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a b s t r a c t 

Based on the recent work by Fakhari et al. (2017b), a three-dimensional phase-field lattice Boltzmann 

method was developed to investigate the rise of a Taylor bubble in a duct. The proposed approach 

couples the conservative phase-field equation with a velocity-based lattice Boltzmann scheme equipped 

with a weighted multiple-relaxation-time collision operator to enhance numerical stability. This makes 

the model ideal for numerical simulation of immiscible fluids at high density ratios and relatively high 

Reynolds numbers. Several benchmark problems, including the deformation of a droplet in a shear flow, 

the Rayleigh–Taylor instability, and the rise of a Taylor bubble through a quiescent fluid, were considered 

to asses the accuracy of the proposed solver. The Rayleigh–Taylor instability simulations were conducted 

for a configuration mimicking an air-water system, which has received little attention in the literature. 

After detailed verification and validation, the presented formulation was applied to study the flow field 

surrounding a Taylor bubble, for which numerical results were compared with the experimental work of 

Bugg and Saad (2002). The findings highlighted that the experimental bubble rise velocity, instantaneous 

flow field, and interface profile can be accurately captured by the presented model. In particular, the rise 

velocity of the present model indicated an improvement in accuracy when compared to the reference 

numerical solutions. The agreement between various numerical schemes, in some instances, indicated 

potential experimental difficulties in measuring the local flow field. Future application of the present 

model will facilitate detailed investigation of the pressure and flow profile surrounding Taylor bubbles 

evolving in co-current and counter-current flows. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multiphase fluid dynamics presents a number of challenges

or both the development and application of practical computa-

ional techniques. The physically relevant properties range from

he width of a two-fluid interface to the macroscopic flow be-

aviours of a system. Resolving all of the relevant length scales

an increase computational overhead and render some multiphase

olvers intractable. Additional difficulty arises when the two flu-

ds in question have a large density contrast and are evolving at

 high Reynolds number. This can generate steep numerical gradi-

nts across the fluid interface and deteriorate the stability of the

pplied mathematical model. Despite their complexity, high den-

ity ratio multiphase flows are commonplace in a number of in-
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ustrial processes, and must be understood for efficient and safe

peration of associated equipment. A particular example is ob-

erved in the oil and gas industry where the transport of multi-

hase fluids through pipes and or conduits is of great importance

 Danielson, 2012 ). Two-phase slug flow is often observed in up-

tream operations, for which the modelling is typically examined

hrough a series of slug units. Each unit consists of a Taylor bub-

le and a liquid slug, which propagate through the piping system.

izarraga-Garcia et al. (2017) reported that discrepancies have been

ound between experimental data and closure relations for the rise

elocity of the Taylor bubble in these slug units. This can strongly

ffect the prediction of pressure gradients and liquid holdup in a

umber of mechanistic models ( Lizarraga-Garcia et al., 2017; Wu

t al., 2017 ). To this end, the primary objective of this work is to

nalyse the flow physics of a propagating Taylor bubble. This is

erformed using a newly developed, three-dimensional phase-field

attice Boltzmann method for immiscible fluids at high density

atios. 
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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The development of numerical models capable of accurately

assessing the dynamics of high density ratio flows is an area

of ongoing research. To help ameliorate the numerical singular-

ity of fluid properties at the moving interface, while still mod-

elling practical scales, this study takes a diffuse-interface ap-

proach based on phase-field theory. In this, the sharp inter-

face is replaced by a smoothly transitioning region over which

the fluid parameters change rapidly, but continuously. This re-

moves the singularity of a bounding interfacial surface and re-

places it with volumetric forces, which tend to zero in the bulk

fluid regions. Phase-field methods approach the problem of inter-

face tracking through a minimisation of free energy which dif-

fers from other commonly seen interface-tracking methods such

as the level-set ( Osher and Sethian, 1988 ) or the volume-of-fluid

method ( Hirt and Nichols, 1981 ), which look to directly minimise

the interfacial surface area through its geometric properties. This

study employs the conservative phase-field approach proposed by

Chiu and Lin (2011) . This model has been reformulated in the

lattice-Boltzmann equation (LBE) ( Geier et al., 2015a ) and further

developed and analyzed in the literature ( Fakhari et al., 2016b ).

The recent work by Fakhari et al. (2017b) utilised this phase-field

approach and coupled it with a velocity-based lattice Boltzmann

scheme similar to that proposed by Zu and He (2013) . Results

showed that the formulation was capable of accurately captur-

ing both high density ratio and high Reynolds number situations

within two-dimensional (2D) flow configurations. Additionally, the

improved locality of the method in relation to certain other phase

field formulations increased computational efficiency on GPU ar-

chitectures. Therefore, a secondary objective of this study was to

extend this model into three-dimensions (3D) and show that the

robustness observed in 2D could be maintained. 

Over the past few decades, the LBM for multiphase flows has

been developed and applied to simulate bubble dynamics ( Amaya-

Bower and Lee, 2010 ), contact line dynamics ( Lee and Liu, 2010 ),

drop impact dynamics ( Lycett-Brown et al., 2014 ), and porous me-

dia flows ( Liu et al., 2016 ). The most popular models present in

the literature can be grouped into four major classes, namely the

colour-gradient ( Gunstensen et al., 1991 ), pseudo-potential ( Shan

and Chen, 1993; Shan and Doolen, 1995 ), free-energy ( Swift et al.,

1995; 1996 ), and mean-field or phase-field methods ( He et al.,

1999; Jacqmin, 1999 ). Although a large amount of work has been

conducted using these models, there exists limited literature doc-

umenting their validation against experimental results, particularly

at high-density ratios. This issue is partly rectified in this study

through a detailed comparison of Taylor bubble flow with the ex-

perimental work of Bugg and Saad (2002) and the numerical work

of Ndinisa et al. (2005) . 

The colour-gradient model originated from work previ-

ously conducted in the lattice-gas model, and was intro-

duced into the LBM to simulate immiscible binary fluids.

Grunau et al. (1993) modified the original work, extending it

to handle both density and viscosity variations. These early studies

using the colour-gradient model were performed on a hexagonal

lattice in 2D. Ries and Phillips (2007) developed the D2Q7 model

of Grunau et al. (1993) on a D2Q9 lattice and incorporated a

two-phase collision operator. This modified perturbation operator

enabled them to recover the correct interfacial force term, which

ensured compatibility between the interfacial tension and the cap-

illary stress tensor. An extension of this work led to a generalised

perturbation operator introduced by Liu et al. (2012) for the D3Q19

lattice. For the colour-gradient model to maintain an interface,

as well as to encourage phase segregation, a recolouring step is

required in the algorithm. There are two predominant methods

used for this, but that of Latva-Kokko and Rothman (2005) was re-

cently shown by Leclaire et al. (2012) to have improved numerical

stability and accuracy across a range of benchmark simulations.
Please cite this article as: T. Mitchell et al., Developmen
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nwar (2013) was able to show the ability of the colour-gradient

odel to capture the behaviour of rising bubbles under a range

f fluid properties in comparison with simulations run using the

evel set method available in COMSOL Multiphysics. Here, the

ensity contrast was limited to O (10), but an effective buoyancy

orce was used to capture a wide variety of dimensionless pa-

ameters. Significant work has been undertaken to enhance the

olour-gradient model, but recently proposed models such as that

y Leclaire et al. (2017) still report difficulty in achieving high

ensity ratios in complex scenarios. It has been reported that the

tate-of-the-art colour-gradient models in this category, although

ery good for liquid-liquid interfaces, are limited to relatively

imple liquid-gas flows at low Reynolds numbers ( Leclaire et al.,

017 ). 

