Mortality and Implant Survival with Simultaneous and Staged Bilateral Total Knee Arthroplasty Experience from the Australian Orthopaedic Association National Joint Replacement Registry

Hwa Sen Chua, MBBS, MS Orth (Malaya), Clinical Hip Fellow, Sarah L. Whitehouse, PhD, Senior Research Fellow, Michelle Lorimer, BSc(Hons), Senior Statistician, Richard De Steiger, MBBS, Dip Biom, FRACS, Professor in Surgery, Linda Guo, MBBS, Principle House Officer, Ross W. Crawford, MBBS, D Phil Oxon, Professor in Orthopaedic Research

PII: S0883-5403(18)30502-3
DOI: 10.1016/j.arth.2018.05.019
Reference: YARTH 56630

To appear in: The Journal of Arthroplasty

Received Date: 14 February 2018
Revised Date: 26 April 2018
Accepted Date: 11 May 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Mortality and Implant Survival with Simultaneous and Staged Bilateral Total Knee Arthroplasty

Experience from the Australian Orthopaedic Association National Joint Replacement Registry

Hwa Sen Chua MBBS, MS Orth (Malaya) Clinical Hip Fellow¹
Sarah L Whitehouse PhD Senior Research Fellow¹
Michelle Lorimer, BSc(Hons) Senior Statistician²
Richard De Steiger MBBS, Dip Biom, FRACS Professor in Surgery³,⁴
Linda Guo MBBS Principle House Officer⁵
Ross W Crawford MBBS, D Phil Oxon Professor in Orthopaedic Research¹

1. Queensland University of Technology (QUT), Brisbane, Australia
2. South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
3. Department of Surgery, Epworth HealthCare, University of Melbourne, Melbourne, Australia
4. Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR), Adelaide, Australia
5. School of Medicine, University of Queensland, Brisbane, Australia

Corresponding author:
Professor Ross W Crawford
Queensland University of Technology
Orthopaedic Research Unit
Level 5, Clinical Sciences Building
The Prince Charles Hospital
Rode Road, Chermside, Queensland 4032
Australia
Ph: +61 7 3139 4481
Fax: +61 7 3139 4043
E-mail: r.crawford@qut.edu.au
Mortality and Implant Survival with Simultaneous and Staged Bilateral Total Knee Arthroplasty

Experience from the Australian Orthopaedic Association National Joint Replacement Registry
Abstract

Background: Total knee arthroplasty (TKA) is an effective procedure for relieving pain and restoring function in osteoarthritis, with a significant proportion of patients having severe disease bilaterally. However, although there are differences in patient selection criteria for bilateral procedures, there is no consensus regarding the optimal timing for bilateral TKA. The aim of this study is to compare rates, causes of revision and 30-day mortality between simultaneous and staged bilateral TKA using data from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR).

Methods: Data for over 36,000 bilateral TKAs was collected from September, 1999 to December, 2015. Rates and causes of revision and 30-day mortality rate were obtained for simultaneous bilateral and staged procedures with intervals of 1 day–6weeks, 6weeks–3months and 3months–6months. Yearly cumulative percent revision (CPR) or survival (CPS) with 95% confidence intervals calculated by the Kaplan-Meier method and adjusted hazard ratios were used for comparisons.

Results: There was no significant difference between revision rates or reasons for revision between staged bilateral and simultaneous TKA (HR 1.09 (95% CI 0.85-1.40; p=0.511) for 1day–6weeks, 0.93 (95% CI 0.77-1.14; p=0.494) for 6weeks–3months, and 1.10 (95% CI 0.98-1.23; p=0.115) for 3months–6months). The most common reasons for revision were loosening/lysis and infection. The 30-day mortality rates were lower in the 6weeks-3months group than simultaneous bilaterals (p=0.007).

Conclusion: This study demonstrates that simultaneous and staged bilateral TKA have similar rates of revision over the medium term but that 30-day mortality is reduced in the 6weeks-3months group.

Word count: 249/250

Keywords: Registry; primary: bilateral knees; mortality; survivorship; revision

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Introduction

Total knee arthroplasty (TKA) is a highly successful procedure for relieving pain and restoring function in severe osteoarthritis of the knee joints. The prevalence of bilateral knee osteoarthritis has been shown to be as high as 5% [1]. A number of studies have evaluated the need for a contralateral TKA after the first TKA. Ritter et al. [2] reported that when the contralateral knee was diagnosed with osteoarthritis at the time of the first TKA, the second TKA was required within 10 years in 37% of patients. Mont et al. [3] reported that 23% of patients scheduled for unilateral TKA had severe symptoms in the contralateral knee, and 93% underwent contralateral TKA within the follow-up time of the study (minimum of 5 years).

