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ABSTRACT: Polyketides are a large class of bioactive natural 
products with a wide range of structures and functions. 
Polyketides are biosynthesized by large, multi-domain en-
zyme complexes termed polyketide synthases (PKSs). One 
of the primary challenges when studying PKSs is the high 
reactivity of their poly-b-ketone substrates. This has ham-
pered structural and mechanistic characterization of PKS-
polyketide complexes, and, as a result, little is known about 
how PKSs position the unstable substrates for proper cataly-
sis while displaying high levels of regio- and stereo-
specificity. Here we describe the development and applica-
tion of an oxetane-based PKS substrate mimic. This enabled 
the first structural determination of the acyl-enzyme inter-
mediate of a ketosynthase (KS) in complex with an inert 
extender unit mimic. The crystal structure, in combination 
with molecular dynamics simulations, led to a proposed 
mechanism for the unique activity of DpsC, the priming ke-
tosynthase for daunorubicin biosynthesis. The successful 
application of an oxetane-based polyketide mimic suggests 
that this novel class of probes could have wide-ranging appli-
cations to the greater biosynthetic community. 

Polyketide natural products are a large and diverse class 
of secondary metabolites of high impact to human health.1-2 
Type II polyketides are biosynthesized by a type II polyke-
tide synthase (PKS) consisting of 5–10 stand-alone enzymes 
that form complexes in solution.3 Notable examples include 
actinorhodin, daunorubicin, and tetracenomycin C (Figure 
1A).4-6 PKSs have been heavily studied because of their abil-
ity to efficiently biosynthesize complex small molecules and 
their potential to be engineered for combinatorial biosynthe-
sis.1-2 

 
Figure 1. (A) Examples of type II polyketides with the starter 
units shown in blue. (B) DpsC catalyzes the transfer of small 
acyl-CoAs, including propionyl-CoA, to the acyl carrier protein 
(ACP) and also the initial chain elongation reaction that con-
denses the propionyl starter unit with malonyl-ACP to afford 
the growing intermediate. Eight more rounds of chain elonga-
tion produce the unstable, linear poly-b-ketone intermediate 
that is cyclized and tailored to become daunorubicin. (C) Ox-
etanes are isosteres for the carbonyl group. (D) Probe 1, with 
the thioester carbonyl group replaced by an oxetane, mimics 
malonyl-PPT. 
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Scheme 1. Synthesis of malonyl-PPT probe 1 

One of the primary challenges associated with investigat-
ing type II PKS is the high reactivity of enzymatic substrates 
and intermediates.7 The poly-b-ketone generated by most 
type II PKSs is highly susceptible to spontaneous, non-
specific cyclization, which has made structural studies of 
PKS-substrate complexes extremely difficult (Figure 1B).8 
Without this structural knowledge, rational engineering of 
substrate specificity often leads to inactive enzymes.3 Our 
group previously synthesized isoxazole-based polyketide 
isosteres and applied them to the characterization of the in-
terior pocket of an acyl carrier protein.9 Given the substantial 
structural differences between these first-generation chemi-
cal probes and the natural poly-b-ketone substrates, we ex-
pect their applications to be rather limited. To interrogate 
PKS-substrate complexes more broadly, we sought to gener-
ate probe molecules that more closely mimicked the natural 
substrates.  

The oxetane ring is well recognized as an isostere for the 
carbonyl group,10 owing primarily to the efforts of Carreira, 
Müller, and co-workers.11-18 Although slightly larger than the 
carbonyl, the oxetane orients its oxygen lone pairs along 
similar vectors to a carbonyl group (Figure 1C). To date, 
this carbonyl–oxetane replacement strategy has not been 
used to study questions in polyketide biosynthesis where it is 
ideally suited for strategic replacement of carbonyl groups in 

unstable poly-b-ketone intermediates of aromatic polyke-
tides.  

Here we present the synthesis of an oxetane-based PKS 
substrate mimic 1 (Figure 1D) and demonstrate its applica-
bility by co-crystallizing it with the enzyme DpsC from the 
daunorubicin type II PKS from Streptomyces peucetius.19-22 
DpsC is a unique enzyme that has both acyltransferase (AT) 
and priming ketosynthase (ketosynthase III, KS III) activi-
ties.20-22 However, the structural basis for the unique dual 
activity of DpsC is unclear because of the lack of high-
resolution substrate-DpsC structures. Here we present a co-
crystal structure and molecular dynamics (MD) simulations 
that provide mechanistic insight into the KS activity of this 
enzyme. 