With a relatively simplistic underlying algorithm, the pseudo-

otential model initially proposed by Shan and Chen (1993) has

emained arguably the most popular multiphase LBM. The model

xists in two forms, namely single-component multiphase (SCMP)

 Shan and Chen, 1994 ) and multi-component multiphase (MCMP)

 Shan and Chen, 1993; Shan and Doolen, 1995 ). The model re-

ies on the incorporation of particle interactions within the LB

ramework to induce phase separation. These original models suf-

ered from well reported limitations such as low density ratios,

purious currents, and non-physical interdependency of parame-

ers ( Liu et al., 2016 ). With recent advances ( Yuan and Schae-

er, 2006; Kupershtokh et al., 2009; Porter et al., 2012; Montes-

ori et al., 2015; Lycett-Brown and Luo, 2016; Ammar et al., 2017 ),

he complexity of the model has increased, but so too has its ap-

licability to fluid flows with high density and viscosity ratios.

uan and Schaefer (2006) were amongst the first to incorporate

arious equations of state within the pseudopotential framework.

ontessori et al. (2015) reported that with the use of a Carnahan–

tarling equation of state and a D3Q27-F93 lattice (F93 refers

o 93 discrete velocities used in force calculation), the pseudo-

otential model could simulate liquid-vapour interfaces with den-

ity ratio over 10 0 0 with low spurious currents. Lycett-Brown and

uo (2016) later reported results on binary droplet collisions with

 density ratio of 10 0 0, without the need for additional discrete

elocities. In their work, the so called multiple-relaxation time

ascaded collision operator was used and found to significantly

nhance the stability of the pseudo-potential method proposed

 Leclaire et al., 2017 ). The improvements developed by such au-

hors have greatly increased the range of applicable cases for the

seudopotential model, which is evident in its popularity in the

iterature. However, to date there still remains a limited number of

igh density ratio, dynamic benchmark cases for this model. 

In the context of the lattice Boltzmann method, the free-energy

odel and, as a subclass, the phase-field model have recently

ttracted attention in the literature for the simulation of multi-

hase flow problems. Although the difference in these models is

omewhat cosmetic, they are often referenced independently in

he lattice Boltzmann literature. This is a consequence of how

he early models were formulated. Arguably the most obvious dif-

erence between these is the interface-tracking parameter. In the

arly free-energy models, the fluid density was used for this pur-

ose which is in contrast to the phase-field model where an in-

ex function is used. Furthermore, the governing equation to cap-

ure the interface dynamics in the free-energy model is the conti-

uity equation with additional low order terms. The evolution of

he phase-field index function is typically governed by the Cahn–

illiard (or the Allen–Cahn) equation. The phase-field model pro-

ides a systematic relationship between the surface tension, inter-

acial thickness, and chemical potential which is not clear in the

rimitive forms of the free energy models. Although the phase-

eld model can be considered as a subclass of the free-energy

odel, a deliberate distinction has been made to highlight the per-
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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pectives from which they were derived. The phase-field model,

s described in this work, was developed from Jacqmin (1999,

0 0 0) whilst the free-energy LBM had been previously introduced

y Swift et al. (1995, 1996) . Since their first appearance in the lit-

rature, there have been a number of model variations proposed.

ere the free-energy models by Inamuro et al. (2004) and (ZSC)

heng et al. (2006) , as well as the phase-field models of Lee and

in (2005) , and Zu and He (2013) are deliberately highlighted. In-

muro et al. proposed a model capable of simulating relatively

igh density ratio flows, but required pressure to be found through

olving a Poisson equation. This proved to be computationally de-

anding with the time to convergence increasing with density ra-

io. Later, the ZSC model was proposed with a particle distribu-

ion function for the mean density and momentum to overcome

ssues surrounding Galilean invariance for the free-energy model.

owever, Fakhari and Rahimian (2010) showed that the model is

nly valid for density-matched binary fluids. The model by Lee and

in (2005) was able to overcome some of the numerical difficul-

ies of density contrast by taking an incompressible transformation

o change the particle distribution function into one for pressure

nd momentum. This was originally proposed in the mean-field

odel by He et al. (1999) , but Lee and Lin (2005) were able to en-

ance numerical stability through certain discretisation schemes.

he phase-field model has seen significant enhancement since its

ntroduction ( Lee et al., 2006; Lee and Liu, 2010; Fakhari and Lee,

013; Fakhari et al., 2016b ), now overcoming much of the initial

riticisms such as the violation of conservation properties. 

As previously stated, the specific model used in this study

mplements a velocity-based LBM to recover the hydrodynam-

cs, modified from Zu and He (2013) by Fakhari et al. (2017b) ,

hich is extended herein to 3D. This method maintains a high

evel of locality with the phase field representing the only non-

ocal quantity required in the collision step. To maintain stability

f the method at large viscosity contrasts and or high Reynolds

umbers, the weighted multiple-relaxation-time (WMRT) collision

odel ( Fakhari et al., 2017a ) is incorporated into the formulation.

his work does not focus on the use of different collision operators

nd their impact on stability. However, developments such as the

umulant ( Geier et al., 2015b ) and entropic LBM ( Ansumali et al.,

003; Mazloomi et al., 2015; Atif et al., 2017 ) have also emerged

n recent years as promising tools for stabilising hydrodynamic

imulations. The interface evolution is captured with the use of a

econd distribution function to solve the conservative phase-field

quation as done by Geier et al. (2015a) . The model has been im-

lemented in the open-source software TCLB ( Łaniewski-Wołłk and

okicki, 2016 ), which has been used to perform the simulations

resented in this study. 

The remainder of this paper is organised as follows. In

ection 2 the governing equations for hydrodynamics and interface

volution for immiscible two-phase flows are introduced. The lat-

ice Boltzmann algorithm used to solve these equations is given

n Section 3 , along with the numerical details required for im-

lementation. The results obtained using the presented numeri-

al scheme are given in Section 4 , wherein the model is first ver-

fied against the work of Leclaire et al. (2017) for droplet defor-

ation in a density-matched binary fluid. The 3D Rayleigh–Taylor

nstability is the second test case investigated, in which the cur-

ent results are compared with the work of Zu and He (2013) and

e et al. (1999) at low Reynolds number and small density con-

rast. The true advantage of the model is then shown by simu-

ating the Rayleigh–Taylor instability at a relatively high Reynolds

umber with fluid properties similar to that of an air-water sys-

em. This particular case extends beyond previous literature, pro-

iding reference data for future testing of advanced models. Fi-

ally, the model is validated via comparison with the experimen-

al work of Bugg and Saad (2002) , analysing the rise of a Tay-
Please cite this article as: T. Mitchell et al., Developmen
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or bubble. This experimental case has previously been used to

alidate finite-volume methods in commercial codes such as AN-

YS CFX 5.6 by Ndinisa et al. (2005) and ASCOMP’s TransAT by

izarraga-Garcia et al. (2017) . The model is observed to accurately

apture the experimental findings, indicating its potential applica-

ility to modelling multiphase transport through tubular geome-

ries. Section 5 draws final conclusions from this work and outlines

he direction of future research. 

. Governing equations 

In this study the conservative phase field model ( Geier et al.,

015a ) is coupled with the Navier–Stokes and continuity equa-

ions to investigate multiphase flow problems. The phase field

odel originates from the work of Chiu and Lin (2011) whom

ormulated the modified Allen-Cahn equation (ACE) proposed

y Sun and Beckermann (2007) in a conservative form. Later,

eier et al. (2015a) presented the phase field version of this within

he lattice Boltzmann framework. The phase field variable, φ, as-

umes two extreme values in the light phase, φL , and in the

eavy phase, φH . The interface location is taken as the average

alue of φ, given by φ0 = (φH 

+ φL ) / 2 . The equation that governs

he evolution of the interface in this model is given by Chiu and

in (2011) , 

 t φ + ∇ · φu = ∇ · M 

(
∇φ − 1 − 4(φ − φ0 ) 

2 

W 

n 

)
, (1) 

here u is the macroscopic velocity vector, M is the mobility, W

escribes the interfacial width, and n = ∇ φ/ | ∇ φ| is the unit vec-

or normal to the interface. The profile of the phase field over the

iffuse interface is assumed to vary by, 

(x ) = φ0 ±
φH 

− φL 
2 

tanh 

(
2 | x − x 0 | 

W 

)
, (2) 

here x 0 indicates the interface location. 

