University of London
Imperial College of Science, Technology and Medicine
Department of Computing

Self-management Framework
for
Mobile Autonomous Systems

Eskindir Ayallew Asmare

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and
the Diploma of Imperial College, March 2011

Abstract

The advent of mobile and ubiquitous systems has enabled the development of au-
tonomous systems such as wireless-sensors for environmental data collection and
teams of collaborating Unmanned Autonomous Vehicles (UAVs) used in missions un-
suitable for humans. However, with these range of new application domains comes
a new challenge — enabling self-management in mobile autonomous systems. The
primary challenge in using autonomous systems for real-life missions is shifting the
burden of management from humans to these systems themselves without loss of
the ability to adapt to failures, changes in context, and changing user requirements.
Autonomous systems have to be able to manage themselves individually as well as
to form self-managing teams that are able to recover or adapt to failures, protect

themselves from attacks and optimise performance.

This thesis proposes a novel distributed policy-based framework that enables au-
tonomous systems to perform self-management individually and as a team. The
framework allows missions to be specified in terms of roles in an adaptable and
reusable way, enables dynamic and secure team formation with a utility-based ap-
proach for optimal role assignment, caters for communication link maintenance
among team members and recovery from failure. Adaptive management is achieved
by employing an architecture that uses policy-based techniques to allow dynamic
modification of the management strategy relating to resources, role behaviour, team
and communications management, without reloading the basic software within the

system.

Evaluation of the framework shows that it is scalable with respect to the number
of roles, and consequently the number of autonomous systems participating in the
mission. It is also shown to be optimal with respect to role assignments, and robust
to intermittent communication link disconnections and permanent team-member
failures. The prototype implementation was tested on mobile robots as a proof-of-

concept demonstration.

Acknowledgements

I am deeply grateful to my supervisor, Professor Morris Sloman, for his constant
advice, guidance and support throughout the years of my PhD study. This thesis
would not have been possible without his encouragement, constructive criticism and

close attentiveness in reviewing my work.

I am very grateful to my second supervisor, Dr. Naranker Dulay, for his guidance
and critical reviews, which helped improve the quality of this thesis. I am also very
grateful to Dr. Emil Lupu for his helpful comments and advice. Special thanks go to

Professor Keith Clark for his invaluable advice and comments.

I would like to thank the academic staff and researchers in our department especially,
Dr. Kevin Twidle, Dr. Alessandra Russo, Dr. Sye Loong Keoh and Dr. Arosha Bandara

for their help and advice.

Special thanks also go to my colleague in the Self-managed Mobile Cells project, Dr.
Anandha Gopalan, who has contributed a great deal to the work presented in this

thesis with his useful comments.

Many thanks to fellow students and friends — Alberto Schaeffer-Filho, Lucio Duarte,
Markus Huebscher, Paulo Maia, Daniel Sykes, Changyu Dong, Leonardo Mostarda,
Giovanni Russello, Dalal Alrajeh, Driss Choujaa, Robert Craven, Yanmin Zhu, Vriz-
Iynn Thing, Duc Le, Andrew Smith, Srdjan Marinovic, Enrico Scalavino, Domenico
Corapi, William Heaven, Rudi Ball, Dimosthensis Pediaditakis, Themistoklis Bourde-

nas and Jiefei Ma.

Many thanks also go to Atnafe and Ashagre, and to my friends — Bizen, Fetahi,
Yosef and Belachew for their support and encouragement throughout the years of

my study.

I am deeply grateful to my parents, Genet Gebreab and Ayallew Asmare, to whom this
thesis is dedicated, my sisters — Yodit and Eleni, and my brothers — Kenya, Biniam

and Ermias for their constant support and encouragement.

The thesis was funded by the Systems Engineering for Autonomous Systems (SEAS)
Defence Technology Centre (DTC) established by the UK Ministry of Defence, and the

Overseas Research Students Awards Scheme.

ii

Statement of Contribution

This thesis is the result of the author’s work at Imperial College London on policy-
based management of distributed systems. Many of the ideas developed in this thesis
are the result of group discussions with Professor Morris Sloman, Dr. Naranker
Dulay, Dr. Emil Lupu and Dr. Anandha Gopalan. The thesis builds upon previous
work within the Department of Computing on policy-based management and the

self-managed cell concept.

The design and implementation of the policy-based mission and team management
layers of the framework are the author’s individual work while the design of the com-
munication link maintenance element of the communication management layer is a
collaborative work with Dr. Anandha Gopalan. The communication link maintenance

element is implemented by Dr. Anandha Gopalan.

iii

List of Publications

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay, Emil Lupu. Com-
munication and Failure Management Schemes for the Self-Management Frame-
work of UXVs. Systems Engineering for Autonomous Systems Defence Technology

Centre Conference, July 2009, Edinburgh, UK.

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay, Emil Lupu. A
Mission Management Framework for Unmanned Autonomous Vehicles. In Pro-
ceedings of the Second International ICST Conference on MOBILe Wireless Middle-
WARE (Mobilware 2009) , Operating Systems, and Applications, April 2009, Berlin,

Germany.

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay, Emil Lupu. A
Policy-Based Management Architecture for Mobile Collaborative Teams. In Pro-
ceedings of the Seventh Annual IEEE International Conference on Pervasive Com-

puting and Communications (PerCom 2009), March 2009, Galveston, TX, USA.

Eskindir Asmare, Anandha Gopalan, Morris Sloman, Naranker Dulay, Emil Lupu. Adap-
tive Self-management of Teams of Autonomous vehicles. In Proceedings of the
6th International Workshop on Middleware for Pervasive and Ad-Hoc Computing

(MPAC 2008), December 2008, Leuven, Belgium.

Eskindir Asmare, Naranker Dulay, Anandha Gopalan, Emil Lupu, Morris Sloman. Se-
cure Distributed Self Management Framework for UXVs. Systems Engineering
for Autonomous Systems Defence Technology Centre Conference, June 2008, Edin-

burgh, UK.

Eskindir Asmare, Naranker Dulay, Emil Lupu, Morris Sloman, Seraphin Calo, Jorge
Lobo. Secure Dynamic Community Establishment in Coalitions. In Proceedings

of IEEE Military Communications Conference (MILCOM 2007), Orlando, FL, USA.

Eskindir Asmare, Morris Sloman. Self-management Framework for Unmanned Au-
tonomous Vehicles. In Proceedings of Inter-Domain Management, First Interna-
tional Conference on Autonomous Infrastructure, Management and Security, Oslo,

2007, Springer Berlin / Heidelberg.

Eskindir Asmare, Naranker Dulay, Emil Lupu, Morris Sloman. Towards Self-managing
Unmanned Autonomous Vehicles. Systems Engineering for Autonomous Systems

Defence Technology Centre Conference, July 2007, Edinburgh, UK.

iv

Eskindir Asmare, Naranker Dulay, Hahnsang Kim, Emil Lupu, Morris Sloman. Man-
agement Architecture and Mission Specification for Unmanned Autonomous Ve-
hicles. Systems Engineering for Autonomous Systems Defence Technology Centre

Conference, July 2006, Edinburgh, UK.

Dedication

AOAZE
1t 1MNLhN A heAo hOTDL

To my parents
Genet Gebreab and Ayallew Asmare

Table of Contents

Abstract i
Acknowledgements ii
Statement of Contribution iii
List of Publications iv
List of Tables xiii
List of Figures xiv
List of Abbreviations xxi
1 Introduction 1
1.1 Mobile Autonomous Systems 2
1.2 Motivation e e 3
1.3 Requirements for the Self-management Framework 6
1.3.1 Mission Management 6

1.3.2 Team Management 7

1.3.3 Communication Management 7

1.4 Assumptions L e e e e e 7

TABLE OF CONTENTS viii
1.5 Contribution 8
1.6 Outline of theThesis 8

2 Background 10
2.1 Introduction L 10
2.2 Robot-software Architecture 0. 10

2.2.1 Deliberative Architectures 11
2.2.2 Reactive Architectureso oL oL 14
2.2.3 Hybrid Architectures. oo oL 14
2.2.4 Teleo-reactive Programso 17
2.3 Mission Specification 18
2.4 Capability Description and Matching 30
2.4.1 Capability Description 0., 30
2.4.2 Capability Matching 32
2.5 Role Assignment L e 34
2.6 Mission Adaptation L e 41
2.6.1 Policy-based Systems Management 41
2.7 Autonomic Computing 60
2.8 SUMMATY« vt e e e e e e e e e e 67

3 Mission Management 68
3.1 Introduction e 68
3.2 Overview of the Self-management Framework 68
3.3 The Self-management Architecture 71
3.4 Roles e 74

TABLE OF CONTENTS ix

3.4.1 AConceptual Modelof Role 75
3.4.2 Role Specification e 82

3.5 Missions e e e e e e 84
3.5.1 A Conceptual Model of Mission 86
3.5.2 Mission Specification L. 88

3.6 Examples of Policy-based Adaptive Role Behaviour 91
3.7 Comparison with Related Work 101
3.8 Conclusion e 105
4 Team Management 106
4.1 Team o ..o e e e e e e 106
4.1.1 A Conceptual Model of Team 108

4.2 Team Formation o 109
4.2.1 DIiSCOVEIY o v vt i e e e e e e e e 110
4.2.2 Security L e 112
4.2.3 Capability 113
4.2.4 Role Assignment oo 118

4.3 Team Maintenance e 131
4.3.1 Failure Management 131

4.4 Comparison with Related Work 134
4.5 Conclusion e 135
5 Communication Management 137
5.1 Maintaining Communication Links 139

5.1.1 Adapt Movement to Maintain Communication 141

TABLE OF CONTENTS X

5.1.2 Rendezvous to Restore Communication. 143

5.2 Comparison with Related Work 147
5.3 Conclusion e 149
6 Case Study: Search and Rescue 150
6.1 Introduction L 150
6.2 Scenario e e e e e e e 151
6.3 Search and Rescue Mission 152
6.4 Mission Specification o o 153
6.5 Role Specification 157
6.6 Mission Class Specification 161
6.7 Policy Specification e 167
6.8 Search and Rescue Team Formation 167
6.9 Search and Rescue Mission Adaptation. 182
6.10Conclusion L e e e e 196
7 Implementation 198
7.1 Overview of the Implementation 198
7.2 Domain structure L Lo e e 199
7.3 Mission Layer L e 199
7.4 Team Layer e 207
7.4.1 Capability 213

7.5 Communication Layer 214
7.6 Proof-of-concept Demonstration 216

7.7 SUMIMNATYottt e e e e e e e 219

TABLE OF CONTENTS xi

8 Evaluation 220
8.1 Message Complexity L e 223
8.1.1 Model e 223

8.1.2 Message Complexity of the Management Tree Formation 224

8.1.3 Message Complexity of the Management Tree Maintenance 229

8.2 Performance Evaluation of the Implementation 234
8.2.1 Mission Setup Time 234

8.2.2 Effect of the Depth of the Management Tree and Number of Roles 235
8.2.3 Mean time to Reassign Roles after Failure 236
8.2.4 Mean time to Load Policies 237

8.2.5 Comparison of the Immediate and Optimal Role Assignment Ap-

proaches e e e e 237

8.2.6 Evaluation of Communication Management 241

8.3 Critical Evaluation of the Framework 244
8.4 SUMMATY« vt e e e e e e e e 245

9 Conclusions 247
9.1 Achievements L L e 247
9.2 Future Work e 249
9.3 Closing Remarks e 249
Appendices 252
A PonderTalk Basic Types and Operations 252
B Role Specifications and Policies 255

B.1 Role Specifications e 255

B.2 Bootstrapping the Management Framework 262

B.3 Policies e e e e 263
B.4 A Note about Managed Objects 265
C Class Diagrams 266
D Koala Robot’s Low-level Control Software Interface 271
Bibliography 273

List of Tables

2.1

2.2

2.3

2.4

2.5

6.1

6.2

7.1

8.1

A2

Summary of Selected Deliberative Architectures 13
Summary of Selected Reactive Architectures. 15
Summary of Selected Hybrid Architectures 17

Summary of Multi-robot and Multi-agent Frameworks that Support Mis-

sion Specification e 29
Summary of Basic Ponder Policy Types 45
Role Types and Associated Tasks 156
List of Surveyor Role Policies 192
Generating Role Code from the Specification. 208
Capability Requirements and Provisions 239
Messages (operations) Supported by PonderTalk’s Array Object 253

Messages (operations) Supported by PonderTalk’s Hash-table Object . . 254

xiii

List of Figures

2.1 Deliberative Robot-software Architecture 12
2.2 Hybrid Robot-software Architecture, 16
2.3 TRRules e 17
2.4 An Example CDL Mission Specification [MAC97] 21
2.5 A Role in OMNI's Mission Specification [VSDFO5] 28
2.6 The IETF Policy Deployment Model 44
2.7 Syntax of Ponder Authorisation and Obligation Policies 46
2.8 The Ponder Deployment Model [DLSDO1]. 47
2.9 PonderTalk Statements o o 49
2.10PonderTalk Objects e 50
2.11Ponder2 Event and Policy Templates 51
2.12Syntax of a Ponder2 Event Type 51
2.13Example Ponder2 Events 51
2.14 Syntax of a Ponder2 Obligation Policy 52
2.15Syntax of a Ponder2 Authorisation Policy 52
2.16 Example Ponder2 Policies 53
2.17An Example LGI Law [IMNO4] 55

LIST OF FIGURES XV

2.18LGI Law Enforcement [IMNO4] v v .. 55
2.19An Example Cfengine Configuration Specification 57
2.20The Autonomic Element [KCO3] 62
2.21A Conceptual View of an AutoMate Component 64
2.22Architecture of an SMC 65
3.1 Overview of the Self-management Framework 70
3.2 Self-management Architecture L. 72
3.3 UAV Control Software Interface 73

3.4 Overview of the Self-management Framework Applied for a Reconnais-

sance Mission L L e 75
3.5 Role e 76
3.6 Tasks ofa Surveyorrole 78
3.7 Surveyor Authorisation Policy 0., 82
3.8 Role Specification e 85
3.9 Reconnaissance Mission Minimal Configuration 86
3.10Reconnaissance Mission Reasonably-optimal Configuration. 87
3.11Mission Specification Levels, 89
3.12Mission Class Specification 90
3.13Mission Class Instance Specification 91
3.14Task Creation Policies 92
3.15Adaptive Task Loading Policy 93
3.16 Adaptive Task Configuration Policies 95
3.17Cooperative Action Policy L oo 96

3.18Interaction between the Surveyor and Single Hazard-detector role 96

LIST OF FIGURES xvi

3.19Market-based Cooperation Pattern Policy 97
3.201Interaction between the Surveyor and Multiple Hazard-detector roles . . 98
3.21Voting-based Cooperation Pattern Policy 99
3.22 Cooperative Action Policy (random selection) 100
3.23 Adaptive Cooperation Pattern Policy 101
4.1 Organisation Structureso 107
4.2 Teamo e e e e e e e 109
4.3 DIiSCOVEIY e e e e e e e e 111
4.4 Outline of Full Capability Description 116
4.5 Example Full Capability Description 117
4.6 Reconnaissance Team 118
4.7 Management Tree Formation. 121
4.8 Capabilities e e e 122
4.9 UAV Arrivals o e e e e 122
4.10 Commander Role Assignment Policies 122
4.11Aggregator Role Assignment Policies 123
4.12The Role Assignment Model 125
4.13The Role Assignment Problem 127
4.14Utility ClasSes« . o i i e e e e e e 129
4.15Utility Loading Policy L 129
4.16Weight Policy e 130
4.17Trace of the Assignment Algorithm 130
4.18Optimisation Rate Policy 130

4.19 Capability Matching Utility Function 131

LIST OF FIGURES xvii
4.20Reconfiguration and Role Reassignment to Adapt to Failure 133
5.1 Network Connectivity 138
5.2 Position of UAVS 0 e e e 142
5.3 Drawing the Rendezvous Area around the Rendezvous Point 146
6.1 Urban Search and Rescue Task Force Organisation [WRT04] 151
6.2 Initial Goal Hierarchy, 154
6.3 Goal Decomposition e 154
6.4 RoleInteractions L L 157
6.5 Search & Rescue Role Specification - Surveyor Role (Part 1) 159
6.6 Search & Rescue Role Specification - Surveyor Role (Part2). 160
6.7 Management Hierarchy 162
6.8 Search & Rescue Mission Class Specification 163
6.9 Search & Rescue Mission-Class Instance Specification — for Mission

Area Alpha e e 164
6.10UAV Team for Search & Rescue Mission of Residential Complex Alpha 165
6.11 Search & Rescue Mission Class Instance Specification (for Mission Area

Beta) - Role Cardinalities & Behaviours 166
6.12UAV Team for Search & Rescue Mission of Residential Complex Beta . . 166
6.13Search & Rescue Mission Startup 168
6.14 Instance of the Management Framework on the Commander UAV 169
6.15Search & Rescue Mission — Commander Role, Assignment & Discovery

Policies e 171
6.16 Search & Rescue Mission — Commander Role Optimisation & Commu-

nication Policies L 173
6.17 Search & Rescue Mission — Aggregator Role Policies 177

LIST OF FIGURES Xviii
6.18Instance of the Management Framework on the Aggregator UAV 178
6.19Search & Rescue Mission — Surveyor Role Policies (Part 1) 180
6.20Search & Rescue Collaboration Organisation Structure 181
6.21Search & Rescue Mission — Surveyor Role Policies (Part2). 184
6.22 Search & Rescue Mission — Surveyor Role Policies (Part 3) 186
6.23 Search & Rescue Mission — Surveyor Role Policies (Part4). 187
6.24 Search & Rescue Mission — Surveyor Role Policies (Part5). 188
6.25Search & Rescue Mission — Surveyor Role Policies (Part6) 189
6.26 Priority-based Search & Rescue Mission 191
6.27 Search & Rescue Mission — Surveyor Role Policies (Part7) 192
6.28 Search & Rescue Mission — Surveyor Role Policies (Part8). 194
6.29 Search & Rescue Mission — Multiple Levels of Adaptation 195
7.1 Domain Structure L0 L o 200
7.2 Role Specification and Code Generation Tool 207
7.3 Snapshot of Webots Simulation 216
7.4 Snapshot of Proof-of-concept Demonstration — Distress 217
7.5 Snapshot of Proof-of-concept Demonstration — Mission Assembly . 217
7.6 Snapshot of Proof-of-concept Demonstration - Hazard 218
7.7 Snapshot of Proof-of-concept Demonstration — Hazard Avoided 218
7.8 Snapshot of Proof-of-concept Demonstration — Mission Completed 219
8.1 UAV Network Model 224
8.2 Management Tree Formation. 226
8.3 Management Tree Maintenance with Complete Domain Structure 231

LIST OF FIGURES xix

8.4 Management Tree Maintenance with Partial Domain Structure 233

8.5 Comparison of Mission Setup Time between Centralised and Hierarchi-

cal Mission Management 235
8.6 Measure of Time Complexity against the Depth of the Management Tree 236

8.7 Measurement of Time Taken to Reassign Roles in a Cluster Failure Sce-

NAario Lo e e e e e e e 237
8.8 Policy Loading Time e 238
8.9 Role Assignment SuccessRate00, 240

8.10Time Complexity of the Optimised and Immediate Assignment Algorithms240

8.11 Communication Management (Changing the Range Threshold) 241
8.12 Communication Management (Changing the Update Time) 242
8.13 Communication Management (Rendezvous Time) 243
B.1 Search & Rescue Role Specification - Aggregator Role (Part 1) 255
B.2 Search & Rescue Role Specification - Aggregator Role (Part 2) 256
B.3 Search & Rescue Role Specification - Hazard-detector Role 257
B.4 Search & Rescue Role Specification - MedicRole 258
B.5 Search & Rescue Role Specification - Transporter Role 259
B.6 Search & Rescue Role Specification - Relay Role 260
B.7 Search & Rescue Role Specification - Commander Role 261
B.8 Bootstrapping the Management Framework 262
B.9 Search & Rescue Mission — Relay Role Policies 263
B.10Search & Rescue Mission — Hazard-detector Role Policies 263
B.11Search & Rescue Mission — Medic Role Policies 263

B.12Search & Rescue Mission — Transporter Role Policies 264

C.1 The Role Class with its main Datastructures 267
C.2 Mission Layer Elements 268
C.3 Team Layer Elements 269
C.4 Communication Layer Elements 270

List of Abbreviations

Al Artificial Intelligence

ANS Agent Naming Service

ANS Autonomic Nervous System

CDL Configuration Description Language

CIM The Common Information Model

DAML DARPA Agent Markup Language

DCSP Distributed Constraint Satisfaction Problem
DMTF Distributed Management Task Force
DOTN Distributed Organisational Task Network
IETF Internet Engineering Task Force

ITL Information Terminological Language
K@ML Knowledge Query and Manipulation Language
LPG Local search for Planning Graphs

MANET Mobile Ad hoc Network

MILP Mixed Integer Linear Programming

MOF Managed Object Format

NHC Nested Hierarchical Controller

OGSA Open Grid Service Architecture

PCIM Policy Core Information Model

PDDL Planning Domain Definition Language
PDP Policy Decision Point

PEP Policy Enforcement Point

PMA Policy Management Agent

PSTC Provisioning Services Technical Committee

RCS Real-time Control System

SDP Session Description Protocol

SMC Self-managed Cell

SPML Service Provisioning Markup Language
TR Teleo-reactive

UAV Unmanned Autonomous Vehicle

UPnP Universal Plug and Play

WSDL Web Services Description Language

xXxii

Chapter 1

Introduction

The advent of mobile and ubiquitous systems has enabled autonomous systems rang-
ing from tiny wireless-sensors used for environmental data collection to wearable
computers used for monitoring a patient’s health to Unmanned Autonomous Vehi-
cles (UAVs) used in missions unsuitable for humans. However, with these range of
new application domains come a new challenge — enabling self-management in mobile
autonomous systems. For example, collaborating teams of UAVs have been deployed
in space exploration, search and rescue and other similar missions where involving
humans is costly or infeasible. In most of these missions, it is infeasible for humans
to be in the control loop. This necessitates that management tasks be shifted to the

managed autonomous systems.

Managed autonomous systems should be able to configure themselves automati-
cally in accordance with high-level mission specifications and need to adapt their
behaviour to current context such as location and activity, available resources such
as battery power and available services such as (intermittent) wireless communica-
tion links. They should be self-managing in that they have to self-configure, recover
or adapt to failures, protect themselves from attacks and optimise performance to
best utilise available resources. This thesis attempts to address the issues of self-

management in mobile autonomous systems in general and UAVs in particular.

1.1. Mobile Autonomous Systems 2

1.1 Mobile Autonomous Systems

The term autonomous system is used to describe various notions of autonomy in
different areas of computer science and engineering. In Computer Networks, an
autonomous system is a set of routers under a single administrative domain that
presents a consistent picture to others of what destinations are reachable through it
[RLHO6]. In Robotics, an autonomous system (robot) is one that is capable of operat-
ing in the real-world environment without external control for an extended period of
time [Bek05]. However, in some application domains such as space exploration, au-
tonomous systems are automated [THRRO6] but not necessarily self-managing. Our
definition of an autonomous system incorporates both the ability to operate with-
out external control and the ability to perform self-management. We define an au-
tonomous system as one that is capable of accomplishing its mission without human
intervention by managing its resources and behaviours using its self-management
(autonomic) capabilities. Mobile autonomous systems are autonomous systems that
have the ability to move. A typical example is a mobile robot. UAVs are one type of
mobile robot that can be aerial, (over) underground or (over) underwater. Generally
UAVs include some if not all functionalities such as overland movement and propul-
sion, autonomous navigation, adaptive mission planning, sensing (e.g., infra red,
explosive material detection, radiation or chemical detection), target recognition or
identification, and situation assessment. They also have processing, communication,
and data storage capabilities. UAVs can be tele-operated or capable of autonomous

navigation.

UAVs are being used increasingly in civilian and military missions that are dangerous

or otherwise impossible for humans. Some examples are shown below.

e On September 11, 2001, the Center for Robot-Assisted Search and Rescue
(CRASAR) used tele-operated-robots in a mission that was the first of its kind,
for urban search and rescue [Mur0O4b]. The robots were used for searching for
victims, paths, structural inspection and detection of hazardous materials. In
2005, small unmanned aerial vehicles were used during Hurricane Katrina to
search for survivors and assess conditions along Katrina’s path through Missis-
sippi and larger vehicles were used during Hurricanes Dennis and Rita [MPBOS8].

In the same year, unmanned water-surface vehicles and smaller aerial vehi-

1.2. Motivation 3

cles were used in the aftermath of Hurricane Wilma for post-disaster inspection

[MSG™08].

e In 1991, Terregator, an unmanned ground vehicle was used to map parts of
a coal mine [CBCD91]. The use of mobile robots has now expanded to other

subterranean spaces such as caves and sewers [MFO™'06].

e Unmanned vehicles are also being used for clearing land mines [Hab07], border

patrol [PhiO7] and various military applications.

e In 1970, Lunokhod 1, the first unmanned vehicle landed on the moon [She71].
This tele-operated-vehicle was used to collect lunar soil samples. The use of
unmanned vehicles for space exploration has grown since then. In 1997, So-
Jjourner, a semi-autonomous unmanned vehicle landed on Mars and navigated
to many sites while conducting experiments using its onboard devices [WN98].
In January 2004, two unmanned vehicles, the Mars Exploration Rovers, landed

on Mars as part of a long-term effort to study past water activities on Mars [Jet].

1.2 Motivation

Self-managing autonomous systems, such as mobile robots, have the potential for
providing the information needed to assist rescue operations by locating survivors,
identifying affected areas, and helping the collaborative efforts of the response team
members. They also find uses in disaster management, including earthquakes, for-
est fires and floods, and military applications. The primary challenge in using au-
tonomous systems for real-life missions is specifying the missions in an adaptable
way. There has been extensive research on robot control architectures, which are
concerned with organising the robot primitives, i.e., sensing, planning and acting
in order to enable individual intelligent robots. These architectures either do not
consider mission specification as they are targeted for specific tasks [Bro86, Ark87,
MA92, BAFH84, Mey93, Alb93] or their role (task) specification approach does not
allow adaptation [BFG1t97, Kon97, YamO4].

Merriam-Webster dictionary defines mission [Dic] as a specific task with which a per-
son or a group is charged. Arkin et al. [MAC97] define mission as a composition

of tasks. A mission, in our framework, is a specific task such as reconnaissance,

1.2. Motivation 4

search and rescue, composed of a set of subtasks with which an autonomous system
or a group of autonomous systems are charged. It is usually the case that multiple
autonomous systems are deployed in a mission. Hence, the need for collaboration
arises as one system can use services or resources from another system. In order
to be able to form and use a dynamic collaborative team of autonomous systems in
accordance with a high-level mission specification, a means for describing the capa-
bilities of autonomous systems and discovering available heterogeneous autonomous
systems is necessary. It is also imperative that the discovered systems are securely
admitted to the team and assigned to an appropriate role based on their capability,

and the team is maintained.

Autonomous systems are heterogeneous with respect to their hardware and control
architectures. In order to check whether a given autonomous system is fit for a
given task, and to compare and choose a suitable autonomous system from multiple
autonomous systems, a capability description is necessary. It provides information
about the existing hardware and software capabilities of the system and can be used
to determine the readily available services as well as to infer the potential of the

system should there be a need to dynamically enhance the system with new services.

Dynamic team formation requires a means of recruiting and vetting members. A dis-
covery service is thus necessary to discover autonomous systems that are within the
communication range of the systems that are already participating in the mission. In
addition to checking the capabilities of the discovered systems against the required
capabilities of the mission, it is also necessary to check the credentials of the systems
before assigning them to a role in order to protect the team from malicious members.
Role assignment (task allocation) may be a continuous process if there is mission re-
planning and consequently reconfiguration in order to improve performance or cope
with contextual changes. An adaptive means of specifying team formation rules is
thus necessary to allow adaptation without disrupting the operation of the team. One
example system that tries to address these issues in part is CDL [MAC97], which uses
a finite state machine for specifying multi-robot missions. However, the finite state
machine based specification is feasible only for low-level tasks. Specifying high-level
missions with many participants is not easy using this approach. It also lacks an
explicit means of adaptation, dynamic role (task) assignment and security. Another

example system is ALLIANCE [Par98], which deals with cooperative adaptive con-

1.2. Motivation 5

trol where adaptation is based on local decisions made by mathematically modelled
behaviours in each robot. This approach enables autonomous systems to achieve
greater level of autonomy but lacks the means of enforcing organisational rules of

adaptation.

It is imperative that the autonomous systems comprising the team cope with different
types of failures, to function in the real-world and perform their tasks correctly. Fail-
ures can occur as a result of intermittent or permanent communication link failures
as well as system failure. A study on UAV failures [CMO5] shows that reliability in a
field environment is only between 6 and 20 hours. In the robotic rescue mission of
the September 11, 2001 disaster, a robot was lost and never recovered due to a wire-
less communication link failure [MurO4b]. Communication is the primary means of
collaboration. It is thus important to maintain communication links among the au-
tonomous systems in a team throughout the mission lifetime. Mobile autonomous
systems mainly use wireless communication links, which can easily be affected by
their movement and consequently makes communication link maintenance challeng-
ing. Two of the few documented unmanned vehicle real-life mission experiences
[MurO4b, MFO'06] identify that communication link maintenance is crucial to the
missions. To address this issue, previous work has either used [MFO*06] tethered
systems or recommended their use [MurO4b], where the robot is connected to the
commanding system by a wire that is long enough to allow the robot to move freely.
However, both raised the problem associated with using communication or safety
tethers, i.e., safety ropes connecting the robot to the commanding system hindered

the mobility of the robot and also led it to being easily caught in the debris.

Efficient utilisation of available resources requires optimal assignment of resource
users to resource providers. When forming a dynamic team, if the assignment of
roles to autonomous systems is done in a manner where any capable system is im-
mediately assigned to any available role, the team may end up in a state where more
capable systems are assigned to less demanding roles. In the worst case, an au-
tonomous system with scarce capabilities may be assigned to a role that could have
been assigned to any of the autonomous systems and a role that needs the scarce
capability may never be assigned thereby resulting in an incomplete team. It is thus
necessary to perform optimisation on the set of discovered systems and the mission

roles in order to best utilise the available resources.