Phosphopantetheine (PPT) malonate mimic 1 was syn-
thesized from commercially available D-pantothenic acid 
(Scheme 1). Acetal formation, followed by a CDI-mediated 
amide coupling with cysteamine hydrochloride produced 
thiol 2. The 1,3-diketone surrogate was installed via base-
catalyzed thia-Michael addition of 2 to oxetane-bearing eno-
ate 5, yielding 3.13 Acetal hydrolysis and ester saponification 
of 3 unveiled the diol and carboxylic acid moieties, respec-
tively, and provided the penultimate intermediate 4. The 
synthesis of 1 was completed using chemoenzymatic phos-
phorylation.23 

 

Figure 2. Crystal structure of propionyl-DpsC bound to extender unit mimic 1. (a) Overall structure of the dimeric propionyl-DpsC 
in complex with 1. The DpsC monomers are shown in blue and gold, and 1 is shown in magenta. (b) S118 is shown with its propio-
nylated side chain with the carbon bond that would be formed shown as a black dashed line. (c) Overview of DpsC-1 interactions 
within the active site and near the enzyme surface. 
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The DpsC-1 model therefore provides new insights into 
the positioning of substrates just prior to catalysis. As ex-
pected, the Asp-His-Ser catalytic triad forms a hydrogen 
bond network that results in an activated S118 nucleophile 
(see Figure S4 for details). The resulting propionyl-serine 
side chain is in close proximity to probe 1. In particular, the 
two carbon atoms that would normally participate in the 
Claisen condensation reaction were separated by an appro-
priate distance (2.9 Å) and were aligned appropriately (Fig-
ure 2). The carboxylate of 1 interacts with R271 via a charge-
charge interaction and has a hydrogen bond with T163 
(Figure 2C). The terminal phosphate shows a charge-charge 
interaction with K279 as well as a hydrogen bond to S238, 
which is consistent with many other PKS enzymes that use 
positively charged surface residues to position the phosphate 
moiety of the phosphopantetheine prosthetic group.3, 8  

Canonical KSIIIs use conserved residues in an oxyanion 
hole to stabilize the buildup of negative charge on the thioe-
ster carbonyl.3, 8 Residues H244 and N274 in the prototypi-
cal KSIII FabH, known to be essential for decarboxylation,24-

25 are not conserved in DpsC. In the DpsC-1 structure, the 
oxetane oxygen atom did not orient itself into a positively 
charged environment within the DpsC active site (Figure 
2C). The structurally equivalent positions in DpsC are P265, 
which does not contain a suitable side chain for oxy-anion 
stabilization, and H297 is locked in a hydrogen bond net-
work with D302 and S118. The side chain of H198 is within 
the active site and could potentially stabilize an oxyanion; 
however, the oxygen of the oxetane group is pointing away 
from this side chain in the crystal structure. One possibility is 
that substrate decarboxylation and formation of the enolate 
intermediate reorients the oxygen towards H198 via a simple 
bond rotation to stabilize the newly-formed negative charge 
(Figure S4). This proposed mechanism is currently under 
investigation. 

To further assess the validity of the carbonyl-oxetane re-
placement strategy, the atomic coordinates of the co-crystal 
structure were used to parameterize and generate two types 
of MD simulations for comparison: DpsC bound to either 
oxetane-based probe 1 or the more natural, malonate-PPT 
(Figure 1C). The same atomic coordinates of the co-crystal 
structure were used to generate the MD simulation for DpsC 
bound to malonyl-PPT, in which the oxetane substituent was 
mutated in silico into a carbonyl group. Trajectories of both 
systems in explicit solvent were collected over a microsecond 
for comparative analyses of relative binding affinity, back-
bone fluctuations and low-frequency motions. These simula-
tions demonstrated similar relative binding affinities, overall 
long-term motion and high-frequency movement of binding 
site residues (Figures S5–S10). This provides further sup-
port that the protein conformation, substrate-DpsC interac-
tions, as well as protein dynamics near the interacting resi-
dues between DpsC and probe 1 are self-consistent.  

In summary, we report the first design, synthesis and ap-
plication of an oxetane-based probe as a surrogate for the 
carbonyl group of an electrophilic thioester. This study clari-
fies how the substrate is oriented for DpsC-catalyzed decar-
boxylation of malonyl-CoA. More generally, this study pro-
vides a proof-of-concept of our use of oxetane isosteres to 
investigate polyketide synthesis. Ongoing efforts include the 
synthesis of higher-order poly-b-ketone mimics that contain 
multiple carbonyl to oxetane substitutions, which are cur-
rently being applied in mechanistic and structural analyses of 
other iterative PKSs. These polyketide mimics will enable 
investigations of important substrate-enzyme and protein-
protein interactions that govern the efficiency and selectivity 
of PKSs, ultimately leading to advances in molecular design 
and medicinal chemistry. 
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1H and 13C NMR Spectra        S21 
I. Materials and Methods.  