For the two-phase flow systems in this work, the phase-field

ariable φ is defined to take a value of one in the heavy fluid,

H 

= 1 , and a value of zero in the lighter fluid, φL = 0 . The bounds

f φ are chosen to reduce the effect of compressibility in the low

ensity phase ( Fakhari et al., 2017b ). In order to determine the lo-

al density from the phase field, a simple linear interpolation be-

ween the light fluid, ρL , and the heavy fluid, ρH , is made, 

= ρL + φ(ρH 

− ρL ) . (3) 

The hydrodynamics of an incompressible multiphase flow is de-

ned by the well-known continuity and momentum equations, 

 · u = 0 , (4) 

(
∂ t u + u · ∇u 

)
= −∇p + ∇ · � + F , (5) 

here ρ is the fluid density, p is the hydrodynamic pressure,

= μ
[∇u + (∇u ) T 

]
is the viscous stress tensor, μ is the dy-

amic viscosity, and F = F s + F b is the volumetric force. The terms

 s and F b represent the forces associated with the surface ten-

ion and body forces in the system, respectively. Various formu-

ations for these forces exist, but in this work they are defined as

 Jacqmin (20 0 0) ), 

F s = μφ∇φ, (6) 

ith 

φ = 1 . 5 σ
[
32 φ(φ − 1)(φ − 0 . 5) /W − W ∇ 

2 φ
]
, (7) 

here μφ is the chemical potential and σ is the surface tension,

nd 

 b = ρg, (8) 

here g is the gravitational acceleration. 
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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3. Lattice Boltzmann formulation 

In order to recover the conservative phase-field equation in 3D,

the D3Q15 lattice structure is used for which a lattice population,

h i , is defined. The single-relaxation-time collision operation is per-

formed for the phase-field population. The hydrodynamics on the

other hand is recovered using the D3Q27 lattice with the popula-

tion g i . For this, the WMRT scheme is applied ( Fakhari et al., 2017a )

allowing the model to achieve relatively large viscosity contrasts

and high Reynolds numbers. Here it can be seen that a lower order

stencil is applied for the conservative phase field model to reduce

computational costs. The applicability of the D3Q15 lattice struc-

ture to evaluate the model was shown in Fakhari et al. (2016a) .

This stencil allows the resolution of the zeroth- and first-order mo-

ments, which is sufficient for modelling the phase-field equation.

However, for the hydrodynamics, the D3Q27 lattice improves the

isotropy and can assist in solution accuracy and stability. For these

standard lattice structures on a uniform grid, it is common practice

to take the underlying lattice length, δx , and time, δt , scales such

that δx = δt = 1 lattice unit (lu) and c = δx/δt = 1 . The mesoscopic

lattice velocities, c i , and weights, w i , are given in Appendix A , and

the WMRT transformation matrix is supplied in Appendix B . 

3.1. Conservative phase-field LBE 

The LBE for tracking the fluid-fluid interface is given by

Fakhari et al. (2017a) as 

h i (x + c i δt, t + δt) = h i (x , t) − h i (x , t) − h̄ 

eq 
i 

(x , t) 

τφ + 1 / 2 

+ F 
φ

i 
(x , t) , (9)

where τφ = M/c 2 s is the phase-field relaxation time with the speed

of sound of the system, c s = c/ 
√ 

3 . The forcing term is defined as 

F 
φ

i 
(x , t) = δt 

4 φ(1 − φ) 

W 

w i c i · n , (10)

when one takes the extreme values of φ as φH 

= 1 and φL = 0 . 

The term h̄ 
eq 
i 

signifies that the equilibrium distribution is

shifted by the forcing term 

h̄ 

eq 
i 

(x , t) = h 

eq 
i 

− 1 

2 

F 
φ

i 
, (11)

where 

h 

eq 
i 

= φw i 

(
1 + 

c i · u 

c 2 s 

+ 

(c i · u ) 2 

2 c 4 s 

− u · u 

2 c 2 s 

)
. (12)

To relate the interface-tracking distribution function h i to the

phase-field variable, its zeroth moment is taken after the streaming

step, 

φ = 

∑ 

i 

h i . (13)

3.2. Velocity-based LBM 

The LBE used in this study was proposed by

Fakhari et al. (2017b) to improve the velocity-based LBM devel-

oped by Zu and He (2013) . The improvements aimed to increase

the efficiency of the Zu and He approach ( Zu and He, 2013 )

by eliminating the need to directly calculate velocity gradients

using finite difference stencils, instead extracting the deviatoric

stress tensor from the higher-order moments of the LBM itself.

Additionally, the need for a predictor-corrector step to determine

pressure and velocity was removed by simplifying the equilibrium

distribution function. The robustness of the current LBM was

exhibited in 2D with numerous test cases at both high-density

contrasts and relatively high Reynolds numbers ( Fakhari et al.,
Please cite this article as: T. Mitchell et al., Developmen
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017b ). Here the 3D algorithm is described with the addition of a

MRT collision operator. 

The LBE to recover Eq. (5) is given by 

 i (x + c i δt, t + δt) = g i (x , t) − M 

−1 ˆ S M 

[
g i (x , t) − ḡ eq 

i 
(x , t) 

]
+ F i (x , t) , (14)

n which the equilibrium distribution, g 
eq 
i 

is shifted in the same

ense as the phase-field distribution, for the inclusion of the forc-

ng term 

¯
 

eq 
i 

(x , t) = g eq 
i 

− 1 

2 

F i , (15)

ith 

 

eq 
i 

= w i 

[
p ∗ + 

(
c i · u 

c 2 s 

+ 

(c i · u ) 2 

2 c 4 s 

− u · u 

2 c 2 s 

)]
, (16)

here p ∗ = p/ρc 2 s is the normalised pressure. The orthogonal

ransformation matrix, M , is given in Appendix B and the diago-

al relaxation matrix is 

ˆ 
 = diag (1 , 1 , 1 , 1 , s ν, s ν , s ν, s ν , 1 , . . . , 1) (17)

or the defined transformation matrix. The relaxation parameter

 ν = (τ + 0 . 5) −1 relates the hydrodynamic relaxation time, τ , to

he viscosity according to 

μ = ρν = ρτ c 2 s , (18)

here ν is the kinematic viscosity. The relaxation time can be cal-

ulated via interpolation, with a number of forms proposed and

xamined in the literature ( Fakhari et al., 2017b ). In this study, a

inear interpolation is used such that 

= τL + φ(τH 

− τL ) , (19)

here τ L and τH are the bulk relaxation times in the light and

eavy fluids, respectively. The values for these relaxation times are

etermined using the viscosities of each fluid via Eq. (18) . 

The hydrodynamic forcing term is given by 

 i (x , t) = w i 

c i · F 

ρc 2 s 

, (20)

here the forcing term F accounts for surface tension and body

orces given in Eq. (6) and Eq. (8) , respectively. In addition, a pres-

ure, F p , and viscous, F μ, force is required to recover Eq. (5) as a

esult of the velocity-based formulation ( Zu and He, 2013 ), 

 = F s + F b + F p + F μ. (21)

rom a Chapman–Enskog type analysis, the pressure force can be

etermined to be ( Fakhari et al. (2017b) ), 

 p = −p ∗c 2 s ( ρH − ρL ) ∇φ, (22)

nd the viscous force as ( Fakhari et al. (2017b) ) 

 μ = ν(ρH 

− ρL ) 
[∇u + (∇u ) T 

]
· ∇φ, (23)

herein the derivatives of velocity are recovered from the second

oment of the hydrodynamic distribution function, 

 μ,α = −ν(ρH 

− ρL ) 

c 2 s 

[ ∑ 

i 

c i,αc i,β
∑ 

j 

(M 

−1 ˆ S M ) i, j (g i − g eq 
i 

) 

] 

∂ βφ. 

