113 0.1513 0.1589 0.1620 0.1923 

MBD 

73 0.1278 0.1787 0.1395 0.1572 0.1635 0.1935 

76 0.1476 0.1529 0.1441 0.1575 0.1755 0.1970 

79 0.1476 0.1549 0.1430 0.1482 0.1628 0.1683 

82 0.1668 0.1460 0.1429 0.1638 0.1800 0.1752 

85 0.1921 0.1657 0.1473 0.1820 0.1920 0.1773 

88 0.2297 0.2239 0.1571 0.1881 0.2249 0.1994 

91 0.2272 0.2224 0.1571 0.2056 0.2254 0.2007 

94 0.2278 0.2282 0.1572 0.1884 0.2252 0.1976 

97 0.1877 0.1991 0.1465 0.1893 0.1957 0.1691 

100 0.2290 0.2441 0.1863 0.2176 0.2342 0.2002 

103 0.1897 0.2202 0.1868 0.1933 0.1967 0.2001 

106 0.2276 0.2200 0.1977 0.2137 0.2083 0.2044 

109 0.1898 0.2455 0.2036 0.2073 0.2373 0.2024 

Glycosylation 

68 0.1526 0.2130 0.1503 0.1379 0.1811 0.1919 

144 0.2237 0.2188 0.1540 0.1859 0.1948 0.2140 

410 0.2769 0.3108 0.2210 0.2086 0.2411 0.2787 

580 0.3150 0.3397 0.2471 0.2664 0.2839 0.2934 
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Table A4.6e: PageRank for COX-1 residues 