Controversies in timing of bilateral TKA for patients with arthritis in both knees are far from resolved. The safety of simultaneous bilateral TKA remains a concern [4-6]. There are reports of increased perioperative complications, including pulmonary embolism, deep vein thrombosis, cardiac, neurologic and wound complications, as well as intensive care unit admissions [7, 8]. There is no consensus in the literature as to whether this confers an increased risk of mortality [9-13]. There have been large institutional series reports that have shown that simultaneous bilateral TKA can be performed safely without increased perioperative morbidity and mortality compared to staged bilateral TKA if a selective pre-operative screening process is used [14-16]. Same-day bilateral TKA has been reported to have benefits of decreased cost [17-19], improved recovery time [20], the use of a single anaesthetic [21], and equal functional outcomes [22].

In patients undergoing staged bilateral TKA, there is a wide range of reported recommended intervals between the first and second operation, ranging from 1 to 120 months [23-25]. The indications for staged TKA and the methods of choosing the first side for operation varied between studies [26, 27]. Many comparisons were aimed at the safety, perioperative complications and cost effectiveness of simultaneous versus staged bilateral TKA, while few studies had considered subsequent revision rates.

The aim of this study was to utilise data from the Australian Orthopaedic
Association National Joint Replacement Registry (AOANJRR) to investigate the
implant survivorship and 30-day mortality of simultaneous bilateral TKA compared
to staged bilateral TKA of various intervals.

Materials and Methods

The analysis for this study was undertaken by the AOANJRR. The AOANJRR is an
Australian Federal Government-funded AOA initiative with the purpose of
improving the care of patients undergoing joint arthroplasty, providing accurate
demographic information, and establishing a reliable method of audit for both
hospitals and individual surgeons [28, 29]. Data collection commenced in
September 1999, with staged state-based implementation leading to full national
data collection in mid-2002.

Registry data is obtained at the time of surgery and includes patient details,
hospital, type of procedure, joint replaced, side, diagnosis, and component details.
All public and private hospitals in Australia performing joint replacement surgery
provide information to the Registry. Data is validated against State Health
Department separation data and this enables the AOANJRR to have a complete
dataset of all joint replacement surgery. The AOANJRR dataset is matched
biannually to the Australian National Death Index (Australian Institute of Health
and Welfare). This enables the AOANJRR to have a complete list of patients who
have died and the date of their death.

The study period for this analysis was September 1, 1999 to December 31, 2015.
The AOANJRR identified all bilateral primary TKA procedures undertaken for
osteoarthritis (OA) within 6 months of the initial procedure. Bilateral TKA
procedures were grouped into four categories: simultaneous (same-day), or staged
bilateral TKA procedures with intervals of 1 day – 6 weeks, 6 weeks – 3 months and
3 months – 6 months, with numbers reported at patient level.

Analysis provided information on revision rates (as determined by the time to first
revision of either knee from the time of second TKA), reasons for revision,
cumulative incidence revision for the five most common reasons for revision, types
of revision, and 30-day mortality after the second procedure. Further analysis by
age (over or under 65 years) and type of fixation (cement, cementless or hybrid) was undertaken. These analyses did not identify any differences to the overall data and have therefore not been included (data available upon request). ASA grade and BMI were available from the time they were added to the core dataset in 2012 and 2015 respectively.

Statistics

The Kaplan Meier method was used to determine cumulative percent revision (CPR) and cumulative percent survival (CPS). Unadjusted CPR values are reported with 95% confidence interval (CI). Revision (and mortality) rates were compared using Cox proportional hazards models, adjusting for age and sex. Tests were 2-tailed at the 5% level of significance. Descriptive analysis of reasons for revision and type of revision are also reported.

Results

There were 36,087 bilateral primary TKAs (72,174 knees) undertaken for OA with a maximum interval of six months between procedures during the study period. Specifically, there were 23,136 (64.1%) simultaneous bilateral TKA procedures and 12,951 staged bilateral TKA procedures (1,262 (3.5%) 1 day–6 weeks, 2,638 (7.3%) 6 weeks–3 months, and 9,051 (25.1%) 3–6 months) (Table 1). Age, gender, ASA grade and BMI details for each group are shown in Table 1.

