
 

Proposal of Stereo-vision Based 

Docking System for Battery Recharging 

in Real Sea 

 

 

 

 

2018, March 

MYO MYINT 

 

 

 

Graduate School of  

Natural Science and Technology 

(Doctor’s Course) 

OKAYAMA UNIVERSITY 



Proposal of Stereo-vision Based Docking System

for Battery Recharging in Real Sea

Intelligent Robotics and Control Laboratory　

Myo Myint (51427304)

Abstract：

Japan has many areas of sea from which future resources can be taken out using

advanced technologies. Autonomous Underwater Vehicle (AUV) plays an important role

in deep sea works such as oil pipe inspection, survey of sea floor, searching expensive

metal, etc. To do such novel works that take a long period in deep sea, one of the main

limitation of AUVs is limited power capacity. To solve this problem, underwater battery

recharging unit with a docking function is one of the solutions to extend the operation

time of AUVs. Most studies on docking for AUVs using visual information are based on

monocular camera to acquire the pose between a target and a vehicle. The disadvantage

is that the precision of distance measurement of the camera ’s depth direction is not

enough for applications in which high homing accuracy is important. Therefore, as an

initiated research to AUV environment, we have developed a 3D-Move on Sensing system

using stereo vision to provide high homing accuracy.

This thesis proposes a stereo vision-based docking system that is new and noble for

battery recharging in real sea. In the proposed approach, visual information is directly

used in feedback control in real-time. Additionally, developed optimization method named

Real-time Multi-step GA is implemented in accordance with the concept of optimization

of dynamic images for real-time target tracking. Moreover, when AUVs must operate

in unstructured environments such as near the seafloor, the most challenging and un-

avoidable problem with the autonomous operation of AUVs is turbidity limiting optical

visibility. To the best of the author ’knowledge, no studies have yet been conducted

on 3D pose estimation against turbidity for underwater vehicles. Therefore, the effect of
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turbidity on the 3D pose estimation performance of underwater vehicles and a method

of operating under turbid conditions were studied in this work. Experiments using a

remotely operated vehicle (ROV) with dual-eye cameras and a passive 3D marker were

conducted in the pool and real sea. The experimental results confirmed that the proposed

system is able to provide high homing accuracy and robustness against disturbances that

influence not only the captured camera images but also the movement of the vehicle. A

successful docking operation using stereo vision that is new and novel to the underwa-

ter vehicle environment was achieved and thus proved the effectiveness of the proposed

system for AUV.

In the first part of this dissertation, a new method of pose estimation scheme that

is based on 3D model-based recognition is proposed for real-time pose tracking to be

applied in Autonomous Underwater Vehicle (AUV). In this method, a 3D marker is used

as a passive target that is simple but enough rich of information. 1-step Genetic Algorithm

(GA) (later named as Real-time Multi-step GA) is utilized in searching process of pose in

term of optimization, because of its effectiveness, simplicity and promising performance

of recursive evaluation, for real-time pose tracking performance. The proposed system is

implemented as software implementation and Remotely Operated Vehicle (ROV) is used

as a test-bed. In simulated experiment, the ROV recognizes the target, estimates the

relative pose of vehicle with respect to the target and controls the vehicle to be regulated

in a desired pose. P control concept is adapted for proper regulation function. Finally,

the robustness of the proposed system is verified in the case when there are physical

disturbances and in the case when the target object is partially occluded. Experiments

are conducted in an indoor pool. Experimental results show recognition accuracy and

regulating performance with errors kept in centimeter level.

The second part of this dissertation presents docking performance using proposed

docking strategy that was designed and demonstrated for underwater battery recharging.

Among two common configurations of docking stations that are omnidirectional and uni-

directional one, a simulated docking station with a unidirectional entry is designed for
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underwater battery recharging in this work. Instead of integration with other sensors, a

standalone dual-eye vision system was applied in this study. The overall target of this

study is to check the functionality and practicality of proposed algorithm for an intended

docking application. Docking strategy was designed and implemented experimentally.

Experiments were conducted in a pool and real sea near Wakayama city in Japan using

an ROV to confirm that the proposed approach is able to guide an ROV to insert a rod

attached on the ROV into a docking hole with a radius of 35 mm attached with a 3D

marker. A successful docking operation from different starting positions using stereo vi-

sion that is new and novel to the underwater vehicle environment was achieved and thus

proved the effectiveness of the proposed system for AUV.

In the final part of this dissertation, the turbidity tolerance of proposed docking ap-

proach was analyzed and verified experimentally. Since underwater battery recharging

units are supposed to be installed in deep sea to save the time consuming and work done

from human beings in the case of returning surface vehicle for recharging, the deep-sea

docking experiments cannot avoid turbidity. According to the author’knowledge, there

is no study on docking system using stereo-vision based real-time visual servoing with

performance tolerance of turbidity. In this study, we conducted experiments to verify

the robustness of the proposed docking approach in simulated pool where different levels

of the turbidity of the water is simulated. The experimental results have confirmed the

robustness of the docking system using stereo-vision based 3D pose estimation against

turbidity. Finally, docking experiments in a real sea were conducted to verify the func-

tionality and practicality of the proposed approach. A shallow sea area was selected as the

docking area because the high turbidity in a shallow region would allow the verification of

the robustness of the proposed system against turbidity. The experimental results verify

the robustness of the system against turbidity, presenting a possible solution to a major

problem in the field of robotics.
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Chapter 1

Introduction

Recently, social demand for deep-sea resources, such as food and energy, has increased

rapidly with the aid of developing technologies. At present, almost all metal and in-

dustrial mineral extraction is conducted onshore. Deep-sea extraction would expand the

available resource pool and provide a level of independence from onshore resource extrac-

tion. Among the available deep-sea resources, expensive rare metals and methane hydrate

in the seabed are of particular economical importance. Japan has been considering the

deep-sea mining of methane hydrate, which is expected to be a future energy resource.

Furthermore, the information that can be gathered from deep-sea exploration is useful in

the prediction of disasters such as earthquakes and tsunamis and can help us understand

how we are affecting and being affected by changes in Earth’s climate and atmosphere.

Therefore, the advancement of deep-sea research technologies would be highly beneficial

in a number of applications.

To meet the above mentioned social demands for sea operations, underwater robots

have been developed worldwide [1]-[8]. AUVs have become essential in deep-sea oper-

ations such as cable tracking [9], ocean bottom exploration and underwater surveying.

Comparing to ROV, using AUV is effective for deep sea works because it has no tethered

cable, it does not depend on a great deal of effort of the operator, and it can provide the

efficient observation of wide area. In a conventional operation, (1) AUV is transported
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to the desired working area by a mother ship, (2) it divides from the mother ship into

the deep sea to do the tasks such as searching resources, and (3) it goes back to the sea

surface. Then, (4) the AUV is collected by the mother ship for maintenance or taking

new instruction for next task. The main problem of this operation method is that there

is a limitation on the capacity of the battery. Since the electricity of AUVs is supplied by

the battery for AUV’s moving around the sea floor, AUVs have to float to the sea surface

for recharging if the power capacity of AUV is not enough for tasks that take longer op-

eration. Therefore, decreasing the working time and dropping the work efficiency in the

deep sea became the problems for deep sea applications where operations take a couple

of days.

To solve these problems, underwater battery recharging technology with docking func-

tion is one of the solutions even though challenges are still remained. In a docking- based

battery recharging system, the power supply facility is installed on the seabed in which

the AUV automatically charges without going to the sea surface and it can do tasks con-

tinuously for a long time. Moreover, docking function takes place as an important role not

only for battery recharging but also for other advanced applications such as intervention

using some manipulators.

1.1 Background and motivation

Research on docking operations using various homing sensors and techniques for the un-

derwater robot has been conducted worldwide [10]-[46]. The optical terminal guidance

technique was introduced in [10]. A docking guidance system was designed and imple-

mented by the Sugeno fuzzy inference system (FIS) in [11]. In [12], an electromagnetic

homing (EM) system for docking was proposed and tested. In [13], the AUV homed to a

docking station by using an ultrashort base line (USBL) sonar transceiver mounted in the

vehicle nose. The work in [14] proposed a robust AUV docking guidance and navigation

approach that can handle unknown current disturbances without a velocity sensor. The
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work in [15] addressed robust vision-based target recognition by presenting a scaled and

rotationally invariant target design and a recognition routine based on self-similar land-

marks (SSL). Generally, there are three steps in a docking operation; (1) long distance

navigation step, (2) approaching step, and (3) final docking step. Among them, final

docking step is a critical task when accurate homing accuracy and robustness against

different disturbances are dominant. To fulfill this requirement, visual servoing is one of

the solutions and that can be integrated with other sensor units.

Recently, due to the progress in computer vision, a vision-based system has been

highlighted as a promising navigation system. As in land and space systems, numer-

ous studies on underwater vehicles using visual servoing have recently been conducted

worldwide. Each study has different merits and limitations depending on the intended

application. Most research is based on monocular vision [20], [22]. In [21], features in a

man-made plate were extracted and the relative pose was estimated from camera images.

In [51], a vision system using two cameras and artificial underwater landmarks for au-

tonomous operation was reported. Even though two cameras were installed in the vehicle

in [21],[51], both cameras did not see the same object at the same time to estimate the

relative pose. One camera detected the target and the second camera performed other

tasks.

Apart from single camera based approach, as an initiated docking approach using

stereo-vision, we have developed dual-eye vision-based docking system, especially for final

docking step. In the proposed stereo vision system, both cameras seeing the same target

object with parallactic displacement are used to estimate the pose of the target object

through the proposed real-time 3D pose recognition method. The merit of the stereo

camera is that the space recognition is superior than the monocular camera. Instead of

measuring absolute position of vehicle using other non-contact sensors, estimation of the

robot’s relative position and posture (pose) using dual-eyes camera and 3D target object

is proposed in this study. For relative pose estimation, model-based recognition approach

is applied because of its real-time effective performance comparing to other methods such
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as feature based recognition in which the information of the target object is determined

by a set of image points, which can address complex searching the corresponding points

and time consuming. According to effectiveness, simplicity and repeatable evaluation for

real-time performance, Genetic Algorithm (GA) is utilized to evaluate the gene candidates

which represent relative poses until getting the best gene with the most trustful pose in the

proposed system. Fitness value which is correlation function of projected model against

the real target in the image is used as the evaluation parameter of recognition process.

P controller is used to control the vehicle for the desired pose using real-time images

from dual-eyes camera. The proposed system is implemented in PC, and the Remotely

Operated Vehicle (ROV) is tethered through the cable with 200 m length to receive

image information and control signals. Since underwater environment is very complex, all

possibilities that real underwater world might provide are considered. Therefore, several

experiments were conducted using two cameras and a known 3D marker to confirm the

robustness of the docking system against different disturbances. Finally, sea docking

experiments were conducted to verify the robustness of the proposed system against real

sea environment.

1.2 Aim and objectives

The overall aim of the research presented in this thesis is to develop stereo-vision based

docking approach for underwater battery recharging application with high accuracy and

robustness against different disturbances. To achieve this aim, the following objectives

should be fulfilled:

• to develop real time 3D pose estimation with high accuracy and robustness against

different disturbances that may occur in real sea environment.

• to develop docking approach through visual servoing using proposed real-time 3D

pose estimation method.
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• to verify the robustness of the proposed docking system against different disturbances

in pool tests.

• to verify the turbidity tolerance of the proposed system since turbidity is the most

challenging and unavoidable problem in deep sea where the underwater battery

recharging unit is supposed to be installed.

• to verify the functionality and practicality of the proposed system by conducting

docking experiment in a real sea environment.

1.3 Principal contributions

The principal contributions of this thesis are listed as follows:

• The main task in this docking experiment is 3D pose tracking in time by following

dynamic images with a video rate of 30 frames per second (fps). There is no study

that has achieved real-time 3D pose estimation by using dual-eye cameras for AUV

in docking operation in which only visual information is directly used in a feedback

loop. Therefore, as a main contribution of this study, a new method of real-time

3D pose estimation in successively input dynamic images from two cameras using

3D model-based recognition method utilizing Real-time Multi-step GA (RM-GA) is

proposed.

• The overall target of this study is to check the functionality and practicality of

our proposed algorithm for an intended docking application. Docking strategy was

designed and implemented experimentally. Since underwater environment is more

complex than space and ground, there are many disturbances for vision-based un-

derwater vehicles. Therefore, it is important to consider the possible disturbances

before testing the proposed approach in the sea. To verify the robustness of the

proposed system, we conducted experiments with different disturbances including

object occlusion, and physical disturbances. Experiments were conducted using an

5



Chapter 1: Introduction

ROV to confirm that the proposed approach is able to guide an ROV to insert a

rod attached on the ROV into a docking hole attached with a 3D marker.

• Although AUVs do not need to descend to the sea bottom for some tasks, such as

bottom topology surveys, working near the sea floor is necessary for most ocean ex-

ploration operations, including oil pipe inspection and the detection and extraction

of precious metals. At this time, the most challenging and unavoidable problem in

deep-sea operations is turbidity, which deteriorates the visual capabilities of AUVs.

Therefore, the verification of the turbidity tolerance of an AUV and the development

of a method to overcome disturbances caused by turbidity are important research

questions not only for AUV development but also for the field of vision-based under-

water systems. Because the intended application in this study is underwater battery

recharging at the sea bottom to extend the operation time of AUVs, turbidity can-

not be avoided by simply operating the AUVs in clean water. Therefore, the effect

of turbidity on the 3D pose estimation performance of underwater vehicles and a

method of operating under turbid conditions were studied in this work.

• Final contribution of this study is that it is the first experimental investigation of

the practicality of undersea docking using two cameras under turbid conditions in

an actual undersea environment. A continuous iterative docking experiment was

conducted in a shallow sea region near the town of Ushimado, Japan.

6



Chapter 1: Introduction

1.4 Dissertation structure

This thesis is organized as follows:

Chapter 2 presents literature review on underwater docking approaches including pose

estimation, visual servoing and optimization.

Chapter 3 describes the proposed system with detailed explanation on real-time 3D

pose estimation, model based matching, fitness function, and real-time multi-step GA

(RM-GA).

Chapter 4 presents experiments conducted in different environments for recognition,

and regulating.

Chapter 5 describes the docking experiment using proposed docking strategy.

Chapter 6 presents the turbidity tolerance of the proposed system with the experi-

mental results.

Chapter 7 concludes this thesis with the summary of contributions and provides some

recommendations for the future work on this research field.

1.5 Publications

The research work presented in this thesis has resulted in the following publications.

Journals

1. Myo Myint, Kenta Yonemori, Akira Yanou, Khin Nwe Lwin, Mamoru Minami, and
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lutionary Real-time Pose Tracking,” Journal of Robotics and Mechatronics, Vol.28,

No.4, pp.543-558, 2016.

2. Myo Myint, Kenta Yonemori, Khin Nwe Lwin, Akira Yanou, Mamoru Minami,

“Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: An

approach and Experiments,” Journal of intelligent and robotic systems,
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International Conferences

1. Myo Myint, Kenta Yonemori, Akira Yanou, Mamoru Minami,and Shintaro Ishiyama,

“Visual-servo-based autonomous docking system for underwater vehicle using dual-

eyes camera 3D-pose tracking ,” in Proceedings of International Symposium on Sys-

tem Integration (IEEE/SICE), pp.989-994, 2015.

2. Myo Myint, Kenta Yonemori, Akira Yanou, Shintaro Ishiyama, and Mamoru Mi-

nami, “Robustness of visual-servo against air bubble disturbance of underwater vehi-

cle system using three-dimensional marker and dual-eye cameras,” in Proceedings of

the International Conference on OCEANS (Washington DC, USA) (MTS/IEEE),

150521-002, 2015.

