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ABSTRACT 

In the nematode genus Anisakis, nine species are currently genetically recognized among which 

Anisakis simplex (s. s.) and Anisakis pegreffii have been recognised to be relevant for humans as a 

result of their zoonotic role in causing the disease, Anisakiasis. In addition to infection with this 

parasite, Anisakis can also cause allergic sensitisation. To date, A. simplex allergens have been 

described to represent the largest number for any parasite nematode accepted by the WHO/IUIS 

nomenclature committee. However, few data exist on the existence of such proteins in the sibling 

species, A. pegreffii. A. pegreffii has been reported as the causative agent of invasive anisakiasis in 

Europe, Japan and South Korea. It is reported as the most widespread anisakid species known to 

affect commercial fish from Mediterranean waters. Studies on A. pegreffii and identification of 

molecules released at the interface of host-parasite relationship are of crucial importance and may 

provide a basis for designing better novel diagnostic and therapeutic strategies. 

A detailed review on the current knowledge regarding Anisakis spp, particularly A. simplex, and its 

immunogenic proteins is presented in Chapter 1. This chapter presents an understanding of the current 

status on the increasing number of Anisakis simplex molecules identified to attack key pathways in 

the mammalian immune system. Through phylogenetic analysis, relationships of these proteins with 

homologs in other nematodes and invertebrates are presented and major A. simplex allergenic protein 

structures were modelled. This provides the foundation for further investigation of these proteins and 

their presence in A. pegreffii, and further guides their biological and genomic explorations.  

Chapter 2 describes the materials and methods generally used in this study while Chapter 3 follows 

up on the information provided in Chapter 1 on A. simplex immunogenic proteins. These proteins 

were investigated in A. pegreffii using high throughput mass spectrometry (LC/MS-MS). This 

method analysed and identified proteins present in the crude extract (CE) as well as 
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excretory/secretory (ES) products of A. pegreffii. The results obtained showed that over 90 % of 

allergenic and immunogenic proteins identified in A. pegreffii proteome have also been described in 

A. simplex. Furthermore, most of the proteins identified in A. pegreffii ES (~80%) were found to be 

homologs of proteins in the ES of other helminths. The results of this chapter therefore emphasizes 

the cryptic speciation of the two sibling species, A. simplex and A. pegreffii, as well as affirming the 

notion that parasites employ a conserved set of proteins for parasite–host interaction mechanisms and 

host immune response evasion. Furthermore, the result from this chapter also suggests the probable 

absence of allergy-reducing molecules in A. pegreffii, which may be a contributing factor as to why 

Anisakis nematodes are able to elicit overt hypersensitivity reactions (allergy); in addition to 

inducing a Th-2 biased immune response.  

One of the main discoveries in the proteomic analysis of A. pegreffii CE and ES in chapter 3 was the 

observation that a number of proteins identified as part of A. pegreffii ES molecules in this study 

were not predicted to be secreted molecules. This raised the thought that such proteins must have 

reached the exterior or released by novel or alternative mechanisms, Hence, Chapter 4 was initiated 

to investigate and identify by LC-MS/MS, the exosomes of A. pegreffii and their cargo content. 

Abundant round-shaped materials with the expected size of exosomes were obtained after 

ultracentrifugation and they were visualized by transmission electron microscopy (TEM). Among the 

proteins identified were key exosome markers which include Heat Shock protein (HSP)-70, enolase 

and elongation factor 1-alpha. The result from this chapter constitutes the first report of the existence 

and composition of exosome-like vesicles in the L3 larvae of the parasite, A. pegreffii. The identified 

structures appear to play critical role in transportation of immunomodulatory and allergenic proteins 

such as leucine aminopeptidase (LAP) and tropomyosin (TM), respectively. In addition, high 

portions of proteins enriched in A. pegreffii exosomes were implicated in carbohydrate metabolism, 

indicative that the parasite's main energy source is probably derived from carbohydrate metabolism. 
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Exosomes might be involved in transporting proteins needed for this function within the parasites 

and to the host for parasite survival. These proteins are stabilized against degradation by 

encapsulation within vesicles. It is demonstrated in this study for the first time, that parasite 

exosomes contain high concentrations of allergens, including the pan-allergen tropomyosin, 

providing evidence for the route of allergic sensitisation to live parasites. The result of this chapter, 

suggests that the secretion of certain proteins in this parasite, follow non-conventional pathways. 

Chapter 5 investigates, through immunoproteomic analysis, proteins from the CE and ES of A. 

pegreffii that are cross-reactive with serum IgE antibody of confirmed shellfish allergic patients. In 

the ES, we identified 2 different reactive proteins that satisfied the criteria for putative cross-reactive 

allergens as defined for this study and these were fructose bisphosphate aldolase 1 and enolase. In 

the CE, these proteins were also identified- tropomyosin as fructose bisphosphate aldolase 1 and 

enolase. Tropomyosin, one of the three proteins identified, had been previously described as a cross-

reactive allergen in both shellfish and Anisakis parasite. The two other novel putative cross- reactive 

allergens described in this chapter are proteins with close homologues in fish. 

Finally, in Chapter 6, a protease, leucine aminopeptidase (LAP) reported to be implicated in 

immunomodulation in other helminths, was characterized. LAP of Anisakis was cloned, expressed 

and purified by IMAC in a bacterial host. The activity of the enzyme was investigated and its 

location in A. pegreffii determined using histochemical methods. This protease was found 

predominantly in the gut lumen of A. pegreffii and in addition was shown to interact with cathepsin 

proteases by cleaving in particular, the inactivated cathepsin L5 of Fasciola hepatica and releasing 

the activated form. The result of this study depicts Anisakis LAP as a protein of interest in 

immunomodulatory activities and further investigation of this enzyme as a potential therapeutic 

candidate could be explored. 
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In summary, the results of this study highlights the proteins that are enriched in the proteome of A. 

pegreffii and the mechanisms employed  by this parasite to release secreted molecules to sites of 

activity. It also demonstrates that A. pegreffii secretes specific sets of proteins that are preserved 

against degradation by being enclosed within vesicles. In addition, putative cross-reactive allergens 

were defined for A. pegreffii and an immunogenic protein (LAP) was characterized. Opportunities 

for further exploitation of the proteins identified in A. pegreffii, in a therapeutic context, are provided 

by the results of this study. 
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1.1 Introduction 

This review aims to provide an overview of the current status of knowledge regarding Anisakis 

species, and their immunogenic proteins. Anisakis species are marine parasitic nematodes, of which the 

larvae are considered to be the most important biological hazards present in “seafood” products. 

Accidental consumption of raw, undercooked, or improperly processed (e.g. marinated) seafood 

infested by the third stage larvae (L3) of Anisakis spp. causes a parasitic zoonosis, known as 

anisakidosis.  

In this review, firstly, the history, classification, current distribution, life cycle, larval burden and 

economic impact on fish, as well as risk factors of infection in humans, are discussed. This is followed 

by the description of disease (Anisakiasis) and the complications caused by this parasitic nematode, 

the probable reason for prevalence of allergic conditions associated with this disease, diagnosis, 

management, and control of the disease. Thirdly, the review describes the immunogenic proteins of 

Anisakis and excretory/secretory products. Secretory products are molecules secreted from cells or 

glands with particular biological functions. On the contrary, excretory products are metabolic products 

released from the body. Both may sometimes be difficult to distinguish from one another and they vary 

from one parasite to another (Ditgen et al., 2014) . Hence, the term ES describes molecules actively 

secreted by helminths and by-products that are released during physiological processes (White and 

Artavanis-Tsakonas, 2012, Hewitson et al., 2009). These molecules are known to play important roles 

in inducing a Th2-skewed immune response, and are known to consist of regulatory and anti-

inflammatory components as well.  

In addition, this review emphasizes the importance of proteomic and bioinformatics analysis in the 

study of the excretory/secretory products (ES) of parasites. Finally, the review summarises the current 

status of allergenic and immunogenic proteins described so far in A. simplex, as well as addressing 



Chapter 1 

3 

 

proteins with immunogenic relevance, which are not necessarily allergens in Anisakis spp. In this 

review, gaps in the current understanding of immunogenic proteins identified in the food-borne 

parasite, A. pegreffii are identified, which has resulted in the rationale for this study. 
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1.2 History of Anisakis spp 

Anisakis spp. is a parasite with worldwide distribution. It is a nematode which belongs to the Phylum 

Nemathelmintes, Class Nematoda, Ascarida order, suborder Ascaridina, subfamily Anisakinae, 

superfamily Ascaridoidea and Anisakidae family. This family includes the genera Pseudoterranova, 

Contracaecum, Hysterothylacium and Anisakis (Smith and Wootten, 1978). The Anisakis genus was 

created from the genus Ascaris Linnaeus as a subgenus, in 1845, by Felix Dujardin (Dujardin, 1845). 

The name Anisakis was coined from two Greek words ‘anis’ (which means ‘different’) and ‘akis’ 

(which means ‘spine’ or ‘spicule’). Dujardin named this new subgenus ‘Anisakis” as he stated that the 

new subgenus consisted of species which have males with unequal spicules. Phylogenetic studies have 

shown that the human parasite most closely related to Anisakis is Ascaris (Blaxter et al., 1998). 

Anisakis spp, are parasitic nematodes, known to have complex life-cycles involving a number of 

different hosts, including squid and fish as paratenic or intermediate hosts, while having marine 

mammals such as seals as final definitive hosts (Ubeira et al., 2000, Akbar and Ghosh, 2005).  

1.3 Anisakid nematode classification 

Anisakis is found worldwide, but are differentially distributed geographically and employ different 

host species (Jabbar et al., 2013). The larvae of Anisakid nematodes were classified into two types, 

Anisakis type 1 and II by Berland (Berland, 1961). The classification was based on some of their 

morphological features, which include presence, or absence of mucron at the tail tip and the length of 

the ventriculus. However, due to lack of precise detailed characteristics for species identification using 

morphological features, molecular tools such as the sequencing of the internal transcribed spacer (ITS) 

region of ribosomal DNA, allozyme analysis and polymerase chain reaction coupled with restriction 

fragment length polymorphism have been employed to allow species-specific identification (Shamsi et 

al., 2009, Umehara et al., 2006, Iglesias et al., 2008). Several studies have shown that the first and 
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second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rRNA) provide 

appropriate genetic markers for anisakid species identification irrespective of their stage of 

development (Jabbar et al., 2013, Jabbar et al., 2012, Shamsi et al., 2011). In addition, PCR-coupled 

mutation scanning of the ITS-1 and/or ITS-2, integrated with targeted sequencing (Gasser et al., 2006)  

and phylogenetic analysis furnishes a powerful approach for investigating  the genetic composition of 

populations of anisakid (Jabbar et al., 2013, Jabbar et al., 2012).  

Using molecular approaches therefore, identifying Anisakid nematodes to the species level and 

revealing cryptic species has been made possible (Mattiucci and Nascetti, 2006, Mattiucci et al., 2008). 

With these molecular approaches, the genus Anisakis has been described to comprise two major 

clades; the first clade includes the A. simplex-complex (A. simplex sensu stricto [s.s.], A. pegreffii, A. 

simplex C) as well as A. typica and two sister-species A. nascettii and A. ziphidarum (Mattiucci et al., 

2014). The second clade consists exclusively of the A. physeteris- complex (A. brevispiculata, A 

paggiae, A. physeteris) (Kuhn et al., 2011, Mattiucci et al., 2014). Both A. simplex-complex and A. 

physeteris-complex are considered cryptic species, distinguishable only by means of molecular 

analyses as well as slight morphological differences (e.g. tail length/total body length ratio; spicule 

length) (Mattiucci et al., 2014, Chen et al., 2008). A. simplex and A. pegreffii have been reported as the 

most important zoonotic species of the genera Anisakis . The other genera in the subfamily Anisakinae, 

collectively known as the anisakids, are Pseudoterranova, Contracaecum and Hysterothylacium 

(Nieuwenhuizen and Lopata, 2013).  

1.4 Current distribution of Anisakis spp. 

Anisakis simplex s.s. has exclusively been recorded by means of molecular methods from hosts in the 

northern hemisphere, mainly in the Atlantic and Pacific Ocean, whilst Anisakis pegreffii is predominant in 

the southern hemisphere and the Mediterranean Sea  (Kuhn et al., 2016, Ceballos-Mendiola et al., 2010, 
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Martin-Sanchez et al., 2005, Mattiucci and Nascetti, 2008, Mattiucci et al., 2008). According to Kuhn 

et al (Kuhn et al., 2016), an accumulation of occurrences along Japanese coastal waters has also been 

observed for A. pegreffii, and this was explained to likely be as a result of increased economic research 

interests in potential harmful organisms in commercially highly significant and often consumed raw 

fish species. In addition, Anisakis pegreffii has also been identified to have a distribution along the 

North American West Coast, between South America and the Antarctic Peninsula, as well as South 

Africa and New Zealand.  

1.5 Anisakis natural life cycle 

Anisakis eggs hatch in sea water and the larvae developing from the eggs are eaten by crustaceans 

(copepods, decapods, isopods, amphipods, and euphausiids) with molluscs. It is known that the most 

important first intermediate hosts in the Anisakis life cycle are the Euphasiids (Krill) (Smith and 

Wootten, 1978). Infected krill eaten by fish or squid becomes a source of Anisakis for the fish or squid. 

The Anisakis larvae encyst on the intestines and other visceral organs of these intermediate hosts; the 

parasite does not develop further and remains at the third stage of the larvae development (L3 stage). 

The life-cycle comes to a completion when such infected fish/squid are eaten by marine mammals 

such as whales, seals and dolphins. In these definitive hosts, the larvae grow to the L4 stage and 

subsequently to the adult stage. The nematode feeds, grows, mates and then release eggs in the host 

faeces into the sea water (Pozio, 2013). 

As it is common among parasites with complex life cycle, the morphology of Anisakis varies with the 

different stages in which it is found and the host it infects. In fish, it is found in a coiled shape, which 

when uncoiled, is about 2cm long. As shown in figure 1.1, humans become accidental hosts when 

undercooked or raw fish and cephalopods, contaminated with the parasite, Anisakis, are consumed.  
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Figure 1.1: The life cycle of Anisakis spp. 
(Source: http://www.dpd.cdc.gov/dpdx) 
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1.6 Larval burden and economic impact of Anisakis in fish  

The repeated transfer of larvae among fish may result in the extensive accumulation of larvae, 

particularly in large and older fish (Chou et al., 2011). These fish hence, can harbour hundreds or 

thousands of encapsulated larvae and thus increase the probability of infecting other fish and 

subsequently humans. It is thought that most species of cephalopods and fish can potentially harbour 

these marine parasitic nematodes as 200 fish and 25 cephalopods species have been identified to act as 

hosts for Anisakis spp (Abollo et al., 2001). However, prevalence has also been associated with the 

biology and the feeding behaviour of these intermediate hosts.  

Recently, the prevalence of infection among cephalopods and fish is reported to be on the increase and 

among factors that may contribute to this is the increased attention focused on this parasite and its 

public health importance. From a public health point of view, migration to the muscles of the fish by 

these parasites (depending on the condition of the fish after they are caught and the time between death 

and evisceration) may result in higher number of larvae in the muscles, which is the part of the fish 

that is consumed by humans (Pozio, 2013). A high prevalence of Anisakis larvae have been found in 

species of fish, crustaceans and cephalopods that are commercially important (Vidaček et al., 2009), 

decreasing the commercial value of fish and impacting human health. This has resulted in economic 

and public health concerns with regards to Anisakis and its infection (Smith and Wootten, 1978, 

Audicana et al., 2002). 

1.7 Risk factors of infection in human  

The most commonly implicated species of Anisakis in human infections are A. simplex, A. pegreffii 

and Pseudoterranova spp (Chai et al., 2005). There is frequent diagnosis of this parasite infection in 

countries where it is common for humans to ingest raw or lightly cooked fish infected with L3 larvae 

(Pozio, 2013). Consumption of undercooked or marinated fish, such as Japanese sushi and sashimi, 



Chapter 1 

9 

 

Scandinavian gravlax (dry, cured salmon), Dutch salted or smoked herring, Hawaiian lomilomi salmon 

(raw salmon), Spanish boquerones en vinagre (pickled anchovies), Filipino kinilaw (chopped, 

marinated fish), Latin American ceviche (raw fish seasoned with lemon juice), Italian  raw anchiove, 

(traditionally served with vinegar sauce without prior freezing), and Spain ungutted sardines (charcoal-

grilled) are risk factors of infection with this zoonotic parasite (Alonso-Gomez et al., 2004, Chai et al., 

2005).  

1.8 Anisakis human infection (Anisakiasis) 

Anisakiasis is the infection caused by the consumption of raw or partially cooked fish contaminated 

with the third stage larvae (L3) of Anisakis (Bucci et al., 2013). Anisakiasis was first described in the 

Netherlands (van Thiel et al., 1960). The symptom in the patient was acute localized enteritis of 

terminal ileum. Surgical operation showed a small nematode penetrating the mucus membrane. The 

larva was identified as Anisakis simplex 3rd-stage larva. Since then, several cases of this zoonotic 

infection have been described in other countries (Bucci et al., 2013).  

Two main mechanisms are reported to be responsible for Anisakiasis: allergic reactions and direct 

tissue damage (Choi et al., 2009). The allergic reactions range from urticaria and angioedema to life-

threatening anaphylactic shock, usually associated with gastrointestinal symptoms (Choi et al., 2009). 

Allergic reactions may occur subsequent to the primary infection of Anisakis and exposure to allergens 

in the food. Invasion of the gut wall by the parasite sometimes results in development of eosinophilic 

granuloma or perforation, which causes direct tissue damage (Choi et al., 2009). The part of the 

digestive tract in which Anisakis larvae is lodged, after consumption of raw or lightly cooked fish 

infected with L3 larvae and the type of Anisakis spp ingested, determines largely the clinical 

manifestation of Anisakiasis observed. Penetration of the gastric mucous results in inflammation, 

which gives rise to some of the symptoms (Valls et al., 2003). Anisakis can cause gastrointestinal 
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infection, which may be classified as acute, chronic, ectopic or allergic reactions (Bucci et al., 2013). 

Gastric infections have been reported mostly in Japan while in Europe, intestinal diseases are more 

commonly reported (Hochberg and Hamer, 2010). 

Over 20,000 cases of Anisakiasis had been reported worldwide prior to 2010 and over 90% of these 

were from Japan and the remaining cases from Italy, Netherlands, Spain, Germany, Asia and South 

America (EFSA BIOHAZ, 2010). 

1.8.1 Gastric Anisakiasis 

Gastric anisakiasis usually develops from 1 to 8 hours after ingestion of raw fish (Park et al., 2008). It 

presents with a sudden onset of pain in the epigastric region of the gut and it is accompanied by nausea 

and vomiting. Expulsion of live larva through the nose or mouth may occur (Ramanan et al., 2013). 

This acute anisakiasis usually involves the stomach and sometimes mimics angina-like chest pain 

(Machi et al., 1997).  It is known to completely resolve upon removal of the ingested larvae within 12 

h of consumption by upper endoscopy (Bucci et al., 2013).  

1.8.2 Intestinal Anisakiasis 

Enteric anisakiasis may sometimes take up to a few days to develop in contrast to gastric anisakiasis 

(Park et al., 2008). Intestinal anisakiasis (including duodenal anisakiasis) causes direct damage to the 

gut wall. In many cases of intestinal anisakiasis, the terminal ileum is involved (Shirahama et al., 1992, 

Repiso Ortega et al., 2003). Symptoms are presented as constant or intermittent abdominal pain, 

vomiting or diarrhoea and sometimes fever. These symptoms are usually seen 5-7 days after seafood 

ingestion (Hochberg and Hamer, 2010). Misdiagnosis is common with intestinal anisakidosis because 

of the non-specific nature of the symptoms. It has been misdiagnosed as Crohn’s disease, appendicitis 

and colon cancer (Ramanan et al., 2013). Localization of A. simplex in the intestinal wall presents the 

chronic form of Anisakiasis. In this form, symptoms would usually persist for months with weight 
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loss, abdominal cramp, diarrhoea and may present with difficulty in diagnosis. In the chronic stage, 

larvae may cause formation of granuloma (Pozio, 2013).  

1.8.3 Ectopic or Extraintestinal Anisakiasis 

Ectopic anisakiasis is less common than the other forms of anisakiasis  (Nawa et al., 2005). In some 

cases, the larvae are able to migrate to other organs or in the peritoneal cavity presenting symptoms 

related to the organs in which they are localized. Penetration into the peritoneal cavity or other visceral 

organs (extraintestinal anisakiasis) by larvae may cause eosinophilic granuloma, which may be 

confused with neoplasm (Nawa et al., 2005).  It may also result in haemorrhagic ascites (Akbar and 

Ghosh, 2005).  Tonsillar and laryngeal ansiakiasis, where the larvae migrate up into the tonsils from 

the back of the oesophagus, has been reported (Bhargava et al., 1996, Kwak and Yoon, 2012). 

Pulmonary anisakiasis resulting from anisakid entry into the pleural cavity through penetration of the 

diaphragm causing eosinophilic pleural effusion has also been described (Saito et al., 2005, Matsuoka 

et al., 1994). 

1.8.4 Gastroallergic Anisakiasis 

The allergic form presents within hours of consumption of infected undercooked fish and may result in 

cases of hypersensitivity reactions, urticaria, angioedema, anaphylactic shock and chronic debilitating 

conditions (Fernandez de Corres et al., 1996, Bucci et al., 2013). 

Sometimes, concurrent gastrointestinal symptoms may also be present (Choi et al., 2009). High levels 

of IgE specific to A. simplex characterises allergic anisakiasis (Caballero and Moneo, 2002). Though 

rare, it has however been shown that allergic reactions could present as autoimmune pancreatitis, 

nephrotic syndrome, allergic gingivostomatitis, intractable chronic pruritus or rheumatic disease 

(Eguia et al., 2003, Gallo et al., 2012, Pezzilli et al., 2007, Meseguer et al., 2007, Cuende et al., 1998).   
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Bronchial hyperactivity and dermatitis have been associated with Anisakid sensitization in fish-

processing workers (Nieuwenhuizen et al., 2006). Many Anisakis allergens are resistant to degradation 

by the digestive enzyme pepsin, implying immunological reactions might occur after exposure to 

Anisakis antigens alone (Audicana et al., 2002). There are also some cases where consumption of 

cooked or canned fish appears to have led to Anisakis-specific allergic reactions (del Pozo et al., 1996). 

Hence, Anisakiasis disease shows an interesting interaction between allergic response and parasitic 

infections even though both do not usually intermingle inspite of having many facets of immune 

responses that are similar (Nieuwenhuizen and Lopata, 2013). 

1.8.5 Anisakiasis complications 

Anisakiasis sometimes presents as a disease with few specific manifestations but then mimics other 

disease conditions (Yeum et al., 2002). In the stomach, chronic gastric anisakidosis usually occurs as a 

result of an inflammatory response to dying larvae and may mimic peptic ulcers, gastric cancer or 

chronic gastritis (Hwang et al., 2012, Hochberg and Hamer, 2010). Sometimes patients presents with 

pneumoperitoneum and gastric perforation (Ito et al., 2007). A few reports exists of the discovery by 

endoscopy, of Anisakis worm at the base of a gastric ulcer (Takeuchi et al., 2000).  

Intestinal anisakiasis may present as eosinophilic gastroenteritis (Gomez et al., 1998). However, it has 

been reported that eosinophilic granuloma formation around the larvae sometimes presents as a tumor 

or intestinal obstruction (Montalto et al., 2005, Ishii et al., 2009). Colonic anisakiasis has been reported 

to sometimes simulate a tumor of the colon, since this infection is associated with edema, acute 

phlegmonous reaction, and/or granuloma formations around the larvae, which results in a mass effect 

thereby resulting in misdiagnosis as a colon cancer (Matsumoto et al., 1992).  

Other complications of Anisakiasis include a case of duodenal anisakiasis associated with duodenal 

ulcer (Hwang et al., 2012), diagnosis of spontaneous spleen rupture and appendicitis secondary to 
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Anisakis simplex infection (Valle et al., 2012). In another report by (Rushovich et al., 1983), a patient 

presented with symptoms resembling those of acute appendicitis, and was found to have an 

inflammatory omental mass as a cause of his illness. Subsequent examination showed that the omental 

mass contained Anisakis larvae (Rushovich et al., 1983). The florid inflammatory response released by 

the host as a result of the penetration of  the larva(e) through the intestinal wall was thought to have 

resulted in the death of the parasite (Rushovich et al., 1983). 

1.9 Probable reason for the high prevalence of clinically overt allergic conditions 

in Anisakiasis 

While all patients with the different forms of gastric or intestinal anisakiasis produce specific IgE, the 

high prevalence of clinically overt allergic conditions in Anisakis spp parasitism has been suggested to 

be due to the fact that humans are not a natural host for this parasite, and parasitism by Anisakis is only 

acute or ‘intermittent’ (repeated acute parasitism by Anisakis). Hence, differences may be expected 

between the pathogenesis of Anisakis compared to those of other helminths in humans.  

In addition, more than 90% of Anisakiasis cases described have been reported to be caused by a single 

larva (Audicana and Kennedy, 2008), as compared to helminths in which numerous larvae are required 

for established infections. The chronicity and the burden of helminth infection are considered essential 

factors with regards to protection against allergy. In a study performed in Venezuela, it was shown that 

individuals with heavy infection by helminths were less likely to have a positive skin test to house dust 

mite (HDM) (Lynch et al., 1987). Symptoms of allergy improved after anti-parasitic treatment in 

lightly infected individuals but became worse in those who were heavily infected (Lynch et al., 1993). 

This study showed that a heavy parasitic infection protects against allergy whilst a light exposure to 

helminths lead to increase in airway symptoms due to potentiation of Th2 responses (Ndiaye and 
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Bousquet, 2004). Due to this factor, it is suggested that Anisakis may lack immunoregulatory features 

typical of other chronic helminthiasis. 

1.10 Anisakis short-term infection  

It has been reported that anisakiasis is usually a self-limiting disease, which is cured by conservative 

management for 1 to 2 weeks after the onset of symptoms (Hwang et al., 2012). A. simplex L3 is not 

known to survive in vivo beyond 3 weeks post infection. This cannot be explained solely by the fact 

that humans are accidental hosts for this parasite. Rather, differences in the immunological-inducing 

properties of this nematode from other helminth parasites must be taken into account.  

Toxocara canis, an ascaridoid parasite has been reported to be able to avoid the damaging effects of 

cellular component type of inflammatory responses associated with tissue-invading helminths, by a 

rapid sloughing off of the areas of its cuticle in contact with the immune response, hence, it is 

continuously releasing surface antigens (Deardorff et al., 1991). This may explain the ability of T. 

canis infective juveniles to evade the host’s immune attack and complete its complex tissue migration 

through all organs in the hosts’ body. In contrast, it has been established that A. simplex L3 do not 

slough their cuticle and macrophages are able to degrade the Anisakis cuticle. The inability of Anisakis 

to slough the cuticle and also escape the deleterious effect of adherence of macrophages in vivo, may 

be a contributing factor to the short-time infection period of Anisakis spp in human hosts (Deardorff et 

al., 1991). 

1.11 Anisakiasis diagnosis 

The diagnosis of anisakiasis can be made in several ways: (1) by endoscopic examination, which may 

reveal an ulcerated bleeding lesion within the stomach or duodenum, at the centre of which may be a 

worm measuring approximately 2 to 2.5 cm by 1 to 2 mm. Recently, a capsule endoscopy 
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demonstrated small intestine anisakiasis out of  reach of fibre endoscopy (Nakaji, 2009).  (2) By 

barium studies, which may show narrowing of the intestinal lumen in areas with mucosal 

inflammation, a thread-like filling defect suggestive of a worm on imaging studies in some cases 

(Matsui et al., 1985); and (3) serial measurement of specific and total IgE when it is not known if the 

presence of specific IgE is due to a past infection or is associated with the present case (Daschner et 

al., 1999). 

Imaging may be useful in guiding the diagnosis although standard X-ray is non-specific. However, 

localized stenosis as a result of focal edema may be shown by small-bowel X-ray (Matsui et al., 1985). 

When history and clinical suspicion are integrated with sonography, an easy and inexpensive 

alternative, that is noninvasive and with high sensitivity, is provided (Matsui et al., 1985).  

1.12 Anisakiasis management/treatment 

Since treatment for acute anisakiasis is dependent on endoscopic removal of the nematode parasite 

from the gastrointestinal wall if performed within 12 h from time of ingestion, it has been suggested 

that this parasitosis should be considered in the accident and emergency department (Bucci et al., 

2013). Where the larvae are not removed, the disease can become chronic as the larval remains 

become surrounded by inflammatory cells, which permits Anisakiasis disease to mimic other diseases 

(Audicana et al., 2002). Treatment with anthelminthics has also been reported as there are some reports 

of albendazole or thiabendazole treatment in isolated cases of human anisakiasis (Pacios et al., 2005). 

1.13 Control measures to minimise Anisakiasis 

Storage, after-harvest handling and fish preparation are the focus of preventive measures. Migration of 

larvae into the muscle might be prevented by immediate evisceration of fish after being caught, thus 

reducing the zoonotic potential of the parasite. However, since this immediate cleaning may most 
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likely be done at sea, with the high possibility of removed contaminated viscera being thrown back 

into the sea and eaten by other fish, the prevalence of infection may actually be heightened 

(McClelland et al., 1990). 

Fish intended for raw or semi-raw consumption have been recommended to be frozen at -35˚C or 

below for 15 hours or at -20˚C or below for at least 7 days by the United States Food and Drug 

Administration (F.D.A., 2011). However, it has been noted that fish freezing does not prevent the 

occurrence of allergic reactions. Anisakid larvae are known to be resistant to marinating, cold-smoking 

and salting. They have also been shown to survive being microwaved. Hence, for consumption at 

home, it is recommended that fish is cooked until the core temperature reaches 60˚C or higher for a 

minimum of 10 minutes (Sakanari and McKerrow, 1989). 

1.14 Immunogenic proteins of Anisakis and the Excretory/Secretory System 

Several proteins associated with allergens and antigenicity have been discovered in Anisakis spp. 

Anisakiasis, in many cases, leads to IgE-mediated allergic reactions such as urticaria, angioedema, 

asthma and sometimes even anaphylaxis in highly sensitized persons (Daschner and Pascual, 2005). 

Ventura and colleagues (Ventura et al., 2008) highlighted three possible antigen sources of A. simplex 

that are responsible for an immune response in the parasitized host  (1) somatic antigens with a 

molecular mass of between 13 and 150 kDa (2) Secretory/excretory proteins (ES antigens) that allow 

the penetration of A. simplex into the gastric mucosa (Sakanari and McKerrow, 1990) and (3) 

superficial antigens present in the parasite cuticle, which are likely involved in chronic inflammation 

(Baeza et al., 2001).   

Parasites are known to be masterful modulators of the immune systems of their hosts. They are known 

to divert host responses to their own advantage (Tritten et al., 2017). The excretory/secretory 

molecules released by parasites have been identified as major contributors in the host-parasite 
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interaction (Tritten et al., 2017) and are known as significant players in immunomodulation. Several 

parasite-derived proteins have been demonstrated to induce a Th2-biased immune response, in 

combination with regulatory and anti-inflammatory components (Harnett, 2014, Ditgen et al., 2014). 

ES products have several functions during infection, and these include host tissue penetration and host 

immune response evasion as they elicit immune responses (including antibody production) both in fish 

and mammals (Mehrdana and Buchmann, 2017). 

Anisakis infection of human hosts is not an exception. It involves complex interactions mediated by 

excretory/secretory (ES) products (Bahlool et al., 2013). ES proteins from anisakid nematodes, in 

particular Anisakis simplex, are currently used for diagnostic purposes and recent evidence suggests 

that they may also have a therapeutic potential in immune-related diseases (Mehrdana and Buchmann, 

2017). 

1.15 Integration of bioinformatics and proteomic tools in identifying 

immunogenic proteins 

Scientific research has changed in recent years, mainly due to the completion of numerous genomes in 

addition to the development and application of high-throughput technologies including gene 

expression microarrays and mass spectrometry. This has also brought about new and increasing 

opportunities to enhance our knowledge of biological systems (Uloa and Rodriguez, 2008). 

Proteomics is the large scale identification and characterization of all expressed proteins in a given cell 

(in a given state). This includes all protein modifications and isoforms, protein interaction networks, 

and high order complexes of proteins (Uloa and Rodriguez, 2008). An important advancement in 

proteomics has been achieved by the integration of bioinformatics tools to analyze the results of those 

experiments (Uloa and Rodriguez, 2008). In the last few decades, the isolation and identification of a 

potential allergenic/immunogenic molecule of an organism or tissue includes protein component 
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extraction, extracted protein separation and detection. (Mari et al., 2010). Advances in mass 

spectrometry-based proteomics now enable the measurement of multiple properties for thousands of 

proteins, including their isoform expression, turnover rate, abundance, subcellular localization, 

interactions and post-translational modifications (Larance and Lamond, 2015). Together, these 

advances in the multidimensional analysis of the proteome are transforming our understanding of 

various cellular and physiological processes (Larance and Lamond, 2015). The helminth secretomes 

have become a rich source of novel drug targets, diagnostic markers and immunomodulatory proteins  

(Ditgen et al., 2014). The proteomic analysis of many helminths has been performed on a large scale 

using both bioinformatics and proteomics, including the secretome of Ascaris suum (Jex et al., 2011) 

and Brugia malayi (Bennuru et al., 2009). Little data exists on large scale analysis of the secretome of 

Anisakis spp, particularly A. pegreffii, which is further explored in this study. 

1.16 Described allergens of A. simplex  

In an investigation carried out by Faeste and colleagues (Faeste et al., 2014) in which potential 

allergens were characterized using sera from A. simplex-sensitized patients and proteome data obtained 

by mass spectrometry, a considerable number of the detected A. simplex proteins could be classified 

into 33 allergen families. According to the authors, the classification was only made with respect to 

specific peptide sequence motifs and domains and is without prejudice to the actual allergenicity of the 

respective proteins. Another study by Arcos et al. (Arcos et al., 2014) using proteomic assay, identified 

twenty-eight different allergenic proteins in Anisakis spp. Recently, a transcriptome study of both A. 

simplex and A. pegreffii was performed by Baird et al. (Baird et al., 2016) using comparative analyses 

with sequence data available in public databases. Thirty-six (A. simplex) and 29 (A. pegreffii) putative 

allergens were identified.  
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Of all these allergens described for A. simplex (Baird et al., 2016, Faeste et al., 2014, Arcos et al., 

2014), fourteen of them have been accepted in the International Union of Immunological Societies 

(IUIS) database. The method and accession numbers of all protein sequences described, in this chapter 

to infer evolutionary relationship between Anisakis spp. proteins and homologues from other 

organisms, are detailed in the method section. 
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Table 1.1: List of Allergens of A. simplex in IUIS Database. 
 