1.3. Requirements for the Self-management Framework 6

The challenge in using mobile autonomous systems for real-life missions goes beyond
the fundamental issues of robotics into systems management. Mobile autonomous
systems need to be capable of self-management in order to cope with unpredictable
real-life mission environments and attain better performance. To address this is-
sue, a self-management framework that deals with specifying missions in an adapt-
able way, enables dynamic and secure team formation with optimal role assignment,
maintains communication link among team members and copes with failure is nec-

essary.

1.3 Requirements for the Self-management Framework

The self-management framework must address the fundamental tenets of autonomic
computing, which are self-configuration, self-optimisation, self-protection and self-
healing. It should be able to deal with heterogeneous autonomous systems and allow
creation of a single autonomous entity from a set of autonomous entities. The archi-
tecture should also be scalable with respect to the number of autonomous systems
participating in the mission and responsive (short response time) with respect to

mission setup and adaptation.

1.3.1 Mission Management

The framework should have a mission specification scheme that enables specifying
missions for teams of mobile autonomous systems. The mission specification should
allow adaptation and reuse. Adaptation can be achieved by using a policy-based ap-
proach to specify the behaviours of the mission roles as well as rules for assignment
of roles to autonomous systems. Reusability is necessary with respect to the mission
components, for example, policies and roles, as well as the specification itself such
as reusing the specification through instantiation with different mission parameters.
For example, a mission specification for a search and rescue mission in a given dis-

aster area may be reused with different instantiation parameters in another area.

1.4. Assumptions 7

1.3.2 Team Management

The framework should be able to form, use and maintain dynamic teams. It should be
able to discover autonomous systems willing to join the mission, securely admit them
to the team and assign them to an appropriate role using the rules of assignment
provided by the mission specification. The role assignment should be optimal and
the optimisation technique should have minimal memory and processing overhead in
order not to adversely affect the scalability of the system with respect to the capacity
of the autonomous system. The framework should also be able to detect and recover
from intermittent communication link disconnection, permanent link and system
failures. The detection and recovery protocols need to be policy-based so that the

adaptation to failures can itself be adapted.

1.3.3 Communication Management

Although the recovery from communication link failures is considered in the team
management part of the framework, prevention of failures should also be addressed.
The movement of autonomous systems in a team should be controlled so that they
maintain communication links and at times when this is impossible the framework
should be able to respond with a measure that would make intermittent communi-

cation link available.

1.4 Assumptions

The framework is based on two main assumptions: (1) autonomous systems have a
control software interface on which the management framework will act upon, (2) au-
tonomous systems are equipped with ad hoc network protocols that create network
connectivity between systems. Although we discuss techniques for controlling move-
ment in order to maintain connectivity within an ad hoc network, we do not discuss

ad hoc network routing protocols.

1.5. Contribution 8

1.5 Contribution

This thesis presents a distributed policy-based self-management framework for mo-
bile autonomous systems. The framework enables autonomous systems of varying
scale to perform self-management individually and as a team. The contribution of
this thesis can be summarised as a novel policy-based approach to manage mobile
autonomous systems such as mobile robots, an adaptable and reusable approach for
mission specification, a novel management protocol to form and maintain a dynamic
team, an optimal approach for role assignment, and communication link mainte-
nance algorithms. The management framework uses three levels of mission speci-
fications, namely, policy specification, mission class specification and mission class
instantiation specification in order to enable reuse of policies and the mission classes.
As a means of decentralising discovery and role management, the autonomous sys-
tems in a mission are arranged in the form of a management tree during the role
assignment process. This tree is used for defining management hierarchies as well

as data aggregation during execution of the mission.

1.6 Outline of the Thesis

The rest of the thesis is organised as follows. In Chapter 2, a background study of
autonomic computing and policy-based systems management and related work on
robot control, multi-robot and multi-agent architectures, with emphasis on mission

specification, team formation and mission (task) allocation is presented.

Chapter 3 presents a mission specification approach for teams of mobile autonomous
systems. We present a conceptual model of a mission and show how we use that

model to specify missions in terms of roles and the relationship among them.

Chapter 4 presents a dynamic team formation approach in accordance with the mis-
sion specification. We describe how autonomous systems are discovered, admitted
and optimally assigned to the mission roles. A novel management protocol used to

form and maintain the team and a failure management scheme are presented.

Chapter 5 presents an approach for communication link maintenance among mo-

bile autonomous systems. We present two complementary algorithms, which try to

1.6. Outline of the Thesis 9

control the movement of the autonomous systems in order to maintain the commu-

nication links and set up a rendezvous when the former fails or is infeasible.

Chapter 6 illustrates the applicability of our framework using a search and rescue
scenario. We consider a mission to search and rescue survivors and assess damage
in the aftermath of an earthquake disaster. We show (1) how the mission can be
specified, (2) how the team is formed in accordance with the mission specification,
and (3) how the mission is adapted. We also show how the specification can be reused

for a similar but larger rescue mission.

Chapter 7 describes details of the implementation of the framework while Chapter 8

presents evaluation and a critical analysis of the framework.

Finally, Chapter 9 concludes the thesis with a summary of the achievements and

directions for future work.

Chapter 2

Background

2.1 Introduction

In the previous chapter, we have defined an autonomous system as one that is ca-
pable of accomplishing its mission without human intervention by managing its re-
sources and behaviours using its self-management (autonomic) capabilities. In or-
der to enable a group of self-managing systems to undertake a joint mission, there
are some key issues that should be addressed by the self-management architecture.
These are set as design requirements in the previous chapter. Specifying the mission,
describing the capabilities of the systems so as to facilitate the assignment, assign-
ing each system to a role (task) of the mission and adaptation to current context are
the most outstanding issues. In this chapter, we start with work that has shaped
today’s autonomic computing paradigm — robot-software architectures — and then we
present an overview of related work that deal with one or more of the key issues we
have identified in the previous chapter and assess them from the perspective of our

requirements.

2.2 Robot-software Architecture

In this section, we present robot-software architectures, which are targeted for single

robots. Although our interest lies in multi-robot systems, because these systems are

10

2.2. Robot-software Architecture 11

based on the architectures for single robots, understanding the single-robot architec-
tures helps us understand the multi-robot systems. Single-robot architectures have
served as the basis for building multi-robot systems that achieve a joint goal without
explicit external management. A great number of software architectures have been
proposed for single robots, most of these architectures can be categorised in one of
the three classes of robot-software architectures. We present an overview of these

classes of architectures and consider representative architectures from each class.

A robot can be defined as a machine that has the capabilities sensing, planning and
acting organised in some way to produce intelligence. These three capabilities are the
commonly accepted ones [Mur00], although some suggest a fourth capability referred
to as learning. A robot-software architecture (control architecture) refers to the way
the robotics primitives are organised, sensory data is processed, and distributed
through the system [MurOO]. There are three types of robot-software architectures,

namely deliberative, reactive and hybrid.

2.2.1 Deliberative Architectures

Architectures that perform thinking before performing an action are called delibera-
tive. These architectures are characterised by the sense-think-act sequence, a world

model and decomposition of the robot control problem into functional modules.

If we look at the sequence from a software point of view, it will become perception-
planning-action. The world model, which is updated based on perception, is a model
of the environment in which the robot exists. It contains sensed information and an
initial (previously acquired) knowledge base. Action is produced by reasoning from
the model. Figure 2.1 illustrates an architecture that uses the deliberative approach.

The directed lines indicate the direction of information flow.

Deliberative architectures are also known as hierarchical because in almost all de-
liberative architectures the deliberation is performed in a stack of levels (from high

to low) where higher levels create subgoals for the lower levels.

Using a global world model has some associated difficulties. Does a robot need to
reason about the whole world just to move from point A to a nearby point B? If not,

how does it know which part of the world model to use? This problem of representing

2.2. Robot-software Architecture 12

Sense

Model Plan

Act

Figure 2.1: Deliberative Robot-software Architecture

the real world in a computationally tractable way is known as the frame problem.
Although most of the hierarchical architectures try to solve this problem (or reduce
its magnitude), by decomposing the planning part into layers where each layer uses
a part of the world model, the decomposition is application specific and hence makes

the solution not generic enough to be used in different domains.

The closed world assumption used in building global models, i.e., assuming that an
object that does not exist in the world model to be non-existent in the real world
incurs problems in a dynamic environment. Since the actions are a result of a rea-
soning from a closed world model, what the robot has to do when it faces an object
that it was not supposed to face is unclear, and hence the robot will not function
properly when (initially) a world model fails to capture all the details of the real world
or when the real world suddenly changes. Table 2.1 summarises some selected de-

liberative architectures.

The main advantage of the deliberative approach is its ability to achieve a complex

goal in less-dynamic and structured environments.

The main shortcomings of the deliberative approach are listed below.

e There is no direct coupling between perception and action. Due to this, robots of
deliberative architectures are incapable of reflexive actions. The lack of reflexive
actions causes a lack of real-time response (a cause for poor performance in

uncertain environments).

e The robot has to always plan its next move, i.e., planning in every update cycle,

which causes a computational overhead.

2.2. Robot-software Architecture

Nested Hierarchical Controller

NHC
[Mey93]

e Hierarchy of control loops; all performing the same opera-

tion at different resolution.

Decomposes the planning module into three levels (for ex-
ample, mission planner, navigator, pilot); each level uses
some portion of the world model.

Interleaves planning and action; if the world changes while
the robot is executing a plan, it will stop and replan but the
replanning is done only in the necessary planning level (for
example, if the robot faces an obstacle on what was sup-
posed to be obstacle-free path, it will replan its path, but
the replanning will be done only at the navigator level).

Real-time Control System

RCS
[BAFHS84,
Alb93]

e A reference model architecture that defines the types of

functions that are required in a real-time intelligent control
system.

Partitions the control system into four elements, namely be-
haviour generation (task decomposition), world modelling,
sensory processing and value judgement (cost, benefit and
risk evaluation of a plan).

Layers of control systems (each containing the four ele-
ments) are stacked hierarchically (each level has a specific
functionality).

In a similar manner to NHC, it interleaves planning and ac-
tion.

Samples (extracts features) before integrating (fusing) the
sensory information.

Has many versions with increasing complexity (RCS-1 up to
RCS-4) [AIb93].

Applied in various robot-application areas such as mining,
cleaning, space and underwater exploration.

Table 2.1: Summary of Selected Deliberative Architectures

e Building a global model is not easy.

e If a higher level in the hierarchy fails, the robot will not “survive” as it does not
know what to do. This is a result of the decomposition of functionalities in such
a way that a lower level completely depends on a higher level (what a certain

level has to do is always decided by its higher level, the level only decides how

to do what it has to do).

2.2. Robot-software Architecture 14

2.2.2 Reactive Architectures

Architectures that are characterised by a direct coupling of perception and action
(sense-act) and the absence of an intermediate planning unit are referred to as reac-
tive. Since most architectures that use the reactive approach decompose the robot
control problem into behaviours, they are also known as behaviour-based architec-
tures. Architectures of this class vary in how they perceive behaviours and how they
combine behaviours to produce complex behaviours. Table 2.2 summarises some

selected reactive architectures.

The main advantages of the reactive approach are listed below.

Fast response (since robots of these architectures are capable of reflexive ac-

tions).

Ability to survive in dynamic and unstructured environments.

Robustness (failure of one behaviour or behaviour-coordination does not neces-

sarily render the robot dysfunctional).

e Convenience for incremental building and testing.

The main shortcomings of the reactive approach are listed below.

e Inability to achieve high-level (complex) goals as it lacks a planner. The se-
quence of behaviours a robot should execute to achieve a certain goal should
be specified by the designer. The robot does not have the ability to select the

appropriate behaviours and their execution sequence.

e Lack of performance monitoring. The robot has no means of evaluating its

progress towards achieving the goal.

2.2.3 Hybrid Architectures

Hybrid architectures are architectures that use both deliberative and reactive ap-
proaches. Although the specific organisation detail differs from architecture to archi-

tecture, in general they are characterised by an upper deliberative layer and a lower

2.2. Robot-software Architecture 15

Subsumption

e Defines level of competence as a desired class of behaviours for a
robot over all environments it will encounter. Some levels of com-
petence: level O: Avoid obstacle, level 1: Wander (without colliding),
level 2: Explore (see places in the distance that seem reachable by
heading towards them).

e A single control system achieves one level of competence (e.g., one
control system that enables the robot to avoid obstacles). It builds
a control system for each level of competence where a lower level of
competence is included in an upper level of competence (the lower
level is a subset of the upper level).

e When there is an input from the upper level to a unit in the control
[BroS6] system of the lower level, the lower level prefers the input from
the upper level than its own input from a preceding unit. In the
absence of an input from an upper level, the lower level operates
naturally (using its own output from the preceding unit as an input
to the succeeding unit).

e The Behaviour Language [Bro90] has later enhanced the capability
of the subsumption architecture with mechanisms for behaviour
grouping and communication between behaviours. Behaviours are
modelled as a group of processes that have a common interface.
The interface contains two types of elements, namely slots, which
are accessible only by processes inside the behaviour and ports,
which are accessible by other behaviours. Behaviours are com-
posed by interconnecting ports with uni-directional connections.

Motor-schema Based Control System

e Behaviours are perceived as schemas that are composed of motor
and perceptual schemas. Schema [LA89] is a way of expressing
basic units of activity. It consists of both the knowledge of how to
react and the way the reaction can be realised [Mur00, Ark98].

e Defines different schemas (e.g., stay-on-path, avoid-static-
obstacle, find-land-mark, find-terrain; the first two are motor
schemas and the rest perceptual schemas). It associates instances
of perceptual schemas to instances of motor schemas to produce a
behaviour (e.g., find-terrain associated with stay-on-path produces
a staying-on-a-sidewalk behaviour).

[Ark87]

e Motor schemas are implemented as potential fields (e.g., avoid-
obstacle is implemented with a repulsive potential field where the
field is perceived as emanating from the obstacle).

e Basic behaviours are combined by vector summation of the motor
schema instances’ potential fields to produce complex behaviours.

Table 2.2: Summary of Selected Reactive Architectures

reactive layer. By using both approaches, they achieve the planning capability of the

deliberative approach and the reflexive capability of the reactive approach.

2.2. Robot-software Architecture 16

Figure 2.2 illustrates an architecture that uses a hybrid approach. The directed lines
indicate the direction of information flow. The broken line between the planning
and sensory unit is to indicate that the planning takes place once, and for a cer-
tain amount of time the sense-act sequence takes place without an input from the

planning unit, although the planning unit might not have stopped planning.

Plan

Model Sense

Act

Figure 2.2: Hybrid Robot-software Architecture

Due to the fact that deliberative functions execute independently of the reactive ones,
the planning is decoupled from real time execution. Sensory information is used
by the reactive module to cause actions and by the deliberative module to build a
world model. Some hybrid architectures use behaviours as the basic building blocks
(bottom up approach) whereas some perceive the deliberative part as a starting point

(top down approach).

The common components of hybrid architectures, as identified by Murphy [Mur00],
are listed below.

1. Sequencer: generates set of behaviours in order to accomplish a task.

2. Resource manager: allocates resources to behaviours.

3. Cartographer: creates, stores and maintains spatial information including maps.

4. Mission planner: receives a command from a human and constructs a mission

plan.

5. Performance and problem solving module: evaluates the robot’s progress.

Murphy [Mur0O0] loosely classifies hybrid architectures, according to the way they

organise the deliberative and reactive modules, as managerial, state hierarchies and

2.2. Robot-software Architecture 17

i:;:t:f: ture Style Remark

AuRA [ATk87] Managerial Bottom up

SFX [MA92, Mur00] Managerial Bottom up

3T [BFGT97] State hierarchies Bottom up

BERRA [LOCO0O0] State hierarchies Bottom up

Saphira [Kon97] Model oriented Top down

Wayfarer [YamO4] Model oriented Complete architecture not

published.

Table 2.3: Summary of Selected Hybrid Architectures

model oriented. Managerial-style architectures are those which divide the deliberative
module into layers based on scope of control or responsibility (e.g., mission planner,

path planner, etc.).

State hierarchies use the knowledge of the robot’s state to distinguish between reac-
tive and deliberative activities where reactive activities are those which do not require
knowledge of state (only present time) and deliberative activities are those which re-
quire knowledge of either past state (when executing a sequence of commands) or

future state (when planning a mission or path).

Architectures with model oriented style use behaviours that have access to portions

of a world model. Table 2.3 summarises some selected hybrid architectures.

2.2.4 Teleo-reactive Programs

A teleo-reactive (TR) program [Nil94] is an agent control program that directs the
agent towards a goal, in a reactive manner. The program is a set of ordered condition-

action rules as shown in Figure 2.3.

CQ—>CLO
Cl—>a1
02—)0,2

C, — an

Figure 2.3: TR Rules

The C; are conditions evaluated over a sensory information and model of the world.

The a; are actions that are invoked if the corresponding conditions are satisfied. The

2.8. Mission Specification 18

actions can be primitives or TR programs.

Conceptually, a TR program execution produces an electrical circuit and it is this
circuit that is used for controlling the agent. This circuit semantics indicates that
the conditions are evaluated continuously, and should there be a change in the en-

vironment, the change is reflected on the actions instantly.

The list of TR rules are scanned from the top and the first rule whose condition is
satisfied gets its action executed. Should a higher level condition be satisfied while an
action is being executed, the current action is stopped and the action corresponding
to the higher level condition is started. This way the agent is directed towards its

goal, i.e., the highest level condition.

The responsiveness of TR programs is similar to behaviour-based robot control ap-
proaches but TR programs have the added advantage of being responsive to stored

models of the environment in addition to sensory inputs.

The major limitation of TR programs is that due to evaluation of all conditions contin-
uously (or periodically, depending on the implementation), they involve much more

computation than programs that check only relevant conditions.

Robot-software architectures, which enable robots to perform their tasks by their
own, have self-managing capabilities although these capabilities are encoded in the
control architecture and are not adaptable. As we will see in the next sections,
these architectures, which are targeted for single robots, have served as the basis
for building multi-robot systems that achieve a joint goal without explicit external
management. Reactive (behaviour-based) architectures, in particular, have spurred
a number of multi-robot systems because of their responsiveness and provision for
elements, i.e., behaviours, which can be composed according to a higher level mission

specification.

2.3 Mission Specification

Mission specification is the process of expressing a goal in a manner that autonomous
systems such as robots and agents understand. In doing so, the goal is effectively

decomposed into smaller goals, which can be achieved by computational elements of

2.8. Mission Specification 19

the autonomous system referred to as tasks, behaviours and roles. The availability
or absence of a mission specification mechanism can render an autonomous sys-
tem easily programmable for diverse applications or bound to a specific application
respectively. An autonomous system that does not allow for mission specification
is usually designed for a specific application and it can only accommodate a sin-
gle type of goal (application specific) with different parameters (e.g., assembly line
robots used in manufacturing). Similarly, mission specification plays a crucial role
in teams of autonomous systems by specifying the responsibilities of team members.
It also serves as a means for explicit enforcement of team behaviours such as co-
operation and response to team member failure. These behaviours depend on the
specific mission and context; hence the ability to adapt them without changing the
control architecture’s code is necessary. The choice of the unit of specification such
as behaviour, task and role also impacts the system’s capability in allowing expres-
sive (i.e., larger configuration space) mission specification and facilitating adaptation

of the mission and reuse of the specification.

Cooperation in autonomous systems can be based on two models, namely emergent
and intentional. In emergent cooperation, the systems have no intent to cooperate;
the cooperation emerges while each system is performing its own task. In essence,
the cooperation is choreographed by the designer of the control algorithms and sub-
sequently most emergent cooperative behaviours appear only in homogeneous teams.
In intentional cooperation, the systems are aware of the presence of other team mem-
bers trying to achieve a shared goal and hence deliberately contribute to the activities
performed to achieve the common goal. It is usually the case that the common goal
(mission) is specified in a manner that allows the autonomous systems to take re-

sponsibility for parts of the mission but cooperate to facilitate each other’s task.

In this literature review, we sometimes use the words coordination and cooperation
interchangeably to preserve the original notion presented in some of the literature.
However, we acknowledge the difference between coordination and cooperation as
coordination does not necessarily involve sharing a common goal since a group of
autonomous systems might be forced to coordinate, without any cooperation, by an

external system such as a shared resource controller.

Research on mission specification for robots has resulted in different approaches

that can be broadly divided into three types based on: (a) the application domain

2.8. Mission Specification 20

they are targeted for — domain specific or generic, (b) the paradigm they use — plan
based or specification (configuration) based, and (c) the number of autonomous sys-
tems involved - e.g., single or multi-robot missions. One can further divide these
approaches, for example, a multi-robot mission could support homogeneous or het-
erogeneous robots. In this review, in line with our goal, we have considered multi-
robot and multi-agent frameworks that address the issue of mission specification,

are not domain specific and support heterogeneous systems.

Mackenzie et al. [MAC97] proposed an approach for mission specification that en-
ables the organisation of a set of primitives in order to obtain a sophisticated system
that can perform complex tasks. They have developed a language known as the Con-
figuration Description Language (CDL) that can be used to specify the configuration
of a robot or group of robots. The configuration is the specification of the compo-
nents, connections and structure of the control system of the group. The low-level
elements considered in this language, the primitive modules (behaviours), indicate
what actions are performed but not how an actual action is performed, which makes

the language robot-implementation independent.

The mechanism is developed for behaviour-based robots (i.e., those that use the re-
active paradigm discussed in Section 2.2). The authors define an agent as a distinct
entity capable of exhibiting a behavioural response to stimulus. Using this definition
enables mapping each primitive capability of a robot to an agent. These agents are
called atomic agents. Assemblage agents are recursively defined as a coordinated
society of agents where the agents could be atomic or assemblage. Coordination
determines how the society behaves, i.e., how it will react to a stimulus. The co-
ordination can be competitive, temporal sequencing or cooperative. In competitive
coordination, a subset of the society is selected to do the activation where the selec-
tion is based on some metrics. In temporal sequencing, a finite state machine that
uses each agent’s behaviour as a state is constructed. The behaviour of this ma-
chine is then the behaviour of the society. In cooperative coordination, each agent’s
behaviour is assigned a vector and weight and then the vector sum represents the

society’s behavioural consensus.

CDL is written and compiled using the MissionLab development environment, which
also enables graphical design and simulation of a mission. Using CDL, a designer

can define assemblage agents for different tasks in terms of the primitive behaviours.

2.8. Mission Specification 21

/ *Define cleanup behaviour as a prototype*/
de f Proto movement cleanup()
/ *Instantiate three cleanup agents*/
instAgent Io from cleanup()
instAgent Ganyemede from cleanup()
instAgent Callisto from cleanup()
/*Create a janitor society*/
instAgent janitor from IndependentSociety(
Agent[A] = Io,
Agent[B] = Ganymede,
Agent[C] = Callisto);

jJanator;

Figure 2.4: An Example CDL Mission Specification [MAC97]

The assemblage agents are then mapped into a group of robots either manually or
using MissionLab, which performs a static matching of assemblage agents to avail-
able robots in a repository. An example CDL specification for a cleaning mission is
shown in Figure 2.4. This mission, referred to as janitor, is an assemblage of a prim-
itive behaviour referred to as cleanup, which is undertaken by three robots. CDL
allows for reuse of mission specification. The primitive behaviours specified in CDL
are fully reusable and the assemblage behaviours can also be reused with little or no
modification depending on the cardinality of robots as the specification commits to
the number of robots during specification. As shown in Figure 2.4, CDL uses func-
tional notation to specify the composition of behaviours, which makes it powerful
with respect to expressiveness. CDL lacks a means of specifying adaptation at the
mission level since all operational logics of the mission are included in the primitive
behaviours and these behaviours cannot be changed during mission execution. One
can, however, design the assemblage of behaviours with sufficient redundancy so as

to enable graceful degradation when robots fail during the mission execution.

CHARON [AGH'00, ADE'00] is a language used for modular specification of inter-
acting systems that has been used to describe multi-robot (agent) missions. CHARON
models a system in terms of agents, and the system’s behaviour in terms of hierar-
chical state machines referred to as modes. A single system is modelled as a com-
position of atomic agents whose behaviour is specified using modes. For example,
a robot is modelled as a composition of the atomic agents, namely sensing, control
and actuator. The behaviour of each of these atomic agents is specified using modes,
which can also be composed of atomic modes. For example, the control atomic agent

may be specified with modes such as AvoidObstacle and FollowWall, which could be

2.8. Mission Specification 22

composed from atomic modes such as MoveLeft and MoveRight. A multi-robot sys-
tem is modelled as a group of agents communicating through shared variables. A
multi-robot mission is then specified using modes and transitions between modes
of each agent representing the robot. Modes and agents are specified using a high-
level language similar to a structured programming language and their composition
is specified using set theory operations. Complex multi-robot missions are developed
through sequential and hierarchical composition of modes and parallel composition

of agents.

CHARON allows for reuse of both agent and mode specifications through instantia-
tion with different parameters. Although CHARON is similar to CDL in that agents
and their behaviours are specified using state machines, it significantly differs in its
use of both discrete and continuous variables and constraints to control state tran-
sitions. The provision for continuous variables, for example, enables suitable speci-
fication of kinematical behaviours such as motion control. CHARON also provides a
means for specifying access control by allowing variables in agents to be defined as
read, write and private, and recovery from internal failure of an agent’s mode through
a mechanism called history retention, which enables rolling back to previous state. It,
however, does not take into consideration adaptation of the mission when the context

changes.

ALLIANCE [Par98] is a multi-robot architecture that supports the specification of
adaptive missions using a behaviour-based approach where adaptation is based on
mathematically modelled motivational behaviours, namely impatience and acquies-
cence. It groups behaviours that achieve lower level goals such as obstacle avoidance
to form pre-specified higher level behaviours referred to as behaviour sets, which
are capable of achieving higher level goals such as mapping. A robot activates a be-
haviour set at a time and commits itself to the goal associated with the behaviour set.
This behaviour arbitration is performed by motivational behaviours. Each behaviour
set has a motivational behaviour that controls its activation. Each motivational be-
haviour receives input from sensors, communications and other behaviours, and
computes a motivation level that is compared against a threshold to decide whether
to activate the behaviour set or not. When the behaviour set of a robot is activated,
the robot has effectively allocated itself to the task corresponding to that behaviour

set. A mission is modelled as a composition of higher level goals and hence can be

2.8. Mission Specification 23

specified by stating which behaviour sets need to be active.

The impatience motivational behaviour is used by the robot to adapt to situations
where other robots fail or under-perform and the acquiescence behaviour is used to
adapt to situations where the robot itself fails or under-performs a given task. This
approach gives greater autonomy to robots to decide on their actions and results
in an adaptation scheme that transparently supports both fault tolerance and task
reassignment for performance purposes. Motivational level thresholds for the pre-
specified behaviour sets, which are central to the ALLIANCE mission specification
approach, can themselves be adapted through a learning mechanism referred to as
L-ALLIANCE [Par96]. These levels can be reused in similar missions to provide a
better set of active behaviours. Compared to the behaviour-based specification ap-
proaches such as CDL and CHARON, ALLIANCE has a more elaborate implicit adap-
tation mechanism to both change in context and failure of robots. Explicit mission
adaptation can also be specified by setting the motivational level thresholds. How-
ever, ALLIANCE’s (initial) mission specification mechanism is less expressive (smaller
configuration space) than these two systems since the mission is effectively specified
by setting a single parameter (the motivational level threshold) to select one from a

set of pre-specified behaviour sets.

AYLLU [Wer00] is a behaviour-based distributed robot control framework that is
based on the subsumption architecture [Bro86] and the Behaviour Language [Bro90]
(both discussed in Section 2.2). Behaviours are modelled as a group of processes
that have a common interface with ports that are externally accessible. Tasks (mis-
sions) are formed through composition of behaviours by connecting ports from dif-
ferent behaviours using a uni-directional data path. Behaviours residing in different
robots can be interconnected through their ports to form a distributed mission. Mis-
sions, behaviours and processes are specified, in a reusable manner, using a C-based
language. AYYLU’s processes are comparable to CDL and ALLIANCE’s behaviours,
and CHARON’s modes. The behaviours are comparable to CDL and ALLIANCE’s
agents, and CHARON'’s behaviours. AYYLU’s behaviour arbitration is similar to CDL,
CHARON and ALLIANCE in that it inhibits or activates a behaviour out of a set of
behaviours to provide functionalities required by the mission. There, however, is a
fundamental difference between AYLLU’s behaviour composition in that it allows hi-

erarchical composition of behaviours residing in separate robots unlike the others,

2.8. Mission Specification 24

which encapsulate behaviours (modes) in agents and allow only parallel composition
of agents residing in separate robots. Mission adaptation to changes in context and
failure are achieved through a dynamic task allocation approach referred to as BLE

[WMOO] (discussed later in Section 2.5).