There was no significant difference in the rate of revision when the three different interval groups of staged bilateral TKA were compared to simultaneous bilateral TKA (1 day–6 weeks) HR= 1.09 (95% CI 0.85-1.40; p=0.511), (6 weeks–3 months) HR=0.93 (95% CI 0.77-1.14; p=0.494) and (3 month–6 months) HR=1.10 (95% CI 0.98-1.23; p=0.115). (Table 2, Figure 1).

In the simultaneous bilateral TKA group the most common reasons for revision were loosening/lysis (29.0%), infection (23.4%) and patellofemoral pain (11.3%). The reasons for revision were similar in the staged bilateral TKA groups (Table 3, Figure 2). There was no significant difference in the revision rates for loosening/lysis or infection when the three different interval groups of staged bilateral TKA were compared to simultaneous bilateral TKA (Table 4).
The most common type of revision for simultaneous bilateral TKA was a total revision (tibial and femoral components - 25.0%), insert only - 22.6% and patella only - 17.7%). The types of revision in the staged bilateral TKA groups were similar (Table 5).

The 30-day mortality (from second procedure) for the four groups of bilateral TKA procedures was 0.17% (simultaneous), 0.08% (1 day – 6 weeks), 0.04% (6 weeks – 3 months) and 0.07% (3 months – 6 months) (Table 6). For comparison, the 30-day mortality rate for all primary TKAs for OA is 0.13%. Overall, when combining all staged bilaterals (1 day – 6 months), the 30-day mortality was 0.06% which was significantly lower than the simultaneous bilateral group (p=0.0004). There was a significantly lower 30-day mortality rate in the staged 6 weeks to 3 months group than for the simultaneous bilaterals (OR 0.30 (95% CI 0.13 to 0.72), p=0.007).

Although the 30-day mortality rates were also lower in the other staged groups than the simultaneous bilaterals, statistically there was no significant difference (1 day – 6 weeks; OR 0.46 (95% CI 0.06 to 3.33), p=0.441 and 3 months – 6 months, OR 0.19 (95% CI 0.03 to 1.39), p=0.103). Both age and ASA grade were significantly lower in the simultaneous bilateral group compared with all other groups (both p<0.001, chi-squared test).

Discussion

This study compared the revision rates, reasons for revision, types of revision and 30-day mortality of simultaneous bilateral TKA to the three groups of staged bilateral TKA of various intervals. There was no difference in revision rate, reasons for revision or types of revision. There was a significantly lower 30-day mortality rate in the 6 weeks – 3 months staged compared with the simultaneous bilateral groups.

The rate of revision between the groups in our study were similar, with no significant differences found between the simultaneous and different timed staged procedures.

However, our analysis shows a significantly lower 30-day mortality rate for staged 6 week – 3 months bilateral TKA despite the fact that the simultaneous bilateral
group was younger and fitter (according to ASA grade) than the other groups. It has been suggested that 30-day mortality rate provides the best measure of mortality related to TKA, as reporting of mortality beyond 30 days of the procedure may represent deaths not related to the operation [30]. Some studies have shown increased 30-day mortality rate for simultaneous bilateral TKA compared to staged bilateral TKA [31, 32] and unilateral TKA [30]. A number of more recent studies have shown no difference in 30-day mortality between simultaneous bilateral TKA and unilateral TKA [11, 13, 33, 34], which may correlate with improvement in surgical technique over time or better patient selection, although some had relatively small numbers.

In 2003, Ritter et al [25] found no significant difference among the three groups of simultaneous bilateral, staged bilateral, and unilateral TKA with respect to revision or mortality rates. The 10 year CPR for simultaneous bilateral, unilateral, and staged bilateral TKA groups was 98.3% (95% CI, 97.5% - 99.1%), 97.5% (95% CI, 95.4% - 99.6%), and 99.5% (95% CI, 98.6% - 100%), respectively. Our data of comparing simultaneous bilateral TKA and staged bilateral TKA of different durations echoes these findings of no significant difference in revision rates.