Name Protein Name Molecular 
Weight 
(kDa) 

Organism References 

Ani s 1  Ani s 1 21 A. simplex (Moneo et al., 2000) 

Ani s 2 Paramyosin 100  A. simplex (Perez-Perez et al., 2000) 

Ani s 3 Tropomyosin 33 A. simplex (Asturias et al., 2000a) 

Ani s 4 Cystatin 9 A. simplex (Rodriguez-Mahillo et al., 2007, Moneo 
et al., 2005) 

Ani s 5 SXP/RAL-2 15 A. simplex (Kobayashi et al., 2007) 

Ani s 6 Serine protease inhibitor 7 A. simplex (Kobayashi et al., 2007) 

Ani s 7 Ua3 recognized allergen 139 A. simplex (Rodriguez et al., 2008) 

Ani s 8 SXP/RAL-2 16 A. simplex (Kobayashi et al., 2007) 

Ani s 9 SXP/RAL-2 15 A.simplex (Rodriguez-Perez et al., 2008) 

Ani s 10 Not given 23 A.simplex (Caballero et al., 2011) 

Ani s 11 Not given 30 A. simplex (Kobayashi et al., 2011) 

Ani s 12 Not given 33 A. simplex (Kobayashi et al., 2011) 

Ani s 13 Haemoglobin 37 A. simplex (Gonzalez-Fernandez et al., 2015) 

Ani s 14 New major allergen 23.5 A. simplex (Kobayashi et al., 2015) 

Note: Allergens accepted in the International Union of Immunological Societies (IUIS) Database. 
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1.16.1 Ani s 1 Protein (Serine Protease Inhibitor) 

Ani s 1 (a serine protease inhibitor), is described as a major allergen from A. simplex. It is an 

excretory/secretory gland protein (Quiazon et al., 2013b) and the first Kunitz-type protease inhibitor to 

be purified from a nematode. It was demonstrated to be a major allergen because it is recognized by 

sera from more than 80% of Anisakis-allergic patients (Kobayashi et al., 2008). The amino acid 

sequence of Ani s 1 lacks similarity to other known allergenic proteins (Moneo et al., 2000) This may 

explain the absence of cross-reactivity (Moneo et al., 2000). In addition, Ani s 1 has no similarity to 

other A. simplex serine protease inhibitors but was found to be homologous to troponin C of 

Onchocerca volvulus (Arrieta et al., 2000). The native function of Ani s 1 of A. simplex is still 

unknown. The modeled structure of Ani s 1 is shown in Figure 1.2A. This protein was found to have a 

functional EF-hand Ca2+ binding motif (Arrieta et al., 2000). The phylogeny of Ani s 1 with 

homologous proteins from other nematodes and invertebrates shows Ani s 1 of both A. simplex and A. 

pegreffii clustered closest to major allergen of Ani s 1 homologue of Toxocara canis (Figure 1.2B).  
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Figure 1.2.  Ani s 1-modelled structure and phylogenetic tree. 
 
(A). A. simplex Ani s 1-modelled structure. (Model Template PDB ID:  1bik.1A, Sequence 
identity- 28 %; SWISS-MODEL platform) (B) A. simplex Ani s 1 – Molecular evolutionary 
relationship with homologous proteins. 

1.16.2 Ani s 2 (Paramyosin) 

Ani s 2, also named paramyosin (100kDa), is known to be a somatic antigen. It is a highly conserved 

protein found in the muscle of invertebrates. Kagawa et al. (Kagawa et al., 1989) suggested it has an 

alpha helical-coiled structure as described for C. elegans. It has been reported to behave as a strong 

immunogen in a number of infections caused by Dirofilaria, Taenia, Schistosoma and Onchocerca 

(Grandea et al., 1989b, Steel et al., 1990, Laclette et al., 1991). Native paramyosin (n-paramyosin) 

from the fish parasite A. simplex has been reported to exhibit 80% specific IgE-binding as compared 

with only 20% reactivity with its recombinant form (rParamyosin) (Perez-Perez et al., 2000). 

According to Perez-Perez et al. (Perez-Perez et al., 2000), possibilities that may exist to explain this 

difference include the presence of conformational epitopes in the n-paramyosin, which is absent in the 

r-paramyosin as a result of improper protein folding (Perez-Perez et al., 2000). The modeled structure 
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of Ani s 2 is shown in Figure 1.3A. The phylogenic tree (Figure 1.3B) shows close evolutionary 

relationship between paramyosin proteins of A. simplex, A. pegreffii, A. suum and T. canis.  A closer 

relationship between the paramyosin (Der f 11) of house dust mite (HDM) [Dermatophagoides 

pteronnysinus] and the paramoysin of some helminths was observed in the phylogenetic tree. It has 

been established that HDM antigens are major causative agents of allergic diseases such as asthma, 

rhinitis, conjunctivitis, and atopic dermatitis (Acevedo and Caraballo, 2011, Valmonte et al., 2012); 

and some antigens have been shown to be commonly shared between intestinal parasites and the 

environment. This may play a role in the modulation of allergic immune responses resulting in a 

growing interest in the investigation of cross-reactivity between common helminths and dust mites 

allergy diseases affecting humans (Valmonte et al., 2012). 
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Figure 1.3.  Ani s 2-modelled structure and phylogenetic tree. 
 
(A). A. simplex Ani s 2 modelled structure. (Model Template PDB ID 5tby.1.A, Sequence 
identity- 18 %; SWISS-MODEL platform) (B) A. simplex Ani s 2 - Molecular 
evolutionary relationship with homologous proteins.  

 

1.16.3 Ani s 3 (Tropomyosin) 

Ani s 3 is a heat stable somatic allergen and has an alpha helical protein coiled-coil secondary 

structure. Anisakis tropomyosin belongs to a family of phylogenetically conserved structural proteins. 

The amino acid sequence has regions of high percentage identity among and between different 

invertebrate and vertebrate tropomyosins (Asturias et al., 2000a, DeWitt et al., 2004, Jenkins et al., 

1998). Tropomyosin is associated with muscle contraction in invertebrates and is found to be present 

in low concentrations in mite bodies and extracts. The invertebrate tropomyosins cause allergy in 

humans with high IgE cross-reactivity and, therefore, are referred to as pan-allergens (Aki et al., 1995). 
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It is also known as an important source of cross-reactivity between Anisakis and other invertebrates, 

suggesting clinical relevance of the immunological cross-reactivity of Ani s 3 (Sereda et al., 2008). 

Allergic cross-reactivity between Anisakis and the domestic mites A. siro and L. destructor has been 

reported, in which tropomyosin was implicated (Johansson et al., 2001). Hence it is not surprising to 

see their relatedness in the phylogenetic tree shown in Figure 1.4B.  Tropomyosin has also been 

implicated in the cross-reactivity between mites and human parasites (Acevedo et al., 2009). Hence, 

sensitization to mite tropomyosin could be a marker of previous exposure to parasites, and other 

allergens and vice versa. The modeled structure of Ani s 3 is shown in Figure 1.4A. Phylogenetic 

analysis (Figure 1.4B) shows Ani s 3 clustering closest to the tropomyosin of A. lumbricoides and Loa 

loa. It is also interesting to note from the phylogeny that tropomyosin of mites (A. siro, D. farina, B. 

tropicalis, L. destructor) cluster closer to tropomyosin of crustaceans (crab-P. sanguinoletus and 

lobster-J. lalandii). Studies have demonstrated that allergens from snails, crustaceans, cockroaches, 

and others cross-react with house dust mite allergens (Johansson et al., 2001). 
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Figure 1.4.  Ani s 3-modelled structure and phylogenetic tree. 
 
(A). A. simplex Ani s 3 modelled structure. (Model Template PDB ID 1c1g; Sequence identity- 
59 %; SWISS-MODEL platform) (B) A. simplex Ani s 3 - Molecular evolutionary relationship 
with homologous proteins. 
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1.16.4 Ani s 4 (Cysteine protease inhibitor) 

Ani s 4 was identified from A. simplex and defined as an allergen of somatic origin. It has however, 

also been identified as a significant component of the ES products of A. simplex. It is a low molecular 

weight protein, which is characterized by high stability to pepsin-digestion, heat and freezing. It is 

recognised by only 27–30% of patients’ sera, but seems to be particularly important in provoking 

anaphylaxis in allergic consumers (Moneo et al., 2005). Although Ani s 4 is classified as a minor 

allergen (< 50% IgE sero-positivity), it is considered an important allergic protein due to its clinical 

relevance in being implicated in allergic reactions after eating well-cooked or canned fish (Rodriguez-

Perez et al., 2008). Figure 1.5A shows the modelled structure of Ani s 4. The phylogeny of Ani s 4, 

shown in Figure 1.5B, indicates Ani s 4 clusters closest to the cysteine protease inhibitor (CPI) of 

Halioitis discus hannai (abalone) and Loa loa (filarial nematode of humans). 
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Figure 1.5.  Ani s 4-modelled structure and phylogenetic tree. 
 
(A). A. simplex Ani s 4 modelled structure. (Model Template PDB ID 4it7.1.A; Sequence identity- 
53 %; SWISS-MODEL platform) (B) A. simplex Ani s 4 - Molecular evolutionary relationship with 
homologous proteins. 

 

 

A B

Ani s 4



Chapter 1 

29 

 

1.16.5 SXP/RAL-2 family Protein Allergens in Anisakis (Ani s 5, Ani s 8, Ani s 9) 

The SXP/RAL-2 family of proteins have been detected exclusively in nematodes infecting both plants 

and animals (Jones et al., 2000, Chandrashekar et al., 1994, Tytgat et al., 2005a). Apparently, 

homologs of these proteins have not been identified outside the Nematoda.This family of proteins are 

hence termed ‘nematode-specific proteins.’ The SXP/RAL-2 family contains the DUF 148 domain, 

which consists of two conserved motifs, SXP-1 and SXP-2; however the functions of these domains 

are unknown. A number of members of this protein family have been described as immunologically 

active proteins (Tytgat et al., 2005a). They are known to have a signal peptide indicative of a secreted 

protein and they have also been reported to be secreted on the surface of the nematode’s cuticle where 

they appear to carry out a structural or protective function (Tytgat et al., 2005b). Some of these 

proteins have been identified as targets for nematode vaccines due to the protection they conferred 

upon immunization (Fujiwara et al., 2007). Members of this protein family in nematodes include the 

immunodominant hypodermal antigen OV17 from Onchocerca volvulus (Fujiwara et al., 2007, Gallin 

et al., 1989), Ac-16 from Ancylostoma caninum, Bm-SXP-1 of Brugia malayi, AS16, AS14 protein 

from Ascaris suum and the antigens WB14 and SXP from Wuchereria bancrofti (Fujiwara et al., 2007, 

Rao et al., 2000). This protein has also been predicted from the C. elegans genome (Garcia-Mayoral et 

al., 2014).  

Three SXP/RAL-2 proteins have been detected in A. simplex and described as allergens namely: Ani s 

5 (15kDa), Ani s 8 (15kDa) and Ani s 9 (14kDa). The 3D structure of Ani s 5 was the first structure of 

an Anisakis allergen to be solved (Figure 1.6A) and also the first structure of an SXP/RAL-2 protein 

(Garcia-Mayoral et al., 2014). It is assumed that Ani s 5 and other members of the SXP/RAL-2 family 

of proteins of Anisakis spp (Ani s 8 and 9) are secreted into the human gastrointestinal tract from 

ingested third-stage larvae of A. simplex (Kobayashi et al., 2007) . The SXP/RAL-2 proteins of A. 

simplex s.s. have been described as clinically relevant even though they are minor allergens. This is 
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because they are heat stable allergens implicated in allergic episodes with canned or well-cooked fish 

(Moneo et al., 2005). 

The phylogeny of the SXP/RAL-2 proteins of A. simplex (Figure 1.6B) showed Ani s 8 and Ani s 9 to 

be distantly related while Ani s 9 is observed to be closely related to As14 of A. suum and Ani s 8 is 

shown to be evolutionary closer to Onchocerca volvulus protein. Furthermore, Ani s 5 clustered closer 

to OV-17 antigen of T. canis than with intra-species protein homologs of Anisakis SXP/RAL-2 

proteins. The similarity of the SXP/RAL-2 family of proteins suggests these homologous proteins 

might share some biological properties. No cross reactivity has been reported yet between A. simplex 

SXP/RAL-2 proteins and other homologous protein in other nematodes. 
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Figure 1.6.  Ani s 5, Ani s 8 and Ani s 9-modelled structure and phylogenetic tree. 
 
(A). A. simplex Ani s 5 solved structure and also the modelled structure for Ani s 8 with Ani s 9. 
(PDB ID: 2mar.1.A; SWISS-MODEL platform) (B) A. simplex Ani s 5, Ani s 8 and Ani s 9 - 
Molecular evolutionary relationship with homologous proteins. 
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1.16.6 Ani s 6 (Serine protease inhibitor) 

Ani s 6 (a cysteine-rich serine protease inhibitor, 7kDa), is a minor allergen of Anisakis simplex as it is 

recognized by <50% of infected allergic patients. It was the first protease inhibitor experimentally 

identified as an allergen in nematodes, sharing high sequence identity with serine protease inhibitors 

from other animals such as the protease inhibitor Api m 6 of honeybee (Apis mellifera- 29% sequence 

identity); PrInh6 of tsetse fly (Glossina morsitans morsitans-30% sequence identity); malaria mosquito 

(30% sequence identity) and chymotrypsin-elastase inhibitor ixodidin of cattle tick (Boophilus 

microplus-36% sequence identity) (Kobayashi et al., 2007). The modelled structure and the 

phylogenetic analysis of Ani s 6 are shown in Figure 1.7A and B, respectively. Ani s 6 is observed to 

clusters closer to protease inhibitors of Anopheles sinensis, a mosquito, and of T. canis.  
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Figure 1.7.  Ani s 6-modelled structure and phylogenetic tree. 
 
 (A). A. simplex Ani s 6-modelled structure. (Model Template PDB ID 2p3f.1.C; Sequence 
identity- 42 %; SWISS-MODEL platform) (B) A. simplex Ani s 6 - Molecular evolutionary 
relationship with homologous proteins. 

 

 

1.16.7 Anisakis simplex Allergenic Proteins with Repetitive Sequences. 

A number of parasites have been described to have antigenic proteins with short repetitive sequences, 

which usually would elicit a strong humoral immune response in the infected host. Such parasites 

include the malaria parasite (Tetteh et al., 2005). In Anisakis simplex, 5 different proteins (Ani s 7, Ani 

s 10, Ani s 11, Ani s 11-like and Ani s 12) have been identified with repetitive sequences (Kobayashi 

et al., 2011). Repetitive unique motifs including four Cys residues at regular intervals, which have not 

been recognized in any proteins from any other organisms, have been found in A. simplex. However, 

no significant sequence similarities have been observed among the repeats (Kobayashi et al., 2011). 
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1.16.7.1 Ani s 7 

Ani s 7, a protein of 139kDa molecular weight,  has been found to be the most important 

excretory/secretory product Anisakis simplex allergen, since it is recognized by 100% of allergic 

patients and it is the only allergen of A. simplex discovered so far with this property (Anadon et al., 

2009). The allergenicity of this molecule has been attributed mainly to the presence of a novel (CX17– 

25CX9–22CX8CX6) tandem repeat motif not seen in any previously reported protein. The result of a 

study by Anadon et al. (Anadon et al., 2009) demonstrated that native Ani s 7 is a secreted protein and 

is recognized by the rats immune system from only live larvae (i.e. during the acute phase of 

infection). Another investigation by Cuellar et al. (Cuellar et al., 2012)  concluded that Ani s 7 could 

be used to detect active infections while Ani s 1 would detect old infections from the complex mixture 

of proteins in A. simplex. Ani s 7’s modelled structure is shown in Figure 1.8A, while its phylogenetic 

relationship with homologous proteins is shown in Figure 1.8D. 
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Figure 1.8.  Ani s 7, Ani s 12 and Ani s 14-modelled structure and phylogenetic tree. 
 
(A). A. simplex Ani s 7-modelled structure. (Model Template PDB ID 3gqc.1.A; Sequence identity- 
14 %; SWISS-MODEL platform) (B) A. simplex Ani s 12 modelled structure. (Model Template 
PDB ID 1bbi.1.A; Sequence identity- 27 %; SWISS-MODEL platform)  (C). A. simplex Ani s 14 
modelled structure. (Model Template PDB ID 5ydg.1.A; Sequence identity- 17 %; SWISS-
MODEL platform); (D). A. simplex Ani s 7, Ani s 12 and Ani s 14 - Molecular evolutionary 
relationship with homologous proteins.  
 

1.16.7.2 Ani s 12  

Ani s 12 of A. simplex is a newly discovered allergen found to have novel tandem motif with four Cys residues 

(Kobayashi et al., 2011). Little knowledge is so far available on whether their allergenic epitope is 

conformational or not.  It is described as having a tandem repeat structure with its repetitive sequence CX13–

25CX9CX7,8CX6 made up of 40–52 amino acid residues and which has been found to be much longer than those 

of the Ani s 11 and Ani s 11-like proteins. Ani s 7 has also been described as a novel protein with nineteen 

repeats (CX17– 25CX9–22CX8CX6) of a closely similar motif to Ani s 12 (Rodriguez et al., 2008). Ani s 7 and Ani 

s 12 have been found to have no significant similarity with each other even though similar tandem motifs are 
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D

Ani s 7 Ani s 12 Ani s 14



Chapter 1 

36 

 

contained in both. According to Kobayashi et al. (Kobayashi et al., 2011), this suggests that Ani s 12 has 

specific IgE epitopes differing from the major IgE epitope proposed for Ani s 7. The modeled structure and 

phylogeny of Ani s 12 are shown in Figures 1.8 B and D, respectively.  

1.16.7.3 Ani s 14 

Ani s 14, a 24kDa protein, is the most recently described major allergen of A. simplex as it is 

recognized by more than 50% of Anisakis allergic patients. It is the sixth major allergen of A. simplex 

described to date. Two homologous sequences at positions 5-44 and 54-97 have been described to date 

characterize this protein. These two regions in this allergen share 36% sequence identity and their 

common structure has been defined as CX8CX6CX22, 26. It is interesting to know that while Ani s 7 and 

Ani s 12 possess tandem repeats of similar structure with four residues of Cys at regular intervals, 

there are however no sequence similarity among the repeats of Ani s 7, Ani s 12 and Ani s 14. Another 

unique feature found in Ani s 14 is the presence of three kinds of redundant sequences- Gly-Gly-Met 

(positions 127-129 and 200-202), Ser-Ser-Met-Leu-Ser (positions 14-19 and 21-26) and Cys-Ile-Ala 

(positions 5-7 and 97-99) (Kobayashi et al., 2015). Kobayashi et al. (Kobayashi et al., 2015) suggested 

that these redundant sequences might represent IgE binding epitopes as repetitive sequences tend to be 

recognized by the human immune system. In addition, it is reported that Ani s 14 has no known 

domain or motifs and does not belong to any protein family, even though it has similarity in its amino 

acid sequence with Ani s 7, Ani s 12 and a hypothetical protein from dog roundworm (Toxocara 

canis). The biological functions of these proteins are not known and neither is the function of Ani s 14. 

The modelled structure and phylogeny of Ani s 14 with homologous proteins (Ani s 7 and Ani s 12) is 

shown in Figures 1.8C and D. 
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1.16.7.4 Ani s 10 

Ani s 10, a protein of 22kDa molecular weight, has been reported to possess a sequence composed of 

seven almost identical repetitions of 29 amino acids each; with each of these repeats having theoretical 

cleavage sites for trypsin and pepsin (Caballero et al., 2011). Ani s 10 is presumed to be either a 

somatic or cuticular antigen as the protein band corresponding to Ani s 10 was not observed in the 

excretion/secretion products from the parasite (Caballero et al., 2011). Though classified as a minor 

allergen as a result of 39% positive reactivity by Anisakis allergic patients, it has been found to be 

clinically important.  This is because the IgE binding capacity of this allergen is not affected by heat 

treatment, implying its stability to heat (Caballero et al., 2011). This signifies that the standard 

precaution of cooking seafood before consumption may not be sufficient to prevent allergic reaction to 

this allergen. Hence, in a dead larvae found in fish derived food, this allergen could elicit an allergic 

response.  Among the 39% of patients with sero-positivity against the Ani s 10 allergen, patients with 

urticarial symptoms were the most frequent (53%), followed by patients with anaphylaxis, 

epigastralgia and vomiting symptoms (23%) (Caballero et al., 2011). Ani s 10 has been shown to be 

homologous to Ani s 11 and two Ani s 11-like proteins from A. simplex share 49 and 43% sequence 

identity, respectively. The phylogeny of Ani s 10 with other homologous proteins is shown in Figure 

1.9B. No template was found for Ani s 10 to model its structure.  

1.16.7.5 Ani s 11 and Ani s 11-like allergens 

Ani s 11 and Ani s 11-like protein are described as structurally unique allergens as they have five or 

six types of short repetitive 6-15 amino acids sequences (Kobayashi et al., 2011). This structural 

feature has been found in Ani s 10 allergen, which has 43% sequence identity to Ani s 11-like protein. 

It is suggested that both Ani s 11 and Ani s 11-like protein might be surface antigens because parasite 

antigenic proteins with tandem repeats have been found to be localized on the body surface and are 
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often readily recognized by hosts, probably for protection against host immune responses (Leid et al., 

1987). Both proteins have different chain lengths, (Ani s 11-307 amino acids, Ani s 11-like- 160 amino 

acids), yet they share 78% sequence identity. Ani s 11 and Ani s 11-like allergens from A. simplex 

were identified by a chemiluminescent immunoscreening method developed by Kobayashi et al. 

(Kobayashi et al., 2011).  Functions for these proteins are still unknown. A recent study by Carballeda-

Sangiao et al. (Carballeda-Sangiao et al., 2016) has shown the Ani s 11-like allergen to be a pepsin and 

heat resistant major allergen of A. simplex. Figure 1.9A and B shows the modelled structure and the 

molecular relationship of Ani s 11 of A. simplex to homologous proteins. 

 

Figure 1.9.  Ani s 11-modelled structure and phylogenetic tree for Ani s 11 and Ani s 
10. 
 
(A). A. simplex Ani s 11-modelled structure. (Model Template PDB 5van.1.A; Sequence identity- 
24 %; SWISS-MODEL platform); (B). A. simplex Ani s 10 and Ani s 11 - Molecular evolutionary 
relationship with homologous proteins.  
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1.16.8 Ani s 13 (Haemoglobin) 

The haemoglobin protein was first described in the stage 3 larvae of A. pegreffii by Nieuwenhuizen et 

al. (Nieuwenhuizen et al., 2013). It was found associated with the excretory-secretory ducts and was a 

highly expressed protein. Their result showed that A. pegreffii haemoglobin has high similarity to 

haemoglobin of a related marine nematode, Psuedoterranova decipiens. Gonzalez-Fernandez et al. 

(Gonzalez-Fernandez et al., 2015) extended their investigation to describe that this haemoglobin 

protein is also present in A. simplex and has no cross-reactivity to Ascaris haemoglobin. Over 50% of 

studied patient sera (64.3%) with features of Anisakis parasitism recognized A. simplex haemoglobin 

and it has therefore been classified as a new major allergen of A. simplex (Ani s 13). Five epitopes 

have been defined on this protein with the most important epitopes being Epitope 2 and 5 for IgE 

binding and specificity (Gonzalez-Fernandez et al., 2015). Epitope 5 in A. simplex haemoglobin has 

been found to be absent in Ascaris haemoglobin and has been suggested to be probably responsible for 

the specificity of IgE reactivity from Anisakis-positive patients. Modelled structure of A. simplex 

haemoglobin is shown in Figure 1.10A. In comparison with other nematodes, the phylogeny (Figure 

1.10B) shows closer clustering to the haemoglobin protein of T. canis than to other nematode 

haemoglobin.  
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Figure 1.10.  Ani s 13-modelled structure and phylogenetic tree 
 
(A). A. simplex Ani s 13-modelled structure. (Model Template PDB ID 1o1m.1.A; Sequence 
identity- 19 %; SWISS-MODEL platform) (B) A. simplex Ani s 13 - Molecular evolutionary 
relationship with homologous proteins. 

 

1.17 Other Allergens in A. simplex  

Other allergens of A. simplex still under investigation include the fructose-1, 6-bisphosphatase family (Ani s 

FBPP), and is already reported to be a wheat flour allergen (Baur and Posch, 1998, Kim et al., 2006). Others 

include Cytochrome c oxidase subunit 3 (Ani s CCOS3), cytochrome b (Ani s Cytochrome B), NADH 

dehydrogenase subunit 4L (Ani s NADHDS4L), and Troponin-like protein (Ani s Troponin) (Kim et al., 2006, 

Mohandas et al., 2014). These above-named proteins have been given allergome codes; however, little literature 

exists to establish their allergenicity. In addition, an antigenic protein of 42kDa molecular weight was described 

in the somatic extract of Anisakis larvae by Sugane et al. (Sugane et al., 1992). This protein was reported to 
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react only with A. simplex infected human sera. However, investigation into this protein as an allergen is still 

inconclusive. 

Enolase, another allergenic protein found in A. simplex (Rodriguez et al., 2006) has also been investigated for 

immunogenic activity. Enolases from several microorganisms have been implicated in tissue invasion as well as 

in allergic disorders in humans (Ito et al., 1995, Simon-Nobbe et al., 2000, Baldo and Baker, 1988, Pancholi, 

2001).  Recent Anisakis transcriptome identified this protein as a putative allergen of Anisakis based on >70% 

sequence similarity with already described allergens in allergen database from other organsims (Baird et al., 

2016).  

1.18 Implication for invertebrate cross-sensitivity/cross-reactivity 

When a specific IgE to a particular antigen binds with another allergen, which shares significant 

structural and sequential similarity to the specific allergen, then a cross-reactivity syndrome is present 

(Singh et al., 2008). The implication of this is that a patient can be caught in a web of continuous 

reactivity to allergens (i.e. when patients try to avoid a specific allergen source, an allergen that a 

patient is already sensitized to could be hiding in another food source). Several studies have shown by 

a variety of methods, possible cross-reactivity with Anisakis simplex by carbohydrates, 

phosphorylcholine, other anisakid or ascarid nematodes, and in addition, other arthropods such as dust 

mites, chironomids or crustaceans (Perteguer et al., 2003a, Daschner et al., 2000, Valero et al., 2003, 

Pascual et al., 1997, Johansson et al., 2001, Lozano et al., 2004, Perteguer et al., 2003b, Fernandez-

Caldas et al., 1998, Iglesias et al., 1996, Lorenzo et al., 2000). This is not surprising as homologs of 

some of these proteins in other nematodes were found to perform similar functions when in human 

hosts. 
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1.19 Implications for allergy diagnosis 

Clinical history may be less clear if patients are exposed to multiple agents in their environment at the 

same time. Furthermore, use of specific IgE alone to diagnose Anisakis allergy is confronted by the 

fact that even asymptomatic individuals can have Anisakis-specific IgE as a result of immunologic 

cross-reactivity with other helminths (e.g. Ascaris, hookworm) or invertebrates such as cockroaches, 

dust mites and shrimp (Asturias et al., 2000b, Moneo et al., 1997). Cross-reactivity to other allergens 

complicates the diagnosis of Anisakis allergy and is responsible for the cause of false diagnosis (Valls 

et al., 2003). 

1.20 Non-allergenic proteins in A. simplex but with immunogenic activity 

1.20.1 AniSerp 

AniSerpin (44.6kDa), a novel serpin with anticoagulant capacity was identified in A. simplex and 

unlike other serine protease inhibitors of A. simplex which inhibit Kunitz and elastase proteases, this 

protease inhibitor inhibited human thrombin. It was also found to reversibly inhibit a cathepsin G and 

L. This ability to inhibit human thrombin makes this serine inhibitor suitable for use as an 

anticoagulant (Valdivieso et al., 2015). No parasitic nematode serpin has yet been described to have 

this anticoagulant property. Experimental evidence has shown the serpin (SPN-2) of B. malayi to be 

involved in evasion of host immune response by its ability to inhibit two serine neutrophil-derived 

proteases (Zang et al., 1999).  

1.20.2 Macrophage Migration Inhibitory Factor 

One of the earliest cytokines derived from activated T cells is the macrophage migration inhibitory 

factor (MIF), which is believed to prevent the random migration of macrophages (Bloom and Bennett, 

1966). A number of MIF homologs have been isolated from parasitic nematodes; two types have thus 

far been identified: the type 1 MIF homologs and the type 2 MIF homologs (Gregory et al., 1997, 
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Pastrana et al., 1998). The type 1 MIF homologs were reported to bear a greater amino acid similarity 

with mammalian MIFs than the type 2 MIF homologs. Parasite MIF homologs were also found to have 

similar ability with those of mammalian MIF (Pastrana et al., 1998). However, it was reported recently 

by Cho et al. (Cho et al., 2007) that the MIF of hookworms, which is type 2 MIF structurally, 

functions differently from those of the mammalian MIF. MIF-like protein of A. simplex (As)-MIF) 

from larvae of Anisakis simplex third-stage larvae was cloned by Park et al. (Park et al., 2009) and was 

shown to induce a complete inhibition of eosinophilia and goblet cell hyperplasia in mice and reduce 

profoundly the quantity of Th2-related cytokines (IL-4, IL-5, and IL-13) in the bronchial alveolar 

lavage fluid among other immunological responses elicited by this protein. The result of this study 

suggests that As-MIF may be one of the molecules that affects host immune regulation and therefore 

may be functioning as a host immune modulator.  

1.21 Paucity of Data on the Protein Repertoire of A. pegreffii  

This review has summed up the present understanding and the current status of Anisakis simplex and 

its increasing number of molecules used to attack key pathways in the mammalian immune system. 

Five allergenic proteins Ani s 1, Ani s 2, Ani s 9, Ani s 12 and Ani s 13 have been compared between 

Anisakis simplex and A. pegreffii. Quiazon et al. (Quiazon et al., 2013a) reported that A. simplex s.s 

and A. pegreffii share the same amino acid sequences for Ani s 9. Tropomyosin as an allergen has also 

been described for A. pegreffii (Asnoussi et al., 2017). However, the presence of other IUIS allergens 

described for A. simplex are yet to be identified in A. pegreffii proteome. In addition, in all the large-

scale proteomic experiments described for Anisakis spp (Faeste et al., 2014, Arcos et al., 2014), the 

whole worm extract of the L3 stage of Anisakis had been used. There is paucity of data on how much 

of all these proteins identified are from the excretory/secretory channel.  
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This study seeks to identify what proportion of proteins already described for A. simplex are present in 

A. pegreffii proteome using 1D-Gel LC-MS/MS. Furthermore, this study aimed to explore the protein 

repertoire of A. pegreffii excretory/secretory product in comparison with the whole parasite extract as 

well as with other helminths. In addition, similarities of Anisakis allergenic proteins, in structure and 

immunochemistry, to allergenic proteins from other invertebrates, particularly TPM, are a major 

reason for difficulty in diagnosis of Anisakis allergy. It is anticipated that knowledge on cross-

reactivity would minimise the number of allergens for diagnosis as well as allergic disorder therapies 

(Singh et al., 2008). This study extends investigation of cross-reactive allergens of Anisakis to A. 

pegreffii as well as identification of immunomodulatory molecules of A. pegreffii. 
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The aims of this study therefore are: 

• Chapter 3: To identify and compare the immunogenic proteins from the secretome and 

whole parasite extract of Anisakis pegreffii. 

• Chapter 4: To elucidate the role of microvessicles (exosomes) in the cargo and 

dissemination of Anisakis pegreffii immunogenic molecules. 

• Chapter 5: To analyze in Anisakis pegreffii, novel cross-reactive allergens to shellfish. 

• Chapter 6: To characterize medically important protease molecules of Anisakis pegreffii. 
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 GENERAL METHODS CHAPTER 2:
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2.1 Parasite Materials 

Anisakis larvae were collected from Neoplatycephalus richardsoni (Tiger flathead), purchased from a 

local seafood market in Melbourne without cleaning and transported immediately on ice to the RMIT 

Biotechnology laboratory. Each fish was dissected according to established protocols, and the body 

cavity and internal organs (liver, gut, stomach and gonads) were examined for the presence of L3s of 

Anisakis spp. (Jabbar et al., 2013). When detected, live Anisakis larvae were removed, encapsulated 

larvae were freed from the capsule and thoroughly washed three times in physiological saline (pH 7.4) 

(Werner et al., 2011). Approximately 50 Anisakis L3s were stored in 70% ethanol at -20 °C for 

molecular identification and the preparation of crude protein extract (CE). A part of the nematodes 

were cleared in lactophenol and another part dehydrated in ascending grades of ethanol (20%, 30%, 

50%, 70% and 100%) for morphological identification.  The remaining live larvae (~50) were 

subjected to further experimental procedures for collection of excretory/secretory (ES) products. 

2.1.1 Preparation of parasite crude extracts (CE) 

Proteins were extracted from A. pegreffii L3s (n = 50) by snap freezing in liquid nitrogen, followed by 

homogenization in 2.5 ml of extraction buffer (0.1M Tris (hydroxymethy1) aminomethane and 0.5M 

glycine buffer; pH 8.7). Sonication (3 cycles; 30s on 15 s off; amplitude of 37%) was performed and 

protein extracts centrifuged at 4 °C for 10 minutes at 14,000 x g using in-house developed laboratory 

protocols for protein extraction. The supernatant was filtered (0.45 μm filter; Millipore, Billerica, MA, 

USA) and concentrated using Millipore protein concentration columns (3kDa, 5 kDa and 10kDa cut-

off; Amicon Ultra). Protease inhibitor cocktail (Sigma Aldrich; P8340) was added to sample aliquots 

which would not be used for protease activity study following the manufacturer’s instruction. This was 

to avoid proteolytic degradation. Protein concentrations were measured with the Bradford reagent and 

samples stored at – 80 °C prior to further use. 
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2.1.2 Preparation of excretory/secretory products (ES) 

Live A. pegreffii L3s were thoroughly washed in physiological saline (pH 7.4) to remove contaminant 

fish tissues, and subsequently maintained in RPMI 1640 culture medium with 10 mM L-glutamine 

(GIBCO, Invitrogen) containing 0.2 mg/ml gentamycin (10 mg/ml GIBCO, Invitrogen), 1 mg/ml 

streptomycin (Sigma) and 1,000 U/ml penicillin (Kelapharma). Individual L3s were incubated in 500 

µl of medium per well for 3 days (Zhu et al., 1998). Parasite viability (motility) was checked daily 

under a stereomicroscope, and the culture fluid collected every 24 h and replaced with fresh medium. 

The filtered supernatant (0.22 μm filter; Millipore, Billerica, MA, USA) was stored at −80 °C prior to 

further use. Following molecular identification of each L3, the filtrates were pooled. Pooled ES 

products were concentrated using Millipore protein concentration columns (5 kDa cut-off; Amicon 

Ultra), and the total protein content was determined using the Bradford assay (Okutucu et al., 2007). 

The filtered and concentrated protein extracts were stored at −80 °C until further use. 

2.2 Molecular Characterization  

2.2.1 Isolation of Genomic DNA 

Genomic DNA was extracted from the mid-section of individual larvae as described by Jabbar et al. 

(Jabbar et al., 2012). Briefly, the tissue was suspended in 200 µL of 20mM Tris-HCl (pH 8.0), 100mM 

EDTA, and 1% sodium dodecyl-sulphate containing 10 mg/mL proteinase K (Amresco, USA). 

Incubation was at 370C for 18 h. Total genomic DNA was isolated from the homogenised suspension 

using a mini-column (Wizards DNA Clean-Up System, Promega, WI, USA) according to the 

manufacturer’s protocol. 
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2.2.2 ITS-1 and ITS-2 Region Amplification and Sequencing 

Two nuclear ribosomal loci were PCR-amplified using the primers SS1/NC13R (ITS-1) and SS2/NC2 

(ITS-2) as described by Jabbar et al. (Jabbar et al., 2012). Briefly, PCR was conducted in a 50 µL 

volume containing 10mM of Tris-HCl (pH 8.4), 50mM of KCl (Promega), 3.5mM  MgCl2, 200 µM of 

each of deoxynucleotide triphosphate (dNTP), 5 pmol of each primer and 1 U of GoTaq polymerase 

(Promega) under the following cycling conditions: 940C/5 min (initial denaturation), followed by 35 

cycles of 940C/30 s (denaturation), 550C/40 s (annealing), 720C/40 s (extension), followed by a final 

extension at 720C/5 min. For each set of PCRs, negative (no-DNA) and known positive controls were 

included, 5 µL of each amplicon was examined on a 1.5% w/v agarose gel stained with ethidium 

bromide and photographed. Amplicons representing the ITS-2 profile was subjected to bi-directional, 

automated sequencing using (separately) the same primers employed in PCR (308bp). 

2.2.3 PCR-RFLP analysis 

The genetic marker described by Zhu et al. (Zhu et al., 1998), D’Amelio et al. (D'Amelio et al., 2000) 

and Abe and Yagi (Abe and Yagi, 2005) were used to distinguish the L3 larvae of the Anisakis spp. 