The architectures we have seen so far, despite the presence of the ubiquitous element
agent in their mission models, have been targeted for multi-robot systems. Mission
specification has also been researched in the field of multi-agent systems. Tambe
et al. [TPCOO] proposed a framework for specification and monitoring of a robust
agent organisation where the team behaviour is encoded in a wrapper entity referred
to as TEAMCORE. TEAMCORE is targeted for agents with hybrid robot control ar-
chitectures (Section 2.2). It employs reactive plans, which are pre-compiled plans
with the ability to respond quickly in a similar manner to behaviours. TEAMCORE
differentiates between team organisation and team goal. A mission designer spec-
ifies the team organisation as a hierarchy of goals where the leaf nodes are roles
that are responsible for achieving all the goals that lead to their node in the hierar-
chy (their parent nodes). TEAMCORE'’s team behaviour specification is based on the
STEAM [Tam97] teamwork model, which is built on the concept of joint intentions
[LCN9O0, CL91]. A mission is specified using four sets of rules, namely joint intention,
coherence constraints, intention tracking, and information-dependency relationship.
The joint intention rules define the team’s mental state upon which a joint commit-
ment is defined to achieve a team goal until the team members believe the goal is
achieved, or the goal is un-achievable or no longer relevant. The coherence con-
straints enforce team members to follow a common solution path so that they do
not hinder each other’s effort to achieve the joint intention. Intention tracking is a
means of specifying responsibilities of team members for monitoring the activities of
their peers. The information-dependency relationship rules enable an explicit decla-
ration of the type of information that should be communicated among agents based
on their dependency relationship. TEAMCORE is powerful in its ability to specify a
mission in a flexible and reusable way as well as allowing adaptation easily through
the addition of new intentions to the team. Its ability to specify communication con-
straints enables controlling the communication overhead introduced by teamwork
albeit at the cost of the agents’ freedom for autonomous behaviour. In addition, a

TEAMCORE mission specification can be reasoned over to infer sub-missions, which

2.8. Mission Specification 25

enables the mission administrator (human) to specify the mission at a much higher
level in terms of intentions and generate sub-missions that can be undertaken by
different sub-teams. TEAMCORE, however, does not exploit this capability to form
sub-missions and allocate them to sub-teams as it does not support hierarchical
organisation of roles. Although the framework has the concept of team hierarchy,
this is a goal decomposition where the leaf nodes are roles and in effect all roles are
managed centrally. TEAMCORE’s employment of the joint intentions method makes
it robust on the one hand, since as long as a goal is achievable, it will eventually be
achieved even in the face of context change and failure. However, it is less reactive
(slow) to context change and failure since all team members have to reason and agree
before they abandon the present solution path and enter into a new one. This issue
is especially crucial during failure in time sensitive applications and in applications

where context change is frequent.

Tidhar’s [Tid93] concept of social structures is similarly based on beliefs, goals and
intentions collectively referred to as attitudes, and differentiates between team or-
ganisation and behaviour in its specification. A social structure (o) is defined over
a finite set of teams (7), which itself is defined as a finite set of teams or individual
agents. A team (77) is then defined as a team-set that believes (clarified later) a social
structure (o) as a team. A social structure is defined as a pair of teams (< CD.., CT, >)
where C D, is the command team and C7T. is the control team for the team-set 7. The
command team is responsible for adopting joint goals, deciding on how to achieve
them and achieving them. The control team is a subset of the command team and
deals with coordination and control of the sub-teams so that they can execute the
plan chosen by the command team to achieve the joint goals. An individual agent
is defined as a special case of a team where the command and control teams of the
agent are the agent itself. Attitudes held by agents are specified using first order logic
and attitudes held by the team, i.e., joint beliefs, joint goals, and joint intentions, are
specified using three modal operators, namely M BEL, JGOAL and JINTEND. For
example, M BEL(77, ¢), where ¢ is a first order logic formula, has the semantics: the
mutual belief ¢ is believed by every sub-team in the team 77 and every sub-team
believes that the mutual belief is held by the whole team. This approach shares
the advantages of TEAMCORE as well as the limitations, i.e., the lack of immedi-

ate automated response to context changes and especially to failure. It, however,

2.8. Mission Specification 26

provides a more general framework of mission specification in multi-agent systems
where the team can range from central to completely distributed organisation. Hi-
erarchical organisation can be achieved by enforcing the command team of every
team to be a proper subset of the team and fully distributed organisation can be
achieved by enforcing the command and control team of every team to be the team
itself, which makes all agents have equal stand. The separation of the command
and control team limits the scope of knowledge agents are required to have and also
minimises communication by clustering the agents that need to communicate fre-
quently. TEAMCORE addresses this issue by constraining communication using its

information-dependency relationship rules.

Multi-agent system analysis and design frameworks have also dealt with specifying
missions and organisations of agents to assist the design of multi-agent systems.
Unlike the frameworks we have considered so far, these frameworks are targeted for
guiding multi-agent systems design or assist in specification instead of themselves
serving as a multi-agent systems framework. Nonetheless, their specification ap-

proach is of interest to us.

OMNI [DVSDO04, VSDFO05] is a multi-agent system specification framework composed
of three dimensions, namely normative, organisational and ontological. It is based
on two formal multi-agent specification frameworks [VSD03, DVSDO04] that focus on
the organisational and normative issues of multi-agent systems. The organisational
dimension of OMNI deals with specifying the structure of the agent society while
the normative dimension addresses the specification of norms that the agents in the
society should abide by. The ontological dimension deals with contextual and com-
munication aspects of the agent society. An organisation is modelled as a set of three
elements, namely values, objectives and context. Objectives represent the overall goal
of the society and they are specified using predicates. Values dictate what rules need
to be defined for the organisation. The context, which can be left empty, specifies the
set of organisations that exist in the environment where this organisation operates
and have influence upon it. A mission in OMNI is then specified in terms of social
structures (roles), scenes, social contracts and interaction contracts. Social struc-
tures are roles with objectives, rights and rules that are derived from the objectives
and values of the organisation respectively. A role can be specified as either internal

(institutional) or external, where an internal role is one that is responsible for coor-

2.8. Mission Specification 27

dination and is enacted only by the agents representing the organisation while an
external role is one that enters the organisation to help realise the goals. For exam-
ple, in a conference organisation whose goal is to organise a successful conference,
organiser and session chair roles could be internal roles while author, program com-
mittee member and presenter roles could be external. Figure 2.5 shows an example
of a program committee member role in an OMNI mission of a conference society.
OMNI specifications also have a set of obligations and abstract rules, described in
deontic logic formulas, referred to as norms. Norms can be included in the specifica-
tion of the different elements of the organisation. Rules, which are operational forms
of the norms, are derived from the abstract norms and are described using dynamic
logic. Scenes are processes performed by roles. Social contracts specify bindings of
agents to roles and interaction contracts specify relationships between roles. OMNI's
explicit representation of the team behaviour in terms of rules enables modifying the
team behaviour without changing the agents. It also differentiates between the roles
and agents enacting roles allowing norms to be specified without the knowledge of

the agents enacting them.

Gaia [WJKOO] models agent societies as organisations consisting of interacting roles
and presents an approach for designing multi-agent systems in terms of roles. A
role is modelled by using its responsibilities, permissions, activities and protocols.
Permissions are the role’s rights and activities are computations associated with the
role that can be done without interaction with other roles. Protocols define the way
the role interacts with other roles. Roles are enacted by agents and the agents en-
acting the roles are tied to the roles at design time. Gaia also considers static norms
with respect to agents and hence roles. In [DWSO1], a similar approach to Gaia,
with a more elaborated approach for identifying the roles necessary for an organisa-
tion, is presented. However, both approaches do not provide a means to explicitly
specify organisational structures and lack organisational norms that enforce global
behaviours. SODA [OmiOl], a multi-agent systems design methodology based on
Galia, tries to partially address this shortcoming by using tasks as building blocks of
agent societies where the tasks are divided into individual and social ones. Individual
and social tasks are assigned to an individual role and a group respectively where a

group is made up of social roles.

In this section, we have discussed different multi-robot and multi-agent architectures

2.8. Mission Specification 28

Id

PC_Member

Objectives

/*The desired result of the role*/

paper _reviewed(Paper, Report)

Sub-objectives

/*Landmarks for the objective*/

read(P), reported(P, Rep), review_received(Org, P, Rep)

Rights

/ *This role has the right to access the conference manager program*/
access-con franager-program(me)

/*PC_Member is OBLIGED to understand English*/

/*IF paper_assigned THEN PC_Member is OBLIGED to review the paper BE-
FORE the given DEADLINE*/

/*IF author of paper-assigned is colleague THEN PC_Member is OBLIGED to
refuse to review as soon as possible*/

Norms

Opc memper (understand(English))

done(assign_paper(P, me, Deadline)) —

Opc memper (review_paper(P, Rep)) < do(pass(Deadline)))
done(assign_paper(P,me,_)) A is_a_direct_colleague(author(P)) —

O pcmemper (review_re fused(P) < pass(TOMORROW))

Rules

done(assign_paper (P, me, Deadline)) A =done(review_paper (P, Rep))

— [pass(Deadline)|V4

done(assign_paper(P,me,_)) A is_direct_colleague(author(P))A
—done(review_re fused(P)) — [pass(TOMORROW)|V'5

Type

external

Figure 2.5: A Role in OMNI's Mission Specification [VSDFO05]

that enable specification of missions. These frameworks are summarised in Table

2.4.

In general, the frameworks that are targeted for robots tend to specify the mission in
a bottom-up fashion by starting from the primitive behaviours and composing these
to provide complex missions. The strength of these frameworks lies in the reflexive
nature of the primitive behaviours, which makes the complex missions responsive
enough so as to be used in environments involving frequent changes. The absence of
separate rules of adaptation and explicit specification of team structures is noticeable
in these architectures. This makes them less suitable for our purpose, i.e., mobile
autonomous systems targeted to operate as a team, with clearly defined structure,
and adapt to context changes. The frameworks targeted for agents tend to follow a
top-bottom approach by starting from the overall goal of the team and specifying the
mission as a decomposition of this goal. A rather elaborate organisation of agents into

teams and specification of separate rules for team and agent behaviours is noticeable

2.8. Mission Specification

29

Specification

CDL [MAC97]

e Composition of behaviours
e Functional notation

CHARON [AGHT00]

e Composition of modes (hierarchi-
cal state machines)

e Similar to a structured program-
ming language

ALLIANCE [Par98]

eSetting motivation level threshold
for pre-specified behaviour sets

AYYLU [Wer00]

e Composition of behaviours
e High-level (C-based) language

TEAMCORE
[TPCOO]

eSets of rules: joint intention,
coherence constraints, inten-
tion tracking, and information-
dependency relationship

e First order logic based

e Has the concept of roles

Tidhar [Tid93]

e Sets of rules: beliefs, goals and in-
tentions

e First order logic based

e Has the concept of roles

OMNI [VSDFO05]

eSocial structures (roles), scenes,
social contracts and interaction
contracts

eSet of obligations and abstract
rules described in deontic logic
eConcrete rules described in dy-
namic logic

GAIA [WJKOO]

eStatic agent societies in terms of
roles
ePropositional logic based norms for
roles

A: Adaptation R: Reuse T: Team-structure specification S: Security (authorisation)

Y: Yes N: No

Table 2.4: Summary of Multi-robot and Multi-agent Frameworks that Support Mis-

sion Specification

in these architectures. The explicit specification of team behaviours in terms of rules

is a useful approach for our system. However, as these rules are specified in compu-

tationally hard models we need to look for alternative forms. Security specification,

in the form of authorisation, is also considered in some of the architectures.

Once a mission is specified, autonomous systems need to be assigned to the roles or

tasks (or any unit of specification of the associated framework) in order to execute the

2.4. Capability Description and Matching 30

mission. The decision of which autonomous system to assign to which role cannot
be made in an efficient way without knowing the capabilities of each autonomous
system and matching them with the capability requirements of the role or task. In

the next section, we review related work on capability description and matching.

2.4 Capability Description and Matching

A capability description defines the actions an autonomous system can perform, e.g.,
move from A to B or pick up an object, or services/resources it can provide related to
its sensors such as infra red imaging, chemical detection, video streaming, etc. This
description is necessary when role (task) allocation is performed in a joint mission
involving multiple autonomous systems in order to decide what role (task) a system
should be assigned to among a set of mission roles (tasks). There has been research
in capability description and matching for service composition, and adaptation as
well as task allocation in multi-robot and multi-agent systems. In this section, we

consider related work that deal with capability description and matching.

2.4.1 Capability Description

In [And02], a simple capability description, which is intended for use in the Session
Description Protocol (SDP), was proposed. SDP is used to initiate multimedia ses-
sions. In this description, the service does not allow the user to perform operations.
The capability description is used only to adapt to the service or to negotiate param-
eters of the service. A user can indicate preferences in terms of specified parameter
values such as audio or video format so as to get the service provided with a charac-
teristic of the preferences. As a result, this service description can efficiently be done
as a listing of attributes of the service and their possible values. Of course, there is a
need to agree on the attribute names and semantics, i.e., defining an ontology. This
type of description is sufficient for describing the capabilities of autonomous systems
provided that once each system has been assigned to its role (task) there is no need
to perform remote operations. Although it is applicable, for some scenarios that do

not involve remote interactions, this will be too restrictive for our system.

2.4. Capability Description and Matching 31

Some service description mechanisms integrate request/reply messages with the op-
erations of the service. In this case, the operations are building blocks for the re-
quest/reply protocol instead of an operation in a service interface. SPML (Service
Provisioning Markup Language) and WSDL (Web Services Description Language) are

two such service description mechanisms.

SPML [OASO3] is a service-description protocol developed by the OASIS Provision-
ing Services Technical Committee (PSTC). It defines an XML-based framework for
exchanging user, resource, and service provisioning information. It is a request/re-
sponse protocol where the requests and responses are well-formed SPML documents.
A resource (Provisioning Service Target) describes its services using an SPML com-
pliant service interface. A client (Requesting Authority) sends requests to the server
(Provisioning Service Point) in the form of SPML. The server communicates with the
resource and sends the results back to the client. In some cases, the server can be

the resource itself.

In WSDL [CGM™04], services are conceived as a collection of end points (ports). A
port is an instance of a port type — an abstract set of operations supported by one
or more endpoints. When a port type assumes a specific protocol, referred to as
concrete protocol, and a data format specification, it becomes a port. This process is
termed as binding. An operation is an abstract description of an action supported by
the service. WSDL also has the concept of messages as an abstract, typed definition
of the data being communicated. Types are containers of a data type definition. A
service in WSDL is then described by an XML based definition of six main elements,

namely types, message, portType, binding, port and service.

SPML and WSDL can serve the purpose of describing an autonomous system’s capa-
bility including the operations thereby allowing remote invocations across systems.
However, because these protocols are designed for large scale composition of services
the overhead of employing these systems, especially when capability descriptions
are communicated, would outweigh the benefit for our system. This is because our
system would have most of the autonomous system’s tasks contained locally, with
occasional remote operations to use services that are available in other autonomous

systems.

The Universal Plug and Play (UPnP) Forum has been developing capability description

2.4. Capability Description and Matching 32

schemes for devices and services [Upna, Upnb]. A UPnP device description is an XML
document that has three main parts. The first part is a description of the device’s
parameters such as its type, model, manufacturer, etc. The second part is a list
of services provided by the device, which contains pointers to corresponding service

descriptions. The third section is a list of devices embedded in the device.

A UPnP service description contains a list-of-actions and a service state table. The
list-of-actions section contains a listing of the operations that can be invoked by
a service user. The operations description specifies the name of the operation, the
arguments (if any) and the related state variable (if any) to each argument. Specifying
the related state variables is an indirect specification of allowed values to arguments.
In addition, some operations have a direction element showing whether the operation
is reading or setting a state of the service. The service state table is a list of state
variables, their data types and allowed values. If a service generates an event when
its state variable changes, the state variable will have an attribute that shows that it

sends events.

A UPnP type description would be able to describe the different components of au-
tonomous systems such as robots (e.g., sensors) and could be adapted to describe
services and associated operations with autonomous systems. Its concise approach
makes it appealing for our system, where capabilities need to be communicated in-

stead of being stored in a registry.

2.4.2 Capability Matching

LARKS [SKWL99, SWKL02] is a capability specification and matching language for
agents where an agent can be a service requester, provider or a middle agent such as
a matchmaker. Provider agents describe their capabilities using LARKS and advertise
them to middle agents, which store the advertisements. Requester agents ask middle
agents for a provider that has the desired capabilities. The middle agents perform
the matching and reply with a subset of the stored advertisements that satisfy the

requirement to the requester agents.

A LARKS capability specification contains the context of the specification, input and

output variable declarations and logical constraints on these variables. It also may

2.4. Capability Description and Matching 33

include the optional definition of data types, description of the meaning of words
used in the specification and textual description of the specification. In LARKS, do-
main ontology is written using ITL (Information Terminological Language) [SLK98]
and concepts are defined as a conjunction of logical constraints that should be sat-
isfied for any object to be an instance of that concept. Concepts can be attached
to the context, data types and the description of meanings. Requests and advertise-
ments have the same format and are differentiated by the information included in the
Knowledge Query and Manipulation Language (KQML) [FFMM94] message in which

they are wrapped up.

LARKS considers three types of matching, namely exact, plug-in and relaxed match.
An exact match is where the request and advertisement are either literally equal or
one can be obtained from the other using a renaming of variables or logical inference.
A plug-in match is a less accurate match in that the advertisement can be used to
satisfy the request, yet the two can differ in their input and output declarations as
well as constraints. A relaxed match is the least accurate match since it does not
assure that the request and advertisement match semantically; it determines the
closeness between the two in terms of a numerical distance value. The matching
process is done using a series of increasingly stringent filters, namely context match-
ing, profile comparison, similarity, signature and constraint matching. The filters are
independent from each other and the quality of the resulting match varies depending

on which filters are considered.

In [PKPS02], a service description language based on DARPA ! Agent Markup Lan-
guage (DAML) [HMOO] and DAML-S (DAML for services) [ABHT02], and a semantic-
based matching between advertisements and request for web services is proposed.
Advertisements and requests are described as DAML-S profiles and the semantic
matching is based on DAML ontology in that the advertisements and requests refer
to DAML concepts and the associated semantics. An advertisement is said to match
a request when all the inputs of the advertisement are matched by the inputs of the
request and all outputs of the request are matched by outputs of the advertisement.
The matching algorithm differentiates between four degrees of matching, namely ex-
act, plug-in, subsumes and fail. For example, when matching the outputs of a request

(Or) and advertisement (O4), if O = O, or Og is subclass of O, then the matching

IDefence Advanced Research Projects Agency

2.5. Role Assignment 34

is exact, if O4 subsumes O the matching is plug-in and if O subsumes O4 then the

matching is subsumes, where the advertiser does not completely fulfil the request.

Capability description and matching facilitate the assignment of autonomous sys-
tems to roles or tasks by providing a measure of suitability of a system for a given
role. In a situation where the autonomous systems that are going to form the team
are known beforehand and the team is static, a mission administrator can (manually)
check the capabilities of the systems against the roles, assign the capable systems to
the roles and start the mission. However, in a team of mobile autonomous systems
where members are not known in advance and the team is dynamic in that members
join and leave during the mission execution, the ability to describe and match ca-
pabilities does not suffice. The ability to discover autonomous systems, match their
capability with the mission roles (tasks) and assign them accordingly is necessary.
In order to cope with changes in the mission, whether due to changes in strategy,
change in context, or loss of existing roles, the ability to reassign roles is also im-
portant. In addition, in both static and dynamic teams the assignment should be
optimised to best utilise available autonomous systems. In the following section, we
present related work in role or task allocation in multi-robot and multi-agent sys-
tems. Because the problem of optimal task allocation has been studied in the area of

systems deployment, we will also consider relevant work from that area.

2.5 Role Assignment

Allocating roles (tasks) to multiple robots in an optimal way is a crucial element of
cooperative autonomous system architectures. This problem, in the most general
case, is NP-hard [Par94]. Also, in applications targeted for time sensitive missions,
in addition to the optimality of the assignment, the time taken to compute the as-
signment should be taken into consideration. In addition, the approach should be
able to scale with the size of the team. Several approaches have exploited domain
specific properties and employed approximative methods to solve this problem. The
role (task) allocation problem in multi-robot and multi-agent systems is related to
the more general problem of optimal deployment and reconfiguration of systems in
a networked environment. A number of role/task/system allocation (deployment)

schemes exist for multi-robot, multi-agent and distributed systems deployment ap-

2.5. Role Assignment 35

plications. These approaches can be broadly classified as those which use utility
functions, and those which use planning or constraint satisfaction approaches to
search among the space of possible assignments. In this review, we have presented
representative architectures from both classes of approaches with a bias towards
approaches that are targeted for multi-robot and multi-agent systems and deal with

dynamic role/task allocation either initially or during reconfiguration.

In [AHWO03, AHWO07], a framework for optimal deployment and reconfiguration of
systems on a dynamic networked environment is presented. The deployment and re-
configuration process is perceived in a similar manner to the sense-plan-act process
in robot-software architectures (Section 2.2). The framework has two elements — a
configuration manager that deploys and reconfigures the systems and a planner that
generates the configuration. The configuration manager, called Planit, deals with the
sensing and acting parts of the process in that it monitors the system and obtains
events from which it generates the current state of the system. If there is a need for
a reconfiguration, the current state with a desired state that is generated according
to the configuration rules is used to replan. Planit provides the domain and con-
figuration specifications, which are specified using the Planning Domain Definition
Language (PDDL), to the planner. The domain contains the types of entities involved
in the deployment (components, connectors and machines), predicates (constraints)
associated with the entities (e.g., a predicate that indicates a certain component is
placed on a certain machine), utility functions, and actions that can be included in
the plan to change the state of the system. The configuration specification consists of
the current state and goal state, which is the desired state of the system. The planner,
using the LPG (Local Search for Planning Graphs) heuristics, generates sequences of
actions that should be achieved in order to lead the system to the desired state and
replies to Planit, which performs the actions on the system. Reconfiguration can be
used to improve the quality of deployment as well as failure recovery. Planit can
be used to perform task assignment for a wide range of applications since it allows
domain definition. The framework has a dynamic nature due to its support for re-
configuration during changes in goal or network connectivity. It, however, assumes
that there are a fixed initial set of components (to be deployed) and does not allow
the addition of new components. Also, the planning process is computationally in-

tensive resulting in a longer assignment time. For example, to decide the placement

2.5. Role Assignment 36

of 60 components on 10 machines, the planner (running on Sun Ultra/2200/512
with two 200MHz CPUs, 512MB RAM) was able to find a plan in 412 seconds due
to the large search space. The authors report that the maximum number of com-
ponents they have experimented with is 120. This approach is less suitable to role
assignments for mobile autonomous systems because of its assumption of fixed sets

of components and time consumption.

In [[HAKO2, KIKO03], a framework that consists of a declarative service specification
in terms of components, support for component deployment on a network, and a
planning module is presented. It enables services to be built up from distributed
components and facilitates migration and replication of components transparently.
The service specification and the current state of the network is provided to the plan-
ner, referred to as Sekitei [KIKO3], which determines optimal locations for compo-
nent placement. The planning module employs multiple planning techniques in that
it uses regression and progression planning. The framework assumes that the net-
work on which the distributed system is deployed is static with respect to the set of
nodes and links as well as their properties. In addition, similar to Planit the planning

process is computationally intensive resulting in a slower decision of placement.

COCoA [KNSO06] formulates the problem of task allocation and scheduling for a tightly
coupled (i.e., no robot can achieve a single goal by itself) team of robots in a search
and rescue domain, using goals and constraints. Three constraints, namely goal,
robot and resource constraints are specified using first order logic. The constraint op-
timisation problem is modelled as a Mixed Integer Linear Programming (MILP) prob-
lem and CPLEX [Inc] is used to solve it. Since finding a feasible solution might take a
considerable amount of time (hours even days for large search and rescue problems),

different heuristics are used to improve the solution time.

In [MMRMO5, MRMMO5], an approximative and decentralised approach for deter-
mining a distributed software-system’s redeployment that maximises its availability
is presented. The system is modelled as a set of components and their properties, a
set of hosts and their properties, a set of constraints, the system’s initial deployment
as a mapping of components to hosts and a set of system properties that are visible
from a given host. A utility function that describes the system’s availability as the
ratio of the number of successfully completed interactions in the system to the to-

tal number of attempted interactions is defined. The redeployment problem is then

2.5. Role Assignment 37

defined as finding a function that maps the components to hosts so that the utility
function is maximised without violating the constraints. The optimisation criterion
considers frequency of component interactions and reliability of communication links
between hosts. In contrast to Planit, Sekitei and COCoA, this approach considers
only redeployment since it assumes the existence of an initial deployment. However,
compared to these approaches, with respect to time taken to find a feasible solution,
it provides a more scalable means for determining a distributed software-system’s

redeployment by employing a utility function based approach.

The Contract Net protocol [Smi80] provides a means for distributing tasks through
negotiation. Each node in the net takes one of the two roles, namely manager or
contractor. Managers announce tasks, and potential contractors submit bids to the
managers. The managers then evaluate the bids and award contracts to the bidders.
The contents of the negotiation messages are problem-domain dependent and the
user is responsible for specifying the content. As we will see in the reviews ahead,
the Contract Net assignment model has been applied in a number of multi-robot and

multi-agent systems [UEWAO7, WJKOO, GMO1, GMO2].

MURDOCH [GMO1, GMO02] is a framework supporting inter-robot communication,
through a publish-subscribe system, and dynamic task allocation to facilitate coop-
eration. Its completely distributed task allocation is based on auctions and contracts
[Smi80, DS83]. A task is announced by an agent (one of the robots, a human, etc.)
with the required resources being used as the destination address. Robots with
these resources compute their fitness and announce the result, and the robot with
the highest fitness takes the task. MURDOCH deals with task reassignment through
progress monitoring and contract renewal, where a contract is renewed only if there
is a sufficient progress by the winner of the auction. As a result of a completely
distributed task assignment scheme, MURDOCH suffers the same problem as the
greedy algorithms problem — equivalent to an instantaneous greedy scheduler, where
decisions are made based on only the current and/or local situation without taking
into account how the decision might affect the future and/or the global situation. In

effect, these types of algorithms may not always give the best solution.

Iocchi et al. [INPSO3] present an approach for coordination of robots based on dy-
namic role assignment. Their system is layered with a coordination protocol running

on top of a communication protocol. The basis of the communication protocol is the

2.5. Role Assignment 38

publish-subscribe paradigm with some support for low-level communication using a
custom UDP. The coordination protocol is based on utility functions that are defined
for each role. The mission administrator (manually) orders roles according to their
importance (priority) and defines a percentage that denotes how many of the robots
in the team should be assigned to each role. Each robot computes the utility for each
role and exchanges the computed values periodically, and the robot with the highest
value for a given role takes that role in accordance with the priority (i.e., high priority
roles taken first). Adaptation is achieved through exchanging roles based on periodic
broadcast of utilities performed by each robot. Although exchanging roles based on
periodic utility broadcast and evaluation keeps the assignment optimal throughout
the mission lifetime (at the cost of computation and communication overheads), it
has the unnecessary effect of destabilising the team. In addition, because the robots
self-assign themselves to a role, in the event of communication failure some or all
capable robots may take the highest priority role since they will not be aware of other

robots’ decisions, resulting in a redundant and incomplete team configuration.

Similarly, in [CKCO04], a hybrid-automata [Hen96] based paradigm for cooperating
robots is presented. In this approach, hybrid automata are used to represent roles,
role assignments and discrete variables related to each robot. Cooperation is mod-
elled as a composition of these automata and role assignment is based on utility
functions that compute the utility of a robot performing a given role. Adaptation is
achieved through role reassignments and exchanges based on utilities. Since possi-
ble role reassignments and exchanges are defined a priori using a hybrid automaton,
either the possible types of roles a robot can assume are limited or the hybrid au-
tomaton has to consider every possible types of roles a robot can play. This fact
makes the approach applicable only to teams with limited number of robots and
role types mainly for tightly coupled cooperation such as cooperative manipulation

of objects.

In [SS], a Distributed Constraint Satisfaction Problem (DCSP) based solution for re-
assigning tasks to robots is presented. In this approach, it is assumed that each
capability of a robot corresponds to a task the robot can perform, and the robots are
initially given a role graph that is a Distributed Organisational Task Network (DOTN),
where a role is perceived as a set of tasks. The robots then try to minimise remote

task dependencies by searching for minimal dependency among tasks, using local

2.5. Role Assignment 39

search approaches, and trading tasks and responsibilities (switching positions of a
parent and a child in the task network). In this model, in addition to task depen-
dency, there is an implicit utility that measures the fitness of the robot against the
associated capability before the task trading is made. In a scenario where the mis-
sion specification does not group tasks that are likely to have more interaction in
one element such as roles, this approach provides a useful solution. However, if the
tasks are initially grouped, the communication overhead from the exchange of utili-
ties between all robots and the computation overhead from the search may outweigh

the benefit

Since we are interested in dynamic teams, the approaches we have considered so far
are only the ones that deal with dynamic role or task allocation. We now reconsider
some of the multi-robot and multi-agent architectures we have discussed in Section

2.3 and discuss their task allocation schemes.

In CDL [MAC97], either the mission administrator (manually) or the MissionLab tool
performs the matching and assignment of behaviours to robots. This static matching
and assignment of behaviours to robots makes the approach inapplicable to domains
where the knowledge about the capabilities of robots may not be available until the
mission execution time. Ulam et al. [UEWAOQ7] built on CDL and proposed a mis-
sion specification system with a case-based reasoning approach for generating mis-
sion plans and a Contract Net Protocol [Smi80] based task allocation. In CHARON
[AGH™00], the difference in capabilities of robots is not taken into consideration;
hence there is no matching process and the allocation is done by the mission ad-
ministrator (manually) similar to CDL. In ALLIANCE [Par98], the initial assignment
is done by the mission administrator. Each robot then broadcasts its activity related
to a task. Upon receiving this information, the robots compute their motivational
behaviour and decide whether to take away the task from the robot currently as-
signed to the task based on the resulting motivational level. ALLIANCE’s learning
mechanism L-ALLIANCE [Par96] tracks which motivational level resulted in better
performance and updates the motivational level threshold which in turn adapts the
assignment process. AYYLU [WerOO] performs task allocation using an approach
called BLE (Broadcast for Local Eligibility) [WMOO]. BLE is based on behaviour ar-
bitration where each BLE-arbitrated behaviour, in addition to the task related ports

of AYYLU, has three ports, namely Local, Best and Inhibit. The Local port of each

2.5. Role Assignment 40

behaviour broadcasts its locally-computed eligibility estimate to the Best port of the
others, where eligibility is a measure of the fitness of a robot to a given task. The
behaviour with the highest eligibility inhibits the other behaviours thereby effectively
enabling the robot to allocate itself to the appropriate task. Since eligibility is com-
puted periodically, the tasks are reassigned when there is a change in the eligibil-
ity ranking. Both ALLIANCE’s and AYYLU’s approach are similar to Iocchi et al.’s
[INPSO3] self-assignment discussed previously. TEAMCORE [TPCOO] uses a special
agent referred to as KARMA to discover agents, and the mission administrator (man-
ually) performs the assignment of the discovered agents to roles. KARMA queries
different agent naming service (ANS) agents, where agents are supposed to register,
to discover agents and also monitors the team’s progress during the mission. In
Tidhar’s [Tid93] social structure, although there is no assignment scheme employed,
the importance of dynamic role allocation scheme is acknowledged, and it is indi-
cated that schemes such as Contract Net could be used. OMNI [VSDFO05] does not
deal with role allocation, and since GAIA [WJKOO] assigns agents to roles at design

time, the allocation is static.