In a 1997 study on a larger group of Medicare patients, Ritter et al [31] compared a simultaneous bilateral TKA group (12,922 patients) with groups that had staged procedures within six weeks (4354 patients), six weeks - three months (4524 patients), three - six months (9829 patients), and six months - one year (31,401 patients). The simultaneous bilateral TKA group had the highest cumulative mortality rate at three months postoperatively (1.47%). At one year, the group that had the staged procedure within six weeks had the highest cumulative mortality rate (2.83%). By two years postoperatively, the cumulative mortality rates for all of the groups were similar. Neither the simultaneous nor the staged bilateral TKA had a mortality advantage over the others, and it was determined that the decision about whether to attempt simultaneous or staged bilateral TKA should be made on an individual basis by the patient and the physician. In 2001, Parvizi et al [30] investigated the mortality rate within thirty days after TKA in their entire patient cohort of 22,540 patients over a 28-year period (with 2,679 – 11.9%
bilateral cases). The mortality rate within 30 postoperative days after simultaneous bilateral TKA was significantly higher (p < 0.002) than that after unilateral TKA.

Previous studies have reported increased wound healing problems, and cardiopulmonary problems [35] following simultaneous bilateral TKA. There have also been reports of greater risk of complications and mortality associated with early staged bilateral TKA (within the same hospitalisation or within 3 months) [36, 37]. Experts participating in the Consensus Conference on Bilateral Total Knee Arthroplasty Group in 2013 [38], made a number of consensus statements. Most (81%) agreed that if a patient was not a suitable candidate for same-day bilateral TKA, then a second TKA should be scheduled for at least 3 months or later. The vast majority (96%) opposed the idea of staging within the same hospital admission. Our findings suggest that a delay of 6 weeks may be adequate to mitigate mortality risk.

Much has been discussed about perioperative complications that are associated with simultaneous bilateral TKA. Cardiac complications such as myocardial infarction, arrhythmias, and congestive cardiac failure are some of the common reported cardiac complications following simultaneous bilateral TKAs [23, 33, 39, 40]. The cause of this remains unclear; however, the rates of cardiac complication are reported to be higher in patients with pre-existing comorbid medical conditions and in elderly patients (>80 years). It can be postulated that the physiological stress imposed by the simultaneous procedure on this group of high-risk patients with presumed suboptimal cardiorespiratory reserve could be the cause of increased complications [41]. This may be attributed to longer length of hypotension secondary to spinal anaesthesia, larger fluid shifts, and potentially greater intraoperative hypoxia or anaemia during hospitalization.

The rates of intensive care unit admission are also reported to be higher with simultaneous bilateral procedures. This might be a reflection of the greater need for monitoring of cardiopulmonary parameters with this procedure, especially in elderly patients. In a study by Bullock et al [33], the rate of intensive care unit admission was observed to be 0.59% in the unilateral group and 3.9% in the bilateral group, with a relative risk of 6.61. Similarly, Ritter et al [31] reported that
the number of intensive care unit care days of simultaneous bilateral TKA were
twice that in unilateral or staged groups.

The rates of blood transfusion in simultaneous bilateral TKA have also been found
to be greater than those in unilateral arthroplasty groups, in varying degrees [34, 42-45].

A major strength of the study is the completeness and volume of bilateral
procedures analysed. The revision rate of TKA is low; therefore, large numbers are
required to have sufficient statistical power to enable a meaningful comparison.
This is most easily achieved using data from a large registry. Although the numbers
in the subgroups of staged bilateral TKAs are comparatively low, there is a good
representation across all states/territories within Australia, with relatively high
numbers of surgeons (more than 200 in each group) and hospitals (more than 100
in each group) represented in these groups [data not shown but available]. Most
studies to date have compared safety, perioperative complications and cost of the
surgeries of simultaneous bilateral TKA to staged bilateral TKA. To our knowledge,
this represents the first study that has sufficient power to statistically compare
revision rates.