Residue APO FLP 1OL LG2 OLEO MMHTE 

Active site 

93 0.0018 0.0019 0.0023 0.0019 0.0023 0.0017 

116 0.0022 0.0018 0.0020 0.0017 0.0017 0.0021 

117 0.0020 0.0019 0.0026 0.0021 0.0024 0.0023 

120 0.0018 0.0028 0.0021 0.0029 0.0024 0.0020 

205 0.0013 0.0022 0.0012 0.0016 0.0012 0.0019 

209 0.0011 0.0013 0.0006 0.0006 0.0007 0.0012 

344 0.0019 0.0032 0.0021 0.0020 0.0027 0.0024 

345 0.0029 0.0027 0.0019 0.0021 0.0025 0.0022 

348 0.0029 0.0030 0.0019 0.0027 0.0032 0.0016 

349 0.0022 0.0022 0.0017 0.0022 0.0027 0.0014 

352 0.0017 0.0016 0.0019 0.0015 0.0025 0.0013 

353 0.0019 0.0019 0.0014 0.0017 0.0027 0.0011 

355 0.0021 0.0023 0.0020 0.0019 0.0026 0.0018 

359 0.0013 0.0012 0.0017 0.0010 0.0025 0.0013 

381 0.0033 0.0031 0.0030 0.0018 0.0029 0.0033 

384 0.0016 0.0022 0.0027 0.0020 0.0027 0.0031 

385 0.0025 0.0019 0.0023 0.0013 0.0024 0.0016 

387 0.0020 0.0027 0.0016 0.0009 0.0013 0.0008 

513 0.0007 0.0016 0.0008 0.0011 0.0011 0.0011 

518 0.0018 0.0011 0.0013 0.0014 0.0016 0.0009 

523 0.0020 0.0015 0.0026 0.0016 0.0014 0.0012 

526 0.0012 0.0017 0.0023 0.0018 0.0029 0.0017 

527 0.0017 0.0020 0.0023 0.0023 0.0026 0.0020 

530 0.0014 0.0017 0.0021 0.0018 0.0021 0.0019 

531 0.0020 0.0015 0.0024 0.0014 0.0023 0.0018 

533 0.0009 0.0010 0.0011 0.0012 0.0007 0.0011 

534 0.0015 0.0016 0.0017 0.0017 0.0018 0.0013 

Peroxidase site 

203 0.0024 0.0033 0.0017 0.0017 0.0017 0.0022 

207 0.0009 0.0020 0.0015 0.0011 0.0007 0.0024 

211 0.0016 0.0012 0.0015 0.0008 0.0007 0.0017 

222 0.0010 0.0013 0.0010 0.0009 0.0009 0.0008 

240 0.0007 0.0022 0.0016 0.0013 0.0014 0.0014 

274 0.0010 0.0006 0.0008 0.0007 0.0012 0.0009 

290 0.0008 0.0012 0.0010 0.0010 0.0012 0.0015 

388 0.0012 0.0022 0.0016 0.0013 0.0015 0.0010 

391 0.0016 0.0021 0.0027 0.0006 0.0020 0.0009 

409 0.0016 0.0021 0.0012 0.0013 0.0014 0.0015 

504 0.0025 0.0021 0.0019 0.0017 0.0015 0.0032 

EGF 

32 0.0006 0.0008 0.0007 0.0009 0.0005 0.0004 

35 0.0020 0.0022 0.0013 0.0013 0.0021 0.0024 
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38 0.0015 0.0012 0.0021 0.0017 0.0018 0.0017 

41 0.0016 0.0031 0.0025 0.0025 0.0034 0.0022 

44 0.0014 0.0012 0.0009 0.0012 0.0009 0.0006 

47 0.0017 0.0028 0.0022 0.0019 0.0026 0.0026 

50 0.0020 0.0014 0.0019 0.0013 0.0019 0.0013 

53 0.0013 0.0012 0.0013 0.0015 0.0012 0.0008 