PCR amplification of the 5.8S rRNA region of the parasite with NC5 (forward 5”-

CGTAGGTGAACCTGCG-3’) and NC2 (reverse’-TTAGTTTCTTTTCCTCCGCT-3’) primers was 

performed. The restriction endonucleases, HhaI and HinfI, were used in RFLP analyses of the 

amplified product of the ITS rRNA region. Digested products were analysed by electrophoresis on a 

3% agarose gel and visualized using the Gel doc system (Biorad)  (Lee et al., 2009). 

2.3 Mass Spectrometry 

2.3.1 Gel electrophoresis  

The extracted proteins were subjected to SDS-PAGE gel-electrophoresis as previously described 

(Abdel Rahman et al., 2010, Kamath et al., 2014b). In brief, the protein extracts (CE and ES, 
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separately) were briefly heated in Laemmli buffer and 15 µg (per lane) separated on a 12% bis-

acrylamide gel (BioRad, Hercules, CA, USA). The separated proteins were detected by staining with 

Coomassie brilliant blue R250 (BioRad, Hercules, CA, USA). 

2.3.2 In-Gel Tryptic Digestion 

Tryptic in-gel digestion was performed by cutting the entire gel lane for excretory/secretory (ES) 

products and crude extract (CE) separately, after staining with Coomassie brilliant blue R250 (BioRad, 

Hercules, CA, USA). Each gel lane was cut into 24 piece slices (horizontally) with each gel piece kept 

in sterile eppendorf tubes (1.5ml) for liquid chromatography-tandem mass spectrometric (LC-MS/MS) 

analysis. The destained gel piece was reduced with 10 mM DTT in 50mM triethylammonium 

bicarbonate (TEAB) (55 °C/45 min) and alkylated with 55 mM iodoacetamide made up in 50mM 

TEAB (incubated at room temperature (in the dark/30 min). Samples were then incubated with 200 

ng/µl sequencing grade trypsin (Sigma Aldrich) (incubated at 37 °C/ overnight). The digestion was 

stopped by the addition of formic acid (FA) to a final concentration of 1% and dried in a vacuum 

centrifuge.  

2.3.3 In-Solution Tryptic Digestion and LC-MS/MS Analysis 

The in-solution digestion was performed by using 1mg/ml each of the ES and CE as well as pellets 

obtained from exosome proteins precipitated by acetone. This was mixed with 500µl of 0.5 M 

triethylammonium bicarbonate buffer (TEAB), reduced with 100 µl of 10 mM dithiothreitol and 

incubated at 600C for 1 h. Subsequently, 200 µl of 200 mM methyl methanethio-sulfonate in 

isopropanol was added and incubated for 10 min at room temperature. The solution was digested with 

trypsin (resuspended in TEAB) at a ratio of 1/50 (amount trypsin/protein) overnight at 370C. Dried 

peptides were dissolved in 40µl 0.1% formic acid and subsequently analysed. 
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2.3.4 LC-MS/MS Analysis  

The digested sample was analysed by LC-MS/MS using a Q-Exactive mass spectrometer (Thermo 

Scientific). Peptides were resuspended in 0.1% formic acid and analyzed by LC-MS/MS using a Q 

Exactive Plus mass spectrometer coupled to an Ultimate Ultra High Performance Liquid 

Chromatography [3000 UHPLC] (Thermo Fisher Scientific, San Jose, CA).  Sample was injected onto 

a PepMap C18 trap column (75 μM x 2 cm, 3 μM, 100 Å, Thermo Fisher Scientific, San Jose, CA) at 5 

μL/min for 5 min using 0.05% trifluoroacetic acid (TFA), /3% acetonitrile and then separated through 

a PepMap C18 analytical column (75 μM x 50 cm, 2 μM, 100 Å, Thermo Fisher Scientific, San Jose, 

CA) at a flow rate of 300 nL/min. The temperature of both columns was maintained at 50 °C. During 

separation, the percentage of solvent B (solvent B is 0.1% FA in acetonitrile) in mobile phase was 

increased from 3% to 25% in 23 min, from 25% to 40% in 2 min and from 40% to 85% in 2 min. Then 

the columns were cleaned at 85% solvent B for 2 min before decreasing the % B to 3% in 0.1min and 

re-equilibrating for 10.9 min. LC-MS/MS procedures were performed at the Mass Spectrometry and 

Proteomics Facility Bio21, The University of Melbourne, Australia. 

2.3.5 Protein identification 

2.3.5.1 Identification of Peak list obtained from MS/MS spectra 

Peak lists obtained from MS/MS spectra were identified using, Mascot (Matrix Science, London, UK; 

v. 2.4.1), X! Tandem version X! Tandem Vengeance (2015.12.15.2) [PMID 14976030] (Craig and 

Beavis, 2004);  MS-GF+ (version Beta; v10282)  (Kim and Pevzner, 2014), and MyriMatch version 

2.2.140 [PMID 17269722]. The search was conducted using SearchGUI version [3.2.20] [PMID 

21337703] (Vaudel et al., 2011). 
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2.3.5.2 Protein identification and Database Used 

Protein identification was conducted against two concatenated target/decoy databases. The first 

database was A. pegreffii transcriptome database (Baird et al., 2016) holding 33747 target sequences 

(version of December 24th 2016). The second database was of concatenated target/decoy [PMID 

20013364] version of the Anisakis simplex (20990, 99.3%), Anisakis pegreffii (96, 0.5%), Anisakis 

berlandi (16, <0.1%), Contracaecum osculatum (12, <0.1%), Contracaecum rudolphii (12, <0.1%), 

Anisakis simplex x Anisakis pegreffii (2, <0.1%), Ascaris suum (1, <0.1%), Haemonchus contortus (1, 

<0.1%), Scomber japonicus (1, <0.1%), Trichuris trichiura (1, <0.1%) complement of the UniProtKB 

[PMID 14681372] (version of [29012018] , 21132 (target) sequences).The decoy sequences were 

created by reversing the target sequences in SearchGUI. 

2.3.5.3 Identification setting 

The identification settings were as follows: Trypsin, Specific, with a maximum of 2 missed cleavages 

20 ppm as MS1 and 0.5 Da as MS2 tolerances; fixed modifications: Carbamidomethylation of C 

(+57.021464 Da),  variable modifications: Oxidation of M (+15.994915 Da), fixed modifications 

during refinement procedure: Carbamidomethylation of C (+57.021464 Da), variable modifications 

during refinement procedure: Acetylation of protein N-term (+42.010565 Da), Pyrolidone from E (--

18.010565 Da), Pyrolidone from Q (--17.026549 Da), Pyrolidone from carbamidomethylated C (--

17.026549 Da). 

2.3.5.4  Peptide and Protein Inference 

2.3.5.4.1 Peptide Shaker for peptide and protein inference 

Peptides and proteins were inferred from the spectrum identification results using PeptideShaker 

version 1.16.15 [PMID 25574629]. Peptide Spectrum Matches (PSMs), peptides and proteins were 
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validated at a 1.0% False Discovery Rate (FDR) estimated using the decoy-hit distribution. All 

validation thresholds are listed in the Certificate of Analysis available in the supplementary 

information. Post-translational modification localizations were scored using the D-score [PMID 

23307401] and the phosphoRS score [PMID 22073976] with a threshold of 95.0 as implemented in the 

compomics-utilities package [PMID 21385435]. A phosphoRS score above was considered as a 

confident localization. Spectrum counting abundance indexes were estimated using the Normalized 

Spectrum Abundance Factor [PMID 15282323] adapted for better handling of protein inference issues 

and peptide detectability. 

2.3.5.4.2 Scaffold for peptide and protein inference 

 For a second opinion of protein inference, identification and validation, Scaffold software (version 

Scaffold_4.5.1, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and 

protein identifications. Peptide identifications were accepted if they could be established at greater 

than 95.0% probability. Peptide probabilities from the search engines were assigned by the Peptide 

Prophet algorithm (Keller et al., 2002) with Scaffold delta-mass correction. Protein identifications 

were accepted if they could be established at greater than 99.0% probability and contained at least 2 

identified peptides.  Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii 

et al., 2003). Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing significant peptide 

evidence were grouped into clusters. An estimate of the relative abundance of the predicted proteins in 

the trypsin digestion (within the samples) was assessed using the normalized spectral abundance factor 

generated in the Scaffold (NSAF) software system. 
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2.3.5.4.3 Data deposited in Proteome Exchange 

The mass spectrometry data along with the identification results have been deposited to the ProteomeXchange 

Consortium [PMID 24727771] via the PRIDE partner repository [PMID 16041671] with the dataset identifiers 

[Project Name: Proteomic Analysis and Molecular Characterization of Anisakis pegreffii Allergenic and 

Immunogenic proteins; Project accession: PXD008816; Project DOI: 10.6019/PXD008816]. 

2.4 Anisakis allergens- molecular evolutionary relationship with homologous 

proteins 

Described sequences of Anisakis allergens were retrieved from the Uniprot (http://www.uniprot.org/) 

and NCBI (http://www.ncbi.nlm.nih.gov/protein/) databases. For a comprehensive search of Anisakis 

allergens homologous proteins, the BlastP program was performed in the non-redundant protein 

sequences (nr) databases. The result was compared with the TBlastN search. Algorithm parameters 

were set to the default. Sequences with E-values below 1 X 10-4 and bits score of >50 were selected as 

homologous proteins (Pearson, 2013). Phylogenetic and molecular evolutionary analyses were 

conducted using MEGA version 6 (Tamura et al., 2013).ClustalW was used for multiple sequence 

alignments with the default parameters and a neighbour-joining (NJ) tree was constructed with the 

aligned homologous protein sequences in MEGA. The following parameters were used for the 

phylogenetic tree construction: Poisson model, bootstrap (1000 replicates; random seed) and complete 

deletion of gaps or missing data. 

Accession Numbers for Ani s 1 and homologous proteins (A)- Ani s 1 Anisakis simplex (AGC60035), 

Ani s 1 Anisakis  pegreffii (AGC60032), major allergen Ani s 1 Toxocara canis (KHN76275.1), 

Hypothetical protein (HP) of Loa  loa (EFO13778), Ancylostoma ceylanicum (EYC23835) and 

Wuchereria bancrofti (EJW78328); thyroglobulin type-1 (TT-1) and proteinase inhibitor I2 (PII2) 

domain containing protein of Haemonchus contortus (CDJ92662) and Strongyloides  ratti 

http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/protein/
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(CEF62937);  uncharacterized protein (UP) of Caenorhabditis elegans (NP_504413), Hypothetical 

protein of Pristionchus pacificus (KKA75732), Kunitz/Bovine pancreatic trypsin inhibitor (KBPTI) 

domain protein of Necator americanus (XP_013309260), Oesophagostomum dentatum (KHJ91434), 

Dictyocaulus viviparous (KJH50140) and Ancylostoma duodenale (KIH61880); Kunitz inhibitor of C. 

elegans (NP_508632) and major allergen Ani s 1 of Ascaris suum (ERG81619). 

Accession Numbers for Ani s 2 and homologous proteins (B)-Ani s 2 of A. simplex (AGC60024) and 

A. pegreffii (AGC60020); Paramyosin protein of A. suum (ERG78965), Onchocerca volvulus 

(QO2171), D. viviparous (ABO07440), T.canis (KHN76665), A. caninum (ABC86903), Dirofilaria 

immitis (P13392), C. elegans (NP_492085), Stronglyloides stercoralis (CEF65593), Trichuris 

trichuira (CDW56486), Trichinella spiralis (XP_003371652), Brugia malayi (XP_001892373), Blo t 

11 allergen of Blomia tropicalis (Q8MUF6), Der F 11 allergen of Dermatophagoides 

farinae(AIO08864) and HDM allergen of Dermatophagoides pteronyssinus (AA073464); paramyosin-

like protein of W. bancrofti (AAG31484), Hypothetical protein of L. loa (XP_003141094),  Myosin 

tail protein of H. contortus (CDJ96841), Ancylostoma ceylanicum (EPB69247) and Necator 

amerticanus (XP_013295008). 

Accession Numbers for Ani s 3 and homologous proteins (C)-Ani s 3 A. simplex (Q9NAS5), 

Tropomysoin protein of A. lumbricoides (ACN32322). L. loa (EJD75137), Heligmosomoides 

polygyrus (ABV44405), Teladorsagia circumcincta (ADB27966.1), Trichinella spiralis 

(XP_003372651), C. elegans (BAA07540), Jasus lalandii (AFY98827) and P. sanguinolentus 

(ABL89183);Allergen Der f 10 of D. farinae (ABU97468), Blo t 10 Blomia tropicalis (ABU97466), 

Allergen Aca s 10 of Acarus siro (ABL09305) and allergen Lep d 10 of Lepidoglyplus destructor 

(Q9NF24). 
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Accession Numbers for Ani s 4 and homologous proteins (D)-Ani s 4 A. simplex (CAK50389),  CPI of 

A. lumbricoides (ADR51550), Cysteine protease inhibitor (CPI) of Haliotis discus hannai (AEI59124) 

and H polygyrus (AGA95986); Proteinase Inhibitor I25 of H. contortus (CDJ92568) and S. rattii 

(CEF69048); Onchocystatin protein of A. suum (ERG82219) and T. canis (KHN76703); Nippocystatin  

protein of Nippostrongylus brasiliensis (BAB59011), cystatin domain protein of N. americanus 

(XP_013296854), O.dentatum (KHJ94005),  C. elegans (NP_504565) and D. viviparous (KJH50325); 

cystatin proteinase inhibitor (CPI) protein of L. loa (XP_003136654), Cystatin 3 protein of A. 

duodenale (AGB07555). 

Accession Numbers for the SXP/RAL-2 proteins (Ani s 5, Ani s 8 and Ani s 9 )and their homologous 

proteins (E)-SXP/RAL-2 protein A. simplex (BAF43534), solution structure of Ani s 5  A. simplex ,Ani 

s 8 -1 A. simplex (A7M6Q6), Ani s 9 A. simplex (B2XCP1), protein of unknown function DUF of H. 

contortus (CDJ91573), SXP protein of Strongylus vulgaris (AGF90534) and W. bancrofti 

(AAC70783);  immunodominant hypodermal antigen (Ac16) of A. caninum (ABD98404) and 

Onchocertca ochengi (ACB70199), uncharacterised protein (UP) of C. elegans (NP_496220), 

hypothetical protein (HP) of N. americanus (XP_013290850), Ag1 of Baylisascaris schroederi 

(ACJ03761) and A. lumbricoides (ACJ03764); Ag2 of Baylisascaris schroederi (ACJ03762) and A. 

lumbricoides (ADB45852); As14 and As 16 of A. suum (BAB67769), (BAC66614); SPX-1 of L. loa 

(XP_003142836) and B. malayi (AAA27864), antigen WbL1 of W. bancrofti (ABO40019), antigen 

WB14 of W. bancrofti (AAC17637), B. malayi antigen (AAA67319) and OV-17 protein of t. canis 

(KHN84076).  

Accession Numbers for Ani s 6 (Proteinase inhibitor) and homologous proteins (F)- Ani s 6 of A. 

simplex (BAF43535), chymotrypsin inhibitor-like Diaschasma alloeum (XP_015111868), 

chymotrypsin inhibitor-like proteins of Megachile rotundata (XP_003700660), Nasonia vitripennis 
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(XP_001607538), Acromyrmex echinatior (XP_011050597), Polistes canadensis (XP_014599121) and 

Apis mellifera (KFD56018); hypothetical protein of A. ceylanicum (EYC24268) and T. suis 

(KFD56018); uncharacterised protein (UP) of C. elegans (NP_001076745), trypsin inhibitor like 

cysteine rich domain protein O. dentatum (KHJ89305), protease inhibitor 18 domain containing 

protein H. contortus (CDJ97122), bifunctional nitrile hydratase NIT4B of T. canis (KHN75744), 

chymotrypsin/elastase isoinhibitor 2 to 5 protein of T. canis (KHN80612) and PC-like protein 

Anopheles sinensis (KFB35567). 

Accession Numbers for Ani s 7, Ani s 12, Ani s 14 and homologous proteins (H)-UA3-recognized 

allergen of A. simplex (ABL77410), hypothetical protein (HP) of T. canis (KHN86688), Ani s 12 

allergen of A. pegreffii (AGC60028), Ani s 12 of A. simplex (AGC60030) and Ani s 14 of A. simplex 

(BAT62430) 

Accession Numbers for Ani s 10, Ani s 11, Ani s 11-like and homologous proteins (H)- Ani s 10 

allergen precursor A. simplex (ACZ95445), Ani s 11 allergen precursor A. simplex (BAJ78220), Ani s 

11-like protein 2 precursor A. simplex (BAJ78222), Ani s 11-like protein precursor A. simplex 

(BAJ78221), hypothetical protein of Branchiostoma floridae (XP_002592239) and proline-rich 

extensin-like protein EPR1 Clupea harengus (XP_012681730) 

Accession Numbers for Ani s 13 (Hemoglobin) and homologous proteins (I)- Hemoglobin of A. 

pegrefii (AFY98826), P. decipiens (CAA77743) and T. canis (AAL58703); globin-like protein of C. 

elegans (NP_498974) and Ascaris suum (ERG78975); unnamed protein product of N. brasiliensis 

(AAA72047), hypothetical protein (HP) of P. pacificus (KKA75577), globin domain of H. contortus 

(CDJ94105), A. ceylanicum (EPB66765), S. rattii (CEF61039), N. americanus (XP_013305040), A. 

duodenale (KIH66592), B. malayi (XP_001901554), O. dentatum (KHJ93008), W. bancrofti 

(EJW76352), D. viviparus (KJH47358), L. loa (XP_003136972) and glb-1 P. pacificus (KKA75692). 
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2.5 Template Search for A. simplex Allergenic Protein Structure Modelling 

Template search with Blast and HHBlits has been performed against the SWISS-MODEL template 

library (SMTL, last update: 2018-02-07, last included PDB release: 2018-02-02). The target sequence 

was searched with BLAST (Altschul et al., 1997) against the primary amino acid sequence contained 

in the SMTL. An initial HHblits profile has been built using the procedure outlined in (Remmert et al., 

2011), followed by 1 iteration of HHblits against NR20. The obtained profile has then be searched 

against all profiles of the SMTL. A total of 16 templates were found. 

2.5.1 Template Selection 

For each identified template, the template's quality has been predicted from features of the target-

template alignment. The templates with the highest quality have then been selected for model building. 

2.5.2 Model Building 

Molecular models are built based on the target-template alignment using ProMod3. Coordinates, which 

are conserved between the target and the template, are copied from the template to the model. 

Insertions and deletions are remodelled using a fragment library. Side chains are then rebuilt. Finally, 

using a force field regularizes the geometry of the resulting model. In case loop modelling with 

ProMod3 fails; an alternative model is built with PROMOD-II (Guex and Peitsch, 1997). 

2.5.3 Model Quality Estimation 

The global and per-residue model quality has been assessed using the QMEAN scoring function 

(Benkert et al., 2011). For improved performance, weights of the individual QMEAN terms have been 

trained specifically for SWISS-MODEL. 
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2.5.4 Ligand Modelling 

Ligands present in the template structure are transferred by homology to the model when the following 

criteria are met (Gallo-Casserino, to be published): (a) The ligands are annotated as biologically 

relevant in the template library, (b) the ligand is in contact with the model, (c) the ligand is not 

clashing with the protein, (d) the residues in contact with the ligand are conserved between the target 

and the template. If any of these four criteria is not satisfied, a certain ligand will not be included in the 

model. The model summary includes information on why and which ligand has not been included. 

2.5.5 Oligomeric State Conservation 

Homo-oligomeric structure of the target protein is predicted based on the analysis of pairwise 

interfaces of the identified template structures. For each relevant interface between polypeptide chains 

(interfaces with more than 10 residue-residue interactions), the Qscore Oligomer (Mariani et al., 2011) 

is predicted from features such as similarity to target and frequency of observing this interface in the 

identified templates (Kiefer, Bertoni, Biasini, to be published). The prediction is performed with a 

random forest regressor using these features as input parameters to predict the probability of 

conservation for each interface. The QscoreOligomer of the whole complex is then calculated as the 

weight-averaged QscoreOligomer of the interfaces. The oligomeric state of the target is predicted to be 

the same as in the template when QscoreOligomer is predicted to be higher or equal to 0.5. 
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3.1 Introduction 

Anisakis pegreffii is known to be relevant for humans as a result of the zoonotic role it plays in causing 

the disease, anisakiasis (Mattiucci et al., 2017). To date, A. pegreffii has been reported as the causative 

agent of invasive anisakiasis in Europe (Italy, Croatia) (D'Amelio et al., 1999, Fumarola et al., 2009, 

Mattiucci et al., 2011, Mladineo et al., 2016, Mattiucci et al., 2013) and also in Japan (Umehara et al., 

2007, Arai et al., 2014) and South Korea (Lim et al., 2015). The geographical distribution of A. pegreffii 

includes the Atlantic and Pacific Austral waters as well as the Iberian Atlantic coast waters. It is the most 

widespread anisakid species known to affect commercial fish from Mediterranean waters (Mattiucci et al., 

2017). Although humans are accidental hosts of this parasite in which the parasite can survive for a short 

period of time but cannot reproduce, studies on this nematode, its infection and molecules released at the 

interface of host-parasite relationship are of crucial importance (Bao et al., 2017, Pravettoni et al., 2012, 

Audicana and Kennedy, 2008), To understand the biology of Anisakis pegreffii, knowledge of the history 

of helminth and their immunomodulatory mechanisms is of utmost importance. 

3.1.1 Helminth and the Th-2 Immune response 

It is known that helminths vary greatly in their biology. They exist within their host, particularly humans, 

in different developmental stages such as eggs, larvae or adult form. In addition, different species have 

preferences for different locations in their host, which include the lungs, colon, intestines, liver and 

others. Inspite of their wide range of characteristics, helminth parasites seem to elicit similar immune 

responses in their human hosts. Most helminths are known to induce modified T-helper (Th) 2 immune 

responses, accompanied by a wide range of immunoregulatory mechanisms, which helps to control 

excessive Th1 immunity that prevents parasite colonization (Ito, 2015, Hernandez et al., 2013, Trinchieri 

and Gerosa, 1996). 
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3.1.2 The Hygiene Hypothesis 

The emergence of autoimmune diseases in the developed world has been linked to hygiene, some 

believing that the disappearance of endoparasites has been an important immune modifier (Bach, 2002, 

Weinstock et al., 2002). The hygiene hypothesis was proposed by Strachan (Strachan, 1989) over 25 

years ago, when he suggested that early-life exposure of children to infection stimulates correct 

development of their immune system and protects them from diseases such as airway allergy, which 

comes in the form of seasonal rhinitis (Strachan, 1989). He indicated that the absence of these early-life 

infections predisposes children to hyperactivity and inappropriate immune responses as seen in allergy 

(Strachan, 1989). It was then observed that over the periods in which early-life infections were eradicated 

by good hygiene in the developed world (Western world), there was a corresponding positive association 

with development of epidemic immunopathological diseases such as allergic asthma. Helminth infection 

which had been eradicated mainly by hygiene practices during this period began to receive attention 

(McSorley et al., 2013). Epidemiological studies of atopy (Feary et al., 2011) or asthma (Leonardi-Bee et 

al., 2006), thereafter, suggested that parasitic infection did have a protective effect against these 

immunopathological diseases.  

3.1.3 Helminth Infection and Immunomodulation 

Several experiments, since the hygiene hypothesis was proposed, have shown that helminth infection can 

alleviate immune-mediated diseases such as multiple sclerosis (MS) (Correale, 2014, Fleming, 2013, 

Correale and Farez, 2013), inflammatory bowel disease (IBD) (Lu et al., 2014, Ferreira et al., 2013, 

Ruyssers et al., 2009, Smith et al., 2007) and diabetes (Zaccone and Cooke, 2013, Mishra et al., 2013, 

Lund et al., 2014). This is because it has been discovered that helminths possess immunomodulatory 

mechanisms that not only ensure their own survival in host body, but also respond to non-helminth 

antigens such as host self-antigens and allergens (McSorley and Maizels, 2012). Production of 

immunoregulatory cytokines such as IL-10, TGF-ß, and the increased activity of regulatory T and B cells 
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with alternatively activated macrophages (AAM), have been associated with establishment of helminths 

parasites in the host for long periods. Furthermore, helminths have been found to promote B cells to 

produce IgG4 antibodies, which counteract the IgE responses (Allen and Maizels, 2011, Grencis, 2015, 

Taylor et al., 2012, Hussaarts et al., 2011). In the last few years, as a result of these attributes of 

helminths, there have been developments in the field of helminth-therapies that have led to novel 

strategies in immune-mediated diseases treatment. Trichuris suis ova (TSO) has been used for the 

treatment of MS (Fleming et al., 2011, Rosche et al., 2013) and IBD (Sandborn et al., 2013), a treatment 

based on the concept of the hygiene hypothesis (Bach, 2017). T. suis is also now a commercially available 

treatment called Ovamed (http://www.ovamed.de/tso/publications). 

3.1.4 Use of Helminth for Treatment of Immune-Mediated Disease 

The treatment of human immune-mediated diseases with live helminths appeared to have had several 

drawbacks such as accidental infection, reduced immune response to viral, bacterial, protozoal infection 

and increased susceptibility to them, atopic reaction, poor acceptance with consuming eggs or live worms, 

problems with licensing worldwide, reduced efficacy of vaccine and the need to re-treat or re-ingest the 

parasite to maintain the benefit as well as because species like T. suis have a limited survival time in 

humans (McSorley and Maizels, 2012). However, a proposed solution to this problem was the use of 

somatic extracts and excretory/secretory (ES) products of helminths. Although, the mechanism of 

helminth therapy in inflammatory diseases is not clear, the immunomodulatory characteristics of 

helminths have been linked to the molecules secreted by these parasites. Diverse studies have shown that 

helminth- secreted products are able to manipulate host immune response and suppress the innate and 

adaptive immune response to helminths and unrelated antigens (Yatsuda et al., 2003) .  
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3.1.5 Somatic Extract and Excretory/Secretory Products of Helminth  

In several models, it has been shown that helminth infections lead to the generation of Th2 responses as 

well as anti-inflammatory/regulatory responses (van Riet et al., 2007). It is generally known that 

instructions for the development of specific immune responses are largely mediated by dendritic cells 

(DC), found in peripheral tissues as sentinel cells, which upon activation, migrate to draining lymph 

nodes to activate naıve T cells. The DCs not only present antigens but also provides signals that 

determine polarization of T cell development towards a Th1, Th2 or regulatory T cell phenotype 

(Kapsenberg, 2003). 

Helminth excretory/secretory products have been discovered to modify DCs in different ways ranging 

from influencing the DC maturation status to affecting the downstream signaling within the DCs (van 

Riet et al., 2007). Well characterized helminth derived molecules such as the filarial secreted glycoprotein 

ES-62 (Whelan et al., 2000), lyso-phosphatidylserine from S. mansoni (lysoPS) (Jenkins and Mountford, 

2005, van der Kleij et al., 2002), Ascaris derived PAS-1 protein (reference), and others have been found 

to be associated with Th2 immune skewing as well as induction of tolerogenic immune response 

stimulating naıve T cells to become regulatory T cells. Interaction with hosts’ adaptive immune response 

to down-regulate T- and B-cell responses via the induction of regulatory T cells or the anti-inflammatory 

cytokines IL-10 and TGF-b in the chronic phase of helminth infection has also been documented for the 

secretory molecules of helminths (Maizels and Yazdanbakhsh, 2003). 

Other parts of the hosts’ body defence have also not been spared the deleterious effects of helminth 

secreted molecules. For instance, complement function compromise has been demonstrated by a 

schistosomula excretory/secretory molecule (Ouaissi et al., 1981) as well as host immunoglobulin 

degradation (Auriault et al., 1981). These helminth molecules have also been shown to neutralize host 

derived immune molecules as shown in Schistosoma mansoni eggs which secrete a chemokine binding 
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protein (smCKP) that blocked IL-8 induced neutrophil migration in a contact hypersensitivity model 

(Smith et al., 2005), indicating that this molecule may protect the parasite from an inflammatory attack.  

Other additional wide range of parasite functions are attributed to these excretory–secretory (ES) products 

and these include penetration, establishment and survival in host tissues (Rosenzvit et al., 2006). 

Therefore, the characterization of ES products would aid in increasing the understanding of the 

mechanisms underpinning the strategies used by parasites for increasing the efficiency and persistence of 

infection in the host (Virginio et al., 2012). Proteomic analysis including mass spectrometry have helped 

the identification of ES products from in vitro cultures of parasitic helminths and has led to the 

identification of candidate host protective antigens and immunomodulators alike (Hewitson et al., 2008, 

Hewitson et al., 2011, Hewitson et al., 2013, Victor et al., 2012, Virginio et al., 2012) 

Anisakis pegreffii possesses a complex life cycle involving many species of organisms as hosts 

(intermediate and definitive hosts) (Bao et al., 2017). A major intermediate host of this nematode are sea-

foods, particularly fish, which are increasingly being consumed as healthy diets. As much as it has been 

established that live parasites of Anisakis are required to cause infection, it is known that molecules 

produced by this parasite are very potent being thermostable, pepsin-resistant and being able to survive in 

low pH (Caballero and Moneo, 2004). The significance of these thermostable and pepsin-resistant 

molecules is that in food previously contaminated by this parasite, but in which the parasite has been 

killed due to heat treatment, molecules released by the parasite could still cause gastroallergic reactions in 

hosts due to their heat and pepsin stability (Caballero and Moneo, 2004). This implies that with the 

importance of fish and fish products as major source of essential nutrient supply to humans, realistic 

alteration of food preparation, storage practices as well as the possibility of supplying and certifying fish 

foods free from Anisakis parasites or its secreted molecules to avoid allergic sensitization and recall might 

lack effectiveness. It is therefore imperative to understand the biology of this organism, the effector 
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molecules released at the point of host-parasite relationship, the functions of these molecules and how 

they may affect humans’ health. These would aid in the development of better diagnostic platforms and 

also identify molecules that may be beneficial for human health, particularly for treatment of autoimmune 

diseases.  

A number of studies have been carried out on the protein content of the sibling species of Anisakis 

pegreffii, known as Anisakis simplex (Arcos et al., 2014, Faeste et al., 2014, Bahlool et al., 2013). The 

proteomic analysis of the crude parasite extract of A. simplex was investigated by Faeste et al. (2014). In 

addition, a 2D gel proteomic analysis of the crude extract of A. simplex, A. pegreffii and their hybrid was 

also investigated by Arcos et al. (2014), even though only a few spots from the 2D gel were analysed.  

Furthermore, a few other studies have looked at individual proteins in the ES of A. simplex (Raybourne et 

al., 1986, Perteguer et al., 1996, Park et al., 2012) and of recent a protein from the ES of Contracaecum 

spp was also investigated (Mehrdana and Buchmann, 2017). To our knowledge there is no report as yet 

on extensive proteome analysis of A. pegreffii and its excretory/secretory molecules.  

Recently, the transcriptomes of A. pegreffii and A. simplex were investigated (Baird et al., 2016), the 

result of which has provided a first insight into the molecular biology of these parasites. This in addition 

to the whole genome sequence of A. simplex made available by Wellcome Trust Sanger Centre (2015), gives 

an excellent platform to investigate exclusively, by high thoroughput mass spectrometry (LC/MS/MS), 

the proteome of A. pegreffii, particularly proteins released by its excretory/secretory (ES) system. The 

knowledge of how the ES protein content of A. pegreffii differs from other helminths with regards to 

allergens and immunomodulation is crucial. This chapter is a follows up on the information provided in 

Chapter 1 on A. simplex immunogenic proteins. 
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The aims of this study therefore are: 

1) Investigate in A. pegreffii the presence of the immunogenic proteins described for A. simplex 

using high throughput mass spectrometry (LC/MS-MS). 

2) Profile the proteins associated with the excretory/secretory system of A. pegreffii and 

compare them to those obtained in the crude extract of the same species and the sibling 

species, A. simplex. 

3) Identify the mechanisms employed to release secreted molecules to sites of activity. 
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3.2 Specific Methods 

3.2.1 Experimental Design and Statistical Rationale 

Excretory/secretory (ES) product collection, crude extract preparation and SDS-PAGE analysis of protein 

were performed with at least two biological replicates and three technical replicates. The general methods 

of parasite materials collection; molecular identification of A. pegreffii, preparation of excretory/secretory 

products (ES) and parasite crude extracts (CE); 1D- LC-MS/MS analysis and protein identification are as 

described in the general methods in Chapter 2. 

3.2.2 Morphological Characterization by Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) was performed on L3 larvae of Anisakis spp. The L3 larvae were 

fixed in 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.0) 

(Electron Microscopy Sciences) for 1 hour at room temperature.  After fixation, samples were washed 

with same buffer 3 times and then dehydrated in a series of ethanol solutions (50%, 70%, 90%, 95% and 

2X 100%) and embedded in Agar 100 resin (Agar Scientific, Stansted, UK) to anchor the sample for 

surface coating. Larvae samples were processed in a critical point drier “Bomer-900” with Freon 13, and 

then sputter coated with a thin layer of gold in an Edwards S150 sputter coater. Samples were mounted on 

SEM stubs for scanning. SEM imaging was performed using a FEI Quanta 200 ESEM (ESEMTM) or the 

XL 30 scanning Electron Microscope (Philips) operating under high vacuum. All measurements were in 

micrometers.  

3.2.3 Secretome Prediction 

 Protein sequences were analysed for the presence of signal peptides and transmembrane regions using 

SignalP 4.0 (Petersen et al., 2011), TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/),  and 

information from the Uniprot database. Sequences with no signal peptides were analysed for non-classical 

secretion pathway, using SecretomeP2.0. The SecretomeP neural network (NN)-score threshold value for 
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non-classically secreted proteins was >0.6 (Bendtsen et al., 2004). Gene Ontology (GO) annotation of 

molecular function, subcellular localization and biological processes were performed using Blast2GO 

(Conesa et al., 2005)  and confirmed using Uniprot (Uniprot, 2015).  

3.2.4 Bioinformatic analysis 

 The sequences of identified proteins that were uncharacterized were used in a Blast search of the non- 

redundant National Centre for Biotechnology Information (NCBI) protein sequence database to identify 

homologous proteins. In addition, sequences of selected immunomodulatory proteins from other 

helminths were also used in a Blast search against A. pegreffii transcriptome database as well as the A. 

simplex genome database to identify homologous proteins in Anisakis spp. Homology was inferred and 

recognized by using statistical E-values below 1 X 10-4, bits scores of >50, and in addition a stricter 

threshold of sequence coverage length percentage (>50%) and sequence similarity of >40%. Domains 

present in the matched proteins and query proteins were searched using Prosite (http://prosite.expasy.org) 

to confirm homology. 
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3.3 Results 

3.3.1 Morphological Identification of Anisakis  

Tiger flathead fish (Figure 3.1), purchased from seafood retail shops were dissected. Eencysted larvae of 

Anisakis were macroscopically observed lining the gut of infected fish (Figure 3.2). 

 

Figure 3.1.  Tiger Flathead (Platycephalus richardsoni) 

 

 

Figure 3.2.  Encysted larvae (L3) in the intestinal tissue of Dissected Tiger Flathead 

Encysted larvae
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Morphological characterization was by optical microscopy and the scanning electron microscopy (SEM) 

visualization of certain features of the L3 larvae, which identified the larvae as Anisakis Type 1 larvae. 

Analysis of the anterior end of the larvae showed the mouth of the larvae rounded with dorsal and 

ventrolateral lips. The tooth was located ventral to the mouth. At the posterior end, the excretory pore 

opening was situated between the ventrolateral lips. The rectum opened at the anus and the anal tail is 

rounded, with a terminal mucron (Figures 3.3 and 3.4). The presence of a tail mucron was the principal 

character that differentiated Anisakis type I from Anisakis Type II.  

 

Figure 3.3.  Morphological Characterization by Optical Microscopic Examination 
 
A-Posterior end showing mucron (Leica Optical Microscope Mag X40) 
B-Posterior end showing mucron (S2-11 Stereo Microscope) 
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Figure 3.4:  Morphological Characterization by Electron Microscopic Examination. 
 