The major limitations of this study are the potential for confounding and patient
selection for bilateral surgery. The risk of revision may be impacted by multiple
factors including age, gender, comorbidity, type of prosthesis, surgical expertise
and the perceived risk versus benefit of undertaking a revision. While it is likely
that some of these factors are equally distributed across groups, it is almost certain
that patients chosen to have simultaneous bilateral TKA differ from the population
having staged bilateral TKA, as indicated by the lower age and ASA grade. Although
the analysis is adjusted for age and gender, more detailed patient demographic
data were not analysed beyond age comparison of over and under 65s, fixation
and comparison of age and ASA between groups. There is selection bias of patients
undergoing simultaneous bilateral TKAs who are younger, healthier, and less
medically comorbid. The simultaneous bilateral group would therefore be
expected to have a lower 30-day mortality rate than any other group, rather than
the contrary finding in our study with a higher mortality rate than all of the other
The reasons for this contrary finding are not obvious from the data available on the Registry, particularly in relation to the lower 30-day mortality in the 6 week – 3 month group, and so a plausible explanation for this would be speculation on the authors’ part. Further investigation to confirm this finding and explain it are therefore recommended. Other medical complications that do not lead to revision are also not recorded in the registry which limits the outcome used in the analysis to revision or death. There is also the likelihood that some intended bilateral patients died before the second side was performed, which would mean that the differential in 30-day mortality between the same day and staged bilaterals would be less pronounced. This may also partially account for the increased 30-day mortality rate in the unilateral TKA’s. However, this is unlikely to account for the entire difference in mortality rate.

Conclusion

Although there is no difference in revision rates based on the interval of the second procedure for bilateral primary TKA undertaken within 6 months, the mortality is significantly lower when bilateral procedures are staged and lowest when the interval is 6 weeks to 3 months. In spite of being younger and fitter, the simultaneous bilateral TKAs have a measurably higher 30-day mortality risk than staged surgery, and surgeons and patients need to decide on a case-by-case basis whether the elevated risk of bilateral surgery is outweighed by patient-specific benefits.
Ethics, funding and conflicts of interest

No ethical approval was required for this registry study. There were no external sources of funding and none of the authors had any conflicts of interests specifically for this project.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

388 38. Memtsoudis SG, Hargett M, Russell LA, Parvizi J, Cats-Baril WL, Stundner O,
389 Sculco TP. Consensus Statement from the Consensus Conference on Bilateral Total
392 arthroplasty under 1 anesthetic in patients > or = 75 years old: complications and
394 40. Lombardi AV, Mallory TH, Fada RA, Hartman JF, Capps SG, Kefauver CA, Dodds
396 Orthop Relat Res 2001; (392): 319-29
397 41. Pavone V, Johnson T, Saulog PS, Sculco TP, Bottner F. Perioperative morbidity
399 155-61
400 42. Slover J, Lavery JA, Schwarzkopf R, Iorio R, Bosco J, Gold HT. Incidence and Risk
401 Factors for Blood Transfusion in Total Joint Arthroplasty: Analysis of a Statewide
402 Database. J Arthroplasty 2017:
403 43. Nichols CI, Vose JG. Comparative Risk of Transfusion and Incremental Total
404 Hospitalization Cost for Primary Unilateral, Bilateral, and Revision Total Knee
406 44. Zhao YT, Chu HJ, Heng DF, Lei J. Comparison of the effectiveness and safety of
407 one-stage versus two-stage bilateral total knee arthroplasty. Acta Orthop Belg
408 2015; 81 (4): 784-9
410 Simultaneous bilateral versus unilateral total knee arthroplasty. Outcomes
412
Table and Figure Legends

Table 1: Demographics for each group. Patient numbers are reported.

Table 2: Yearly Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA) with all primary TKA for OA for comparison [46].

Table 3: Most Common Revision Diagnoses of Primary Total Knee Replacement (Primary Diagnosis OA).

Table 4: Hazard ratios (95% CIs) of revision rates for various staged interval bilaterals compared with simultaneous bilaterals (with p-values) with reasons for revision of loosening/lysis or infection.

Table 5: Type of Revision of Primary Total Knee Replacement (Primary Diagnosis OA).

Table 6: 30-day Mortality (Cumulative Percent Survival (CPS)) following Bilateral Primary Total Knee Replacements by Group (Primary Diagnosis OA).

Figure 1: Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA).

Figure 2: Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement (Primary Diagnosis OA)
Table 1: Demographics for each group. Patient numbers are reported.