3. Myo Myint, Kenta Yonemori, Akira Yanou, Khin Nwe Lwin, Mamoru Minami and

Shintaro Ishiyama, “ Visual-based Deep Sea Docking Simulation of Underwater

Vehicle Using Dual-eyes Cameras with Lighting Adaptation,” in Proceedings of the

International Conference on OCEANS (Shanghai, China) (MTS/IEEE), 151114-

025, 2016.

4. Myo Myint, Kenta Yonemori, Akira Yanou, Khin Nwe Lwin, Naoki Mukada and

Mamoru Minami, “Dual-eyes visual-based sea docking for sea bottom battery recharg-

ing,” in Proceedings of the International Conference on OCEANS (Monterey, USA)

(MTS/IEEE), 160425-018, 2016.

5. Naoki Mukada, Kenta Yonemori, Myo Myint, Khin Nwe Lwin, Akira Yanou and

Mamoru Minami, “ Tracking Trajectory Control of Dual-eyes Visual-based Under-

water Vehicle,” in Proceedings of International Symposium on System Intergradation

(IEEE/SICE), pp.748-755, 2016.

6. Xiang Li , Yuya Nishida , Myo Myint , Kenta Yonemori , Naoki Mukada , Khin Nwe

Lwin , Matsuno Takayuki , and Mamoru Minami, “Dual-eyes Vision-based Docking

8



Chapter 1: Introduction

Experiment of AUV for Sea Bottom Battery Recharging,” in Proceedings of the

International Conference on OCEANS (Scotland, UK) (MTS/IEEE), 161130-048,

2017.

National Conferences

1. Myo Myint, Mamoru MINAMI, Kenta YONEMORI, Yukihiro SAKA and Akira

YANOU, “ Visual Servoing Experiments of Underwater Vehicle under Air Bub-

ble Disturbances,” in Proceedings of Conference of the Robotics Society of Japan,

September 3-5, Tokyo, Japan, 2015.

2. Myo Myint, Kenta Yonemori, Akira Yanou, Shintaro Ishiyama, and Mamoru Mi-

nami, “Real-time 3D Pose Estimation and Tracking 3D Marker using Dual-eyes

Camera for Underwater Vehicle,” in Proceedings of the 24th Annual Conference of

the SICE Chugoku Chapter (Okayama,Japan), November 28, pp.62-63, 2015.

3. Myo Myint, Khin Nwe Lwin, Naoki Mukada, Matsuno Takayuki, and Mamoru Mi-

nami, “Stereo Vision-based 3D Pose Estimation under Turbid Water for Underwater

Vehicles,” in Proceedings of the Robotics Society of Japan, Tokyo, Japan, September

11-14, 2017.

4. Myo Myint, Kenta Yonemori, Khin Nwe Lwin, Naoki Mukada, Mamoru Minami,

Takayuki Matsuno, “Vision-based Docking Simulation of Underwater Vehicle Using

Stereo Vision under Dynamic Light Environment,” in Proceedings of the 9 th SICE

Symposium on Computational Intelligence, Chiba, Japan, July 8-9, 2017.

9





Chapter 2

Literature review

In this section, literature review on some background topics related to this study is pre-

sented. Related studies for each topic are discussed respectively. First, the studies related

to underwater docking are described. The discussion on visual servoing with some related

studies is presented. Then, 3D pose estimation that is the main approach in this study

is explained with some references. After that, optimization methods especially genetic

algorithm are discussed with some background reviews. Finally, robustness against dis-

turbances that will be faced in sea underwater environment are discussed in this section.

2.1 Underwater docking

Firstly, the definition of underwater docking can be defined as the process whereby an

AUV purposefully transitions from a state of free flight to being physically connected to

another device or platform, called the docking station [48]. Generally, the docking process

can be divided into three steps; (1) Long distance navigation, (2) approaching, and (3)

docking as shown in Fig. 2.1.

The initial aim of early docking works was to operate AUVs without human servicing

of the AUV especially for recovery the AUV. Recently, docking application area has been

expanded wildly with the development of the technology. Underwater docking in this

study is to provide an approach for the AUV to find the docking station, to physically
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Long Distance Navigation Approaching Docking

AUV

Docking 

Station

Fig. 2.1: Underwater AUV docks into the docking station. The docking process generally
involves (1) long distance navigation, (2)approaching, and (3) docking.

attach, and to recharge AUV batteries by the power source that is supposed to be installed

in underwater deep sea environment where the AUV is aimed to work for a long time

operation without returning to the surface for recharging. Figure 2.2 shows the different

AUVs those were used for docking experiments. There are different homing methods,

docking station configurations, power transfer approaches, and communications links to

achieve these respective applications. In this section, different approaches will be discussed

in terms of homing methods, Docking station configuration, and Sensor Configuration.

(a) (c)(b)

Fig. 2.2: Different AUVs used for docking experiments: (a) FAU AUDREY AUV [14],
(b) Dorado/Bluefin type AUV [17], and (c) Tuna-Sand 2 AUV [63].

2.1.1 Homing methods

The different methods of homing/docking that is connecting AUV to the docking station

are proposed in [13],[17]-[19]. A method of capturing AUV straight to a funnel structure

docking station was proposed [17],[18]. Normally, catching AUVs has been conducted by

using big net mechanisms (as shown in Fig. 2.3 (a)) with appropriate homing accuracy.

However, this kind of technique can occur any physical damage to AUVs as well as the
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docking station. In research [13] using a torpedo-type vehicle, the lack of a hovering

function reduced the docking efficiency, even though the speed of the vehicle was suitable.

In [19], a docking method using manipulator ( sample figure is shown in Fig. 2.2 (b)) is

proposed. Instead, we proposed and used docking method that is fitting the docking pole

attached in AUV into the docking hole installed in the docking station as shown in Fig.

2.3 (c). Since the power supply device and the AUV can be mechanically coupled to each

other, automatic power recharging in this experiment is assumed to be enabled when the

underwater vehicle fits its docking pole into the docking hole. This method can minimize

equipment cost and can be applied to other methods [17] and [19].

(a) (b) (c)

Docking 

pole

Docking 

hole

Docking 

pole

Manipulator

Docking net

Fig. 2.3: Different homing methods: (a) homing using docking net mechanism, (b) homing
using a manipulator, and (c) proposed homing method with docking pole and docking
hole.

2.1.2 Docking station configuration

The two common configurations of docking stations as shown in Fig. 2.4 are omnidirec-

tional [64], where the docking hole can rotate to allow a vehicle to approach and dock

from any azimuth, and unidirectional [65], where the docking hole is oriented in a specific

direction. The unidirectional station has been selected in many studies because of its

robustness and simplicity. However, the final approach of unidirectional docking is a dif-

ficult task, even though expensive navigation sensor suites and large-scale dead-reckoning

sensors are able to provide position data. In this work, a simulated docking station with

an unidirectional entry is designed for underwater battery recharging. Therefore, the

initial objective for successful docking is that the proposed system provide high homing
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accuracy and robustness against disturbances.

(a) (b)

Fig. 2.4: Different docking structures : (a) Omnidirectional docking, (b) Unidirectional
docking.

2.1.3 Sensor Configuration

The sensor unit installed either in AUV or both in AUV and docking station needs to pro-

vide the information for the AUV to find the docking station and perform docking/homing

operation. In an ideal sensor unit, it would provide reliable relative location between the

AUV and the docking station with high accuracy in high frequency. However, there is

no such perfect unique sensor in practical world. Therefore, different sensor units with

different techniques have been utilized for respective application as shown in Fig. 2.5.

Normally, different types of sensor units are integrated for perfect docking operation.

Among them, the common sensors and techniques are discussed in this section as follows.

Acoustic systems

Acoustic systems have been used for long distance navigation step in AUV docking. Ac-

quisition distances ranging is from a fraction a kilometer to hundred of kilometers. In

an acoustic system, one transducer is installed in the AUV and the another is attached

in the docking station. Normally the transducer of AUV emits a signal and the one in

docking station replies. By measuring the round trip travel time of the signal, the relative

range is determined. According to the size of the transducer array, acoustic systems are
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(a) (b)

Fig. 2.5: AUV with integrated sensor units : (a) torpedo-type AUV [17], (b) Hovering
type AUV [63].

classified as long baseline, short baseline, and ultra-short baseline navigation systems. For

acoustic-based sensors used in AUVs, however, the effects of undesirable acoustic reflec-

tions and attenuation may reduce the accuracy of AUV navigation. This is because speed

of sound, sound refraction due to sound speed variations, interactions of sound with the

seafloor and sea surface, ambient noise, and the absorption properties of seawater in com-

plex environments, like shallow water may cause individual pulses in the received signal

to fade or amplify it.

Most of the AUV studies are based on acoustic systems [16], [49], [50]. In [49], Doppler

Velocity Log (DVL)and a Ultra-Short Base Line position system (USBL) were used for

underwater vehicle localization.

Optical system

There are some studies using optical system to localize the underwater vehicle relative

to the docking station. In an optical system, the target docking station is looked for

using imaging systems and image processing algorithms. Generally, the target that is

installed in the docking is detected by image processing technology. The target object

can be man-made structured patterns [15] and active lighting unit [20]. Among them,

the docking station in which light sources are installed the entrance of the tunnel shape
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docking station is the most used type. Comparing to the acoustic systems, the acquisition

range of optical systems is also limited in a real sea environment because optical signal

is attenuated due to scattering and absorption of light. Figure 2.6 (a) shows the most

simple and common used optical systems in which light sources are installed around the

entrance of the docking station, and (b) shows the structured pattern that is used in

[15] to provide the localization of the underwater vehicle relative to the docking station

where the structured pattern is installed. The appearances of each system in the water

are illustrated in the right side of each system in Fig. 2.6.

Light 

source

(a) (b)

Fig. 2.6: Different optical systems : (a) Using light sources [20], (b) Using structured
patterns [15].

2.2 Visual servoing

Nowadays, visual servoing in which visual information is used to control the robot’s mo-

tion plays an important role in different domains of application with the rapid progresses

in computer vision technology. Generally, visual servoing techniques are divided into

two categories; Image-Based Visual Servoing (IBVS) and Position-Based Visual Servoing

(PBVS). In IBVS techniques, images from camera are used directly for control of robot.

In PBVS, information of known object are extracted and interpreted from the images

and used in controlling of robot in reference space rather than in image space as in IBVS

[52]-[54]. Based on the location of camera, eye-in-hand and eye-to-hand configuration are

considered according to the requirement of application. Then, the techniques are differen-

tiated based on the number of cameras; from single to multi cameras. Even though there

are some limitations for real-time applications in terms of image-acquisition-quantization
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accuracy and processing rates, the role of visual information has been expanding rapidly

in industry and human society in line with efforts of researchers [55], [56].

Recently, due to the progress in computer vision, a vision-based system has been high-

lighted as a promising navigation system. As in land and space systems, numerous stud-

ies on underwater vehicles using visual servoing have recently been conducted worldwide.

Each study has different merits and limitations depending on the intended application.

Most research is based on monocular vision [20], [22]. In our proposed system, we used

position-based visual servoing in which the relative pose between the underwater vehicle

and the target is estimated using images of two cameras and estimated pose is used as

feedback in controlling the vehicle. The detailed of the vision-based pose estimation will

be explained in the Chapter 3.

2.2.1 2D-to-3D reconstruction and 3D-to-2D projection

In conventional approaches, object recognition including relative pose information is im-

plemented by feature-based recognition based on 2D-to-3D reconstruction. The informa-

tion of the target object is determined by a set of image points in different images, and the

process entails a time-consuming complex search of the corresponding points. A model-

based pose estimation approach based on 3D-to-2D projection is applied in this work to

avoid the effects of incorrect mapping points in images. Both 2D-to-3D reconstruction

and 3D-to-2D projection are shown in Fig. 2.7. Points “B” in image 1 and “C” in image 2

are mapped incorrectly as a pair of points during 2D to 3D point-to-point reconstruction

as shown in Fig. 2.7 (a). Consequently, the reconstructed 3D point “A” does not repre-

sent a true 3D object. In contrast, points including “A” and “B” are correctly projected

in group from object in 3D in both images to 2D projection as shown in Fig. 2.7 (b).

This is possible because the forward projection from 3D to 2D generates unique points

in 2D images without errors. Based on this way of thinking, 3D model-based recogni-

tion is implemented. Other model-based approaches that are mostly based on template
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matching have used a 2D model and evaluated 2D images. These kinds of techniques

cannot be extended to 3D pose estimation. However, our method is based on the idea

of recognition using a 3D model and evaluating 2D images from left and right cameras.

The method evaluates how much the 3D model’s pose overlaps the actual 3D target, that

is, the correlation of the 3D model and the 3D target in 3D space through left and right

projected 2D images.

2D to 3D

Point-to-Point 

Reconstruction

A

B

CD

D

D

Image 1 Image 2

Object in 3D 

space

(a)

3D to 2D

Group Projection

Image 1 Image 2

Object in 3D 

space

A

A A

B B

B

(b)

Fig. 2.7: (a) Mis-mapping in 2D-to-3D reconstruction, and (b) Pairing of points in 3D-
to-2D projection.

2.2.2 Pose estimation using landmarks

In some docking experiments in other works, the relative pose is estimated by one camera

and a known target or landmark [47],[66]-[69]. The pose estimation techniques reported

in these works employ feature-based recognition. The work in [66] provided the relative

position and distance from a geometric arrangement of lights set at docking station.

Especially, the calculation of relative orientation was more complicated and difficult than

detection of the position. In [69], the feature-based algorithm ORB was used. ORB is a

combination of oriented features from the accelerated segment test (FAST) and rotated

binary robust independent elementary features (BRIEF). ORB was applied in [86] for pose

estimation of a man-made plate by using camera images to support the navigation system

when position data from other sensors were no longer available. Even though the applied
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vision-based docking detector algorithm in [86] utilized the ORB feature extractor, the

derived relative information was input into a localization filter for information synthesis

rather than a standalone vision sensor.

In [47], a signboard system including four colored balls was used as a passive target

object. Based on the known information about the signboard system, the distance and

orientation (heading angle only) of a vehicle to the target were calculated for position and

heading error correction. The vehicle was assumed to be in a horizontal plane at the same

level as three of the four balls, and so the accuracy was very dependent on other sensors,

such as the altimeter, as well as stability control of the vehicle. Apart from above studies,

3D model-based matching based on 3D-to-2D projection has been developed in this study

for real time pose estimation using real-time multi step GA that will be explained in detail

in Chapter 3.

2.3 Optimization

In the proposed system, the best chromosome that represents the most trustful pose is

the chromosome with the highest fitness function value for correlation between the model,

whose pose is defined by the chromosome, and real target in the input images. The best

chromosome has to be evaluated by an optimization technique instead of evaluating all

possible chromosomes. Many kinds of powerful advanced optimization methods are avail-

able. However, almost all focus on accuracy rather than real-time application merit. In

contrast, with the goal of constructing a pose feedback control system for docking, the

two criteria of accuracy and real-time performance are indispensable to extract pose esti-

mation in dynamic images input by video rate. Therefore, instead of comparing different

optimization methods, GAs, which have a long history of usefulness, are selected and

utilized in the form of the Real-time Multi-step GA for the proposed system. In other

words, our strategy is utilizing the Real-time Multi-step GA (RM-GA), which has sim-

plified optimizing calculations with reasonable performance in one loop and increasing
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accuracy with repeatability within a real-time video frame rate, that is 30 fps. In this

section, the concept and background of GA will be discussed.