56 0.0016 0.0015 0.0018 0.0019 0.0010 0.0013 

59 0.0020 0.0019 0.0020 0.0021 0.0019 0.0024 

62 0.0019 0.0017 0.0014 0.0012 0.0014 0.0014 

65 0.0019 0.0015 0.0019 0.0017 0.0016 0.0015 

68 0.0021 0.0023 0.0026 0.0016 0.0025 0.0013 

71 0.0025 0.0022 0.0023 0.0023 0.0019 0.0023 

72 0.0021 0.0018 0.0026 0.0026 0.0020 0.0018 

MBD 

73 0.0011 0.0010 0.0018 0.0019 0.0019 0.0013 

76 0.0021 0.0016 0.0026 0.0026 0.0022 0.0021 

79 0.0021 0.0016 0.0019 0.0017 0.0019 0.0018 

82 0.0019 0.0009 0.0017 0.0018 0.0017 0.0016 

85 0.0013 0.0009 0.0010 0.0010 0.0012 0.0014 

88 0.0020 0.0015 0.0016 0.0014 0.0016 0.0017 

91 0.0014 0.0012 0.0016 0.0016 0.0017 0.0021 

94 0.0017 0.0014 0.0018 0.0013 0.0015 0.0015 

97 0.0013 0.0013 0.0010 0.0014 0.0011 0.0012 

100 0.0024 0.0024 0.0022 0.0023 0.0026 0.0022 

103 0.0020 0.0018 0.0019 0.0022 0.0014 0.0018 

106 0.0026 0.0015 0.0023 0.0023 0.0013 0.0024 

109 0.0027 0.0023 0.0023 0.0021 0.0022 0.0026 

Glycosylation 

68 0.0021 0.0023 0.0026 0.0016 0.0025 0.0013 

144 0.0010 0.0011 0.0012 0.0018 0.0018 0.0010 

410 0.0018 0.0017 0.0013 0.0012 0.0012 0.0012 

580 0.0028 0.0023 0.0030 0.0024 0.0034 0.0021 
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Table A4.6f: Degrees for COX-2 residues 

Residue APO SAL 1OL LG2 OLEO MMHTE 

Active site 

93 10 13 22 18 15 11 

116 18 20 18 20 14 21 

117 17 17 18 24 16 17 

120 31 18 14 19 16 18 

205 111 44 91 35 85 76 

209 61 34 59 28 67 41 

344 94 65 39 49 35 48 

345 112 59 44 44 41 54 

348 80 55 35 45 40 19 

349 102 63 21 46 32 32 

352 16 42 22 30 15 6 

353 30 30 7 4 9 7 

355 28 30 28 34 16 16 

359 28 34 12 37 6 9 

381 123 39 46 16 56 30 

384 133 58 16 16 51 30 

385 68 17 6 9 22 15 

387 67 23 13 28 27 19 

513 12 14 3 12 3 4 

518 21 50 17 25 11 31 

523 74 71 51 56 41 35 

526 26 37 25 26 22 20 

527 36 22 26 43 31 21 

530 39 26 32 34 16 17 

531 30 29 29 26 19 24 

533 45 29 19 20 15 21 

534 38 25 20 24 19 18 

Peroxidase site 

203 87 51 108 34 116 88 

207 77 17 71 17 68 42 

211 33 21 23 22 16 10 

222 5 4 4 4 3 5 

240 53 52 47 63 79 35 

274 10 5 18 14 75 11 

290 29 15 47 30 77 45 

388 117 83 41 50 64 32 

391 102 60 34 29 78 42 

409 27 36 37 25 53 41 

504 72 14 58 53 39 28 

EGF 

32 1 1 1 1 1 1 

35 20 16 28 20 10 10 
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38 19 9 21 9 10 8 