(24)

he gradient and Laplacian of the phase-field variable are deter-

ined using all the neighbouring nodes and are defined as ( Kumar,

004; Ramadugu et al., 2013; Thampi et al., 2013 ), 

φ = 

c 

c 2 s δx 

26 ∑ 

i =0 

c i w i φ(x + c i δt , t ) , (25)
t of a three-dimensional phase-field lattice Boltzmann 
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2 φ = 

2 c 2 

c 2 s (δx ) 2 

26 ∑ 

i =0 

w i [ φ(x + c i δt , t ) − φ(x , t) ] , (26) 

espectively. 

The macroscopic properties recovered from the hydrodynamic

istribution function are 

p ∗ = 

∑ 

i 

g i , (27) 

 = 

∑ 

i 

g i c i + 

F 

2 ρ
. (28) 

. Results 

.1. Droplet deformation in shear flow 

To start benchmarking the 3D phase-field LBM presented in this

ork, the deformation of a droplet placed in a shear flow is first

nalysed. This test case can be found in numerous works in the

iterature ( Taylor, 1934; Shapira and Haber, 1990; Xi and Duncan,

999; Inamuro et al., 2002 ), but here particular note is taken of

he work by Leclaire et al. (2017) . Here the authors sought to com-

are the colour-gradient and pseudopotential LB models across nu-

erous test cases. Using a droplet in shear flow they were able

o show that both models were capable of reproducing analyti-

al relations in the small capillary number limit. They noted that

he colour-gradient model showed good stability and accuracy for

 larger range of parameters than those obtained with the cho-

en pseudopotential model. The aim of this section is to include

 phase-field model into this benchmark case through applying a

imilar test methodology. As such, a domain, D is defined consis-

ently with the work of Leclaire et al. (2017) such that 

 = (x, y, z) ∈ [0 , X ] × [0 , Y ] × [0 , Z] . (29) 

 spherical interface with radius R is initialised with centroid ( X /2,

 /2, Z /2). To do this, the phase-field is specified by 

x,y,z = 

1 

2 

[
1 − tanh 

( | x − x 0 | − R 

W/ 2 

)]
, (30) 

here x is the spatial location and x 0 is the center of the spher-

cal droplet. For simplicity, the number of dimensionless parame-

ers associated with this problem is reduced by defining the fol-

owing geometric ratios ( Leclaire et al., 2017 ): X/Z = 2 , Y/Z = 1 and

/Z = 0 . 2 . Additionally, the density and viscosity ratios are both set

o unity while the interface width W is set to three lattice units.

ith these values, the bubble deformation D becomes a function

f the capillary and Reynolds numbers only, defined respectively

s 

a = 

˙ γ RμH 

σ
, (31) 

e = 

˙ γ R 

2 ρH 

μH 

, (32) 

here ˙ γ = 2 U/Z is the shear rate due to an imposed velocity

 at the top and −U at the bottom of the domain. To pro-

ide results over a range of Ca, the same approach used by

eclaire et al. (2017) is taken, in which μH is held constant and

he surface tension σ is varied. To characterise the final degree of

reedom associated with the diffuse interface model, an interface

eclet number is defined as ( Komrakova et al. (2014) ), 

e int = 

˙ γ RW 

. (33) 

M m  
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his is used to relate the convective and diffusive time scales of

he interface. For this study of droplet deformation, the mobility is

pecified as M = 0 . 2 for all Re and Ca tested. For a detailed analysis

n the effect of Pe int , the interested reader is pointed towards the

ork of van der Sman and van der Graaf (2008) as well as the

ore recent study by Komrakova et al. (2014) . 

With the geometric constraints stated, the original analysis de-

cribing the bubble deformation conducted by Taylor (1934) breaks

own with the R / Z � 1 assumption being invalid. Since his semi-

al study, numerous authors have utilised perturbation theory to

ain further understanding of the system. The work of Shapira and

aber (1990) , for example, incorporated a corrective term in Tay-

or’s formulation to account for wall effects. The expression for

ubble deformation from their analysis was expressed for Stoke-

ian flows (Re � 1) and was found to be 

 = 

19 κ + 16 

16 κ + 16 

Ca 

[
1 + C sh 

2 . 5 κ + 1 

κ + 1 

(
R 

Z 

)3 
]
, (34) 

here κ = μH 

/μL and C sh = 5 . 6996 is the corrective wall term for

 droplet centered in the domain. Here, it is highlighted that the

all effects incorporated in the analytical works of Shapira and

aber (1990) are derived to O (Ca). As such, it is expected that

he results will deteriorate progressively with increasing capil-

ary number. In this work, results are reported for Reynolds num-

ers between 0.05 and 0.2 for capillary numbers ranging between

.02 and 0.3. If one takes C sh = 0 , the original form proposed by

aylor (1934) is recovered, 

 = Ca 
19 κ + 16 

16 κ + 16 

. (35) 

Taking note from Leclaire et al. (2017) , the grid resolution is

pecified based on an input parameter, r , and a constant, N 0 = 50 ,

uch that 

 x = 2 rN 0 − 2 , (36) 

 y = rN 0 , (37) 

 z = rN 0 − 1 . (38) 

ere, N x, y, z ar e the number of nodes in X, Y , and Z , respectively. A

ode is subtracted from the periodic axis to enforce the geometric

equirements of X / Z and Y / Z for the domain extents. For simplicity,

elocity boundary conditions on the top and bottom of the domain

re implemented by assuming bounce-back of the non-equilibrium

arts of the hydrodynamic population g i ( Hecht and Harting, 2010 ).

An alternative approach was taken to analyse the deformation

esults in comparison with the work of Leclaire et al. (2017) , whom

ormulated the analysis as an optimisation problem. To do this, a

ontour indicating the center of the interface was found and an

ptimisation problem was solved for the shortest and longest dis-

ances to the centre of the ellipse ( i.e. major and minor axes). The

uthors then used two additional contours in the interface and

erformed a similar analysis to determine the angle of rotation.

n this work, an ellipsoidal shape is fit to the contour given at

= 0 . 5 , and then the parameters of the function are utilised to

etermine the major and minor axes. 

Fig. 1 (a) compares the results of the present phase-field

BM using r = 1 with the analytical results of Shapira and

aber (1990) and the numerical results of Leclaire et al. (2017) .

ere it is clear that the phase-field model is in agreement with

he results obtained using the colour gradient model. The results

lso reinforce the findings of the previous works, where accurate

atching of analytical results is seen in the limit of small Ca num-

er. However, at higher Ca, it is evident that the predicted defor-

ation departs significantly from the analytical solution for small
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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Fig. 1. Comparison of the colour-gradient model results presented in 

Leclaire et al. (2017) (markers) with those from the 3D phase-field LBM pro- 

posed in this work (solid lines) with all simulations conducted at a resolution 

of (a) r = 1 and (b) r = 2 . The arrows indicate the Re for the ‘Current’ solutions 

decreasing from 0.2 to 0.05. 
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Re. This appears contradictory to the Shapira and Haber correction

that is specifically valid for Re � 1. In this case, it appears evident

that the resolution r = 1 , is insufficient to capture the flow charac-

teristics for Ca greater than approximately 0.075. This is clear from

the increased resolution results in Fig. 1 (b), in which results pro-

gressively improve for decreasing Re for all Ca tested. 