(A). Posterior end of Anisakis spp, showing mucron. (B) Mucron and anal pore of Anisakis spp. (C) 
Anterior part of Anisakis spp showing the mouth, excretory pore, lips and boring tooth. 

Mucron

A 

B  C 
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3.3.2 Molecular Characterization  

3.3.2.1 ITS-1 and ITS-2 amplification 

First and second internal transcribed spacers of nuclear ribosomal DNA (ITS-1 and ITS-2) from A. 

pegreffii were amplified using PCR from the genomic DNA of the identified type 1 Anisakis L3 

larval morphotypes to give a 441- and 308-bp product for ITS-1 and ITS-2 regions, respectively 

(Figure 3.5).  

 

 

Figure 3.5.  ITS-1 and ITS-2 of A. pegreffii Amplification by PCR 
 
Lanes 1=Molecular marker (100bp ladder from NEB); Lane 2=negative control; Lanes 3-
15=Amplified products of DNA samples of Anisakid larvae fom Tiger Flathead fish. 

 

3.3.2.2 PCR-RFLP analysis  

Anisakis pegreffii was identified to species level by PCR-RFLP and DNA sequencing of amplified 

product. Larvae identification of the ITS 5.8 rRNA region of A. pegreffii produced a fragment of 

approximately 1000bp (Figure 3.6). Three clear bands of 330, 280 and 240bp were observed in RFLP 

1       2       3       4      5     6    7      8      9     10     11    12   13    14     15

441bp-ITS-1

308bp ITS-2

500bp

500bp
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patterns digested with HinfI for A. pegreffii (Figure 3.7), whilst digestion with HhaI produced two 

fragments of 550 and 430bp (Figure 3.7). Anisakis typica was used as negative control with 2 bands 

observed for digestion with HinfI (350 and 620bp) and 4 bands for digestion with HhaI (320, 240, 

180 and 160bp) (Figure 3.7). The A. typica larva was recovered along with A. pegreffii larvae in 

infected fishes dissected in this study. For A. simplex sensu stricto, three bands would be observed for 

digestion with HinfI (620, 250 and 80bp) and the same 2 fragments as for A. pegreffii HhaI digestion 

if present. No A. simplex larva was identified during the period of this study. 
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Figure 3.6. Amplification of the rRNA ITS-1 region of Anisakis L3 larvae 
 
M=Molecular marker (100bp Ladder from NEB); Lane 1= negative control; Lanes 2-6=A. 
pegreffii L3 larvae amplified product of DNA samples; Lane 7=A negative control of a different 
Anisakid species larvae.  
 

 

Figure 3.7.  Molecular characterization of AP by PCR-RFLP of rRNA ITS region 
M=Molecular marker (100bp Ladder from NEB); Lane 1- 6 =A. pegreffii L3 larvae ITS-1 region 
amplified product, digested with Hinf1; Lane 7=A negative control of a different Anisakid species 
larva digested with Hinf1.  
 
Lanes 1-5 = A. pegreffii L3 larvae ITS-1 region amplified product, digested with Hha1; Lane 6 = 
A negative control of a different Anisakid species larva digested with Hha1. 
 
Three clear bands of 330, 280 and 240bp were observed in RFLP patterns digested with HinfI for 
A. pegreffii whilst digestion with HhaI produced two fragments of 550 and 430bp. Anisakis typica 
was used as negative control with 2 bands observed for digestion with HinfI (350 and 620bp) and 
4 bands for digestion with HhaI (320, 240, 180 and 160bp) 

M   1     2     3      4     5     6    7
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3.3.3 Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis (SDS–PAGE) analysis 

Crude extracts (CE) and excretory/secretory (ES) products of proteins from A. pegreffii were 

separated by SDS-PAGE. The protein profiles of the CE and ES products of L3 larvae of A. pegreffii 

are shown in Figure 3.8. The analysis revealed a complex and distinct banding pattern for both CE 

and ES. Most of the proteins were distributed between 10 –250 kDa. The ES showed a profile with 

major bands between >37 and 150 kDa. The ES of A. pegreffii, however, appeared to have more 

proteins at the lower molecular weight sizes, particularly below 15kDa as shown by SDS-PAGE and 

in the subsequent proteomic analysis obtained thereafter. The crude extract however, showed more 

proteins profiled than for ES. 

 

Figure 3.8.  12% SDS-PAGE protein profiles of somatic and excretory/secretory 
proteins of Anisakis pegreffii. 
 
Lane M=Molecular Marker (unstained, Biorad); Lane 1=A. pegreffii somatic extract; Lane 2=A. 
pegreffii excretory/secretory product. 
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3.3.4 Database searching and protein identification 

The crude extract and ES product SDS-PAGE gel lanes were each cut into 24 gel pieces for tryptic 

peptide analysis by LC/MS/MS. OMSSA and X! Tandem search engines results, based on spectra 

assigned to tryptic peptide sequences at the 95% confidence level and a probability of greater than 

99.0% with at least 2 identified unique peptides were then linked to protein identification. The 

resulting peptide masses, patterns and sequences were compared to the protein database entries for 

the transcriptome of Anisakis pegreffii using both Scaffold software and Peptide shaker with 

SearchGui.  

The numbers of unique matching peptides detected varied from 2 to 76. Proteins identified with only 

1 unique peptide were excluded from this analysis. A total of 726 proteins (from both crude and ES 

products) were identified for A. pegreffii from A. pegreffii transcriptome database. Different isoforms 

of some specific proteins were found distributed in both the CE and ES.  Two hundred and thirty-five 

proteins identified by molecular masses were unique to A. pegreffii crude extract (Figure 3.9) while 

148 proteins were unique to the excretory/secretory product. A large number of proteins (a total of 

343 proteins) were shared between the ES and CE (Figure 3.9). Eighty one (11%) of total proteins 

identified was hypothetical proteins. None of the selected allergy-reducing protein molecules from 

other helminths used in a Blast search against A. pegreffii proteome, transcriptome database as well 

as the A. simplex genome resulted in any homolog in Anisakis. 
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Figure 3.9.  Venn diagram showing the distribution of  Anisakis pegreffii Proteome 
proteins. 
 (N=726 proteins).  

 

3.3.5 Secretory pathway prediction of A. pegreffii proteins.  

The secretory pathway prediction for all proteins (726 proteins) identified in this study, predicted 5% 

with signal peptides and 25% as being secreted through the non-classical secretory pathway; resulting 

in a total of 30% proteins predicted as secretory proteins. However, experimentally, 46% of the total 

proteins identified were identified as secretory products.  

3.3.6 Crude extract of A. pegreffii 

Two hundred and thirty-five proteins were identified exclusively in the CE of A. pegreffii. Eighteen 

of these were hypothetical proteins with molecular weights below 45kDa, except for four of these 

proteins with sizes between 64-102kDa. In the crude extract, the major molecular function categories 

were binding (GO: 0005198), oxidoreductase (GO: 0016491) and structural molecule (0005198) 

Anisakis pegreffii proteome analysis

Total ES 
proteins=491

Proteins unique to 
excretory/secretory  
(ES) product
N=148

Proteins 
shared
N=343

Proteins unique to 
crude extract (CE)
N=235

Total CE 
proteins
N=578



Chapter 3 

 

79 

 

activities (Figure 3.10). Highly abundant proteins identified in A. pegreffii CE included proteins 

involved in metabolic processes, proteins associated with oxidoreductase activities, transcription or 

translation processes (RNA binding/ribonucleoproteins), structural molecule activity proteins, motor 

proteins and cellular processes proteins. Most of the proteins found in crude extract were derived 

from cell parts, macromolecular complex, organelles, organelle parts, membrane and membrane parts 

(Figure 3.11). Table 3.1 shows the top 30 abundant proteins unique to the crude product of A. 

pegreffii. 
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Figure 3.10.  Molecular Function Terms (Level 2) for Proteins in A. pegreffii Crude 
Extract. 
 

 

Figure 3.11.  GO annotation of the cellular component of A. pegreffii proteins in 
Crude Extract. 
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Table 3.1: Top Thirty Abundant Proteins Identified In A. Pegreffii L3 larvae Crude 
Extract. 
 

# Presence 
of signal 
peptide 

SecretomeP 
Prediction 

Uniprot 
Accession 

Protein Name 
(BlastP) 

Organism GO 
Annotation 

1 N Y F1L2J6 calponin-like 
protein ov9m 

A. suum GO:0003779 

2 N N A0A0B2VVW7 Myosin-4  (Unc-
54) 

T. canis GO:0003779 
GO:0003774 
GO:0005524 

 
3 N N F1L3R9 paramyosin A. suum GO:0003774 
4 N N F1KRV7 pyruvate 

carboxylase 1 
A. suum GO:0004736 

GO:0006090 
5 N N F1KT77 nuclease domain-

containing protein 
1 

A. suum GO:0031047 

6 N Y A0A0B2VZN8 Succinate 
dehydrogenase 
[ubiquinone] 
flavoprotein 

subunit, 
mitochondrial 

T. canis GO:0016491 
GO:0055114 

7 N N F1KU54 dimethylglycine A. suum GO:0016491 
GO:0055114 

8 N N F1L8F3 putative glutamine 
synthetase 

A. suum GO:0004356 
GO:0006542 

9 N N F1LBZ4 60s ribosomal 
protein L6 

A. suum GO:0003735 
GO:0006412 

10 N N F1KTS9 Glycine cleavage 
system P-protein 

domain containing 
protein 

A. suum GO:0016491 
GO:0055114 

11 N N A0A0M3KB56 227 kDa spindle-
and centromere-

associated protein 
[Ascaris suum] 
uncharacterized 

protein in Anisakis 
simplex 

Anisakis 
simplex 

- 

12 N N F1KUZ9 vinculin A. suum GO:0005198 
GO:0051015 
GO:0007155 

13 N Y U1MSW0 bm-dap-1 protein 
(death associated 

protein) 

A. suum - 

14 N Y F1L9N2 putative enoyl A. suum GO:0003824 
GO:0008152 

15 N N U1M5C9 heat shock 70kDa 
protein 4 

A. suum GO:0000166 
GO:0005524 

16 N N U1MRY4 putative trans-2- A. suum GO:0016491 
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enoyl- reductase GO:0055114 
17 N N A0A0M3K9A3 small heat shock 

(protein lethal 2 
essential for life) 

A. suum  

18 N N F1LHE1 40S ribosomal 
protein S14 

A. suum GO:0003735 
GO:0006412 

19 N N A0A0B2W7B0 hypothetical protein 
(Spectrin beta 

chain) 

T.  canis GO:0003779 
GO:0005200 
GO:0007010 
GO:0051693 

20 N N Q9XYS5 dihydrolipoyl 
dehydrogenase-
binding protein 

A. suum GO:0016746 
GO:0008152 

21 N N A0A0B2V0E7 Malonate-CoA 
ligase 

T.  canis GO:0016874 
GO:0008152 

22 N N F1LHC0 60S ribosomal 
protein L30 

A. suum GO:0003735 
GO:0006412 

23 N N F1KYL5 putative glycogen 
synthase 

A. suum GO:0016740 
GO:0005978 

24 N N F1LAJ2 40s ribosomal 
protein SA 

A. suum GO:0003735 
GO:0006412 

25 N N U1MIY7 succinate-
semialdehyde 

A. suum GO:0016491 
GO:0055114 

26 N N F1KS22 Trifunctional 
enzyme subunit 

alpha 

A. suum GO:0016491 
GO:0055114 
GO:0008152 

27 N N F1KPK1 bmkettin (Titin-
Immunoglobin-like 

domain) 

A. suum - 

28 N N F1KSG5 ubiquitin-activating 
enzyme E1, variant 

A. suum GO:0005524 
GO:0016874 
GO:0006464 

29 N N A0A0M3IZK3 beta-tubulin isotype 
1 

A.  simplex GO:0005200 
GO:0005525 
GO:0007010 
GO:0007010 

30 N N A0A0B2VZB3 40S ribosomal 
protein S17 

T. canis GO:0003735 
GO:0006412 

 
Note: Selection based on quantitative value of normalized total spectra identified in the crude 
extract of A. pegreffii L3 larvae.
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3.3.7 Excretory/Secretory Proteins of Anisakis pegreffii 

Of the 148 proteins exclusively found in the ES, twenty-five (17%) were hypothetical proteins for 

which there were no homologous proteins found. The molecular weights of these ES hypothetical 

proteins ranged from 9kDa to 44kDa. The three major molecular function categories in the ES were 

binding (GO: 0005198), peptidase (GO: 0008233) and transferase (GO: 0016740) activities (Figure 

3.12). Motor activity was not found in the ES, but was common in the CE. Most of the molecules 

identified in the ES of A. pegreffii were predominantly localized in the intracellular parts, 

macromolecular complex, membrane, organelles and extracellular region parts (Figure 3.13). 

Difference in the biological processes of proteins found in both ES and CE is highlighted in Figure 

3.14. Table 3.2 shows the top 30 abundant proteins unique to the excretory/secretory product of A. 

pegreffii. 

 

Figure 3.12.  Distribution of Gene Ontology Molecular Function Terms (Level 2) for 
Proteins Uniquely Identified in A. pegreffii Excretory/Secretory Products. 
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Figure 3.13.  GO annotation of the cellular component of A. pegreffii proteins 
unique to Excretory/Secretory Product. 

 

 

Figure 3.14.  Biological processes of proteins in the crude and excretory/secretory 
proteins of A. pegreffii. 
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Table 3.2: Top Thirty Abundant Proteins Identified in A. pegreffii 
Excretory/Secretory Products.  

# Signal 
peptide 

SecretomeP 
Prediction 

Uniprot Protein Name 
(BlastP) 

Organism GO 
annotation 

1 N Y F1LBC9 putative cuticular 
collagen 12 protein 

A. suum GO:0042302 

2 N N A0A0B2UVC6 Cuticle collagen dpy-
5 

T. canis GO:0042302 

3 N N F1L7L2 Annexin A. suum GO:0005509 

4 N N F1L8K5 S-methyl-5’-
thioadenosine 
phosphorylase 

A. suum GO:0016740 
Go:0009116 

5 N N A0A0B2VMG6 Maltate-
glucoamylase 

intestinal 

T. canis GO:0003824 
GO:0005975 

6 Y N A0A183V4J4 Uncharacterized 
protein 

T. canis - 

7 N N F1KQL5 Aminopeptidase N A. suum GO:0004177 
GO:0006508 

8 Y N U1MUG1 Cbn-ccg-1 protein A. suum - 

9 Y N A0A0M3J0R4 Uncharacterized 
protein 

A .simplex GO:0016021 

10 N N A0A0M3KJU5 Uncharacterized 
protein 

A .simplex - 

11 N N A0A0B2VMZ9 Collagen alpha-5(VI) 
chain 

T. canis GO:0042302 

12 Y N U1NL31 Uncharacterized 
protein 

A. suum GO:000847 
GO:0043085 

13 N N F1L375 3-hydroxyacyl-CoA 
dehydrogenase 

A. suum GO:0016491 
GO:0006831 

14 N N U1MDI1 Purine nucleoside 
phosphorylase 

A. suum GO:0004731 
GO:0009116 

15 N N U1NJ88 Proteasome subunit 
alpha type 

A suum GO:0004175 
GO:0006508 

16 N N F1L093 Carbonic anhydrase A suum GO:0006730 

17 N N U1NGD9 3-oxoacyl-reductase A suum GO:0016491 

18 Y N U1NCC6 Neprilysin-1 A. suum GO:0004222 

19 N Y U1LX65 Galectin A. suum GO:0030246 

20 N N A0A0M3KJW8 Uncharacterized 
protein 

A .simplex GO:0004867 
GO:0010951 

21 Y N F4MST7 ANISERP protein A .simplex GO:0005615 

22 N Y A0A183UR79 Uncharacterized 
protein 

T. canis GO:0036374 
GO:006508 
GO:006751 

23 N N A0A0B2VPT0 Snaclec 
bothrojaracin subunit 

alpha 

T. canis - 

24 N N A0A0B2V7Q3 Putative serine T. canis GO:0008233 
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protease GO:0006508 

25 Y N A0A0B2VW18 Hemicentin-1 
thrombospondin 

type-1 [TSP1] repeat 

T. canis - 

26 N N A0A0B2UX03 Uncharacterized 
protein 

T. canis - 

27 N N A0A0B2URF5 Glucosamine-6-
phosphate isomerase 

T. canis GO:0016853 
GO:0005975 

28 N N F1KYX7 UTP-glucose-1-
phosphate 

urisdylyltransferase 

A. suum GO:0016740 
GO:0008152 

29 N Y F1LGJ2 Endochitinase A. suum GO:0005975 

30   F1L6Z5 Sepiapterin A. suum - 

Note: Selection based on quantitative value of normalized total spectra identified in the crude 
extract of A. pegreffii L3 larvae.



Chapter 3 

 

87 

 

3.3.8 Proteins common to both crude and excretory/secretory products 

A total of 335 proteins were shared between the CE and ES. The two major molecular function categories 

in the proteins shared by CE and ES were binding (GO: 0005198) and transferase (GO: 0016740) 

activities (Figure 3.15) while major biological processes identified among these groups of proteins are 

embryo development and metabolic processes (Figure 3.16). The cellular components of these commonly 

shared proteins between CE and ES are shown in Figure 3.17. The Gene ontology (GO) term assigned to 

this protein is GO: 0006869 as it is associated with lipid transport. 

 

Figure 3.15.  Molecular functions of proteins common to Crude extract and 
Excretory/Secretory products of A. pegreffii. 
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Figure 3.16.  Biological Processes of proteins common to crude extract and 
excretory/secretory products. 
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Figure 3.17.  GO annotation of the cellular component of A. pegreffii proteins common 
to both crude and excretory/secretory products. 

 

3.3.9 Allergens identified 

Of the previously described fourteen IUIS allergens of A. simplex, 9 were identified in this study by 

proteomic analysis in A. pegreffii (Table 3.3). Among the 6 non-IUIS allergens accepted for Anisakis, 3 

were identified in this study from the proteome of A. pegreffii (Table 3.3). Of the putative allergens, 

described in the transcriptome of A. pegreffii, Hsp70, cyclophilin, enolase and glutathione–s-transferase 

were identified in the A. pegreffii proteome (Table 3.4).  
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Table 3.3: Allergens of A. simplex Identified in A. pegreffii L3 larvae Proteome. 
 

IUIS Names Protein name Molecular 
Weight 
(kDa) 

Identified in  A. 
pegreffii 

proteome (This 
study) 

CE         ES 

References 

 
Ani s 1 Ani s 1 21 Yes  Yes  (Moneo et al., 2000) 
Ani s 2 Paramyosin 100 Yes  No  (Perez-Perez et al., 

2000) 
Ani s 3 Tropomyosin 33 Yes  No  (Asturias et al., 2000a) 
Ani s 4 Cystatin 9 Yes  Yes  (Rodriguez-Mahillo et 

al., 2007, Moneo et al., 
2005) 

Ani s 5 SXP/RAL-2 15 Yes  Yes  (Kobayashi et al., 2007) 
Ani s 6 Serine protease 

inhibitor 
7 No  No  (Kobayashi et al., 2007) 

Ani s 7 (major 
allergen) 

Ua3 recognized 
allergen 

139 No  Yes  (Rodriguez et al., 2008) 

Ani s 8 SXP/RAL-2 16 Yes  Yes  (Kobayashi et al., 2007) 
Ani s 9 SXP/RAL-2 15 Yes  Yes  (Rodriguez-Perez et al., 

2008) 
Ani s 10 Not given 23 No  No  (Caballero et al., 2011) 
Ani s 11 Not given 30 No  No  (Kobayashi et al., 2011) 
Ani s 12 Not given 33 No  No  (Kobayashi et al., 2011) 
Ani s 13 Haemoglobin 37 Yes  Yes  (Gonzalez-Fernandez et 

al., 2015) 
Anis 14 New Major 

allergen 
23.5 No  No  (Kobayashi et al., 2015) 

Ani s 24kDa 24kDa protein 24 Yes  Yes  (Park et al., 2012) 
Ani s FBPP Fructose-1, 6-

bisphosphatase 
40 Yes  Yes  (Lopez and Pardo, 2011, 

Baur and Posch, 1998) 
Ani s CCOS3 Cytochrome c 

oxidase subunit 3 
29 No  No  (Kim et al., 2006) 

Ani s Cytochrome 
B 

cytochrome b 42 No  No  (Mari et al., 2009, Faeste 
et al., 2014) 

Ani s NADHDS4L NADH 
dehydrogenase 

subunit 4L 

9 No  No  (Mari et al., 2009, Faeste 
et al., 2014) 

Ani s Troponin Troponin-like 
protein 

19 Yes  No  (Mari et al., 2009, Faeste 
et al., 2014) 
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Table 3.4: Transcriptome-described Allergens of A. pegreffii Identified in The Proteome. 
 
Unigene ID IUIS 

Nomenclature 
Closest Match 

in Allergen 
Online 

database 

Closest Match 
in Nr 

Size 
(bp) 

CE ES References 

CL872.Contig1
_AP1A 

 

Unassigned Heat shock  
70 kDa protein 

Heat shock 
protein 70 (A. 

pegreffii) 

644 Yes Yes (Baird et 
al., 2016, 
Faeste et 
al., 2014) 

CL1265.Contig
1_AP1A 

Unassigned cyclophilin Peptidyl-prolyl 
cis-trans 

isomerase 3 (A. 
suum) 

171 Yes Yes (Baird et 
al., 2016) 

Unigene10435_
AP1A 

Unassigned cyclophilin Peptidyl-prolyl 
cis-trans 

isomerase 3 
[T. canis] 

172 Yes Yes (Baird et 
al., 2016) 

Unigene2939_
AP1A 

Sal s 2.0101 Enolase 3-2 Enolase 
[Anisakis 
simplex] 

431 Yes Yes (Baird et 
al., 2016, 
Faeste et 
al., 2014) 

Unigene6873_
AP1A 

Asc s 13.0101 Glutathione S-
transferase 

1 

Sigma class 
glutathione S-

transferase 
[Baylisascaris 

schroederi] 

203 Yes Yes (Baird et 
al., 2016, 
Faeste et 
al., 2014, 
Arcos et 
al., 2014) 

Unigene8467_
ASIA 

Thu a 3.0101 Fructose 
bisphosphate 

aldolase 1 

Ascaris suum 351 Yes Yes (Baird et 
al., 2016, 
Faeste et 
al., 2014) 

Unigene2527_
ASIA 

Thu a 3.0101 Fructose 
bisphosphate 

aldolase 2 

Ascaris suum 347 Yes Yes (Baird et 
al., 2016) 

CL1712.Contig
2_ASIA 

unassigned Polyprotein 
allergen/antige

n, partial-
ABA-1 

allergen, 
partial 

Ascaris suum 160 Yes Yes (Baird et 
al., 2016) 
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3.4 Discussion 

The result of this study is consistent with the previous proteomic work on crude extract of the sibling 

species A. simplex performed by Arcos and colleagues (Arcos et al., 2014) as well as by Faeste et al. 

(Faeste et al., 2014). Arcos et al. (Arcos et al., 2014) performed a proteomic analysis on the crude extract 

of both A. simplex and A. pegreffii. Over 95% of proteins identified in these 2 studies were also found by 

proteomic analysis of A. pegreffii CE and ES products in this study. Such proteins include fructose 

aldolase bisphosphate (FABP), enolase, actin, filamin, haemoglobin, triosephosphate isomerase, 

glyceraldehyde3-phosphate dehydrogenase and 14-3-3 proteins. These proteins have been previously 

identified in the CE of A. simplex and A. pegreffii  (Arcos et al., 2014, Faeste et al., 2014) as well as from 

the ES of other helminths (Sotillo et al., 2010, Liu et al., 2009, El Ridi and Tallima, 2009). This finding 

affirms the notion that parasites employ a conserved set of proteins for parasite–host interaction 

mechanisms and host immune response evasion (Liu et al., 2009).  

3.4.1 Proteins common to both crude and excretory/secretory products 

Some proteins were shared between ES and CE. Several identified in this work, particularly those shared 

between CE and ES products, had a higher abundance in ES than in CE. Some of these proteins are 

glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase (GADPH) and enolase. GADPH 

has been identified in ES product from adult Echinostoma friedi  (Bernal et al., 2006) and enolase from 

ES product of Fasciola hepatica (Bernal et al., 2004), both trematodes, while also being identified on the 

surface of filarial parasites such as Onchocerca volvulus (Jolodar et al., 2003). Enolase and GAPDH have 

been reported to facilitate invasion and migration in host tissue. Therefore, the presence of shared proteins 

between CE and ES may not be due to contamination (Jolodar et al., 2003). Since a number of ES 

proteins from A. pegreffii were found in both CE and ES, one can suggest based on this that this group 

most likely include proteins critical for survival, to manage stress of change of environment and to deflect 
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possible immune response. In addition, the presence of such proteins in both CE and ES products 

suggests that secretion of these proteins might follow non-conventional secretory pathway (Sotillo et al., 

2010). Many of the proteins gave significant matches to the same band indicating that each band 

comprises more than one protein. 

3.4.2 Excretory/Secretory proteins of A. pegreffii 

A number of proteins, identified as part of A. pegreffii excretory/secretory molecules in this study were 

not predicted to be secreted molecules. These proteins must have reached the exterior or be released by 

novel or alternative mechanisms indicating that the mechanism, by which these molecules are released, 

needs further investigation. According to Hewitson et al. (Hewitson et al., 2009), bioinformatic 

approaches to predict secreted proteins on the basis of signal peptide sequences may have some merit 

(Harcus et al., 2004, Nagaraj et al., 2008), however, it has been noted that in metazoans not all secretory 

proteins will be exported from the organism. It is also reported that a large proportion of proteomic data 

show a significant number of ES proteins are not encoded with a signal peptide (Cass et al., 2007, 

Hewitson et al., 2008, Moreno and Geary, 2008). This emphasizes the importance of empiric proteomic 

studies.  

The secretome of A. pegreffii was found to be high in abundance for particular sets of proteins, which 

include (i) Enzyme regulator proteins implicated in immunomodulatory roles (Hewitson et al., 2009). 

These include serpins, cystatins and Alpha-2-macroglobulins. The macroglobulins are known to inhibit 

proteases from all catalytic classes including serine-, cysteine-, aspartic- and metalloproteinases and in 

addition function as an inhibitor of thrombin, coagulation and fibrinolysis. (Sottrup-Jensen, 1989, de Boer 

et al., 1993). 

(ii) Peptidases, such as neprilysin known to regulate and inactivate signalling peptides involved in the 

immune system (Bland et al., 2008); aminopeptidases such as leucine aminopeptidases and puromycin-
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sensitive aminopeptidases belonging to the M17 and M1 classes of aminopeptidases and cysteine 

peptidases, all of which have been implicated in functions critical to the development, establishment and 

survival of parasites within the mammalian host (Robinson et al., 2008).  Damage associated molecular 

pattern (DAMP) homologous proteins such as annexins, and pathogen-associated molecular pattern 

(PAMP) molecules such as thioredoxin peroxidase, able to modulate immune cells were also identified. 

Normally, classical PAMPs such as bacterial lipopolysaccharide activate innate immune cells (including 

dendritic cells and macrophages) that promote pathogen clearance by pro-inflammatory Th1-mediated 

responses. In contrast, helminths PAMPs stimulate innate cells that drive a Th2-biased environment 

(Perrigoue et al., 2008). Other helminth proteins with immunomodulatory properties identified include 

nematode galectins and macrophage migration inhibitory factors (MIFs). Hewitson et al. suggested that in 

a Th2 environment, MIF may be functioning to prevent the classical, pro-inflammatory, activation of 

macrophages in mammalian hosts (Hewitson et al., 2009).   

The proteins found in the ES of AP indicate specific functional adaptation for immune modulation, tissue 

invasion, feeding and digestion with nematode development. The result of this study agrees with the 

statement by Dissous et al. (Dissous et al., 2006) which states that parasitic helminths remain major 

pathogens of both humans and animals throughout the world and the success of their infection is 

dependent on their capacity to counteract host immune responses and to exploit host-derived signal 

molecules for their development. 

3.4.3 Allergens identified in A. pegreffii 

The results of this work show that some of the previously described allergens of Anisakis simplex were 

not identified in this study. These include Ani s 6, Ani s 11, Ani s 11-like, Ani s 12 and Ani s 14. 

However, they have been identified in the transcriptome of A. pegreffii (Baird et al., 2016).  Their absence 

in the proteomic data generated from this study might be as a result of low expression of these proteins in 

the proteome at the time of collection of A. pegreffii extracts which is an indicator of the regulation of 



Chapter 3 

 

95 

 

particular processes, only some of which were defined at the time of extract collection (Bennuru et al., 

2011). In addition, this may also be due to instability of some proteins under the conditions used for 

extraction. Most of the allergenenic proteins were found in both crude and excretory/secretory products 

except for the structural molecule allergens (paramyosin and tropomyosin) which were present in only the 

crude extract. The result of this work has increased our knowledge of the repertoire of A. pegreffii ES 

antigenic/allergenic proteins and the identification of ES proteins may help in the discovery of new 

candidates for immunodiagnosis.  

3.4.4 Absence of potential allergy-reducing molecules in the A. pegreffii proteome 

The results from this study also showed that among the protein repertoire of A. pegreffii identified, certain 

molecules critical for allergy-reduction were absent. Homology Blast search of the transcriptome and 

genome of A. simplex using the sequences of these molecules found in other helminths, confirmed the 

absence of these proteins in Anisakis.  

The best-characterized helminth-derived product shown to reduce allergic responses is suggested to be 

ES-62, a secreted 62 kDa glycoprotein from a filarial nematode (Acanthocheilonema viteae) (Melendez et 

al., 2007, McInnes et al., 2003, Erb, 2009). This molecule is reported to contain phosphorylcholine 

moieties, which are largely responsible for immunomodulation. Other suggested known helminth-derived 

products that may have the potential to reduce allergic responses as reported by Daniłowicz-Luebert 

(Danilowicz-Luebert et al., 2011) include smCKBP (S. mansoni egg-secreted chemokine-binding 

protein), sm22.6 (soluble protein associated with the S. mansoni tegument) PIII (a multivalent antigen of 

S. mansoni adult worms) and sm29 (a membrane bound glycoprotein on the S. mansoni adult worm 

tegument), schistosomal lysophosphatidylserine (lyso-PS) and PAS-1 (protein of Ascaris suum 1) of 

Ascaris spp. Homologs of these molecules were not found among the proteins identified in the proteome 

of A. pegreffii in this study. A further confirmatory search of the whole transcriptome data of A. simplex 
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and A. pegreffii as well as in the genomic data of A. simplex by a homology Blast using the sequences of 

the above named proteins resulted in homologs of these proteins not being identified in Anisakis.  

Human anisakidosis has been known to be peculiar because the implicated parasite in this infection is not 

adapted to live in humans and infection is transitory. Hence, differences have been expected between A. 

simplex pathogenesis and those caused by other helminths in humans. Overt hypersensitivity reactions as 

is seen in Anisakis infection are rare in other helminths unless provoked by natural or drug-induced death 

of parasites residing in tissues (Audicana and Kennedy, 2008). The result of this work, which shows the 

absence of major allergy-reducing molecules in Anisakis, has shed more light on the biology of this 

parasite and its secretion of molecules that result in overt hypersensitivity. The absence of major 

molecules associated with allergy-reduction in Anisakis, may be one of the contributing factors as to why 

Anisakis nematodes are able to induce a Th2-biased immune response like all other helminths and yet be 

able to also elicit allergic responses. Further studies need to be done to affirm that the absence of these 

molecules contribute significantly to the allergy-inducing properties of Anisakis spp. 

In conclusion, one-dimensional liquid chromatography followed by mass spectrometry (1D/LC/MS/MS) 

analyses of AP crude and excretory/secretory products have identified proteins of key metabolic 

pathways, immunomodulation and allergenicity. This study provides the first in-depth characterization of 

the ES products from the third larval stage of Anisakis pegreffii, comparing the excretory/secretory 

molecule content with the crude extract. This is a crucial step in enhancing our knowledge and 

understanding of the biology of this parasite and its interactions with its mammalian host. The study 

provides a basis for further molecular investigations aimed at exploring the biological role of the proteins 

identified and their potential utilisation as diagnostic and/or therapeutic targets. 
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4.1 Introduction 

Different cellular pathways, which include conventional and unconventional secretory routes, are 

employed in exporting eukaryotic molecules (Nickel and Rabouille, 2009, Schekman, 2010). Proteins 

secreted conventionally go through the classical endoplasmic reticulum (ER) Golgi dependent secretory 

pathway (Schekman, 2010). This pathway is dependent on a N-terminal signal peptide and is responsible 

for polypeptide translocation into the lumen of the ER (Schekman, 2010). Alternatively, proteins lacking 

these signal peptides are transported independently of the classical ER Golgi route by the unconventional 

secretion pathway (Nickel and Rabouille, 2009). Microvessicles and exosomes are the major types of 

nano-sized lipid bilayer membrane-bound vesicles described, known to carry several atypical secreted 

proteins (Tkach and Théry, 2016). Their size and cargo content determine their names (Marcilla et al., 

2012). They are described to be secreted into the extracellular space after fusion of the multivesicular 

bodies with the cell plasma membrane, often in a regulated manner (Pasquale, 2016). The extracellular 

vesicles with a size range of 30 to 100nm in diameter are defined as exosomes (Urbanelli et al., 2013) 

while vesicles with sizes ranging from 100-1000nm in diameter are called microvesicles (Muralidharan-

Chari et al., 2010).  

4.1.1 Biogenesis of Exosomes 

According to van Niel and colleagues, inward budding of endosomal membranes is known to result in 

progressive accumulation of intraluminal vesicles (ILVs) within large multivesicular bodies (MVBs). The 

components of the cytosolic environment are engulfed within the ILVs while the transmembrane proteins 

are incorporated into the invaginating membrane (van Niel et al., 2006). Depending on their biochemical 
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properties, intracellular MVBs could either traffic to lysosomes, where they undergo proteosomal 

degradation (i.e., ‘degradative MVBs’) or, alternatively, to the plasma membrane (PM), where they fuse 

with the PM and release their contents (ILVs) into the extracellular space (exocytic MVBs); ILVs 

released into the extracellular space are referred to as ‘exosomes’ (Simpson et al., 2009). Three known 

mechanisms by which membrane vesicles are released into the extracellular microenvironment are 

described as (i) exocytic fusion of MVBs resulting in exosomes, (ii) budding of vesicles directly from the 

PM resulting in shedding microvessicles (SMVs)  and (iii) cell death leading to apoptotic blebs (Abs), 

(which are vesicles released by dying /apoptotic cells) (Mathivanan et al., 2010a). 
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Figure 4.1.  A schematic diagram of protein and RNA transfer by extracellular vesicles 
 
[Adapted from (Mullin, 2016)]. Rectangles=transmembrane proteins; Triangles=membrane associated 
proteins; Exosomes are released into the extracellular region after fusion of multivesicular endosomes 
(MVEs) with the plasma membrane. Exosomes are released into the extracllular milieu when MVEs 
fuse with the plasma membrane. (1) Microvesicles (MVs) and exosomes may anchor at the plasma 
membrane of a target cell. (2) Vesicles bound to the plasma membrane either fuse with the plasma 
membrane or are (3) engulfed. (4) Engulfed vesicles may then fuse with the delimiting membrane of 
an endocytic compartment. 
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4.1.2 History and Origin of Exosomes 

The first report of exosomes was in 1983 when they were first identified in reticulocytes and as a 

mechanism to release transferrin receptors during maturation (Pan and Johnstone, 1983, Harding et al., 

1983). They later became of interest to immunologists when it was discovered that they contain major 

histocompatibility complexs (MHCs) and that they can present antigens (Raposo et al., 1996).  With the 

report of transferable functional mRNAs and miRNAs between mast cells via exosomes (Valadi et al., 

2007), this had been an additional driving force in the study of EVs as a mechanism of cell–cell 

communication. 