41 25 25 28 25 18 19 

44 17 16 27 19 13 13 

47 18 14 22 15 5 4 

50 4 5 5 5 5 5 

53 3 4 5 5 4 4 

56 32 29 38 34 28 25 

59 7 15 22 20 14 8 

62 14 23 30 26 14 11 

65 17 16 22 21 17 18 

68 29 28 39 29 25 26 

71 16 23 28 24 23 20 

72 8 11 22 21 11 15 

MBD 

73 3 6 11 6 10 11 

76 4 6 15 11 18 16 

79 4 7 9 9 10 9 

82 4 5 4 10 7 3 

85 10 10 13 10 10 11 

88 9 10 17 10 10 11 

91 9 12 24 20 18 22 

94 15 15 24 16 16 20 

97 7 13 17 9 10 14 

100 8 18 17 6 5 19 

103 6 31 29 28 19 18 

106 14 29 22 25 16 13 

109 19 26 21 32 17 18 

Glycosylation 

68 29 28 39 29 25 26 

144 19 10 7 11 6 9 

410 29 54 39 24 45 18 

580 37 11 32 34 4 6 
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Table A4.6g: Betweenness centrality for COX-2 residues 

Residue APO SAL 1OL LG2 OLEO MMHTE 

Active site 

93 319.97 960.37 160.46 268.44 464.842761 17.1937745 

116 49.33 20.60 112.40 25.00 441.47564 1310.49145 

117 160.40 35.87 139.60 412.77 181.460051 95.1777724 

120 3744.92 9.33 1.68 545.35 374.220287 165.514922 

205 4339.63 2124.70 5040.84 1693.64 1947.92895 6962.39163 

209 218.65 1196.61 2893.71 4342.83 4497.17182 4099.52274 

344 1758.31 3335.26 349.49 3247.79 38.0482632 997.476146 

345 2400.37 3055.97 253.52 1611.17 828.633045 2454.40066 

348 746.41 1122.85 392.16 1265.92 404.215328 23.4982063 

349 2913.01 2855.11 365.53 1232.47 3579.52699 2170.2068 

352 0.87 589.17 5990.97 2575.33 112.376599 12.711584 

353 5.84 66.62 146.77 0.00 98.2925923 66.4542876 

355 196.48 125.49 465.73 4134.26 757.134595 303.23311 

359 69.90 635.97 158.87 512.46 1136.16607 1104.00377 

381 1442.68 1193.72 4584.31 4.98 4038.61708 4088.52603 

384 1862.92 6329.79 88.47 186.85 3172.78006 3239.60252 

385 128.12 2.93 24.66 57.92 16.7511974 80.7832152 

387 214.04 14.55 52.93 20.59 89.3856851 351.772425 

513 53.36 24.11 0.00 83.02 0 0 

518 4.20 151.45 15.64 36.88 117.436857 344.107761 

523 571.18 1790.23 589.31 2872.36 960.762828 938.986669 

526 44.31 324.53 413.47 163.33 129.64339 189.453944 

527 2273.56 569.09 3529.32 5208.16 4211.8037 3015.73481 

530 151.92 154.07 299.90 593.04 23.996191 125.076364 

531 451.29 101.70 1896.54 708.43 433.446039 2102.91159 

533 710.77 1340.72 1554.42 2199.76 2303.53787 2544.89986 

534 1263.99 3075.71 969.12 3371.95 3894.01183 4570.61422 

Peroxidase site 

203 2367.86 1011.46 7406.96 4516.19 3319.59756 4410.50518 

207 1128.83 609.27 3575.28 858.63 1836.17131 1333.24487 

211 330.13 767.87 605.74 839.08 930.471003 1232.52839 

222 11.30 14.93 3.82 50.03 6.16355662 13.4682669 

240 281.25 329.02 119.38 169.06 142.884343 19.0050715 

274 565.27 26.90 722.07 568.65 548.18356 552.116141 

290 22.71 107.32 13.96 16.88 300.644154 8.91084738 

388 495.14 513.08 262.49 216.03 831.370869 1143.7204 

391 1138.39 952.74 500.15 1044.65 1343.52732 549.734414 

409 47.33 49.45 148.32 104.71 59.3958521 35.9557322 

504 67.13 1.24 441.39 193.90 223.519696 167.781699 

EGF 

32 0.00 0.00 0.00 0.00 0 0 

35 1189.61 7352.63 739.22 1738.39 56.0702351 124.724231 
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38 732.12 219.27 236.23 68.08 510.538342 950.207687 

41 1280.61 133.16 37.85 35.49 3.30315813 135.538418 

44 47.25 102.25 20.85 2.55 3.04938704 1.90740648 

47 205.45 93.57 58.04 22.76 1286.94377 264.319753 

50 953.88 1020.89 21.82 194.41 314.523803 387.122434 

53 142.52 105.02 966.82 269.86 290.898155 719.536877 

56 747.66 1801.05 2752.30 5719.84 6137.8478 8067.38445 

59 12.42 157.72 3.68 5.14 338.635438 2.37306845 

62 40.75 883.61 81.50 1327.25 667.354813 150.259219 

65 272.15 17.70 12.54 14.69 3.42867488 193.044746 

68 1947.29 1121.92 1485.83 74.99 1200.01379 572.70386 

71 129.30 344.17 40.75 77.12 2326.56283 487.874231 

72 1025.86 9.85 1107.25 1063.81 819.483802 435.703568 

MBD 

73 0.00 13.83 61.37 12.72 20.1038906 249.503978 

76 314.49 10.05 96.27 1792.33 8285.33093 596.933267 

79 428.11 778.84 186.26 816.51 273.673977 3732.68089 

82 1630.70 1354.90 190.76 7054.24 6086.46426 358.113062 

85 423.61 23.32 2481.49 0.00 0 6.64313333 

88 14.33 23.32 79.95 0.00 0 6.64313333 

91 176.17 469.16 1371.09 1109.51 1172.22796 1748.52166 

94 1994.13 1093.28 320.72 107.02 973.614492 371.807125 

97 286.73 653.46 4.67 2.11 44.6095439 0.97173937 

100 77.16 233.87 6.15 2.48 24.6812792 342.472669 

103 0.00 1058.22 389.29 1141.74 3702.89024 46.9532838 

106 252.09 188.78 289.33 75.48 293.414658 71.6815347 

109 667.90 156.66 56.66 660.54 76.3930393 139.713754 

Glycosylation 

68 1947.29 1121.92 1485.83 74.99 1200.01379 572.70386 

144 589.94 1351.22 222.40 130.08 23.4554895 715.285162 

410 394.16 528.30 74.86 19.40 225.786722 106.962031 

580 4.24 0.25 15.63 28.93 0 0.20238095 
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Table A4.6h: Eigencentrality for COX-2 residues 