2.3.1 Genetic algorithm

A genetic algorithm (GA) is an adaptive solution-search and optimization algorithm. GA

has been used in many studies [70]-[82]. In the GA process, the candidates including

optimal solution is coded in binary string that is known as a chromosomes. The GA

begins its search from a randomly generated population of chromosomes that evolve over

successive generations (iterations). Generally, there are three main operators in the GA

process.

Selection

In the selection step, the chromosomes that are randomly generated are evaluated by a

process of fitness-based selection. According to the designed fitness function, the fitter

chromosomes are selected as parent chromosomes.

Crossover

The selected parent chromosomes are used to reproduce the next generation. During the

process of second operator that is“ Crossover,”a defined portion of each parent chro-

mosome is changed between them to generate a new generation. The crossover operator

propagates features of good surviving designs from the current population into the future

population, which will have better fitness value on average.

Mutation

The third operation of GA process is Mutation that is the last operator in reproduction

of next generation together with Crossover operator. Basically, the defined bits of each

chromosomes after crossover process are inverted into the another state meaning that the
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binary 1 becomes 0 and 0 becomes 1 in the string. Mutation operator promotes diversity

in population characteristics. The mutation operator allows for global search of the design

space and prevents the algorithm from getting trapped in local minima.

The whole process is being iterated until the specified stopping criterion is satisfied,

and the best solution for the given problem is obtained. Figure 2.8 shows the evolution

process in which the chromosome generation is evoluted from the generation to next

generation through the GA operators ( Selection, Crossover, Mutation ).
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Fig. 2.8: Evolution process in GA.

GAs are widely used to tune the parameters of controllers. In [70], GA is used to tune

the parameters of fuzzy based motor controller. In [71], FLC is utilized by GA tuning

for steering control of underwater vehicle. PID controller is tuned by GA in [72]. Apart

from them, GA optimization is utilized in the feedback of the controller in the present

study. The designed GA is named as Real-time Multi-step GA (RM-GA) in this study

and explained in detail in Chapter 3.
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2.4 Robustness against Disturbances

The underwater world gives complexity to underwater vehicle operation due to distur-

bances [14] rather than the space environment. Because the proposed system is a vision-

based system, not only the physical disturbances of ocean currents but also the noise in

recognized images should be considered in the experiments. By completing the experimen-

tal tasks while including these considerations, the proposed docking system demonstrates

its effectiveness against different disturbances. The common disturbances for visual ser-

voing are as follows:

Deep sea

Sea surface

Sea bottom

Underwater 

vehicle
Lighting

Turbidity 

Target object 

Camera

Obstacle 

Water current

Fig. 2.9: Visual servoing in a deep-sea environment with disturbances such as current
wave, turbidity, illumination (natural light and vehicle’s light), and obstacle (such as
fish).

2.4.1 Water Current

The ocean current can make the motion of the vehicle as well as motion of imaging while

visual servoing. Since the vehicle’s lighting unit also moves along with the vehicle, the

illumination of variation can disturb recognition of the target with the dynamic images.

Therefore, visual servoing with sensing unit and control unit has to be robust against the

water current. The robustness of the proposed system against physical disturbances is
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verified in this study.

2.4.2 Occlusion

Since there are many living things such as fish and particles such as seaweed in the sea, the

target object can be partially occluded. Therefore, it is necessary to verify the robustness

of the proposed system against occlusion. To fulfill this objective, some experiments were

conducted and discussed in this study.

2.4.3 Turbidity and illumination variation

When a vision-based underwater vehicle approaches the sea bottom, a combination of

water turbidity and fluctuations in the lighting direction produces artifacts in camera

images and acts as a disturbance for visual servoing, as shown in Fig. 2.9. To the

best of the author’ knowledge, there have been no studies on the 3D pose estimation

of underwater vehicles under turbid conditions. The detection of points of interest in

turbid underwater images has been investigated using a collection of images acquired by a

trinocular camera system under gradually increasing turbidity [83]. In [84], the robustness

of local feature detection in underwater images was analyzed using a new dataset called

TURBID, which consists of real seabed images with different amounts of degradation.

Additionally, methods of underwater image quality assessment, visibility enhancement,

and disparity computation under turbid conditions have been proposed in [85]. None of

the above studies consider image recognition in real-time dynamic images, which is an

indispensable technology for visual servoing in underwater vehicle docking. In this study,

the robustness of the proposed system is verified against different disturbances including

turbidity and illumination variation.
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3D MoS system with stereo-vision

based real-time 3D pose estimation

In this section, a proposed 3D Moving on Sensing (MoS) system with stereo-vision based

real-time 3D pose estimation for underwater docking is explained in detail including 3D

model based matching method, kinematics of stereo vision, projection matrix and fitness

function. First, how the relative pose of a 3D marker based on the vehicle coordinate

system is estimated by 3D model based matching method is described. Second, the

kinematics of stereo vision system including the robot (underwater vehicle) and a 3D

marker is presented. Then, the basic concept of projection matrix is described. After that,

the fitness function that is used as evaluation function in the pose estimation process is

presented with the designed fitness function for this study. Finally, the main contribution

of RM-GA that is a novel pose estimation method is described with the detailed discussion.

3.1 3D MoS

A robotic system that uses three dimensional measurement with solid object recognition

and target tracking is based on visual servoing technology has been developed and named

as 3D-MoS (Three Dimensional Move on Sensing). Figure 3.1 shows a 3D-MoS robotic
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system. The robot estimates the real time relative pose of the target using stereo vision.

According to the estimated pose, the robot moves to the target sensing the free space

between it and the target as shown in Fig.3.1.

3D real- time 

relative pose

Free space

Target Object

Stereo vision

Movement by

visual servoing

Movement by

visual servoing

Fig. 3.1: A 3D MoS based robotic system in which the free space is estimated for every
movement by sensing the relative pose using stereo vision.

3.2 3D Model-based matching using stereo-vision

Apart from image-based visual servoing, position-based visual servoing has been devel-

oped for the vision-based docking approach proposed by our research group. Instead

of localizing the vehicle and target in an absolute pose in world coordinates to address

the requirement of measurements using sensors such as GNSS and INS, localizing the

vehicle relative to the target through recognition with a known target’s information is

implemented in feedback control using standalone dual cameras and a 3D marker.

A model-based matching method was used to recognize the 3D marker and estimate its

pose in real time using stereo vision. Figure 3.2 shows the 3D marker coordinate system
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ΣM , the ith model coordinate system ΣMi
, the left and right camera coordinate systems

ΣCL and ΣCR, and the left and right image coordinate systems ΣIL and ΣIR. The origins

of ΣM and ΣMi
are the intersections of the three lines perpendicular to the faces to which

the spheres are attached. The target is a 3D marker as shown in Fig. 3.3 that consists of

three spheres of 40 mm in diameter colored red, green, and blue.

Y

Z

X

Y X

Z

Image L

Image R

Camera R

Camera L

f

Z

Y X

ROV

Real target

solid model

Search space

jth point of ith

Incorrectly 

reconstructed point

3D model with 

its pose

3D-to-2D 

projection

2D-to-3D 

reconstruction

ÜMi

ÜM

ÜCL

ÜIL

ÜIR

ÜCR

ÜH

Fig. 3.2: Model-based pose estimation using the dual-eye vision system in the coordinate
systems of the left and right cameras, the object (solid object), and the model (repre-
sented by a dotted box and dotted spheres). The jth point on the model in 3D space
can be described in each coordinate system using these coordinates and homogeneous
transformations. Similarly, a 3D model with its pose defined as a group of points in 3D
space is projected onto the left and right cameras images through 3D-to-2D projection.

Fig. 3.3: 3D Marker that consists of three spheres which color of each are red, green
and blue. The selected color RGB are chosen based on their distance in hue space and
according to the experimental verification.

In conventional approaches, object recognition including relative pose information is

implemented by feature-based recognition using 2D-to-3D reconstruction calculations, in
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which the information of the target object is determined from a set of points in different

images, generally using epipolar geometry. The main challenge in this type of approach is

ensuring that points are correctly mapped. If a point in one image is incorrectly mapped

to a point in another image, the pose of the reconstructed object does not represent that

of the real 3D object. Figure 3.2 shows the incorrect reconstruction of a point through

2D-to-3D reconstruction resulting from incorrect mapping. To avoid incorrect mapping,

which results from the original problem being ill posed, a model-based pose estimation

approach based on 3D-to-2D projection was applied in this study because the forward

projection from 3D to 2D generates unique points in 2D images without any errors,

meaning incorrect mapping is avoided. As shown in Fig. 3.2, the jth point on the ith

model in 3D space is projected onto the left and right camera images correctly. With this

approach, 3D model-based recognition is implemented in this study.

3.3 Kinematics of stereo-vision

Here is a description of the kinematics of stereo-vision before the explanation of proposed

system in detail. Figure 3.4 shows a perspective projection of the dual-eyes vision system.

The coordinate systems of dual-eyes cameras and the target object (3D marker) in Fig.

3.4 consist of jth model coordinate system ΣMj
, vehicle coordinate system ΣH , camera

coordinate systems as ΣCL and ΣCR, and image coordinate systems as ΣIL and ΣIR.

In Fig. 3.4, the position vectors of an arbitrary ith point of the jth 3D model ΣMj

based on each coordinate system are as follows:

• Mrj
i : position of an arbitrary ith point on jth 3D model in ΣMj

, where Mrj
i is

constant vector

• CRrj
i and CLrj

i : position of an arbitrary ith point on jth 3D model based on ΣCR

and ΣCL

• ILrj
i and IRrj

i : projected position of an arbitrary ith point on jth 3D model based
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Fig. 3.4: Perspective projection of dual-eyes vision-system: In the searching area, a 3D
solid model is represented by dotted point (jth photo-model). The coordinate systems
of photo-model, camera and image are represented by ΣMj

, ΣCL, ΣCR, ΣIL and ΣIR

respectively. A 3D solid model that is assumed to be in the searching area is projected
from 3D space to 2D left and right camera images.

on ΣIL and ΣIR

The homogeneous transformation matrix from the right camera coordinate system

ΣCR to the target object coordinate system ΣM is defined as CRT M(φj
M), where φj

M is

j-th model’s pose. Then, CRrj
i can be calculated by using Eq. (3.1),

CRrj
i = CRT M(φj

M) Mrj
i . (3.1)

where Mrj
i is predetermined as fixed vectors since ΣMj

is fixed on the jth model. CLrj
i

that represents the same ith point on jth model based on ΣCL is also calculated by using

CLT M(φj
M). Equation (3.2) represents the projection transformation matrix P C . The

projection transformation matrix is explained in next section 3.2.2.

P C =
1

Czi




f
ηx

0 Ix0 0

0 f
ηy

Iy0 0


 . (3.2)

where,
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• C = CL, CR,

• Czi ; position of the ith point in the camera sight direction in ΣCR and ΣCL (See

Fig. 3.5),

• f ; focal length,

• ηx; [mm/pixel] in x-axis,

• ηy; [mm/pixel] in y-axis.

The position vector of the ith point in the right and left camera image coordinates

IRrj
i can be described by using P C as,

IRrj
i = P C

CRrj
i = P C

CRT M(φj
M)Mrj

i (3.3)

ILrj
i can also be described as the same manner like IRrj

i ,

ILrj
i = P C

CLrj
i = P C

CLT M(φj
M)Mrj

i (3.4)

Then, IRrj
i ,

ILrj
i can be described as,





IRrj
i (φ

j
M) = fR(φj

M ,M rj
i )

ILrj
i (φ

j
M) = fL(φj

M ,M rj
i )

(3.5)

CRrj
i and P C in Eq. 3.3 are derived in detail in section 3.3.1 and section 3.3.2 respec-

tively.
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3.3.1 Homogeneous transformation matrix

CRrj
i that consists of the homogeneous transformation matrix, CRT M in Eq.3.3 will be

explained in this section. This matrix represents the relation between the right camera im-

age coordinates ΣCR and the model coordinate system ΣM including the ROV coordinate

system ΣH as shown in Fig.3.4.

An arbitrary ith point on the target object defined on the model in ΣCR (right camera)

is as Eq.3.6.

CRrj
i = CRT M

Mrj
i . (3.6)

CRT M
Mrj

i = CRT H
Hrj

i . (3.7)

CRrj
i = CRT H

Hrj
i . (3.8)

where

• CRT M :Homogeneous transformation matrix from ΣCR to ΣM

• CRT H :Homogeneous transformation matrix from ΣCR to ΣH

• Hri:The object is viewed from the search point ith on the model in ΣH

According to the inverse homogeneous transformation matrix,

TT−1 = I4 (3.9)

T−1 =




RT −RT r

0 0 0 1




(3.10)
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(HT CR)−1 = CRT H

=




(HRCR
T
) −(HRCR)T HrCR

0 0 0 1




(3.11)

HT CR
−1

is substituted CRT H in Eq.3.8 and also HT M
Mri is substituted Hri in Eq.3.8

then Eq.3.12 becomes as follow;

CRrj
i = HT CR

−1 HT M
Mrj

i . (3.12)

HT M =




HRM(ε1, ε2, ε3)
HxM

HyM

HzM

0 0 0 1




(3.13)

Mrj
i =




Mxj
i

Myj
i

Mzj
i

1




(3.14)

Using Eqs.3.11, 3.13, 3.14, Eq. 3.12 can be derived as follow:
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CRrj
i =




(HRCR
T
) −(HRCR)T HrCR

0 0 0 1







HRM(ε1, ε2, ε3)
HxM

HyM

HzM

0 0 0 1







Mxj
i

Myj
i

Mzj
i

1




(3.15)

Similarly, CLrj
i : an arbitrary ith point on the target object defined on the model in

ΣCL (left camera) is received by doing same procedure. Then, CLrj
i become as Eq.3.16

and Eq. 3.17.

CLrj
i = CLT M

Mrj
i . (3.16)

CLrj
i =




(HRCL
T
) −(HRCL)T HrCL

0 0 0 1







HRM(ε1, ε2, ε3)
HxM

HyM

HzM

0 0 0 1







Mxj
i

Myj
i

Mzj
i

1




(3.17)
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3.3.2 Projection matrix

In this section, how the Projection transformation matrix, P is derived will be discussed

in detail. Figure 3.5 shows the projection of a point from 3D space to 2D images. Since

the explanation of projection in this section is for a camera, the projection transformation

matrix P here will stand for P C that is used in previous section.

e
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C��
C��
C��

� C
	

	x

yI�� =  I��
I
�

Y
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f f

A B

�́x

��a
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Fig. 3.5: Projection Matrix.

In Fig. 3.5, a point is situated in front of the camera len ΣC with the position

of Cxi,
C yi,

C zi. The corresponding point will appear at the position Ixi,
I yi in image

coordinate plane according to the projection matrix. The projection matrix can be derived

as follow:

From Fig.3.5, the ∆ oab and the ∆ oáb́, we get the ratio as the following;

ab : áb́ = bo : b́o (3.18)

X : Y = A : B (3.19)

X

Y
=

A

B
(3.20)

By using this equations, the position of the object can translate 3D to 2D by the
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projection,

(Iyi − Iy0)ηy

Cyi

=
e

Czi

(3.21)

(Ixi − Ix0)ηx

Cxi

=
e

Czi

(3.22)

(e = f) is assumed because of small value, and then Eq.3.23 becomes as follow;




Ixi

Iyi


 =

1
Czi




f
ηx

0 Ix0 0

0 f
ηy

Iy0 0







Cxi

Cyi

Czi

1




(3.23)

P =
1

Czi




f
ηx

0 Ix0 0

0 f
ηy

Iy0 0


 . (3.24)

where

•




Ixi

Iyi


 : coordinate of the position of the image

•




Ix0

Iy0


 : coordinate of central position of the image

• e :distance of two coordinates of origin

• f :distance of two coordinates of origin is approximately equal to the distance of

focal length

• ηx = ηy = mm
pixel

• Czi : distance between origin and camera image
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3.4 Fitness function

The fitness function was designed to be used as an evaluation parameter in the pose

estimation process. It is defined as the correlation between a projected model and a real

target in the image. The highest peak of the fitness distribution is at the value equal

to the true pose of the 3D marker. This can be stated in another way: the correlation

function used for the fitness function and the target 3D model should be designed to have

a dominant peak at the true pose of the target. In this subsection, the detailed design of

fitness function will be explained in detail.