<table>
<thead>
<tr>
<th></th>
<th>Bilateral Same Day</th>
<th>Bilateral 1 day-6wks</th>
<th>Bilateral 6wks-3mths</th>
<th>Bilateral 3mths-6mths</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>23136</td>
<td>1262</td>
<td>2638</td>
<td>9051</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12449 (53.8%)</td>
<td>691 (54.8%)</td>
<td>1478 (56.0%)</td>
<td>4388 (48.5%)</td>
</tr>
<tr>
<td>Female</td>
<td>10687 (46.2%)</td>
<td>571 (45.2%)</td>
<td>1160 (44.0%)</td>
<td>4663 (51.5%)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><55</td>
<td>2284 (9.9%)</td>
<td>152 (12.0%)</td>
<td>241 (9.1%)</td>
<td>544 (6.0%)</td>
</tr>
<tr>
<td>55-64</td>
<td>8526 (36.9%)</td>
<td>481 (38.1%)</td>
<td>886 (33.6%)</td>
<td>2554 (28.2%)</td>
</tr>
<tr>
<td>65-74</td>
<td>8979 (38.8%)</td>
<td>420 (33.3%)</td>
<td>996 (37.8%)</td>
<td>3628 (40.1%)</td>
</tr>
<tr>
<td>≥75</td>
<td>3347 (14.5%)</td>
<td>209 (16.6%)</td>
<td>515 (19.5%)</td>
<td>2325 (25.7%)</td>
</tr>
<tr>
<td>ASA*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>7000</td>
<td>309</td>
<td>726</td>
<td>2069</td>
</tr>
<tr>
<td>1</td>
<td>777 (11.1%)</td>
<td>28 (9.1%)</td>
<td>41 (5.6%)</td>
<td>99 (4.8%)</td>
</tr>
<tr>
<td>2</td>
<td>4531 (64.7%)</td>
<td>185 (59.9%)</td>
<td>415 (57.2%)</td>
<td>1104 (53.4%)</td>
</tr>
<tr>
<td>3</td>
<td>1651 (23.6%)</td>
<td>93 (30.1%)</td>
<td>259 (35.7%)</td>
<td>842 (40.7%)</td>
</tr>
<tr>
<td>4</td>
<td>41 (0.6%)</td>
<td>3 (1.0%)</td>
<td>11 (1.5%)</td>
<td>24 (1.2%)</td>
</tr>
<tr>
<td>BMI*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2626</td>
<td>127</td>
<td>245</td>
<td>535</td>
</tr>
<tr>
<td>Underweight</td>
<td>285 (10.9%)</td>
<td>12 (9.4%)</td>
<td>33 (13.5%)</td>
<td>69 (12.9%)</td>
</tr>
<tr>
<td>Normal</td>
<td>263 (10.0%)</td>
<td>6 (4.7%)</td>
<td>15 (6.1%)</td>
<td>45 (8.4%)</td>
</tr>
<tr>
<td>Pre-Obese</td>
<td>775 (29.5%)</td>
<td>44 (34.6%)</td>
<td>52 (21.2%)</td>
<td>140 (26.2%)</td>
</tr>
<tr>
<td>Obese Class 1</td>
<td>772 (29.4%)</td>
<td>28 (22.0%)</td>
<td>74 (30.2%)</td>
<td>106 (19.8%)</td>
</tr>
<tr>
<td>Obese Class 2</td>
<td>361 (13.7%)</td>
<td>20 (15.7%)</td>
<td>37 (15.1%)</td>
<td>98 (19.0%)</td>
</tr>
<tr>
<td>Obese Class 3</td>
<td>170 (6.5%)</td>
<td>17 (13.4%)</td>
<td>34 (13.9%)</td>
<td>77 (25.8%)</td>
</tr>
</tbody>
</table>

*ASA has only been recorded for procedures since 2012; BMI has only been recorded since 2015. ASA and BMI are based on the first procedure.
Table 2: Yearly Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA) with all primary TKA for OA for comparison [46].