All reactions were carried out in flame- or oven-dried glassware under a positive 

pressure of argon (Ar), unless otherwise noted. Dry acetonitrile (MeCN), dichloromethane 

(CH2Cl2), diethyl ether (Et2O), tetrahydrofuran (THF), and dimethylformamide (DMF) were 

obtained by passage of the solvents through a column of neutral alumina under an atmosphere 

of argon. No precautions were made towards extruding air in aqueous media, unless otherwise 

noted. Solvents used for workup and chromatography such as CH2Cl2, ethyl acetate (EtOAc), 

hexanes, pentanes, and methanol were used as received from their respective suppliers. 

Reagents were used as received by their respective suppliers unless otherwise noted. Reactions 

were monitored by analytical thin-layer chromatography (TLC) using Merck 60 F254 glass-

backed silica gel (SiO2) TLC plates. TLC plates were visualized with UV irradiation (254 nm) 

and treatment with p-anisaldehyde or KMnO4/H2SO4. Flash chromatography was performed on 

EMD 60 Å (40–63 µm) mesh SiO2. NMR spectra were collected on Bruker GN500, CRYO500, or 

AVANCE600 instruments. 1H and 13C NMR spectra are referenced using the signal(s) of the 

residual undeuterated solvent. All spectra were collected at 298 K, unless otherwise indicated. 

Chemical shifts are reported in parts per million (ppm) and multiplicities are abbreviated as 

follows: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sept (septet), m (multiplet), 

br (broad), ap (apparent). Coupling constants (J) are reported in Hertz (Hz). Infrared (IR) 

spectra were collected on a Varian 640-IR spectrometer and peaks are recorded in cm–1. High 

resolution mass spectra (HRMS) were obtained using a Walters LCT Premier spectrometer 

using electrospray ionization-time of flight (ESI) or chemical ionization-time of flight (CI).  

II. List of Abbreviations  

AcOH    acetic acid 

ADP    adenosine diphosphate 

ATP    adenosine triphosphate 

CDI    1,1’-carbonyldiimidazole 

CSA    10-camphorsulfonic acid      

DBU    1,8-diazabicyclo[5.4.0]undec-7-ene 
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Et2O    diethyl ether 

EtOAc    ethyl acetate 

LRMS    low resolution mass spectrometry 

MeCN    acetonitrile 

MeOH    methanol 

PMP    p-methoxyphenyl 

THF    tetrahydrofuran 

III. Experimental Procedures and Characterization Data 

 

PMP-Protected Pantetheine Acid S1.  

PMP-protection of D-pantothenic acid was performed as described by Burkart et al.1 The 

spectroscopic data are consistent with previously reported data.1-2 

PMP-Protected Pantetheine Thiol 2.  

CDI (72 mg, 0.45 mmol) was added in one aliquot to a stirring solution of PMP-protected 

acid S1 (100 mg, 0.30 mmol) in 2 mL THF. Cysteamine·HCl (50 mg, 0.45 mmol) was added in 

one portion to the vigorously stirring reaction mixture 1 h after the complete dissolution of 

solids. After 24 h at ambient temperature, the solvent was removed in vacuo and the resultant 

viscous oil was suspended in CH2Cl2 (10 mL). The crude mixture was partitioned with an 

equivalent volume of sat. aq. NH4Cl, and the aqueous layer was further extracted with CH2Cl2 

(2 x 10 mL). The organic layers were combined, washed with brine (1 x 10 mL), dried over 

Na2SO4, filtered, and concentrated in vacuo. The amber residue was purified by flash column 

chromatography (SiO2, 100% EtOAc + 1% v/v AcOH) to yield the desired thiol 2 (78 mg, 67%) as 

a pale yellow oil. 1H NMR (500 MHz, CDCl3) d 7.40 (d, J = 8.4 Hz, 2 H), 7.01 (s, 1 H), 6.90 (d, J = 
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8.4 Hz, 2 H), 6.45 (s, 1 H), 5.44 (s, 1 H), 4.06 (s, 1 H), 3.80 (s, 3 H), 3.65 (q, J = 11.3 Hz, 2 H), 3.55–