Residue APO SAL 1OL LG2 OLEO MMHTE 

Active site 

93 0.0022 0.0046 0.0109 0.0115 0.004308 0.004013 

116 0.0113 0.0193 0.0092 0.0279 0.005852 0.007717 

117 0.0130 0.0159 0.0093 0.0408 0.005817 0.00653 

120 0.1045 0.0165 0.0067 0.0269 0.006441 0.007054 

205 0.6469 0.3825 0.6456 0.1344 0.592982 0.621946 

209 0.3689 0.2370 0.3720 0.0997 0.465147 0.293964 

344 0.5454 0.3697 0.2639 0.2768 0.217203 0.353658 

345 0.6882 0.3086 0.2904 0.2400 0.221573 0.380259 

348 0.5017 0.3374 0.1981 0.2379 0.213677 0.076329 

349 0.6989 0.4121 0.1185 0.2155 0.171379 0.182549 

352 0.0839 0.2593 0.0729 0.1598 0.047853 0.00583 

353 0.1365 0.1200 0.0189 0.0124 0.018201 0.021006 

355 0.1072 0.1052 0.0145 0.0656 0.00649 0.007012 

359 0.1065 0.1093 0.0073 0.1467 0.003086 0.004181 

381 0.8109 0.2055 0.2187 0.0795 0.213642 0.138454 

384 0.9019 0.3701 0.0402 0.0634 0.206122 0.078742 

385 0.5168 0.0940 0.0076 0.0356 0.071501 0.014375 

387 0.4837 0.1573 0.0407 0.1437 0.090326 0.02829 

513 0.0790 0.0861 0.0007 0.0640 0.000501 0.001604 

518 0.1386 0.3191 0.0475 0.1355 0.013253 0.033886 

523 0.5005 0.4456 0.1257 0.2979 0.08132 0.03826 

526 0.1474 0.1883 0.0481 0.1234 0.02812 0.017134 

527 0.1280 0.0742 0.0392 0.1809 0.03693 0.017291 

530 0.2265 0.1236 0.0698 0.1707 0.020017 0.01338 

531 0.1123 0.1516 0.0599 0.1138 0.030785 0.04022 

533 0.2285 0.1315 0.0489 0.0587 0.038636 0.059124 

534 0.1474 0.1063 0.0273 0.0815 0.014067 0.011071 

Peroxidase site 

203 0.5511 0.4803 0.8022 0.2021 0.805421 0.728018 

207 0.4773 0.0890 0.4923 0.0686 0.467105 0.335159 

211 0.1609 0.0466 0.0874 0.0530 0.043022 0.019438 

222 0.0057 0.0020 0.0022 0.0024 0.000653 0.001306 

240 0.1485 0.4067 0.3562 0.6284 0.605734 0.260037 

274 0.0034 0.0016 0.0676 0.0606 0.53651 0.035006 

290 0.1029 0.0951 0.4118 0.3376 0.582157 0.398023 

388 0.8367 0.6185 0.1150 0.2824 0.276696 0.051535 

391 0.7347 0.4177 0.1435 0.1513 0.438419 0.198524 

409 0.0877 0.3001 0.2870 0.1969 0.422637 0.320671 

504 0.5142 0.0706 0.1514 0.3295 0.07344 0.03677 

EGF 

32 0.0002 0.0003 0.0006 0.0003 0.000185 0.000185 

35 0.0073 0.0071 0.0175 0.0126 0.002777 0.002756 
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38 0.0068 0.0034 0.0128 0.0051 0.002718 0.002237 

41 0.0074 0.0125 0.0178 0.0189 0.006344 0.007491 

44 0.0053 0.0086 0.0169 0.0149 0.00467 0.005281 

47 0.0054 0.0067 0.0142 0.0103 0.000993 0.000932 

50 0.0006 0.0010 0.0010 0.0013 0.000789 0.000821 

53 0.0005 0.0008 0.0015 0.0013 0.000629 0.000668 

56 0.0092 0.0138 0.0224 0.0226 0.008822 0.008717 

59 0.0020 0.0080 0.0145 0.0154 0.004976 0.003039 

62 0.0041 0.0113 0.0182 0.0186 0.004469 0.00424 

65 0.0052 0.0087 0.0143 0.0163 0.006132 0.006942 

68 0.0082 0.0138 0.0227 0.0212 0.008287 0.009599 

71 0.0047 0.0117 0.0171 0.0181 0.007586 0.007707 

72 0.0019 0.0054 0.0120 0.0139 0.002774 0.005528 

MBD 

73 0.0005 0.0024 0.0058 0.0039 0.003049 0.003748 

76 0.0006 0.0016 0.0082 0.0048 0.005014 0.005594 

79 0.0005 0.0017 0.0032 0.0038 0.002301 0.00248 

82 0.0006 0.0011 0.0009 0.0034 0.001549 0.000511 

85 0.0018 0.0031 0.0056 0.0053 0.002854 0.004024 

88 0.0017 0.0031 0.0085 0.0053 0.002854 0.004024 

91 0.0021 0.0044 0.0128 0.0195 0.005187 0.008505 

94 0.0031 0.0085 0.0119 0.0085 0.004329 0.007427 

97 0.0014 0.0096 0.0088 0.0046 0.002763 0.005552 

100 0.0017 0.0169 0.0088 0.0047 0.001423 0.007873 

103 0.0011 0.0536 0.0159 0.0449 0.011469 0.007386 

106 0.0049 0.0456 0.0123 0.0460 0.006083 0.006984 

109 0.0078 0.0275 0.0112 0.0609 0.005672 0.008565 

Glycosylation 

68 0.0082 0.0138 0.0227 0.0212 0.008287 0.009599 

144 0.0738 0.0074 0.0032 0.0225 0.002853 0.002394 

410 0.1332 0.4623 0.3043 0.2166 0.325964 0.105364 

580 0.2441 0.0867 0.2232 0.1452 0.01976 0.025234 
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Table A4.6i: Closeness centrality for COX-2 residues 