4.1.3 Functions of Exosomes 

Exosomes have been shown to have various functions in immune cell activation and suppression 

(Montecalvo et al., 2012, Deng et al., 2013)  as well as play roles in tissue homeostasis (Aswad et al., 

2014). Other roles have also been demonstrated for EVs in diseases including cancer, since tumors also 

secrete these vesicles (Saleem and Abdel-Mageed, 2015). Exosomes are now being tried in clinical 

initiatives to determine their potential for drug delivery, their usefulness as diagnostic biomarkers, and 

their potential as therapeutics. Their roles in parasite infection are also being detailed in recent 

investigation outputs (Coakley et al., 2015). 

These vesicles transport a variety of bioactive molecules, which includes specific proteins, lipids and 

nucleic acids that subsequently become enriched in these vesicles while being assembled (Tkach and 

Théry, 2016). Exosomes in recent and current investigations are shown to effect distinctive and 

substantial intercellular forms of communication on recipient cells.  
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The transfer of their exosomal cargo drastically influences the properties of recipient cells (Tkach and 

Théry, 2016). In other words, exosomes have been described to mediate the spread of immune regulatory 

biomolecules as well as other pathogenic molecules. Hence, their association with dampening 

immunological responses, neural communication and tissue repair (Pasquale, 2016).  

4.1.4 Mechanisms of Exosomes Cell-to-Cell Communication 

Possible mechanisms by which exosomes communicate with their target cells include  (i) juxtacrine 

(close contact) fashion, which activates the target cell or (ii) by protease cleavage of exosomal membrane 

to release the content, which acts as ligands for cell surface receptor in target cells or  fusion of exosomes 

with the target cell resulting in the non selective transfer of  of exosomal contents to the target cell 

(Mathivanan et al., 2010a). 

4.1.5 Exosomes in Parasites 

EVs have been described in a number of parasites including Schistosoma japonicum (Wang et al., 2015); 

Schistosoma mansoni (Sotillo et al., 2016), Echinostoma caproni, Fasciola hepatica (Marcilla et al., 

2012), Dicrocoelium dendriticum (Marcilla et al., 2014) and Opisthorchis viverrine (Chaiyadet et al., 

2015).  

4.1.6 Cell-to-Cell Communication by means of Parasite Exosomes 

Most parasites at different stages in their life cycle rely on the ability to communicate with one another, 

between themselves as well as with their hosts, but the mechanisms underpinning this communication are 

under investigation. Research in this area has largely been directed to parasite secreted soluble proteins, 

most of which are known to down-modulate the host immune response (Coakley et al., 2015). 
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 In the past few years, EVs have been shown to be another component of parasite secretion products that 

may provide the answer to the unrecognized mechanism that packages and protects information in certain 

sets of proteins for cargo, uptake and integration into other cells (Coakley et al., 2015). 

4.1.7 Communication with Hosts 

Active release of these microvesicles by the parasites occurs in the host with the host cells taking up these 

vesicles. In a report by Marcilla et al. (Marcilla et al., 2012), it was shown that trematode extracellular 

vesicles contain most of the proteins previously identified as components of excretory/secretory product 

(ESP), as confirmed by proteomic, electron microscopy and immunogold labelling studies. 

Demonstration of uptake of these vesicles by host cells suggests important functions for these structures 

in host-parasite communication. In addition to these parasitic proteins, host proteins have been identified 

in these structures (Marcilla et al., 2012). The fusion of exosomes with host cells has also been shown for 

the protozoan parasite Trichomonas vaginalis (Hansen et al., 2015). The results from these previous 

studies suggest that parasite-secreted exosomes or microvesicles containing parasite proteins are able to 

unpack their content into host cells. This results in the molecules released playing roles in host gene 

regulation, leading to host immune response dampening and subsequent increased parasite survival 

(Hansen et al., 2015).  
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AIMS 

Based on the findings of Chapter three, which showed that certain proteins in the excretory/secretory 

system of A. pegreffii must have reached the exterior or be released by novel or alternative mechanisms, 

this chapter therefore aims to: 

1) Identify the exosomes of A. pegreffii  

2) Investigate by LC-MS/MS the cargo protein content of exosomes of A. pegreffii 
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4.2 Specific Methods 

The general methods of parasite materials collection; molecular identification of A. pegreffii, preparation 

of excretory/secretory products (ES) and parasite crude extracts (CE); 1D- LC-MS/MS analysis and 

protein identification are as described in the general methods in Chapter 2. The following are the specific 

methods for this chapter. 

4.2.1 Purification of extracellular vesicles 

Exosomes secreted by A. pegreffii L3 larvae were purified from the culture media obtained from 

preparation of excretory/secretory product. Exosome purification was by differential ultracentrifugation 

according to the protocol described by The´ry et al. (Thery et al., 2006). The culture media was divided 

equally into 2 centrifuge tubes (50 ml each), and centrifuged. The first 3 centrifugations were 10 min at 

3000 X g, 20 min at 2,000 X g, and 30 min at 10,000 X g to remove large dead cells and cell debris. After 

each centrifugation the supernatants were collected and used in the subsequent step. The final 

supernatants were ultracentrifuged at 100,000 X g for 70 min at 4ᴼC to pellet the exosomes using ultra-

speed centrifuge (L8-80M) (Beckman, USA). Finally, the pellets from the 2 tubes, which were not visible 

to the naked eye, were washed in PBS and another ultracentrifugation at 100,000 X g for 70 min was 

performed to eliminate contaminating proteins. The final pellet obtained was resuspended in PBS and 

stored at -80 ᴼ C until samples were analysed by transmission electron microscopy (TEM) and SDS-

PAGE with LC-MS/MS. Proteomic analysis method for the exosomes is as described under general 

methods. 

4.2.2 Transmission Electron Microscope 

Exosome samples were processed according to the protocol of Thery et al. (Thery et al., 2006). Briefly, 

purified concentrated exosomes frozen at –80◦C were thawed and mixed with an equal volume of 4% 

paraformaldehyde to fix the sample. Kumeda and colleagues (2017) have shown that the membrane structure of 
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exosomes retained integrity irrespective of the storage temperature. In addition, they also reported that freezing and 

thawing had little effect on particle size (Kumeda et al., 2017).   

On each Formvar-carbon coated electron microscope grid, 5 μl of the resuspended pellet was deposited 

and covered to let the membranes adsorb for 20 min in a dry environment. Phosphate buffered saline 

(PBS) (100-μl) drops were added to a sheet of Parafilm. Grids were transferred, membrane side down on 

to drops of PBS with clean forceps to wash the sample on the grid. Thereafter, grids were transfered to a 

50-μl drop of 1% glutaraldehyde for 5 min. The grid was then transferred to a 100-μl drop of distilled 

water and allowed to stand for 2 minutes. This was repeated seven times for a total of eight water washes. 

Samples were then contrasted first in a solution of uranyl oxalate, ( pH 7) for 5 minutes and then 

contrasted and embedded in a mixture of 4% uranyl acetate and 2% methyl cellulose in a ratio of 1:9, 

respectively. Subsequently, the grids were transfered to a 50-μl drop of methyl cellulose-UA for 10 min 

on ice. The grids were then removed with stainless steel loops and excess fluid blotted dry by gently 

pushing the loop sideways on filter paper leaving behind a thin film over the exosome side of the grid. 

The grid was air-dried for 5 minutes while still on the loop. Grids were then stored in an appropriate grid 

box until use. The samples were observed under the TEM microscope at 80 kV. 

4.2.3 1-D LC-MS/MS 

A portion of the pellet was precipitated with acetone. SDS-PAGE was performed for both the acetone 

precipitated and non-acetone precipitated exosome pellets. Exosomes protein on SDS-PAGE gel with 

protein bands and without protein bands were cut up into small pieces and digested with trypsin. In 

addition, the acetone–precipitated pellet was resuspended in 500µl of 0.5 M triethylammonium 

bicarbonate buffer (TEAB), reduced with 100 µl of 10 mM dithiothreitol and incubated at 600C for 1 h. 

This was taken through the in-solution tryptic digestion method as described in the general methods. 

Hence, LC-MS/MS was performed on 3 samples per replicate, namely the non-acetone precipitated 

sample on SDS-PAGE gel (in-gel digestion), acetone-precipitated sample on SDS-PAGE gel (in-gel 
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digestion) and an in-solution sample of acetone precipitated proteins dissolved in buffer and thereafter 

digested, on which LC-MS/MS was subsequently performed. This was to ensure recovery of almost all 

exosomes proteins that may be present. 
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4.3 Results 

4.3.1 SDS-PAGE Analysis 

The pellet obtained after ultracentrifugation was analysed by SDS-PAGE to profile the proteins of the 

exsomses. Initially, no protein bands were observed on the SDS-PAGE gel (Figure not shown). 

Subsequently, the protein content of the exosomes was precipitated with acetone. The pellet was 

resuspended in SDS-PAGE buffer. Most of the proteins bands were below the limit of detection of SDS-

PAGE stained with Coomassie. (Figure 4.2). Silver staining was not used in this study as it is known to 

interfere strongly with mass spectrometry analysis and would require specific modifications for 

compatibility with mass spectrometry (Rabilloud, 2012). Though, there are Silver staining protocols that do 

exist that are compatible with mass spectrometry, use of such protocol would be at the expense of sensitivity, 

making it less suitable for quantification. 

 

Figure 4.2.  SDS-PAGE analysis of Anisakis pegreffii exosomes stained with Coomassie 
Blue. 
 
M=10-250kDa Molecular marker, (Biorad). 
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4.3.2 Transmission Electron Microscopy (TEM) 

The pellets were further processed for visualization by TEM. Small vesicles that displayed the features 

and size of exosomes and microvessicles were observed. Ultrafiltration and size exclusion were employed 

to rule out the possibility of presence of artifacts as recommended by Wilms et al. (Willms et al., 2016). 

The sizes ranged between 48-100nm (Figure 4.3 2A-D). 

 

 

Figure 4.3.  (A-D)- Transmission Electron Microscopy (TEM) of A. pegreffii exosome 
proteins. 
 
Red arrows indicate exosome-like materials in different samples of TEM-processed ultracentrifuged 
pellets. 
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4.3.3 LC-MS/MS Analysis 

Anisakis pegreffii EVs in-gel and in-solution were digested with trypsin and LC-MS/MS was performed. 

Sixty different proteins were identified and all the 3 samples analysed for each replicate (2 replicates) by 

LC-MS/MS had almost the same content of proteins. Thirty-two of these sixty (53%) were homologous to 

mammalian EV proteins in Exocarta (http: //www .exocarta .org). Among the proteins identified were key 

exosome markers which include Heat Shock protein (HSP)-70, enolase and elongation factor 1-alpha.  

4.3.4 GO Annotation 

Uniprot Gene ontology, analysis of A. pegreffii exosome proteins yielded 23 biological process terms. 

Using the quantitative value of normalized spectra analysed in scaffold software, actin domain containing 

protein was the most abundant protein enriched in A. pegreffii exosomes, followed by vitellogenin-6 and 

polyprotein ABA-1. A well-represented functional group is the structural molecule proteins (9 matches), 

which included tropomyosin, myosin heavy chain, alpha sarcomeric, and tubulin proteins. Other proteins 

representation varied across a wide group of functionalities, such as metabolism, binding and 

oxidoreductases (Figures 4.4 – 4.6).  
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Figure 4.4.  Uniprot GO Annotation of the Molecular Functions of A. pegreffii exosomes 
proteins. 
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Figure 4.5.  Uniprot GO Annotation of the Biological Processes of A. pegreffii exosomes 
proteins. 

 

 

Figure 4.6. Uniprot GO Annotation of the Cellular Component origin of A. pegreffii 
exosomes proteins. 
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4.3.5 Relative abundance and expression of 4 antigenic proteins identified in the exosomes 

Other proteins enriched in the vesicles included some allergernic proteins such as tropomyosin, 

polyprotein ABA-1 and glyceraldehyde-3-dehydrogenase.Normalized spectral counts were assigned to 

each identified protein using the “Quantitative Value” assignment tool within the Scaffold software used 

for organizing protein identifications and comparing spectral counts across samples. Spectral counts 

across all samples were compared and the relative abundance and expression of 4 antigenic proteins 

identified in the exosomes, crude extract and excretory/secretory product of A. pegreffii are shown in 

Figures 4.7-4.11.  In biosamples 1 for both ES and CE, the quantity of these protein were too low to 

detect as shown in the Figures.The proteins identified in the A. pegreffi exosomes are shown in Table 4.1. 

 

 

Figure 4.7:  Relative abundance of Tropomyosin normalized spectra (Ani s 3) in A. 
pegreffii proteome. 
 
Spectral counts across all samples were compared and the relative abundance and expression 
of tropomyosin protein identified in the exosomes, crude extract and excretory/secretory 
product of A. pegreffii is shown. 
Biosample 1_CE-1=biological replicate 1 for crude extract 
Biosample 2_CE-2=Biological replicate 2 for crude extract 
Biosample 3_ES-1=Biological replicate 1 for excretory/secretory product 
Biosample 4_ ES-2=Biological replicate 2 for excretory/secretory product 
Biosample 5_ Exosome samples 
Note: Biosamples 1- No protein spectra identified in these replicates for CE and ES. 
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Figure 4.8:  Relative abundance of Polyprotein ABA-1 allergen normalized spectra in A. 
pegreffii proteome. 
 
Spectral counts across all samples were compared and the relative abundance and expression of 
polyprotein ABA-1 allergen protein identified in the exosomes, crude extract and excretory/secretory 
product of A. pegreffii is shown. 
Biosample 1_CE-1=biological replicate 1 for crude extract 
Biosample 2_CE-2=Biological replicate 2 for crude extract 
Biosample 3_ES-1=Biological replicate 1 for excretory/secretory product 
Biosample 4_ ES-2=Biological replicate 2 for excretory/secretory product 
Biosample 5_ Exosome samples 
Note: Biosamples 1- No protein spectra identified in these replicates for CE and ES. 

 

Figure 4.9: Relative abundance of Glyceraldehyde-3-dehydrogenase normalized spectra 
in A. pegreffii proteome. 
 
Spectral counts across all samples were compared and the relative abundance and expression of 
Glyceraldehyde-3-dehydrogenase protein identified in the exosomes, crude extract and 
excretory/secretory product of A. pegreffii is shown. 
Biosample 1_CE-1=biological replicate 1 for crude extract 
Biosample 2_CE-2=Biological replicate 2 for crude extract 
Biosample 3_ES-1=Biological replicate 1 for excretory/secretory product 
Biosample 4_ ES-2=Biological replicate 2 for excretory/secretory product 
Biosample 5_ Exosome samples 

 
Note: Biosamples 1- No protein spectra identified in these replicates for CE and ES. 
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Figure 4.10:  Relative Abundance of Vitellogenin-6 normalized spectra in A. pegreffii 
proteome. 
 
Spectral counts across all samples were compared and the relative abundance and expression 
of vitellogenin-6 protein identified in the exosomes, crude extract and excretory/secretory 
product of A. pegreffii is shown. 
Biosample 1_CE-1=biological replicate 1 for crude extract 
Biosample 2_CE-2=Biological replicate 2 for crude extract 
Biosample 3_ES-1=Biological replicate 1 for excretory/secretory product 
Biosample 4_ ES-2=Biological replicate 2 for excretory/secretory product 
Biosample 5_ Exosome-Exosome samples 
Note: Biosamples 1- No protein spectra identified in these replicates for CE and ES. 
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Figure 4.11:  Relative Abundance of Leucine Aminopeptidase (LAP) in A. pegreffii 
proteome. 
 
Spectral counts across all samples were compared and the relative abundance and expression 
of leucine aminopeptidase protein identified in the exosomes, crude extract and 
excretory/secretory product of A. pegreffii is shown. 
Biosample 1_CE-1=biological replicate 1 for crude extract 
Biosample 2_CE-2=Biological replicate 2 for crude extract 
Biosample 3_ES-1=Biological replicate 1 for excretory/secretory product 
Biosample 4_ ES-2=Biological replicate 2 for excretory/secretory product 
Biosample 5_ Exosome-Exosome samples 
Note: Biosamples 1- No protein spectra identified in these replicates for CE and ES. 
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Table 4.1: A. pegreffii Exosome Proteins and Homologs in Exocarta database. 
 

# Homologous 
protein 

Uniprot ID Signal 
peptide 

Trans- 
membrane 

Homolog 
found in 
Exocarta 
database 

1 Myosin-4 
(Unc-54) 

A0A0B2VVW7 N N Y 

2 Elongation factor 
1-alpha 

A0A0B2W5Q7 N N Y 

3 Neprilysin-1 A0A0B2VA80 N Y N 
4 V-type 

proton ATPase 
subunit c 

F1L3T5 N N Y 

5 40s ribosomal 
protein s13 

F1LFC7 N N Y 

6 60s ribosomal 
protein l27a 

U1MAQ4 N N Y 

7 Centromere-
associated protein 
E (CENPE) 

A0A0B2VLA2 N N Y 

8 Gut esterase 1 A0A0B2W709 N N N 
9 Leucine 

aminopeptidase 
U1NWM0 N N Y 

10 Vitellogenin-6 A0A0B2V8F3 Y N N 
11 Polyprotein ABA-

1* 
Q06811 N N N 

12 Aminoacylase-1 
(peptidase M20) 

F1L6C7  N Y 

13 Serotonin 
receptor protein 

Q86LL7 Y Y N 

14 Tropomyosin * C0L3K2 N N Y 
15 Hypothetical 

protein 
ASU_01958 

unknown N N Unknown 

16 TBA-1 precursor Q06811 N N N 
17 Glyceraldehyde-

3-phosphate 
dehydrogenase * 

A0A0M3K2Y3 N N Y 

18 PREDICTED: 
histone H3.3-like, 
partial 

G1MZV0 N N Y 

19 Myosin heavy 
chain 

F1KQF1 N N Y 

20 Spindle- and 
centromere-
associated protein 

F1KQ60 N N N 

21 Pyruvate kinase 
muscle isozyme 

F1LFH3 N N Y 

22 Protein RHY-1 Q9XVW1 N Y N 
23 Succinate 

dehydrogenase 
iron-sulfur 

Q09545 N N N 
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24 kynureninase 
Ascaris suum 

U1NUN5 N N Y 

25 dolichyl-
diphosphooligosa
ccharide--protein 
glycosyltransferas
e subunit 1 

U1M7N6 N Y Y 

26 cytoplasmic 
intermediate 
filament protein 

F1KZN6 N N N 

27 heat shock protein 
70 * 

A0A0R5QAG5 N N Y 

28 40S ribosomal 
protein S23 

A0A1S0U911 N N Y 

29 Putative leucine-
rich repeat-
containing protein 

A0A0B2V722 N N N 

30 malate 
dehydrogenase 

A0A0M3KBA5  Y N 

31 adenylate kinase F1LHW2 N N Y 
32 galactoside-

binding lectin 
(galectin) 

F1L9M1 Y N Y 

33 beta carbonic 
anhydrase 1 

U1NDQ3 N N N 

34 ribosomal protein 
S14 

F1LHE1 N N Y 

35 hypothetical 
protein 

ASU_07427 

A0A0B2W0L0 N N Unknown 

36 putative 
elongation factor 

1-gamma 

F1L9C6 N N Y 

37 LIM domain and 
actin-binding 

protein 1 
(LIMA1) 

A0A0B2VMH7 N N Y 

38 Endoplasmin 
(Hsp90b1) 

A0A0B2URQ0 Y N Y 

39 F-actin capping 
protein beta 

subunit 

F1LBI3 N N N 

40 Ascaris suum F1KPN0 N N Y 
41 cat eye syndrome 

critical region 
protein 5 

F1L8B6 N N Y 

42 beta-tubulin 
isotype 1 

A0A0M3IZK3 N N Y 

43 nad-dependent 
malic 

P27443 N N N 

44 spermidine 
synthase 

F1L7H4 N N Y 

45 Basement A0A0B2UP16 N N N 
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membrane 
proteoglycan 

(unc-52) 
46 propionyl- 

carboxylase alpha 
A0A0B2UYS3 N N N 

47 sucrase- intestinal U1NX15 N N N 
48 extracellular 

superoxide 
dismutase 

F1L7A0 N N N 

49 UV excision 
repair protein 

Rad23 

A0A1I7VLX6 N N Y 

50 cytoplasmic 
intermediate 

filament protein 

P23730 N N N 

51 alpha- sarcomeric U1MST7 N N Y 
52  A0A0B2VEN6 N N Y 
53 None None Y N  
54 tubulin alpha 

chain - mouse 
A0A183UCC8 N N Y 

55 Hypothetical 
protein 

NONE N N Unknown 

56 apolipophorin 
 

A0A0B2VHM0 N N N 

57 shTK 
domain protein 

A0A0B1TEE9 Y N N 

58 Actin 2 A0A0B4SVM4 N N N 
59 Histone H2B 1 A0A0B2V381 N N  
60 Putative 3-

hydroxyacyl-
CoA-

dehydrogenase 

A0A0B2W1B9 N N N 

Note: *=Allergenic proteins in exosome cargo; N=not present; Y=yes, present. 
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4.3.6 Secretory Pathways of Proteins Identified In Exosomes 

A number of peptidases, such as leucine aminopeptidases, neprilysin and peptidase M20 were found in A. 

pegreffii exosomes. Four hits corresponded to proteins with unknown functions. About 25% of the 

proteins identified in A. pegreffii exosomes either possess N-terminal signal peptides or were predicted to 

be secreted through unconventional pathways. A comparison of the proteome dataset of A. pegreffii with 

the exosome cargo content of A. pegreffii, showed that of the remaining proteins, 9 hits were proteins 

found only in crude extract, three were found also exclusively in exosomes and were not present in the ES 

while the remaining proteins, which constitute half of the proteins identified in the exosomes, were all ES 

proteins. These proteins were not predicted to have signal peptides or to be secreted through the 

unconventional route. The five matches corresponding to membrane proteins include protein RHY-1 

(regulation of hypoxia-inducible factor 1), dolichyl-diphosphooligosaccharide protein, a 

glycosyltransferase protein, a serotonin-receptor protein, and neprilysin-1 and malate dehydrogenase 

protein. The proteins exclusively found in exosomes, and not identified in the ES and crude extracts of A. 

pegreffi, include serotonin-receptor, adenylate kinase and an unknown/uncharacterized protein. 
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4.4 Discussion 

In this study, L3 larvae of Anisakis pegreffii were found to secrete exosomes-like bodies. Secretory 

activity is critical for Anisakis pathogenesis. Over 53% of the protein content identified in the exosomes 

of A. pegreffii in this study were homologues of proteins reported in the exosomes of other organisms 

which have been deposited in Exocarte database. The vast majority of allergens and immunomodulatory 

molecules characterized for A. pegreffii are extracellular. Most of the A. pegreffii molecules identified in 

the previous chapter from the CE and ES lacked the leader peptide necessary for conventional secretion, 

which strongly suggests an unconventional secretion pathway for the molecules characterised in this 

chapter.  

Abundant round-shaped material with the expected size of exosomes was obtained after 

ultracentrifugation in this study. Visualization with TEM confirmed their presence in the 

excreted/secreted material of A. pegreffii.  Exosome protein compositions are known to vary depending 

on the cell type of origin (Mathivanan et al., 2010b). The results of this study agrees with this statement 

as it is clearly evident that exosomes from different cell types of L3 larvae of A. pegreffii were isolated as 

reflected in the group of proteins identified. Cytoskeletal proteins identified in this study, including actin, 

myosin, tubulin, alpha sarcomeric and tropomyosin are among the subset of proteins reported to be 

common to all exosomes (Mathivanan et al., 2010a, Mathivanan et al., 2010b). Their presence indicates 

that the exosomes that cargo these proteins were derived from the cytoskeletal cells. According to Thery 

et al, exosomes from different cellular sources are known to contain proteins specific for their cell type of 

origin and when released into the extracellular milieu, can be taken up by recipient cells at sites distal to 

their release (Thery et al., 2002).  
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Exosomes are also known to be enriched with heat shock proteins, such as Hsp70 and Hsp90.  Hsp70 was 

one of the proteins identified in A. pegreffii exosomes in this study. It is reported that  Hsp70  is identified 

in 89% of the proteomic studies on exosomes (Mathivanan et al., 2010a). In addition, a high portion of 

proteins enriched in A. pegreffii exosomes were implicated in carbohydrate metabolism, indicative that 

the parasite's main energy source is derived from carbohydrate metabolism and exosomes might be 

involved in transporting proteins needed for this function within the parasites and to the host for parasite 

survival. 

Molecules carried by exosomes are described to have the ability to tap into the regulatory networks in 

host cells if the proteins are homologs of host cells. Exosomes have been extensively studied for their 

contributions to physiology, immunity, cancer, and intercellular communication, revealing an impressive 

diversity of functions depending on their cellular source (Del Cacho et al., 2016). The presence of 

proteins in A. pegreffii exosomes, such as the allergens tropomyosin, polyprotein ABA-1 and peptidases 

such as Leucine aminopeptidase as observed in this study, implies that exosome transport is probably the 

mechanism by which these molecules are released to be taken up by host cells.  Host cells that may take 

up these parasite molecules include antigen presenting cells. The effect of this may be to dampen the host 

cell immune response as in the case of parasite peptidase molecules uptake and/or to provoke an immune 

response when an allergenic molecule such as tropomyosin is taken up. The presence of allergens, such as 

tropomyosin and polyprotein ABA-1, as identified in this study, in A. pegreffii exosomes, provides 

evidence for the route of allergic sensitisation to live parasites. 

In conclusion, the present study constitutes the first report of the existence and composition of exosome-

like vesicles in the L3 larvae of the parasite, A. pegreffii and in Anisakids parasites as a whole. The 

identified structures appear to play critical role in transportation of immunomodulatory and allergenic 

proteins. These proteins are stabilized against degradation by encapsulation within vesicles. The existence 

of extracellular vesicles in A. pegreffii explains the secretion of atypical proteins. In addition, exosomes 
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have been reported to interact with and manipulate host gene expression. It has been demonstrated that 

exosomes contribute to functions such as tissue repair, neural communication, immunological response 

and the transfer of pathogenic proteins (Simons and Raposo, 2009, Couzin, 2005). For instance, in H. 

polygyrus, it was shown that exosomes could suppress immunological response in vivo (Buck et al., 

2014).  In summary, the demonstration of the existence of exosome-like vesicles in A. pegreffii EVs may 

offer a new point of view for the study of Anisakis infections. A. pegreffii could be implicated in 

important roles in the regulation of host immunological responses to tolerate the parasite living in the 

host.  Further studies will address whether these vesicles constitute good targets for new control strategies 

and diagnostic tools (Marcilla et al., 2012).  
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5.1 Introduction 

Food allergy is believed to be on the increase (Hadley, 2006, Benede et al., 2016). In this period of 

globalization, it is observed that it is not only population that migrates but also foods; as the populace of 

various nations import and embrace foreign diets and exotic products (Hadley, 2006). The situation is 

made more complicated because of the different perceptions of the term ‘food allergy’ by different groups 

of people in a population. Food allergy is different from food intolerance and hypersensitivity, which 

could be a metabolic condition, such as lactose tolerance and coeliac disease (Pereira et al., 2005). The 

former is involved with the immune system whilst the latter is not. This has resulted in either an over-

estimation or under-reporting of food allergy and thus makes diagnosis difficult (Pereira et al., 2005).   

Fish, a common food, with a consumption growth rate of 3.6% yearly since 1963 (Tomm et al., 2013) is 

the exposure link between the parasitic marine nematode, Anisakis and man. It is logical that seafood 

allergy prevalence is higher in areas of high seafood consumptions (Sicherer and Sampson, 2006). 

Occurrence of food allergies is high in both children and adults and represents one of the most common 

causes of anaphylactic reactions. (Lopata and Lehrer, 2009). 

5.1.1 Anisakis and Allergic reactions 

Allergic reactions to proteins from acquatic parasitic nematodes of the genus Anisakis, family Anisakidae, 

are major contributors to adverse effects from consumption of contaminated fish and shellfish (Amin and 

Davis, 2012, Baird et al., 2014). Humans become infected accidentally with third-stage larvae (L3) of 

Anisakis by consuming parasitized raw or undercooked fish (Berland, 1961). Anisakis simplex sensu 

stricto and Anisakis pegreffii are frequently associated with allergic reactions and anaphylaxis (Mattiucci 

et al., 2013). It has been suggested that anisakiasis in Japan is associated mainly with infections by 

A. simplex   (Suzuki et al., 2010).  
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However, multiple reports of complicated clinical cases of anisakiasis in humans, linked to A. pegreffii 

and associated with multiple cases of gastro-allergic anisakiasis, have been documented in Italy 

(Mattiucci et al., 2013, D'Amelio et al., 1999). Whilst anisakiasis is relatively common in these two 

countries, cases have been reported from other countries including Australia (Shamsi and Butcher, 2011), 

China (Qin et al., 2013) and the USA (Ramanan et al., 2013). In Spain, Anisakis allergy is responsible for 

up to 8% of acute urticarial reactions, 25% of which progress to anaphylactic shock (Gamboa et al., 

2012). Indeed, it has been suggested that Anisakis allergy may account for up to 10% of all cases of 

idiopathic anaphylaxis in adults, particularly in regions where seafood consumption is high (Fernandez de 

Corres et al., 1996, Baeza et al., 2005). Therefore, this parasite is now considered as one of the 

masqueraders in seafood allergic reactions (Banks and Gada, 2013). 

5.1.2 Seafoods and Allergy. 

The term ‘seafood’ refers to both fish and shellfish (crustaceans and molluscs), which are considered two 

of the “big eight” food sources implicated in about 90% of all food allergies (Lopata and Lehrer, 2009, 

Lopata et al., 2010, Lopata et al., 2016, Wild and Lehrer, 2005). Seafood is also one of the major food 

commodities worldwide (Wild and Lehrer, 2005), and a high portion (up to 34%) of seafood consumed in 

most countries is imported from Asia (Shafique et al., 2012, Tacon and Metian, 2008).  A report in 2008 

showed shellfish as one of the most important food sources responsible for about 30,000 food-induced 

anaphylactic events occurring annually in the USA, in persons aged 6 years or older (Ross et al., 2008). 

Of these, 200 or more were reported as fatal (Ross et al., 2008). 
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 In Singapore, crustaceans and fish were reported as the most significant sensitisers in 40% and 13% of 

children with food hypersensitivity, respectively (Thong et al., 2007). In the same study, up to 33% of 

adults were sensitised to crustaceans, followed by molluscs (19%) and fish (4%) (Thong et al., 2007). In a 

recent study  conducted in Australia, fatal food anaphylaxis increased by 9.7% / year (1997-2013), with 

seafood being the most frequent trigger (Mullins et al., 2016). 

In a randomized study from Japan, a higher prevalence of sensitisation to Anisakis was reported as 

compared to seafood (Kimura et al., 1999). Furthermore, a Spanish study reported Anisakis as a hidden 

food allergen which was the leading cause of food allergy in Spain (GarciaPalacios et al., 1996). Several 

other reports have demonstrated that a risk for Anisakis-related allergic reactions exists among 

occupationally exposed seafood-processing workers (Scala et al., 2001). These findings support other 

reports of Anisakis-related allergic symptoms when handling fish or fishmeal (Scala et al., 2001).  

5.1.3 Seafoods, Anisakis and Allergy Cross-Reactivity. 

While a steady increase of allergic reactions to seafood is being acknowledged worldwide, the whole 

complement of allergens responsible for these reactions is yet to be fully elucidated. Indeed, molecules 

implicated in seafood allergy in shellfish (Lopata et al., 2010) and fish (Stephen et al., 2017) are 

numerous and diverse. Importantly, few data are thus far available on the number and nature of cross-

reactive allergens between both seafood groups and contaminating parasites. In particular, to date, the 

majority of studies on allergens from parasites contaminating seafood have focused on the nematode A. 

simplex (Faeste et al., 2014, Audicana and Kennedy, 2008).  
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While possible clinical cross-reactivity between Anisakis and other nematodes, as well as some 

invertebrates, has been discussed (Lozano et al., 2004, Pascual et al., 1997, Johansson et al., 2001, 

Rodriguez-Perez et al., 2014),  only a handful of studies have provided data on possible implicated 

allergens (Lozano et al., 2004, Pascual et al., 1997, Johansson et al., 2001, Rodriguez-Perez et al., 2014). 

The proteins Ani s 2 (paramyosin) and Ani s 3 (tropomyosin) from A. simplex, whose homologues can be 

found in crustaceans, dust-mites and cockroaches, are considered as major cross-reactive allergens 

(Ayuso et al., 2002, Guarneri et al., 2007). However, the whole repertoire of allergenic proteins from A. 

pegreffii, potentially cross-reacting with allergens from shellfish, fish or other allergen sources is not 

known. Recently, we have undertaken comparative analyses of the transcriptomes of A. simplex and A. 

pegreffii, coupled with in silico allergen prediction, which has led to the identification of up to 31 putative 

allergens in the latter (Baird et al., 2016). These data now requires experimental validation, together with 

a comprehensive assessment of the presence of cross-reactive allergens in this parasite, which is pivotal 

for the enhancement of current diagnostic procedures for seafood allergy. 

 

 

 

 



Chapter 5 

129 

 

AIM 

Based on these findings the aim of the following experiments is to: 

1) Identify and characterize A. pegreffii novel and potential cross-reactive allergens in shellfish 

allergic patients. 
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5.2 Specific Methods. 

The general methods of parasite materials collection, molecular identification of A. pegreffii, preparation 

of excretory/secretory products (ES) and parasite crude extracts (CE), 1D- LC-MS/MS analysis and 

protein identification are as described in the general methods in Chapter 2. The following are the specific 

methods for this Chapter. 

5.2.1 Patient Sera. 

Serum samples were obtained from 19 patients (mean age 32 ± 10.5 years; 11 females and 8 males) with 

a clinical history of allergic reactions to shellfish and/or positive by skin prick test (SPT) and/or 

PhadiaImmunoCAP system-(Uppsala, Sweden; >0.35kU/L;) to prawn, crab or lobster, as well as a non-

atopic control. Informed, written consent was obtained from each study subject and experimental 

protocols were approved by The Alfred Hospital Research Ethics Committee (Project number 192/07) 

and the Monash University Human Ethics Committee (MUHREC CF08/0225). 

5.2.2 Immunoblotting. 

Protein extracts of A. pegreffii and controls were separated by SDS gel-electrophoresis using 6 μg per 

lane and transferred to a Polyvinylidene difluoride (PVDF) membrane using a semi-dry blotting system 

(BioRad). Subsequently, the membrane was blocked with 5% w/v skim milk powder in phosphate 

buffered saline containing 0.5% Tween-20 (PBS-T) for 1 h. Patient serum was added (1:20 in 2% w/v 

skim milk in PBS-T) using the slot blot apparatus (Idea Scientific, MN, USA) and incubated overnight.  
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To detect IgE binding, the immunoblot was sequentially incubated with rabbit anti-human IgE antibody 

(Dako; 1:10000) and goat anti-rabbit IgG-HRP conjugated antibody (Promega; 1:40,000); after washing 

with PBS-T, the immunoblot was visualized using the enhanced chemiluminescent method (Sigma-

Aldrich, St. Louis, MO) (Kamath et al., 2014b). 

To detect the presence of specific cross-reactive crustacean allergens, the protein extracts were probed 

with one rat monoclonal anti-tropomyosin (mAb) (Abcam, Cambridge, MA, USA) (Kamath et al., 

2014a), one in-house generated rabbit polyclonal anti-crustacean antibody and one in-house generated 

rabbit anti-crustacean myosin light chain antibody (Kamath et al., 2014b). 

In addition, the presence of possible fish allergens was evaluated using one frog monoclonal anti-

parvalbumin antibody (PARV-19; Sigma, USA) (Saptarshi et al., 2014), one in-house generated rabbit 

anti-parvalbumin antibody (pAb) and one rabbit anti-aldolase antibody (Rockland, Inc.) with their 

corresponding secondary HRP-conjugated antibodies (Dako, USA); binding was visualized as described 

above. 