In this section, we have considered various approaches for dynamic role or task al-
location and also reconsidered the architectures we have discussed in relation to
mission specification in order to review their role allocation approach. Although the
approaches are too diverse to summarise in one paragraph, we will try to factor out
the most relevant issues to our objective. The systems deployment and/or role or
task allocation approaches that use a planning or constraint satisfaction approach
[AHWO07, KIKO3, KNSO06] tend to scale less with the number of roles or systems in-
volved, due to the large search space involved, and hence are not suitable for our
purpose. Utility functions are used in most of the approaches [MMRMO05, GMO02,
INPS03, CKC04, Par98, WMO0O] to measure the fitness of a system for a task/role ei-
ther for initial assignment or reassignment. This approach is powerful provided that
the utility function is chosen appropriately and hence is worth considering for our
framework. In some of the architectures that support mission specification, either
the matching or both matching and assignment are done by the mission administra-
tor (i.e., manually). In some, a self-matching and self-assignment approach assisted
with broadcast of utilities is used. This does not guarantee assignment of crucial

roles to best available systems since there is no means of enforcement that dictates

2.6. Mission Adaptation 41

the assignment other than the decision made by the robot/agent itself. It is also
worth noting that the ability to discover new systems as they arrive is noticeably
absent in these architectures. Hence, while we carry forward useful lessons and
concepts to our design, none of these architectures is suitable to our purpose in its

entirety.

Once a team is formed in accordance with a mission specification by assigning roles
to autonomous systems that have the necessary capability, the mission should be
able to adapt itself in order to cope with context change. In Section 2.3, when we
discussed mission specification, we have observed that architectures that use explicit
rules to specify the team behaviour allow adaptation without changing the code for
the agents or robots. We have also observed that those that employ this approach
use computationally hard models such as deontic logic to model these rules. We
therefore consider the concept of using explicit rules and look into computationally
less demanding forms of rules. Rule based systems management, i.e., policy-based
management [Slo94], has long been used in distributed systems and proved to be
an efficient approach. In the next section, we consider policy-based systems whose

main goal is adaptive system management and hence relevant to our objective.

2.6 Mission Adaptation

Autonomous systems operating in an uncontrolled environment experience frequent
changes in context. In order to cope with these changes, the systems should either
have behaviours for all possible scenarios built in to their code or an external adapta-
tion mechanism should be employed. In this section, we consider one such external

adaptation approach, i.e., policy-based adaptation.

2.6.1 Policy-based Systems Management

A policy is a rule that defines how a system should behave under certain circum-
stances. Policy-based management is an approach where the management is based
on rules (policies). In the context of policy-based management, a policy can be de-

fined as a rule that controls access to a resource or a rule that controls actions

2.6. Mission Adaptation 42

performed by a system. These two purposes are different and hence give rise to two

fundamental types of policies.

Policy-based management enables automation of systems management and chang-
ing the behaviour of a system dynamically [Slo94], reduces complexity in manage-
ment applications, and leads towards realising self-management [Ver02, DKFS02,
WHWT04]. The power of a policy-based approach lies in its ability to separately de-
fine the choices in the behaviour of a system from the system’s implementation, in
a manner that is easy to define, comprehend and interpret. The approach, however,
is not without challenges. When applied to larger systems that need more rules,

tracking which policy does what becomes difficult and conflicting policies can arise.

There has been research on using policies in distributed systems to manage inter-
actions among systems [MUOO], configuration management [Bur95], access control
[LMSY96, BMYO02], trust management [LMWO02], and overall behaviour of systems
[Slo94]. In this section, we consider representative work on policy-based approaches
that deal with both specification and enforcement of policies with a broader scope of
management (in contrast to security, trust, quality of service, etc. management) and
hence are applicable to wider domains of application. We discuss the main elements
of these frameworks, i.e., the policy specification (representation) and deployment
model (enforcement architecture) and assess their applicability to our purpose with

respect to support for specification of adaptation as well as security (authorisation).

The IETF Policy Framework

The Common Information Model The Common Information Model (CIM) [DMTO03]
unifies and models all aspects of a managed environment using an object-oriented
approach. It does so by defining common models for all entities involved in the
managed environment such as networks, devices, systems, users, applications, etc.,
and the relationships between these entities. Each model is represented by an object-

oriented format known as Managed Object Format (MOF).

The two main advantages of CIM are its object orientation and unification of models.
It has the qualities of an object oriented system (abstraction, inheritance, etc.) and by
consistently defining models of entities and the relationships between them it enables

management applications to perform actions that can involve a number of entities

2.6. Mission Adaptation 43

(for example, a diagnosis application that traverses all involved entities by using
CIM relationships, and explores all entities by checking CIM objects representing the

entities).

Policy Core Information Model The Policy Core Information Model (PCIM) [M*01],
developed by the IETF (Internet Engineering Task Force) policy working group and
the Distributed Management Task Force (DMTF) CIM activity, is an object oriented
model for representing policy. This model has two hierarchies of classes, namely
policy classes and association classes. Some of the classes in the policy hierarchy
are PolicyRule, PolicyCondition, PolicyAction and PolicyGroup whereas some of the
classes in the association hierarchy are PolicyConditionInPolicyRule, PolicyActionIn-
PolicyRule, PolicyTimePeriodCondition, PolicyRuleInPolicyGroup and PolicyGroupIn-

PolicyGroup.

In the IETF policy framework, a policy has an “if condition then action” semantics. The
PolicyRule class represents this semantics associated with a policy. Strictly speaking,
this class represents neither the actual condition nor the action; it only specifies how
the condition and the action should be interpreted. The condition and action asso-
ciated with a policy are represented by the PolicyCondition and PolicyAction classes
respectively. The association of condition and action objects to policy-rule objects is
represented by the association classes PolicyConditionInPolicyRule and PolicyAction-

InPolicyRule respectively.

Deployment Model The IETF policy framework deployment model has four main
components, namely the policy-management tool, the policy repository, the Policy
Decision Point (PDP) and the Policy Enforcement Point (PEP). Figure 2.6 illustrates

these components and the interaction between them.

The policy-management tool is used to define and add policies to the policy repository
where policies are stored. The IETF policy framework requires that all the policies
that are stored in the repository should be in one of the information models specified

in the PCIM so as to establish inter-operability.

The policy decision point is responsible for interpreting policies. It is defined as a

logical entity that malkes policy decisions for itself or for other network elements that

2.6. Mission Adaptation 44

—
Policy Management Tool
Policy
Y Repoistory
Policy Decision Point
v

Y

Policy Enforcement Point

Figure 2.6: The IETF Policy Deployment Model

request such decisions [WT01]. The decision may be either evaluating conditions
or dealing with actions that might need to be enforced based on the result of the
condition evaluation. The policy enforcement point is the entity that actually enforces

the actions. In the most general case, the PDP and PEP may be on different devices.

The IETF policy framework provides an information model to specify basic policies
and groups of policies and leaves the definition of the concrete policy specification
language to application domains. The modelling approach has the advantage of being
easily mappable to structured languages such as XML, which makes it suitable for
analysis and distribution of policies. The main drawback of this approach in relation

to our objective is the lack of support for explicit authorisation policies.

The Ponder Policy Framework

Policy Specification Language Ponder [DDLSO1, DamO02], is an object-oriented
policy-specification language developed at Imperial College London. It provides a
common language that enables administrators to specify a policy, hence unifying the

concepts and models of various policy related research.

Ponder supports a family of policies named Access Control Policies, which are mainly
used for security management, and Obligation Policies, which are mainly used for
service management. Both policy types can be used in either type of applications.
For example, obligation policies can be used for logging suspicious actions, which is

a security-management issue.

Generally, in the Ponder policy framework, a policy has a “when event occurs, if

2.6. Mission Adaptation 45

Type Purpose Enf. Sign Remark

Protect resources
Authorisation and services from Target Both
unauthorised use.

Transform the in- It can only be
Information formation input or applied to posi-
Filtering output parameters Target N/A tive authorisation
of an action. actions.
It specifies the
delegate and does
. Temporarily trans- not control the
Delegation fer access rights. Target Both actual delega-
tion/revocation of
access.

It has the same
effect as applying
Restrain subjects a negative authori-
from performing sation policy on a

Refrain actions that they Subject N/A target. = However,
must not perform. this is used when
one does not trust

the target.

Specify the ac-
tions that must
Obligation be performed by Subject N/A Event triggered.
managers when an
event occurs.

Table 2.5: Summary of Basic Ponder Policy Types

condition then action” semantics where the event part may or may not exist depending
on whether the policy is an obligation or access-control type policy. Some policies
have “signs” where a positive sign indicates permission and a negative sign indicates
denial. Table 2.5 summarises the basic (non-composite) policy types of Ponder, their

purposes and points of implementation (enforcement).

Authorisation policies are access-control policies that specify what subjects are al-
lowed to do on targets while obligation policies specify what subjects must do on
targets when an event occurs. Subjects are users, principals or automated manager-
components that have management responsibility, and targets are resources or ser-
vice providers, which are objects with interfaces. A subject accesses a target by

invoking methods visible on the target’s interface.

The syntax of access control and obligation policies is shown in Figure 2.7. Note that
the subject field is optional in Ponder authorisation-policy specification as shown

in Figure 2.7. Similarly, the target field is optional in the Ponder obligation-policy

2.6. Mission Adaptation 46

inst (auth+ | auth-) nameOfPolicy {
[subject [<type>] domain-scope-expression;]
target[<type>] domain-scope-expression;
action action-list;
[when constraint-expression;]

}

inst (oblig) nameOfPolicy {
subject [<type>] domain-scope-expression;
[target[<type>] domain-scope-expression;]
do obligation-action-list;
[catch exception-specification;]
[when constraint-expression;]

}

Figure 2.7: Syntax of Ponder Authorisation and Obligation Policies

specification as shown in Figure 2.7, as subjects may perform actions on themselves

when an event occurs.

Ponder has the concept of composite policies, which can be used for simple grouping
of policies or to capture an organisational structure as it is. These concepts are
suitable for policy-based management. Four composite policy constructs, namely

Group, Role, Relationship and Management Structure are supported.

A group is used for organising policies by grouping related policies based on their
target, the application they apply to or other criteria. A role is a special type of group
where all the policies in the construct have the same subject. Given an organisational
position, a role is a set of policies (obligation, authorisation, refrain, etc.) whose sub-
jects are the ones who assumed that position. Once a role is defined, it is possible to
derive sub roles by inheritance. Roles have a different semantics in the new Ponder.

A role is redefined as an atomic construct that has a set of obligation policies.

Relationships are used to relate roles by specifying policies that are part of the inter-
action between roles. Management Structures are constructs that enable administra-
tors to define a policy that reflects the structure of an organisation. A management-

structure policy contains roles, relationships and other management structures.

Deployment Model In [DLSDO1], an object-oriented deployment model for Ponder
was presented. In this model, shown in Figure 2.8, policies, domains and policy-
enforcement agents are conceived as objects. Enforcement agents are objects to

whom the actual policy enforcement is delegated. The enforcement of authorisation

2.6. Mission Adaptation 47

policies is delegated to Access Controllers whereas that of obligation policies is del-
egated to special agents called Policy Management Agents (PMAs). The deployment
model bases the deployment around three services, namely Policy Service, Domain

Service and Event Service.

Policy Administraor

- - Obligation & Refrain
Authorisation Policies

Policies
create create .
. . APOYs Policy Service Oro’s
Policy Objects RPO's
add
eval T eval §
load, load,
s . enable, Domain Service enable,
Domalu Ohjeets disable disable
etc.. etc..
eval § eval T
Enforcement AC's actions PMA's
Agents :—
¢acti ons
register events
Managed Objects . a _____ é_ i o
J 1 1
(Subjects & Targets) : ® O O O :— events Event Service
100 OO0 e
APO = Authorisation policy object PMA = Policy management agent
OPO = Obligation policy object AC = Access controller

RPO = Refrain policy object

Figure 2.8: The Ponder Deployment Model [DLSDO1]

Ponder2

Ponder2 [Pon] is the latest version of the Ponder policy framework. It is a generic
object management system that allows dynamically loading, unloading, enabling and
disabling of managed objects. Generally a Ponder2 managed object is an active object
that is capable of receiving action commands and performing actions. A managed
object can be either part of the management system’s architecture (e.g., a discovery
service) or an adaptor to a managed system (e.g., a sensor managed object serving as
an adaptor to a managed sensor). Managed objects are written in Java and a high-
level language referred to as PonderTalk is used to specify commands for controlling

and interacting with them.

Ponder2 consists of four components, a domain service, an obligation policy inter-

preter, an authorisation enforcement and a command interpreter. The domain service

2.6. Mission Adaptation 48

is used to store and access managed objects in a structured manner. The obligation
policy interpreter interprets event-condition-action rules. The command interpreter
accepts and interprets a set of commands directed to managed objects in the domain
structure. The authorisation enforcement provides the ability to specify fine grained
positive and negative authorisation policies for managed objects. Managed object
codes are loaded into the Ponder2 system dynamically resulting in a factory man-
aged object that is comparable to classes in Java or other object oriented languages.
Commands can then be sent to this factory managed object to create managed ob-

jects which themselves can be sent other commands.

PonderTalk PonderTalk is a Smalltalk-based language used for configuration and
control of a Ponder2 system. Consequently, Ponder2 policies are specified using

PonderTalk.

A PonderTalk specification is a set of statements separated by a “.” that are either
assignments (to a temporary variable created on the fly) or a reference to a managed
object followed by zero or more commands (messages) sent to the managed object.
The latter form of statements specifies message interactions. Message interactions
have return values, which are PonderTalk objects, and hence they can be assigned to
variables or passed as data to other commands. In the example PonderTalk specifica-
tion shown in Figure 2.9, line 2 is a PonderTalk statement that assigns the result of
the statement root load : “Domain” to the temporary variable domainFactory. Com-
mands can be cascaded, by using semi colons, and sent to a single managed object.
The cascaded commands shown in lines 5 - 7 create factories for domain, event
template and authorisation policy objects respectively and store them in the domain
root/ factory. There are three types of commands that can be sent to a managed
object: unary messages, binary messages and keyword messages. Unary messages
are simple commands sent to a managed object without any data. For example, the
command create in the statement domainFactory create in line 5 is a unary message
to the domainFactory object. The domainFactory creates a domain managed object,
which can store other managed objects including domains in a structured manner.
In the root load : “Domain” statement, load : “Domain” is a keyword message where
load : is the keyword and “Domain” is the associated data (argument), which is a

string object identifying the managed object code to be loaded. Binary messages

2.6. Mission Adaptation 49

//Import the Domain code.
domainFactory := root load: “Domain”.
//Create a domain called factory to put all the factories including
//the domain factory and a domain called policy to put all the policies.
root at: “factory” put: domainFactory create;

at: “event” put: domainFactory create;

at: “policy” put: domainFactory create.
root at: “utils” put: domainFactory create.
//Put the domain factory into the factory domain, for later use.
root/factory at: “domain” put: domainFactory.

© ©® N e U ok W N

o

Figure 2.9: PonderTalk Statements

are operators such as “+” followed by a single object. In all types of messages, the
receiving managed object is supposed to understand the meaning of the messages.
In PonderTalk, managed objects are referred by their path (including their name) in
the domain structure. The root domain is the upper most domain and is created by

Ponder?2 itself.

As we have seen in the previous example PonderTalk statements (Figure 2.9), man-
aged objects not only can receive messages but also can themselves be passed as
data in the messages. PonderTalk also has basic (built in) objects that can be passed
to managed objects as arguments. These are Array, Number, String, Boolean, Nil,
Hash and Xml. Arrays are an ordered collection of objects that are created using a
PonderTalk statement by putting the elements in a brace preceded by the # symbol,
as shown in line 2 of Figure 2.10, or by operations in a Ponder2 managed object
(i.e., in the Java code of the managed object). The array shown in this example has
various elements: a number, boolean, string and a domain object. Arrays can receive
messages. For example, to find out the size of an array we can use the size message
as shown in line 3. Hashes are a collection of named objects and are created only by
operations in a Ponder2 managed object. For a listing of messages that can be sent

to the Array and Hash objects, Appendix A can be consulted.

In addition to the basic PonderTalk objects, there is a special object referred to as
Block, which behaves much like a function with zero or more arguments. It is cre-
ated by putting arguments of the block followed by statements, in a square bracket.
To execute a block, a special message referred to as value is sent with or without
arguments depending on whether the block takes arguments or not. Blocks help
parametrise PonderTalk statements. For example, the code for creating and storing

a domain in the domain structure shown in lines 5 & 7 of Figure 2.9 can be rewritten

2.6. Mission Adaptation 50

//An array containing different objects.

myArray = #(10 true “http://www.doc.ic.ac.uk” root/utils /newdomain).
arraySize := myArray size.

//Block for creating domains. Notfe that the domain factory stored in the
//previous example line 10 of Figure 2.9 is used.

domainCreater := (:domainName|

root at: domainName put: root/factory/domain create.

).
//Store the block object.

10 root/utils at: “newdomain” put: domainCreater.

u //Using the block object create domains.

12 root/ utils /newdomain value: “local”; value: “remote”.
13 //Conditional operation using blocks.

© ©® N e U ok W N

1w (myArray size == 4) ifFalse: (root print: “false”) ifTrue: (
15 root print: “true”).
16 MyArray do: (:value| root print: value).

Figure 2.10: PonderTalk Objects

using a block as shown in lines 6 - 8 of Figure 2.10 and reused for performing the

same task for various domains as shown in line 12 of Figure 2.10.

Blocks can be executed conditionally using the ifTrue : and ifFalse : messages of
PonderTalk’s Boolean object. For example, in the statement shown in lines 14 & 15,
depending on the result of the message sent to the array object either the first block
(which prints out false) or the second block (which prints out true) is executed. In

this specific case, the second block is executed since our array has four objects.

The messages do : and collect : enable an iterative execution of a block for each ele-
ment, with the element as an argument, in an array or hash managed object. While
the do : message returns the result of the last execution, the collect : message puts
the result of each execution in an array object and returns this object. For exam-
ple, the statement shown in line 16 executes the block for each element in the array
resulting in all the elements of the array being printed out. The whileTrue : and
whileFalse : messages enable looping the block as long as its return value is true or

false respectively.

Ponder2 Events and Policies Events and policies are specified using PonderTalk
and their creation is facilitated by event and policy factory objects, namely FEvent
Template, ObligationPolicy and AuthorisationPolicy, which are provided by Ponder2.
These factories are created and stored in the domain structure as shown in Figure

2.11.

2.6. Mission Adaptation 51

1 //Import and put event and policy factories.
2 root/factory

3 at: “event” put: (root load: “EventTemplate”);
4 at: “ecapolicy” put: (root load: “ObligationPolicy”);
5 at: “authpolicy” put: (root load: “AuthorisationPolicy “).

Figure 2.11: Ponder2 Event and Policy Templates

‘ event-factory create : arguments-array

Figure 2.12: Syntax of a Ponder2 Event Type

Ponder2 events are a set of name-value pairs. The set containing the name list is
referred to as an event template. Each event has an event template (type), which
is created by using a create message with the list of argument names to the event
template factory as shown in Figure 2.12. Once the event template is created, an
event of that type can be created by sending messages, with or without values, to
the template. After the event is created, it is propagated to all policies that have
subscribed to that event type. Figure 2.13 shows example Ponder2 event types and
events. Events can also be created by managed objects (i.e., in the Java code of the
managed object) provided that they are given the event template for the events they
are expected to generate and they understand the semantics of the event types (i.e.,
the arguments). The event templates can be passed to the managed objects through

messages.

Obligation policies are created by using the obligation policy factory object and setting
the event type, condition and actions of the policy. The event type, condition and
actions are set through a message sent to the policy object. The condition and actions
are specified using blocks as shown in Figure 2.14. When an event of the specified
type occurs, the policy evaluates the condition block and if the result is true, it

executes the action block. The blocks get the values for their arguments from the

//Create carArrived and carlLeft event types.

event := root/factory/event create: #(“type” “colour” “numberPlate”)
root/event at: “carArrived” put: event.
event := root/factory/event create: #(“numberPlate”)

root/event at: “carlLeft” put:event.

//Create and send carArrived and carlLeft events.
root/event/carArrived create: #("sedan” “green” “PONDER2CAR").
root/event/carLeft create: #("NONPONDERRCAR").

® N g A W N =

Figure 2.13: Example Ponder2 Events

2.6. Mission Adaptation 52

policy := root/ factory/ecapolicy create.
policy event : event-type;

condition : [: arg | boolean-expression];
action : [: arg | statements]

Figure 2.14: Syntax of a Ponder2 Obligation Policy

policy := (root/ factory/authpolicy
subject : subject-path-and-name
action : action-name

target : target-path-and-name
focus : focus-type).

[policy mode.]

[policy condition.)

Figure 2.15: Syntax of a Ponder2 Authorisation Policy

event.

Authorisation policies are created by using the authorisation policy factory object
and specifying the subject, action, target and focus of the policy, as shown in Figure
2.15. An authorisation policy can protect either or both the source (subject) and tar-
get from a given action; which one it is protecting is specified by the focus type using
the values ¢ for target and s for subject. The source can be protected from perform-
ing actions or accepting replies to actions that are harmful to itself or other subjects
in the domain. The target can be protected from unauthorised subjects trying to
perform an action (access control) or from sending back the result of an action that
contains sensitive information (privacy control). The Ponder2 system can be config-
ured to allow or deny all actions on all managed object by default and then interpret
the explicit specification indicating the subset of actions that are denied or allowed
respectively. After a policy is created, its mode, i.e., whether it is a negative (deny)
or positive (allow) authorisation, can be set by sending the optional (shown in square
braces in the figure) mode type message to the policy. The default mode of a Pon-
der2 authorisation policy is positive; it can be set to negative by sending the regneg
or repneg messages to the policy to deny invocation (request) and reply respectively.
Conditions of an authorisation policy, which are optional, can be specified using the
arguments of the operation that the policy is protecting. Figure 2.16 shows example

Ponder2 obligation and authorisation policies.

Ponder2 supports both explicit specification of authorisation and obligation policies,

which are necessary for our framework. In addition, the Ponder2 framework has a

2.6. Mission Adaptation 53

//An obligation policy that prints out the details of a car, and stores

1

2 //it (the corresponding managed object) in the cars domain using its
s //number plate as the managed object name when a car arrives at a

« //parking station if the car is not of type SUV.

s policy := root/factory/ecapolicy create.

6 policy event: root/event/carArrived ;

7 condition: (:type | type != “SUV”);

s action: (:type :colour |

9

root print: “A” +colour+“ “ + fype +" car is entering the station.”.
10 root/carpark/cars at:

1 numberPlate put:(root/factory/carmanagedobject create).
12)

1 //An authorisation policy that prevents cars from extending the
u //parking period.

15 policy := (root/factory/authpolicy

16 Subject: root/carpark/cars

17 action: “extendPeriod:”

18 farget: rooft/carpark/meter

19 focus: “t7).

20 policy regneg.

Figure 2.16: Example Ponder2 Policies

number of advantages that make it suitable for a wider range of application domains.
Its design is simple in that it has only few built-in elements. It is extensible in that
one can extend it with new functionality, to interact with new services and to manage
new resources. It is self-contained in that it provides a means to interpret policies,
enforce policies on managed resources and interact with the policy system. It is also

scalable in that it can be deployed on systems with constrained resources.

Law-governed Interaction

Law-governed interaction (LGI) [MUOQ] is a framework that deals with the specifi-
cation, deployment and enforcement of coordination policies for heterogeneous dis-
tributed systems. Given a group of agents (agents, in LGI, are systems involved in the
interaction, including human beings), LGI ensures that the interaction among this
group, referred to as £-group, complies with the law (£) of the group. An £L-group G is
defined as a four-tuple (£, A,CS, M) where L is an explicit set of rules, A is the set of
agents that are members of the group, CS is a set of control states, one per member
of the group and M is the set of messages, referred to as £-messages, which can be

exchanged between members under the law.

2.6. Mission Adaptation 54

Specification An LGI law is an event-condition-action rule defined over a subset of
events, referred to as regulated events, occurring at members of an £-group. Events
trigger the evaluation of the law resulting in operations referred to as the ruling of
the law. The law is specified using a restricted version of Prolog (goals such as retract
and call are not permitted) that has two additional types of goals called a do-goal and
a sensor-goal. A do-goal, which has the form do(p), where p is a primitive operation
appends the term p to the ruling of the law. A sensor-goal, which has the form tQC'S,
where t is a Prolog term unifies term ¢ with each term in the control state of the agent.
When an event occurs at an agent x, the law is evaluated in the context of the control
state of x (CS,) resulting in a list of primitive operations, which are the ruling of the
law for this event. The operations can be performed on the control state of the agent
(e.g., incrementing the value of a parameter in the agent’s control state or adding a
term to the control state), on messages (e.g., forwarding a message) or agents (e.g.,
imposition of an obligation on an agent). These operations are immediately carried
out possibly resulting in more events and more rulings. Figure 2.17 shows a law for
regulating membership in a peer-to-peer medical community. The preamble of the
law, which specifies the initial setting of the community, states that the community
accepts certificates from two certifying authorities, namely cal and ca2 and in the
beginning all agents have empty control state. The rest of the rules are explained in

the figure.

Deployment Model In LGI, three entities, namely the controller, controller-server
and the secretary facilitate the deployment and enforcement of the law. The law of
a group is enforced by trusted agents referred to as controllers. Every member of
the group has a controller through which every £-message between the member and
other members passes, as shown in Figure 2.18. The controller of an agent also
keeps the control state of the agent and deals with computation of the ruling of the
law for every event at that agent. A controller-server is a name-server that keeps
track of active controllers. An agent and its controller can be hosted on the same
machine, but in the most general case the agent can request for a controller from a
controller-server when it wishes to engage in an LGI group. LGI supports two types
of groups — an explicit group where membership is regulated and maintained and an
implicit group where any agent operating under the law can be a member and there

is no membership maintenance. In an explicit group, the secretary is responsible for

2.6. Mission Adaptation 55

Preamble:

authority(cal, C A1 PublicKey).authority(ca2, C A2PublicK ey).initialC'S(]]).

Rule 1:

certified(X, cert(issuer(cal), subj(X), attr([found(X)])))

: —do(+member).

The agent is accepted into the community without requiring approval from al-
ready admitted members if it can present a certificate from cal stating that it
is a_founder.

Rule 2:

certified(X, cert(issuer(ca2), subj(X), attr([md(X)])))

: —do(+-certified).

The agent must establish that it is representing a doctor by presenting a cer-
tificate from ca2 with the attribute MD. If the agent establishes that, the goal
do(+certified) will result in the addition of the term certified to the agent’s
control state.

Rule 3:

sent(X, allow,Y’) : —memberQC'S,

if (friend(Y)QCS) then do(deliver(X,alreadyAccept, X))

else do(+ friend(Y)), do(forward(X, allow,Y")).

If the agent attempts to send a message approving admittance of another
agent, forward the message if the agent (a) has membership, and (b) has not
previously given Y permission to join.

Figure 2.17: An Example LGI Law [IMNO4]

maintaining the law of the group, the list of members and initial members, and the
initial control state that is assigned to a new member. The initial members are roles
defined in the law and can be played by any of the agents that requests to fill that

role.

c 5:{ CSy
x Y
.=>D communication __.
sent forward disiat arrived deliver
agent agent
L i
contreller controller

Legend:
aregulated event o ——— s
8 Primitive OPEration seeees seeeees =——j

Figure 2.18: LGI Law Enforcement [IMNO4]

Once the agent gets its controller, it can join a group by sending a join request to the
secretary of the group by identifying its controller and the role it wants to play if it
is going to play one of the roles. The secretary then provides the law and the initial

control state of the agent to the controller of the agent. If the agent is playing one

2.6. Mission Adaptation 56

of the roles, its control state contains a term stating its role. The secretary might
perform authentication of both the agent (through a password) and the controller
(through a certificate) before admitting an agent to the group, if the law of the group

SO requires.

LGI is a powerful approach for managing interactions among distributed agents. It,
however, has two limitations in relation to our objective. The first one is that since
it focuses on interactions (i.e., authorisations in LGI parlance), it has a minimal
support for obligation policies that are needed to perform adaptation. The support
for obligation policies is based on its enforced obligation concept, which can initiate
interaction but is not allowed to change the control state thereby limiting the ability of
obligation policies to trigger adaptation by changing the behaviour of the autonomous
system. The second limitation is caused by its need for a controller entity to enforce
the law. In applications where there are trusted agents that can serve as controllers,
LGI is appealing since agents can exchange their LGI messages via these controllers.
However, in teams of mobile autonomous systems that are formed and dissolved
in a relatively short period of time, it is infeasible to assume the presence of trusted
controllers. Although LGI allows putting a controller in the same system as the agent,
this compromises the protocol as the interaction will be performed without a trusted

controller.

Policy-based Configuration management

Cfengine [Bur93, Bur95] is a policy-based configuration management framework for
systems and network administration. It enables automation of administrative tasks
such as installation, configuration, updating and maintenance of networked hosts.
Hosts are divided into groups called classes based on their attributes, and policies
are specified for each class. Since hosts know their attributes, they can determine
to which class they belong to and pick policies that apply to themselves and behave

accordingly.

Specification A Cfengine configuration specification, shown in Figure 2.19, con-
sists of three main sections: groups, control and policies. In the groups section,

classes are defined from groups of hosts. The control section is used to set internal

2.6. Mission Adaptation 57

groups :
myclass = (hostl host2 host3)
control :
actionsequence = (links files)
links :

classl.class2.class3 ::
/bin/tesh — > Jusr/local [bin/tcsh
files :
myClass ::
Jusr/local owner =root mode = o-w action = fizall
(linux|solaris). Hr12.onTheH our.lexception_host ::
/ete/passwd mode = 0644 action = fixzall inform = true

Figure 2.19: An Example Cfengine Configuration Specification

variables, the most important one being the state of policies (i.e., whether they are
active or not). After these two sections, follow the policies. A Cfengine policy is an
event-condition-action rule that has two elements, namely class and statement. The
class, in its most general form, is used to encode both the event and condition of the
policy. The statement part of the policy is used to specify the actions. Policies are
grouped into sections, which are effectively names for the policy groups and serve

the purpose of identifying the policy group for activation or deactivation.