Residue APO SAL 1OL LG2 OLEO MMHTE 

Active site 

93 0.2521 0.2175 0.2274 0.2413 0.214564 0.189542 

116 0.3048 0.2549 0.2577 0.2728 0.235672 0.228631 

117 0.3251 0.2593 0.2583 0.2936 0.239253 0.221641 

120 0.3546 0.2513 0.2379 0.2882 0.236278 0.225727 

205 0.4401 0.3420 0.4022 0.3370 0.313068 0.335566 

209 0.4043 0.3399 0.3911 0.3485 0.318681 0.316122 

344 0.4356 0.3811 0.3174 0.3439 0.283145 0.290153 

345 0.4415 0.3736 0.3512 0.3325 0.313246 0.308857 

348 0.4162 0.3635 0.3226 0.3178 0.291689 0.261014 

349 0.4370 0.3683 0.3272 0.3258 0.3006 0.289847 

352 0.3397 0.3410 0.3044 0.3189 0.273449 0.232098 

353 0.3431 0.3117 0.2862 0.2570 0.263889 0.259538 

355 0.3505 0.3124 0.2344 0.2961 0.236481 0.221196 

359 0.3476 0.3141 0.2531 0.3021 0.239149 0.230737 

381 0.4451 0.3573 0.3953 0.2751 0.338244 0.324308 

384 0.4528 0.3738 0.3071 0.3036 0.330534 0.322978 

385 0.3848 0.3147 0.2906 0.2942 0.280693 0.277024 

387 0.3800 0.3152 0.2980 0.2876 0.28213 0.280407 

513 0.3115 0.3070 0.2163 0.2681 0.176716 0.209426 

518 0.3337 0.3325 0.3029 0.2940 0.24316 0.274676 

523 0.3856 0.3642 0.3439 0.3220 0.290306 0.276606 

526 0.3530 0.3405 0.3317 0.3066 0.265927 0.275225 

527 0.3861 0.3136 0.3232 0.3251 0.292153 0.270363 

530 0.3779 0.3345 0.3362 0.3217 0.258929 0.269174 

531 0.3751 0.3348 0.3264 0.2991 0.283436 0.295126 

533 0.3916 0.3418 0.3339 0.3178 0.27998 0.27495 

534 0.3710 0.3207 0.3158 0.3082 0.259906 0.272772 

Peroxidase site 

203 0.4152 0.3620 0.4028 0.3422 0.330534 0.328172 

207 0.4229 0.3008 0.3975 0.3339 0.317031 0.311828 

211 0.3673 0.3125 0.3583 0.3172 0.272233 0.263636 

222 0.2787 0.2398 0.2528 0.2486 0.190657 0.208003 

240 0.3315 0.2939 0.3198 0.2773 0.29138 0.255684 

274 0.2399 0.1988 0.2644 0.2265 0.281986 0.231902 

290 0.3290 0.2566 0.2975 0.2652 0.292153 0.257236 

388 0.4238 0.3681 0.3401 0.3125 0.311828 0.302581 

391 0.4165 0.3485 0.3481 0.3158 0.324499 0.293085 

409 0.3132 0.2918 0.3149 0.2769 0.281986 0.269174 

504 0.3738 0.2818 0.3571 0.3183 0.286383 0.265286 

EGF 

32 0.2049 0.1845 0.2004 0.1568 0.1033 0.114173 

35 0.2750 0.2285 0.2451 0.1883 0.115514 0.130786 
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38 0.2748 0.2108 0.2453 0.1876 0.125627 0.146309 