3.4.1 Design of fitness function

In Fig. 3.6(a), the three solid circles and the three circles outlined with dotted lines

represent the spheres on the real target and those on the jth model obtained from 3D-to-

2D projection, respectively for the right camera image. The pose φj
M of the 3D model is

an unknown variable composed of six parameters (x, y, z, ε1, ε2, and ε3) where the first

three are position in Cartesian coordinate frame and the latter are orientation by unit

quaternion avoiding singularity issues [30]. These six parameters are determined in the

pose estimation process.

The 2D projection of each sphere in the model is divided into two regions, as shown

by the dashed circles in Fig. 3.6(b). Instead of evaluating the positions of all of the points

in the model, only selected points are considered, as shown in Fig. 3.6(b). When the jth

model is projected onto the 2D images of the left and right cameras, the fitness value

for that model is calculated. Portions of the target object that lie inside the inner and

outer regions of each corresponding sphere of the projected model proportionally increase

and decrease the fitness value, respectively. Therefore, the value of fitness function is

maximum ( ideal value is 1.667 ) when the pose of the model fits that of the target object

depicted in the images of the left and right cameras.

The correlation between the projected models including a pose of φj
M and captured
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SR;in;2

SR;in;3

Blue sphere of 

real target

Green sphere of 

real target

Green sphere (k = 2)

of jth model

Blue sphere 

(k = 3)  of jth model

SR;out;2

SR;out;3

jth model

SR;out;1

Red sphere of 

real target

SR;in;1
Red sphere 

(k = 1)  of jth model

P
IR

(a) (b)

30 °

Fig. 3.6: (a) Real target (solid circles) and projected 3D model (circles with dashed
outlines) in a 2D image obtained by the right camera. (b) Projection of the green sphere
of a model with selected sample points. There are a total of 60 points (36 and 24 points
in the inner and outer regions, respectively) in the projection, and the diameter of the
inner region is same as that of the actual sphere. Note that k stands for each one of RGB;
k = 1 for red color, k = 2 for green color, and k = 3 for blue color.

images with actual 3D marker that were projected on the left and right 2D searching

areas is calculated by Eqs. (4.1) - (4.2). F (φj
M) is calculated by averaging the fitness

functions of both left camera image FL(φj
M) and right camera image FR(φj

M) as shown

in Eq. (4.1).

F (φj
M) =

1

∧

m∑

k=1





( ∑

IRrj
i∈

SR,in,k(φj

M )

pR,in,k(
IRrj

i (φ
j
M)) −

∑

IRrj
i∈

SR,out,k(φj

M )

pR,out,k(
IRrj

i (φ
j
M))

)

+
( ∑

ILrj
i∈

SL,in,k(φj

M )

pL,in,k(
ILrj

i (φ
j
M)) −

∑

ILrj
i∈

SL,out,k(φj

M )

pL,out,k(
ILrj

i (φ
j
M))

)





/2

=
{
FR(φj

M) + FL(φj
M)

}
/2 (4.1)
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pR,in,k(
IRrj

i (φ
j
M)) =





1, if(|HIR(IRrj
i (φ

j
M)) − HMR(IRrj

i (φ
j
M))| ≤ lk);

0, otherwise.

(4.2)

pR,out,k(
IRrj

i (φ
j
M)) =





1, if(|HIR(IRrj
i (φ

j
M)) − HMR(IRrj

i (φ
j
M))| ≤ lk);

0, otherwise.

(4.3)

where, HML(ILrj
i (φ

j
M) = HMR(IRrj

i (φ
j
M) = bk is the defined hue value of each color

sphere and lk is the defined hue range of each color. Please see the definition of bk, lk in

Fig. 3.7. In this study, we defined bk, lk experimentally. Note that k stands for each one

of RGB; k = 1 for red color, k = 2 for green color, and k = 3 for blue color as illustrated

in Fig. 3.6 and Fig. 3.7.
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Fig. 3.7: Histogram of RGB in hue space with defined parameters: bk is defined hue value
of each color of RGB, and lk is defined hue range of each color of RGB. Note that k stands
for each one of RGB; k = 1 for red color, k = 2 for green color, and k = 3 for blue color.

Since the calculation of fitness function for left and right camera images are same, the

explanation of the fitness function will be discussed using Eqs. (4.1) to (4.3) and Fig.

3.6 based on right camera images in this section. The projected points on SR,in,k(φ
j
M)

and SR,out,k(φ
j
M) to the right camera image are described as IRrj

i ∈ SR,in,k(φ
j
M) and
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IRrj
i ∈ SR,out,k(φ

j
M) respectively. For detailed explanation of Eq. (4.1), the following

definitions should be stated here.

• SR,in,k; the inside area projected to right image plane,

• SR,out,k; the space on a strip area surrounding SR,in,

• HIR(IRrj
i (φ

j
M)); the hue value of the right camera image at the point IRrj

i (φ
j
M),

• HML(IRrj
i (φ

j
M)); the hue value of the model at the point IRrj

i (φ
j
M) (i-th point on

the j-th model),

The next Eqs. (4.2) and (4.3) is used for calculating pR,in,k(
IRrj

i (φ
j
M)) and pR,out,k(

IRrj
i (φ

j
M))

that are included in Eq. (4.1).

Equations (4.2) and (4.3) are designed to provide a peak in the fitness value distri-

bution, F (φj
M) when φj

M coincides with the true pose of the target 3D marker. The

evaluation values in the equations are tuned experimentally. In Eq. (4.2), if the hue value

of each point of captured images, HIR(IRrj
i (φ

j
M)), which lies inside the surface model

frame SR,in,k, and the hue value of corresponding point in a model, HMR(IRrj
i (φ

j
M)), are

same with a tolerance less than lk that is 20 in this study, then the fitness value will

increase with the voting value of “+1.” The fitness value will decrease with the value of

“−1” for every point of 3D marker in the right camera image that lie in the outer area

of projected model. Similarly, functions pL,in,k(
ILrj

i (φ
j
M)) and pL,out,k(

ILrj
i (φ

j
M)) follow

suit.

3.4.2 Properties of fitness function

The properties of fitness function as shown in equations (4.2) and (4.3) are discussed in

this section. A fitness function, which is a shape-based integration/differentiation cal-

culation, is modeled to calculate the correlation between a model and images captured

by two cameras using hue value of images. In other words, the intention of the designed

fitness function is to have a dominant peak at the true pose of the target. Here is the brief

39



Chapter 3: Stereo-vision based real-time 3D pose estimation

explanation on why designed fitness function is a shape-based integration/differentiation

calculation. Since a model has spheres with quantitative diameters rather than a point,

shape information is used when calculating the correlation between the model and the

target object. Therefore, it is said to be a shape-based approach. As a group of image

points that lie inside the inner area and outer area (see Fig. 3.6) of the projected model

are evaluated together and added all together in the area, it is said to be in terms of

integration. Integration operation can reduce the noise that appears in images like spike

noise. To increase the sensitivity, differentiation operation is also considered in the con-

struction of fitness function. The evaluation value is calculated by subtracting the values

for points that lie in the outer area from the ones that are overlapped with the inner area

of the model. It is therefore said to be in terms of differentiation. The total fitness value

is calculated from averaging two fitness functions of the left and right camera. Please

note that there is no individual evaluation of left and right images. Finally, the fitness

function will have a maximum value when the pose of the searching model fits the one

of the target object being imaged in the right and left cameras’ images. The evaluation

parameters of the objective function (that is fitness function in this study) are designed

to reduce the noise (noise in here means some peak points that represent incorrect poses

of the target).

The fitness distribution with respect to a position in the XY plane based on ΣH

(see Fig.3.4) is illustrated in Fig. 3.8. Because the pose of the target is composed of six

parameters (three for position and three for orientation), the fitness distribution with a

peak at the true pose can be seen in 3D space, including the fitness value and any pairs

of dimensions of pose parameters, as shown in Fig. 3.8. In the plot in Fig. 3.8, there is a

large peak that corresponds to the true pose, and some additional peaks that correspond

to other incorrect poses are present. The proposed system can be considered robust as

long as the highest peak of the fitness distribution represents the true pose and the effect

of the noise that represents incorrect pose is significantly less than this peak. The shape

of the fitness distribution will change in a dynamic image with a video rate of 30 fps.
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Peak that represents true pose

Noise

Fig. 3.8: Fitness distribution. The peak represents the true pose detected by the designed
fitness function. The noise, which represents incorrect poses, is generated in the fitness
distribution as a result of image deformation caused by environmental effects.

Please refer to [94], [98] for a detailed definition of the fitness function. The concept of

fitness function in this study can be said to be an extension of the work in [98] in which

different models including a rectangular shape surface-strips model were evaluated using

images from a single camera. Since the designed fitness function make sure to exist a

peak that represents the true pose in fitness distribution within search space, searching

the peak within the video rate that is 33 ms is the main task for the proposed system.

To solve this searching problem, we utilized the real-time multi-step GA as explained in

next section.

3.5 Real-time Multi-step GA

In the proposed 3D model-based recognition method, searching for all possible models is

time consuming for real-time recognition. Therefore, the problem of finding/recognizing

the 3D marker and detecting its pose is converted into an optimization problem with a

multi-peak distribution, which can be confirmed directly by calculating the distribution

of a fitness function against the 3D pose [94], [98].
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3.5.1 What is Real-time Multi-step GA?

The optimization should be completed in the changing condition, for example, dynamic

images input by a video rate when visual feedback is required. In this situation, we have

two options: (1) A simple optimization method that needs a short time to complete with

appropriate accuracy and repeats the optimizing procedure, and (2) Sophisticated opti-

mization methods that might provide better accuracy but require large calculation time.

Here the question is which of these options is better for pose tracking in dynamic images.

The first one, simple optimization, was chosen for the underwater docking experiment

based on its simple logic and effectiveness. The following is one of the reasons for choos-

ing (1). Fast evolution due to shorter life spans, such as mouse evolution, can enable an

animal to adapt itself to a changing environment faster than slower evolution of animals

such as an elephant, which can live for several decades with fewer chances to adapt. For

example, support that the life span of a mouse is 1 year and that of an elephant is about

80 years. Therefore, the mouse has 80 times more chances in the time domain than does

the elephant to adapt to a changing environment.

The discussions on optimization performance in other studies such as [100]-[102] are

based on the speed measured by iteration times. We think that performance evaluation

of different methods based on iteration times is unfair because operation time for one

iteration of each method in different systems may not be the same. For example, one

method may take one hour for one iteration while another method may finish one iter-

ation within one minute. It is difficult to find performance comparison in time domain.

According to authors’ knowledge, our work is the first one to measure the optimization

performance in time domain. On the other hand, other discussions in [103],[104] are con-

centrated on finding out valuables’ numbers to give a maximum function number that are

used for the controller’s parameters for tuning up the system’s performances. In contrast,

optimization is directly used in a feedback of the control system in the present paper.

We have developed Real time Multi-step GA, formerly known as the 1-step GA, which
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can deal with non-differential distribution with a multi-peak, for this underwater docking

experiment, although it may not be the best GA in comparison to other optimization

methods. We did not compare GA with other optimization methods in this study. Real-

time Multi-step GA evolves the chromosomes with as many generations as possible within

the video frame rate for each image; in our experimental system, nine generations are

possible. The practical performance of the Real-time Multi-step GA was confirmed in a

previous work [93]. In [93], the Real-time Multi-step GA was used to estimate the pose

of a fish in real time.

3.5.2 How does Real-time Multi-step GA work?

In the proposed Real-time Multi-step GA, each chromosome as shown in Fig. 3.9 encodes

12 bits for each of six parameters: three for position and three for orientation. Fig.

3.10 shows the 3D model-based recognition process in 3D space that evolves through the

evaluations of chromosomes by forward projection from the 3D marker onto 2D images.

The defined number of chromosomes that represent the different relative poses of the

3D model to the ROV in back-projection is initiated randomly, as shown in the first

generation in Fig. 3.10. Fitter chromosomes as evaluated by a fitness function have a

higher chance to be selected for the reproduction of offspring by using designed operators

(selection, crossover, and mutation). After reaching the predefined number of generations,

the chromosome that has the best fitness value is selected to represent the actual pose

of the object. Because the main objective is real-time performance, termination of GA

evolution is determined by the video frame rate, which is 30 fps in this work.

�
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Fig. 3.9: Gene representing for position and orientation.
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1st generationSolid

model

Target

object

2nd generation

i-th generationFinal generation

Fig. 3.10: 3D model-based recognition process.

A correlation function of the real target projected in camera images with the assumed

model, represented by poses in the chromosomes, is used as the fitness function in the

GA process. We modified the fitness function based on the voting performance and the

target’s structure (color, size, and shape). As shown in Fig. 3.6, two spaces in the model

object can have a scored fitness value: the inner space that is the same size as the target

sphere and the other space that is the background area. The portion of the captured

target that lies inside the inner area of the model will score a higher fitness value and

the portion that lies inside the background area will score a lower value. Therefore, the

fitness value is maximum when the poses of the target and the model are coincident. Note

that the evolution of models to the real target is in 3D space and the evaluation between

projected model and real target in terms of the fitness function is done in 2D images. The

color information in hue space is used to search for the 3D marker in images, because hue

space is less sensitive to the lighting condition [60]. The effectiveness of this method was

confirmed in our previous research [95]-[97]. The time-convergence performance of the

Real-time Multi-step GA as a dynamic evaluation function was approved mathematically

by a Lyapunov analysis in [91].

Fig. 3.11 shows the flowchart of the Real-time Multi-step GA (right sub figure) and
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1st generation
Solid
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object
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Final generation
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33 [ms]

Fig. 3.11: Flowchart of Real-time Multi-step GA.

recognition process in 3D space (left sub figure). Please note that a solid model in 3D space

represents a GA individual. GA operations such as Selection, Crossover and Mutation

are performed to reproduce the next generation through evaluation by a fitness function

(explained in previous section). Several solid models that represent different relative

poses converge to the target object through GA evolution process within 33 ms as shown

in Fig. 3.11 (left sub figure). The solid model (Output j in Fig.3.11) that represents the

true pose with the highest fitness value is searched for every 33 ms. Then, these fit models

are forwarded to the next step as the initial models for the next new images in real time.

3.5.3 Optimal Real-time Multi-step GA

The relative pose estimation by 3D model-based recognition is assumed to be executed

in the GA search area set in front of the underwater robot, as shown in Fig. 3.12. We

considered the visibility range in real seawater as about 1 m. Therefore, the searching

space is defined as shown in TABLE 3.1. The searching space depends on the camera lens

specification, which has a focal length of 2.9 [mm]. TABLE 3.1 shows the conditions of

the GA.
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Fig. 3.12: Underwater target and GA searching space.

Table 3.1: Parameters of Real-time Multi-step GA.