In the example Cfengine configuration specification [Bur95] shown in Figure 2.19, a
class called myClass is defined from three hosts (in the groups section) and a policy
for this class is specified (in the files section). A host interpreting this specification
will perform the action in this policy if it belongs to myClass, i.e., if it is either host1
or host2 or host3. If a policy applies to all hosts then the class specifier can be
omitted. Classes can also be specified by using expressions as shown in the second
policy of the files section. This expression specifies (1) that a host is a member of this
class, if its operating system is either Linux or Solaris and if it does not belong to a
class labelled as exception_host, (2) a trigger (event), which specifies that the policy is
triggered on the hour and (3) a condition, which specifies that the time interval must

be between 12:00am and 12:59am.

Deployment Model Cfengine’s deployment model is based on an agent, namely the
Cfengine agent, which runs on every host and enforces policies, and a collection
of helper services used for remote operations and public-key based authentication
associated with these operations. Later versions of Cfengine are enhanced by the

addition of new components such as a learning component for anomaly detection.

2.6. Mission Adaptation 58

Policies are stored in a central repository accessible by all hosts in the administrative

domain from which they are fetched upon startup.

Although Cfengine is able to specify adaptation policies, the events it can respond
to (and hence the context) is limited by its very nature of class evaluation approach.
Classes, which are used to encode events, can be evaluated either as a result of the
characteristics of the system on which Cfengine is running (e.g., operating system,
time of day on the system, etc.), or by making the system a member of a named group
or by using an explicitly defined identifier. These types of events, which are sufficient
to specify adaptation in systems administration (for which Cfengine is targeted for),
are not sufficient for our purpose where the context (and hence the domain of asso-
ciated events used to trigger policies) needs to be larger. In addition, Cfengine does
not have a means to explicitly specify authorisation policies, which are necessary in

a team to selectively allow access to resources for some team members.

Artificial-intelligence Based Policy Framework for Autonomic Systems

In [KWO4], a policy framework based on the concepts of artificial intelligence was
proposed. In this framework, an autonomic system was modelled as a rational agent
[NRO3] that perceives and acts upon its environment by selecting actions that are ex-
pected to maximise its objective. The actions are selected on the basis of information

from sensors and built-in knowledge.

The authors demonstrated how three of the notions of a rational agent can be in-
corporated into policies for autonomic computing. The three notions are reflexive

agenthood, goal-based agenthood and utility-based agenthood.

Reflexive agents use if-condition-then-action rules. The rationality in these agents
is that they select actions appropriate for the condition, assuming that the designer
who encoded the rules has encoded them rationally. Goal-based agents select actions
that could enable them to achieve specified goals. The rationality in these agents is
that they select actions that lead them to a desired state. Utility-based agents select
actions so as to maximise their utility function. The rationality in these agents is that

they select actions so that the actions result in maximum utility.

These notions of rational agents were captured in three types of policies called action

2.6. Mission Adaptation 59

policies, goal policies and utility-function policies.

Action policies specify the actions that must be taken whenever the system is in a
given current state. These policies have the form IF (Condition) THEN (Action), where
Condition is either a specific state or set of states that satisfy the given condition.

Some important points about action policies are listed below.

e They do not require an operational model of the system.

e They require the user to have a larger amount of domain expertise since the

user is required to know the control variables and sets of states (state space).

e They are susceptible to conflicts.

Goal policies specify either a single desired state or one or more criteria that charac-
terises a set of desired states. Some important points about goal policies are listed

below.

e They give the system more autonomy by allowing it to choose the best actions

under the current conditions.

e They require lesser domain expertise from the user, compared to action policies,

as they are expressed only in terms of the state space.
e Similar to action policies they are susceptible to conflicts.

e They need system models and planning algorithms.

Utility-function policies express the value associated with each state instead of clas-
sifying the states as desirable and not-desirable, which goal policies do. The as-
signment of real-valued desirability value to each state enables a finer distinction
between states. For example, if a certain goal policy is not able to take the system to
a desirable state, it is considered failed whereas a utility policy can take the system
to a state that has a higher utility than the current state even if it may not be able to
achieve the maximum utility. Some important points about utility-function policies

are listed below.

e They inherently avoid conflicts. Unless they are mixed with action or goal poli-
cies in the same component within a system, conflict does not arise in utility

policies.

2.7. Autonomic Computing 60

e They need models and optimisation algorithms. But once these are designed

the process is straightforward.

e It is difficult to specify utility functions.

In this section, we have discussed different policy-based systems and assessed their
applicability to our system. We note that two of the approaches, the IETF policy
framework and Cfengine [Bur95], lack authorisation policies. Cfengine also has a
limited domain of events due to the approach it uses to encode events. LGI's [MUOO]
use of a trusted controller entity to exchange law governed messages makes it less
suitable to dynamic teams. In addition, due to restrictions on operations that can be
performed on the control state, its concept of enforced obligations is not as powerful
as other approaches such as Ponder2. Ponder2, on the other hand, supports explicit
specification of both authorisation and obligation policies with a self-contained de-
ployment model that is suitable for dynamic teams. These and other qualities such

as extensibility, scalability and ease of use make it appealing to our system.

In the previous section, we have seen systems such as robot control software, which
enable robots to manage themselves without human intervention. The concept of
self-management, however, is not limited to robots and agents. The autonomic com-
puting paradigm employs this concept to enable self-management in a wide range of
application domains. In the next section, we present an overview of this paradigm

with representative autonomic computing architectures.

2.7 Autonomic Computing

Autonomic computing [HorO1, KCO03] is a paradigm inspired by the Autonomic Ner-
vous System (ANS) [Bri], which regulates organ functions mostly without any con-
scious effort by the organism. Much like the ANS, an autonomic computing system
can perform self-management without the administrator’s intervention, provided that
it is initially given high-level objectives from the administrator. Autonomic computing
is believed to play a key role in overcoming the difficulty of managing today’s complex

computing systems.

The primary goal of autonomic systems is self-management, which as outlined in

2.7. Autonomic Computing 61

[KCO3], has four aspects, namely self-configuration, self-optimisation, self-healing

and self-protection.

1. Self-configuration: the ability of a system to automatically configure itself in ac-
cordance with a declarative specification such as high-level policies that specify
the desired behaviour of a system. When a new entity joins a self-configuring
system, a mutual adaptation, i.e., by both the new entity and the system, takes

place leading to a seamless composition.

2. Self-optimisation: the ability of a system to continually monitor its efficiency
and adapt the system parameters or components in order to increase efficiency

based on specified measures of utility such as performance, cost, etc.

3. Self-healing: the ability of a system to detect, diagnose and repair problems

resulting from bugs or failures in software and hardware.

4. Self-protection: the ability of a system to protect itself from malicious attacks
as well as problems caused by entities outside the system but propagated to the
system, and forecast problems based on reports in order to proactively mitigate

them.

In addition, an autonomic system is required to be aware of itself (its states and
behaviours) and current context. It should also be built on standard and open proto-
cols so that it operates in a heterogeneous environment, and be anticipatory so that
it anticipates its needs, behaviours and the environment and manages itself proac-
tively. In [WPTO3], it is illustrated that proactive computing complements autonomic

computing.

Research in autonomic computing has resulted in a plethora of architectures that
have incorporated one or more of the autonomic system properties targeted for spe-
cific applications (e.g., network, storage, etc. management). Parashar et al. [PHO5]

present a good summary of these application-specific autonomic architectures.

In this section, we consider related work that address most of the issues of self-
management using the autonomic computing paradigm for a broader application

domain.

2.7. Autonomic Computing 62

The IBM Autonomic Computing Architecture

White et al. use autonomic elements [KCO03] as building blocks of an autonomic sys-
tem and propose an approach by stating the required behaviours and interfaces of
autonomic elements. An autonomic element is a component comprising two entities,
namely an autonomic manager and a managed element. The basic structure of an
autonomic element is shown in Figure 2.20. The autonomic manager monitors the
managed element and its environment, analyses, plans and executes the plan on the
managed element. An autonomic element is responsible for managing its own be-

haviour, and interaction with other autonomic elements in accordance with policies.

Autonomic manager

Managed element

Figure 2.20: The Autonomic Element [KCO03]

Two fundamental goals an autonomic computing architecture should accomplish

have been put forward:

1. It must describe the external interfaces and behaviours required to make an

individual component autonomic.

2. It must describe how to compose systems out of these autonomic components

in such a way that the resulting system is also autonomic.

The behaviours of an autonomic element can be classified as required and recom-

mended, where the required behaviours are:

1. An autonomic element must be self-managing (self-configuring, self-healing over
internal failures, optimising its own behaviour, protecting itself from external

probing and attack).

2. It must be capable of establishing and maintaining relationships with other

autonomic elements.

2.7. Autonomic Computing 63

3. It must manage its behaviour and relationships so as to meet its obligations.

and the recommended behaviours are:

1. It should ask for a realistic set of requirements when requesting a service from

another element.

2. It should offer a range of performance, reliability, availability and security asso-

ciated with its service.

3. It should be able to translate requirements for its service characteristics into

requirements for any services that it needs to request from other elements.

Autonomic systems are formed from autonomic elements with the help of special
autonomic elements that implement system level behaviours, referred to as infras-

tructure elements:

1. Registry : used for service discovery.
2. Sentinel: used for monitoring services to other elements.

3. Aggregator: combines two or more elements and uses them to provide improved

service.

4. Broker: facilitates interaction.

Policies have been identified as a means for specifying desired behaviours of auto-
nomic systems, and policy-based self-management as the focus for the use of poli-
cies in autonomic computing. The proposed policy-based management approach
was based on the Artificial-intelligence (Al) based policy framework discussed in Sec-

tion 2.6.1.

Unity

Tesauro et al. present an autonomic computing architecture called Unity [TCWT04,
CSWWO04], which is based on multiple interacting agents and realises a number
of autonomic system behaviours including self-configuration, self-healing and self-

optimisation. They decompose the autonomic computing problem into decentralised

2.7. Autonomic Computing 64

Rule Access
Agent Agent
Functional aspect
AutoMate .
Component Operational aspect
Control aspect

Figure 2.21: A Conceptual View of an AutoMate Component

autonomous agents using an agent-based system approach [Jen0O] and model these
agents using the autonomic element architecture presented in [KCO03]. All com-
ponents are modelled as autonomic elements; this includes computing resources
such as servers, management entities such as arbiters and infrastructure elements
such as policy repositories and registries. Unity aspires to create a dynamic multi-
application environment that can cater for self-assembly of systems to achieve an
application’s goal and optimal allocation of resources to the logically separate ap-
plications, which use the shared finite resources. The main elements in Unity are
registry, arbiter, policy repository and sentinel. Resources such as servers announce
their availability and applications announce their interest for resources, to the ar-
biter, which uses utility functions to deal with optimal allocation of resources to
applications. Elements use the registry to locate other elements including the policy
repository, which contains policies governing the role of each element. Upon startup,
elements retrieve policies related to them from the policy repository. The authors
have implemented a prototype of the architecture for a data centre application that

provides computation resources to run multiple applications for many users.

AutoMate

AutoMate is a framework that extends the Open Grid Service Architecture (OGSA)
[TCF+02] to enable autonomic computing for Grid applications. It has three layers,
from bottom to top, namely System, Component, Application, and modules common
to all layers called Engines. The system layer is built upon the OGSA and provides
peer-to-peer messaging and event services. The component layer deals with the defi-
nition, execution and discovery of components. The application layer deals with auto-
nomic composition of components to meet application requirements. AutoMate also
has three engines, namely Trust/Access control, Deductive and Context-awareness,

which are decentralised networks of agents.

2.7. Autonomic Computing 65

Measurement Interaction Service
& Monitoring Adaptation Discovery

Raw
Measurements

S 1 1

Policy “Management
Management and Control Context
Other
Adapters

Goals and
policies

Context
Information

111

Managed Resources
Figure 2.22: Architecture of an SMC

The key autonomic entities in AutoMate are components that model an autonomic
element as a computational element managed by rule and access agents as shown in
Figure 2.21. An AutoMate component exports its computation behaviours (functional
aspect), operational behaviours such as computational complexity and resource re-
quirement (operational aspect), and the adaptation and management provisions (con-
trol aspect). The functional behaviours are used by the composition module to select
appropriate components for applications while the operational behaviours are used
to optimise component selections. The components contain access policies and rules,
which are used by the access and rule agents to manage the security and adaptation
of the component respectively. The rule agent is part of the deductive engine, which
enables execution and dynamic change of rules that in turn change the behaviour of

the component.

The Self-managed Cell Architecture

A Self-managed Cell (SMC) [LDS*08] is a closed-loop systematic organisation of man-
agement services that represent a set of hardware and application components in
a single device, or multiple devices collaborating to achieve a common goal. The
management services interact with each other through an asynchronous event bus.
An SMC contains measurement and monitoring, event, discovery, context and pol-
icy services, which are required in order to implement a feed-back loop adaptation

mechanism. The architectural pattern of an SMC is shown in Figure 2.22.

The function of each core service is briefly described as follows. In order to form its

2.7. Autonomic Computing 66

closed loop adaptation, an SMC should at least have an event and policy services.
The remaining core and other services can be added as per the application’s need.
In essence, the SMC is an architectural pattern that gives the freedom to design
a concrete architecture befitting an application domain. The Policy Service is the
means of specifying the adaptive behaviour of an SMC. The Event Bus is responsible
for asynchronous notification of events to different management services of the SMC.
Event notification is a crucial element of an SMC because adaptation, protection and
other self-management actions are specified in terms of obligation policies, which are
triggered by events. An obligation policy may perform an action that modifies the
behaviour of a single component of an SMC or it may enable or disable other policies
to change the overall behaviour of the SMC. The use of an event bus also supports
loose coupling between the various SMC services, which can react concurrently and
independently to event notifications. However, all communication is not constrained

to be over the event bus.

The Discovery Service discovers components that are in range and capable of be-
ing members of the SMC. The Measurement and Monitoring Service is responsible
for keeping track of the SMC’s operation and generates events when actions need to
be taken. Events may indicate situations such as degradation or failure of compo-
nents. The Context Service uses sensors to determine information such as current
location, activity and what other SMCs or other entities are in the vicinity as the SMC

behaviour will adapt to current context.

A group of SMCs may compose or federate to form a single SMC; this is the ap-
proach in the SMC architecture to form a self-managing system from self-managing
elements. The SMC architecture incorporates all the functionalities needed for com-
position (or federation) in each SMC and hence alleviates the need for infrastructure
elements. The use of infrastructure elements introduces centralisation, which makes
the system prone to single points of failure and reduces the scalability and perfor-

mance of the system.

2.8. Summary 67

2.8 Summary

In this chapter, we have presented background work in robot-software architecture.
We have reviewed related work in multi-robot and multi-agent systems that support
mission specification and found out that mission specification approaches that ex-
plicitly specify behaviours in terms of rules are more adaptive than those that do
not use rules. We have also considered related work in capability description and
matching. We observed that the UPnP approach can be adapted to suit our require-
ment. Also, with respect to capability matching we have noticed that structured rep-
resentation facilitates matching, and that in addition to exact matches, the matching
approaches consider other types of matching such as subsumption based ones. We
have presented related work on distributed systems deployment, as well as multi-
robot and multi-agent architectures that support dynamic role/task allocation. We
noticed that approaches that use planning or constraint satisfaction based allocation
perform the search for a valid assignment in a large search space and tend to take
longer time. We also noticed that in most approaches utility functions are widely
used to measure the fitness of a system against the requirement of tasks/roles. We
have presented related work on policy-based systems and observed that Ponder2 is
preferable for our system. Finally, we have presented an overview of the autonomic
computing paradigm and discussed some representative architectures that use this

approach.

Chapter 3

Mission Management

3.1 Introduction

In this chapter, we will present an overview of the self-management architecture and
then focus on mission management, which is the first layer of the architecture. The
components of the mission management system, i.e., policies, roles and missions are

discussed, and a role-based approach to mission specification is presented.

3.2 Overview of the Self-management Framework

In real-life applications, multiple autonomous systems deployed on a mission col-
laborate to use services or resources from another system. To be able to form and
use a dynamic collaborative team of autonomous systems in accordance with a high-
level mission specification, a means for describing the capabilities of autonomous
systems, discovering available heterogeneous autonomous-systems, securely admit-
ting them to the team, assigning them to an appropriate role based on their capa-
bility and maintaining the team is necessary. We achieve adaptive management of
autonomous systems by employing a self-management architecture that uses policy-
based techniques to allow dynamic modification of the management strategy relat-
ing to resources, task behaviour, communications and team management, without

reloading the basic software within the system. The self-management architecture

68

3.2. Overview of the Self-management Framework 69

comprises three layers, namely mission, team and communication. Each layer is a
local component of a distributed control system of that layer, i.e., each autonomous
system is loaded with the three-layer self-management architecture. We use Un-
manned Autonomous Vehicles (UAVs) as a testbed for our framework. In this and
the rest of the chapters, we will use the term UAVs instead of mobile autonomous
systems. However, except for the communication link maintenance entity in the
communication layer, which performs motion control actions on UAVs, the rest of
the architecture does not assume any property specific to UAVs and is applicable
to the more general domain of collaborating mobile systems such as disaster relief

teams or groups of foot soldiers on a mission.

An overview of the self-management framework is shown Figure 3.1, with each UAV
running the self-management architecture (discussed later), and with the high-level
properties of the framework indicated in processes and interactions (1) to (12). A
mission for a team of UAVs is specified, by a mission administrator, in terms of
roles. The mission specification defines how UAVs will be assigned to perform specific
roles within the team, based on their capabilities and credentials, as well as when
and how to adapt the mission to changes in context or failures. The administrator
specifies the mission with the possibility of reusing or modifying policies, roles and
mission specifications that are previously defined and stored in a repository (1-2).
The repository can be implemented within a mobile node with sufficient resources —
on the commander or another UAV. The specification will then be loaded onto a UAV
that has the necessary capabilities for managing the mission and consequently the

UAV assumes the Commander (manager) role (3).

Based on the mission specification, the Commander UAV may either preemptively
fetch the necessary policies, tasks and roles (i.e., task and role classes) for all fu-
ture team members (4) or let each member deal with its own fetching (8 & 12 shown
in broken lines to differentiate these optional interactions from the necessary ones).
The Commander UAV then uses its discovery service to discover and authenticate
UAVs. The discovered UAVs provide their capability descriptions to the Commander,
which checks them against the capability requirements of available roles and per-
forms optimal assignments (5-7). The assigned UAVs recursively repeat this process
if their mission includes managing other UAVs (9-11), as a result creating a tree that

has the Commander UAV as a root. This tree is used to communicate management

70

3.2. Overview of the Self-management Framework

(2). Store/Fetch & modify
Mission, Role, Policy
Mission/Role/Task/Policy
Repository
5 %
'6,% % I
R} \
Mission ® %o o |
> a2 NI \
administrator %% &L [\ s
(1). Specify 2 ’% % . @% | \ e% S
mission %7 2 N0 | \ e
%. Q,e} | XY
o | % ‘!‘@]
\)
I \
/ \
558!
Commander UAV M E &9 /
(5). Discover, perform g §_ /
authentication, decide €3 /
assignment, manage roles s
under command c I UAV,
& . = |
S 3| :
SELS A
TFHT L 2% |
L LS ~ % @
SEFREE & !
N [&) ON () © S
LRI g
L o &
'Dép l$ ra\
N v
~N
i) N
UAV;
(9)- The ‘
same as (5) /’9
A
UAV, (M %f”o@
)
—T v z@
Legend

The self-management
UAV;3

architecture
= M: Mission layer

= T:Team layer
= C: Communication layer

é UAV: Unmanned Autonomous Vehicle

Figure 3.1: Overview of the Self-management Framework

messages, collect state information and organise the roles hierarchically, each with a

unique identity so as to make the team robust and capable of recovering from failure.

3.3. The Self-management Architecture 71

3.3 The Self-management Architecture

The management framework is designed as a composition of interacting entities or-
ganised in three layers, i.e., mission, team and communication management. The
architecture is shown in Figure 3.2. To simplify the diagram, not all possible inter-
actions between the entities of the framework are shown. Figure 3.2 illustrates the
layers and interactions among them (the autonomous system’s control interface is
shown later on). We call a role (or a UAV enacting the role) that is responsible for
assigning one or more roles a manager role, and the roles managed by it managed

roles

The mission layer consists of three main entities, namely Mission, Role Manager' and
Role. The Mission entity deals with interpreting the mission specification and instan-
tiating the mission using the instantiation specification. The Role Manager entity is
responsible for loading and withdrawing a role during mission startup and recon-
figuration respectively. It also takes control of the UAV and manages the switching
between roles when multiple roles are enacted by the UAV. The Role entities are the

set of roles that the UAV can perform.

The team layer has entities that are available in all UAVs irrespective of the role they
are enacting: Capability Manager, State Aggregator and Management Tree Node as
well as other entities whose existence depend on whether the UAV is enacting a man-
ager role or not: Discovery and Optimiser. The management tree is a distributed data
structure used to maintain a UAV team. The State Aggregator entity is responsible
for collecting state information from the managed roles and providing the information
to the Management Tree Node as well as sending state updates to the manager role.
It is also responsible for generating the appropriate events such as communication
link disconnection and permanent UAV or link failure when the state information is
not received within the specified timeouts. The Discovery entity is responsible for
discovering UAVs and passing the information to the Optimiser entity, which makes
the assignment decision. The Capability Manager entity is responsible for generating

and communicating the capability description of a UAV.

11t is worth noting that the Role Manager (written in title case, throughout the thesis, to avoid confusion)
is an architectural element found in the mission layer while a manager role is any role that performs role
assignments, i.e., manages other roles. Also, note that a manager role is not the same as the commander
role. A team has one commander role (at the root of the hierarchy) but many manager roles (all non-
leaf roles in the hierarchy are manager roles). A manager role effectively performs the same task for its
sub-team as the commander role does for the whole team.

3.3. The Self-management Architecture 72

Mission class/instance
specification, Credentials Mission/Role/Task/Policy
Repository

. e Tostye, N T
W ey,
Role
Mission ll;]ﬂé?as:]%r; M i Management: UAV
anager commands Control/ ——
KMission Layer . feedback
\is' D
\Vaitind SoP— > WS
(" ASS\Q"‘mem s (}QI 9 aﬁ
—_— Discovered ' State Management Capability Capability UAV
timiser P s
UAV {Dmcoveryj [Aggregator}—[Tree Node} [Manager query Control
Software
N
Team Layer Registration, messages
J
l
(. N UAV
Message Colmm. Link Control/ N
Msess:ge Router Maintenance feedback
ender
C Communication Handler)
C UDP)
_Communication Layer) —

Figure 3.2: Self-management Architecture

The communication layer has three main entities, namely Message Sender, Mes-
sage Router and Comununication Link Maintenance. A connectionless communication
mechanism is used for most of the messages exchanged in our system and hence
these entities are built upon UDP. However, although connectionless communication
is sufficient for most of the messages exchanged between UAVs, reliable delivery is
necessary for critical messages such as role assignment and capability description.
This service is provided by the Message Sender entity. The Communication Handler
entity provides a secure communication channel between UAVs. The Message Router
entity forwards incoming messages to the relevant roles and other entities in the UAV.
The Communication Link Maintenance entity deals with potential communication link
failures by means of preventing failures and facilitating the provision of future inter-

mittent communication links should failures are bound to happen.

The management architecture stores all architectural entities as well as tasks, poli-
cies, roles and other entities in a domain structure in order to facilitate policy enforce-

ment. In order to allow for policies that perform remote operations, the framework

3.3. The Self-management Architecture 73

supports policy-based importation of remote role references and storing them in the
domain structure. Consequently, the domain structure is also a means of maintain-
ing a collaboration organisational structure which in general may have a different

organisational structure than the hierarchical management structure.

The UAV control software interface is shown in Figure 3.3. The control interface
of robots varies depending on the type of the robot. While some provide complex
tasks such as mapping and localisation, others provide basic motion and sensory

interfaces. The Koala robot [kt], which was used as a testbed for the framework,

- 1 4 D\
Motion)

Sensory Actuator

_ UAV Control Software)/

Figure 3.3: UAV Control Software Interface

provides direct access to sensors and actuators with a serial protocol through an
RS-232 line. For example, to read the battery level of the robot, the command S \r
where S is the name of the command and \ r is the carriage return character is used.
The robot returns the result as s, battery_level \ n\r where s is the result type for the
command S, battery_level is the battery charge level of the robot, \ n is the line feed

character and \ r is the carriage return character.

The Koala robot can be extended with the use of the KoreBot [kt] module, which has
a better processing power and provides a low-level robot control interface that can be
used by high-level tasks. The operations a - m shown in Figure 3.3 are provided by
lower level tasks, whereas the operations: (1) moveForward(speed), (2) turnLe ft(speed),
(8) turnRight(speed), (4) goTo(position) are provided by the higher level motion task,

which uses the lower level tasks.

The low-level tasks provide operations for retrieving sensor readings and controlling
the speed and position of the robot in a fine grained manner. For example, the
koa_read Proximity (device_id,infrared_sensor|]) operation provides the readings of 8

or 16, depending on the robot type, infra red proximity sensors while the operation

3.4. Roles 74

koa_setSpeed (device_id,left,right) sets the left and right motor speed. A complete

listing of operations a - m is shown in Appendix D.

In the previous sections, we have seen an overview of the management architecture.
The rest of this chapter presents our mission specification approach. To illustrate the
approach, we consider an example reconnaissance mission for determining whether
an area is safe to be entered by humans. The following main roles are identified by
the mission administrator: Commmander (C): controls the mission and allocates UAVs
to roles. Surveyor (S): explores the area and builds a map in terms of an occupancy
matrix that indicates locations and the types of objects occupying that location —
empty (no object), obstacle or hazardous material (chemical or biological). Hazard-
detector (H): detects hazardous chemical and biological substances. Aggregator (A):
aggregates information from all UAVs e.g., to produce a map showing the detected
hazardous materials. Figure 3.4 shows a simplified view of the self-management
framework applied to the example mission where a reconnaissance team comprising
the Commander, Surveyor, Aggregator and Hazard-detector roles is formed. The mis-
sion specification part that relates to the mission layer is discussed in this chapter.
The capability description and team formation parts that relate to the team layer will

be discussed in the next chapter.

3.4 Roles

The role concept developed in this thesis is based on organisational roles. Organi-
sations with a clearly defined mission (objective), rules and management structure
are made up of positions known as roles that can be held by persons that satisfy the
requirements of the positions [Slo94]. For example, a hospital may have an admin-
istrator, doctor, nurse and patient roles, which are populated with different persons
at different times. The distinction between roles and their enactors is fundamental
to adaptive systems management and a lack of this, as identified in [VSDFO05], is a

serious drawback in existing multi-agent systems.

The use of roles enables the specification of duties, rights and rules of interaction of
persons enacting the roles irrespective of whoever is assigned to the role. It simplifies

the specification of the organisation, allows changing persons (enactors of the roles)

3.4. Roles 75

Capability
Description

Reconnaissance Team

Aggregator

Mission Team
Specification Formation

Hazard-detector

Surveyor

Figure 3.4: Overview of the Self-management Framework Applied for a Reconnais-
sance Mission

without changing the specification and enables specifying the organisation before re-
cruiting persons to fill positions. We adopt this role-based approach for organising
UAVs and creating dynamic teams. In our approach, a role is a placeholder to which
discovered UAVs are assigned and is conceptually similar to an organisational role.
However, by modelling the role in a manner that separates its local (individual) re-
sponsibilities and external (team-wide) responsibilities we present a novel approach
that (1) enables fine grained control of individual as well as team-wide behaviours,
(2) facilitates dynamic assignment of roles based on capabilities, and (3) enables a

wide range of adaptations to context change and failure.

3.4.1 A Conceptual Model of Role

We model a role as a tuple comprising an external interface (E), a local interface (L),
a role mission (R);), a set of authorisation policies (A) and a set of tasks (T). Ep and
Lp are the provided external and local interfaces respectively while Fr and Ly are

the required external and local interfaces respectively. External interfaces relate to

3.4. Roles 76

remote interactions and local interface to internal interactions within the UAV.

R=<EFE, L, Ryy, A, T > where
E=FEpUFEg

L=LpULpg

These entities are able to specify what the role is expected to do, i.e., its functional
behaviour as well as non-functional behaviours such as security, reliability and per-

formance. Figure 3.5 shows a diagrammatic representation of a role.

' —
Required E
Le Capability N

Local Interface External Interface
(Internal interactions) (Remote interactions)

Le @ Ep

— —y

O Required Interface . Provided Interface

Figure 3.5: Role

The external and local interfaces provide a context for which role-mission (described
later in this section) policies can be specified. Incoming events from the local or ex-
ternal interface can be used to trigger policies in role missions that invoke operations
provided by the local and external interfaces. When a UAV is assigned to a role, the
role-mission, authorisations and tasks associated with the role are loaded onto the

UAV, unless already present.

Tasks of a Role

Tasks are complex operations that a UAV can perform - e.g., move from A to B, follow
a path, track an object using video. The tasks in a role are usually inherent to the

type of the role and hence are contained inside the role.
T ={Ty, Ts, ..., T}

Unlike policies, roles and missions, the specification of tasks is not done by the mis-

3.4. Roles 77

sion administrator as common tasks are provided by the autonomous system control
software (tasks provided by the robot control software such as motion) and specific
tasks for each domain of application (such as exploration) are designed by the do-
main expert. In essence, tasks in the role definition are place holders that are bound
to available tasks at the mission execution time. The administrator needs to know
only the interfaces of tasks in order to make the selection, configuration, specifi-
cation of adaptation and exposition of the necessary events and operations to the
role’s external interface. We, however, make two assumptions: (1) tasks are modular
(component based) to allow for different configurations and (2) a task either has an
explicitly defined interface indicating its provided operations and notifications or can
be queried for a description of its interface. These assumptions require legacy robot
control software that may not meet these requirements to be wrapped by new tasks
that transform them. Another point worth noting is that the role model considers
only the higher level tasks (such as exploration and mapping), whose interfaces can
be invoked by policies, and not the lower level tasks on which these higher level
tasks depend (such as motion and sensory). This design choice is made in order to
define the roles over a set of tasks at a high level of abstraction, which hides the het-
erogeneous nature of the UAV control actions specific to different types of UAV (e.g.,
operations specific to the Koala robot discussed in Section 3.3). There is, however, an
overhead introduced by this choice. Since the roles are defined over an abstract set
of interfaces instead of the exact UAV interfaces, an additional process, i.e., checking
that the dependency requirements of the higher level tasks is satisfied by the UAV

before the role is activated.