5.2.3 Mass Spectrometry (LC-MS/MS) and Analysis of Proteins. 

Following gel-electrophoresis, bands were excised, in-gel digested using trypsin and analysed by LC-

MS/MS using a Q-Exactive mass spectrometer (Thermo Scientific) as described in Chapter 2.  

5.2.4 Bioinformatic Analysis. 

An alignment using Blast against the Structural Database of Allergenic Proteins (SDAP) with the 

sequences of proteins identified by LC-MS/MS from the reactive bands was performed. This was to 

identify proteins with ≥65% sequence identity with allergens in the database.  
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5.2.5 Molecular phylogenetic analysis. 

The allergen database (WHO/IUIS) was interrogated for cross-reacting crustacean, mollusc and fish 

allergens homologues identified in A. pegreffii. Amino acid sequence alignments were generated using 

MUSCLE (Edgar, 2004) and phylogenetic relationships were inferred using the Neighbour-Joining 

method (10,000 replicates) (Stephen et al., 2017, Jenkins et al., 2007). Evolutionary distances were 

computed using the Poisson correction method and analyses were conducted using the MEGA 6 software 

(Tamura et al., 2013). 
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5.3 Results 

5.3.1 Immunoblotting with allergen specific Antibodies. 

There was no reactive band observed in either CE or ES with (i) anti-frog mono and anti-rabbit poly-

parvalbumin antibody. (Figure shown for only mono-parvalbumin; Figure 5.1). (ii) Myosin light chain 

antibody (Figure 5.2) or anti-aldolase antibody (Figure 5.3). The lack of binding may be due to the 

absence of the target protein in A. pegreffii as in the case of polyclonal antibodies or absence of a specific 

antibody epitopes in the case of the monoclonal antibodies. In contrast, the presence of tropomyosin (TM) 

in the CE was confirmed using a TM-specific mAb as well as a pAb anti-crustacean antibody (Fig. 5.4).   

 

Figure 5.1: SDS-PAGE and immunoblotting profile using anti-parvalbumin monoclonal 
antibody. 
 
(A) 12% SDS-PAGE of crude extracts (CE), excretory/secretory (ES) products of A. pegreffii and 

different fish samples stained with Coomassie brilliant blue; (B) immunoblotting with Parv 19 
Monoclonal Antibody. 
Note: the positive controls  were Barramundi, Basa and Salmon. 
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Figure 5.2:  SDS-PAGE and immunoblotting profile using anti-myosin light chain 
monoclonal antibody. 
 
(A) 12% SDS-PAGE of crude extracts (CE), excretory/secretory (ES) products of Anisakis pegreffii 
and heated prawn extract stained with Coomassie brilliant blue; (B) Immunoblotting with in-house 
made myosin light chain antibody. Note: the positive control Heated Prawn. 
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Figure 5.3: SDS-PAGE and immunoblotting profile using anti-aldolase antibody. 
 
(A) 12% SDS-PAGE of crude extracts (CE), excretory/secretory (ES) products of A. pegreffii 
and different fish samples stained with Coomassie brilliant blue; (B) Immunoblotting with anti-human 
aldolase antibody against six fish species and  Anisakis pegreffii crude extract and excretory/secretory 
product. Note: the positive controls Barramundi to Tuna. 
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Figure 5.4:  SDS-PAGE and immunoblot analysis using monoclonal anti-tropomyosin 
and polyclonal anti-crustacean antibody. 
 
(A) 12% SDS-PAGE of crude extracts (CE), excretory/secretory (ES) products of A. pegreffii and 
heated prawn extract (HPE) stained with Coomassie brilliant blue; (B) immunoblotting of CE, ES and 
HPE with monoclonal anti-TM antibody and (C) immunoblotting of CE, ES and HPE with polyclonal 
anti-crustacean antibody. Note: the positive control Heated Prawn. 
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5.3.2 Patient IgE immunoblotting analysis. 

The 19 patients analysed in this study had a history of clinical allergy to one or several shellfish species, 

and/or elevated IgE to shrimp, lobster and crab by ImmunoCAP (Table 5.1).  

Table 5.1: Information and clinical features of enrolled subjects sensitised to shellfish. 

 
Identification Sex Total IgE 

(IU/mL) 
Shrimp 
specific 

IgE 
(kUA/L) 

Lobster 
specific 

IgE 
(kUA/L) 

Crab 
specific 

IgE 
kUA/L) 

HDM 
specific 

IgE 
(kUA/L) 

Symptoms 

A M 136 4.54 ND ND ND O 
*B F 150 0.16 ND 0.06 3.25 As, R, An,O 
*C M 221 0.10 0.00 0.03 3.14 As, R, An, U, O 
D F 1946 9.5 9.43 2.42 14.1 R, An, O 
E F 2195 19.1 ND 0.91 >100 As, R, An,O 
F F 461 0.36 0.32 0.3 54.8 R, An, O 
G M 183 6.84 4.10 ND 31.7 NA 
H M 976 9.03 ND ND 13.6 R, An, O 
I F 238 5.93 2.73 6.05 16.7 O, An 
J F 372 1.82 0.35 0.53 3.9 O 
K F 28 9.8 ND 8.42 2.66 A, U 
L M 127 1.65 0.18 0.15 0.09 An 
M M 194 1.41 0.24 ND 0.35 R, An, O 
*N F 201 0.03 <0.01 0.01 0.05 R, An, U, O 
O F 440 0.5 0.39 0.55 ND An, U, O 
*P F 12 0.04 0.01 0.01 0.02 An, O 
*Q M 164 0.04 ND ND ND R, An, O 
R F 242 1.32 1.65 1.17 ND As, R, U 
*S M 243 0.04 ND ND 26.8 R, An, O 

F: female, M: Male, As: Asthma, R: Rhinitis, An: Anaphylaxis, U: Urticaria, O: Oral/facial symptoms, ND: Not 
determined; *patient sera negative for shellfish-specific IgE (ssIgE) by ImmunoCAP but positive history and 
positive on IgE immunoblot. 
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In addition, IgE antibodies binding to the invertebrate allergen house dust-mite (HDM) were quantified 

by ImmunoCAP. Immunoblot results revealed proteins from both the CE and the ES products of A. 

pegreffii cross-reacting to IgE in sera of patients used for this study. However, the binding patterns 

corresponding to ES were characterised by fewer protein bands when compared to those corresponding to 

the CE (Figures 5.5 and 5.6), indicating possible differences between proteins’ relative abundance and 

presence in these proteomes. Major bands were observed for the CE at ~37-39 kDa and ~100 kDa and 

195 kDa (Figure 5.5). A non-atopic control serum did not show significant binding to any CE and ES 

proteins of A. pegreffii (Figures 5.5 and 5.6). 

 
Figure 5.5. IgE antibody reactivity to A. pegreffii crude extracts. 
 
IgE immunoblot with sera from 19 shellfish sensitised patients, as well as from one non-atopic control. 
Numbers denote specific IgE binding reactive bands and are interpreted in Tables 5.2 and 5.3. 
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Table 5.2: Allerlogram of IgE Binding Patterns To Proteins From Crude Extract Of A. 
Pegreffii. 
 

Patient 
ID 

1 2 3 4 5 6 7 8 9 

A          

B          

C          

D          

E          

F          

G          

H          

I          

J          

K          

L          

M          

N          

O          

P          

Q          

R          

S          

Note: IgE binding intensities are graded as low (light grey), medium and strong (black). Sera from 19 
shellfish allergic patients as well as from one atopic control were used. 

Key:   =Low;                =Medium;                   = Strong 
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Table 5.3: List of proteins in A. pegreffii crude extract reactive bands and sequence 
identity to allergens. 

 
Reactive bands 
# and % of 
reactive 
shellfish 
allergic patient 
sera 

Proteins in reactive 
band 
Identified by  
LC-MS/MS 

MW at 
which 
protein 
migrated 
(kDa) 

Uniprot 
MW 
(kDa) 

Sequence 
similarity 
to 
allergen 
by blast in 
SDAP 
(%) 

Name of 
allergen 

Accession 
number  
and Organism  

1 (5%)  Fatty acid-binding 
protein-like protein 3  

16 20 23 Lep d 13 Q9U5P1-
Lepidoglyphus 
destructor 
[storage mite] 

  Essential light chain  16 18 42 Art 
fr.5.0101 

A7L499-Artemia 
franciscana [brine 
shrimp] 

  Myosin regulatory 
light chain 1 
 

16 19 35 Lit v 
3.0101 

EU449515-  
Litopenaeus 
vannamei [white 
leg shrimp] 

  Protein MCE-1 
 

15 18 26 Ory s 
33kD 

BAB71741-Oryza 
sativa [Rice] 
 

None of the above proteins present in reactive band 1, satisfied the defined parameters for cross-reactive allergen as 
specified for this study which is ≥65% sequence similarity to an allergen and reactivity with 50% of shellfish allergic 
patients sera. 
 
2 (5%)  estradiol 17-beta-

dehydrogenase 8  
25 26 37 Alt a 

8.0101 
P0C0Y4- 
Alternaria 
alternate 
[moulds) 

  Triosephosphate 
isomerase 
 

25 27 62 Arc s 
8.0101 

Q8T5G9- 
Archaeopotamobi
us sibiriensis 
(crustaceans 
species) 

  24 kDa protein  
 

25 24 10 Art v 
3.0202 

ACE07187- 
Prunus persica 
[peach] 
 

None of the above proteins found in reactive band 2, satisfied the defined parameters for cross-reactive allergen for 
this study. 
 
3 (5%)  14-3-3 zeta  28 29 16 Pan s 1 O61379- 

 
Panulirus 
stimpsoni 
[spiny lobster] 

  Putative 
peroxiredoxin prdx-3  

28 29 29 Tri a 
32.0101 

 
AAQ74769-
Triticum 
aestivum[wheat] 
 

None of the above proteins found in reactive band 3, satisfied the defined parameters for cross-reactive allergen for 
this study. 
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4 (5%)  Malate 

dehydrogenase 
 

35 36 57 Mala f 4 AAD25927- 
Malassezia furfur 
[mould] 

  Transaldolase 
 

36 42 54 Cla c 
14.0101 

ADK47394- 
Cladosporium 
cladosporioides 
[mould] 

  Annexin-A6 34 34 19 Eur m 14 AAF14270- 
Euroglyphus 
maynei 
 [mite] 
 

None of the above proteins found in reactive band 4, satisfied the defined parameters for cross-reactive allergen for 
this study. 
 
5 (≥50%)  fructose-bisphosphate 

aldolase 1 * 
 

38 39 66 Sal s 
3.0101 

B5DGM7- 
Salmo 
salar[atlantic 
salmon] 

  Tropomyosin* 38 41 99 Asc l 
3.0101 

Q9NAS5- Ascaris 
lumbricoides  

  
 

  72 Pen a 1 11893851- 
Penaeus aztecus 
[shrimp] 

    72 Lit v 
1.0101 

EU410072- 
Litopenaeus 
vannamei 
[whiteleg shrimp] 

  fructose-bisphosphate 
aldolase 2 

38 39 64 Sal s 
3.0101 

B5DGM7- 
Salmo salar 
[atlantic salmon] 
 

Three proteins were found in reactive band 5; two of the proteins identified (*) in this same band, had ≥65% 
sequence similarity with an allergen; and ≥50% of shellfish allergic patient sera reacted to this band. 
 
6 
(indeterminate) 

 Enolase 
 

48 48 71  
Sal s 
2.0101 
 

B5DGQ7- 
Salmo 
salar[atlantic 
salmon] 

  putative 
phosphoglycerate 
kinase 
 

48 45 15 Der f 
16.0101 

AAM64112- 
Dermatophagoide
s farina [mites] 

  4-hydroxybutyrate 
coenzyme a 
transferase  

48 51 9 Sch c 
1.0101 

D8Q9M3- 
Schizophyllum 
commune [mould] 
 

The protein enolase was among the proteins identified in reactive band 6 with sequence similarity to an allergen 
≥65%, however reactive bands were too faint to ascertain if ≥50% of shellfish allergic patients’ sera reacted with 
this protein in crude extract of A. pegreffii. 
 
7 (26%)  heat shock protein 70 

 
70 71 76 Cla h 

5.0101 
P40916- 
Cladosporium 
herbarum [mould] 

  myosin tail family 
protein 
 

71 108 38 Blo t 11 AAM83103-
Blomia tropicalis 
[mites] 

  myosin heavy chain  66 138 40  
Der p 11 

 
AAO73464-
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 Dermatophagoide
s pteronyssinus 
[mites] 
 

  chaperone DnaK  
 

67 84 51 Cla h 
5.0101 

P40918- 
Cladosporium 
herbarum[mould] 
 

Among proteins found in reactive band 7 which had sequence similarity above the threshold specified, was HSP 70, 
however, the percentage of shellfish allergic patients sera which reacted to this band was less than 50% 
 
8 (50%)  Myosin tail family 

protein 
 

71 108 38 Blo t 11 AAM83103-
Blomia tropicalis 
[mites] 

  Myosin heavy chain  66 138 40  
Der p 11 
 

 
AAO73464-
Dermatophagoide
s pteronyssinus 
[mites] 

  Myosin-4 46 93 42 Ani s 2 AAF72796-
Anisakis simplex 
 

None of the above proteins found in reactive band 8 satisfied the defined parameters for cross-reactive allergen for 
this study. 
 
9 (11%)  Vitellogenin-6 187 201 21 

 
 

Gal d 
vitelloge
nin 

CAA49139-
Gallus domesticus 

The only protein found in reactive band 9, vitellogenin, did not satisfy the defined parameters for cross-reactive 
allergen for this study. 
   *=Novel putative cross-reactive allergens identified. 
  SDAP=Structural database of allergenic proteins; MW=Molecular weight. 
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Figure 5.6. IgE antibody reactivity to A. pegreffii excretory/secretory product. 
 
IgE immunoblot with sera from 19 shellfish sensitised patients, as well as from one non-atopic 
control. Numbers denote specific IgE binding reactive bands and are interpreted in Tables 5.4 and 
5.5. 
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Table 5.4: Allergogram of IgE binding patterns to excretory/secretory proteins of A. 
pegreffii. 

 

Patient ID 1 2 3 4 5 6 7 

A        

B        

C        

D        

E        

F        

G        

H        

I        

J        

K        

L        

M        

N        

O        

P        

Q        

R        

S        

Note: IgE binding intensities are graded as low (light Grey), medium and strong (Black). 

Key:   =Low;                =Medium;                   = Strong 
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Table 5.5: List of proteins in A. pegreffii excretory/secretory product reactive bands and 
sequence identity to allergens. 
 

Reactive bands 
number and % of 
reactive shellfish 

allergic patient sera 

Proteins in 
reactive band 

Identified by LC-
MS/MS 

MW at 
which 

protein 
migrated 

(kDa) 

Uniprot 
MW 
(kDa) 

Highest 
sequence 

similarity to 
an allergen 
by blast in 
SDAP (%) 

Name of 
allergen 

Accession number 
and Organism 

1 (5%)  Major allergen Ani 
s 1 

18 21 96 Ani s 1 AB100095- 
A. simplex 

  Peptidyl-prolyl cis-
trans isomerase 3 

 

18 19 79 Cat r 
1.0101 

CAA59468- 
Catharanthus roseus 

(Rosy periwinkle) 
  fatty acid-binding 

protein-like protein 
3 
 

18 19 23 Lep d 13 Q9U5P1-
Lepidoglyphus 
destructor [storage 
mite] 
 

The number of patient sera reactive to proteins in this band was only one; hence none of the proteins with ≥65% sequence 
similarity to an allergen could be identified as a putative cross-reactive allergen since reactivity with 50% of shellfish 
allergic patients’ sera was not satisfied as one of the parameters defined to identify putative cross-reactive allergen in this 
study.  
 

2 (5%)  Triosephosphate 
isomerase 

 

25 27 62 Arc s 
8.0101 

Q8T5G9- 
Archaeopotamobius 

sibiriensis 
(crustaceans species) 

  superoxide 
dismutase 
 

25 25 51 Hev b 
10.0101 

AAA16792- Hevea 
brasiliensis [latex) 

  Glutathione S-
transferase 1  
 

25 24 38 Bla g 5 O18598- Blatella 
germanica  

  24 kDa protein 
 

25 24 10 Art v 
3.0202 

ACE07187- Prunus 
persica [peach] 

 
None of the above proteins found in reactive band 2 for ES, satisfied the defined parameters for cross-reactive allergen for 
this study. 
 

3 (5%)  Malate 
dehydrogenase 

 

35 36 57 Mala f 4 AAD25927- 
Malassezia furfur 

[mould] 
  Transaldolase 

 
35 42 54 Cla c 

14.0101 
ADK47394- 

Cladosporium 
cladosporioides 

[mould] 
  YjeF-related 

protein, C-terminus 
containing protein 
 

35 33 20 Der f 3 P49275- 
Dermatophagoides 

farinae 

  Annexin-A6 35 34 19 Eur m 14 AAF14270- 
 

Euroglyphus maynei 
[mite] 
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None of the above proteins found in reactive band 3 for ES, satisfied the defined parameters for cross-reactive allergen for 
this study. 

 
 

4 (≥50%)  fructose-bisphosphate aldolase 1 * 
 

38 39 66 Sal s 3.0101 B5DGM7- 
Salmo salar[atlantic 
salmon] 

  fructose-bisphosphate aldolase 2 38 39 64 Sal s 3.0101 B5DGM7- 
Salmo salar[atlantic 
salmon] 

  hemoglobin 38 39 9 Chi t 8 P02227- Chironomus 
thummi thummi [midge] 

  Galactoside-binding lectin  38 37 10 Tab y 2.0101 ADM18346- 
 

Four proteins were found in reactive band 4; one of the proteins identified in this band, has ≥65% sequence similarity with an 
allergen; and ≥50% of shellfish allergic patient sera reacted with this band. 
 
5 (≥50%)  Enolase 

 
48 48 71  

Sal s 2.0101 
 

B5DGQ7- 
 
Salmo salar[atlantic 
salmon] 
 

  4-hydroxybutyrate coenzyme a 
transferase  

48 51 9 Sch c 1.0101 D8Q9M3- Castanea 
sativa [chestnut tree] 

 
 

 Imidazolonepropionase 
 

48 45 5 Cas s 1 CAD10374-
Dermatophagoides 
farina [mites] 

 
Three proteins were found in reactive band 5; one of the proteins identified in this band, enolase, has ≥65% sequence 
similarity with an allergen; and ≥50% of shellfish allergic patient sera reacted with this band. 
 
6 (5%)  cytosolic 10-formyltetrahydrofolate 

dehydrogenase  
53 100 41 Alt a 10 P42041- Alternaria 

alternata [mould] 
  6-phosphogluconate 

decarboxylating 
 

53 55 8 Alt a 3 P78983- Alternaria 
alternata [mould] 

None of the above proteins found in reactive band 6 satisfied the defined parameters for cross-reactive allergen for this study 
 
 
7 (5%)  Vitellogenin-6 187 201 21 

 
 

Gal d 
vitellogenin 
 
 

CAA49139-Gallus 
domesticus 

The only protein found in reactive band 9, vitellogenin, did not satisfy the defined parameters for cross-reactive allergen for 
this study. 
The shaded column = (%) sequence similarity to an allergen with the darker shade indicating the protein with ≥65% sequence 
similarity to an allergen; *-Novel putative cross-reactive allergens identified; SDAP=Structural database of allergenic proteins; 
MW=Molecular weight. 
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5.3.3 Identification of IgE-binding proteins by MS analysis  
 

The intensity of the reactive bands in the IgE immunoblots are graded in the allerlogram Tables 5.2 and 

5.4 for CE and ES of A. pegreffii, respectively. The grade ranged from strong to moderate and light 

intensity. Protein bands were excised from SDS-PAGE gels of CE and ES products based on IgE-binding 

patterns. Proteins with the molecular weight size corresponding to the reactive bands were further 

analysed by 1D-LC-MS/MS. 

5.3.4 Bioinformatic Analysis 

The sequences of proteins identified were used in a Blast search against the Structural Database of 

Allergenic Proteins (SDAP) database. However, the focus was on reactive bands in which ≥ 50% of 

patients reacted and in which the protein of interest has a sequence similarity of ≥65% with one or more 

allergens in SDAP. The list of proteins identified in both crude extract and excretory/secretory product of 

A. pegreffii reactive bands as well as similarity in their sequence identity to allergens, are listed in Tables 

5.3 and 5.5, respectively. 

Putative cross-reactive allergens were then identified from these groups of protein in selected reactive 

bands, based on high mascot score and ≥65% sequence identity with an allergen. Two reactive bands 

were further characterized in the CE-the band corresponding to 37-39kDa because of the signal strength 

and over 50% patient sera reactivity; while in the ES, 2 other protein bands were also characterized. 

Though the intensities of reactive bands in the ES were not as strong as those in the CE, they were 

however characterised as these bands were considered of moderate signal strength.  

Hence, fructose bisphosphate aldolase 1 and enolase were identified in the ES of A. pegreffii as putative 

cross-reactive allergens, while tropomyosin, in addition to fructose bisphosphate aldolase 1, was 

identified in the CE. Peptides of the putative cross-reactive allergens identified by LC-MS/MS in this 

study are listed in supplementary Tables S1 and S2. 
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5.3.5 Molecular phylogenetic analysis 

To investigate the nature of the potential immunological cross-reactivity between Anisakis allergens and 

related invertebrate allergens, the phylogenetic relationships between the three-major IgE binding 

proteins of A. pegreffii and their crustacean homologues were evaluated (Figures 5.7A and B, Figure 5.8). 

A. pegreffii enolase (Figure 5.7A) clustered together with the banana prawn homologue to the exclusion 

of fish enolases, while the A. pegreffii aldolase clustered separately from the fish homologues (Figure 

5.7B). Tropomyosin clustered together with homologues from prawn and crab, to the exclusion of those 

from oyster and abalone (Figure 5.8). 
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Figure 5.7. The phylogenetic tree of A. pegreffi putative novel cross-reactive allergens.  
 
Phylogenetic relationship of A. pegreffii’s novel putative cross-reactive allergens (A) Enolase (B) 
Fructose bisphosphate aldolase- with homologues from shellfish, based on Neighbour Joining 
analysis. Bootstrap values supporting each clade are indicated. 

 

 

 

 

(A). Enolase

(B). Fructose bisphosphate aldolase
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Figure 5.8. The phylogenetic tree of A. pegreffi tropomyosin, a cross-reactive allergen. 
 
Phylogenetic relationship of A. pegreffii’s tropomyosin with homologues from shellfish, based on 
Neighbour Joining analysis. Bootstrap values supporting each clade are indicated. 
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5.4 Discussion 

Hypersensitivity reactions to a variety of food sources containing homologous proteins is a significant 

clinical problem (Sicherer, 2001, Popescu, 2015) . Infected fish contaminated with parasitic nematodes of 

the genus Anisakis may induce possible clinical cross-reactive responses in subjects with allergies to 

crustaceans, as a consequence of a high amino acid sequence identity between crustaceans and parasite 

proteins, such as tropomyosin (Lopata et al., 2010). A. simplex is recognised by the WHO/IUIS 

nomenclature committee as the parasite with the largest number of known allergens (Caraballo and 

Acevedo, 2011, Fitzsimmons et al., 2014). In particular, while recent transcriptomic investigations of A. 

simplex and A. pegreffii led to the identification of up to 38 and 31 putative allergens, respectively (Baird 

et al., 2016), it is likely that the full repertoire of allergens for these parasite nematodes is yet to be 

discovered (Baird et al., 2016).  

Fructose bisphosphate aldolase was identified in the proteome of AP in this study. Reactivity was not 

observed with rabbit anti-goat aldolase antibody although reactivity occurred between the rabbit anti-goat 

aldolase and fish aldolase. However, 24 hour exposure (figure not shown) showed weak reactivity in 

crude extract and a weaker reactivity in ES. This result may be due to (i) variation of protein and allergen 

composition or (ii) the aldolase protein of Anisakis not having significant similarity to that of human, due 

to differences in the epitope binding site.  In addition, there was no reactivity with the antibody against 

parvalbumin. Parvalbumin was not identified in the proteome of A. pegreffii in this study. Hence absence 

of reactive band with parvalbumin in A. pegreffii extracts may indicate absence of the protein in A. 

pegreffii.  

Further analysis focused on A. pegreffii allergens potentially responsible for cross-reactivity in shellfish 

allergic patients. Over 50% (n=>10) of shellfish allergic patients reacted to tropomyosin from CE of A. 

pegreffii. Tropomyosin has been long known as an important pan-allergen. It  has been isolated from 

crustaceans (Kamath et al., 2013), as well as HDM and storage mites (Aki et al., 1995), insects including 
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cockroaches (Asturias et al., 1999) and from nematodes such as Anisakis and Ascaris species (Reese et 

al., 1997). Tropomyosin is a major cross-reactive allergen widely reported in shellfish and HDM-

sensitised subjects (Kamath et al., 2017). It is however, suggested that it might not be the only allergen 

responsible for cross-reactivity in such individuals (Boquete et al., 2011, Kamath et al., 2017). 

In this study, 2 novel cross-reactive allergens were identified in addition to tropomyosin in A. pegreffii 

proteome. Fructose bisphosphate aldolase migrated at the same molecular weight size as tropomyosin. It 

could be observed that 2 bands were merged together for some patients at 37-39kDa in the crude extract 

and the intensity was strong.  Fructose bisphosphate aldolase protein also gave a high reactivity in ES 

with sera of shellfish allergic patients. FBA has recently been described by our group (Baird et al., 2016) 

as well as by other researchers (Faeste et al., 2014) as a putative allergen of A. pegreffii and A. simplex. It 

was also just recently described as an allergen in prawns (Kamath et al., 2014a). Though FBA was 

previously identified as a major fish allergen with limited cross-reactivity (Kuehn et al., 2013), IgE-

binding frequency of Anisakis FBA was >50% against sera of shellfish allergic patients in this study. 

An additional protein was identified in the ES, namely enolase. This protein was also identified in the CE 

of A. pegreffii in this study. Due to the weakness of the intensity of the reactive bands, the number of sera 

reactive to this protein in the CE was indeterminate; however, its presence in the ES was significant. 

Enolase has been previously described as an allergen in Anisakis and fish but not yet in crustaceans 

(Faeste et al., 2014). Enolase has furthermore been described as a major cross-reactive allergen not only 

in fish and cockroaches, but also in plants and fungi (Chuang et al., 2010, Tomm et al., 2013). In this 

study, enolase in A. pegreffii extracts, displayed a high frequency of IgE-binding (≥50%) to sera from 

shellfish allergic patients. Reactivity to enolase in CE and ES, however, varied across subjects as 

observed in their binding intensity, which may indicate differences in the sources of enolase expression 

and/or relative abundance in A. pegreffii. According to information available for patients whose sera were 
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tested in this study, four subjects with IgE binding to enolase had a history of allergy to fish and 

crustaceans.  

Sera from patients sensitised to crustacean shellfish utilised in this study have reacted to additional 

allergen proteins, other than tropomyosin, which suggests a role for these proteins as cross-reactive 

allergens between crustaceans and Anisakis, and supports the hypothesis that multiple proteins are 

responsible for immunological and clinical cross-reactivity between crustaceans and the fish parasite 

Anisakis. Although six of the patients in our study had negative ImmunoCAP for shellfish-specific IgE 

(ssIgE) against shrimp, crab or lobster they were each atopic with a strong clinical history of seafood 

allergy and positive serum IgE immunoblotting. This reflects the current issue with limited reliable 

diagnostic agents. 

Other protein bands were observed at positions consistent with the known shellfish allergens, however, 

these proteins did not satisfy the criteria defined for cross-reactive allergens in this study as fewer than 

50% of patients sera reacted to these proteins. This might have been due to a low abundance of these 

proteins in A. pegreffii extracts in this study. Such proteins include myosin regulatory light chain (~15 

kDa) and paramyosin (~100 kDa), a cross-reactive protein described in diverse invertebrates (Popescu, 

2015). Other proteins detected include 70 kDa heat shock protein, which has been known to be implicated 

in insect-nematode cross-allergies (Johansson et al., 2001); transaldolase protein previously identified as a 

significant IgE cross-reactive allergen family of Cladosporium and Penicillium species (Chou et al., 

2011); fatty acid binding proteins (FABPs)  identified as minor allergens in mites (group 13) and 

cockroaches (Thomas et al., 2002), with the mite FABP shown by Munera et al. (Munera, 2015) to have a 

high degree of IgE cross-reactivity with shrimp FABP. A larger study needs to be carried out to confirm 

that these proteins are not implicated in cross-reactivity between shellfish and Anisakis. 
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In summary, in this study, three proteins (tropomyosin, enolase and fructose bisphosphate aldolase 1) 

have been identified as putative IgE binding cross-reactive allergens between A. pegreffii and shellfish. 

The data obtained from the result of this study provide a platform for further investigations into hidden 

allergens in shellfish and Anisakis, as well as other unrelated allergen sources, which may assist in the 

development of novel sensitive diagnostic tools for allergy detection.  

Improved component-resolved diagnosis is not only relevant for patients with possible allergy to A. 

pegreffii, but also for the estimated ~3% of the world’s population affected by shellfish and/or fish allergy 

(Liu et al., 2010). Knowledge of allergens that are cross-reactive between A. pegreffii and the many 

different species of fish and shellfish consumed worldwide is central to improved patient management 

and future development of immunotherapeutics.  
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6.1 Introduction. 

Proteolytic enzymes have been found to contribute significantly to the function of almost all organisms 

(Rawlings, 2013). They are required to remove the initiating methionine from newly synthesized, 

cytoplasmic proteins, to cleave the signal peptides from proteins that have gone through the secretory 

pathway, to remove propeptides from enzymes, as well as receptors and hormones synthesized as 

precursors in order to activate these proteins, to release individual proteins and peptides from 

polyproteins, to destroy potentially lethal proteins from parasites and pathogens, to release antigenic 

peptides from parasites and pathogens as well as to obtain amino acids from food proteins (Rawlings, 

2013). 

Key activities in the host-parasite interface have been connected to proteases. Proteases have been 

discovered to be associated with critical molecular tasks that lead to successful parasitism. These enzymes 

contribute to parasite nutrition, tissue invasion, and evasion of the host immune response. Increasingly 

recognised as potential targets for chemotherapeutic agents, parasite proteases play important roles in 

parasite biology (Rawlings et al., 2014). Proteases have been classified into serine, threonine, cysteine, 

aspartic and metalloproteases, based on their catalytic sites.  

6.1.1 Proteases of Anisakis Described 

A number of proteases secreted by Anisakinae have been investigated. These include the D-like aspartic 

protease cloned by Ni and colleagues (Ni et al., 2012). In another study,  activity of selected hydrolases in 

the ES of Contracaecum rudolphii showed activity of leucine arylamidase, valine arylamidase and 

chymotrypsin, while the remaining proteases revealed no detectable activity (Dziekonska-Rynko and 

Rokicki, 2005). A serine protease and serine protease inhibitor from infective larvae of the parasitic 

nematode Anisakis simplex ((Morris and Sakanari, 1994) was purified by Morris and Sakanari. The serine 

protease was found identical with that of porcine trypsin. Another serine protease identified, was found to 
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be similar to a secreted tissue-destructive serine protease from the pathogenic bacterium Dichelobacter 

nodosus (Morris and Sakanari, 1994). Furthermore, in the investigation by Sakanari and Mckerrow, 2 

classes of proteases were detected in A. simplex: a metallo aminopeptidase and a trypsin-like serine 

protease (Sakanari and McKerrow, 1990). Recently, a group of peptidases with roles in host tissue 

penetration and digestion encoded by transcripts in both A. simplex and A. pegreffii were shown to be 

differentially expressed as reported in a study by Cavallero et al. (Cavallero et al., 2018). Putative 

peptidases identified in that study included (i) aspartic peptidases M1 (n = 1), (ii) astacin peptidase M12A 

(n = 5),   (Grandea et al.) (iii) peptidase M13 (n = 2), (iv) serine carboxypeptidase S10 (n = 1), as well as 

hemopexin-like metallopeptidases, carboxylesterases and ShKT Stichodactyla helianthus toxin (n = 3). In 

same study it was noted that in particular, transcripts encoding for metalloproteinases (i.e. 

aminopeptidases, astacins and neprilysins) were particularly abundant in A. simplex.  

6.1.2 Leucine Aminopeptidases (LAPs) 

Metallo-aminopeptidases that catalyse the removal of N-terminal amino acid residues are the leucine 

aminopeptidases (LAPs). LAP is an exopeptidase metallo-exoprotease belonging to the M17 peptidase 

family. It preferentially cleaves a leucine residue at the N-terminus of proteins and peptides, although they 

display a broad amidolytic activity to other amino acid hydrolysis (Rawlings et al., 2014). Leucine 

aminopeptidases (LAPs) are found in animals, plants and microorganisms and they comprise a diverse set 

of enzymes with different biochemical and biophysical properties. Catabolism of endogenous and 

exogenous proteins, gene expression modulation, peptide and protein processing and turnover, antigen 

processing and defense are the physiological processes in which these proteins have been implicated 

(Matsui et al., 2006).  

The active site of LAPs of the M17 peptidase family is located in the C-terminal domain, considering 

most LAPs contain two unrelated domains. Two metal ions are required for activity by LAP and activity 

is usually best at neutral or basic pH. LAPs are sensitive to bestatin and amastatin (Rawlings et al., 2014). 
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Due to their important functions in the life cycle of pathogenic microorganisms such as Plasmodium, 

Fusobacterium nucleatum and Trypanosoma brucei, LAPs have emerged as novel and promising targets 

for drug design (Stack et al., 2007, Skinner-Adams et al., 2012, Rogers et al., 1998). In addition, a strong 

IgG response was shown in vaccination trials using Fasciola hepatica LAP (FhLAP) for rabbit 

immunization. A high level of protection was achieved after experimental infection with F. hepatica 

metacercariae. This affirmed FhLAP as a relevant candidate for vaccine development (Acosta et al., 

2008).  

6.1.3 LAP in other parasites and localization 

The function of LAP in different parasites is under investigation. LAP null mutants of Caenorhabditis 

elegans were shown to exhibit growth rate reduction, which subsequently delayed onset of egg laying 

(Joshua, 2001). In a study by Jia et al., the enzymatic activity of LAP was characterized in  T. gondii LAP 

(TgLAP) (Jia et al., 2010). Furthermore, in Streptomyces coelicolor, leucine aminopeptidase deletion was 

found to  increase actinorhodin production and sporulation (Song et al., 2013). In malaria parasites, 

leucine aminopeptidase-like enzymes have been ascribed with the function of haemoglobin digestion. 

They are believed to function in the terminal stages of haemoglobin digestion in order to generate free 

amino acids, used for parasite protein synthesis (Gavigan et al., 2001). In T. gondii, TgLAP has also been 

found to have the ability to release free amino acids as the final step in protein catabolism (Jia et al., 

2010). 

The LAP of liver fluke has been shown to be expressed in the excretory/secretory product and therefore in 

the gut of the fluke (Marcilla et al., 2008, Marcilla et al., 2012). In Clonorchis sinensis, the carcinogenic 

liver fluke, LAPs (CsLAP1 and CsLAP2) have been demonstrated to be expressed throughout the 

development of the parasite, co-localizing in the epithelial cells of the gut of the fluke. They are believed 

to probably participate in the terminal cleavage of peptides just before absorption from the gut lumen 

(Kang et al., 2012). Peptidases related to LAPs expressed in the gut and tegument of Schistosomes (S. 
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japonicum and S. mansonii), have also been described (McCarthy et al., 2004). LAPs in schistosomes 

have been found in eggs, miracidia, cercaria and egg hatching fluid.In addition, it was demonstrated in 

Schistosomes that egg hatching did not occur when the specific inhibitor for metalloproteinases, bestatin, 

was applied. Both LAPs of S. mansonii SmLAP1 and SmLAP2 were implicated in egg hatching (Xu and 

Dresden, 1986). 