3.51 (m, 2 H), 3.39 (ddd, J = 26.5, 13.5, 6.7 Hz, 1 H), 3.33 (ddd, J = 26.0, 13.1, 6.1 Hz, 1 H), 2.57 (ap 

dd, J = 14.8, 7.3 Hz, 2 H), 2.41 (t, J = 6.5 Hz, 2 H), 1.33 (t, J = 8.3 Hz, 1 H), 1.07 (d, J = 7.6 Hz, 6 H); 

13C NMR (125 MHz, CDCl3) d 170.9, 169.5, 160.2, 130.0, 127.4, 113.7, 101.3, 83.7, 78.3, 55.3, 42.3, 

35.9, 34.8, 33.0, 24.4, 21.8, 19.1; IR (thin film) 3318, 2957, 1660, 1615, 1519, 1461, 1391, 1249, 1103, 

1031, 832, 731 cm–1; HRMS (ESI) m / z calcd for C19H28N2O5SNa [M + Na]+ 419.1617, found 

419.1630.  

PMP-Protected Pantetheine Ester 3. 

To a solution of PMP-protected thiol 2 (421 mg, 1.06 mmol) in 4 mL MeCN at 0 ºC was 

added methyl enoate 5 (150 mg, 1.2 mmol) in 2 mL MeCN.  The reaction mixture was sparged 

for 5 min via the passage of Ar through the solution. Upon removing the sparging needle, DBU 

(30 µL, 0.19 mmol) was added in one aliquot. The pale yellow solution was warmed to ambient 

temperature and allowed to stir for 6 h. The reaction mixture was then concentrated to 

approximately 2 mL in vacuo and purified by flash column chromatography (SiO2, 0 ® 10% 

MeOH in EtOAC) to give the title compound (540 mg, 97% yield). 1H NMR (500 MHz, CDCl3) d 

7.42 (d, J = 8.5 Hz, 2 H), 7.03 (s, 1 H), 6.91 (d, J = 8.5 Hz, 2 H), 6.40 (s, 1 H), 5.45 (s, 1 H), 4.75 (dd, J 

= 4.7, 2.5 Hz, 2 H), 4.63 (dd, J = 6.9, 3.6 Hz, 2 H), 4.08 (s, 1 H), 3.82 (s, 3 H), 3.68 (s, 3 H and q, J = 

11.9 Hz, 2 H), 3.59–3.48 (m, 2 H), 3.41 (ddd, J = 13.2, 6.6 Hz, 1 H), 3.37 (ddd, J = 26.4, 13.0, 6.2 Hz, 

1 H), 2.98 (s, 2 H), 2.73 (t, J = 6.6 Hz, 2 H), 2.44 (t, J = 6.3 Hz, 2 H), 1.08 (d, J = 3.9 Hz, 6 H); 13C 

NMR (125 MHz, CDCl3) d 171.0, 170.3, 169.5, 160.2, 130.2, 127.5, 113.7, 101.3, 83.8, 81.9, 78.5, 55.3, 

51.9, 47.1, 42.4, 39.1, 35.9, 34.7, 33.1, 29.0, 21.8, 19.1; IR (thin film) 2952, 1735, 1663, 1519, 1249, 

1103, 1030, 833 cm–1; HRMS (ESI) m / z calcd for C25H36N2O8SNa [M + Na]+ 547.2090, found 

547.2080.  
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Pantetheine Methyl Ester S2. 

Aqueous HCl (2 mL, 1 N) was added to a stirring solution of PMP-protected methyl 

ester 3 (100 mg, 0.19 mmol) in 2 mL THF. The solution was allowed to stir at ambient 

temperature until TLC indicated the complete consumption of starting material (3 h). Saturated 

aqueous NaHCO3 (4 mL) was then added in one aliquot to neutralize the solution. The solvent 

was removed by passing N2 gently over the vigorously stirring solution for 13 h. The beige salts 

were taken up in approximately 50 mL of 20% MeOH in CH2Cl2, sonicated to break up the 

solids, filtered, and concentrated in vacuo to yield the deprotected methyl ester 4 (80 mg, 80%) as 

a white solid. The crude methyl ester was used directly in the next step below without further 

purification. 1H NMR (400 MHz, D2O) d 4.93 (d, J = 7.0 Hz, 2 H), 4.65 (d, J = 7.0 Hz, 2 H), 4.00 (s, 

1 H), 3.73 (s, 3 H), 3.45–3.57 (m, 3 H), 3.35–3.43 (m, 3 H), 3.16 (s, 2 H), 2.82 (t, J = 6.4 Hz, 2 H), 2.50 

(t, J = 5.4 Hz, 2 H), 0.93 (s, 3 H), 0.89 (s, 3 H); 13C NMR (125 MHz, CDCl3) d 175.2, 174.1, 173.0, 

82.2, 75.9, 68.5, 52.4, 46.7, 41.4, 39.0, 38.7, 35.6, 35.3, 28.2, 20.6, 19.2; HRMS (ES) m / z calcd for 

C17H30N2O7SNa [M + Na]+ 429.1671, found 429.1660. 