Items Specification

Number of genes 60

Evolved pose (position and orientation)
(x, y, z, ε1, ε2, ε3),
all genes are coded by binary 12 bits
(ε1, ε2, ε3) are represented by quaternion

Pose used for controlling Position (x mm, y mm, z mm)
(Position, Orientation) Orientation ( ε3 ) around z-axis of

ΣH in Fig.3.12
Searching space defined by ΣH in Fig.3.12 {x,y,z,ε3}={±400, ±400, ±200,

±0.15 (equal to ±17.3degree)}
Control period [ms] 33
Number of gene evolution [times/33ms] 9
Selection rate [%] 60
Mutation rate [%] 10
Crossover Two-point
Evolution strategy Elitism preservation
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3D pose estimation and visual

servoing

4.1 3D Pose tracking using two cameras and 3D marker

The main task in the docking operation is 3D pose tracking in time by following dynamic

images with a video rate of 30 frames per second. There is no study that has achieved

real-time 3D pose estimation by using dual-eye cameras for AUV in docking operation in

which only visual information is directly used in a feedback loop. Therefore, as a main

contribution of this study, a new method of real-time 3D pose estimation in successively

input dynamic images from two cameras as shown in Fig. 4.1 using 3D model-based

recognition method utilizing Real-time Multi-step GA is verified by conducting some

experiments.

The block diagram of the proposed control system is shown in Fig. 4.1. Visual in-

formation is used in the feedback as position-based visual servoing. The images acquired

from the dual-eye cameras are sent to the PC in which real-time multi step GA is im-

plemented. Then, the real-time recognition of the 3D pose of the target object by the

Real-time Multi-step GA is executed by software installed in the PC. Based on the er-

ror between the target value and the recognized value, command signals generated from

47



Chapter 3: Stereo-vision based real-time 3D pose estimation

calculating the voltage value gained by the controller for the thrusters are input into the

ROV.

Controller

Real-time Multi-step GA

target pose  pose

estimated pose

ROV

Camera

Camera

Field of view

3D marker

Fig. 4.1: Block diagram of the proposed system with Real-time Multi-step GA.

4.2 Experiment of Visual Servoing

Experiments were conducted in simulated environment in order to verify the effectiveness

of the proposed visual servoing. Firstly, the experiment in which the underwater robot

keeps the relative pose with fixed target, was conducted while setting the experimental

conditions approving that the robot is regulated to the final pose against with the target

object. Secondly, the robustness against the physical disturbance that were simulated as

water current in the sea was verified while visual servoing. Finally, the experiments were

conducted in the case when the target is seen partially.

4.2.1 Underwater Vehicle

Remotely controlled underwater robot used in this experiment (manufactured by KOWA,

maximum depth 50m) is shown in Fig.4.3. Two fixed forward cameras with the same

specification (imaging element CCD, pixel number 380,000 pixel, signal system NTSC,

minimum Illumination 0.8 [lx], no zoom) are mounted on the ROV. The two fixed for-
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Fig. 4.2: Layout of the ROV with a docking rod and the 3D marker with a docking hole.

ward cameras are used for three-dimensional object recognition in visual servoing. In the

thruster system of ROV, 2 horizontal thrusters with maximum thrust of 9.8 [N], 1 vertical

thruster with maximum thrust of 4.9 [N] and 1 traverse thruster with 4.9 [N] are installed.

In addition, it has been equipped with two units of LED lights (5.8W) for illumination

source. The ROV used in this experiment is actuated in 4 degrees of freedom (DoF) (x, y,

z and ε3 ). The specifications of main hardware components are summarized in Table.4.1.

(a) (b)

(c) (d)

Fixed Cameras Traverse thruster

Vertical thrusterHorizontal thrusters

Fig. 4.3: Overview of ROV (a) front view (b) side view (c) top view (d) back view.

49



Chapter 3: Stereo-vision based real-time 3D pose estimation

Table 4.1: Specification of ROV
Max: operating depth [m] 50

Dimension [mm] 280 (W) × 380 (L) × 310 (H)
Dry weight [kg] 15

Number of Thrusters 2 (Horizontal), 1 (Vertical), 1 (Traverse)
Number of Cameras 2 (Front, fixed), 2 (Downward, fixed),

1 (Tilting and zooming)
Number of LED lights 2 (5.8 [W])
Number of Line lasers 2 (2 [mW])

Tether cable [m] 200
Structial materials Aluminum alloy and acrylate resin

Maximum thrust force [N] 9.8 (horizontal), 4.9 (vertical, Traverse)

4.2.2 Experimental Environment

A pool (length × width × height, 2 [m] × 3 [m] × 0.75 [m]) filled with tap water was used

as an experimental tank for underwater vehicle experiments. ROV is tethered through

an cable with 200m length to receive image information and control signals as shown in

Fig.4.4. Based on the images which are given by binocular camera, the 3D information

is calculated through Model-based matching method and Genetic Algorithm (GA). For

physical disturbance to disturb the movement of the vehicle, abrupt external forces are

applied to the vehicle by pushing the vehicle in different direction using a rod. In order

to perform experiments to confirm the robustness of the system in case when the target

is seen partially, one of the three spears is hidden for some times.

4.2.3 System Configuration

Adjustment of dead zone

For manual operation by joystick instructions of the controller in the remote-operated

ROV, it has to have a certain amount of dead zone voltage that makes thrusters with

no thrust in order to prevent malfunction due to the motion of a human finger. On the

other hand, in this study, when approaching to the object by thruster propulsion, the

realization of the movement as well as the attitude control performance of high accuracy
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PC (3D model based matching system)

ROV(Underwater vehicle) Underwater target

Interface between PC and ROV

3D picture information

3D picture information

Thruster control signals

Thruster control signals

Pool

Docking pole

Docking hole

Tether cable

Fig. 4.4: Layout of underwater experimental devices.

is in mm. Therefore, the characteristic of thrust of each thruster that changes with respect

to the dead zone in the control voltage can be easily configured by using formulation in

thrust approximation. Specifically, the dead band characteristics of the ROV which was

confirmed in preliminary experiments are removed by mean of linear approximation as a

solid line and thrust was configured in the control software so as to generate.

Interfacing

Figure 4.5 shows the interfacing between proposed system implemented in PC and the

camera mounted in the robot. As the resolution of pose is in 12 bits, Digital to Analog

Converter with high resolution is used for precise control. Even though there is initial

delay time about 9 ms in receiving dynamic video images with 33[ms], it does not come

in picture as issues for real-time operation.
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Adjustment of cable tension

As the experimental environment is indoor pool, there is space limitation for vehicle that

is tethered through an cable. Therefore, cable tension may cause sometimes disturbance

in controlling the vehicle that should be in 4DoF. However, careful adjustment of cable

position eliminates these small issues while conducting experiments.

PC Interface Unit
ROV

9.2 ms 

Dual-eyes Camera
Processor : Intel ® Core(TM) i7-3770 CPU @ 3.40 
GHz  3.40 GHz 
RAM : 8.00 GHz
System Type: 64 bits 

R G B
memory

Fig. 4.5: Interface between robot and PC.

Desired pose setting

According to the range of camera for recognition and experimental environment scale, the

desired pose is set as below. The negative distance in z-axis is the difference between the

origin of the camera and vehicle frame ΣH .

xd = HxM = 600[mm] , yd = HyM = 0[mm],

zd = HzM = −67[mm] , ε3d = 0[deg]

where, x[mm], y[mm], z[mm], ε3[deg] represent the position and orientation of the

target object recognized by RM-GA. In order to regulate the underwater robot with this

desired relative pose to the target, the command voltage value v1 ∼ v4 fed to respective

thrusters are calculated from P controller.
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4.2.4 Controller

To eliminate the error in relative pose to the target, conventional P controller is used as

shown in Equations (1)-(4). Even though the proposed system estimates all six variables

of pose, torque around x-axis and y -axis are neglected in control system because the

x-axis and y-axis rotations are naturally restored to zero by the restoration torque made

by the z-axis distance between the center of buoyance and the one of gravity. Therefore,

only four degree of freedom is considered in control system. ON-OFF control is used

for control in left and right direction (y-axis) and the other three degree of freedom are

controlled by p-controller. According to the recognition accuracy that is millimeter level

and experimental results in movement of ROV, the threshold for ON-OFF control is

defined to be 5 mm as shown in Equation (2). The proportional gain for each thruster is

tuned according to the experimental results. The block diagram of the proposed control

system is shown in Fig.4.6.

Equation of MotionMotor��Controller

ROV

3D Model-Based Matching System

+

�

target pose error desired thrust thrust
pose

calculated pose

voltage

e�� � �� � �� � �	�

�� �� �� �	


� 
�

Fig. 4.6: Control logic for the proposed system.

Back and Forth : v1 = kp1(xd − x) + 2.5 (2.1)

direction (v1 = 0[V] for thrust 9.8[N] in XH

(XH axis inF ig.4.2) of ΣH , v1 = 5[V] for −9.8[N])
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Left and right :

direction

(YH axis inF ig.4.2)

v2 =





5[V ] ((yd − y < −5[mm])

for thrust in YH of

ΣH is −4.9[N])

2.5[V ] ((−5 ≤ yd − y ≤ 5)

meaning thrust

equals to zero)

0[V ] ((yd − y > 5[mm])

for thrust in YH of

ΣH is 4.9[N])

(2.2)

Rotation : v3 = kp2(ε3d − ε3) + 2.5 (2.3)

(aroundZH axis (v3 = 0[V] for 0.882[N] in ZH

inF ig.4.2) of ΣH , v3 = 5[V] for −0.882[N])

Vertical direction : v4 = kp3(zd − z) + 2.5 (2.4)

(ZH axis inF ig.4.2) (v4 = 0[V] for −4.9[N] in ZH

of ΣH , v4 = 5[V] for 4.9[N])

where, v1 is input voltage for each of two horizontal thrusters (shown in Fig.4.3 (c))

for movement of ROV in back and forth direction (XH in Fig.4.2); v2 is input voltage for

traverse thruster (shown in Fig.4.3 (b)) for movement of ROV in right and left direction

(YH in Fig.4.2); v3 is input voltage for thrusters for rotation movement of ROV around

z-axis (ZH in Fig.4.2), and v4 is input voltage for vertical thruster (shown in Fig.4.3 (d))

for movement of ROV in vertical direction (ZH in Fig.4.2). Note that the rotation of

vehicle is controlled by two horizontal thrusters that rotate in opposite direction.
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4.3 Results and Discussion

4.3.1 Linearization of Dead Zone Voltage in Thrusters

To remove the dead zone in control voltage, the linearization of control voltage is per-

formed according to the experimental adjustment as shown in Fig.4.7. Fig.4.7(a),(c),(e)

shows the initial characteristics of thrust and torque control voltage observed in experi-

mental measurements and (b),(d),(f) are their corresponding adjusted ones.

4.3.2 Regulating Performance

Fig. 4.8 (a) shows the time variation of the fitness value at the time of GA recognition

of underwater robot that was regulated in xd = 600[mm], yd = 0[mm], zd = −67[mm],

ε3d = 0[deg]. According to the experiment result, it can be seen that the fitness value is

maintained above 0.8 within a few seconds from the recognition start. In general, when

performing precise visual servoing, GA recognition accuracy is thought to be necessary

0.5 or more. It was confirmed that the object recognition accuracy in water using GA

was almost the same degree of fitness in comparison with the case in the air. This result

addresses huge benefit of reducing frequency of doing experiments in water for testing

every advanced step in recognition process. Generally, it is difficult to confirm how much

speed of moving target can be detected by the speed of evaluation of GA. However, two

contributions in the proposed system provides promising performance considering this

fact. The first one is that RM-GA forwards its best candidates to the next generations. On

the other hand, the regulating control algorithm keeps field of view of both cameras after

initial recognition. For example, when the relative pose makes the invisible of right camera

for certain reasons such as the target is moving or the vehicle is physically disturbed

after recognition, the control algorithm makes priority to turn left direction while visual

servoing.

The regulating performance by mean of visual servoing is shown in Fig.4.8. Figure
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4.8 (a) shows the fitness value recognized by RM-GA. Figure 4.8(f) shows the position of

underwater robot in the regulation as measured in RM-GA and Fig. 4.8(b)∼(e), (g)∼(j)

represent the errors between the relative pose of the target and that of the underwater

robot, and the torque to restore it, respectively. Although error in the relative target pose

appears constantly and the four thrusters operate simultaneously, there are some pose

fluctuation according to the cable tension during robot movement and reflected waves

from the pool sides that occur due to water pressure changes with robot movement.

However, the proposed system is able to regulate the relative pose by canceling these

disturbance elements. As the lateral thruster control is on-off logic, the position error in

this axis may significant comparing to the others. Therefore, P controller will be adopted

for that thruster in next experiment.

4.3.3 Robustness Against Physical Disturbances

The robustness of the proposed system should be verified considering all possibilities that

the real environment could provides the vehicle. Therefore, physical disturbances are

simulated for proposed system. Abrupt external forces to move the vehicle for distance of

150∼200 [mm] between 1.5 to 2.0 [s] in difference directions and to rotate degree 15 [deg]

per 1 [s] for rotation around a vertical axis by mean of a rod from the outside of pool are

applied as shown in Fig.4.9 and the robustness of the visual servoing is analyzed.

The regulating performance with a disturbance in each direction is shown in Figs.

4.10 to 4.13. The term “stability” in this study means the property in which the un-

derwater robot can be restored to the target pose relative to the 3D marker, even when

a disturbance is given to the ROV. Fig. 4.10 to Fig. 4.13 show (a) the fitness of GA

recognition, (b) the error between the relative pose between the target object and the

underwater robot recognized for each variable, and (c) the same results of (b) enlarged

during a disturbance. Furthermore, (d) represents the thrust force (torque) applied to

the thruster. The disturbance was applied twice around 20 s and 60 s from the beginning
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(b) Disturbance in y-axis direction

(d) Disturbance in around z- axis

(a) Disturbance in x-axis direction

(c) Disturbance in z-axis direction

Fig. 4.9: Physical disturbance in different directions: (a)x-axis, (b)y-axis, (c)z-axis
(d)around z-axis.

of the experiment. In the section shown by (A) and (B) in (a), (b), (c), it is found that

varying the thrust (torque) applied to the thrusters in response to an error of the relative

target pose maintains the relative pose during visual servoing, although the fitness is tem-

porarily lowered when a disturbance is applied. In other words, it is possible to confirm

that an operation for correcting the error has occurred and consequently will change the

pose of the ROV to restore the relative target pose. From the above results, the proposed

system could restore the robot to the original position within a few to several tens of

seconds for all of these disturbances.

Regulating performance with disturbance in vertical axis is shown in Fig.4.12. Fig.4.12

shows (a) the fitness of GA recognition, (b) the error between the relative pose of the

object target and underwater robot in z-axis direction and , (c) the same results of (b)

enlarged view from 55[s] to 65[s]. The disturbance has been added in each of the figures

after 20 [s] and 60 [s] from the beginning of the experiment. Fig.4.12 (c) shows enlarged

view during regulating response against prodding to be seen how the system behaved in

real-time. In the period shown with (A) and (B) in Fig.4.12(d), it is found that varying

the thrust (torque) is applied to the thrusters in response to error from the relative target
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Fig. 4.13: Regulating performance with disturbance around z-axis: (a) fitness value, (b)
error around y-axis, (c) error around y-axis (enlarged view from 15 s to 25 s), and (d)
torque around z-axis.
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pose while maintaining the visual servo although fitness is temporarily lowered when a

disturbance is applied. From the above results, the proposed system can be restored to

its desired pose within a few [s]∼ several 10 [s] for all of these disturbances. Therefore, it

was confirmed that the system is robust against external disturbances.