The work described in this chapter extends the study of proteases in Anisakis species to investigating 

activity, function and localization of secreted leucine aminopeptidase (LAP) in both A. simplex and A. 

pegreffii.  
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AIMS 

Metallopeptidases were the most abundant among the classes of peptidases identified in the proteome of 

Anisakis pegreffii (as described in Chapter 3). In addition, one of these classes of aminopeptidases, 

leucine aminopeptidase (LAP), was identified in Chapter 4 among the cargo content of exosomes of A. 

pegreffii. Hence this chapter therefore aims to: 

1. Express and purify a functional recombinant leucine aminopeptidase (LAP) protein of 

Anisakis in Escherichia coli. 

2. Evaluate the biochemical properties and function of this protease. 

3. Demonstrate the localisation region of the enzyme in Anisakis pegreffii L3 Larvae. 
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6.2 Methods  

The general methods of parasite materials collection, molecular identification of A. pegreffii, preparation 

of excretory/secretory products (ES) and parasite crude extracts (CE), 1D- LC-MS/MS analysis and 

protein identification are as described in the general methods in Chapter 2. The following are the specific 

methods for this chapter. 

6.2.1 Specific Materials 

Leucine-7-amido-4-methylcoumarin hydrochloride and L-Leu-β-naphthylamide  substrates with bestatin, 

Fast Blue B Salt, potassium cyanide BioUltra, ≥98.0% (AT), Methyl Green Zinc chloride salt for 

microscopy, ES-62 and 1, 10-phenanthroline were purchased from Sigma Aldrich (Australia). Pre-cast 

gels (4-12%), buffers, molecular weight  markers and all standard molecular biology reagents used were 

from Sigma Aldrich (Australia) except otherwise stated. 

6.2.2 Specific Methods 

6.2.2.1 Leucine Aminopeptidase Gene Synthesis 

Due to time constraints and unsuccessful amplification of the LAP gene from A. pegreffii L3 larvae 

extract at the first few trials, a fragment of a secreted LAP gene from A. simplex, based on the published 

genomic data of A. simplex was synthesized by G-block script (Australia) (Uniprot accession number: 

A0A0M3KDK6). Restriction enzyme sites for both HindIII and Nde1 were introduced into the 

synthesized fragment at the 5’ and 3’ end, respectively.  In designing of the sequence, introns of the LAP 

gene from A. simplex were removed and the final gene size synthesized was a 950bp gene (See Appendix 

for details of gene synthesized). The synthesized gene fragment was provided in a lyophilized tube, which 

was then re-suspended in the laboratory as specified by the manufacturer for further downstream 

application.  
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6.2.2.2 PCR Primer Design 

PCR Primers based on the whole LAP gene: Forward primer (5’- 

GCATGAAAGCTTTTACAGGTAGTAATTTAAATA) which contained an HindIII site (underlined) 

and the Reverse primer (5’-GCATGACATATGATGATTGTTGTTTTCAGC), which introduces an Nde1 

site (underlined) were designed using Primer 3 software. Both enzyme sites are able to fuse N-terminal 

and C-terminal His6 tag.  Those restriction enzymes were chosen because they both do not have 

recognition sites within the gene but do have in the pET28a vector. Six nucleotides were added at the 5’ 

end of each primer to increase their stability. The primers were ordered from GeneWorks Custom Oligo 

Service, Australia.  

6.2.2.3 Appropriate Gene Size Confirmation 

The synthesized gene used as a template, was amplified according to instructions by manufacturers using 

the above-mentioned primers with a cycling condition of: 94 °C for 1 min; 94 °C for 30 s; 50 °C for 

1 min; 72 °C for 2 min; 15 cycles, followed by a 7 min extension at 72 °C. Amplified product was run for 

1 hour at 100 volts on a  1.5% agarose gel (0.5 agarose dissolved in 50 ml TAE buffer) premixed with 

Sybr safe  (5µl to 50mls of agarose gel=1:10,000 dilution) to confirm the right gene size has been 

amplified. This was visualised under the Biorad UV transilluminator. 

6.2.2.4 Digestion of Gene and Plasmid 

The amplified product was purified using the Isolate II PCR and Gel purification kit (Bioline) according 

to the manufacturer’s instruction. Subsequently, the purified gene product and the plasmid to which the 

gene would be inserted (pET28a) were separately double digested by HindIII and Nde1 (NEB) to create 

two sticky-ended DNA fragments using the NEB protocol for double digestion as shown below (Table 

6.1). Equal amounts of digested DNA were thereafter electrophoresed on 1.5% agarose gels as earlier 

described for 2 hours at 60V. 
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Table 6.1: Double Digestion Protocol. 

Components Reaction volume 

Restriction enzyme 1 10units (1µl) 

Restriction enzyme 2 10units (1µl) 

DNA 1µg 

10 X NEBuffer 48 µl 

Total reaction volume ~50 µl 

Incubation time 1 hour 

Incubation Temperature 37°C 

 

6.2.2.5  Ligation of Gene (LAP) into Plasmid (pET28a). 

The digested products were purified after electrophoresis and visualization of bands which indicated 

complete and correct digestion. The LAP gene was inserted and ligated into the pET28a plasmid vector 

using the T4 DNA Ligase NEB protocol as described below in table 6.2. Plasmid with insert was 

amplified and PCR products were purified with Isolate II PCR and Gel purification kit (Bioline). The 

reaction was set up as shown below on ice. 
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Table 6.2: Ligation Protocol. 

Components 20 µl Reaction 

T4 DNA Ligase Buffer (10X), thawed and 

resuspended at room temperature 

2 µl 

pET 28a Vector DNA (5369bp) 50 ng (0.020 pmol) 

Insert DNA (950bp) 37.5ng (0.060 pmol) 

Nuclease free water To 20 µl 

T4 DNA Ligase 
1 µl 

 

The table shows a ligation procedure using a molar ratio of 1:3 vector to insert. The reaction was gently 

mixed by pipetting up and down and given a brief microfuge. The mixture was then incubated at room 

temperature for 10 minutes and subsequently heat inactivated at 65°C for another 10 minutes.  

6.2.2.6 Sequencing. 

To the purified plasmid DNA with the insert (10μl), was added 1μl of the forward and reverse sequencing 

primers in separate tubes according to Australian Genome Research Facility (AGRF) specification and 

was sent for sequencing. The primer sequence used are forward primer- 5`-

TAATACGACTCACTATAGGG-3`  (20bp) and reverse primer- 5`-

TTATGCTAGTTATTGCTCAGCGGTGG-3` (26bp) obtained from  the Biotechnology Laboratory, 
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RMIT University, Bundoora, Victoria, Australia. This was to confirm the correct orientation and insertion 

of the gene in the pET 28a plasmid vector. 

6.2.2.7 Competent Cells Preparation. 

E. coli DH5α and E. coli BL21 DE3 were separately grown overnight in 5ml LB broth each. The 

overnight culture was then inoculated into 200ml LB broth and grown at 37°C on the shaker (220 rpm) 

until an OD 600 nm 0.35 to 0.4 (Early-Mid-Log-Phase) was reached. The E. coli cultures were chilled on 

ice for 30 minutes and divided 50ml each in Falcon tubes, which were thereafter centrifuged at 3500 x g 

for 15 minutes at 4°C. Supernatant was removed and pellets were resuspended in 50ml ice-cold sterile 

Milli-Q water until the pellets disappeared. The centrifugation process was performed again using the 

same conditions. Pellets were resuspended in 25ml ice-cold sterile Milli-Q water and centrifugation was 

repeated. After this centrifugation, the pellets were resuspended in 25ml of 10% ice cold glycerol, and the 

tubes for each E. coli strain were pooled to have 1 tube for each strain and the centrifuge protocol 

repeated as described. Finally, the cells were resuspended into a double pellet volume (around 300 μl) of 

10% ice-cold sterile glycerol, and cell aliquots of 50μl in each eppendorf tube were stored at - 80°C. 

6.2.2.8 Transformation. 

Chilled reaction mixture of ligated plasmid with insert was used to transform 50 μl competent cells of 

each of E. coli strain dH5α (for maintenance and propagation) and E. coli BL21 DE3 (for protein 

expression). Briefly, competent cells were thawed on ice and 50 µl of competent cells was added to 

chilled 5 ng (2 μl) of the ligation mixture DNA. The cells and DNA were mixed gently by pipetting up 

and down and subsequently placing on ice for 30 minutes. The mixture was then heat shocked at 42°C for 

30 seconds. At room temperature, 950 µl of SOC media was added to the tubes and placed at 37°C for 60 

minutes with vigorous shaking (250 rpm). Selection plates incorporated with kanamycin (50 µg/µl) was 

warmed to 37°C. The cells and ligation mixture (100 µl) were then spread onto the plates and incubated 
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overnight at 37°C. True transformants were selected and presence of the gene was verified by 

amplification of the gene using the designed primers. This protein was expressed and purified from the 

transformed E. coli BL21 DE3.  

6.2.2.9 Protein Expression. 

Expression of the protein was carried out using an in-house terrific broth protocol. Briefly, E. coli strain 

was transformed and grown overnight on LB agar with kanamycin antibiotics at 37 ᴼC. Pre-induction 

terrific broth (200 mL) (recipe stated under Appendix 1) was inoculated with 1 colony or 20 µl 

transformant from the selection plate or culture. Culture was incubated overnight at 28 ᴼC with fast 

shaking. The overnight culture was harvested by centrifugation at 4000 X g for 10 minutes. Pellets were 

washed and resuspended in 20mL PBS and then re-harvested by centrifugation. Resulting pellet was 

resuspended in 200 mL expression terrific broth (recipe in general methods). The new culture was 

equilibrated by incubating at induction temperature for 15 minutes. Isopropyl β-D-1thiogalactopyranoside 

(IPTG) was added to desired concentration (1 mM). Protein was then expressed for 2-6 hours at 28 ᴼC 

with fast shaking. 

6.2.2.10 Protein Purification. 

E. coli cell culture expression culture was pelleted by centrifuging at 5000 x g for 10 minutes at 4 ᴼC 

and frozen at -80 ᴼC until use. For purifying His6-LAP, cell pellets were resuspended in lysis buffer 

(20mM Phosphate buffer pH 7.4 and 1mg/ml lysozome). Volume is 1/10th volume of cell culture 

suspension that pellet was obtained from. Resuspended pellet was sonicated using a probe sonicator 

(Branson digital sonifier, 35% amplitude, Pulse On: 15 sec; Pulse Off: 30 sec; three cycles), and 

thereafter centrifuged for 5 min at 10,000 x g to remove debris. The supernatant was collected and filtered 

using a 0.45 μm membrane filter (Millipore, Billerica, MA, USA). 
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6.2.2.11 Preparation and Packing of Immobilized Metal Affinity Chromatography (IMAC). 

A 1ml polypropylene column (Qiagen) was prepared for IMAC purification of LAP protein by washing 

with 10ml Milli-Q water, with both sides of the column open, to obtain a steady speed of water flow and 

removal of air bubbles. Iminodiacetic (IDA) sepharose was added to the column and left to settle to the 

pre-marked 1ml column level with the end of the column stoppered with a cap. The resin was then 

washed with 10ml MilliQ water (10 column volumes (CV)) to remove the ethanol in which the resin was 

stored. Next, the column was charged with 0.5ml (0.5 CV) of 0.2M NiSO4 and washed with 10ml (10 

CV) of MilliQ water to remove unbound metal ions. The flow through was collected in a disposable tube 

and discarded. Finally, the column was equilibrated with 5 ml (5 CV) of the equilibration wash buffer 

containing 20mM Phosphate buffer, 400mM NaCl and 5mM Imidazole at pH of 7.4.  

6.2.2.12 Optimization of IMAC protein purification.  

A 5ml sample of cell lysate obtained as described above was added to the column and mixed with the 

resin by slowly flipping the column up and down. The column was incubated at 4ᴼC for 1 hour with 

gentle horizontal shaking to keep the sample mixed with the resin. Column was thereafter returned to the 

vertical position and left to settle for 30 minutes. Crude eluent was collected and the column was washed 

with 10 ml (10 CV) post sample wash buffer, and then the flow through eluent containing unbound 

protein was collected. Successively, 1ml of elution buffer containing increasing concentrations (20 mM - 

500mM) of imidazole was added to the column and fractions of 1 ml were collected in 1.5ml 

microcentrifuge tubes.  
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6.2.2.13 SDS-PAGE Electrophoresis and Western blotting  

Samples were heated with SDS-loading buffer at 37ᴼC for 10 minutes before being subjected to SDS-

PAGE.  Gels were stained with Coomassie blue for 1 hour and destained overnight. Presence of protein of 

interest was confirmed with Western Blot. A separate SDS-PAGE electrophoresis, which was unstained 

with a pre-stained marker (listed in general methods and reagents), were used. The proteins on the gel 

were transferred to a nitrocellulose membrane using the iBlot TM Dry Blotting System (Invitrogen). 

Briefly, the anode stack containing the membrane was placed on the iBlot, and the SDS-PAGE gel was 

carefully placed on the membrane anode stack.  A filter-paper pre-soaked in deionized water was placed 

on top of the gel and air bubbles rolled out using the blotting roller provided in the iBlot equipment. 

Subsequently, the cathode stack was placed on the filter paper with the electrode side facing up. A 

disposable sponge was positioned on the top of the cathode stack. Blotting was performed following a 

preset program and time (7 minutes). The nitrocellulose membrane was thereafter ready for further 

processing.  

The nitrocellulose membrane was blocked in 25ml of 5% (w/v) bovine serum albumin (BSA) in Tris-

buffered saline with 0.05% Tween 20 (TBST) for 1 hour on the shaker at room temperature. The 

membrane was then washed 3X for 5 minutes each time. The membrane was probed with primary 

antibody (anti-his antibody developed in mouse and diluted (1:3,000) in 1% BSA in TBST for 1 hour. 

Subsequent washing of the membrane with TBST 3X as before, was followed. The secondary antibody 

(rabbit anti-mouse antibody-25 ml diluted 1:3,000) in 1% BSA in TBST conjugated to alkaline 

phosphatase (AP) substrate was then applied to the membrane for 1 hour, as before on the shaker. 

Membrane was washed again 3X with TBST for 5 minutes each and then immersed in the AP detection 

buffer (Biorad), following the manufactuer’s instructions. Membrane was left to develop colour intensity 
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in the dark for 3-5 minutes before washing excess detection buffer off with distilled water. Coloured 

protein bands were visualized. 

6.2.2.14 Evolutionary relationships of Anisakis LAP with homologs. 

LAP sequence was used as a query for Blast searches of databases at the NCBI and EBI servers and also 

the transcriptome of A. pegreffii in-house generated database. Relevant matches were retrieved. Sequence 

alignments were generated with MEGA 6 (Tamura et al., 2013).  The evolutionary history was inferred 

using the Neighbour-Joining method (Saitou and Nei, 1987).   The tree is drawn to scale, with branch 

lengths (next to the branches) in the same units as those of the evolutionary distances used to infer the 

phylogenetic tree.   The evolutionary distances were computed using the Poisson correction method 

(Zuckerkandl and Pauling, 1965) and are in the units of the number of amino acid substitutions per site. 

The analysis involved 13 amino acid sequences. All positions containing gaps and missing data were 

eliminated. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). 

6.2.2.15 Enzymatic analysis of Anisakis LAP. 

The aminopeptidase activities of recombinant Anisakis LAP was measured by monitoring the release of 

cleaved moieties from the fluorogenic peptidyl substrates l-Leucine (Leu)-7-amido-4-methylcoumarin 

hydrochloride in a 96-well black plates using a final volume of 200 μl, enzyme (final concentration 

20 μM)) and substrate (final concentration 10 μM)  (Acosta et al., 2008, Song et al., 2008). All 

experiments were carried out in duplicate, and the mean and standard deviation (SD) were calculated. 

6.2.2.15.1 Optimum pH for LAP of Anisakis spp. 

The optimum pH for enzymatic activity was first determined by incubating the purified enzyme in 0.1 M 

sodium acetate (pH 3.5, 4.5, 5.0 and 6.0), 0.1 M Sodium phosphate (pH 7.0), 0.1M Tris-HCL (pH 7.4) 

and 0.1 Sodium phosphate (pH 8, pH 8.8), respectively. For each pH step, the appropriate blank was 
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separately measured as a control. The optimum buffer and pH was subsequently used in all other enzyme 

activity assays.  

6.2.2.15.2 Effect of Metal ions on enzymatic activity of Anisakis spp LAP. 

The effect of metal ions on the enzymatic activity was assayed by incubating LAP with the divalent 

cations generated from MgCl2, MnCl2, CaCl2, FeCl2 and ZnCl2 at a final concentration of 1mM for each 

metal ion (Chen et al., 2011). The enzyme activities of the aliquots of sample against the substrate were 

analyzed as described above. Results were expressed as percentage of enzymatic activity with respect to a 

control without metal ions.  

6.2.2.15.3 Inhibition studies for LAP of Anisakis spp. 

For inhibition studies, Anisakis LAP was incubated first for 15 minutes separately in the presence of N,N-

ethylenediaminetetraacetic acid (EDTA),  1,10-phenanthroline, trans-epoxy-succinyl-L-leucylamido (4-

guanidino) butane (E-64) or bestatin (a final concentration of 10µM for all the inhibitors) and thereafter 

the substrate was added and incubated for 1hr. Results were expressed as percentage of enzymatic activity 

with respect to a control without inhibitors. Activity was measured and expressed as the mean of two 

different experiments. The effects of different concentrations of bestatin inhibitor, the specific 

aminopeptidase inhibitor were assayed by pre-incubating the enzyme with different concentrations of the 

inhibitor (10µM, 20 µM, 30 µM, 40 µM and 50 µM) for 10 min at 37 °C. After the incubation period, 

remaining enzyme activity was assayed as above adding the substrate and incubating for 2 hr at 37 °C. 

Results are expressed as % of or relative activity with respect to control conditions.  

6.2.2.16 Processing of procathepsin L5 protease of Fasciola hepatica by Anisakis LAP. 

Recombinant Anisakis LAP was incubated with recombinant procathepsin FhCL5 (inactivated or 

unprocessed CL5) at pH 4.5 or pH 7.4. Purified recombinant pro FhCL5 (50 μg) was mixed with 1μg 
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recombinant Anisakis LAP according to Robinson et al. (Robinson et al., 2011). Briefly, the mixtures 

were incubated in either 0.1M sodium acetate (pH 4.5) or 0.1 M sodium phosphate (pH 7.4), each 

containing 1 mM DTT for 3 h at 370C. Reactions were stopped by the addition of E-64 (10 mM). Samples 

were taken at different time-points to observe the progress of digestion. The time points were 0, 

45minutes, 1 hour 30 minutes, 2 hour 15 minutes and 3 hours, respectively. Samples were analyzed on 4-

12% SDS-PAGE gels, stained with Coomassie stain and/or transferred to nitrocellulose membranes for 

immuno-detection as previously described. 

6.2.2.17 Histochemical Staining of Leucine Aminopeptidase of A. pegreffii in L3 Larvae. 

The parasite tissues/larvae were either fixed in formol-calcium or were put in small plastic cassette and 

embedded in optimal cutting temperature (Cygler et al., 1993) compound medium. After the samples in 

OCT became solid (indicated by white color), they were frozen for 3 minutes and then cut into many 

sections (10 um thick) by a microtome and thereafter spread over gelatin coated slides.  LAP 

histochemical staining was performed according to the method described by Pokharel and colleagues 

(Pokharel et al., 2006) referring to Nachlas et al’s protocol (Nachlas et al., 1957) with little modification. 

Briefly, the sections were incubated with the incubating solution [L-Leu-β-naphthylamide 0.5 mM, 

sodium chloride (0.34%) and Fast Blue B salt (0.05%)] and kept in a moist dark chamber for 2 h. 

Thereafter, the slides were rinsed consecutively in 0.85% saline, 0.1 M copper sulphate and again with 

saline for 2 min each. The sections were counterstained with 2% methyl green for 3 min and rinsed in 

distilled water. Finally, the counterstained sections previously fixed in formol-calcium were mounted in 

DPX for permanent slide preparation. Sections for negative controls were incubated in the incubating 

medium without the substrate. The slides were observed under a stereomicroscope fitted with Infinity 

Capture software for image capture. 
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6.3 Results 

6.3.1 Database searched.  

When the project described in this chapter was designed, the peptide data generated from the first 

proteomic analysis, which identified aminopeptidases in A. pegreffii, was searched against the then just 

released draft genome of A. simplex, which was made into a database for this analysis. This was before 

the transcriptome data of A. pegreffii was published. Proteases identified were confirmed encoded in the 

transcriptome of A. pegreffii, published thereafter.  

6.3.2 Anisakis simplex and A. pegreffii LAP proteins. 

A fragment of a secreted LAP gene based on the published genomic data of A. simplex was synthesized 

by G-block script (Australia) (Uniprot accession number: A0A0M3KDK6) and cloned in the laboratory 

into a pET28a vector transformed into E. coli BL21 DE3. 

A subsequent search with A. pegreffii proteome data against the newly constructed database of A. 

pegreffii trasncriptome identified two leucine aminopeptidases in the A. pegreffii proteome. These are 

leucine aminopeptidase LAP-1; (Unigene648_APIA; 477aa) and a hypothetical protein 

(CL3092.Contig1_AP1A; 246aa) identified as leucyl aminopetidase (LAP-2) by Blast search. Protein 

based Blast program comparing the A. simplex LAP sequence with each of these LAPs in A. pegreffii, 

showed 87% identity and 56% query coverage with the leucyl aminopetidase of 246aa (LAP-2). The 

protein sequences blast and sequence alignment is shown in Figures 6.1 and 6.2. However, there was no 

significant similarity with LAP 1 of A. pegreffii.  
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Figure 6.1. Protein Sequence Blast of A. simplex LAP and A. pegreffii LAP-2. 
 
A. Pegreffii LAP-2 is also known as leucyl aminopeptidase (CL3092.Contig1_AP1A; 246aa). 
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Figure 6.2. Sequence alignment of A. simplex LAP gene (A0A0M3KDK6) and A. 
pegreffii LAP-2 (CL3092). 
 
Note: The LAP-2 protein obtained from the transcriptome data of A. pegreffii has a shorter sequence, 
which may be due to incomplete transcripts of such proteins obtained from the transcriptome data. 
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Due to the high sequence similarity between the LAP proteins from A. simplex and A. pegreffii, from this 

point forward, I would also refer to the LAP protein in this chapter as A. pegreffii LAP. 

6.3.3 Restriction Digestion. 

The vector used in this study for cloning was pET28a with a size of 5369 base pairs (bp) (Figure 6.3). The 

double digestion using HindIII and Nde1 restriction enzymes produced fragments that are approximately 

4419 and 950 bp as expected (Figure 6.4). 

 

 

Figure 6.3. Vector Map of Pet 28a (5369 bp): KanR, lacl, f1 origin of replication. 
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Figure 6.4. Agarose gel electrophoresis of restriction digests. 

6.3.4 Expression and Purification of Anisakis LAP. 

The active recombinant form of Anisakis LAP was produced in E. coli BL21 DE3, expressed as a soluble 

protein and purified by IMAC using 20mM phosphate buffer with 400mM NaCl and 150mM Imidazole 

at pH 7.4. It is a protein migrating at 33kDa, as confirmed by SDS-PAGE and Western blotting (Figure 

6.5 A, B).  

 

5369
4419

950

200

1  =Molecular Marker (HyperLadderTM 1kb-Bioline)
2  =Uncut Plasmid
3   =Digested Plasmid with no insert ligated
4-6=E. coli DH5α with Plasmid and LAP gene insert
7-9=E. coli BL21 DE3 with Plasmid and LAP gene insert
10 = LAP PCR product (950bp). A control for insert size
LAP=Leucine aminopeptidase
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Figure 6.5. Leucine Aminopeptidase of Anisakis Expression and Purification by IMAC. 
 
(A)= 4-12% SDS-PAGE  (B) Western blot of expression and purification of Anisakis LAP. 

 

6.3.5 Sequence Alignment and Phylogenetic Analysis. 

A comparison of the amino acid sequence of Anisakis LAP with sequences in the GenBank database 

indicated that Anisakis LAP has characteristic features of members of the family peptidase M17. This 

protein is identified in Toxocara canis, Brugia malayi and other species as LAP-2, while in some other 

species it is referred to as cytosol aminopeptidase.  Multiple sequence alignment of the amino acid 

sequence of Anisakis LAP with other organisms including helminth, shellfish, other parasites and humans 

was performed. This phylogenetic comparison with homologous enzymes from different species 

1    2   3    4     5   6    7    8      9 1        2      3        4      5     6    7   

Lane 1=Molecular marker (Blue protein standard broad 
range)
Lane 2=5mM Imidazole 1st Wash
Lane 3=5mM Imidazole 2nd Wash
Lane 4=20mM Imidazole Gradient
Lane 5=40mM Imidazole
Lane 6=60mM
Lane 7=100mM
Lane 8=150mM
Lane 9=150mM( 2nd 1ml application)

Leucine Aminopeptidase Purification
Lane 1=Molecular marker (Blue protein standard broad 
range)
Lane 2=20mM Imidazole Gradient
Lane 3= 40mM Imidazole Gradient
Lane 4=60mmM Gradient
Lane 5=100mM Gradient
Lane 6=150mM
Lane 7=150mM ( 2nd 1ml application)

190

135

100

75

58

46

32
25

22

190
135
100

75
58

46

32

25

22

17

kDakDa
A B

33kDa

33kDa



Chapter 6 

178 

 

demonstrates that the all metazoan LAPs constitute a well-defined group diverse from similar enzymes 

from Cestodes, Apicomplexa and vertebrates. FhLAP and other flatworm orthologs constitute a well-

defined cluster distant to the LAP enzymes of vertebrate. In addition, Anisakis LAP was evolutionary 

closer to shellfish LAP than to other helminths. Interestingly, LAP-1 of Anisakis was shown to be 

evolutionary closer to human LAP than to LAP-2 of Anisakis, or other helminths and shellfish LAP 

proteins (Figure 6.6). 

 

Figure 6.6. Phylogenetic Analysis of Leucine Aminopeptidase of Anisakis  spp. 

6.3.6 Activation of ProCathepsin L5 of Fasciola hepatica by Anisakis LAP. 

SDS-Page analysis of processing of inactivated FhCatL5 by Anisakis LAP is shown in Figure 6.7 (A-C). 

The 37 kDa unprocessed FhCatL5 was processed by LAP at pH 4.5. After 1hr 30min, the band of 

FhCatL5 at ~37kDa decreased in intensity and by 3hrs, the band was no longer visible while a second 

band at ~25kDa was still visible. 
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Figure 6.7. 4-12% SDS-PAGE Activity of Anisakis LAP. 
 
(A-C): 4-12% SDS-PAGE Gel of the Activity of (A). Leucine Aminopeptidase (LAP) of Anisakis on 
inactivated Cathepsin L5 (CL5) at pH (B). 4.5 and (C). 7.4. 
Lane L5=catL5 as control, M=Molecular marker (Sigma , Colour burst). 
Lanes 1-5  (pH 4.5)  are time points 0, 45 mins, 1.30 min, 2.45 min and 3hours, respectively. 
Lanes 7-11(pH 7.4) are time points 0, 45 mins, 1.30 min, 2.45 and 3hours, respectively. 

 

At pH 7.4, there was no observed activity of LAP on FhCatL5, as the band at ~37kDa retained its 

intensity for the time period of the experiment. This is shown in both the SDS-PAGE (Figure 6.7C) and 

Western blot (Figure 6.8).  Within the time period of 3 hours Anisakis LAP had processed the pro 

FhCatL5 at pH 4.5 while no activity occurred at pH7.4.  
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Figure 6.8. Western blot showing activity of Anisakis LAP on cathepsin L5. 
 
Western blot showing the activity of Leucine Aminopeptidase (LAP) of A. pegreffii on inactivated 
Cathepsin L5 (CL5) at pH 4.5 and 7.4. 

6.3.7 Enzymatic properties of recombinant Anisakis LAP. 

6.3.7.1 Optimal pH. 

To investigate the enzymatic characteristics of Anisakis LAP, recombinant Anisakis LAP was prepared 

and aminopeptidase activity was determined using the fluorogenic peptide Leucine-7-amido-4-

methylcoumarin hydrochloride substrate. Best activity was observed at pH 7.4, exhibiting a slight decline 

under mildly acidic (pH ≤ 7) and basic (pH 8.5) conditions. The optimal pH was pH7.4 for Anisakis LAP 

(Figure 6.9).  
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Figure 6.9. The Optimal pH of recombinant Anisakis LAP. 
 
Optimum pH of recombinant Anisakis LAP was carried out at 37˚C for 1 h. Each point represents the 
mean ± SD of duplicate samples that were incubated. 

 

6.3.7.2 Metal ion activity on Anisakis LAP. 

Since LAP of the M17 class is a metalloenzyme, the effect of divalent metal cations on recombinant 

Anisakis LAP was examined, as shown in Figure 6.10. The effect of divalent metal ions investigated 

showed that for Anisakis LAP, manganese was the optimal metal ion resulting in activity increment in the 

presence of Mn2+, closely followed by Mg2+ and Zn2+ with Ca2+ (Table 6.3).  
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Table 6.3: The effect of various divalent cations on the enzymatic activity of Anisakis 
LAP. 

Metal ions Concentrations (mM) Activity (%) 

Control (no metal ion) 0 100 ±2.8 

MgCl2 1 127 ±8.5 

MnCl
2
 1 138 ±5 

ZnCl
2
 1 127 ±0.5 

FeCl
2
 1 105 ±2.83 

CaCl
2
 1 124 ±5.7 

The data was repeated in duplicate and reflected the mean relative activity ± SD (n = 2). 

6.3.7.3 Effect of Inhibitors on Anisakis LAP. 

The effects of different protease inhibitors or metal chelators on the activity of each Anisakis LAP were 

assayed by preincubating each enzyme with each inhibitor or metal chelator as described previously. This 

was followed by measurement of residual enzyme activity on the substrate. Results were expressed as % 

of relative activity with respect to control, which did not contain any inhibitor or metal chelator, taken as 

100%. The inhibitor profile of Anisakis LAP is shown in Figure 6.10. The chelating agent 1-10-o-

phenantroline inhibited Anisakis LAP activity the most, followed by EDTA and then bestatin. E62, a 

cysteinase inhibitor, had no inhibitory effect on Anisakis LAP. In addition, hydrolytic activity of Anisakis 

LAP was significantly inhibited by bestatin with increased concentration (Figure 6.11). 
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Figure 6.10. The effect of inhibitors on the enzymatic activity of Anisakis LAP at a concentration 
of 1mM.  
 
The assays were performed in duplicate s and the mean and standard deviation (SD) was calculated. 

 

 

 

Figure 6.11. Effect of Different Concentration of Bestatin on the Enzymatic Activity of 
Anisakis LAP. 
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6.3.8 Localization of Leucine Aminopeptidase of A. pegreffii by Histochemistry. 

Using a chromogenic substrate, leucine amidolytic activity was predominantly detected by histochemistry 

at the cells of the lumen of Anisakis with reactivity distributed throughout the cells lining the gut 

epithelium. The pink to magenta (purple) colour obtained due to reaction of β-naphtylamine and Fast 

Blue B salt in the presence of Cu 2+ ions was considered as the positive (Figure 6.12).  

 

Figure 6.12. : LAP Localisationin Anisakis pegreffii L3 larvae tissues. 
 
Stereomicroscope images of histochemically stained Anisakis  L3 larvae tissues (10uM) for LAP 
Localisation. (Magnification ×40). 
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6.4 Discussion 

A number of reports have documented that the M17 family of metalloproteinase contains two metal 

binding sites having different affinity for metal ions (Kim and Lipscomb, 1993). Each binding site 

contains a Zn2+ ion for enzyme activity. Substitution of Mg2+ or Mn2+ at the first binding site occurs 

readily and activates LAP, whereas the second binding site binds Zn2+ much more strongly and 

substitution occurs slower than at the first binding site. In Anisakis LAP, we observed that the enzyme 

activity of LAP was increased by Mn2+, Mg2+ and Zn2+ in this order, supporting previous reports that 

divalent cations are essential for metallopeptidase activity and that the activity of M17 LAPs is enhanced 

by their addition (Acosta et al., 2008). 

Bestatin is an inhibitor that slowly attains equilibrium with the enzyme to form a tightly bound complex 

(Segel, 1975). The reaction progress curves observed for the hydrolysis of the substrate in this study in 

the presence of bestatin inhibitor shows a slow binding inhibition mechanism. The high inhibition profile 

shown by other compounds, apart from E64, can be explained by the faster chelating effect of these 

compounds.  

Acosta and colleagues (Acosta et al., 2008) reported that  LAP activity was consistently very low in 

cathepsin L-rich ES products and this could be as a result of degradation of LAP by cathepsin Ls. 

Interestingly, the result of this study showed interaction between Anisakis LAP and proFhCatL5, in which 

proCathepsin L5 (37kDa) was processed by Anisakis LAP. A most probable thought with regards to 

Acosta et al’s observation is that LAP is being used up as it processes inactivated CatLs, particularly 

CatL5. Further  investigation on the interaction of LAP and CatL5 to confirm this, needs to be carried out. 
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Anisakis LAP was observed to be situated close to the lumen where proteolytic events degrading host 

proteins takes place. It is predominantly distributed in cells lining the gut epithelium, in which the 

digestion of host protein occurs; this localization is similar to that of Schistosoma mansonii LAP 

(SmLAP) (McCarthy et al., 2004) and Paragonimus westermanii LAP (PwLAP) (Song et al., 2008), 

suggesting that Anisakis LAP is involved in process of protein digestion in the L3 larvae.  

The activity of Anisakis LAP in this study implies this enzyme may have multiple functions in Anisakis. 

The enzyme’s interaction with  proFhCatL5 at pH of 4.5, as well as its location in Anisakis gut lumen, 

suggests this. Furthermore, its enhanced activity at optimal pH of 7.4 suggests intracellular functions for 

Anisakis LAP. To further buttress this, LAP was among the proteases found in A. pegreffii exosomes in 

this study. The exosomes of a number of parasites have been reported to have among their protein 

contents a high number of proteases (Marcilla et al., 2012, Silverman et al., 2010). A. pegreffii LAP 

enzyme was identified in both the crude and excretory/secretory product. This overlap in LAP being 

found in the secretome and also in the exosome vesicle is an indication that the vesicles might be a 

mechanism by which LAP is released to sites of activity in the host by the parasite and may imply 

intracellular involvement in Anisakis spp.  

In addition, through the phylogenetic analysis, it was observed that LAP-1 of both A. simplex and A. 

pegreffii were evolutionary closer to human LAP than to LAP-2 of Anisakis, or other helminths and 

shellfish LAP proteins. This suggests that LAP-1 of Anisakis may be involved in immunomodulation as it 

is a homolog of human LAP. It may be able to mimick human LAP and dampen immune responses. 

Anisakis LAP’s association with exosomes enhances Anisakis’s LAP to modulate immune response. This 

is because such molecules carried by exosomes can be taken up by recipient cells at sites distal to their 

release and they can tap into the regulatory networks in host cells if the proteins are homologs of host 

cells (Thery et al., 2002). 
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In conclusion, studies on LAP in other parasites has highlighted it as a vaccine antigen candidate. The 

result of this study highlights  Anisakis LAP as a protein of interest in immunomodulatory activities. 
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General Discussion 

Existing as a complex of cryptic species with similar morphology but different genetic traits, are the 

morphospecies A. simplex sensu lato (s.l.), which consists of three sibling species, namely A. simplex 

sensu stricto (s.s), A. pegreffii and A. simplex C. They differ in their ecological traits, such as host 

preference and geographical distribution as well as in their genetic structure (Mattiucci et al., 1997). 

Among these species of Anisakis, A. simplex (s.s.) and A. pegreffii are known as the zoonotic species 

responsible for human anisakiasis and allergic sensitisation (Mattiucci et al., 2011, Mattiucci et al., 2013, 

Umehara et al., 2007, Fumarola et al., 2009, D'Amelio et al., 1999, De Luca et al., 2013).   