41 0.2536 0.1797 0.2097 0.1681 0.118546 0.133253 

44 0.2309 0.1905 0.2068 0.1624 0.118495 0.131409 

47 0.2310 0.1781 0.2064 0.1623 0.106659 0.11696 

50 0.1812 0.1505 0.1710 0.1397 0.093263 0.104002 

53 0.1642 0.1402 0.2012 0.1397 0.093248 0.103708 

56 0.2415 0.1929 0.2506 0.1921 0.128259 0.148598 

59 0.2071 0.1905 0.2025 0.1625 0.126871 0.120017 

62 0.2260 0.1795 0.2100 0.1792 0.126871 0.132963 

65 0.2314 0.1779 0.2055 0.1679 0.118648 0.133221 

68 0.2330 0.1927 0.2384 0.1685 0.127399 0.133608 

71 0.2273 0.1795 0.2061 0.1681 0.12734 0.133414 

72 0.1909 0.1634 0.2106 0.1784 0.139247 0.125742 

MBD 

73 0.1613 0.1536 0.1961 0.1653 0.124576 0.125627 

76 0.1620 0.1439 0.1964 0.1837 0.1396 0.12577 

79 0.1535 0.1473 0.1812 0.1834 0.137338 0.132229 

82 0.2030 0.1620 0.1848 0.2079 0.15565 0.144203 

85 0.2080 0.1927 0.2174 0.2186 0.199205 0.185148 

88 0.2071 0.1927 0.2188 0.2186 0.199205 0.185148 

91 0.2519 0.2174 0.2558 0.2663 0.217443 0.220576 

94 0.2584 0.2289 0.2287 0.2303 0.214647 0.200364 

97 0.2326 0.2460 0.2220 0.2203 0.194837 0.194356 

100 0.2305 0.2465 0.2206 0.2283 0.203246 0.221108 

103 0.1951 0.2868 0.2562 0.2790 0.254034 0.215487 

106 0.2804 0.2859 0.2436 0.2845 0.240716 0.23547 

109 0.2914 0.2721 0.2407 0.3127 0.228536 0.236684 

Glycosylation 

68 0.2330 0.1927 0.2384 0.1685 0.127399 0.133608 

144 0.3284 0.2634 0.2591 0.2725 0.231027 0.213566 

410 0.3412 0.3124 0.3170 0.2846 0.280264 0.252174 

580 0.3401 0.2998 0.3241 0.2970 0.239774 0.241985 
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Table A4.6j: PageRank for COX-2 residues 