4.3.4 Robustness Against Target Occlusion

To verify the robustness of the system in term of target visibility, visual servoing when

the object is partially seen was conducted. In simulated environment, one of the spheres

was hidden for certain period and the visual servoing performance is analysed. Fig.4.14

shows recognition performance when the red sphere of target object is invisible for some

period shown as (A), and Fig.4.15 shows the result when green sphere is being hidden

from the view of the vehicle’s camera. As shown in figures, the fitness value is reduced

for the period when target is partially seen. To evaluate the proposed system utilizing

RM-GA, recognition results are compared to the system in which the best gene is searched

throughout all possible poses without using GA. For instance, the recognized positions in

z-y plane with respect to fitness are shown in Fig. 4.14 and Fig.4.15. The poses evaluated

in full searching are represented as contour and the ones evaluated by RM-GA are shown

as black doted ones. These results highlight the promising optimization performance of

GA to find the best gene using only some selected candidates for real-time. Fig.4.17

and Fig.4.18 are snap photos of conducting the visual servoing when the target object is

partially hidden. It can be seen that the system is able to estimate the relative pose even

one ball is hidden. The estimated model of the hidden ball can be seen as doted circle in

cover white plane.

Fig.4.16 shows the regulating performance when the red ball is hidden during 20-30

seconds and 40-50 seconds from the view of the vehicle. Firstly the system recognizes the

object with 1.2 fitness value in few seconds. Then, it can be seen that the fitness value

reduces to around 0.8 from 1.2 for the period in which the red ball is hidden. According
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to the experimental results as shown in Fig.4.16(b),(c),(d), however, the proposed system

can maintain pose estimation accuracy and regulating performance even the object is

partially occluded. The position error in y-axis direction is significant comparing to others

because of the on-off control in transverse direction thruster. According to the several

experiments, it was confirmed that the proposed system is robust not only for physical

disturbances but also when the object itself is partially seen. Therefore, the proposed

passive 3D marker with known color, size and especially structure, and RM-GA which

forwards the best genes to the next generation might make this robustness come true in

picture.
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Fig. 4.14: Recognition performance : (a) Recognized model and real target, (b) fitness
value when red ball is hidden in some period, (c)comparison of full search and GA search
when all three balls are visible, (d) comparison of full search and GA search when red
ball is invisible.
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Fig. 4.15: Recognition performance : (a) Recognized model and real target, (b) fitness
value when green ball is hidden in some period, (c)comparison of full search and GA
search when all three balls are visible, (d) comparison of full search and GA search when
green ball is invisible.
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Fig. 4.16: Regulating performance when the object is partially seen : (a) fitness value, (b)
position in x-axis direction, (c) position in y-axis direction, (d) position in z-axis direction.
Corresponding photos of left and right camera images are shown in Fig. 4.17.
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Left Camera

15[s]

25[s]

35[s]

45[s]

55[s]

Right Camera

Fig. 4.17: Left and right camera images when the red ball is invisible between 20[s] to
30[s] and 40[s] to 50[s].
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Fig. 4.18: Left and right camera images when the green ball is invisible between 20[s] to
30[s] and 40[s] to 50[s].

66



Chapter 5

Docking performance using proposed

docking strategy

This section presents a vision-based docking system consisting of a 3D model-based match-

ing method and Real-time Multi-step Genetic Algorithm (GA) for real-time estimation

of the robot’s relative pose. Experiments using a remotely operated vehicle (ROV) with

dual-eye cameras and a separate 3D marker were conducted in an indoor pool. The ex-

perimental results confirmed that the proposed system is able to provide high homing

accuracy and robustness against disturbances that influence not only the captured cam-

era images but also the movement of the vehicle. A successful docking operation using

stereo vision that is new and novel to the underwater vehicle environment was achieved

and thus proved the effectiveness of the proposed system for AUV.

Figure 5.1 shows overall block diagram of the proposed system. Images from the

dual-eye cameras installed on the underwater vehicle are sent to the GA-PC. Real-time

pose estimation using the 3D model based matching method and real-time multi-step GA

(RM-GA) is implemented as software implementation in GA-PC. Based on the real-time

estimated relative pose between the AUV and the docking station, and designed docking

strategy that will be explained in detail in this section, GA-PC sends command signal

that is control voltage for each thruster to the ROV.
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Docking Strategy
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Model-based Recognition

PCI Interface 

Unit

Fig. 5.1: Block diagram of the proposed system including designed docking strategy.

5.1 Docking Strategy

The proposed docking strategy consists of three steps. First, the ROV has to approach

the 3D target until the target is in its field of view. Second, detecting the object and

regulating the vehicle to the defined relative pose of the target is performed in the visual

servoing step. Third, the docking operation is completed. The flowchart of the docking

strategy is shown in Fig. 5.2. The originality of this work is concentrated on the dual-

eye visual servoing as a possible new docking strategy rather than conventional docking

methods. Therefore, the main contribution in the present paper is focused on the second

and the third steps of Fig. 5.2 to demonstrate the effectiveness of the proposed docking

system.

The first step can be extended for real-world application by using a long-distance

navigation sensor to guide the vehicle into the field of view of the cameras. In [69], a state

machine was proposed to generate a waypoint around the estimated target position and

inside the vehicle’s field of view, but that discussion was limited to the approaching step in

Fig. 5.2. In this study, after approaching with constant speed and a constant proceeding
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Fig. 5.2: Flowchart of docking strategy.

direction while trying to detect the 3D marker, the vehicle is stabilized in the visual

servoing step and controlled to keep the ROV with a defined pose relative to the target.

In the docking step, when the vehicle is stable within the tolerance of the position error

for the defined time period, the forward thrust that enables the docking pole attached to

the ROV to fit into the dock is generated by gradually decreasing the distance between

the vehicle and the target object. Switching between the visual servoing mode and the

docking mode by using the continuous pose feedback in the docking strategy (see “P” in

Fig. 5.2) makes the system robust with little surfacing of the dock and minimizes the

mechanical aspect as well.

5.2 Desired pose

The following relative pose between the ROV and the 3D marker (xd [mm], yd [mm], zd

[mm], ε3d [deg]) is controlled according to the visual servoing step in Fig. 5.2.

xd = HxM = 600 (350)mm, yd = HyM = 0 (0)mm,
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zd = HzM = −67 (−67)mm, ε3d = 0 (0)deg

Each number in the above formulas is a target value for regulating the underwater

robot immediately after recognizing the object in the visual servoing step as shown in Fig.

5.3 (a). HxM represents the x position of the origin of ΣM in reference to ΣH , where ΣH

and ΣM are defined in Fig. 5.3. It should be noted that the numbers in parentheses are

the defined target values at the time of completion of the fitting in the docking experiment

as shown in Fig. 5.3 (b).

370 mm
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Fig. 5.3: Layout of the docking experiment showing the process of aligning the ROV with
the 3D marker. (a) Desired pose in the visual servoing step. (b) Desired pose at the
completion of the docking step.

5.3 Pool Docking Experiments

Experiments were carried out with different start positions: (a) in front of the 3D marker,

(b) on the left side of the pool relative to the 3D marker, and (c) on the right side of

the pool relative to the 3D marker, as shown in Fig. 5.4. The docking experiments were

carried out as shown in Figs. 5.5, 5.7, and 5.8 following the four states (A) approaching

the object (approach), (B) visual servoing to keep the relative pose to the object (visual

servoing), (C) fitting to the fixed homing unit (docking), and (D) fully fitting into the

homing unit (completion of docking) as shown in Fig. 5.5(a).

In the approaching step (A) in Figs. 5.5, 5.7, and 5.8, the robot’s speed is low.

This is the state until the underwater robot finds the 3D marker (recognition) under the
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Top view of pool

1200 mm

Start position

Fig. 5.4: Start position of underwater vehicle: (a) in front of 3D marker, (b) on the left
side of pool relative to 3D marker, and (c) on the right side of pool relative to 3D marker.

assumption that the object is presented in front of the underwater robot. In other words,

the underwater robot does not know the relative pose to the object in the initial condition,

and then goes forward and transits to the state of visual servoing after discovering the

object (judged by the fitness function rising to 0.5). Then, visual servoing is the state

in which the underwater robot is regulated in the desired pose. As described above, the

control process is performed to maintain the robot in the relative pose to the 3D marker.

After transition to docking step, the underwater robot moves forward. The relative target

position xd decreases by 30 mm/s in the xH-axis direction when the error of the relative

position of the robot (yd and zd) with respect to the object is stable within ±20 mm for

the minimum period of 165 ms (control loop × 5). Then the docking state performs the

fitting to the homing unit.

When the range of the abovementioned errors exceeds a defined value in the docking

process, the underwater robot suspends the docking process and goes back to the visual

servoing state to execute the docking process again, as shown by the arrow “P” in Fig.

5.2. In the state of visual servoing, when the error of the relative target position and the

posture between the object and the underwater robot reaches below the abovementioned

threshold, the process transits to docking, in which the robot is expected to fit into

the homing unit while recognizing the target object. The docking process is done by
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performing visual servoing until the robot moves to (xd = 350 mm, yd = 0 mm, zd = −67

mm, ε3d = 0 deg). In completion of the docking state, the underwater robot is expected

to keep the relative target pose of the object in the connected state by visual servoing.

Figs. 5.5, 5.7, and 5.8 (b) to (j) show the result of docking experiments with different start

positions: (b) is fitness, (c) (e) (g) (i) are the position and orientation of the underwater

robot, and (d) (f) (h) (j) are the thrust and torque in each axis. Fig. 5.6 represents the

error of the relative pose with respect to Fig. 5.5. From each of the figures, the transition

of the state to (A) approach, (B) visual servoing, (C) docking, and (D) completion of

docking can be seen. In other words, the experiments confirm that the underwater robot

can achieve docking by using the proposed system. Figs. 5.9, 5.10, and 5.11 show the

trajectories of the ROV recognized by the Real-time Multi-step GA when the ROV starts

from different positions. Please note that these trajectories start by using visual servoing

and end at the point where docking is completed. From the trajectories in Figs.5.10 (c)

and 5.11 (c), surge motion appeared faster than sway motion.

5.4 Sea Docking Experiment

A docking experiment using the proposed approach in a real sea was the main task to

be conducted to confirm the functionality and possibility of the proposed approach for

AUVs for the sea docking application. Finally, to fulfill this aim, we have conducted

docking experiments in the sea near Wakayama city in Japan aiming at evaluating the

practicability of the system after developing the proposed approach based on previous

works. The sea docking experimental results are discussed as the main contribution in

this paper. To the best of the authors’ knowledge, this work is new and the first trial

about docking operation in the real sea using standalone dual-eyes cameras.
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5.4.1 Docking experiment in a turbid water before sea trial

docking experiment

To check the functionality of the proposed approach before the sea trial experiment and

to extend the research in terms of robustness against water turbidity in future, a docking

experiment in a turbid pool as shown in Figure 5.12 was conducted before the sea trial

docking experiment. The pool is situated near the sea and was filled with seawater

since a few months ago. There were a lot of particles inside the pool such as seaweeds,

dry leaves that can provide disturbance to visual servoing in terms of noise in captured

images. Because of the shadow of the trees beside the pool and the particles inside the

pool, the inside environment of the pool is the natural condition with poor light and

turbidity. The docking station was landed on the floor of the pool in this experiment.

The detailed analyses on the robustness of the proposed system against water turbidity

and illumination variation is in line with our on-going work.

Figure 5.13 shows the experimental result of the docking operation in a pool in which

turbid water was filled up. Figure 5.13 (a) illustrates the time variation of fitness value.

Figure 5.13 (c)(e)(g)(i) show the relative position of desired and recognized in each direc-

tion measured by RM-GA. As shown in Figure 5.13, the ROV was controlled manually

until the 3D marker was detected. At the operation time of 35 s, automatic control by

visual servoing was started with the minimum fitness value of 0.6 being confirmed by an

operator. It can be seen in Figure 5.13 (a) that the fitness value increases from about 0.8

to more than 1 when the distance between the ROV and the 3D marker decreases. When

the operation time is 70 s, docking is completed and the ROV is kept at the desired pose

(See Figure 5.13 (b)). Even though the water is turbid, the recognition of 3D marker

using defined information of 3D marker (color in hue value, size, and shape) utilizing de-

signed fitness function was confirmed experimentally to be operational. According to the

experimental result, the docking operation was conducted successfully within 60 s after

the automatic control was started.
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5.4.2 Sea docking experiment

We conducted docking operations in the sea four times. Figure 5.14 shows the experi-

mental results of the first docking operation. Figure 5.14 (a) shows the fitness function.

The recognized poses in manual control are not considered as truthful ones. According

to the results, the visual servoing step started when the fitness value was above 0.6 and

the distance between the vehicle and the station was about 800 mm. According to the

experimental results, it can be seen that the ROV is controlled precisely in the docking

step by visual servoing to perform the docking operation successfully. The time profile of

the fitness value is shown in Figure 5.14 (a). It can be seen in Figure 5.14 (a) that the

fitness value increases slightly when the ROV approaches the 3D marker. The recognized

positions of the vehicle in x, y, and z axes are illustrated in Figure 5.14 (c),(e),(g). It

can be seen that the docking step was performed when the position errors in y-axis and

z-axis were within the allowable range that was ± 20 mm. As shown in Figure 5.14 (e),

the position of the ROV in the y-axis direction is fluctuated and sometimes it is out of

the allowance error until the operation time is 50 s. This is the condition of switching

from docking step to visual servoing step shown by “ P ” in Figure 5.2. At that time, the

control process is performed to maintain the robot in the desired pose. When the position

in the y-axis and z-axis direction are stable for 165 ms continuously within the allowance

error (shown by dotted lines in Figure 5.14 (e), (g), the vehicle moves ahead until the

position in the x-axis is 350 mm from the 3D marker as shown in Figure 5.14 (c). It can

be seen that the docking operation was completed successfully within 40 s after detecting

the 3D marker.

The success of docking operation was also confirmed by checking recorded video images

from two cameras of the ROV and underwater cameras installed on the docking station.

Figure 5.18 shows the periodically grabbed images of the dual-eye cameras showing that

the ROV approaches the 3D target marker by manual operation, visual servoing and

docking. The right column images are taken by one of the underwater cameras that were
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installed in the docking station to observe docking operation. The recognized pose by RM-

GA are projected as dotted circles (see the top photo in Figure 5.18 (a)) on the images for

visual observation to confirm how much recognized pose is matched with the real target

3D marker on images. Please note that the recognition poses in manual operation are

not trustful ones and they were not used in the feedback control. This is why the dotted

circles (see the top photo in Figure 5.18 (a)) are not totally overlapped with the target

3D marker in the initial stage of manual control. The images from two cameras and

the underwater camera taken when the operation time is 32 s shown in Figure 5.18 (a)

show the state when the automatic control was started after the 3D marker was detected

with the fitness value increasing beyond 0.6. Images taken when the operation time is

32 s show the condition of visual servoing in which the ROV is controlled to be stable to

transit to docking step. The images taken when the operation time are 35 s, 45 s, 55 s,

65 s illustrate the docking step.

The other docking results are shown in Figures 5.15 to 5.17. It can be seen in Figures

5.15 to 5.17 (a) that the fitness value was above 1 when the 3D marker was detected by

the proposed system. All the docking operations were finished successfully within 40 s

after the automatic control was started. There were some pose fluctuations because of

natural disturbances like sea current. However, the vehicle can be maintained by visual

servoing using the proposed system and finally the docking operations were performed

successfully.

Please note that the recognized poses during manual control are not truthful ones

and they are not used in the feedback system because the detection of the 3D marker

was defined by a fitness value that is 0.6. Therefore, automatic control was started when

the fitness value is above 0.6 and docking operation was performed in automatic control.