<table>
<thead>
<tr>
<th>Group</th>
<th>N Revised</th>
<th>N Total</th>
<th>1 Yr</th>
<th>3 Yrs</th>
<th>5 Yrs</th>
<th>7 Yrs</th>
<th>10 Yrs</th>
<th>13 Yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral same day</td>
<td>1028</td>
<td>23136</td>
<td>1.2 (1.1, 1.4)</td>
<td>3.1 (2.9, 3.3)</td>
<td>4.4 (4.1, 4.7)</td>
<td>5.6 (5.2, 6.0)</td>
<td>7.4 (6.9, 8.0)</td>
<td>9.9 (9.0, 10.8)</td>
</tr>
<tr>
<td>Bilateral 1 day–6 wk</td>
<td>65</td>
<td>1262</td>
<td>1.4 (0.9, 2.3)</td>
<td>4.0 (3.0, 5.3)</td>
<td>4.9 (3.7, 6.4)</td>
<td>6.0 (4.6, 7.8)</td>
<td>7.6 (5.7, 9.9)</td>
<td>10.5 (7.2, 15.3)</td>
</tr>
<tr>
<td>Bilateral 6 wk–3 mths</td>
<td>108</td>
<td>2638</td>
<td>1.3 (0.9, 1.8)</td>
<td>2.9 (2.3, 3.7)</td>
<td>4.2 (3.4, 5.2)</td>
<td>5.1 (4.1, 6.3)</td>
<td>6.6 (5.3, 8.2)</td>
<td>7.9 (6.2, 10.0)</td>
</tr>
<tr>
<td>Bilateral 3 mths–6 mths</td>
<td>411</td>
<td>9051</td>
<td>1.3 (1.1, 1.5)</td>
<td>3.3 (2.9, 3.7)</td>
<td>4.5 (4.0, 5.0)</td>
<td>5.6 (5.1, 6.3)</td>
<td>7.0 (6.3, 7.8)</td>
<td>9.0 (7.8, 10.3)</td>
</tr>
<tr>
<td>Total</td>
<td>1612</td>
<td>36087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *all bilateral procedures are reported at the patient level (i.e. one patient is two knees) and so risk of revision to either knee is higher than for a single knee (majority of primary OA TKA)
Table 3: Most Common Revision Diagnoses of Primary Total Knee Replacement (Primary Diagnosis OA).

<table>
<thead>
<tr>
<th>Revision Diagnosis</th>
<th>Bilateral Same Day</th>
<th>Bilateral 1day-6wks</th>
<th>Bilateral 6wks-3mths</th>
<th>Bilateral 3mths-6mths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Revision</td>
<td>% Primary</td>
<td>N</td>
</tr>
<tr>
<td>Loosening/Lysis</td>
<td>298</td>
<td>29.0</td>
<td>1.3</td>
<td>20</td>
</tr>
<tr>
<td>Infection</td>
<td>241</td>
<td>23.4</td>
<td>1.0</td>
<td>15</td>
</tr>
<tr>
<td>Patellofemoral Pain</td>
<td>171</td>
<td>16.6</td>
<td>0.7</td>
<td>11</td>
</tr>
<tr>
<td>Instability</td>
<td>69</td>
<td>6.7</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>249</td>
<td>24.2</td>
<td>0.1</td>
<td>18</td>
</tr>
<tr>
<td>N Revision</td>
<td>1028</td>
<td>100.0</td>
<td>4.4</td>
<td>65</td>
</tr>
<tr>
<td>N Primary</td>
<td>23136</td>
<td></td>
<td></td>
<td>1262</td>
</tr>
</tbody>
</table>
Table 4: Hazard ratios (95% CIs) of revision rates for various staged interval bilaterals compared with simultaneous bilaterals (with p-values) with reasons for revision of loosening/lysis or infection.

<table>
<thead>
<tr>
<th>Staged interval</th>
<th>Loosening/lysis</th>
<th>Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral same day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 day – 6 weeks</td>
<td>1.13 (0.72 to 1.78), p=0.586</td>
<td>1.13 (0.72 to 1.78), p=0.586</td>
</tr>
<tr>
<td>6 weeks – 3 months</td>
<td>1.04 (0.73 to 1.48), p=0.812</td>
<td>1.04 (0.73 to 1.48), p=0.812</td>
</tr>
<tr>
<td>3 months – 6 months</td>
<td>1.11 (0.90 to 1.38), p=0.327</td>
<td>1.11 (0.90 to 1.38), p=0.327</td>
</tr>
</tbody>
</table>
Table 5: Type of Revision of Primary Total Knee Replacement (Primary Diagnosis OA).