Obligation policies in the role mission may invoke operations supported by a task, ac-
tivate or deactivate a task, change the behaviour of a task by changing its attributes,
as well as reconfigure tasks. The Surveyor role in the reconnaissance mission, for
example, consists of exploration (Explore) and map building (BuildMap) tasks (higher

level domain specific tasks) as shown in Figure 3.6.

The exploration task has one provided interface (Explorel) and three required inter-
faces, i.e., Cameral, Motionl and BuildMapl. Note that, in the figure, we have shown
some elements of the provided interface, in detail, while showing only the interface
types in the case of the required ones. This is because we will be using the provided

interface elements to discuss the local and external interfaces of the Surveyor role.

3.4. Roles 78

enable
disable enable
setArea Cameral disable
getPicture Motionl getMap
batteryLevel BuildMapl setArea
exploreStatus setOccupancy
suspiciousMaterial

(a). Exploration task (b). Map building task
. Provided interface O Required interface

‘ Provided operation
(operation in a provided interface)

e. Provided notification
(notification in a provided interface)

Figure 3.6: Tasks of a Surveyor role

The Explore task provides operations that allow for enabling (enable()) and disabling
the task (disable (), setting the area to be explored (setArea(input = dmrc.util. Area))
and taking a picture (get Picture(output = dmrc.util. DmrcImage)) where dmre.util. Area
and dmrc.util. DmrcImage are types for the input and output parameters respectively.
It also provides notifications indicating battery status (batteryLevel(name, level)), cov-
erage status (exploreStatus(name, status)) and the detection of a suspicious material
(suspiciousMaterial (name, location)) where name, status and location are attributes
showing the name of the task, the status (level) of the battery power, the status (cover-
age of the area) of the exploration and location of the suspicious material respectively.
In addition, tasks have common management operations (not shown in the figure) for
creating their own instance, and specific operations for binding their required inter-
faces to provided ones. For example, the Explore task has create, bindCameraTask,

bindM otionTask and bind BuildM apT ask operations.

Local Interface of a Role

The local interface defines the operations and events provided (Lp) by tasks within
the local UAV and used by the role-missions, and the capability requirements of the

role (Lg). It comprises:

e Operations provided by the tasks in the role — management operations such
as activation and deactivation that are common to all tasks and task-specific

operations.

3.4. Roles 79

e Events generated from within the role - management events generated by the
role itself and operational events generated by the tasks within the role or prop-
agated from the UAV components such as sensors and published via an event

bus for use by other roles.

e Capabilities requirement, which is inferred from the tasks the role consists of,

in the form of a summary (key words) or full description.

The operations in the local interface may be invoked by the policies in the role mission
and the notifications may be used to trigger policies in the role mission or mapped
to the external interface. The capabilities requirement is used by role assignment
policies (discussed in Chapter 4) to check against the capabilities of a UAV. For
example, the setArea, getPicture, setOccupancy (input = dmrc.util.Location, input =
dmrc.util. HazardType) and getMap operations, and the batteryLevel, exploreStatus and
suspiciousM aterial notifications from the tasks in the Surveyor role make up part
of the provided local interface of this role. In addition, the provided local interface
includes common management operations provided by the role such as create and
assign, specific operations such as bindExploreTask and bindBuildM apTask, role as-
signment notifications which are generated when the role starts up (newSurveyor), i.e
immediately after the role is assigned, and communication (COM Failure) and UAV
failure (U AV Failure) notifications which are generated when communication links or

UAVs fail if the role is managing other roles.

In addition to operations and events, the interface specification includes a capability
requirement in terms of a list of services that must be provided by the tasks in the
role. For example, from two of the tasks of the Surveyor role, we observe that the
role requires a UAV that has motion and camera services. Assume the existence of
a common motion interface that uses two sensory tasks, i.e., long-range and short-
range distance sensors to detect the presence of far away and nearby objects, and
assume that the camera task, which is a common interface as well, does not require
any other tasks. The capability requirements of the role can then be summarised
as motion, camera, long-range distance sensor, short-range distance sensor. This ca-
pabilities requirement makes up the required local interface of the role. A complete
description of the requirement is generated from the required interfaces of the tasks

included in the role. The capability summary is used in the first step of the vet-

3.4. Roles 80

ting process for role assignments and the full description is used to match the role
requirements against the UAV provisions (discussed in Chapter 4). The operations,
notifications and capabilities requirement discussed above define the local interface

of the Surveyor role.

External Interface of a Role

The external interface defines operations and events relating to interactions with
external collaborating roles. It consists of operations and events provided (Fp) and

required (Fr) by the role to and from collaborating roles respectively:

e Management operations for loading missions, policies and tasks that are com-

mon to all roles.

e Operations from the local interface that are made visible to and can be invoked

by other roles, i.e., by remote roles on other UAVs.

e Notifications from the local interface that are made visible and are disseminated

to other roles.

e Operations that are required by this role. These operations are expected to be

provided by collaborating roles.

e Notifications required by this role, generated by collaborating roles, e.g., to trig-

ger policies.

A role may selectively expose some operations and notifications in order to allow
other roles to use its service. Consider the Surveyor role. The getPicture opera-
tion and batteryLevel notification of this role may be exposed to other roles while the
setArea operation and suspiciousM aterial notification are kept accessible only to the
local policies. It may also expose the U AV Failure notification generated as a result of
its management functions. These operations and notifications make up the provided
external interface of the role. The decision of whether to make the operations and
notifications visible or not is made by the mission administrator during role specifi-

cation.

In addition to providing notifications generated from management functions, a role

may also require similar notifications such as UAV Failure from other roles. For

3.4. Roles 81

example, the Surveyor role may need a hazard detection service whenever a suspi-
cious material is detected; for this reason, it requires a detect Hazard(input=dmrc.util.
Location, output=dmrc.util. HazardType) operation. These operations and notifications

make up the required external interface of the role.

Role Mission

A role-mission specifies the functional behaviour of a role in terms of a set of obliga-
tion policies (event-condition-action rules) that allow for controlling tasks and other

policies.
RM = {01, 02, R ,Ol}

These obligation policies are used to specify the mission of the role in an adaptive
manner. They are used to specify: (1) the creation of task instances and/or the bind-
ing of the task place holders in the role to the task instances in the UAVs, and the
configuration of tasks, (2) the activation or deactivation of tasks and/or invocation
of operations provided by the role, (3) the activation or deactivation of other obliga-
tion policies (policy substitution), and (4) the assignment or reassignment of roles to
UAVs. In Section 3.6, each of the first three mechanisms of adaptation are discussed
in a greater detail and illustrated using the Surveyor’s role mission. The fourth type

of adaptation is discussed in the next chapter.

Authorisations of a Role

In the previous sections, we have seen the different elements of a role in our model,
i.e., its external and local interface, tasks and role missions. We will now see the last

element in this model, i.e., authorisation policies.
A ={A1, As,... A}

Authorisation policies specify how roles are permitted to interact with each other in
terms of the events that can be triggered or operations that can be invoked via the
external interface. Roles make some part of their provided local interface visible to
other roles in order to facilitate collaborative missions. However, this type of visibility

has a drawback of being visible to all or none, and hence there is a need to selectively

3.4. Roles 82

newauthpol := root/factory/authpolicy.
root/policy at: "sAuth” put: (newauthpol
subject: root/role/hdetector
action: "getPicture”
target: root/role/surveyor
focus:"t").
root/policy/sAuth reqneg.
root/policy/sAuth active: true.

® N e O s W N~

Figure 3.7: Surveyor Authorisation Policy

permit access to some elements of the visible (external provided) interface based on
the role types and/or current context. In addition, not all entities in the mission
may be trusted to access specific services. This requires a means to explicitly specify
access to these services to those that are trusted. Authorisation policies are used
to achieve these objectives. For example, the Surveyor role’s authorisation policy
shown in Figure 3.7 denies access to the getPicture operation for the Hazard-detector

but allows the other roles, i.e., Commander and Aggregator.

3.4.2 Role Specification

A self-managing team comprises UAVs enacting various roles. Consequently, the for-
mation of an adaptable self-managing team requires a role specification approach
that allows modification of the role’s functional as well as non-functional behaviours.
A role has statically decided elements (E: external interface, L: local interface, T:
tasks) that are set only during the specification and dynamic elements (R,;: role mis-
sions, A: authorisation policies) that can be changed in order to adapt its behaviour.
In the previous sections, we have presented the different elements of the role model.
In this section, we will present our approach for role specification. A role is defined,
by the mission administrator, by specifying its elements using an XML role specifi-
cation. The XML role specification corresponds to elements in the conceptual model
of the role. It starts by identifying the type of the role using the role tag and con-
sists of the main elements identified by the tags — policy, tasks, expose, local, require
and capability. All publicly accessible operations of a task can be invoked by local
policies hence the role specification needs to explicitly specify only those that should
be exposed to remote roles (consequently remote policies) in order to make the spec-
ification succinct. However, should there be a need to selectively include only the

necessary operations of the tasks into the local interface of the role, the local tag is

3.4. Roles 83

used to indicate those operations. In addition, management operations such as start,

stop and assign, which are common to all roles, are not included in the specification.

Figure 3.8 shows the specification of the Surveyor role we have been using in many
of the previous examples. In order to fit the specification in one page, not all of the

operations and notifications of this role used in the sample policies are shown.

The elements of the role specification are as follows:

e Policies relating to the role, i.e., both role missions (set of obligation policies)
and authorisations (set of authorisation policies) are included within the policy
tag. The inclusion can be through a resource identifier indicating the policies (if
a policy repository is used) or the policies themselves escaped in XML's CDAT A
tag (if a policy repository is not used) or a combination of both as shown in the

example specification Figure 3.8.

e The tasks in the role (i.e., the domain specific high-level tasks such as explo-
ration and map building in our example mission) are indicated with the tasks
tag. Each task’s operations and notifications that are exposed to the provided
external interface of the role are identified by the operations and noti fications tag
respectively and are put in the ezpose tag. Operations that give outputs, have a
result tag identifying the type of the result, and operations that need inputs have
the arguments tag identifying the type of the inputs. Notifications also identify
their attributes. They do not need to identify the types of the attributes because
all attributes are represented as strings. This design choice introduces a limita-
tion since all attribute information that needs to be passed through notifications
must be representable as a string. However, it is a deliberate tradeoff in order
to limit the communication overhead that could be introduced by serialization-

based direct passing of objects as attributes.

e The operations and notifications that are provided by the role itself (note that
those from the tasks are specified within the tasks tag) and are exposed to the

provided external interface are specified by the expose tag.

e The operations and notifications that are required by the role (required external

interface) are specified by the require tag.

3.5. Missions 84

e The capabilities requirement of the role (required local interface) is specified by

the capability tag.

After the administrator specifies the role using the XML based specification, the
policy-managed role class code and the associated class code for the external in-
terface of the role are automatically generated by a tool that is developed as part
of the self-management framework (discussed in Chapter 7). This is possible be-
cause roles have statically defined external and local interfaces decided during the
role specification. The design choice to make the role’s interfaces static introduces
limitation on the dynamic behaviour of the role since the domain of operations on
which policies can be specified is static. On the other hand, this choice has a benefit
of guaranteeing that policies specified for a set of roles cannot become invalid for the
duration of the mission specification, which could be difficult to achieve if the role’s

interfaces were allowed to change dynamically.

3.5 Missions

A mission is a set of sequential or concurrent tasks that must be performed in or-
der to achieve a goal. A planning process may generate more than one strategy for
achieving a goal or the context may change such that the strategy for achieving the
goal has to adapt to the current situation. The implication of this is that a mission

specification for UAVs should allow adaptation of missions.

A team of UAVs should be able to perform a mission with a minimum number of UAVs
that have the required capabilities although the configuration may not be optimal.
When additional UAVs become available, the team should expand to make use of the
new resources, thereby ideally optimising the non-functional behaviour of the team.
Should there be a failure or departure of UAVs from the enlarged team, the team
should contract but continue the mission. We define a minimal team configuration as
the fewest types and number of UAVs needed to accomplish a mission. A reasonably-
optimal team configuration has the ideal type and number of UAVs. A mission starts
execution when a team satisfying the minimal configuration can be formed. The
team will expand when additional UAVs join until it achieves the reasonably-optimal

configuration.

3.5. Missions

85

© 0N U AW

80
81

<xmlb>
<role name=’Surveyor >
<policy uri="http://192.168.0.1/ policy/surveyor”>
<! [CDATA[//rate low policy

policy:=root/factory/ecapolicy create.
policy event: /event/frequentSuspiciousMaterial;
condition:[:rate| rate < 5];
action: [
root/policy/checkHazardRandom active:false.

root/policy/checkHazardMany active:true.].
11>
</policy>
<tasks>
<task name=’Explore >
<expose>
<operations>
<operation name=’getPicture >
<result>
<name>picture</name>
<type>dmrc. util . DmrcImage</type>
</result>
</operation>
</operations>
<notifications>
<notification name=’'batteryLevel >
<attribute name='name’/>
<attribute name=’level />
</notification>
</notifications>
</expose>
</task>
<task name=’BuildMap >
<expose>
<operations>
<operation name=’setOccupancy >
<argument>
<name>hazardLocation</name>
<type>dmrc. util . Location</type>
</argument>
<argument>
<name>hazardType</name>
<type>dmrc. util . HazardType</type>
</argument>
</operation>
</operations>
</expose>
</task>
</tasks>
<expose>
<notifications>
<notification name='UAVFailure ">
<attribute name='name’ />
<attribute name='uav’/>
</notification>
</notifications>
</expose>
<require>
<operations>
<operation name=’detectHazard >
<argument>
<name>location</name>
<type>dmrc. util.Location</type>
</argument>
</operation>
</operations>
<notifications>
<notification name=’UAVFailure ">
<attribute name=’'name’ />
<attribute name=’'uav’/>
</notification>
</notifications>
</require>
<capability>
<require>
<type>motion</type>
<type>camera</type>
<type>sonar</type>
<type>infrared</type>
</require>
</capability>

</role>

82 </xmlb>

Figure 3.8: Role Specification

3.5. Missions 86

e o @

Figure 3.9: Reconnaissance Mission Minimal Configuration

This concept is illustrated using the reconnaissance scenario in which the minimal
configuration is defined to be one Commander, one Aggregator, two Hazard-detectors,
and two Surveyors, where the Surveyor role is the primary role; and the Hazard-
detector roles are secondary roles. Figure 3.9 shows this configuration. The lines with
arrows emanating from the Commander role (C) indicate the direction of expansion
of the team (assignment) and the lines with arrows connecting the Surveyor and

Hazard-detector roles indicate that the UAV switches between these two roles.

These two roles are shown encompassed with a larger ellipse that represents the Role
Manager discussed in Section 3.3. When a UAV is enacting a single role, the Role
Manager is used only for bootstrapping a newly assigned role or during reassignment,
and from then on the role takes full control of the UAV. However, when the UAV
is enacting more than one role, the Role Manager will be active and facilitates the
switching between roles based on policies. As shown in the figure (Figure 3.9), the
Surveyor role is collocated with another role — Hazard-detector. The UAV has to
switch between the Surveyor and Hazard-detector roles as only one of these can be

active at a time.

A reasonably-optimal mission configuration is defined to be one Commander, two
Surveyors, two Hazard-detectors and one Aggregator. The team started with the
configuration shown in Figure 3.9 and reached the configuration shown in Figure
3.10 as new UAVs join the team. The Surveyor roles, which assigned the Hazard-
detector roles, serve as managers for those roles. Should any of the new UAVs fail or

depart, the roles will revert to their minimal configuration position.

3.5.1 A Conceptual Model of Mission

A mission for a team of UAVs can be described in terms of roles, the relation among

roles, constraints and mission parameters. The two basic relationships among roles

3.5. Missions 87

Figure 3.10: Reconnaissance Mission Reasonably-optimal Configuration

are management and reporting. We define the manages and reports relation between
two roles x and y as manages(z,y) where role x is responsible for assigning role y to
a UAV and withdrawing it, and reports(z,y) where role x is responsible for sending

state information to role y periodically.

Mission parameters are used to specify global properties, which are shared by the
roles in the mission. We consider two types of constraints, namely cardinality and
collocation. The cardinality constraint sets the maximum number of roles a given
type of role can manage and it is specified as a role-type and value pair. It has
to be noted that the cardinality constraint also effectively specifies the maximum
number of roles that can be assigned to a single UAV as part of a single mission. The
collocation constraint indicates the type of roles that cannot be placed together. We
consider negative collocation constraints (anti collocation) only because we do not
have the notion of requiring two or more roles to be placed together since roles that
have to be placed together can be designed as tasks and placed in a single role. Using

the aforementioned entities, we define a mission, M, as follows:

M =<V, E,P,C> where

V ={Ri,Rs,R3,...,R;}

E={(z,y)lx € VAy eV Ax #yAmanages(z,y) A reports(y,x)}
P={P,,P,Ps,....,P;}

C= {017025035"'7016}

The set V' consists of the roles in the mission. The set F is the set of management
relationships among roles defined using the relations manages(z,y) and reports(z,y).

The sets P and C contain the mission parameters and constraints respectively.

3.5. Missions 88

3.5.2 Mission Specification

In order to allow adaptation and reuse, we divide mission specification into three
levels, namely policy, mission class and mission-class instance specifications. Poli-
cies are specified using Ponder2 [Pon] and stored in a policy repository. We have
chosen Ponder2 as the policy specification language because of its support for both
explicit specification of authorisation and obligation policies, which are necessary for
our framework, its extensibility, and its scalability in that its interpreter is scalable
enough to be deployed on systems with constrained resources. Our architecture,
however, can easily be re-implemented to use any policy framework that supports

explicitly defined event-condition-action rules and authorisation policies.

A mission class is an XML specification of constraints, mission parameters, types of
roles needed for the mission and the management relation among the roles, while a
mission class instance is an XML specification that defines the mission parameters
and role cardinalities required to instantiate a mission class. The policy specification
in the repository may apply to multiple mission classes, and there can be multiple in-
stances of a mission instantiated with different parameters from a particular mission

class.

Separately specifying policies, mission classes and mission class instances enables
reuse. For example, consider the reconnaissance mission for which we will see ex-
ample policies later in Section 3.6. A search and rescue mission can use a number of
those policies (e.g., the adaptive cooperation pattern policies) as the policies defining
the behaviour of the roles through task behaviour specifications, role interactions
specifications, etc. can be applied to this mission. In addition, a mission class can
be instantiated with different mission-class instance specifications thereby leading
to reuse of mission class specifications. Figure 3.11 illustrates these points by indi-
cating that both the reconnaissance and search & rescue missions can share policies
specified and stored in the policy repository and that a reconnaissance mission class
specification can be instantiated with different mission-class instance specifications

based on the mission area.

The policy repository plays an important role by facilitating policy, mission class
and other code reuse (tasks, roles). However, the repository is not central to the

management framework as all specifications and code can be directly loaded to the

3.5. Missions 89

Policy
Repository

P =

Mission class specification: ’ D Mission class specification: J

Reconnaissance Search & Rescue

Mission class instance: Mission class instance:
Reconnaissance of building A Reconnaissance of town B

Figure 3.11: Mission Specification Levels

commander role from which it is distributed during role assignments thereby roles
receiving all policies and necessary code related to the mission with the role assign-
ment message. In addition, since the repository is comparatively small it can also
be stored in the commander’'s memory (or any UAV’s memory provided that it has
the adequate resources) and policies may be distributed to other UAVs as needed or

fetched by corresponding roles directly.

Policy Specification

The policies specified for a role are broadly divided into role assignment policies, used
to assign UAVs to roles based on their capabilities and operational management poli-
cies used by roles to manage their own or collaborating roles’ operational behaviour.
The example policies we will later see in Section 3.6 are all operational management

policies. In the next chapter, we will see role assignment policies.

Mission Class Specification

A mission class specifies a team in terms of roles, and policies that the roles use to
manage themselves or other roles (where hierarchy exists) and indicates the manage-
ment relation among the participating roles as well as the cardinality of each role. The
cardinality and other parameters are instantiated later. Mission parameters such as
failure-timeout that are shared by all roles are also included. This specification can
be used to instantiate different teams of the same configuration with different car-
dinalities, mission parameters and role behaviours using policies. The policy-based
role behaviour specification allows for changing the behaviours of assigned roles as

illustrated in the example policies (Section 3.6).

3.5. Missions 90

<xml>
<missionClassParameters>
<name>Reconnaissance</name>
</missionClassParameters>
<constraints>
<cardinality/>
<collocation/>
</constraints>
<missionParameters>
10 <comTimeout>int</comTimeout>
11 <failureTimeout>int</failureTimeout>
12 </missionParameters>
13 <commanderBehaviour>

© ® N g oA W N

14 <roleManagement>

15 <manages>surveyor</manages>

16 <manages>aggregator</manages>
17 </roleManagement>

18 </commanderBehaviour>
19 <surveyorBehaviour>

20 <cardinality>int</cardinality>

21 <roleManagement>

22 <manages>hdetector</manages>
23 </roleManagement>

24 </surveyorBehaviour>

25 <aggregatorBehaviour>

26 <cardinality>int</cardinality>
27 <roleManagement/>

28 </aggregatorBehaviour>

29 <hdetectorBehaviour>

30 <cardinality>int</cardinality>
31 <roleManagement />

32 </hdetectorBehaviour>

33 </xmb>

Figure 3.12: Mission Class Specification

Figure 3.12 applies to the reconnaissance scenario with a Commander role managing
a Surveyor and an Aggregator role. The Surveyor role in-turn manages the Hazard-

detector and Relay roles.

Mission Class Instantiation

A mission class instance (which gives rise to the actual team of UAVs performing the
mission) specifies values for cardinalities, mission parameters and URIs of policies
that define the role behaviour as shown in Figure 3.13. The mission administrator
can specify policies relating to a mission in two ways — (1) through role specifications
and (2) through mission instance specifications. The rationale for providing these
two means lies in the nature of policies relating to a role. A policy relating to a role
may involve only the role itself if it is triggered by a local event and invokes a local
operation. On the other hand, an interaction policy relating to a role may involve

external notifications and operations. Consequently, local policies can be specified

3.6. Examples of Policy-based Adaptive Role Behaviour 91

during the role specification while interaction policies can only be specified after the
mission class is specified (the team structure and hence interactions are decided).
However, specifying policies relating to a single entity at more than one point is prone
to policy conflicts and hence we specify all the role’s policies during the mission class

specification.

<xmlb>
<missionParameters>
<comTimeout>3000</comTimeout>
<failureTimeout>7000</failureTimeout>
</missionParameters>
<commander>
<cardinality>1</cardinality>
<policy> http://192.168.0.1/ policy /commander</policy>
< /commander>
10 <aggregator>
11 <cardinality>1l</cardinality>
12 <policy>http://192.168.0.1/ policy/aggregator</policy>
13 </aggregator>
14 <surveyor>
15 <cardinality>1l</cardinality>
16 <policy>http://192.168.0.1/ policy/surveyor</policy>
17 </surveyor>
18 <hdetector>
19 <cardinality>1l</cardinality>
20 <policy>http://192.168.0.1/ policy/hdetector</policy>
21 </hdetector>
20 </xml>

© ©® N e U oa W N =

Figure 3.13: Mission Class Instance Specification

3.6 Examples of Policy-based Adaptive Role Behaviour

Adaptive role behaviour through policy-based binding

The self-management architecture uses policies to perform late binding of the role’s
tasks to actual task instances. This approach enables us to instantiate roles that
are more adaptive to the UAV’s ability or context, to achieve a better performance.
Although a UAV’s capability is checked before a role is assigned to it, not all UAVs
that satisfy the capabilities requirement have equal ability to perform different tasks.
For example, consider a mission that requires two Surveyor roles and has two types
of exploration tasks, namely Explore and EnhancedExplore (both implementing the
same Explorel interface discussed previously) where the latter provides a better result
but requires more processing and battery power. Let us say that there are only two
available UAVs and both have the capabilities motion, camera, infrared, sonar and

hence satisfy the requirement for enacting the Surveyor role. Now assume one of

3.6. Examples of Policy-based Adaptive Role Behaviour 92

policy := root/factory/ecapolicy create.
policy event: /event/newSurveyor;
action: [:role :instance|

//Create tasks.

(root/task hasObject: ~explore”) ifFalse: [

root/task at: “explore” put:((root load: “dmrc.task.Explore”) create).
Il
(root/task hasObject: "buildMap”) ifFalse: [

root/task at: "buildmap” put:((root load: “dmrc.task.BuildMap”) create)
10].
//Configure tasks.

12 root/task/explore bindBuildMapTask: (root/task/buildmap).
13 root/task/explore bindCameraTask:(root/task/camera).

14 //Bind tasks.

15 (root/role resolve: (role+”/”+instance)) (

© ® N g oA W N

16 bindExploreTask: (root/task/explore).
17 (root/role resolve: (role+”/”+instance))
18 bindBuildMapTask: (root/task/buildmap).

19 1.
20 policy active: true.

Figure 3.14: Task Creation Policies

them has more processing power than the other. Including processing power in
the capabilities requirement and vetting the UAVs accordingly is a feasible solution
when there are a number of UAVs satisfying the capabilities requirement in order to
achieve a better quality of service. Imposing a strict capabilities requirement that
includes performance parameters may result in the mission not ever reaching its
optimal configuration when there is a lack of UAVs that satisfy the requirement. In a
scenario, such as our example, where there are not abundant UAVs to choose from,
it is efficient to use policies to choose and load the exploration tasks based on the
UAVs’ processing and battery power after the UAVs are discovered. If we do so, both
UAVs will be assigned to the Surveyor role but one will be loaded with the normal
exploration task and the other (the powerful one) will be loaded with the enhanced
exploration task resulting in the best possible outcome given the limited availability
of UAVs. In the following, we will first illustrate how task bindings in the management
framework are done using policies and then show an example policy that adaptively
selects and loads an exploration task based on the UAV’s battery and processing

power.

We have previously seen that the Surveyor role contains the exploration and map
building tasks. The policies shown in Figure 3.14 create instances of exploration
(line 6) and map building tasks (line 9) using the classes dmrc.task.BuildMap and
dmrc.task.Explore, which implement the Explorel and BuildMapl interfaces respec-

tively. The creation is performed only if the instances are not available (lines 5 & 8).

3.6. Examples of Policy-based Adaptive Role Behaviour 93

The required interfaces of the exploration tasks are then bound to the map building
task (line 12) and camera task (line 13). Note that we have not tried to create the
camera and motion tasks, which are not explicitly specified by the role. In addi-
tion, since these are low-level tasks which are necessary for the UAVs survival, they
should already be active when the UAV is active. Now let us assume again that the
camera task does not require any other tasks but the motion task does. This makes
the exploration task completely configured except for the motion task configuration
on which the exploration task depends. We will see later how the motion task is con-
figured. For now, let us assume that the exploration task is completely configured.
The Surveyor role instance is then finally bound to its two tasks, i.e., exploration and
map building (lines 16 and 18). This policy is triggered by the newSurveyor event (line
2), which has the attributes role and instance. These attributes are used in the action
part of the policy to programmatically determine the role type and instance (lines 15

- 18).

policy := root/factory/ecapolicy create.

policy event: /event/newSurveyor;

action: [:role :instance|

((root/uav battery > 1000) & (root/uav processor > 400)) ifTrue: |
(root/task hasObject: ”“enhancedexplore”) ifFalse: [

root/task at: “enhancedexplore”

put:((root load: "dmrc.task.EnhancedExplore”) create)].

(root/role resolve: (role+”/”+instance))

bindExploreTask: (root/task/enhancedexplore).

10] ifFalse: [

1 (root/task hasObject: “explore”) ifFalse: [

12 root/task at: "explore” put:((root load: “dmrc.task.Explore”) create)
13].

14 (root/role resolve: (role+”/”+instance))

15 bindExploreTask: (root/task/explore).

16 .

© ©® N O U oe W N =

Figure 3.15: Adaptive Task Loading Policy

Now that we have the tasks loaded and created, let us go back to our example mission
with two Surveyors, and only two available UAVs. The policy shown in Figure 3.15
performs an adaptive task loading where, if the UAV has a battery power of more
than 1000 milliampere hour and a processor with a speed greater than 400MHz (line
4), a better quality exploration task is loaded and the role is bound to this task (lines
7 & 9). Otherwise, the normal exploration task is loaded and the role is bound to this

task (lines 12 & 15).

We recall that the exploration task has one required interface, i.e., the motion in-

terface, that has yet to be bound. Assume the motion task requires two sensory

3.6. Examples of Policy-based Adaptive Role Behaviour 94

interfaces for short-range and long-range distance estimation. Infrared sensors per-
form better for short-range measurements while sonar sensors perform better for
long-range measurements. Ideally, the Surveyor should be assigned to a UAV that
has both sensors. However, in a situation where there is a shortage of capable UAVs,
and instead mixed UAVs with some equipped with both sensors and some with either
one of the sensors are available, the role performing the assignment (in our example
the Comunander) can relax the requirement (provided that it has policies that dictate
so). This can be done without loosing the benefit of using the capable UAVs provided
that the role being assigned (in our example the Surveyor) has policies that configure
the motion task based on the context. The role being assigned, i.e., the Surveyor,
does not need to have the knowledge of whether the assignment policy was relaxed
or not. Figure 3.16 shows two policies that configure the motion task based on the
available sensors. The first policy’s condition is satisfied if both sensors are available
(lines 7 & 8), and the motion task’s required interfaces, namely LongRangeDistance-
Sensor and ShortRangeDistanceSensor are bound to the sonar (line 10) and infra red
(line 11) tasks respectively. If it is the case that either one of the sensors is unavail-
able, the second policy’s condition is satisfied (lines 17 & 18). Consequently, both
the long-range and short-range distance estimations of the motion task will be sup-
plied by either the sonar (lines 21 & 22) or the infra red (lines 24 & 25) based on the
available type of sensor (line 20). In this section, we have seen that by using policy-
based binding the management architecture achieves adaptive role behaviour. This
approach allows for a wide range of adaptation including adaptation to component
failures. For example, an event generated when an infra red sensor fails may trigger
a policy to reconfigure the motion task to use the sonar sensor for its short-range
distance estimation thereby allowing graceful degradation of services in the face of

component failures.