A particular point highlighted by Leclaire et al. (2017) was the

fact that, in contrast to the pseudo-potential LBM, the colour-

gradient model was able to achieve a constant interface width

across the range of Ca and Re numbers. This is also achieved us-

ing the phase-field LBM with direct control given by the interface

width parameter W . What was not investigated however, was the

effect of the interface width on the deformation of the droplet. To

study this relation, a series of tests were conducted at Ca = 0 . 02 .

The interface width was varied from three to nine and Re between

0.05 and 0.20, while the remaining parameters were kept consis-

tent with the previous test. Fig. 2 displays the deterioration of re-

sults with increasing interface thickness, particularly for the reso-

lution of r = 1 . This behaviour is expected as the simulations tend

away from the sharp interface limit. For the results at resolution
Please cite this article as: T. Mitchell et al., Developmen
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 = 2 , a similar trend is observed until W = 3 . At which point, a

inor deterioration of accuracy is observed for all Re. 

.2. Rayleigh–Taylor instability 

To demonstrate the accuracy and stability of the model in 3D,

he Rayleigh–Taylor instability represents a common benchmark.

his phenomenon occurs when a heavy fluid is situated above a

ighter fluid within a gravitational field, and the interface between

he two is subject to a perturbation. In this configuration, the

eavy fluid is observed to penetrate into the lighter fluid, for which

he characteristics of motion have been investigated by many au-

hors ( He et al., 1999; Zu and He, 2013; Li et al., 2012; Shao and

hu, 2015; Ren et al., 2016; Fakhari et al., 2017b ). 

The previous work of Fakhari et al. (2017b) demonstrated that

he presented model could accurately simulate the Rayleigh–Taylor

nstability up to high density ratios ( ρ∗ = 10 0 0 ) and relatively high

eynolds numbers ( Re = 30 0 0 ) in two-dimensions. As such, the in-

tability provides a reasonable test case for which to analyse the

hree-dimensional extension of the model. 

The construction of the flow domain for this case consists of a

ectangular prism given by, 

 = (x, y, z) ∈ [ −L/ 2 , L/ 2] × [ −2 L, 2 L ] × [ −L/ 2 , L/ 2] . (39)

or the base case, the model parameters were chosen according to

he work of Zu and He (2013) , with L = 128 and dimensionless pa-

ameters including Atwood number, At, Reynolds number, Re, and

apillary number, Ca, defined as 

t = 

ρH 

− ρL 
ρH 

+ ρL 
= 0 . 5 , (40)

e = 

L 
√ 

gL 

ν
= 128 , (41)

a = 

μH 

√ 

gL 

σ
= 9 . 1 . (42)

rom the definitions above, it is clear that At describes the den-

ity ratio, Re indicates the relative effect of gravitational to viscous

orces, and Ca is the relative effect of viscous forces to surface ten-

ion. To close the dimensionless system, the kinematic viscosities

f the two fluids are specified to be equal ( ν∗ = 1 ), giving a viscos-

ty ratio of three ( μ∗ = 3 ). Additionally, the numerical Péclet num-

er is 

e = 

L 
√ 

gL 

M 

= 744 , (43)

nd a reference time is defined as t 0 = 

√ 

L/g = 60 0 0 such that t ∗ =
/t 0 is the dimensionless time. In order to initiate the Rayleigh–

aylor instability, the interface between the two-fluids is initially

erturbed by 

 (x, z) = 0 . 05 L × ( cos (2 πx/L ) + cos (2 πz/L ) ) . (44)

After initialisation, a constant acceleration applied to the sys-

em causes the heavy fluid to penetrate into the lighter fluid.

ig. 3 shows the evolution of the interface at dimensionless times

 

∗ = 1 , 2 , 3 , 4 and 4.5, with the colour contour (online) based on

he local velocity magnitude. The definitions of the points tracked

n the simulation are also found on this figure, namely the bubble,

pike, and saddle points of the initial perturbation. Qualitatively,

imilar results to those obtained by Zu and He (2013) are observed.

he saddle points are the first to display the roll-up like behaviour

ith the mushroom-like shape forming at the spike shortly after. 

A quantitative comparison is performed by tracking the posi-

ion of the bubble, spike, and saddle points through the simula-

ion in order to compare with the works of Zu and He (2013) and
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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Fig. 2. Variation of the deformation parameter with interface width for Ca = 0 . 02 at (a) r = 1 and (b) r = 2 . 

Fig. 3. The evolution of the three-dimensional Rayleigh–Taylor instability with flow conditions defined by At = 0 . 5 , Re = 128 , μ∗ = 3 , Ca = 9 . 1 , and Pe = 744 . 
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e et al. (1999) . Fig. 4 (a) shows a close agreement with these stud-

es, showing the accuracy of the 3D model. However, this flow sce-

ario features both a low Reynolds number and low density ratio,

ith neither of the previous studies extending their analysis be-

ond this for the 3D case. Therefore, another case with the vis-

osity and density ratios similar to that found in an air-water sys-

em ( ρ∗ = 10 0 0 , μ∗ = 10 0 ) is considered with a Reynolds num-

er of 30 0 0. As per the previous case, the characteristic length

cale is taken as L = 128 . However, the reference time is reduced

o t 0 = 40 0 0 to maintain a similar capillary number at Ca = 8 . 7 . A

ensity ratio of 10 0 0 implies that the Atwood number for this case

s 0.998. The evolution of the bubble, spike, and saddle points for

his case are displayed in Fig. 4 (b). 

Fig. 5 shows the time evolution of the interface between the

eavy and light fluids. Here the midplane view of the 3D results

how qualitative agreement with available 2D data ( Shao and Shu,

015; Ren et al., 2016; Fakhari et al., 2017b ). It is evident that the
 t  
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nterfacial traction of the lighter fluid is insufficient to cause the

ushroom-like formation of the spike. 

Currently, there exist few studies of the Rayleigh–Taylor insta-

ility of immiscible fluids with high-density ratios in 2D and or 3D

 Ren et al., 2016; Fakhari et al., 2017b ). The model presented in this

ork was not only able to achieve a stable simulation of a high-

ensity ratio flow case, but one with a relatively high Reynolds

umber as well. This indicates that the solver is sufficiently ro-

ust to be applied to practical liquid-gas systems, which is further

emonstrated in the following section. 

.3. Taylor bubble investigation 

The evolution of Taylor bubbles is observed in a wide range

f natural and industrial flows. Understanding the associated

hysics of these flows can provide critical insight into applica-

ions such as the concentration polarisation and fouling of mem-
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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Fig. 4. Time evolution of the bubble front (0, y , 0), the saddle point (0, y , 64) and 

the spike (64, y , 64) in the case of the Rayleigh–Taylor instability. The base case (a) 

indicates the evolution with At = 0 . 500 and Re = 128 while the extension case (b) 

presents the results with At = 0 . 998 and Re = 30 0 0 . 
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Fig. 5. The evolution of the three-dimensional Rayleigh–Taylor instability with flow condi

eters achieve density and viscosity ratios similar to that of an air-water mixture. 
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ranes ( Ndinisa et al., 2005 ), and the transportation of hydrocar-

ons through pipeline systems ( Bugg and Saad, 2002; Lizarraga-

arcia et al., 2017 ). It has been reported in the literature that the

ise velocity of a Taylor bubble is a key model parameter used in

ertain mechanistic modelling frameworks in order to predict liq-

id hold-up and pressure gradients through piping networks. A full

eview of the literature investigating the motion of rising Taylor

ubbles in vertical pipes is not attempted here, and the interested

eader is referred to Lizarraga-Garcia et al. (2017) for an in-depth

iscussion of the extensive work in this area. The aim of this sec-

ion is to study the flow features of a Taylor bubble using the nu-

erical simulation techniques presented in Section 3 . As such, the

acroscopic rise velocity, the local flow field and the interface pro-

le of the bubble will be investigated and compared with experi-

ental work available in the literature ( Bugg and Saad, 2002 ). 