Residue APO SAL 1OL LG2 OLEO MMHTE 

Active site 

93 0.0018 0.0017 0.0019 0.0019 0.001911 0.001312 

116 0.0015 0.0014 0.0016 0.0014 0.001489 0.002606 

117 0.0013 0.0013 0.0016 0.0016 0.001716 0.002014 

120 0.0018 0.0013 0.0013 0.0014 0.001704 0.002062 

205 0.0033 0.0018 0.0033 0.0019 0.00308 0.002939 

209 0.0019 0.0017 0.0025 0.0017 0.002615 0.002239 

344 0.0029 0.0027 0.0015 0.0024 0.001383 0.001947 

345 0.0034 0.0026 0.0017 0.0022 0.00172 0.002278 

348 0.0024 0.0023 0.0015 0.0023 0.001737 0.001072 

349 0.0030 0.0026 0.0010 0.0023 0.001529 0.001623 

352 0.0007 0.0018 0.0013 0.0017 0.000926 0.000666 

353 0.0012 0.0015 0.0006 0.0005 0.000751 0.000673 

355 0.0012 0.0016 0.0024 0.0023 0.001786 0.001677 

359 0.0012 0.0018 0.0012 0.0020 0.000993 0.001442 

381 0.0036 0.0017 0.0020 0.0010 0.002634 0.001782 

384 0.0038 0.0024 0.0010 0.0010 0.002295 0.002035 

385 0.0020 0.0009 0.0006 0.0007 0.001137 0.001203 

387 0.0020 0.0011 0.0008 0.0014 0.001301 0.00133 

513 0.0007 0.0008 0.0008 0.0009 0.001063 0.000727 

518 0.0008 0.0020 0.0010 0.0013 0.000956 0.002069 

523 0.0023 0.0028 0.0025 0.0026 0.002265 0.002331 

526 0.0011 0.0016 0.0015 0.0014 0.001498 0.00154 

527 0.0017 0.0012 0.0017 0.0022 0.002162 0.001646 

530 0.0014 0.0013 0.0018 0.0018 0.001135 0.001377 

531 0.0014 0.0014 0.0017 0.0015 0.001278 0.001664 

533 0.0016 0.0015 0.0012 0.0014 0.001247 0.001567 

534 0.0018 0.0015 0.0014 0.0016 0.001792 0.001906 

Peroxidase site 

203 0.0025 0.0019 0.0037 0.0016 0.003931 0.003101 

207 0.0024 0.0011 0.0027 0.0011 0.002646 0.001752 

211 0.0014 0.0016 0.0015 0.0016 0.001455 0.001467 

222 0.0007 0.0008 0.0007 0.0008 0.000761 0.001214 

240 0.0020 0.0021 0.0017 0.0024 0.002532 0.001399 

274 0.0014 0.0012 0.0012 0.0013 0.002539 0.001112 

290 0.0011 0.0009 0.0016 0.0013 0.002535 0.001621 

388 0.0032 0.0030 0.0020 0.0022 0.00262 0.002039 

391 0.0029 0.0023 0.0016 0.0014 0.002922 0.001941 

409 0.0011 0.0015 0.0015 0.0013 0.001798 0.001567 

504 0.0021 0.0008 0.0027 0.0023 0.002151 0.001831 

EGF 

32 0.0004 0.0004 0.0004 0.0004 0.000487 0.000543 

35 0.0021 0.0020 0.0023 0.0023 0.001826 0.002145 
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38 0.0020 0.0014 0.0019 0.0012 0.001876 0.001773 

41 0.0026 0.0027 0.0023 0.0024 0.002182 0.002351 

44 0.0019 0.0018 0.0022 0.0019 0.001667 0.001713 

47 0.0020 0.0018 0.0019 0.0017 0.001682 0.001259 

50 0.0012 0.0016 0.0012 0.0013 0.00204 0.002239 

53 0.0011 0.0013 0.0011 0.0013 0.001703 0.001789 

56 0.0033 0.0031 0.0031 0.0034 0.003755 0.003557 

59 0.0010 0.0017 0.0018 0.0019 0.001758 0.001148 

62 0.0016 0.0026 0.0025 0.0026 0.001889 0.001503 

65 0.0019 0.0017 0.0018 0.0020 0.002086 0.002246 

68 0.0032 0.0029 0.0032 0.0027 0.003003 0.003179 

71 0.0018 0.0025 0.0023 0.0023 0.002837 0.002502 

72 0.0014 0.0014 0.0020 0.0022 0.001713 0.001993 

MBD 

73 0.0009 0.0010 0.0012 0.0008 0.001456 0.001573 

76 0.0013 0.0012 0.0015 0.0015 0.002512 0.002128 

79 0.0016 0.0015 0.0012 0.0013 0.001645 0.001613 

82 0.0012 0.0013 0.0009 0.0015 0.001306 0.001039 

85 0.0019 0.0015 0.0014 0.0012 0.001368 0.001313 

88 0.0017 0.0015 0.0016 0.0012 0.001368 0.001313 

91 0.0016 0.0016 0.0021 0.0019 0.002215 0.002279 

94 0.0025 0.0016 0.0021 0.0018 0.002127 0.002123 

97 0.0013 0.0013 0.0015 0.0011 0.001456 0.001522 

100 0.0012 0.0014 0.0015 0.0007 0.000824 0.001968 

103 0.0010 0.0020 0.0024 0.0021 0.001893 0.001857 

106 0.0015 0.0018 0.0018 0.0016 0.001686 0.001394 

109 0.0018 0.0018 0.0018 0.0020 0.001813 0.00192 

Glycosylation 

68 0.0032 0.0029 0.0032 0.0027 0.003003 0.003179 

144 0.0012 0.0012 0.0012 0.0011 0.000949 0.001865 

410 0.0011 0.0021 0.0015 0.0011 0.001608 0.000913 

580 0.0012 0.0006 0.0013 0.0016 0.000402 0.000512 
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9.4.5 MM-PBSA 

 
Figure A4.7: Residue contribution for binding of olive ligands to COX-1 (A) and COX-2 (B) proteins with the native ligand (blue), 1OL (red), 

LG 2 (green), OLEO (purple), and MMHTE (orange). 
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Figure A4.8: 2D interaction diagram for dynamic COX-1 complexes with FLP (A), 1OL (B), 

LG2 (C), OLEO (D), and MMHTE (E). Hydrogen bonds are represented by purple arrows. 
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Figure A4.9: 2D interaction diagram for dynamic COX-2 complexes with SAL (A), 1OL 

(B), LG2 (C), OLEO (D), and MMHTE (E). Hydrogen bonds are represented by purple 

arrows. 

 