Adaptive role behaviour through policy-based operation invocation

Policy-based invocation of operations is the primary mechanism for specifying coop-
erative missions in the self-management framework by means of role-mission poli-
cies that invoke operations on the external provided interfaces of collaborating roles.
Consider the Surveyor role. We recall that this role has the suspiciousMaterial(name,

location) notification in its provided local interface and the detectHazard (input =

3.6. Examples of Policy-based Adaptive Role Behaviour 95

//Policy for configuring the motion task

1

2 //when both sensors are available.

3 policy := root/factory/ecapolicy create.

4+ policy event: /event/newSurveyor;

5 //The capability entity, which is part of the management
6 //architecture, is queried for the UAV’'s capabilities.

7 condition: [((root/capability haslowcap: ”sonar”) &

8 (root/capability haslowcap: "infrared”))];

9 action:|

10 root/task/motion bindLongRangeDistSensorTask: /root/task/sonar.

11 root/task/motion bindShortRangeDistSensorTask: /root/task/infrared.
12].

13 //Policy for configuring the motion task

14 //when one of the sensors is not available.

15 policy := root/factory/ecapolicy create.

16 policy event: /event/newSurveyor;

17 condition: [((root/capability haslowcap: ”sonar”) &

18 (root/capability haslowcap:”infrared”)) not];
19 action:|

20 (root/capability haslowcap:”sonar”) ifTrue: [

21 root/task/motion bindLongRangeDistSensorTask: /root/task/sonar.

22 root/task/motion bindShortRangeDistSensorTask: /root/task/sonar.]

23 ifFalse : [

24 root/task/motion bindLongRangeDistSensorTask: /root/task/infrared.

25 root/task/motion bindShortRangeDistSensorTask: /root/task/infrared.].
26 .

Figure 3.16: Adaptive Task Configuration Policies

dmre.util. Location, output=dmrc.util. HazardType) operation in its required external in-
terface. The role mission can then have a policy, shown in Figure 3.17, that is
triggered by the suspiciousMaterial(name,location) event, whose actions are (1) the
invocation of the detect Hazard(input=dmrc.util. Location, output=dmrc.util. HazardType)
operation, which is provided by another role, i.e., the Hazard-detector and (2) the
invocation of the setOccupancy(input=dmrc.util. Location, input=dmrc.util. HazardType)
operation from the local interface of the role, using the location attribute from the
notification and the result from the hazard detection process, as inputs. In essence,
this policy specifies a cooperative action, in the example reconnaissance mission,
triggered by a notification from the local interface of the Surveyor role and performed
by both the role and its collaborator. In order for the Surveyor role’s policies to be
able to invoke operations provided by the Hazard-detector role, the Surveyor needs
to have a remote role reference to the Hazard-detector. Policies should be specified
to import role references depending on role interactions (examples shown in Chapter

6).

Figure 3.18 shows the interaction specified by the policy. The broken lines indicate
the management relation between the two roles (discussed in the next chapter). The

power of this approach and its benefits become more apparent when there are more

3.6. Examples of Policy-based Adaptive Role Behaviour 96

policy:=root/factory/ecapolicy create.

policy event: /event/suspiciousMaterial;

//1f there is no entry called ’hdetector’ then
//the condition is set to false as there is

//no hazard—detector

condition:[(root/role hasObject: "hdetector”) ifFalse: [
false] ifTrue: [((root/role/hdetector size) == 1)]];
action:[:location :instance :role |

//if the number of hazard—detectors is 1

10 //get the hazard—detector role’s

11 //reference (external interface).

12 hdetector := (root/role/hdetector listObjects) at:O.
13 //Invoke the ’detectHazard’ operation on the hazardous
14 //material detector role.

15 hazardType := hdetector detectHazard: location.

16 //Update the map through the local interface

17 //of the surveyor role.

18 (root/role resolve: (role+”/”+instance))

19 setOccupancy: location :hazardType.

20 .

21 //Name this policy for later reference.

22 Toot/policy at: ”“checkHazardSingle” put: policy.

23 policy active: true.

© ® N g oA W N

Figure 3.17: Cooperative Action Policy

collaborating roles.

operation result

operation = detectHazard(location)
result = hazardType

Figure 3.18: Interaction between the Surveyor and Single Hazard-detector role

Consider a scenario where there are more than one Hazard-detector roles. The Sur-
veyor role now has a number of choices and can perform an adaptive choice of ac-
tions based on current context by using different cooperation patterns. It may (1)
use a market-based pattern by announcing its location, receiving an estimate of dis-
tance from itself to each Hazard-detector role and then choosing the nearest Hazard-
detector role, and making the invocation on the chosen Hazard-detector role (or use
another measure such as sensor type, battery power, etc. instead of distance), (2)
use a voting-based cooperation pattern by performing the invocation on some or all
of the Hazard-detector roles and then choosing the result with the highest frequency
(the mode) among the set of results (or use another statistical function, such as the
mean, if applicable, depending on the type of the results), (3) use a randomly selected

Hazard-detector among the available ones, and (4) use a combination of any one of

3.6. Examples of Policy-based Adaptive Role Behaviour 97

policy:=root/factory/ecapolicy create.

1

2 policy event: /event/suspiciousMaterial;

3 //If the number of hazard—detectors is > 5

4 condition:[(root/role hasObject: “hdetector”) ifFalse: [

5 false] ifTrue: [((root/role/hdetector size) > 5)]1];

6 action:[:location :instance :role |

7 //Invoke the ’'measure’ operation on all hazard—detector

s //roles. The result is an array containing all the replies (results).
9 replies := (root/role/hdetector collect: [

10 :name :hdetector| hdetector measure: location]).

1 //Get a copy of the reference (external interface) of all the

12 //hazard—detector roles in an array.

13 hdetectors :=(root/role/hdetector collect: [:name :value| valuel).
14 //while (the size of the result array > 1){

15 //compare the result at index O with the result at the last index
16 //remove the greater from the results list

17 //remove the hdetector role reference at the same index as the greater
18 //result

1 //}

20 //the remaining hdetector is the one with the smallest

21 //distance (nearest)

22 [((replies size) >1)] whileTrue: [

23 ((replies at:0) < (replies at:((replies size)—1))) ifTrue: [

24 replies remove: ((replies size)—1).

25 hdetectors remove: ((hdetectors size)—1).]

26 ifFalse: [replies remove:0.hdetectors remove:0.].].

27 //get the role reference

28 selectedHdetector:=hdetectors at:0.

29 //invoke the ’detectHazard’ operation on the selected hazardous
30 //material detector role

31 hazardType := selectedHdetector detectHazard: location.

32 //update the map through the local interface

33 //of the surveyor role

34 (root/role resolve: (role+”/”+instance))

35 setOccupancy: location :hazardType.

36 .

37 //name this policy for later reference

38 root/policy at: “checkHazardMany” put: policy.

39 policy active: true.

Figure 3.19: Market-based Cooperation Pattern Policy

the above or other patterns.

Encoding cooperative patterns in the architecture limits its applicability in a wide
range of missions as the cooperation pattern may differ in different missions or in
different contexts within a mission. For example, voting may be useful but the over-
head may become high when the number of Hazard-detector roles is larger. Similarly,
the bidding-before-action approach of a market-based policy may be useful but dis-
advantageous as it has twice the communication overhead, which may be an issue if
bandwidth is limited. Hence, the provision for the selection of the cooperation pattern

based on current context is necessary.

In the following, we illustrate how policies in the role mission can specify adap-
tive cooperation patterns. Assume the reconnaissance mission has multiple Hazard-

detector roles, and in addition to the operations we have seen so far, the Surveyor

3.6. Examples of Policy-based Adaptive Role Behaviour 98

role has the operation measure (input=dmrc.util. Location, output=float) in its external
required interface, and the Hazard-detector role has this operation in its external
provided interface. The policy shown in Figure 3.19 specifies a market-based cooper-
ation pattern between the Surveyor and the Hazard-detector roles. The Surveyor an-
nounces its position (similar to a bid) to all Hazard-detectors in its domain structure
(to all that it is aware of) by invoking the operation measure (input = dmrc.util. Location,
output =float) on its required external interface, i.e., the Hazard-detectors’ provided
external interfaces. They reply with an estimate of their distance from the Surveyor;
the Surveyor then selects the nearest Hazard-detector. The rest of the actions are
similar to the single Hazard-detector policy we have seen in the previous example
(Figure 3.17). The comments in the market-based cooperation policy (Figure 3.19)

describe what each line does. Figure 3.20 illustrates the interactions specified by the

policy

-
-
-
-
-
¢ |

operation = measure(location) operation = measure(location)
result = distance result = hazardType
(a). Query all hazard detectors about (b). Get the hazard detection service
how far they are from the surveyor from the nearest hazard detector

Figure 3.20: Interaction between the Surveyor and Multiple Hazard-detector roles

The Surveyor role can also use a voting-based cooperation pattern. In this case, it
gets the hazard detection service from all the Hazard-detectors? and the result with
the highest frequency of occurrence (the mode) is selected, and the occupancy map

is updated accordingly, as shown in Figure 3.21.

The example policies for the single Hazard-detector, multiple Hazard-detectors with
market-based cooperation and multiple Hazard-detectors with voting-based cooper -
ation are defined on a disjoint set of conditions, i.e., number of hazard-detectors = 1,
number of hazard-detectors > 1 and < 6, number of hazard-detectors > 5. Hence, at

any time only one of these policies’ conditions is met. In addition, these conditions

2This approach takes a much longer time since a synchronous method - detectHazard(input =
dmre.util. Location, output=dmrc.util. HazardType) — which would take a longer time to return the result is
used for hazard detection. These types of services are better implemented as event based ones in real-life
applications. The case study chapter reconsiders the hazard detection service in that manner.

3.6. Examples of Policy-based Adaptive Role Behaviour 99

are checked only if there is a Hazard-detector role sub-domain (which is dynamically
created when a UAV enacting that role joins the mission) in the role sub-domain of
the domain structure. Hence, when there are no Hazard-detectors the policies do
not execute their action section. Now consider a mission that has a variable num-
ber of Hazard-detectors throughout the mission execution due to failure, departure
of UAVs, not enough UAVs arrived in the mission area yet, etc. The mission trans-
parently adapts its cooperation pattern as the number of available Hazard-detector
roles change since the cooperation patterns are selected by the three policies whose
decision is based on the availability of these roles. Similar policies can be defined to

achieve adaptation to different contexts.

policy:=root/factory/ecapolicy create.

1

2 policy event: /event/suspiciousMaterial;

3 //if the number of hazard—detectors is >1 and < 6

4+ condition:[(root/role hasObject: ”“hdetector”) ifFalse: [false] ifTrue:
5 [((root/role/hdetector size) > 1)&((root/role/hdetector size) < 6)]];
6 action:[:location :instance :role |

7 //invoke the ’detectHazard’ operation on all hazard—detector

8 //roles. The result is an array containing all the replies (results).

9 replies := (root/role/hdetector collect: [

10 :name :hdetector| hdetector detectHazard: location]).

11 //update the map through the local interface

12 //of the surveyor role with the result that

13 //has the highest frequency of occurrence.

14 //the ’statistics ° object is a helper object

15 //(implemented as part of the framework) that computes
16 //the mode and other statistical properties from a data set.
17 (root/role resolve: (role+”/”+instance))

18 setOccupancy: (root/statistics mode: replies).

19 1.

20 //name this policy for later reference

21 root/policy at: ”“checkHazardSeveral” put: policy.

22 policy active: true.

Figure 3.21: Voting-based Cooperation Pattern Policy

In the previous examples, we have seen how adaptive cooperative behaviour can be
achieved through policy-based invocation of operations. Adaptive behaviour is also
achieved through this mechanism by configuring task attributes that best suite the
current context through the local provided interface of the role. For example, if the
exploration task in the Surveyor role supports different search patterns, the role-
mission policy of the Surveyor role can select different patterns based on the current

context.

3.6. Examples of Policy-based Adaptive Role Behaviour 100

Adaptive role behaviour through policy substitution

Adaptation is further enhanced by using policies to substitute one or more policies
as the context changes in multiple dimensions since the range of adaptation defined
over the domain of one context (e.g., number of available Hazard-detectors) in a set
of contexts may not be suitable to a change in another context (e.g., the frequency of
occurrence of suspicious material in a given period of time). For example, our sample
adaptive cooperation pattern policies cater for change in the number of available haz-
ardous detectors. Now let us say the Surveyor role, in the interest of faster decision
making, needs to use another pattern (shown in Figure 3.22), a random selection of
one or more hazard-detectors, when it starts facing suspicious materials increasingly

frequently.

policy:=root/factory/ecapolicy create.

policy event: /event/suspiciousMaterial;

//if there is no entry called ’hdetector’ then
//the condition is set to false as there is
//no hazard—detector else

//if the number of hazard—detectors is >=1
//one is selected randomly
condition:[(root/role hasObject: “hdetector”)];
action:[:location :instance :role |

10 //select the hazard—detector randomly

11 selectedHdetector:= root/statistics random:

12 (root/role/hdetector listObjects).

13 //invoke the ’detectHazard' ' operation on the selected hazardous
14 //material detector role

15 hazardType := selectedHdetector detectHazard: location.
16 //update the map through the local interface

17 //of the surveyor role

18 (root/role resolve: (role+”/”+instance))

19 setOccupancy: location :hazardType.

20 |.

21 //name this policy for later reference

22 root/policy at: "checkHazardRandom” put: policy.
23 policy active: true.

© ® N e U oA W N~

Figure 3.22: Cooperative Action Policy (random selection)

In addition to the notifications we have seen so far, assume the Surveyor role has
a frequencySuspiciousMaterial(name, rate) notification in its provided local interface
that is generated every specified period of time (e.g., 10 minutes) containing the rate
of suspiciousMaterial notifications within that period. Figure 3.23 shows policies that
control other policies in order to adapt to current context. The first policy deactivates
all the other cooperation patterns when the rate of suspicious material occurrence
exceeds 10. The second policy reverts the system to the previous patterns if the

rate goes below 5 (with a deliberate hysteresis to prevent the system from switching

3.7. Comparison with Related Work 101

patterns too frequently). Self-management is achieved by loading the system with a
set of pre-specified policies, hence policy substitution is performed through activation

and deactivation of policies that are already loaded in the system.

//rate high policy
policy:=root/factory/ecapolicy create.
policy event: /event/frequentSuspiciousMaterial;
condition:[: rate| rate > 10];

action:|

//deactivate policies
root/policy/checkHazardSingle active:false.
root/policy/checkHazardSeveral active: false.
root/policy/checkHazardMany active:false.

10 //activate policy
root/policy/checkHazardRandom active:true.
12].

13 policy active: true.

14 //rate low policy

15 policy:=root/factory/ecapolicy create.

16 policy event: /event/frequentSuspiciousMaterial;
17 condition:[:rate| rate < 5];

18 action: [

19 //deactivate policy

20 root/policy/checkHazardRandom active:false.
21 //activate policies

22 root/policy/checkHazardSingle active:true.
23 root/policy/checkHazardSeveral active:true.
24 root/policy/checkHazardMany active:true.

25 |.

26 policy active: true.

© ® N g oA W N~

Figure 3.23: Adaptive Cooperation Pattern Policy

As illustrated in the examples, a wide range of adaptation is possible by specifying
policies of the role mission that are available on the UAV from the point when the
role starts (either received through the role assignment message, or fetched from the
repository). However, provided that the UAVs have communication link to the pol-
icy repository, after the mission has started, an additional level of adaptation can be
achieved through periodic checking of the policy repository performed by the roles for
new policies. Also, an additional semi-automatic adaptation can be achieved if the
mission administrator loads new policies to the UAVs directly. Although the latter ap-
proach requires manual external input (i.e., from the administrator), it, nevertheless,

is useful since it still can make adaptation without shutting down the system.

3.7 Comparison with Related Work

As discussed in the background chapter, research on mission specification has re-

sulted in a number of approaches. In this section, we compare our work to related

3.7. Comparison with Related Work 102

work in this area. For a more complete description of the related work the back-
ground chapter can be consulted. Also, note that we try to focus only on the mission
management aspects of the related work with other aspects of the work, where appli-

cable, considered in later chapters.

Mackenzie et al. specify missions for a group of robots in terms of behaviours (com-
parable to tasks in our framework) using CDL [MAC97]. Both individual and team
behaviours are formed by statically composing behaviours. CDL does not have an
explicit specification of team structure. However, it defines different cooperation
schemes that implicitly define the team that is centrally coordinated. CDL also does
not support adaptation of missions and lacks a means of specifying authorisations.
It, however, allows for reuse of the mission specification. Our approach provides an
adaptive mission specification and enables the creation of dynamic teams with an
explicit specification of the team organisation (structure) that is necessary for cap-
turing the management semantics in real-life missions. However, because CDL can
compose both individual and team behaviours using a finite state machine, it can
easily form a temporally sequenced team behaviour and is much more efficient for

tightly coupled missions such as coordinated transport of objects.

CHARON [AGHT00] uses a similar behaviour-based composition approach to speci-
fying missions and its specifications are reusable. It does not support adaptation of
missions and explicit specification of team organisation, but does have support for

access control.

ALLIANCE [Par98] specifies an adaptive mission for a group of robots using reusable
pre-specified behaviour sets (composition of behaviours similar to CDL and CHARON)
with motivational level thresholds, and mathematically modelled motivational be-
haviours (impatience and acquiescence) that activate or deactivate the behaviour sets
when the motivational behaviour’s output passes the motivational level threshold.
ALLIANCE'’s adaptation is implicitly specified through the motivational level thresh-
olds. Compared to our approach, the adaptation specification has a smaller configu-
ration space since the threshold is a single parameter. Hence, the choice of a single
threshold that captures the dynamics of the mission is necessary to get a meaningful
adaptation. ALLIANCE addresses this issue using a learning mechanism to learn
useful thresholds through the L-ALLICANCE [Par96] framework. Explicit specifica-

tion of team structure and authorisations are also absent in ALLIANCE.

3.7. Comparison with Related Work 103

AYYLU [Wer0OO] models behaviours as a group of processes that have a common in-
terface with ports that are externally accessible and specifies a mission in a reusable
manner using a C-based language. It has an implicitly defined adaptation mecha-
nism that is part of its task allocation scheme. The adaptation is based on broadcast
of eligibility where each robot evaluates how eligible it is to perform a task and broad-
casts this measure of fitness. AYYLU does not support explicit specification of team

organisation and security.

TEAMCORE [TPCOO] specifies a mission for a team of agents in terms of four sets of
rules (using first order logic), namely joint intention, coherence constraints, intention
tracking, and information-dependency relationship. The joint intention is compara-
ble to our role-mission policies but it is more general as it can define both the team'’s
state and commitment (goal) and also can be reasoned over to infer sub-missions
from it. TEAMCORE, however, does not exploit this capability to form sub-missions
and allocate them to sub-teams as it does not support hierarchical organisation of
roles. Although the framework has the concept of team hierarchy, this is a goal
decomposition where the leaf nodes are roles and in effect all roles are managed cen-
trally. The coherent constraints, which enforce agents to follow a common solution
path so that they do not hinder each other’s effort to achieve the joint intention, are
comparable to our interaction policies. The intention tracking rules, which enforce
agents to monitor their peers, are comparable to management relationships in our
approach. Our mission specification, however, does not have the equivalent of the
explicit specification of the type of communication agents are allowed to perform,
as done in TEAMCORE’s information-dependency relationship (although this can be
done with authorisation policies). TEAMCORE is powerful in its ability to specify a
mission in a flexible and reusable way as well as allowing adaptation easily through
the addition of new intentions to the team. However, although TEAMCORE’s em-
ployment of the joint intentions method makes it robust, since as long as a goal
is achievable, the team will achieve the goal eventually even in the face of context
change and failure, it also makes it less reactive (slow) to context change and failure,
on the other hand, since all team members have to reason and agree before they
abandon the present solution path and enter a new one. This issue is especially cru-
cial during failure in time sensitive applications and in applications where context

change is frequent.

3.7. Comparison with Related Work 104

Tidhar [Tid93] proposed an approach known as social structures that deals with the
specification of missions for a team of agents in terms of beliefs, goals and inten-
tions. This approach shares the advantages of TEAMCORE as well as the limitations,
i.e., the lack of immediate automated response to context changes and especially to
failure. It, however, provides a more general framework of mission specification in
multi-agent systems where the team can range from central to completely distributed
organisation. Compared to our approach, it has, in a similar manner to TEAMCORE,
a more general mission specification scheme that is based on first order logic but less
reactive to context change as all the agents have to reason about the change, unlike
the immediate adaptation achieved by policies that are triggered immediately after

an event has occurred. The approach also does not take security into consideration.

OMNI [DVSDO04, VSDFO05] specifies missions for organisations in terms of social
structures, scenes, social contracts and interaction contracts. OMNI's social struc-
tures are roles with objectives, rights and rules that are derived from the objectives
and values of the organisation respectively. The role’s obligations and rights are
specified using norms and rules, which are described using deontic and dynamic
logic respectively. Scenes, which are comparable to tasks in our framework, are pro-
cesses performed by roles. Social contracts specify bindings of agents to roles and
interaction contracts specify relationships between roles. Social contracts and inter-
action contracts are comparable to role assignments and management relationships
respectively in our approach. OMNTI's explicit representation of the team behaviour
in terms of rules enables modifying the team behaviour without changing the agents.
It differentiates between the roles and agents enacting roles thereby allowing norms
to be specified without the knowledge of the agents enacting them. It also provides
authorisations by specifying the rights of roles. In these aspects, it is similar to our
approach. In a similar manner to TEAMCORE and Tidhar’s social structures, OMNI
has a more general approach to mission specification but unsuitable for dynamic
teams such as those formed by mobile autonomous systems. However, OMNI's ap-
proach is even less responsive than the two. OMNI's use of deontic logic to represent
rules, although allows it to elegantly describe obligations, makes the model compu-

tationally hard and hence less applicable in real-life dynamic missions.

3.8. Conclusion 105

3.8 Conclusion

In this chapter, we have presented an overview of the self-management architecture,
which has three layers, namely mission, team and communication management and
discussed the first layer, i.e., mission management. We have also presented the
concepts used in the mission management layer and shown how they are used to

specify and manage missions.

A novel role model that consists of tasks, authorisation policies and role-missions,
which are sets of obligation policies, is presented. This model enables the specifi-
cation of roles, which are used as building blocks of a mission, in terms of policies.
Policies are used as the primary means of adaptation as they are used to modify role

behaviours which in turn adapt the mission.

Missions for UAVs are specified in terms of roles with a separate specification used for
the structure of the mission and its behaviour. This novel approach enables reuse
of the mission specification with different behaviours resulting in teams of similar

structure but different behaviour.

Chapter 4

Team Management

4.1 Team

More often than not, missions involve more than one UAV and hence the need for or-

ganising UAVs into teams in order to facilitate management and collaboration arises.

In our approach, missions are specified by a mission administrator in terms of roles,
which are later populated by UAVs as discussed in Chapter 3. We define a team
as this group of roles, enacted by UAVs. UAVs form a team in accordance with
the mission specification, which defines a hierarchical structure among roles used
for management purposes. Where in the hierarchy a specific role is placed in this
structure is decided by the mission administrator (by means of the mission class
specification) based on the type of the mission and the expected collaboration or
patterns of interaction among different types of roles. Although the resulting team
of UAVs has a hierarchical management structure, where a specific UAV is placed in
the hierarchical structure is not pre-defined as it will depend on the order in which
UAVs are discovered and their capabilities, which define the types of roles they can

be assigned to.

Management interactions and messages (e.g., role assignments and state updates)
make use of the hierarchical structure. However, collaboration interactions, i.e., op-
eration invocations involving one role’s policy and another role’s external interface,

are not constrained by the hierarchy since the role performing the invocation will

106

4.1. Team 107

(a). Hierarchical Management (b). Hierarchical Collaboration (c). Hierarchically-organised-
Structure Structure coalition Collaboration Structure

Management link

Collaboration link (i.e., R, maintains

Ri====~ i the reference of R;)
Collaboration link (i.e., Riand R;
””””” R, < — — — —» R; maintain the reference of each other)

(d). Peer-to-peer Collaboration Structure

Figure 4.1: Organisation Structures

have a reference of the operation provider (the remote role) which it uses to access
the operation directly. Since collaboration interactions are mission-dependent, the
set of remote role references maintained by a role is determined by the role’s policies.
The hierarchical management structure facilitates the formation and maintenance of
this interconnection among roles, which, in general, has an arbitrary organisational
structure that could range from direct links formed only between each parent and
its children roles in the hierarchy to a hierarchy of coalitions (a hierarchy of flatly
organised group of UAVs) to a peer-to-peer structure, which directly links all roles,
i.e., all roles maintain references to each other. Figure 4.1 shows an example of a
hierarchical management structure with possible organisational structures for col-
laboration that could be formed and maintained by means of state update messages

disseminated through the hierarchical management structure.

The rest of this chapter deals with the management structure. As mentioned before
when to use which collaboration structure is mission-dependent and a discussion
of the different possibilities is not within the scope of this thesis. However, how
the mission-dependent interconnection of roles is specified through policies is shown
in Chapter 6 and the mechanisms used to maintain this structure (referred to as

domain structure) is presented in Chapter 7.

4.1. Team 108

The type of organisational structure, i.e., the hierarchical structure, used for man-
agement is a characteristic of the management framework and hence it is common
across all missions. Whether this structure should be centralised, peer-to-peer or
hierarchical was a design issue. We chose the hierarchical structure for a number of
reasons — (1) missions are inherently spatially distributed and a hierarchical organi-
sation that would capture this distribution has the advantage of keeping local deci-
sions and communications local thereby enabling faster decisions and causing less
communication overhead, (2) it can distribute management responsibility thereby en-
abling scalability and robustness without the loss of the management semantics, (3)
goals and hence missions are usually decomposed into trees, which makes the hier-
archical structure a natural approach for role (task) allocation that can easily capture
the goal decomposition tree, (4) it enables the creation of mission-dependent organ-
isational structures used for collaboration (e.g., hierarchically organised coalitions,
peer-to-peer structures, etc.) with minimal communication overhead by serving as a
multicast tree. Using a hierarchical structure for management introduces a latency
with respect to mission setup due to hierarchies. The hierarchical approach also
renders the role at the root of the hierarchy a critical resource for the team. However,
in our approach the role at the root of the tree (the commander) has a special impor-
tance only with respect to starting the team formation process. Once the commander
has done so, it is only as important as the other roles since the role management is

distributed.

4.1.1 A Conceptual Model of Team

A team of UAVs can be described in terms of the roles the UAVs are assigned to and
the relationship among these roles, and it can be modelled as a digraph with the
roles as vertices and their management relationship as edges. Using the manages

and reports relationships defined in Chapter 3, we define a team, T, as follows:

I'=(V,E) where
V= {R1)R27R37 (RS RZ}

E={(z,y)lx € VAy eV Ax #yAmanages(z,y) A reports(y,x)}

4.2. Team Formation 109

(b)

Figure 4.2: Team

The team model is related to the mission model defined in Chapter 3 in that V and
E are also elements of the mission model. This is due to the fact that the mission
specification also specifies the structure of the team. Figure 4.2(a) illustrates the
digraph model of a team. We, however, will use a simplified version of this model,
i.e., a simple graph that is also a tree, as shown in Figure 4.2(b) since it will serve
the purpose for all practical cases we consider. In this figure, R; is responsible for

assigning R, and R3; which in turn are responsible for reporting their status to R;.

4.2 Team Formation

The team layer of the management framework deals with the formation of a self-
managing team of UAVs from a group of self-managing UAVs. It does so by discov-
ering new UAVs within the communication range of those which are already part of
the team, authenticating them [AGS™09], assigning them to suitable roles based on
their capabilities, and maintaining the team. The team formation process is facili-
tated by five interacting services residing in the team layer. These are the Capability
Manager, Role Manager, Discovery, Optimiser services and the Role itself that is being
enacted by the UAV. The Capability Manager service is responsible for generating and
advertising! the capability description of the UAV. The Role Manager deals with man-
agement tasks that are common for all roles such as loading, starting and stopping a
role as well as providing support for running multiple roles on a single UAV. The Dis-
covery service deals with discovery of new UAVs and the Optimiser service computes

an optimal role assignment for the available roles and the discovered UAVs.

IThe UAVs do not actually advertise their capabilities, they reply to discovery messages with their
capabilities.

4.2. Team Formation 110

4.2.1 Discovery

UAVs discover each other using a discovery service that advertises the identification
(ID) of a UAV periodically. Recall that we refer to a role (or a UAV enacting the role)
that is responsible for assigning one or more roles as manager role and the roles

managed by it as managed roles.

Discovery and assignment are done at every level of the hierarchy, i.e., by every
manager role, as opposed to centrally by a single manager role at the root of the

hierarchy.

A manager role runs a discovery service to discover new UAVs and assign them to
one of its managed roles as illustrated in Figure 4.3. When a new UAV comes in to
the communication range of the manager UAV, it will be able to receive the broad-
cast. The new UAV then replies to the broadcast with a join request if it is willing
to take part in a mission. This leads to the initiation of a public-key based mutual
authentication protocol that, if it succeeds, results in a shared secret key (described
later in Section 4.2.2). Using this key, the discovered UAV will encrypt its capability
summary and send it to the manager UAV. Encryption of capability information is
necessary as, particularly in military applications, an adversary might use this infor-
mation to infer mission goals and to plan attacks to neutralise a UAV’s capabilities.
Upon receiving the capability summary, the manager UAV, using its role assignment
policies, decides whether the discovered UAV has the potential to be assigned to one
of the roles and if so it will request the discovered UAV for its full capability descrip-
tion. If the manager UAV is satisfied with the full capability description, it will assign
the discovered UAV to an appropriate role. The newly assigned role might run its
own discovery service if it has roles to be assigned, and the discovered UAV will stop

further capability advertisements since it is already enacting this role.