<table>
<thead>
<tr>
<th>Type of Revision</th>
<th>Bilateral Same Day</th>
<th>Bilateral 1day-6wks</th>
<th>Bilateral 6wks-3mths</th>
<th>Bilateral 3mths-6mths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Revision</td>
<td>% Primary</td>
<td>N</td>
</tr>
<tr>
<td>TKR (Tibial/Femoral)</td>
<td>257</td>
<td>25.0</td>
<td>1.1</td>
<td>23</td>
</tr>
<tr>
<td>Insert Only</td>
<td>232</td>
<td>22.6</td>
<td>1.0</td>
<td>12</td>
</tr>
<tr>
<td>Patella Only</td>
<td>182</td>
<td>17.7</td>
<td>0.8</td>
<td>13</td>
</tr>
<tr>
<td>Insert/Patella Patella Only</td>
<td>118</td>
<td>11.5</td>
<td>0.5</td>
<td>6</td>
</tr>
<tr>
<td>Tibial Component</td>
<td>100</td>
<td>9.7</td>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>Femoral Component</td>
<td>71</td>
<td>6.9</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>Cement Spacer</td>
<td>59</td>
<td>5.7</td>
<td>0.3</td>
<td>4</td>
</tr>
<tr>
<td>Removal of Prostheses</td>
<td>4</td>
<td>0.4</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>Insert Only Minor Components*</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>Insert/Patella Insert Only*</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Minor Components</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>N Revision</td>
<td>1028</td>
<td>100.0</td>
<td>4.4</td>
<td>65</td>
</tr>
<tr>
<td>N Primary</td>
<td>23136</td>
<td>1262</td>
<td>2638</td>
<td>9051</td>
</tr>
</tbody>
</table>

Note: *Same day primary bilateral patients revised on the same day. Both types of revision are listed.
Table 6: 30-day Mortality (Cumulative Percent Survival (CPS)) following Bilateral Primary Total Knee Replacements by Group (Primary Diagnosis OA).

<table>
<thead>
<tr>
<th>Group</th>
<th>N Death (30 day)</th>
<th>N Patients</th>
<th>% 30-day Deaths</th>
<th>30-day CPS</th>
<th>Logistic regression (age/gender adjusted) p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral Same Day</td>
<td>40</td>
<td>23,136</td>
<td>0.17</td>
<td>99.9 (99.4, 100.0)</td>
<td>Reference</td>
</tr>
<tr>
<td>Bilateral 1 day-6wks</td>
<td>1</td>
<td>1262</td>
<td>0.08</td>
<td>99.9 (99.9, 100.0)</td>
<td>p=0.441</td>
</tr>
<tr>
<td>Bilateral 6wks-3mths</td>
<td>1</td>
<td>2638</td>
<td>0.04</td>
<td>99.9 (99.7, 100.0)</td>
<td>p=0.007</td>
</tr>
<tr>
<td>Bilateral 3mths-6mths</td>
<td>6</td>
<td>9051</td>
<td>0.07</td>
<td>99.8 (99.8, 99.9)</td>
<td>p=0.103</td>
</tr>
<tr>
<td>All staged 1 day-6mths</td>
<td>8</td>
<td>12,951</td>
<td>0.06</td>
<td>99.9 (99.8, 100.0)</td>
<td>p=0.0004</td>
</tr>
<tr>
<td>TOTAL</td>
<td>48</td>
<td>36,087</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All primary OA TKA</td>
<td>629</td>
<td>482,373</td>
<td>0.13</td>
<td>99.9 (99.8, 99.9)</td>
<td>p=0.095</td>
</tr>
</tbody>
</table>
Figure 1: Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA).

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>0 Yr</th>
<th>1 Yr</th>
<th>5 Yrs</th>
<th>8 Yrs</th>
<th>10 Yrs</th>
<th>13 Yrs</th>
<th>15 Yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral Same Day</td>
<td>23136</td>
<td>20028</td>
<td>10302</td>
<td>5358</td>
<td>3044</td>
<td>791</td>
<td>91</td>
</tr>
<tr>
<td>Bilateral 1day-6wks</td>
<td>1262</td>
<td>1109</td>
<td>626</td>
<td>349</td>
<td>196</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Bilateral 6wks-3mths</td>
<td>2638</td>
<td>2285</td>
<td>1203</td>
<td>650</td>
<td>377</td>
<td>101</td>
<td>3</td>
</tr>
<tr>
<td>Bilateral 3mths-6mths</td>
<td>9051</td>
<td>7983</td>
<td>4339</td>
<td>2328</td>
<td>1331</td>
<td>301</td>
<td>17</td>
</tr>
</tbody>
</table>
Figure 2: Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement (Primary Diagnosis OA)