  

 

Pantetheine Carboxylic Acid 4.  

Aqueous LiOH·H2O (2 mL, 1 N) was added to a stirring solution of pantetheine methyl 

ester S2 (80 mg, 0.20 mmol) in a 2:1 mixture of THF/H2O (8 mL). The mixture was stirred at 

ambient temperature until TLC indicated complete consumption of starting material (30 min), 

upon which saturated aqueous NaHCO3 (4 mL) was added in one aliquot. The crude reaction 

mixture was concentrated by gently passing N2 over the vigorously stirring solution for 16 h. 

The white salts were suspended in approximately 30 mL of MeOH and sonicated to break up 

most of the solids. The slurry was then filtered and concentrated in vacuo, affording the title 
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compound (70 mg, 90% yield) as a white solid. No further purification was used prior to the 

next reaction (below). 1H NMR (500 MHz, D2O) d 4.94 (d, J = 7.4 Hz, 2 H), 4.64 (d, J = 7.4 Hz, 2 

H), 4.00 (s, 1 H), 3.55–3.51 (m, 3 H), 3.42 (t, J = 6.7 Hz, 2 H and d, J = 11.7 Hz, 1 H), 3.39 (s, 1 H), 

2.85 (s, 2 H and t, J = 6.7 Hz, 2 H), 2.52 (t, J = 6.4 Hz, 2 H), 0.93 (s, 3 H), 0.90 (s, 3 H); 13C NMR 

(125 MHz, CD3OD) d 178.1, 176.1, 173.8, 83.9, 77.2, 70.3, 49.9 46.9, 40.6, 40.4, 36.4, 36.3, 29.5, 21.4, 

21.0; HRMS (ESI) m / z calcd for C16H28N2O7SNa [M + Na]+ 415.1515, found 415.1522.  

Malonate Mimic 1. 

A buffer solution of potassium phosphate (25 mM, pH 7.5, 93 µL total volume), 1 M 

MgCl2 (1 µL, 10 mM), 500 mM ATP·K2 salt (1.6 µL, 8 mM), 57 µM CoAA (1.75 µL, 1 µM), 100 

mM 4 in DMSO (2.5 µL, 2.5 mM) were added to an Eppendorf tube and homogenized with a 

vortex mixer. The reaction was incubated at 37 ºC for 90 min, upon which it was filtered using a 

Pierce™ Protein Concentrator (PES 3K WMCO). The solution was then injected into an HPLC 

column (Beckman Coulter™ Ultrasphere ODS, 5 µ particle size, 10 mm x 15 cm) and eluted with 

MeCN + 0.1% v/v formic acid in H2O + 0.1% v/v (gradient elution: 5% ® 95%). Fractions were 

analyzed using LRMS (ES) and the fractions containing product with the least ATP / ADP were 

pooled, concentrated under a stream of N2, and used in the co-crystallographic studies without 

further purification. HRMS (ES) m / z calcd for C16H28N2O10PS [M + H]– 471.1202, found 471.1208.  

 

Methyl 2-(oxetan-3-ylidene)acetate (5). 

Note: Methyl enoate 5 was prepared by modification of the procedure of Wuitschik.3 

 A solution of 3-oxetanone (200 mg, 2.8 mmol) in 2 mL CH2Cl2 was cooled to 0 ºC, upon 

which a solution of methyl (triphenylphosphoranylidene)acetate (1200 mg, 3.6 mmol) in 6 mL 

CH2Cl2 was transferred slowly via cannulation. The flask containing the Wittig reagent was 

rinsed with approximately 2 mL of CH2Cl2, which was cannulated into the reaction flask. After 
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30 min at 0 ºC, the flask was allowed to warm to ambient temperature. The pale yellow solution 

was allowed to stir for another 30 min, upon which it was poured onto a plug of silica gel and 

eluted with 1:1 EtOAc:hexanes. The volatiles were removed in vacuo yielding methyl enoate 5 

(320 mg, 90% yield). 1H NMR (500 MHz, CDCl3) d 5.64 (quin, J = 2.4 Hz, 1 H), 5.49 (ap dd, J = 6.9, 

3.0 Hz, 2 H), 5.29 (ap dd, J = 7.0, 3.7 Hz, 2 H), 3.71 (s, 3 H); 13C NMR (125 MHz, CDCl3) d 165.6, 

159.1, 110.6, 81.0, 78.4, 51.4; IR (thin film) 2924, 2856, 2360, 1720, 1698, 1437, 1353, 1211, 1101, 956 

cm–1; HRMS (CI) m / z calcd for C6H9O [M + H]+ 129.0552, found 129.0550.  