The experimental work of Bugg and Saad (2002) has been

sed by numerous researchers to validate commercial code bases.

izarraga-Garcia et al. (2017) recently used this data to validate

 level-set formulation in the TransAT software developed at AS-

OMP. Additionally, the work of Ndinisa et al. (2005) used these

xperimental results to assess the volume-of-fluid method, two-

uid method, and a combined model available in the CFX 5.6 code

rom ANSYS. The experimental work was conducted in a vertical

ube with diameter D T = 19 mm , filled with olive oil as the work-

ng fluid. The relevant dimensionless numbers include the Eötvos

umber, Eo, which is the ratio of gravitational to interfacial forces,

he Morton number, Mo, which assists in defining the expected

hape of the bubble, and the Reynolds number, Re r based on the

erminal rise velocity of the bubble, U t . These are defined as 

o = 

(ρH 

− ρL ) gD 

2 
T 

σ
= 100 , (45)

o = 

gμ4 

H 

(ρH 

− ρL ) σ
3 

= 0 . 015 , (46)

e r = 

ρH 

U t D T 

μ
= 27 . (47)
H 

tions defined by At = 0 . 998 , Re = 30 0 0 , μ∗ = 10 0 , and Ca = 8 . 7 . The model param- 

t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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Table 1 

Reynolds numbers found with varying numerical techniques including VOF, TFM, and the combined TFM- 

VOF model from Ndinisa et al. (2005) , as well as the current LBM in comparison to the reference experi- 

mental (Exp) study ( Bugg and Saad, 2002 ). 

Study Ndinisa et al. (2005) Bugg and Saad (2002) D T = 64 D T = 128 D T = 256 

Method VOF TFM Combined Exp LBM LBM LBM 

Re 28.9 24.5 22.7 27 27.98 26.99 26.77 
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Fig. 6. The evolution of a three-dimensional Taylor bubble inside of a cylindrical 

tube is shown at time increments of 5 t 0 from left to right. The flow conditions 

were specified according to the experimental work of Bugg and Saad (2002) with 

D T = 128 , ρ∗ = 744 , Re r ≈ 27, μ∗ = 4236 , Mo = 0 . 015 , and Eo = 100 . In each figure, 

the right frame indicates the mid-plane view of the simulation domain. 
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or this study, it is assumed that the density and viscosity of the

ir injected into the olive oil is 1.225 kg/m 

3 
and 1 . 983 × 10 −5 Pa.s ,

espectively. This gives a density ratio of 744 and a viscosity ratio

f 4236, which when combined with the reported olive oil proper-

ies ( Bugg and Saad, 2002 ), supplies the five π-groups required to

efine the bubble dynamics. 

Particle image velocimetry (PIV) was used by Bugg and

aad (2002) in order to obtain results for the liquid flow field

urrounding the Taylor bubble. Macroscopically, the results of the

xperiment found a terminal rise velocity of 0.131 m/s which

quates to a Froude number of 0.303 ( Fr = U t / 
√ 

gD T ) and the

eynolds number calculated in Eq. (47) . The work done in CFX

.6 ( Ndinisa et al., 2005 ) was able to provide comparable results

o this with terminal velocities of 0.140 m/s , 0.119 m/s , and 0.110

/s obtained using the volume-of-fluid (VOF) technique, the two-

uid model (TFM), and a combined model, respectively. Here it

an be seen that the order of error is within 8%. However, it

as reported that the bubble shape was inadequately captured by

he VOF technique and the interfacial transition region was ex-

essive for the TFM. The combined model was thus suggested by

dinisa et al. (2005) to match the flow field measured by Bugg and

aad (2002) . 

In order to capture the system using the LBM described in this

tudy, one only needs to define a characteristic length (tube di-

meter) and a time scale in order to derive the remaining simu-

ation parameters from the dimensionless variables stated. Three

ifferent resolutions were tested to demonstrate that the results

ere independent of the grid, with similar findings obtained us-

ng 64, 128 and 256 cells across the tube diameter. The time scale

or these simulations was defined according to the diffusive scal-

ng such that t 0 = 20 0 0 , 80 0 0, and 320 0 0 for the different grid

esolutions, respectively. A total run time of 10 t 0 was found to

e sufficient for convergence of both shape and rise velocity for

hese cases. The results using D T = 128 are presented here, with

he length of the simulation domain specified as 10 D T . As in the

ork of Ndinisa et al. (2005) , the low density region was initialised

s a cylinder with a diameter of 0.75 D T and a height of 3 D T . Fig. 6

hows the time evolution of the bubble, with 3D images showing

n iso-plane of φ = 0 . 5 , and a 2D-slice of the phase-field distri-

ution across the pipe diameter. With this simulation the macro-

copic bubble rise velocity, the local flow field dynamics about the

ubble, and the interface profile in regions of interest can be com-

ared. 

.3.1. Bubble rise velocity 

During the simulation, the bubble interface location and inter-

ace velocity was recorded to check steady-state convergence. This

as approximately achieved at 6 − 7 t 0 depending on the resolu-

ion. The rise velocity was then taken as the average of the local

elocity between 9 t 0 and 10 t 0 . Table 1 provides a comparison of

he terminal velocity found in the current study with those from

he literature. Here it is seen that the proposed LBM is able to

rovide a very close match to the experimental data ( Bugg and

aad, 2002 ) for all the resolutions tested, outperforming the pre-

ious numerical results ( Ndinisa et al., 2005 ). 
Please cite this article as: T. Mitchell et al., Developmen
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.3.2. Flow field analysis 

The flow field is assessed in the same manner as in previous

orks by interrogating the velocity field along the tube centreline

n front of the bubble nose as well as along four radial lines at

arious locations relative to the bubble. The locations for the radial

ines of interest are given by 0.111 D T ahead of the bubble nose,

t 0.504 D T and 2 D T behind the bubble nose where the liquid film

s developing and developed, respectively, and at D T /5 behind the

ubble in the wake region. It is noted here that the flow behaviour

n the wake region changes rapidly, thus with only an approximate

ocation given in the experimental work ( Bugg and Saad, 2002 ),

his study provides two additional measurements at D T /6 and D T /7

ehind the bubble (measured from the centreline) for comparison.

or clarity, these lines have been superimposed onto the interface

ontour defined at φ = 0 . 5 in Fig. 7 . 

Fig. 8 shows that the velocity along the tube axis in front of the

ubble nose is captured accurately, with the LBM results matching

ell with both the experimental and numerical findings in the lit-

rature. The figure shows that the bubble has limited influence on

he liquid ahead of it, with the velocity decaying to near zero at

round 0.3 D T . 

A characteristic of the Taylor bubbles modelled in this regime is

he existence of a liquid film between the low density phase and

he wall. The development of this film was well reported through
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 

https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004
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Fig. 7. The location of the flow velocity profiles presented in subsqequent figures are shown relative to the interface position of the (a) front and (b) back of the Taylor 

bubble. 

Fig. 8. The profile of the axial velocity, u a , directly in front of the Taylor bubble. The 

comparative numerical results including the TFM, VOF, and the combined TFM-VOF 

model were supplied by Ndinisa et al. (2005) . 
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the PIV experiments providing a further means of validation for

the present 3D LBM. Fig. 9 provides a comparison with the axial

velocity along a radial line 0.111 D T in front of the bubble nose. In

agreement with the conclusions of Ndinisa et al. (2005) , this fig-

ure indicates a transition from upwards to downwards flow of the

high density fluid roughly halfway between the tube wall and the

central axis. Additionally, the radial profile indicates a strong ve-

locity component above the bubble where the fluid is accelerating

into the liquid film region near the tube wall. The model presented

in the current work performs in a similar fashion to the numeri-

cal methods from the literature, closely matching the axial velocity,

but is unable to capture the premature decay in the radial velocity

observed at approximately 0.8 D in the experimental results. 
T 

Please cite this article as: T. Mitchell et al., Developmen
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The heavy fluid that is forced towards the tube wall by the ris-

ng bubble develops into the liquid film. Fig. 10 shows the high

xial velocity of the heavy fluid as it propagates downwards sur-

ounding the Taylor bubble. At this point, it is evident that there

s still a large radial component of velocity, indicating that the film

s still developing. The present LB model is again seen to perform

n a similar level of accuracy as the reference numerical methods

 Ndinisa et al., 2005 ). 