Since whether the RM-GA has detected the 3D marker or not can be judged by the

value of fitness function, the switching from manual control to automatic control could

be done by autonomously. Regarding accuracy, it was confirmed experimentally that

both recognition and docking accuracy is centimeter level because the docking hole radius
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is 35 mm and the allowance error is ± 20 mm. Figure 5.19 shows docking steps while

conducting sea trials.
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Fig. 5.5: Docking experimental results for start position of underwater vehicle in front
of 3D marker, position (a) in Fig. 5.4 : (a) photo of docking experiment, (b) fitness
value, (c) position in x-axis direction, (d) thrust in x-axis direction, (e) position in y-axis
direction, (f) thrust in y-axis direction, (g) position in z-axis direction, (h) thrust in z-axis
direction, (i) angle around z-axis, and (j) torque around z-axis.
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Fig. 5.6: Further docking experimental results for start position of underwater vehicle as
in front of 3D marker, position (a) in Fig. 5.4 : (a) error in x-axis direction, (b) error in
y-axis direction, (c) error in z-axis direction, and (d) error around z-axis.
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Fig. 5.7: Docking experimental results for start position of underwater vehicle on the left
side of pool relative to 3D marker, position (b) in Fig. 5.4 : (a) photo of docking experi-
ment, (b) fitness value, (c) position in x-axis direction, (d) thrust in x-axis direction, (e)
position in y-axis direction, (f) thrust in y-axis direction, (g) position in z-axis direction,
(h) thrust in z-axis direction, (i) angle around z-axis, and (j) torque around z-axis.
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Fig. 5.8: Docking experimental results for start position of underwater vehicle on the right
side of pool relative to 3D marker, position (c) in Fig. 5.4: (a) photo of docking experi-
ment, (b) fitness value, (c) position in x-axis direction, (d) thrust in x-axis direction, (e)
position in y-axis direction, (f) thrust in y-axis direction, (g) position in z-axis direction,
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in the xy plane, and (d) recognized position in the xz plane
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Fig. 5.14: Sea docking result 1 using a circular shaped docking hole : (a) fitness value,
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axes directions and rotation around z-axis.
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Fig. 5.15: Sea docking result 2 using a circular shaped docking hole : (a) fitness value,
(b) Photograph of ROV in docking process, ((c), (e), (g), (i)) recognized positions in x,y,z
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Fig. 5.16: Sea docking result 3 using a circular shaped docking hole : (a) fitness value,
(b) Photograph of ROV in docking process, ((c), (e), (g), (i)) recognized positions in x,y,z
axes directions and rotation around z-axis, ((d), (f), (h), (j)) recognized positions in x,y,z
axes directions and rotation around z-axis.
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Fig. 5.17: Sea docking result 4 using a circular shaped docking hole : (a) fitness value,
(b) Photograph of ROV in docking process, ((c), (e), (g), (i)) recognized positions in x,y,z
axes directions and rotation around z-axis, ((d), (f), (h), (j)) recognized positions in x,y,z
axes directions and rotation around z-axis.
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Fig. 5.18: Periodically grabbed images during the fourth time docking operation: (a)
images of dual-eye cameras of ROV (b) image of underwater camera that was installed
in the docking station to observe docking operation. Dotted cycles in dual-eye cameras
images are the recognized poses by RM-GA.
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Fig. 5.19: Docking process : (a) approaching step by manual control, (b) visual servoing
step, (c) docking step, and (d) docking completion.
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Chapter 6

Verification of turbidity tolerance of

the proposed system

Since underwater environment is more complex than space and ground, there are many

disturbances for vision-based underwater vehicles. Therefore, it is important to consider

the possible disturbances before testing the proposed approach in the sea. The common

disturbances for vision-based underwater vehicle is turbidity. Since underwater battery

recharging units are supposed to be installed in deep sea to save the time consuming

and work done from human beings in the case of returning surface vehicle for recharging,

the deep-sea docking experiments cannot avoid turbidity. According to the authors ’

knowledge, there is no study on docking system using stereo-vision based real-time visual

servoing with performance tolerance of turbidity. In this study, we conducted experiments

to verify the robustness of the proposed docking approach in simulated pool where different

levels of the turbidity of the water is simulated, and finally conducted sea docking in the

turbid sea. The experimental results have confirmed the robustness of the docking system

using stereo-vision based 3D pose estimation against turbidity.
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6.1 Turbidity tolerance

The fitness distributions with respect to a position in the XY plane based on ΣH (see

Fig.3.4) are illustrated in Fig. 6.1(c) (d) corresponding to the left and right images in (a)

(b). Because the pose of the target is composed of six parameters (three for position and

three for orientation), the fitness distribution with a peak at the true pose can be seen in

3D space, including the fitness value and any pairs of dimensions of pose parameters, as

shown in Fig. 6.1. The values shown in (a), (b) are FTU measured by a turbidity sensor

and the added amount of milk in ml/m3.

peak
peak with reduced height

noise

(a) (b)

(c) (d)

Fig. 6.1: Turbidity tolerance: photo of left and right images (a) in clean water, (b) in
turbid water, (c) fitness distribution of (a), and fitness distribution of (b). The peak
represents the true pose detected by the designed fitness function. The noise, which
represents incorrect poses, is generated in the fitness distribution as a result of image
deformation caused by environmental effects.

In the plot in Fig. 6.1 (c), there is a large peak that corresponds to the true pose,

and some additional peaks that correspond to other incorrect poses are present. The

proposed system can be considered robust as long as the highest peak of the fitness

distribution represents the true pose and the effect of the noise that represents incorrect

pose is significantly less than this peak. As shown in Fig. 6.1 (c)(d), the height of the

peak is reduced when the water is turbid. However, the pose represented by a peak as
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shown in Fig. 6.1 (d) is maintained. It means the system is robust against turbidity up to

certain level. The shape of the fitness distribution will change in a dynamic image with

a video rate of 30 fps. In the sea, turbidity is one of the greatest disturbances to visual

servoing and a major source noise. When the turbidity level is high enough to render the

designed fitness function ineffective, there will be no peak that represents the true pose

of the target. The reason the proposed system can be considered robust against turbidity

is that the problem of finding the target object and detecting its pose has been converted

to an optimization problem. Therefore, it is necessary to verify the turbidity tolerance

of the proposed system. To do this, it is critical to simulate the turbidity levels using

a suitable medium and assess the performance of the proposed system against different

turbidity levels. The turbidity tolerance of the proposed system was verified in this study,

and the experimental results provide an assessment of the system performance against

turbidity and demonstrate the potential of the proposed approach for actual sea docking

applications.

6.2 Real-time 3D pose estimation against turbidity

6.2.1 Experimental layout

In this experiment, 3D pose recognition was conducted using the proposed system under

different turbidity levels. Figure 6.2 shows the experimental layout for 3D pose estimation

under different turbidity levels. In this experiment, the ROV was fixed at the same

distance from the 3D marker, and illumination was kept constant by setting the two

light-emitting diode (LED) units of the ROV to emit light aimed directly at the 3D

marker, with an illuminance of 200 lx. The illuminance was measured using a lux sensor

(model: LX-1010B manufactured by Milwaukee) placed 600 mm in front of the LED of

the ROV. The experiments were conducted in a dark environment where the LED of the

ROV is the dominant light source.
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Fig. 6.2: Experimental layout for 3D pose estimation against turbidity. The system was
implemented in a PC (Intel r© Core TM i7-3770 CPU 3.40 GHz, 8.00 GHz RAM, 64 bits).

Water turbidity was simulated by adding milk to the water in which the system

was submerged. According to previous literature reviews [83],[84], the diameter of milk

molecules ranges from 10 to 600 nm. Particles with a diameter of 10 nm scatter equal

amounts of light forward and backward. The forward scattering begins to dominate for

particles with diameters of approximately 100 nm, and close to 1000 nm, there is strong

small-angle forward scattering and weak backscattering. Therefore, milk was selected to

model the turbidity because it can provide all types of scattering. On the basis of the

maximum milk concentrations of 0.19 ml/l (190 ml milk in 1000 l water) in [83] and 1.5

ml/l in [84], the experiments in this study were conducted with milk concentrations of

up to 0.12 ml/l (95 ml milk in 800 l water). Note that the light sources used in [83] and

[84] are different from that used here. Two fluorescent light strips were used in [83], and

a halogen lamp was used in [84]. In the present experiment, two LED units installed on

the ROV were used as a light source. The ROV was positioned in front of the 3D marker

at a fixed distance ranging from 400 to 1000 mm. During an actual docking operation,

the ROV approaches the 3D marker from a distance of approximately 1000 mm. It then

performs visual servoing and the final docking stage from distances of approximately 600

94



Chapter 3: Stereo-vision based real-time 3D pose estimation

and 400 mm, respectively. Details of this docking process are provided in Section 5.1.

To provide an experimental environment similar to a real undersea environment, a

background sheet printed with an image similar to what would be observed in a real sea

environment was placed behind the 3D marker, as shown in Fig. 6.2. The pool size is 1580

mm × 1100 mm × 590 mm, and the pool was filled with 800 l of water. Milk was added to

the water in increments of 2 and 4 g up to a total of 30 and 98 g, respectively, to run the

experiment at different levels of turbidity. The turbidity of the water was measured using

a turbidity sensor (model: TD-500 manufactured by OPTEX) with a measurement range

of 0.0 to 500 FTU (Formazin Turbidity Unit). The relationship between the measured

turbidity and the milk concentration is illustrated in Fig.6.3.
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Fig. 6.3: The relationship between the measured turbidity and the milk concentration.

6.2.2 Evaluation of 3D recognition

In this experiment, the fitness value was used to evaluate the performance of the proposed

pose recognition method at different turbidity levels. The correlation function of the real

target projected onto the camera images and the assumed model, which was represented

by poses in the chromosomes, is used as the fitness function in the GA process, in which

selection, crossover, and mutation are performed to reproduce the next generation via
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ROV

3D marker

Turbid water

(0−27.8 FTU)

Background 

sheet
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Fig. 6.4: ROV and 3D marker in turbid water. The turbidity range was from 0 to 27.8
FTU, as measured by the turbidity sensor, and the distance between the ROV and the
3D marker was varied from 400 to 1000 mm.

evaluation by the fitness function. The fitness function was modified based on the voting

performance and the characteristics of the target (color, size, and shape). In this study,

the fitness value averaged over 60 s was used to verify the performance of the proposed

system under different turbidity levels. In addition to using the fitness value to evaluate

the recognition performance, the recognized pose was visually evaluated by projecting

the spheres on the target onto the left and right camera images, as shown by the dotted

circles in Fig. 6.5. Moreover, to evaluate the accuracy of RM-GA, a full search method

in which the vehicle searches globally for the 3D marker is performed using left and right

cameras images for off-line analysis.

6.3 Result and discussion

A total of 132 iterations of this experiment were conducted at different turbidity levels

and distances between the ROV and the 3D marker. The turbidity tolerance in terms

of the fitness value under each set of conditions was analyzed. The maximum amount of
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milk added to the 800 l of water in the pool was 98 g (118.825 ml/m3); this corresponds to

a maximum turbidity of 27.8 FTU, as measured by the turbidity sensor. The maximum

amount of milk was selected as the value at which the system could not detect the 3D

marker from a distance of 400 mm. Table 6.1 gives the fitness values at all considered

turbidity levels and distances between the ROV and the 3D marker. Here, the fitness

distribution is named as TD parameter space (T and D stand for turbidity and distance

respectively). The first column gives the turbidity level measured by the turbidity sensor

in units of FTU and the corresponding amount of milk in units of milliliters per cubic

meter. The remaining columns give the fitness values at each of the given turbidity levels

with the distance between the ROV and the 3D marker ranging from 400 to 1000 mm. The

fitness values were calculated by averaging the fitness values over a real-time recognition

period of 60 s in each case. Figure 6.6 shows the time profiles of the real-time and average

fitness values for some illustrative cases.

There exists a fitness value threshold below which the ROV cannot reliably recognize

the 3D marker. Thus, in an actual docking scenario, the ROV would not be controlled by

visual servoing when the fitness value is less than the threshold. Area I, shown in blue in

Table 6.1, represents the control area (F ≥ 0.6), which is the area in which the ROV can

be controlled by visual servoing. This upper fitness value threshold of 0.6, hereafter called

the control threshold, was determined experimentally. Area II, shown in yellow, is the

Fig. 6.5: Projection of the recognized pose onto images taken by the left and right cameras
with dotted spheres indicating the positions of the three spheres for user visualization
during experiments and analysis.
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Table 6.1: TD parameter space: Average fitness value distribution for different turbidity
levels and distances between the ROV and 3D marker (The first column gives the turbidity
level measured by the turbidity sensor (FTU) and the corresponding amount of milk
(ml/m3). The fitness values are given at each of the considered turbidity levels and with
the distance between the ROV and 3D marker ranging from 400 to 1000 mm. Area I in
blue represents the control area (F ≥ 0.60). Area II in yellow represents the recognition
area (0.22 ≤ F < 0.60). The remaining white area, Area III, is the loss of recognition
area (F < 0.22). The labels A–F represent the conditions in which docking experiments
were conducted in another pool.)

400 mm 600 mm 800 mm 1000 mm

0.00 FTU (0.00 ml/m�) 0.680 0.730 0.775 0.748

0.00 FTU (2.43 ml/m�) 0.873 0.886 0.759 0.750

0.00 FTU  （4.85 ml/m�） 0.766 0.834 0.721 0.589

0.00 FTU （7.28 ml/m�） 0.921 0.817 0.660 0.555

0.00 FTU （9.70 ml/m�） 0.849 0.746 0.573 0.420

0.00 FTU （12.13 ml/m�） 0.764 0.744 0.498 0.490

0.00  FTU （14.55  ml/m�） 0.739 0.700 0.672 0.455

0.00 FTU （16.98  ml/m�） 0.708 0.654 0.528 0.301

3.03 FTU （19.40  ml/m�） 0.697 0.644  0.535  0.283

3.75 FTU （21.83 ml/m�）  0.671  0.750  0.327  0.0619

4.00 FTU （24.25 ml/m�）  0.687  0.704 0.395  0.0575

4.50 FTU （26.68 ml/m�） 0.673 0.710 0.325 0.133

6.60 FTU （29.10 ml/m�） 0.682  0.654  0.380  0.0596

7.10 FTU （31.53 ml/m�）  0.667 0.645  0.298 0.298

7.50 FTU （33.95 ml/m�） 0.666 0.651 0.214  0.0556

7.60 FTU （36.38 ml/m�）  0.646  0.589  0.257  0.0572

7.90 FTU （41.23 ml/m�） 0.639 0.593  0.182  0.183

8.70 FTU （46.08 ml/m�）  0.606 0.582 0.159  0.0579

9.30 FTU （50.93  ml/m�）  0.618 0.527 0.157 0.0552

10.50 FTU （55.78  ml/m�） 0.578  0.294  0.124 0.135

11.20 FTU （60.63 ml/m�） 0.578  0.216  0.098 0.151

12.20 FTU  (65.48  ml/m�）  0.545  0.262 0.130  0.118

13.30 FTU （70.33  ml/m�）  0.565  0.0876  0.137  0.167

14.30 FTU （75.18 ml/m�）  0.446  0.217  0.0529 0.0599

15.30 FTU （80.03  ml/m�）  0.549  0.150 0.0582  0.153

17.10 FTU （84.88 ml/m�） 0.371  0.118  0.0604 0.166

18.30 FTU （89.73 ml/m�）  0.485  0.144  0.149 0.152

20.40 FTU （94.58 ml/m�） 0.444  0.120  0.189 0.223

21.40 FTU （99.43 ml/m�）  0.422 0.155  0.148  0.145

23.00 FTU （104.28  ml/m�） 0.396 0.149  0.167 0.0599

24.20 FTU （109.13  ml/m�） 0.100 0.126 0.129  0.140

26.40 FTU （113.98  ml/m�） 0.0892 0.159 0.166  0.169

27.80 FTU (118.83  ml/m�） 0.172 0.0919 0.210 0.215

I

II

III

Distance
Turbidity

A

B

C

D

E

F
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recognition area (0.22 ≤ F < 0.6), in which the ROV can still recognize the 3D marker but

can no longer be reliably controlled using visual servoing. According to the experimental

results, the system cannot recognize the 3D marker when the fitness value is less than this

lower threshold of 0.22, hereafter called the recognition threshold. Area III in Table 6.1,

the loss of recognition area, represents the cases in which the fitness value is below the

recognition threshold. Figure 6.7 shows examples of the left and right camera images with

the recognized pose of the 3D marker under conditions near the control and recognition

thresholds. Example images at the minimum and maximum considered distances and

turbidity levels are also shown for comparison. Figure 6.8 shows examples of the left and

right camera images under different turbidity levels at a distance of 600 mm between the

ROV and 3D marker. According to the experimental results, the system can recognize

the 3D marker up to a turbidity of 12.2 FTU at this distance, which corresponds to the

recognition threshold (Table 6.1). Similarly, the maximum turbidity at which the marker

can be recognized for each distance is given in Table 6.1.