 

IV. Expression and Purification of DpsC 

 A pET28 expression vector coding for 6xHis-tagged DpsC was transformed into E. coli 

BL21(DE3) by heatshocking at 42 °C for 45 seconds. The transformed cells were plated on an LB 

medium supplemented with 50 µg/mL kanamycin and incubated at 37 °C for 18 hours. Cells 

were transferred to a 10 mL starter culture supplemented with 50 µg/mL kanamycin and 

shaken at 250 rpm for 18 hours at 37 °C. 10 mL of the starter culture was transferred to 1 L of LB 

media supplemented with 50 µg/mL kanamycin. The cultures were shaken at 200 rpm at 37 °C 

until the OD600 reached 0.6; the expression was induced by addition of 1 mM IPTG, and the 

cultures were shaken for 18 hours at 18 °C. The cells were centrifuged for 10 minutes, 

resuspended in lysis buffer (50 mM Tris pH 8.0, 300 mM NaCl, 10 mM imidazole, 10% glycerol), 

and flash frozen in liquid nitrogen before storage at -80 °C. 

 The cells were lysed using a microfluidizer, and the lysate was centrifuged at 21,000 rcf 

for 1 hour to separate from cellular debris. The lysate was applied to a 5 mL HisTrap HP 

column (GE Healthcare) and eluted using an imidazole gradient via an Akta Purifier FPLC. The 

fractions were analyzed using SDS-PAGE, and the fractions containing DpsC were combined 

and concentrated to 5 mg/mL. The protein sample was further purified using a Superdex 200 

column (GE Healthcare), and fractions were again analyzed using SDS-PAGE. The selected 

fractions containing DpsC were concentrated to 4 mg/mL and flash frozen in liquid nitrogen 

before storage at -80 °C. 

 

V. Crystallization and Structure Solution of the Propionyl-DpsC-probe Complex 
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 DpsC was crystallized in a solution containing 0.06 M MgCl2, 0.6 M CaCl2, 0.1 M 

imidazole pH 7.0, 0.1 M MES pH 6.7, 15% PEG 4000, and 30% Glycerol. The crystals were 

improved through multiple rounds of seeding using a Seed Bead (Hampton Research). The 

crystals were incubated in a 5 mM solution of propionyl-CoA prepared using mother liquor for 

18 hours to form the propionyl-DpsC intermediate, transferred to a drop containing 5 mM 1 for 

3 hours, and flash frozen in liquid nitrogen. The diffraction pattern of the crystals was measured 

at the Advanced Light Source using beamline 8.2.2. The diffraction images were processed 

using HKL20004. The structure was solved by molecular replacement by Phaser using the apo 

DpsC structure (PDB:5TT4, submitted) as the search model5. The model was built by Coot and 

refined using the Phenix suite6-8. The statistics of data collection, processing and model building 

are listed in Table S1. 

 

Molecular dynamics (MD) Simulations 

The crystal structure of DpsC bound to oxetane-based probe 1 in this study was used for 

parameterization and setup of MD simulations. The same topology and coordinates of this 

structure were adopted for the simulation of DpsC with malonyl-PPT by mutating the oxetane-

substituent in silico into a carbonyl group using the program Chimera. The Amber ff14SB force 

field9-13 was used to parameterize the DpsC receptor. Two non-standard residues in DpsC were 

parameterized using RESP ESP charge Derive Server (R.E.D.S)14-15. Both malonate- and oxetane-

based ligands were then parameterized using the general Amber force field (GAFF) and ff14SB 

forcefields9-13.   

Prior to minimization, complexes were neutralized with sixteen Na+ counter-ions and 

solvated explicitly using a 10 Å buffer of TIP3P waters in a truncated octahedron box. Both 

systems underwent a two-step minimization using SANDER9-13 to remove any steric clashes and 

overlaps. All hydrogen-containing bonds were constrained using the SHAKE algorithm16. 

DpsC-ligand complexes were then heated to 310K for 100-ps in the NVT ensemble, and 

equilibrated for 10-ns at 310K in the NPT ensemble. The accelerated CUDA version of PMEMD 
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was subsequently used to generate 100-ns production runs of all DpsC-ligand complexes in the 

NVT ensemble with 2-fs time steps.  