As the liquid film moves past the elongated bubble, it tends to-

ards a fully-developed profile with negligible velocity in the ra-

ial direction and high velocities in the axial direction of the pipe.

t this stage, the shear stress at the wall is capable of supporting

he weight of the film with zero velocity at the solid contact, but

igh velocity near the liquid-gas interface where the shear stress

s negligible in comparison ( Ndinisa et al., 2005 ). Fig. 11 shows the

xial velocity at this stage where it can be observed that the max-

mum velocity in the liquid film is over twice that of the bubble

ropagation speed. This result again shows a close agreement be-

ween the LBM simulations conducted in this study and the CFX

.6 results ( Ndinisa et al., 2005 ) as well as the experimental find-

ngs ( Bugg and Saad, 2002 ). 

When the liquid film moves past the end of the bubble a sig-

ificant deceleration is observed as flow expands and recirculates

n the wake region. Fig. 12 highlights this fact with the axial flow

omponent still downwards in the near wall region, but upwards

ear the axis of the tube. Additionally, this figure shows that the

ake has the region of maximum radial flow as the energy from

he liquid film dissipates into the bulk. It is observed that the re-

ults from the location D T /5 slightly underpredict the magnitude of

xial velocity, but at D T /6 (which is only four computational cells

bove the D T /5 location) a significantly better match is noted. This

ould be a result of either the diffuse-interface modelling approach

dopted in the LBM algorithm or an uncertainty in the experimen-

al location measurement. Nonetheless, this deviation seems to de-

ote a minor error in comparison to experimental results. To iden-

ify possible causes of this discrepancy, an analysis of the bubble

hape is undertaken. 
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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Fig. 9. The (a) axial and (b) radial velocity profiles along a radial line positioned 

0.111 D T above the bubble nose. 

4

 

T  

a  

t  

p  

p  

s  

t  

p  

f

 

fi  

(  

f  

a  

t  

f  

e  

T  

t  

v

Fig. 10. The (a) axial and (b) radial velocity profiles along a radial line positioned 

0.504 D T behind the bubble nose. 

Fig. 11. The axial velocity profile along a radial line positioned 2 D T behind the bub- 

ble nose. 
.3.3. Bubble shape analysis 

So far, a detailed comparison of the flow field surrounding the

aylor bubble in relation to experimental ( Bugg and Saad, 2002 )

nd numerical ( Ndinisa et al., 2005 ) works available in the litera-

ure has been shown. In this section, the key features of the bubble

rofile in the nose and tail regions are analysed. Furthermore, the

rofile for various simulation resolutions is presented to demon-

trate the grid dependency of the results. The purpose of this is

o provide a complete validation and analysis of the macroscopic

ropagation of Taylor bubbles, the local flow field, and the inter-

ace topology. 

Fig. 13 (a) gives a comparison of the Taylor bubble nose pro-

le using the current LBM and the reference experimental work

 Bugg and Saad, 2002 ). It is noted here that the phase-field model

or capturing the interface dynamics is a diffuse interface model,

nd as such the interface is distributed over a finite distance rather

han a singularity. The contour shown here represents the iso-line

or which φ = 0 . 5 . A good fit can be seen between the works, how-

ver a discrepancy is evident about the radial location of r/R = 0 . 5 .

he grid dependency of the nose profile is evident with the resolu-

ion defined by D T = 64 , but is clearly negligible with only minor

ariation from D = 128 to D = 256 . 
T T 
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Fig. 12. The (a) axial and (b) radial velocity profiles along radial lines positioned 

behind the bubble (in the wake region) at distances of D T /5, D T /6, and D T /7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The profiles of the Taylor bubble interface are indicated by the contour of 

φ = 0 . 5 in the LBM results. Here the vertical location is given with reference to an 

arbitrary location: (a) the front of the bubble is defined at a dimensionless height 

of 0.5; (b) the centreline of the interface tail is defined at a dimensionless height of 

0.2. The interface profile is compared with the reference PIV experiments ( Bugg and 

Saad, 2002 ). 
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Fig. 13 (b) indicates the profile about the tail of the Taylor bub-

ble for various resolutions. Here the discrepancy between exper-

iment and numerics is more pronounced. Additionally, the grid

resolution is observed to have a higher influence on the inter-

face topology, particularly for the lowest resolution of D T = 64 . The

converged shape of the higher resolution tests seemingly do not

capture the lower bubble tail observed in experimental measure-

ments, with an error of approximately 20% observed at r / R ≈ 0.52.

The discrepancy in the shape is likely the cause of the minor devi-

ations observed in the flow field of the wake presented in Fig. 12 .

In particular, the elongation observed in the tail of the experimen-

tal bubble could be expected to lead to a greater axial, but lower

radial velocity component near the tube centerline. This occurs as

a result of the expansion of the liquid film at a location closer to

the measurement point ( D /5 below the central axis of the bubble).

This is further verified by the numerical results presented at a lo-

cation of D /6, which provide a close fit to experimental data. Qual-

itatively, the reduced elongation observed numerically agrees with

the findings presented in Fig. 10 of Ndinisa et al. (2005) . 

In this section, it has been shown that the phase-field LBM is

able to accurately capture the Taylor bubble rise velocity, the local

flow field about the bubble, and the interface profile in key areas of
Please cite this article as: T. Mitchell et al., Developmen

method for the study of immiscible fluids at high density 
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nterest around the bubble. The calculated rise velocity appeared to

atch better to experimental results than the previous numerical

ork, while the local flow field showed only minor discrepancies.

he convergence of the interface profile was observed at a compu-

ational resolution of D T = 128 , with the shapes matching closely

ith experimental PIV results. The accuracy of results further high-

ights the capability of the present 3D model to capture practical

ows of interest. 

. Summary and conclusion 

This work presented the development of a phase-field LBM

n three dimensions. The model was benchmarked and validated

gainst numerical and experimental works. The use of a weighted

ultiple-relaxation-time collision scheme enhanced the numerical

tability of the model, enabling the simulation of high density ra-

ios and high Reynolds numbers. The model itself employs the con-

ervative phase-field LBE designed to simulate immiscible fluids

oupled with a velocity-based LBE to recover the system hydrody-
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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amics at high density ratios. The current model contains just one

on-local parameter in the LB collision step, offering an improved

ocality in comparison with other available LB models. 

The performance of the model for density-matched drop defor-

ation, a common case used in the benchmarking of certain LB

odels, was first demonstrated. Here, similar performance to pub-

ished results using a colour-gradient model was observed, with

heoretical results being reasonably well matched in the low capil-

ary number limit. Similarly to the existing LB models, the present

BM upheld useful features such as an easily adjustable surface

ension and a maintained interface thickness. 

Flow cases where the density contrast of the fluids have a sig-

ificant impact on the system dynamics were also investigated.

his included the Rayleigh–Taylor instability in 3D. A slight inter-

ace perturbation was introduced causing the heavy fluid to char-

cteristically penetrate into the lighter one. The model was bench-

arked against the previous case in which a density ratio of three

as used and a mushroom-like roll-up of the heavy fluid spike was

bserved. From here, the model was extended beyond previously

iscussed literature by simulating the Rayleigh–Taylor instability

ith fluids similar in properties to an air-water system. The sys-

em was observed to capture the dynamics of such a system stably

p to relatively high Reynolds numbers. 