Figure 6.9 shows the fitness distributions at different turbidity levels for a distance

of 600 mm between the ROV and 3D marker. The height of the peak of the fitness

distribution decreased with increasing turbidity. However, in areas I and II, the pose

represented by the peak corresponded with the true pose even though the height of the

peak was reduced by increasing turbidity. These experimental results confirm that the

proposed system is robust against turbidity up to 12.2 FTU at a distance of 600 mm.

When the turbidity level reached 20.4 FTU, there was no peak at the true pose (Fig. 6.9),

indicating that the 3D marker could not be recognized. In a real undersea environment,

it is necessary for the ROV to be able to determine whether the turbidity level is too high

to conduct the docking operation. To enable this independent determination, the control

threshold could be defined based on the experimental results. The recognition results

given in terms of the fitness are useful as a turbidity indicator during docking operations.

For example, the ROV can return to the sea surface or wait until the turbidity level is

low enough to dock and recharge its battery.
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6.4 Docking experiment under turbidity in a pool

The docking experiment was conducted under turbid conditions in a large pool (length

2870 mm × width 2000 mm × height 1000 mm) filled with 4000 l of clear water. Experi-

ments were conducted in a dark environment, and turbidity was simulated by adding milk

in amounts ranging from 0 to 250 g in increments of 50 g, corresponding to the concen-

tration conditions labeled A©– F© in Table 6.1; these docking experiments are hereafter

referred to as experiments A–F, respectively. A photograph of this experiment is shown

in Fig. 6.10. This experiment was conducted to verify whether each of the considered

conditions were in the control area. In this system, the images acquired from the dual-eye

camera are sent to the PC. The real-time recognition of the 3D pose of the target is then

executed using the model-based matching method and the RM-GA in the PC software.

Finally, based on the error between the actual and recognized poses, command signals

generated by a position controller for the thrusters are input into the ROV to ensure it

maintains the target pose. In the docking experiments, the ROV is placed at a distance

of approximately 600 mm in front of the 3D marker with an arbitrary initial orientation.

The docking alignment process is shown in Fig. 5.3 along with the marker and ROV

coordinate systems.

Among the six docking experiments conducted in the large pool, experiments B and

E (milk concentrations of 12.125 and 48.5 ml/m3, respectively) are discussed in detail.

Figures 6.11 and 6.12 show the fitness values for experiments B and E, respectively.

The results obtained using the full-search and RM-GA methods were compared for some

sample points during the visual servoing and docking steps and after docking completion.

The poses estimated by all of the genes in the RM-GA are represented by black points,

and the peak fitness value represents the estimated pose. The fitness distribution for

each pose was searched using the full search method, which involves scanning all planes

to find the true pose. A comparison of the fitness values obtained in experiments B and

E, especially those obtained during visual servoing, reveals that increasing the turbidity
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reduces the fitness value.

Figures 6.13 and 6.14 show the desired pose of the 3D marker and the pose estimated by

the RM-GA. Note that the ROV is controlled manually until the 3D marker is recognized

by the system. For example, the recognized poses during the first 10 s in Fig. 6.12 are not

meaningful because the fitness value is less than 0.22. Therefore, visual servoing started

at approximately 8 s in this case as a result of the system switching from manual mode

to visual servoing mode. Visual servoing continued until the y- and z-components of

the estimated position were within the error allowances of the desired pose. When these

docking criteria were satisfied, the docking step was initiated. During the docking process,

the rod is inserted into the docking hole by gradually decreasing the desired value of the

position along the x-axis. Note that the desired position along the x-axis reduces until it

reaches a distance of approximately 350 mm from the 3D marker, at which point docking

is complete. In experiments A–E, the docking operation was completed successfully within

60 s after the start of visual servoing. The longest time required for completion among

the five successful docking experiments was 60 s in experiment E. In experiment F, in

which the turbidity level was 11.2 FTU (60.6 ml/m3 of milk), the 3D marker could not be

recognized by the system, as shown in Fig. 6.15, because the fitness value was less than

0.2. Thus, docking was successfully executed under the turbidity levels in experiments

A–E, and the system failed to recognize the target under the conditions of experiment F.

6.5 Continuous iterative docking experiment in the

sea

Continuous iterative at-sea docking trials were conducted near Ushimado, Japan, as shown

in Fig. 6.16. The docking station (length 600 mm × width 450 mm × height 3000 mm)

was oriented with its long sides perpendicular to the pier. Underwater cameras were

installed in the docking station to observe the performance of the ROV during operation,
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as shown in Fig. 6.17. Docking tests began with the vehicle at a distance of 1.5 m in

front of the dock. A shallow sea area was selected as the docking area because the high

turbidity in a shallow region would allow the verification of the robustness of the proposed

system against turbidity. The turbidity level measured by the turbidity sensor during the

experiment was 7.7 FTU; as indicated by Table 6.1, a turbidity of approximately 7 FTU

is within the control area. The turbidity was measured at the position of 600 mm in front

of the 3D marker in the sea. The depth of the sea floor in the docking area is 2.1 m.

Natural waves in the sea continued while the experiments were conducted. The ROV was

tethered to an onshore platform with a cable of 200 mm in length. To demonstrate the

underwater battery recharging operation, a docking rod was attached to vehicle, and a

docking hole affixed with a 3D marker was designed. The main task for the vehicle was to

automatically insert the docking rod into the docking hole under visual servoing control.

First, the vehicle was guided to the dock by manual control until the 3D marker was in

the field of view (at a distance of approximately 600 mm from the target). In the visual

servoing step, the vehicle took the desired pose for docking. When the vehicle stably

achieved the position within an error of ±30 mm in the image plane (y, z) for 165 ms, it

began to insert the docking rod by gradually decreasing the distance between the vehicle

and target in the x-direction until it reached 350 mm. After the docking operation was

complete, the vehicle returned to a distance of 600 mm from the target in the x-direction

for the next docking iteration.

Continuous iterative docking was conducted successfully for 19 iterations. The fitness

function and desired position in the x-direction in this experiment are shown in Fig. 6.18.

Among the 19 iterations, docking iteration 3, which was one of the shortest docking

operations, and docking iteration 7, which was one of the longest, were analyzed in detail;

the results of these two iterations are shown in Figs. 6.19 and 6.20, respectively. Figure

6.19(a), (b), and (c)–(f) shows the fitness function, the vehicle trajectory in 3D space, and

the components of the recognized and desired poses, respectively, for docking iteration 3.

The same results are shown in Fig. 6.20 for docking iteration 7. Docking iteration 3 was
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completed successfully within 30 s. In contrast, the completion of docking iteration 7 took

more than 60 s. The position along the y-axis and the rotation about the z-axis fluctuated

significantly, which delayed docking completion. This fluctuation seems to have been an

effect of the waves. Therefore, the vehicle trajectory in docking iteration 7 (Fig .6.20(b))

shows much larger variations than that of docking iteration 3 (Fig. 6.20(b)). As shown in

Fig. 6.20(c), there was a gap between the desired and estimated positions along the x-axis

because the error allowance for the docking operation is defined for only the positions along

the y- and z-axes and the rotation about the z-axis. Additionally, the desired position

along the x-axis remained constant for some periods during the docking step because of

some fluctuations in the position along the y-axis and especially the rotation about the

z-axis that exceeded the error allowance, as shown in Fig. 6.20(d) and (f). This condition

triggers a switch from the docking step to the visual servoing step, as shown by the path

labeled “P” in Fig. 5.2.

During the undersea docking experiments, all data were stored for offline analysis.

However, the left and right camera images were stored only up to docking iteration 7

because of limitations to the memory of the PC. As shown by the experimental results

of the docking iterations, the docking operations conducted in the sea at turbidity levels

below 7.7 FTU were executed successfully with good agreement between the analysis of

the recognition accuracy in the pool under turbid conditions and the experimental docking

results; the turbidity limit of 7.7 FTU agrees well with the set of conditions labeled E

in Table 6.1. A comparison of the docking performance in the sea in docking iteration 7

with that in the pool in experiment E reveals that the docking period in the sea docking

experiment was nearly twice that in the pool docking experiment and the fluctuation in

the pose in the sea docking experiment, especially regarding the position along the y-axis

and the rotation about the z-axis (Fig. 6.20(d) and (f)), was larger than that in the pool

docking experiment (Fig. 6.14). Therefore, the turbidity tolerance described in Table

6.1 for the proposed system in a pool environment was verified experimentally in a real

sea environment. The control and recognition areas (areas I and II in Table 6.1) can be
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expanded by improving the system in future.
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Fig. 6.6: Real-time and average fitness values under the conditions labeled (a) A, (b) C,
and (c) F in Table 6.1.
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Fig. 6.7: Left and right camera images under the maximum turbidity conditions in the
control and recognition areas at each considered distance. Images taken at the maximum
and minimum distances in clean water and at the maximum turbidity, in which the 3D
marker is not observable, are also shown at the top and bottom, respectively.
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Fig. 6.8: Left and right camera images with the pose recognized by the pose estimation
system at different turbidity levels and a distance of 600 mm between the ROV and 3D
marker. The recognized pose is indicated by dotted circles in each photograph. The water
turbidity measured by the turbidity sensor is shown in units of FTU, and the amount of
added milk is given in units of milliliters per cubic meter.
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Fig. 6.9: Fitness value distributions confirming the robustness of the system at a distance
of 600 mm. The position of the peak corresponding to the true pose of the marker was
maintained even though the height of the peak was reduced by increasing turbidity. The
gradual reduction in the height of peak shows the effect of turbidity on image recognition.
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Fig. 6.10: Photograph of the docking experiment under turbid conditions in a dark envi-
ronment.
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Fig. 6.11: Fitness value results for experiment B. The photographs show examples of
the left and right camera images from which the pose was estimated using the RM-GA.
From left to right, the photographs show selected images from the visual servoing step, the
docking step, and after the completion of the docking step. The poses estimated using the
RM-GA and the full-search method are indicated in the fitness value distributions for each
of these docking steps. The area around the peak of the fitness distribution was searched
by scanning all planes of the images. The presence of a peak in the distribution indicates
the robustness of the recognition method against turbidity, and the correspondence be-
tween the peak and the black points indicates the accuracy of the RM-GA results. The
black point represents each gene of RM-GA. The pose yielded by the RM-GA is shown
in Fig. 6.13.
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Fig. 6.12: Same as Fig. 6.11 for experiment E. The pose yielded by the RM-GA is shown
in Fig. 6.14.
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Fig. 6.15: Left and right camera images in experiment F. The dashed circles, which are
not aligned with the target, represent the system’s failure to recognize the target.
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Fig. 6.16: ROV and docking station in the sea.

Fig. 6.17: Continuous iterative docking experiments in the sea. These photographs were
taken by two underwater cameras installed in the docking station and from a pier.
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Fig. 6.18: Results of continuous iterative docking experiment. (a) Fitness value plotted
against time. (b) Desired position in the x-direction during 19 docking iterations in the
sea. The numbers along the bottom of the plot represent the docking iteration number,
and the duration of each docking iteration is represented by the length of the corresponding
arrow. Examples of the left and right camera images taken during the visual servoing and
docking steps and after docking completion are shown above and below the plot. Detailed
results for docking iterations 3 and 7 are presented in Figs. 6.19 and 6.20, respectively.
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Fig. 6.19: Results for docking iteration 3. (a) Fitness value plotted against time. (b)
Vehicle trajectory in 3D space. (c)–(f) Recognized position along the x-, y-, and z-axes
and rotation about the z-axis obtained by the RM-GA. The desired position along the x-
axis remained constant for the periods labeled (A) and (B) in (c) during docking because
the rotation error about the z-axis labeled (A) in (e) and the position error in the y-
direction labeled (B) in (d) respectively surpassed the error allowance. (g) Left and right
camera images taken at the times labeled A1, A2, and A3 in the time profiles. These
images show the movement of the ROV in the y-direction when the rotation of the ROV
about the z-axis was almost zero.
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Fig. 6.20: Same as Fig. 6.19 for docking iteration 7. The desired position along the x-axis
remained constant for the periods labeled (A) and (B) in (c) because the rotation error
about the z-axis labeled (A) in (e) and both the position error along the y-axis and the
rotation error about the z-axis labeled (B) in (d) and (e) respectively surpassed the error
allowance. At the time labeled A2 in the time profiles, the ROV is at the desired position
along the y-axis, and the rotation angle about the z-axis is within the error allowance. At
A1 and A3, the position along the y-axis and the rotation about the z-axis both surpassed
the error allowance. This indicates that the rotation about the z-axis and the position
along the y-axis are coupled. Therefore, the tip of docking rod appears to be within the
allowed area in the images taken at A1 and A3 even though there are some deviations in
the position along the y-axis and the rotation about the z-axis.
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Conclusion

In this work, vision-based docking approach by using two cameras for an underwater ve-

hicle was designed and implemented for underwater battery recharging. First, 3D pose

estimation approach using RM-GA was proposed and verified in 3D pose recognition

experiment. Second, the recognition accuracy and regulation performance was verified

in pool tests in which regulating experiments were conducted. Since the real sea en-

vironment addresses different disturbances, the robustness against object occlusion and

physical disturbances were experimentally verified. Third, docking experiment through

designed docking strategy was conducted in the pool. Then, sea docking experiment was

conducted using an ROV in the sea near Wakayama city in Japan. After achieving sea

docking experiment, the proposed system was verified for turbidity tolerance since it is

the main challenging and unavoidable issue in the sea floor where the intended underwa-

ter battery recharging unit with docking function is supposed to be installed. Therefore,

experimental verification of turbidity tolerance of the proposed system was conducted and

presented in this study. Finally, sea docking experiment in the turbid sea in coastal area

was conducted to verify the functionality and practicality of the proposed system against

real sea disturbances especially turbidity. As future works, even through the parameters

of RM-GA are turned experimentally in this work to have enough accuracy, optimal pa-

rameters can be selected based on some analysis on their performance to improve the
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proposed system especially in term of convergence time and recognition accuracy. Addi-

tionally, the turbidity tolerance of the proposed system using passive 3D marker is limited

in some level of turbid sea environment, the system can be expanded to be able to work

in higher turbid environment in future work.
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