For each of the two DpsC-ligand complexes – DpsC-malonyl-PPT and DpsC-1, three 

independent 100-ns trajectories were generated. A length of 100-ns for production runs is 

appropriate for both systems to converge at the physiological temperature. Backbone RMSD of 

DpsC complexes with respect to the first frame structure (Figure S5) demonstrates stability and 

convergence of the systems. Simulation conditions are listed in Table S2. 

RMSD analysis of the two DpsC chains (chain A and chain B) in all six simulations 

revealed that RMSD of chain B converges to lower values (Figure S5). Given its higher stability, 

we then proceeded to compare the binding interactions between the malonate- and oxetane-

based ligands in chain B of DpsC using the Molecular Mechanics Poissan-Boltzman Surface 

Area (MM/PBSA) module of Amber 1617-22. Specifically, the finite-difference Poisson Boltzmann 

method and the modern nonpolar solvation model were used in the solvation free energy 

calculation in MM/PBSA23-28. Considering the charged phosphopantetheine probes and DpsC 

residues, an internal protein dielectric constant of 20 was used in MM/PBSA calculations21-22. 

Both systems only differ with regards to a single substituent on the ligand – oxetane or carbonyl 

– thus relative binding affinity approximations are sufficient for analysis instead of absolute 

binding free energies (Table S3), which require more demanding conformational entropy 

calculations. Relative binding affinities were then calculated using the last 10-ns (frames 900 to 

1000) of all three 100-ns production trajectories (Figure S). Convergence trend lines are provided 

in Figure S6, demonstrating the ΔG of both ligands converges after 6-ns. As listed in Table S3, 

the binding affinities of malonate- and oxetane-based probes are within one standard deviation 

of another, demonstrating similar binding affinities.  

Using the CPPTRAJ module of Amber 16, we then conducted root-mean-square 

fluctuation (RMSF) analyses of backbone atoms (C, Ca, N, O) for all MD runs. The RMSF values 

provide overall movement of each residue from its mean position, revealing high-frequency 

motion of the protein. Loop regions and terminal sequences exhibit the highest degree of 

fluctuation. The average RMSF calculations of DpsC-malonate (Figure S7) and –oxetane (Figure 

S8) simulations are displayed. Further the average RMSF values are also visualized in the 
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context of the structures in Figure S9, rendered using the Chimera program. To determine long-

time, overall motion of DpsC in response to either malonate- or oxetane-based ligands, the 

CPPTRAJ module of Amber 16 was employed once again to conduct Principal Component 

Analysis (PCA) and generate two movies29. PCA analysis consists of calculating a covariance 

matrix in which orthogonal vectors with the highest variance are selected as principal 

components (PCs). Using the first PC to generate movies of malonate- and oxetane-bound DpsC 

from DpsC-malonate simulation 1 and DpsC-oxetane simulation 5, we observe a general 

outward “breathing” motion exhibited by both complexes. Alpha helices 1-2 exhibit movement 

towards the ligand, and overall examination of PCA MD movies demonstrates minimal 

deviation between DpsC-malonate and DpsC-oxetane PCA movies. Figure S10 visualizes an 

alignment between the two snapshots closest to the mean structure (namely, with the lowest 

RMSD) of malonate and oxetane trajectories. Frame 337 of DpsC-malonate simulation 1 and 

frame 106 of DpsC-oxetane simulation 5 were chosen for alignment. The backbone (C, Ca, N) 

RMSD between the two mean structures is 0.716 Å, excluding the loop regions and the terminal 

regions. Overall, the computational analyses mentioned here demonstrate highly similar 

electronic, thermodynamic, and conformational influences propagated by malonyl-PPT and 

oxetane-based probe 1 in DpsC. 
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SI Tables  
	
Table S1. Statistics of Data Collection, Processing and Refinement 

	
	 	 

prop-DpsC + 1 

Data collection  
Wavelength (Å) 1.0 
Total reflections 85634 (7822) 
Unique reflections 43341 (4164) 
Space group P 65 2 2 

Cell dimensions    

a, b, c (Å) 91.6, 91.6, 316.1 

α, β, γ (°) 90, 90, 120 

Resolution (Å) 70.9 – 2.15 

Rmerge 0.021 (0.134) 

Rmeas 0.030 (0.190) 

I/σ(I) 16.26 (4.26) 

CC1/2
 0.999 (0.978) 

CC* 1.0 (0.994) 

Completeness (%) 99 (95) 