Having verified the model with the previous numerical tests,

alidation against experimental results investigating the rise of a

aylor bubble in a quiescent fluid was sought. The experiment in-

ected an air bubble into a tube filled with olive oil and utilised PIV

echnology to capture high resolution flow field data. The phase-

eld LBM was not only able to recover the observed rise veloc-

ty reported in experiments, but the local flow field data about

he bubble was also accurately matched. The steady-state interface

rofile about the bubble nose and tail was extracted from simu-

ations and compared with that found experimentally. Minor dis-

repancies were observed, but overall the results were deemed to

apture the physical system, providing a detailed validation case

or the model presented. 

Further validation and application of the model within industri-

lly relevant problems will be an area of ongoing research. Of par-

icular interest is the piped transport of multiphase fluids present

n the oil and gas, chemical, and nuclear industries. In these cases,

actors such as flow direction, angle of inclination, and piping con-

gurations ( e.g. annular designs) can complicate the flow dynamics

nd phase interactions. 
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ppendix A. Lattice velocity sets and weightings 

The discrete velocity set for the D3Q15 lattice used for the con-

ervative phase-field equation is given by, 
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 15 = 

⎛ 

⎜ ⎜ ⎝ 

c x 

c y 

c z 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1 

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1 

⎞ 

⎟ ⎟ ⎠ 

. 

(A.1) 

he corresponding lattice weights are given by, 

 i = 
1 

72 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

16 , i = 0 , 
8 , i = 1 − 6 , 

1 , i = 7 − 14 . 

(A.2) 

As for the discrete velocity set of the D3Q27 lattice used for

he hydrodynamics, a slightly unconventional ordering was used

n order to align the first 15 velocity directions with the D3Q15

odel, 

 27 = 

( 

c x 
c y 
c z 

) 

(A.3) 

= 

⎛ 

⎝ 

c 0 −14 ,x 1 −1 1 −1 1 −1 1 −1 0 0 0 0 

c 0 −14 ,y 1 1 −1 −1 0 0 0 0 1 −1 1 −1 

c 0 −14 ,z 0 0 0 0 1 1 −1 −1 1 1 −1 −1 

⎞ 

⎠ . 

(A.4) 

he corresponding lattice weights are then given by, 

 i = 

1 

216 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

64 , i = 0 , 

16 , i = 1 − 6 , 

1 , i = 7 − 14 , 

4 , i = 15 − 26 . 

(A.5) 

ppendix B. WMRT construction for the D3Q27 lattice 

For a full definition of the WMRT the interested reader is

ointed to the work of Fakhari et al. (2017a) . Here, only the infor-

ation required for implementation is given. It is worth mention-

ng that a correction was noted for the fourth-order moment m 17 

s well as the fifth- and sixth-order moments, although the final

ransformation matrix given in Fakhari et al. (2017a) was accurate.

he correct weighted moments making up the transformation ma-

rix are given by: 

Zeroth-order: 

 0 = 1 

irst-order: 

 1 = c i,x 

 2 = c i,y 

 3 = c i,z 

econd-order: 

 4 = c i,x c i,y 

 5 = c i,y c i,z 

 6 = c i,z c i,x 

 7 = 3 c 2 i,x − | c i | 2 
 8 = c 2 i,y − c 2 i,z 

 9 = | c i | 2 − 1 

hird-order: 

 10 = c i,x (3 | c i | 2 − 5) 

m 11 = c i,y (3 | c i | 2 − 5) 

 12 = c i,z (3 | c i | 2 − 5) 

 13 = c i,x (c 2 i,y − c 2 i,z ) 
t of a three-dimensional phase-field lattice Boltzmann 

ratios, International Journal of Multiphase Flow (2018), 
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8 
m 14 = c i,y (c 2 i,z − c 2 i,x ) 

m 15 = c i,z (c 2 i,x − c 2 i,y ) 

m 16 = c i,x c i,y c i,z 

Fourth-order: 

m 17 = 0 . 5(3 | c i | 4 − 7 | c i | 2 + 2) 

m 18 = (3 | c i | 2 − 4)(3 c 2 i,x − | c i | 2 ) 
m 19 = (3 | c i | 2 − 4)(c 2 i,y − c 2 i,z ) 

m 20 = c i,x c i,y (3 | c i | 2 − 7) 

m 21 = c i,y c i,z (3 | c i | 2 − 7) 

m 22 = c i,z c i,x (3 | c i | 2 − 7) 

Fifth-order: 

m 23 = 0 . 5 c i,x (9 | c i | 4 − 33 | c i | 2 + 26) 

m 24 = 0 . 5 c i,y (9 | c i | 4 − 33 | c i | 2 + 26) 

m 25 = 0 . 5 c i,z (9 | c i | 4 − 33 | c i | 2 + 26) 

Sixth-order: 

m 26 = 0 . 5(9 | c i | 6 − 36 | c i | 4 + 33 | c i | 2 − 2) 

With these moments and the defined velocity vector, the

weighted transformation matrix for the D3Q27 lattice becomes: 

M = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 

0 0 0 0 0 0 0 1 −1 −1 1 1 −1 

0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 

0 2 2 −1 −1 −1 −1 0 0 0 0 0 0 

0 0 0 1 1 −1 −1 0 0 0 0 0 0 

−1 0 0 0 0 0 0 2 2 2 2 2 2 

0 −2 2 0 0 0 0 4 −4 4 −4 4 −4 

0 0 0 −2 2 0 0 4 4 −4 −4 4 4 

0 0 0 0 0 −2 2 4 4 4 4 −4 −4 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 −1 −1 1 −1 1 

1 −1 −1 −1 −1 −1 −1 4 4 4 4 4 4 

0 −2 −2 1 1 1 1 0 0 0 0 0 0 

0 0 0 −1 −1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 2 −2 −2 2 2 −2 

0 0 0 0 0 0 0 2 2 −2 −2 −2 −2 

0 0 0 0 0 0 0 2 −2 2 −2 −2 2 

0 1 −1 0 0 0 0 4 −4 4 −4 4 −4 

0 0 0 1 −1 0 0 4 4 −4 −4 4 4 

0 0 0 0 0 1 −1 4 4 4 4 −4 −4 

−1 2 2 2 2 2 2 −8 8 8 8 8 8 
Please cite this article as: T. Mitchell et al., Developmen

method for the study of immiscible fluids at high density 

https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004 
1 1 1 1 1 1 1 1 1 1 1 1 1 

−1 1 −1 1 −1 1 −1 1 −1 0 0 0 0 

−1 1 1 −1 −1 0 0 0 0 1 −1 1 −1 

−1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 

1 1 −1 −1 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 1 −1 −1 1 

1 0 0 0 0 1 −1 −1 1 0 0 0 0 

0 1 1 1 1 1 1 1 1 −2 −2 −2 −2 

0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 

2 1 1 1 1 1 1 1 1 1 1 1 1 

−4 1 −1 1 −1 1 −1 1 −1 0 0 0 0 

−4 1 1 −1 −1 0 0 0 0 1 −1 1 −1 

−4 0 0 0 0 1 1 −1 −1 1 1 −1 −1 

0 1 −1 1 −1 −1 1 −1 1 0 0 0 0 

0 −1 −1 1 1 0 0 0 0 1 −1 1 −1 

0 0 0 0 0 1 1 −1 −1 −1 −1 1 1 

−1 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

0 2 2 2 2 2 2 2 2 −4 −4 −4 −4 

0 2 2 2 2 −2 −2 −2 −2 0 0 0 0 

2 −1 1 1 −1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 −1 1 1 −1 

2 0 0 0 0 −1 1 1 −1 0 0 0 0 

−4 −2 2 −2 2 −2 2 −2 2 0 0 0 0 

−4 −2 −2 2 2 0 0 0 0 −2 2 −2 2 

−4 0 0 0 0 −2 −2 2 2 −2 −2 2 2 

8 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
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