Various studies on the distribution of Anisakis spp. in fishes and cephalopods of the Mediterranean Sea 

have shown A. pegreffii as the Anisakidae parasite more widely distributed in the Mediterranean while A. 

simplex s.s. have a wider distribution in the Atlantic Ocean (Cavallero et al., 2012, Cipriani et al., 2015, 

Mattiucci and Nascetti, 2008). However, migratory events of different host organisms and other 

accidental events also enable the presence of A. simplex s.s. in the Mediterranean and vice versa for A. 

pegreffii. 

Over the last 20 -years, there has been an increase in reported cases of human anisakiasis throughout the 

world and in particular, reports of A. pegreffii implicated in human anisakiasis. This is probably 

attributable to: (i) the application of better diagnostic techniques (Mattiucci et al., 2011, Mattiucci et al., 

2013, Umehara et al., 2007, Fumarola et al., 2009, D'Amelio et al., 1999)  (ii) the increasing global 

demand for seafood; and (Grandea et al.) a growing preference for raw or lightly cooked food with the 

corresponding  increased risk of exposure to live parasites (European Food Safety Authority, 2010).   

Indeed, A. pegreffii thus far has been reported as the aetiological agent of invasive anisakiasis in Europe 

(Croatia, Italy (Umehara et al., 2007, Fumarola et al., 2009, D'Amelio et al., 1999, Mattiucci et al., 2011, 
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Mattiucci et al., 2013), Japan (Umehara et al., 2007, Arai et al., 2014) and South Korea (Lim et al., 2015). 

It has been demonstrated with molecular markers that A. pegreffii is able to cause gastric, gastro allergic 

and intestinal anisakiasis (Umehara et al., 2007, Mattiucci et al., 2013, Lim et al., 2015, Fumarola et al., 

2009, D'Amelio et al., 1999, Arai et al., 2014, Mladineo et al., 2016, Mattiucci et al., 2011). Furthermore, 

the Anisakis species mostly identified in Australia is Anisakis pegreffii (Shamsi et al., 2011, Jabbar et al., 

2012, Asnoussi et al., 2017). However, no detailed information is available regarding the secretome of A. 

pegreffii. Contents of secretomes are usually implicated in parasite survival, infection, invasion and 

immune evasion in the host as reported for other helminth parasites (Maizels and Yazdanbakhsh, 2003, 

Cass et al., 2007, Zhu et al., 2016, Ferguson et al., 2015). 

A central objective of the experimental work performed in this thesis was to look, in depth, at the protein 

repertoire of A. pegreffii through proteomic analysis of both the crude extract as well as the secretome. 

Comparative analysis of the content of these two extracts from A. pegreffii as well as with the protein 

content of A. simplex identified from previous proteomic analysis of A. simplex proteins (Arcos et al., 

2014, Faeste et al., 2014) was the focus of Chapter 3 of this thesis. The results in Chapter 3 of this study 

highlight the proteins identified in the proteome of A. pegreffii and their sources (either crude extract or 

excretory/secretory product). It also demonstrated the bias of most of the protein in ES for 

immunomodulatory activities. Over 95% of proteins identified in previously reported proteomic studies 

of A. simplex were also found present in the proteomic analysis of A. pegreffii CE and ES in this study. 

This affirms the cryptic relationship between these 2 sibling species. The result of this chapter provided 

the first in-depth characterization of the ES products from the third larval stage of Anisakis pegreffii, 

comparing the excretory/secretory molecule content with the crude extract. This is a crucial step in 

enhancing our knowledge and understanding of the biology of this parasite and its interactions with its 

vertebrate hosts.  
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Recently reported microscopy studies have shown evidence of extracellular vesicles in helminths such as 

Fasciola hepatica and Echinostoma caproni (Marcilla et al., 2012), Schistosoma japonicum (Zhu et al., 

2016) and Schistosoma mansoni (Sotillo et al., 2016). These vesicles were found to be actively released 

by the parasites and were found to be captured by the host cells playing a critical role in dissemination of 

parasite proteins in hosts, informing host-parasite interactions (Zhu et al., 2016). Chapter 4 of this thesis 

demonstrates that A. pegreffii secretes specific sets of proteins that are preserved against degradation by 

being enclosed within vesicles. This result constitutes the first report of the existence and composition of 

exosome-like vesicles in the L3 larvae of the marine parasite, A. pegreffii. The identified structures appear 

to play critical roles in transportation of metabolic, immunomodulatory and allergenic proteins.  These 

proteins are stabilized against degradation by encapsulation within vesicles. The result of this work has 

contributed to the increase in the knowledge of mechanisms employed by this parasite to release 

leaderless secreted molecules to sites of activity via non-classical pathways.  

Anisakis simplex third stage larvae (L3) have been described as a source of hidden allergens in fish 

(Fernandez-Caldas et al., 1998). Hypersensitivity to allergens of this nematode is found to be common in 

subjects who have anaphylaxis, urticaria/angioedema, or both after consumption of fish and who show 

negative skin test responses to fish proteins (Audicana et al., 1995, Kasuya et al., 1990). Antigenic cross-

reactivity has been described between A. simplex and Ascaris lumbricoides, Ascaris suum, Toxocara 

canis, Blattella germanica, Chironomus spp, Dermatophagoides pteronyssinus, Acarus siro and wasp 

venom (Kennedy et al., 1988, Pascual et al., 1997, Johansson et al., 2001, Bernardini et al., 2005, 

Rodriguez-Perez et al., 2014).  The results of Chapter 5 of this thesis extend the cross-reactivity study in 

Anisakis to A. pegreffii. A comprehensive IgE-cross reactive allergen binding analysis was performed 

with A. pegreffii whole parasite extract, as well as the excretory/secretory products, against the sera of 

confirmed shellfish allergic patients using an immunoproteomic approach. Tropomyosin was identified in 

the whole parasite extract in addition to two other cross-reactive allergens (enolase and fructose 
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bisphosphate aldolase) found in both whole parasite extract and the ES. More than 50% of shellfish 

allergic patients demonstrated reactivity to these 3 allergens in A. pegreffii. The recombinant protein of 

tropomyosin of A. pegreffii was recently confirmed as having cross-reactivity with shellfish allergic 

confirmed patients’ sera by our group (Asnoussi et al., 2017). Hence, in this study, we have identified 2 

new different reactive bands in addition to tropomysin, which are putative novel cross-reactive allergens 

described in A. pegreffii. These two novel putative cross-reactive allergens are proteins with close 

homologues in fish. The implications of these findings could be far reaching, as unexpected exposure to 

these cross-reactive allergenic proteins could trigger allergic reactions when shellfish-sensitised 

individuals ingest fish contaminated with Anisakis allergens. This result furnishes an important 

contribution towards the development of improved and sensitive allergy diagnostic platforms. 

Helminth parasites secrete proteases to gain entry into their hosts, and to feed on and migrate through 

tissues (Donnelly et al., 2006). A group of peptidases with roles in host tissue penetration and digestion 

encoded by transcripts were differentially expressed in both A. simplex and A. pegreffii as shown in a 

recent study (Cavallero et al., 2018). In that study it was noted that transcripts encoding 

metalloproteinases (i.e. aminopeptidases, astacins and neprilysins) were particularly abundant in A. 

simplex. A number of proteases secreted by Anisakinae have been previously investigated (Ni et al., 

2012). Little data exists on the peptidases found in the proteome of A. pegreffii. In Chapter 6 of this 

thesis, limited information on extracellular proteases from the Anisakis proteome was expanded by the 

proteomic analysis of A. pegreffii whole worm extract and excretory/secretory products. A family of M17 

aminopeptidase designated as leucine aminopeptidase (LAP) identified in the proteome of A. pegreffii 

when searched against the genome of A. simplex was identified. This was before the transcriptome data of 

A. pegreffii was released to the public. The 33kDa recombinant protein had a 87% identity to A. pegreffii  

LAP-2 which was identified later in this study by a search of the A. pegreffii proteome against the A. 

pegreffii transcriptome database.  This LAP recombinant protein of Anisakis simplex showed many 
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properties in common with other parasite LAPs, which have been extensively studied (Xu and Dresden, 

1986, Pokharel et al., 2006, McCarthy et al., 2004, Deng et al., 2012, Acosta et al., 2008). These include 

substrate specificity, pH optimum and activation by Mn2+ and Mg2+. As a result of this similarity, we 

were interested in determining whether the recombinant protein would exhibit any activity on pro-

cathepsin L5 protein of Fasciola hepatica as it has been previously reported by Acosta and colleagues 

that LAP activity was consistently very low in cathepsin L-rich ES products (Acosta et al., 2008).   

The result of this experiment was interesting as Anisakis LAP was found to process inactivated CL5. In 

addition, we further confirmed the abundant presence of LAP-2 in the gut lumen of L3 larvae of A. 

pegreffii by histochemistry. The results of this Chapter imply roles for LAP in Anisakis. These roles may 

be important for the parasite to activate its many proteases for invasion and digestion or may be used to 

release a modulated active form of mammalian cathepsin proteases to suppress the potency of the hosts’ 

immune response. Data emanating from this chapter has allowed the identification of one of the specific 

modulatory pathways targeted by this parasite. It also provides an interesting insight into studies 

involving homologs of this protein in other organisms and activity on cathepsin proteases, particularly 

those implicated in human inflammatory diseases. The results from such a study may initiate 

development of new therapeutic options in this direction. 
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Future Direction 

The results of this study has lead to much possible future work, however, the points below are considered important 

initial work that should be addressed: 

• Future work involving cloning and production of recombinant proteins of described putative 

cross-reactive allergens of A. pegreffii to confirm if they retained their cross-reactivity and for 

potential diagnosis of allergic sensitisation in patients. 

• In addition, investigating the effect of heat on the whole parasite extracts as well as the ES to 

ascertain their IgE-binding reactivity. 

• Future studies investigating comparative cross-reactive proteins of Anisakis to confirmed allergic 

sensitisation in children. This may provide insights into cross-reactive allergens in children as well 

as provide information on the development of a children-specific allergen panel. 

•  Future studies would also focus on the characterization of A. pegreffii-derived miRNAs and their 

functional analysis in host-parasite communication and gene regulation.  

• Future studies investigating further the interaction between Anisakis LAP or LAP homologs in 

other species and cathepsin proteases implicated in human inflammatory diseases in order to 

develop new therapeutic options. 

• Future studies on production of recombinant protein of Anisakis LAP-1 and investigation of 

immunomodulatory functions in this protein. 
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APPENDIX 1 

General Materials 

All reagents and chemicals used were analytical laboratory reagent grade. Solutions were prepared in 

deionised water obtained by filtration through a Millipore Milli-Q-water system (Liquipure, Melbourne, 

Australia) except where stated otherwise. Glasswares used, were initially washed with Pyroneg detergent 

(Diverey Pty Ltd, Melbourne, Australia), rinsed in tap water and subsequently in deionised water. All 

reagents, media, pipette tips, microcentrifuge tubes, dissecting instruments and glassware were sterilised 

by autoclaving at (121°C for 15 min) standard conditions, except stated otherwise. Unautoclaveable 

solutions that required sterilization were filter sterilized using 0.45μm or 0.22µM filter as specified for 

the reagent. Solutions were dispensed using Finnpipette (Pathtech, Australia). The pipettes were 

calibrated regularly following manufacturer’s recommendation. 
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Reagents and Equipment used are herein detailed 

Reagents Suppliers 

λ-DNA stored at −20ºC. Promega, Australia. 

Acetic acid, glacial. Sigma-Aldrich Pty, Australia. 

Acetone.  Sigma-Aldrich Pty, Australia. 

Acrylamide/bisacrylamide 40% solution. Australia Scientific, Australia. 

Agarose (w/v) DNA grade. Bioline, Australia. 

Alkaline phosphatase (calf intestinal) . Sigma-Aldrich Pty, Australia. 

Alkaline phosphatase conjugates substrate kit. Biorad, Australia. 

Ammonium acetate. Ajax Chemicals Ltd, Australia. 

Ammonium chloride. BDH, Chemicals, Australia. 

Ammonium hydroxide (NH4OH). Sigma-Aldrich Pty, Australia. 

Ammonium persulphate (APS). Bio-Rad Laboratories, USA. 

Ammonium sulphate.  Sigma-Aldrich Pty, Ltd. MO, USA. 

Bacteriological agar.   Neogen, USA. 

Β-mercaptoethanol. Bio-Rad, Australia.  

Bovine serum albumin, fraction V (BSA). Sigma-Aldrich Pty, Australia. 

Bradford reagent. Sigma-Aldrich Pty, Australia. 

Bromophenol blue. Sigma-Aldrich Pty, Ltd, MO, USA. 

Brilliant Blue G. Sigma-Aldrich Pty, Ltd, MO, USA. 

Chelating Sepharose. GE Healthcare. 

Chemiluminescent Peroxidase Substrate-3. Sigma-Aldrich Pty, Ltd, MO, USA. 

Chloroform. Ajax Chemicals Ltd, Australia.  

Coomassie brilliant blue R-250 (w/v) . Bio-Rad Laboratories, USA. 
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Copper sulphate. Merck, Australia. 

Cover-slips. Mediglass, Australia. 

Cryovials (1.8ml). Naglene Company, USA. 

Dimethylsulphoxide (DMSO) . Merck, Australia. 

DNA Ligase (T4). New England Biolab, Australia. 

DNase I (bovine pancreas, grade 1). Boehringer Mannheim, Germany. 

EDTA. Merck, Australia. 

Ethanol (analytic). Merck, Australia. 

Ethidium bromide.                                                                               Sigma-Aldrich Pty, Ltd, MO, USA. 

Glacial acetic acid (v/v). BDH Chemicals, Australia. 

Glucose. Merck, Australia. 

Glycerol. Merck, Australia. 

Glycine. BDH Chemicals, Australia. 

Hydrochloric acid 32%. Ajax Chemicals Ltd., Australia. 

Imidazole. Sigma Aldrich. 

Immobilised Metal Affinity Chromatography 

Column (IMAC). 

Qiagen. 

Isopropyl- β-D-thiogalactopyranosider (IPTG). Bioline, Australia. 

Isoamyl alcohol.  BDH Chemicals, Australia. 

ISOLATE II Plasmid Mini Kit. Bioline, Australia. 
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Reagents Suppliers 

ISOLATE II PCR and Gel Kit. Bioline, Australia. 

ISOLATE II RNA Mini Kit . Bioline, Australia. 

Isopropanol.   Merck, Australia. 

Kanamycin. CSL, Australia. 

Lambda DNA.  New England Biolab, Australia. 

Lysozyme. Boehringer Mannheim, Germany. 

Magnesium chloride (Hexahydrate).  BDH Chemicals, Australia. 

Methanol. BDH Chemicals, Australia. 

Microscope slides. LOMB Scientific Co., Australia. 

Microtitre plate (96, 48, 24, 12-wells). Nunc denmark 

Needle sterile (18G, 19G, 21G, 26G). Terumo Pty, Ltd, Australia. 

Newborn calf Serum (NCS). Thermofischer, Australia. 

Nickel Sulphate. BDH Chemicals, Australia. 

Nitrocellulose membrane (Hybond-C). Amersham, USA. 

Paraffin. BDH Chemicals, Australia. 

Petri dish. Nunc, Denmark. 

Phenol. BDH Chemicals, Australia. 

Phenylmethylsulfonyl fluoride (PMSF). Sigma chemicals, Co., Australia. 

Phosphate buffer saline (PBS) tablets. Oxoid limited, England. 

Potassium chloride. BDH Chemicals, Australia. 

Pre-stained Protein Molecular Weight Marker. Bio-Rad Laboratories, USA. 

Protein standards (SDS gel marker). Bio-Rad Laboratories, USA. 

Proteinase K. Promega, Australia. 
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Restriction enzymes. Promega, Australia. 

RNase. Boehringer Mannheim, Germany. 

Roswell Park Memorial Institute (RPMI) 1640 

Medium with 10 mM L-glutamine. 

Thermofischer, Australia (Gibco). 

Skim milk. Bonlac Foods Limited, Australia. 

Sodium acetate (NaOAc). BDH Chemicals, Australia.  

Sodium chloride NaCl (w/v). BDH Chemicals, Australia.  

Sodium citrate (dihydrate). BDH Chemicals, Australia.  

Sodium dihydrogen phosphate (NaH2PO4). BDH Chemicals, Australia.  

Sodium dodecyl sulphate (SDS). BDH Chemicals, Australia.  

Sodium hydroxide (NaOH). BDH Chemicals, Australia. 

TEMED  

(N,N, N’,N’-tetramethylethylenediamine).  

Bio-Rad Laboratories, USA. 

Tetro cDNA Synthesis Kit. Bioline, Australia. 

Tricine. BDH Chemicals, Australia 

Tris hydroxymethyl amino methane (Tris-) base. Boehringer Mannheim, Germany. 

Tris-HCL. Boehringer Mannheim, Germany. 

Triton-X-100. Sigma-Aldrich Pty, Ltd, MO, USA. 

Tryptone. Oxoid, UK. 

Tween-20. BDH Chemicals, Australia. 

Unstained Protein Molecular Weight Marker. Bio-Rad Laboratories, USA. 

Whatman blotting paper. Whatman, England 

Wizard® Genomic DNA Purification Kit. Promega, WI, USA. 

Yeast extracts. Oxoid, UK. 
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Equipment/Materials Supplier 

Camera (135 mm Polaroid MP4 Land Camera). Polaroid, USA. 

Cellulose Acetate Filter (0.65 μm). Sartorius GMBH, Germany. 

DNA Thermocycler (for PCR). G-Storm, England. 

GELDOC system. Bio-Rad Laboratories, USA. 

pH meter. Metrohm, Swiss. 

Sonicator. Branson Sonic Power Co., USA. 

Syringe (1 ml, 5 ml, 10 ml, 20 ml, 50 ml).  Terumo Pty, Ltd., Australia. 

Trans-blot electrophoretic transfer cell. Bio-Rad Laboratories, USA. 

Transilluminator (Novaline UV). Novex Australia Pty Ltd. 

Vortex mixer (V ml). Ratek Instruments, Australia. 

Balances: 

Analytical balance. Sartorius GMBH, Germany. 

Balance (0.1-500 g). U-Lab, Australia. 

Centrifuges:  

Microcentrifuge (EBA12). Zentrifugen, Germany. 

Bench top centrifuge (Centaur 2).  Graykon Scientific. 

High-speed centrifuge (L2-21 M/E). Beckman, USA. 

Ultra-speed centrifuge (L8-80M). Beckman, USA. 

Centrifuge tubes:  

1.5 ml Eppendorf centrifuge tubes. Sarstedt, Germany. 

10 ml centrifuge tubes. Labortechnik, Germany. 

15 ml centrifuge tubes. Labortechnik, Germany. 

50 ml centrifuge tubes. Labortechnik, Germany. 
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Electrophoresis Power Supply:  

PowerPac Basic. Bio-Rad Laboratories, USA. 

EPS 3000xi. Bio-Rad Laboratories, USA. 

Electrophoresis Units:  

DNA-Mini gel cast plate. Bio-rad Laboratories, USA. 

Protein -Mini Protean II gel system. Bio-rad Laboratories, USA. 

Filters: 

Syringe Filters (0.22μm, 0.45μm). Gelman Sciences, USA. 

Ultrafiltration-unit filters (XM, YM). Amicon, USA. 

Incubators: 

Bellsouth 100 still air incubator. Bellsouth, USA. 

Tissue culture (5 % CO2). Forma Scientific, USA. 

Microscopes:  

 Light microscope. Olympus Optical Co., Japan. 

Phase contrast microscope.  Nikon Kogaku KK, Japan. 

Stereomicrosocope. Olympus Optical Co., Japan. 

FEI Quanta 200 ESEM (ESEMTM) or the XL 30 

scanning Electron Microscope. 

Philips. 
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General Chemicals and Stock Solutions. 

  Agarose Gel Electrophoresis. 

(i). 0.5 M EDTA pH 8.0 (1L). 

 

186.1g of disodium EDTA (NA2 EDTA). 

800 ml Milli-Q water. 

Adjust pH of to 8 with NaOH. (~50ml of NaOH). 

Bring volume to 1 L with Milli-Q water.  

Stir vigorously on a magnetic stirrer and autoclave.  

Store at room temperature. 

 

(ii). 50X TAE Running Buffer 

242 g Tris base.  

100 ml 0.5M EDTA pH 8.  

57.1 ml Glacial acetic acid.  

900 ml Milli-Q water.  

Adjust pH to 8.5 with glacial acetic acid.  

Bring to final volume to 1 L with Milli-Q water.  

To prepare 1L of 1X TAE, measure 100 ml of 10X TAE and make it up to 1L with 900 ml Milli-Q water.  

(Grandea et al.). 1% agarose gel electrophoresis.  

 

 

 

1 g Agarose.  
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100 ml 1X TAE buffer.  

Melt in microwave for 2 min.  

Cast gel in gel trays and wait to set. 

 

(iv). 5X loading dye for agarose gels. 

50 ml 50% glycerol.  

10 ml 0.5 M EDTA pH 8.  

5 ml 1M Tris pH 7.5. 

Add 35 ml Milli-Q water to total 100 ml.  

 

 

Protein Methods. 

SDS-PAGE Stock Solutions. 

(i). 2M Tris-HCI (pH=8.8), 100ml.  

24.2gm Tris (hydroxymethy1) aminomethane. 

50ml Milli-Q water.  

Adjust pH of to 8.8 with HCL, and bring up the volume to 100 ml with Milli-Q water. 

 

(ii) 1M Tris-HCI (pH=6.8), 100ml. 

12.1gm Tris (hydroxymethy1) aminomethane.  

50ml Milli-Q water.  

Adjust pH of to 6.8 with HCL, and bring up the volume to 100 ml with Milli-Q water.  

 

(Grandea et al.). 10% SDS (W/V), 100 ml.  
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1g Sodium Dodeyl Sulfate (SDS).  

Milli-Q water to total volume of 100 ml. 

 

(iv). 50% Glycerol (v/v), 100 ml. 

50ml 100% Glycerol.  

50ml Milli-Q water.  

 

(v). 10X Gel Electrophoresis Running Buffer (2 Litter). 

60 g Tris base.  

288 g Glycine.  

20 g SDS.  

1.6 L Milli-Q water.  

Adjust pH of to 8.3 with HCL, and bring up the volume to 2 L with Milli-Q water. 

 

(vi). 1% Bromophenol Blue (w/v), 10ml. 

100 mg Bromophenol Blue.  

Milli-Q water to total volume of 10 ml.  

 

SDS-PAGE Working Solutions  

(i). 10 % Ammonium Presulphate, (10% APS).  

50μg Ammonium Presulphate.  

500μl Milli-Q water. 

 

(ii). 1X Gel Electrophoresis Running Buffer. 
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100 ml 10X Gel Electrophoresis Running Buffer.  

900 ml Milli-Q water. 

 

(Grandea et al.). 5X Sample Buffer. 

0.6 ml 1M Tris (pH 6.8).  

5 ml 50% Glycerol.  

2 ml 10% SDS.  

0.5 ml 2-mercaptoethanol.  

0.5 ml 1% Bromophenol Blue.  

0.9 ml Milli-Q water.  

 

SDS-PAGE Gel (1 gel). 

(i). 12% Resolving gel. 

3.13ml of 30% Acrylamide stock.  

1.88ml of 1.5M Tris-HCL pH 8.8.  

0.08ml of 10%SDS.  

2.38ml of MG water.  

37.5μl of 10% w/v APS.  

2.5μl of TEMED.  

 

(ii) 5% Stacking gel. 

0.33 ml of 30% Acrylamide stock.  

0.63 ml of 0.5 M Tris-HCL pH 6.8.  

0.03 ml of 10%SDS.  
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1.50 ml of MG water.  

12.5μl of 10% w/v APS.  

1.25μl of TEMED.  

 

Processing Gel after an SDS-PAGE run  

(i). Coomassie Staining Solution (1 gel). 

50 mg Coomassie Staining blue R220. 

10 ml 100% Methanol.  

5 ml 100% Acetic acid.  

35 ml Milli-Q water. 

 

(ii). Destaining Solution (1 L). 

500 ml Methanol.  

300 ml Milli-Q water.  

100 ml of Acetic acid.  

Adjust the total volume to 1000 ml with Milli-Q water.  

 

(Grandea et al.). Gel Storage Solution (5% Acetic acid).  

5 ml of Acetic acid.  

95 ml Milli-Q water.  

 

(iv). 10X PBS (Phosphate-Buffered Saline) Buffer (pH=7.4). 

80 g Sodium chloride.  

14.4g Sodium Phosphate dibasic (Na2HPO4). 
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2.4g Potassium dihydrogen phosphate (KH2PO4). 

2g Potassium chloride (KCL). 

Dissolve all together in 800 mL Milli-Q water, pH 7.4 adjusted with HCL. 

Bring volume to 1L with Milli-Q water; stored at RT.  

To prepare 1L of 1X PBS.  

Measure 100ml of 10X PBS and make it up to 1L with Milli-Q water (900ml).  

 

(v). 10X TBS (Tris-Buffered Saline) Buffer (pH=7.4).  

30g Tris base. 

 2g Potassium chloride (KCL). 

 80 g Sodium chloride.   

Dissolve all together in 800 mL Milli-Q water. 

Bring volume to 1L with Milli-Q water; store at RT.  

 To prepare 1L of 1X TBS.  

Measure 100ml of 10X TBS and make it up to 1L with Milli-Q water (900ml).  

 

(vi). PBS 0.5 Tween  

A 500μl Tween-20 was dissolved in 1LX PBS; stored at RT.  

 

(Nampijja et al.). TBS 0.5 Tween  

A 500μl Tween-20 was dissolved in 1LX TBS; stored at RT.  
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Processing Gel for Immunoblotting 

 

(i). Membrane blocking Buffer (5% skim milk or 5% BSA), 100 ml.  

5g skim milk or Bovine serum albumin. 

100 ml TBS 0.5 Tween.  

 

 (ii) Antibodies dilution buffer, 100 ml.  

1% skim milk/BSA TBS 0.5 Tween (1g skim milk/BSA + 100ml TBS 0.5 Tween) or  

1% skim milk/BSA PBS 0.5 Tween (1g skim milk/BSA + 100ml TBS 0.5 Tween).  

 

Cloning 

10 X Potassium phosphate Stock (Should be filter sterilized). 

170 mM KH2PO4 – 2.31g/100mL. 

720 mM K2HPO4 – 12.5 g/100mL. 

 

20% Glucose stock (Should be filter sterilized through 0.22 µm filter). 

10 g in 50mL of MilliQ Water. 
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Terrific broth buffer recipe table 

Lysis Buffer. 

0.1M Tris 0.5M Glycine Buffer (pH=8.7), 100ml. 

1.2114gm Tris (hydrooxymethy1) aminomethane.   

3.75gm Glycine.  

Dissolve all together in 80 mL Milli-Q water, adust pH to 7.4 with HCL. 

Bring volume to 100ml with Milli-Q water; store at RT. 

Ingredients Final 
concentration 

required 

Pre-induction 
TB media 

(200 mL) 

Recombinant 
expression TB 

media 

(200 mL) 

 

Tryptone 1.2% w/v 2.4 g 2.4 g  

Yeast extract 2.4% w/v 4.8 g 4.8 g  

Glycerol 0.4% v/v 800 µL 800 µL  

10X [KH2PO4 
(170mM) K2HPO4 
(720 mM)] 

17 mM 

72 mM 

20 mL 10 mL  

20% Glucose 2% w/v 20mL DON’T ADD  

MilliQ water Upto required 
volume 

Upto 200 mL Upto 200 mL  

IPTG 1M (238mg/mL) 1 mM DON’T ADD 200 uL  

pH adjusted to 7.2- 7.4     
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25mM Tris-HCL (pH8.0) 

 300mM NaCL 

 1mg/ml or 2mg/ml lysozyme (freshly prepared) 

 1mM or 2mM imidazole 

 Store at 4°C.  
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APPENDIX 2 

Molecular Markers 

  

 

 

Sigma  Aldrich–Colour burst Electrophoresis Marker



Appendix 2 

239 

 

 

 

 

 

 
 

Blue protein standard broad range marker (NEB)

Precision Plus Protein™ Kaleidoscope™ 
Prestained Protein Standards (Biorad)

Unstained Protein Standards (Biorad)
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Sequences of Lap-2 of A. simplex and A. pegreffii 
 
 
>tr|A0A0M3KDK6|A0A0M3KDK6_ANISI Putative aminopeptidase (inferred by orthology to 
a C. elegans protein) OS=Anisakis simplex OX=6269 PE=4 SV=1 
MIVVFSLLSAPLDLAKSLSEPTSDGVIVVSYCAKQLAECAPLKSLAPVVSEYLQLNAGAN 
NTASLIVVDKSVVPSGRLVYSGTGPVTRDQDDVRRFSTAARNAMKLALSAGMKSPILVTV 
PHQKYPQAELVAALGALHELHIPLNVREESEQKTKLSALALLPVSYEASKFLRLVQTIEA 
AFTVCRDIGDADPQRMSPPKVAEYVEEIFRGGCVKVRVTSDAKEIEREYPLMIAVNRASM 
GIEAHRPRLIALEYIPEGPIEETIMLVGKGNGRRPYCSSQLPNSSAGLHGQMAQLKNHYS 
RMKYLNYYL 
 
>A. pegreffii LAP-2 (CL3092.Contig1_AP1A) 
EESEQKTKLSALALLPVSYEASKFLRLVQTIEAAFTVCRDIGDADPQRMSPPKVAEYVEEIFR
GGCVKVHVTSDAKEIEREYPLMIAVNRASMGIEAHRPRLIALEYIPEGPIEETIMLVGKGVTL
DMGGADLKLHGAMYGMSSDKYGSAIVAGFFKALEVLRPKGIKVLGYMSMVRNALGADA
YTTDEVIKSRSGKRIQICNTDAEGRLIMLDPLTKMRELAVNEKNPHLFTLATLTGHVILSNG 

 

> Sequenced Leucine Aminopeptidase A. pegreffii Nucleotide sequence 3’ 5’  frame 3 A. 
pegreffii 

TGCGCGATAGTGACTCTTCAACTGAGCCATTTGGCCATGTAATCCAGCTGAACTGT
TTGGTAACTGAGAGGAACAATATGGCCTTCTACCATTACCTTTGCCTACTAGCATA
ATCGTTTCTTCGATTGGTCCTTCTGGAATGTATTCAAGAGCTATCAAACGAGGACG
ATGTGCTTCGATACCCATTGATGCACGATTCACTGCTATCATCAGCGGATACTCAC
GCTCTATTTCTTTTGCATCAGACGTGACACGAACTTTCACACAACCGCCTCGGAAT
ATCTCCTCAACGTATTCGGCCACTTTCGGCGGAGACATCCGTTGCGGATCCGCAT
CACCGATATCTCGACATACTGTGAAAGCAGCTTCGATCGTCTGAACGAGTCGCAG
AAATTTACTCGCTTCATACGAAACAGGTAGCAATGCAAGTGCTGAAAGTTTTGTTT
TCTGTTCACTTTCTTCGCGAACATTCAACGGTATATGTAGTTCGTGAAGTGCACCA
AGCGCAGCCACCAGCTCGGCTTGTGGGTATTTCTGGTGTGGTACTGTGACCAATA
TTGGTGACTTCATGCCCGCACTCAACGCCAATTTCATCGCGTTACGGGCTGCAGTC
GAGAATCTTCGCACGTCATCTTGATCGCGAGTCACGGGTCCAGTTCCCGAGTAAA
CCAAACGACCTGACGGTACCACTGACTTGTCAACTACGATCAACGATGCGGTATT
GTTCGCTCCAGCATTCAACTGAAGATATTCAGAGACAACGGGAGCGAGTGATTTC
AGTGGAGCACATTCTGCGAGTTGCTTGGCACAGTACGAAACAACAATGACTCCGT
CTGATGTAGGCTCTGATAACGATTTGGCCAAATCCAAAGGTGCTGAGAGAAGGCT
GAAAACAACATCTNAAATTGTTTCAGGACAAA 

>Leucine Aminopeptidase A. pegreffii Protein sequence 

 M K L A L S A G M K S P I L V T V P H Q K Y P Q A E L V A A LG A L H E L H I P L N 
V R E E S E Q K T K L S A L A L L P V S Y E A S K F L R L V Q T I E A A F T V C R D I 
G D A D P Q R M S P P KV A E Y V E E I F R G G C V K V R V T S D A K E I E R E Y P 
L M I A V N R A S M G I E A H R P R L I A L E Y I P E G P I E E T I M L V G K G N G R 
R P Y C S S Q L P N S S A G L H G Q Met A Q L K S H Y R A 
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Anisakis spp Leucine Aminopeptidase Sequence Electrophoregram 
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Supplementary Tables 

Table S1. Peptide sequences and Mascot score of IgE antibody reactive proteins identified in 
Excretory/Secretory product of A. pegreffii. 

# Predicted 
protein 
Mass 
(kDa) 

Protein 
accession 

Protein name Mascot 
score 

Peptide sequences 

1 38307 
 

Unigene8452_
AP1A 

 

Fructose-
bisphosphate 

aldolase 1 

450 ALQASALAAWGGKK 
AQANSLAAQGK 

ATVTCLQR 
AAFMKR 
GIIPGIK 

KGIIPGIK 
VSHEDIAR 

IAHAIVAPGK 
QILFTSSDEASK 

RAQANSLAAQGK 
ITEAVLAYTYK 
KIAHAIVAPGK 

GILAADESTGSMDKK 
KLKPIGLENVEENRR 
LKPIGLENVEENRR 

TDDGTPFVQVLQKK 
 

2 47148 Unigene2939_
AP1A 

 

Enolase 1127 GMPLYK 
IAPAIVAK 
YDLDFK 
YNQLLR 
IQMAIDK 

AVANINDK 
NFTEAMR 
KYDLDFK 
IQMAIDKK 

YIAELAGVK 
ACDCLLLK 
ERIQMAIDK 
LAKYNQLLR 
KACDCLLLK 

ANGWGVMVSHR 
MGSEIYHHLK 
ERIQMAIDKK 

AGAVHKGMPLYK 
ADEKKYDLDFK 

GNPTVEVDLTTEK 
YDLDFKNPNSDK 

VNQIGSVTESIEAAK 
VSIAMDTAASEFYK 

IEEELGSAAVYAGEK 
LAMQEFMIMPIGAK 
KYDLDFKNPNSDK 
LAMQEFMIMPIGAK 

AVANINDKIAPAIVAK 
EIDQFMLDMDGTANK 

VSIAMDTAASEFYKADEK 
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QVVMPVPSFNVINGGSHAGK 

 
 

Table S2. Peptide sequences and Mascot score of IgE antibody reactive proteins identified in Crude Extract of 
A. pegreffii. 
# Predicte

d protein 
Mass 
(kDa) 

Protein 
accession 

Protein name Mascot 
score 

Peptide sequences 

1 32137 
 

Unigene11859_
AP1A 

Tropomyosin 800 ALQREDSYEEQIR 
ANTVESQLK 

AQEDLSTANSNLEEKEK 
DLADGKAK 

DNALDRADAAEEKVR 
EAQMLAEEADRK 

EAQMLAEEADRKYDEVAR 
EDSYEEQIR 

EVDRLEESKDLADGK 
IEEELRDTQKK 

IEKDNALDRADAAEEK 
IVELEEELR 

KLAMVEADLERAEER 
KVQEAEAEVAALNRR 

KYDEVAR 
LAMVEADLERAEER 

LATDKLEEATHTADESERVR 
LEEATHTADESER 

LERIEEELR 
MMQTENDLDK 
MTLLEEELER 
QMTDKLER 

SFQDEERANTVESQLK 
SLEVSEEK 
SVQKLQK 

VQEAEAEVAALNRR 
VRQMTDKLER 
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2 47148 Unigene2939_A
P1A 

 

Enolase 1011 GMPLYK 
IAPAIVAK 
YDLDFK 
YNQLLR 
IQMAIDK 

AVANINDK 
NFTEAMR 
KYDLDFK 
IQMAIDKK 

YIAELAGVK 
ACDCLLLK 

LAKYNQLLR 
KACDCLLLK 

MGSEIYHHLK 
ADEKKYDLDFK 

GNPTVEVDLTTEK 
YDLDFKNPNSDK 
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