Redundancy 2.0 (1.9) 
Wilson B-factor 35.15 
  
Refinement  
Resolution (Å) 70.9 – 2.15 
No. reflections 43233 (4160) 
Rwork 0.179 
Rfree 0.209 
No. atoms  
Protein 5083 
Ligands 60 
B factors  

Protein 39.56 
Ligands 95.06 
Water 44.86 
Ramachandran  
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Table S2. DpsC & Ligand Simulation Conditions 
Simulation 

Number System Temperature 
(K) 

Time 
(ns) 

Traj. 
Num. Ions Waters 

1 DpsC & malonate-
based 1 

310 100 1 16 Na+ 14,767 

2 DpsC & malonate-
based 1 

310 100 1 16 Na+ 14,767 

3 DpsC & malonate-
based 1 

310 100 1 16 Na+ 14,767 

4 DpsC & oxetane-
based 1 

310 100 1 16 Na+ 14,769 

5 DpsC & oxetane-
based 1 

310 100 1 16 Na+ 14,769 

6 DpsC & oxetane-
based 1 

310 100 1 16 Na+ 14,769 

 
 
 
 
 
 
 

Table S3. MM/PBSA-derived ΔG Relative Binding Free Energy Approximations (kcal/mol) 
Simulation 

Number 
DpsC Chain & 

Ligand ΔG  Standard 
Deviation 

Standard 
Error 

1 DpsC Chain B & 
malonate-based 1 

-16.83 4.54 0.144 

2 DpsC Chain B & 
malonate-based 1 

-16.00 4.14 0.131 

3 DpsC Chain B & 
malonate-based 1 

-13.43 4.32 0.137 

4 DpsC Chain B & 
oxetane-based 1 

-15.36 3.68 0.117 

5 DpsC Chain B & 
oxetane-based 1 

-15.11 4.03 0.128 

6 DpsC Chain B & 
oxetane-based 1 

-15.45 3.70 0.117 
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SI Figures 

 
Figure S1. Ligand-free and ligand-bound structural comparison. a, the ligand-free structure of prop-DpsC 
(dark blue and bright yellow) is overlaid with the ligand-bound structure (light blue and pale yellow) in 
cartoon representation. b, the ligand-free structure of prop-DpsC (dark blue and bright yellow) is overlaid 
with the ligand-bound structure (light blue and pale yellow) in ribbon representation. 
 

  

a	 b	
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Figure S2. DpsC active site pocket. The surface of DpsC is represented as surface electrostatics. 1 is 
shown in magenta sticks, and the propionylated S118 sidechain is shown in yellow sticks. 

 
Figure S3. SA-Omit |2Fo-Fc| map for 1 contoured at 0.8 sigma. 
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Figure S4. Proposed DpsC oxyanion hole. a, crystal structure of prop-DpsC with 1, showing the putative 
oxyanion hole residue H198. b, a proposed model showing a post-decarboxylation substrate that has 
rotated to interact with H198. 
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Figure S5. Backbone (C, Ca, N, O) RMSD of 100-ns, DpsC-malonate simulations 1-3 and DpsC-oxetane 
simulations 4-6. a, all DpsC-malonate simulations converge within 100-ns, averaging to 1.322 Å. b, all 
DpsC-oxetane simulations converge within 100-ns, averaging to 1.292 Å. 

a	

b	



	

 S19 

	
Figure S6. Convergence trend lines of average DG binding energy calculations of DpsC-malonate 
simulations 1-3 and DpsC-oxetane simulations 4-6. The malonate-bound average DG converges to -44.50 
kcal/mol after 7 ns, and oxetane-bound average DG converges to -45.80 kcal/mol after 7 ns. 
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Figure S7. Heavy-atom (C, Ca, N, O) RMSF of all DpsC-malonate simulations. Secondary structure is 
depicted using PDBsum-generated imaging adjacent to the x-axis30-32.  
	
	
	



	

 S21 

	
Figure S8. Heavy-atom (C, Ca, N, O) RMSF of all DpsC-oxetane simulations. Secondary structure is 
depicted using PDBsum-generated imaging adjacent to the x-axis30-32.  
 
	
	



	

 S22 

	
Figure S9. Average backbone (C, Ca, N, O) RMSF of all DpsC-malonate and DpsC-oxetane simulations. 
Secondary structure is depicted using PDBsum-generated imaging adjacent to the x-axis30-32. 
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Figure S10. Alignment of mean structures from DpsC-malonate simulations (yellow) and DpsC-oxetane 
simulations (blue). Backbone RMSD is 0.716Å after alignment. 
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