In the discovery protocol, a design issue considered was whether discovery messages
should be limited to a single hop, i.e., only to nodes (UAVs) within the communica-
tion range of the discovering UAV, or be forwarded by intermediate nodes thereby
allowing multi-hop discovery. We chose to limit the scope of discovery to a single
hop for a number of reasons - (1) if discovery messages are forwarded, nodes that
are not yet part of the team are to take part in the mission but since these nodes

are not authenticated they cannot be trusted to participate in the mission, (2) ex-

4.2. Team Formation 111

UAV assigned to manager role Potential UAV for Assignment

Wireless

Self-management System Network

Self-management System

Capability Role Manager manager role Discovery Capability Role Manager managed role Discovery

Start—

Start

Broadc: -

Join

+———Authenticate—————»

Encrypted
cap. summary

Full cap.
request

Capability
description

Rol

Start——m

l«—Stop——

Start
}»Broadcast»

Figure 4.3: Discovery

isting team members may be enacting a manager role and hence will be trying to
discover new nodes so forwarding other discovery messages would cause confusion
and complicate the protocol, (3) forwarding discovery messages creates more network
traffic, potentially causing congestion and depleting battery resources, and (4) mis-
sions often require members to be in the local geographical vicinity and requiring the
nodes to be within radio range is a very simple way of enforcing this constraint. The
single-hop based discovery, however, can lead to not finding a node with a particular
resource that is not within the radio range but is available. It would be possible to
cater for this at the application level by defining specific messages that are relayed to
look for a scarce resource that is already part of the team and requesting it to move

to where it is required.

Another issue was whether UAVs that are not yet team members should broadcast
some form of announcement message rather than only respond to a discovery proto-
col. In our approach, the manager UAV, which is part of the team, instead of UAVs
(nodes) that are not yet part of the team, broadcasts the discovery message in order
to avoid unnecessary broadcasts by the non-member UAVs and enable immediate
discovery of UAVs as they become available with a lesser impact on network traffic.

A manager UAV has the knowledge of whether a UAV discovery is necessary or not as

4.2. Team Formation 112

it is aware of the mission roles and hence any discovery message broadcasted by a
manager UAV is targeted to fill one of the roles by a UAV. In contrast, a non-member
UAV has no knowledge of the mission, and hence the roles, before it is discovered
and joined the mission. Consequently, if a non-member UAV was to broadcast dis-
covery messages (announcements) in order to be discovered by a manager UAV, there
will be instances where unnecessary broadcasts would be made by the non-member
UAV, i.e., when all the mission roles that could be assigned by all the manager roles
receiving the broadcast are already assigned. Broadcast by a manager UAV enables
discovery of an available UAV as immediately as needed by the manager UAV. In con-
trast, broadcast by the non-member UAV makes the manager UAV wait for some time
(the broadcast interval) before it learns about the available UAVs, unless broadcasts
are too frequent (which is not a good solution as it overloads the network). In addi-
tion, announcement by non-member UAVs would waste energy and could be easily
used as a form of attack, by malicious nodes, on manager nodes to get the managers

to respond and waste energy.

4.2.2 Security

The UAVs in a team can change over time with new UAVs joining or leaving. These
UAVs may also belong to different organisations (e.g., allies). Authenticating a UAV
before it joins the team and protecting the ensuing communication is thus neces-
sary to ensure the security of the mission, particularly for military applications. We
assume the coalition between different organisations is achieved by using a Central
Command Centre (C3) that serves as a single certification authority (C?3), which is-
sues certified public/private keys to all UAVs in the mission and maintains a Certifi-
cate Revocation List (CRL), and use the Certificate Public Key Infrastructure (C-PKI)
[HT99] to ensure authentication, confidentiality and message integrity. The C-PKI
system is used to exchange a common secret key generated using the Diffie-Hellman
protocol [DH76] between each member of the team and its manager role. The se-
cret key effectively establishes a secure channel between the manager role and its
managed role. The steps involved in the authentication between a UAV (A) and the

Commander (or any other manager role performing discovery) (C) are shown below.

1. C — A: {Ci4}. Broadcast discovery message.

4.2. Team Formation 113

2. A — C: {Join Request, A;;, Nonces}. A sends a request to join the team.

3. C—A: Sign{{Kc} k=1 Cia, Noncesy + 1} . C authenticates itself to A by send-
Jok Kt
ing its Public-Key Certificate (PKC) and a function applied to Nonce,, all signed
with its private key.

4. A = C: Sign{{Ka}K}l ,Ajq, Noncey + 2} . A sends its PKC to C as well as a
fek Kt
function applied to the received Nonce, all signed by its private key.
If the certificates are verified by both A and C (using C®'s certificate), mutual

authentication is achieved.

5. C —A: Sign{{g* mod p}_,9,p, Noncec}, .. C sends the Diffie-Hellman param-

eters and keyshare encrypted with A’s public key.

6. A — C: Sign{{g¥ mod p}._,Noncec + 1} -1+ Asends its Diffie-Hellman keyshare,
encrypted with C’s public key.
Both A and C can now calculate a shared secret key (K,.) that is used to estab-
lish a secure channel between A and C. The rest of the communication uses the

secure channel established above.

There are some limitations in PKI system relating to the need for revocation lists.
However, typical missions would last for hours to a few days at the most so certificates
of participants in the mission will have been issued fairly recently before the start of
the mission. Thus dealing with revocation was not considered an issue. Developing

new security mechanisms was not a focus of this work.

4.2.3 Capability

The capabilities of a UAV indicate its ability and potential in terms of the basic re-
sources and functionalities that are expected by the tasks and policies associated
with the role that is to be assigned to the UAV. The assignment of a UAV to a role
is based on the UAV’s capability where the role definition specifies the capabilities
required to support the role and only a UAV with the required capabilities is assigned

to the role.

4.2. Team Formation 114

Capability Description

When devising a scheme for describing capabilities, the two major issues to be ad-
dressed are identifying the type of information to be provided by a capability de-
scription and specifying a representation language for the description. Based on
the type of information they carry, we have identified two levels of UAV capability
descriptions, namely capability summary and full capability description. A capabil-
ity summary shows the low-level resources of the UAV and a summary of services
provided by the UAV. For example, if we say that a UAV has a video camera, a long-
range communication link, and a map builder service we are describing the UAV’s
hardware resources as well as services although the description does not give infor-
mation on how to use them. The rationale for using this summary as a capability
description is to provide information about the potential of the UAV, which influences

the assignment decision (i.e., to which roles it can be assigned).

A full capability description defines the types of services a UAV provides and the
list of associated operations and notifications relating to the use of the service. For
example, a UAV which is capable of streaming a video might include in its service
description that it can stream video, allows controls such as start, stop, tilt, pan
camera, etc. UAVs provide different kinds of services such as mine detection, satellite
communication, video streaming, etc. Roles assigned to these UAVs may need to use
these services (tasks) as stand alone services or they may combine different services
and create a new functionality. Whether or not a UAV can accommodate a role can

be decided by checking its capability summary and full capability description.

Representing Capability Description

The representation of capabilities could be a simple text listing, a structured XML
based description or even a set of first order logic formulas. Which representation
mechanism to use depends on the type of information the description will carry and

on the intended use of the description.

We found the UPnP [Upna] approach to service description to be the most fitting to our
framework since it can describe both the capability summary and full capability. Our

capability description has three main parts, a system section that provides general

4.2. Team Formation 115

information such as the name, owner, manufacturer, model, etc. of the UAV as well
as credentials and contextual information such as battery power, a device list section
that provides a list of the devices embedded in the UAV such as processors, sensors,
etc., and a service list section, which describes the list of services provided by the

UAV.

Unlike the UPnP service description, we specify the directions of all operations. This
enables us to explicitly state what operations a service uses and what operations
it provides thus enabling a dynamic service composition. In a basic service (non-
composed service), the list of operations a service needs to access will be empty. In
addition, we include an explicit statement of the notifications a service will accept

and provide. Figure 4.4 shows an outline of a capability description.

Capability Matching

In parallel with our two levels of capability description, we have two levels of capa-
bility matching. The first one deals with matching the role’s required capabilities (as
specified in the local interface of the role) to the capability summary of the UAV in
order to determine whether the UAV can accommodate the role or not. The result of
this matching is: (i) Match: if the UAV has all the devices and services required by the
role, or it has all the required capabilities and some more additional ones (superset
match), (ii) No match: if the UAV does not have all of the devices and services re-
quired by the role. Note that a UAV that has only a subset of the required capabilities
will be categorised as no match. For example, if one of the roles required capability
is video streaming, and if the UAV has no camera then the UAV fails the first level of

matching and consequently it will not be considered to enact that role.

There is a need to distinguish between exact match and a superset match when

considering utility functions for optimising assignment of roles as discussed later.

The second one deals with matching the quality of service required by the role, and
the tasks of the role with the full capability description of the UAV. The result of
the quality of service matching may be used to adapt the behaviour of the role to
the UAV’s capability or it may lead to rejection of the UAV should there be a policy
enforcing a minimum level of quality of service and the UAV’s capability does not

meet that. For example, if the UAV’s full capability description is as shown in Figure

4.2. Team Formation 116

1 <xml>

2 <!—— General description ——>

3 <system>

4 <name></name>

5 <manufacturer>....</manufacturer>

6 <credential>....</credential>

7 <battery>....</battery>

8 <location>....</location>

9 <!——other elements... ——>

10 </system>

11 <!—— List of embedded devices ——>

12 <deviceList>

13 <device>

14 <!—— video camera and its description... ——>
15 </device>

16 <device>

17 <!——hazardous chemical detector and its description... ———>
18 </device>

19 <!——other embedded devices.... ——>

20 </deviceList>

21 <!—— List of services and their interfaces ——>

22 <serviceList>

23 <service>

24 <operations>

25 <in>

26 <!—— operations it accesses——>

27 </in>

28 <out>

29 <!—— operations it provides——>

30 <name>operation 1</name>

31 <argumentList>

32 <argument>

33 <name>argument1</name>

34 <type>typel</type>

35 <allowedValueRange>

36 <minimum>minValue< /minimumnm>
37 <maximuni>maxValue< /maximunr>
38 </allowedValueRange>

39 </argument>

40 <!—— other arguments... ——>
41 </argumentList>

42 <!—— other operations... ——>

43 </out>

44 </operations>

45 <notifications>

46 <in>

47 <!—— notifications it receives... ——>
48 </in>

49 <out>

50 <!—— notifications it provides... ——>
51 </out>

52 </notifications>

53 </service>

54 <service>

55 <!——operations and notifications of service2... ——>
56 </service>

57 <!—— other services... ——>

58 </serviceList>

59 </xml>

Figure 4.4: Outline of Full Capability Description

4.5 and the role requires a video streaming service, it may adapt the frame rate to
the bandwidth of the UAV. On the other hand, if there is a policy that specifies that
the resolution of the video stream should at least be 640 x 480 then this UAV will be

4.2. Team Formation 117

rejected. The task matching determines if the UAV has the necessary tasks relating
to the role and if not it will provide a URI for the UAV so that it acquires the tasks

before starting the role.

1 <xml>

2 <system>

3 <name>gunnersbury.doc. ic . ac.uk</name>
4 <owner>Imperial</owner>

5 <manufacturer>kteam</manufacturer>

6 <battery unit='Ah’>3</battery>

7 </system>

8 <deviceList>

9 <camera>
10 <resolution unit='px’>
11 <width>320</width>
12 <height>240</height>
13 </resolution>
14 </camera>
15 <wifi>
16 <bandwidth unit="Mbs >1</bandwidth>
17 </ wifi>

18 </deviceList>
19 <serviceList>

20 <dmrc. task . Explore>

21 <out>

22 <notifications>

23 <batteryLevel/>
24 <exploreStatus />
25 </notifications>

26 <operations>

27 <disable>

28 <arguments/>

29 </disable>

30 <enable>

31 <arguments>

32 <type>dmrc. util . Area</type>
33 </arguments>

34 </enable>

35 </operations>

36 </out>

37 </dmrc. task . Explore>

38 <dmrc. task . HazardDetect>
39 <out>

40 <notifications>

41 <hazardStatus />
42 </notifications>
43 <operations>

44 <start>

45 <arguments />

46 </start>

47 <stop>

48 <arguments />

49 </stop>

50 </operations>

51 </out>

52 </dmrc. task . HazardDetect>
53 </serviceList>

54 </xml>

Figure 4.5: Example Full Capability Description

Both the capability summary and full capability matching assume an agreed ontology

between the discovering UAV and the discovered UAV.

4.2. Team Formation 118

4.2.4 Role Assignment

A UAV is assigned to one of the roles in the mission based on its capabilities, which
it provides to the managing role during the discovery process. The managing role
checks the capability and decides whether to assign it to one of the roles or not and
then to which role to assign it to. The decision can be made either immediately
or in a delayed manner giving rise to an immediate or optimised role assignment

respectively.

©

s A
M (R

Figure 4.6: Reconnaissance Team

Management Tree

The UAVs in a mission are arranged in the form of a management tree during the role
assignment process to facilitate decentralisation with any of the UAVs potentially per-
forming discovery and role assignment. This tree is used for defining management
hierarchies as well as data aggregation during execution of the mission. Figure 4.6
shows a management tree for the reconnaissance mission described in Section 3.2,
consisting of the Commander, Surveyor, Aggregator, Hazard-detector roles and one
additional role type, i.e., a Relay (R) role that facilitates communication. In the fol-
lowing sections, we present the management tree formation algorithms. Each UAV,
upon startup, runs the Managed UAV’s algorithm. However, if the UAV is started as a
commander, it runs the Manager UAV’s algorithm. In the event that a UAV becomes

a manager, it also runs the Manager UAV’s algorithm.

Manager UAV’s Algorithm

A manager role has a set of roles it is required to assign according to the mission

specification. When the role is started, it prepares a waiting list (W) containing a set

4.2.

Team Formation 119

of roles to be assigned to UAVs : W = {Ry,Rs, ..., R, } and a children list (L) containing

a set of assigned roles and their state information.

1.

2.

Broadcast ID periodically to discover other UAVs.

If a UAV replies with a join request, the manager initiates a mutual authentica-
tion process that, if successful, will result in a shared secret key between the
managing and managed UAVs. If the authentication [AGS*09] is not successful,

return to step 1.

The authenticated UAV sends an encrypted capability summary s, check if there
is any role in W with a role assignment policy specifying a capability require-
ment r, where r C s. If there is such a role then send a request for a full

capability description to the UAV.

. Check if the full capability description satisfies the requirements of the role and

if so send a role assignment message to the UAV. Remove the assigned role from

W and add it to L.

. If a state update message is received, update L.

Check L for freshness of role state? information. If the age of the state of a role
is higher than a given interval of time then publish an appropriate failure event®
(this could be communication link failure or UAV failure event based on the age

of the state). Return to step 5.

For all UAVs that have responded to the broadcast, steps 2-4 of the above algorithm

execute in parallel.

Managed UAV’s Algorithm

1.

2.

Wait for broadcast.

If a broadcast message is received and if this UAV is willing to participate in the

mission, send a join request to the broadcaster.

2The role state information may range from an empty message only used to let the manager role know
that the role is alive to a message that contains a domain specific information such as the location of a
hazard.

3The failure events are used by the failure management policies that subscribe to these events.

4.2. Team Formation 120

3. If authentication is initiated by the broadcaster, then perform mutual authen-
tication. If the authentication is successful, send an encrypted capability sum-

mary to the broadcaster else return to step 1.

4. If a full capability request from the broadcaster is received within a given time-

out then send the encrypted description else return to step 1.

5. If a role assignment message is received within a given timeout then download
the policies specifying the behaviour of the role, from the manager or any other
node acting as a policy repository; start the role and identify the broadcaster as

the parent (manager) UAV else return to step 1.

6. Send a state update message to the manager UAV periodically.

Figure 4.7 illustrates a trace of the tree formation algorithm. Figure 4.7(a) shows
neighbouring UAVs forming an ad hoc network. In Figure 4.7(b), the top UAV broad-
casts discovery messages to its neighbours, which eventually form a team with the
top UAV as commander and the middle UAVs as children assigned to various roles
(Figure 4.7(c)). In Figure 4.7(d), the middle UAVs broadcast discovery messages to
their neighbours but only lower UAVs respond as the other middle UAVs already have

a parent. Figure 4.7(e) shows the resulting tree with each UAV having a single parent.

Immediate Role Assignments

An immediate role assignment implies a decision where a discovered UAV is immedi-
ately assigned to one of the available roles without considering other roles and possi-
ble future discoveries. Consider again the reconnaissance team shown in Figure 4.6
with roles Commander (C), Surveyor (S), Aggregator (A), Relay (R), Hazard-detector

(H), with their capability requirements shown in Figure 4.8(a).

Assuming that the Commander role is already assigned at time ¢, this mission still
needs four UAVs. Now let us assume that four UAVs, with capabilities as shown in
Figure 4.8(b), come within the Commander’s communication range with the arrival
order shown in Figure 4.9. UAV; is discovered at time ¢; and the Commander’s role
assignment policies, shown in Figure 4.10, dictate that it be assigned to either a

Surveyor or an Aggregator role. Although UAV; has more capabilities than required

4.2. Team Formation 121

() (d)

e UAV
| . Role

Management link
UAV assigned to arole

........ » Discovery message

Figure 4.7: Management Tree Formation

by a Surveyor role, since it satisfies the capability requirement of both roles it can be
assigned to either one of them. Assuming the worst case scenario, i.e., a UAV with
scarce resource being assigned to a role that does not need the scarce resource, let
us say that it is assigned to the Suwrveyor role. UAV; is discovered at time ¢, and
it will be assigned to the remaining role, i.e., the Aggregator. UAVs; and UAV, are

discovered at times ¢; and t, respectively by the Aggregator, which is now running a

4.2. Team Formation

122

Role Type Required

S {video, motion}

A {mapping}

R {motion, longrangecom}

H {motion, hdetection}

(a) Capability requirement of roles

UAV Provided
UAV; {mapping, video, motion}
UAV> {mapping, video, motion, longrangecom}
UAV; {video, motion}
UAV, {motion, hdetection}

(b) UAV Capabilities

Figure 4.8: Capabilities

discovery service since it needs to assign two roles. However, UAV3 does not satisfy

the capability requirement of either one of them and hence it will not participate in

this mission. UAV, will be assigned to the Hazard-detector role. The Relay role will

never be assigned thereby leaving the mission in an incomplete team configuration

until a UAV, if any, with the necessary capabilities is discovered.

t t. ts ta

Figure 4.9: UAV Arrivals

Consider two UAV arrival orders different from the one shown in Figure 4.9, UAV; —

UAV3 — UAVy — UAV, and UAV, — UAV, — UAV3; — UAV, where a — b stands for

UAV a is discovered before UAV b. Using the role assignment policies of the Comman-

© ©® N e U oA W N

on discovered (UAV, credentials , capability)
do assign (UAV, ”"Surveyor”)
when authenticated(credentials) and
capability. hasCapabilities ("motion” ,”video”)

on discovered (UAV, credentials , capability)
do assign(UAV, "Aggregator”)
when authenticated(credentials) and
capability. hasCapabilities ("motion” , "mapping”)

Figure 4.10: Commander Role Assignment Policies

4.2. Team Formation 123

on discovered (UAV, credentials,capability)
do assign (UAV, "Relay”)
when authenticated(credentials) and
capability. hasCapabilities ("motion” , ”lrangecom”)

on discovered (UAV, credentials , capability)
do assign(UAV, "hdetector”)
when authenticated(credentials) and
capability. hasCapabilities ("motion” ,”hdetection ”)

© ® N g oA W N

Figure 4.11: Aggregator Role Assignment Policies

der and the Aggregator, shown in Figures 4.10 & 4.11, in the worst case scenario,
the team may end up with assignments {S — UAV;, A — UAV,, H — UAVy, R — 0}
and {S — UAV,, A~ UAV), H — UAVy, R — 0} respectively where r — s stands
for role r is assigned to UAV s. In both cases, the team ends up with an incomplete

configuration.

In the first case, the problem was initially caused due to the fact that when de-
ciding to assign the Surveyor role to UAV; the Commander did not take the other
role (Aggregator) waiting to be assigned into consideration thereby leading to a later
assignment of this role to a UAV that has a scarce capability* (i.e., long-range com-
munication) required by the Relay role. This problem could have been avoided if the
Commander had taken all its roles waiting to be assigned into consideration instead

of immediately assigning discovered UAVs.

In the second case, the problem was caused by the fact that the Commander has
again used a UAV with a scarce capability needed by the Relay role. However, this
problem could not have been avoided even if the Commander had taken all its waiting
roles into consideration since both UAV, and U AV; satisfy the capability requirement

of the Surveyor and Aggregator roles.

From the scenarios discussed above, we can observe that immediate role assignment
leads to incomplete team configurations because of the lack of local (the Comman-
der not considering the Aggregator) and global (the Commander not considering the

Relay) consideration of future role assignments.

4A capability that is not provided by most available UAVs.

4.2. Team Formation 124

Optimising Role Assignments

The team formation starts from the UAV that is initially loaded with the mission
specification. This UAV assigns roles managed by it, and these roles in turn repeat
this process until the team reaches its final configuration. The discovery as well as
optimisation algorithms work in a recursive manner on every UAV, at any level of
the hierarchy, that manages other UAVs. If the roles take local and global future as-
signments into consideration, the team will reach its optimal configuration provided
that UAVs with the necessary capabilities are available. To attain this we define two

objectives a manager role should aspire to achieve:

e Local objective: a manager role should work towards assigning all its managed

roles to the best available UAVs.

e Global objective: a manager role should work towards facilitating the assign-

ment of all roles managed by its managed roles.

We model the role assignment problem using roles, UAVs, the management relation
among roles, constraints and utilities as shown in Figure 4.12. The functions regcqp
and prov.,, express the required and provided capabilities by roles and UAVs respec-
tively. battery(s) gives the available battery power of a UAV. Management relations
are expressed through the managed by (represented as mgdby) and management clo-
sure (represented as mgmnt.,sure) relations. wtility(r) gives a measure of the benefit
acquired by using a role r. For example, in a mission where roles have different pri-
orities the utility of a higher priority role is more than that of the one with a lower
priority. wutility(s) gives a measure of the benefit acquired by using UAV s. For ex-
ample, a UAV with more battery power has higher utility than the one with a lower
battery power. wtility(r, s) gives a measure of the benefit acquired by assigning role r
to UAV s. For example, if a manager role is concerned with global objectives the util-
ity of an assignment of a role to a UAV that has the exact capability requirements is
higher than that of the one using a UAV with more capabilities than required by the
role. This will decrease the probability of reaching an incomplete team configuration
by preventing the use of more capable UAVs for less demanding roles. On the other
hand, if a role is concerned only with local objectives the utility may be the same

for all assignments that satisfy the capability matching requirements. weight(utility)

4.2. Team Formation 125

1. A set R of n roles with their attributes
R:{T1)r27r37 LRI Tn}
A set C of t -capabilities.

C ={ci,co,¢3,...,¢}
reqeap : R — P(C) where P(C) is the power set of C

2. A set S of kK UAVs with their attributes
S = {81782, 83,4y Sk}
Provegp : S — P(C)

battery(s) : S — R where R denotes the set of non-negative real numbers
cred(s) = credentials of a UAV

3. A management relation among roles

mgdby : R — P(R) where
r; € mgdby(r;) if r; is responsible for assigning r;
managementciosure : i — P(R)
Tj if
mgdby(rj) =0
management cosure (1) =

U managementcosure(r;) otherwise
ri€mgdby(r;)

4. A set of constraints that must be satisfied by a valid role assignment.

colloc: R x R — {—1,0,1}

—1 if r; and r; cannot be assigned to the same UAV
colloc(ri,rj) = ¢ 0 if there is no restriction
1 if r; and r; have to be assigned to the same UAV

5. A set of utility functions providing a measure of the benefit
acquired by performing any assignment.

utility(r) : R — RT

utility(s) : S — RT

utility(r,s) : R x S — R

weight(utility(r)) : Upore — R

weight(utility(s)) : Upay — R

weight(utility(r, s)) : Upore.vay — R

Urote = {utility(r), utilitys (r), utilitys(r) . . . utility,(r)}

Uvav = {utility1(s), utilitys(s), utilitys(s) . .. utility,(s)}

Urote,vav = {utility:(r, s), utilitya(r, s), utilitys(r, s) ... utilityq(r, s) }

Figure 4.12: The Role Assignment Model

provides the weight associated to each utility function. For example, in one mission
scenario a utility measuring a battery power may be given more weight than a utility

that measures the degree of capability matching. However, this choice may change

4.2. Team Formation 126

in another scenario and hence the need to model utility weights as functions. The
weights of the utility functions are decided by the mission administrator and spec-
ified, using policies, as part of the mission specification. However, this decision of
what weights to use for each utility function, and defining the utility functions them-
selves is a difficult task. It is an iterative process in that the weights and functions
need to be modified based on experience and needs a thorough knowledge of the

domain of the mission.

The node mobility model is not considered for optimisation. Once the node joins the
mission, the mobility pattern of the node will be controlled by the mission policies.
Prior movement patterns are irrelevant. However, mobility attributes such as battery
power, maximum speed, maximum incline that the vehicle can cope with, hovering
capability for airborne vehicles, etc. are treated as capabilities when making role

assignment decisions.

Using the role assignment model shown in Figure 4.12, we formulate the role assign-
ment problem as shown in Figure 4.13 where u,; denotes utility; and w denotes weight.
In this formulation, the aggregate utility of each discovered UAV with respect to avail-
able roles is computed. The utility is set to O if either the utility of using the UAV
(system utility) or the utility of using the UAV for a certain role (role-system utility) is
0. This is because if the utility pertaining to a UAV is O in one aspect then the UAV
should not be used (e.g., not match, battery level lower than the minimum allowed
level, etc.). Once the aggregate utility for all discovered UAVs and available role is
computed, the next step is solving the assignment problem. To solve this problem,
we model it as a weighted bipartite-graph minimum-cost maximum-matching prob-
lem where one partition of vertices are the roles and the other partition of vertices
are the UAVs. The weights of the edges in the graph are computed using the utility

(treating maximum utility as minimum cost) for the role-UAV pair.

Efficient algorithms, such as Hopcroft and Karp’s O(m+/n) algorithm [HK73], where
m = nd, n = number of vertices and d = degree of each vertex, exist for solving the
maximum matching problem for regular bipartite graphs, which would satisfy our
local objective. However, to satisfy both the local and global objectives, i.e., in order
not to use UAVs that have more capabilities than required by any of the roles that are
going to be assigned by the current manager role, we are interested in minimum cost

in addition to maximum matching. Algorithms, such as the polynomial time Hun-

4.2. Team Formation 127

Find a function f:R — S that maximises U
where
n k
U=>"> U
j=11=1
;Ui(rj)w(ui(T)H
P
> ui(si)w(us(s))+
Uj,l — 121
> uiry, s))w(uqi(r, s)) u(sy)u(ry, s;) >0
i=1
0 u(s)u(rj,s;) =0

Figure 4.13: The Role Assignment Problem

garian algorithm [Kuhb5, Kuhb6], that can compute the minimum-cost maximum
matching for regular bipartite graphs exist. The role assignment bipartite graph
can be easily transformed to a regular graph by adding dummy roles or UAVs if
there are more UAVs than roles or vice versa respectively. The collocation constraint
colloc(r;,rj) = —1 is satisfied by default because the bipartite matching model assigns
each role to a unique UAV. We do not consider the colloc(r;, ;) = 1 constraint because
roles that have to be placed together can be designed as tasks and placed in one role.
However, should there be a need to consider it, our problem solving model is capable
of dealing with this constraint because the constraint can be easily encoded into the

matching problem by defining a third role r;, where reqeqp(ri) = regeap(ri) U regeap(r;).

We specify the weight function, weight(utility) for utilities using policies in order to
make the optimisation system flexible and adaptable. The role assignment algorithm
is shown in Algorithm 1. R, is the set of roles waiting to be assigned and T, is the
waiting period before optimisation is started. The optimisation algorithm waits for a
specified duration (7,,), after the first UAV is discovered, before it starts the optimi-
sation. If this waiting period is zero, i.e., UAVs are assigned immediately as they are
discovered, then the algorithm will be the same as the immediate role assignment
algorithm. By waiting for a specified amount of time, it allows for discovery of multi-
ple UAVs and hence enables the possibility of optimisation. A longer waiting period
increases the probability of discovering more UAVs thereby increasing the probabil-
ity of higher utilities at the cost of delaying the mission. In a similar manner to the

weights of utility functions, the choice of the waiting period depends on the type of

4.2. Team Formation 128

the mission and should be decided by the mission administrator. Consequently, it is

specified, using policies, as part of the mission specification.

Algorithm 1 Role Assignment Algorithm
Require: R, T, c, weight(utility) denoted as w(u)
Ensure: ' : R’ — S'whereR' CR,5'C S
while 7" < T,, do
if UAV s, is discovered then
if G = () then
Create GG
for r; € R, do
if u(s;)u(r;,s) > 0 then

m p q
cost = ¢ = (3 wilryJw(u(r)) + 3 uilsiw(ua(s)) + 3 wilry, sjw(ua(r,5)))
else
cost = ¢
end if
Connect r; to s; with cost as the weight of the edge
end for
end if
end if
end while

Transform G into a regular bipartite graph G’.
Revise the cost matrix of G'.
Create matching M from G'.
if M is not a perfect matching then

Compute M = the minimum-cost maximum-matching of G’.
end if
Remove dummy vertices.
/' = the resulting bipartite graph where,
R’ = vertices of the role bipartition with edges.
S’ = vertices of the UAV bipartition with edges.
Ry, =Ry, \ R
return [’

Utility Models for Optimal Role Assignments

We use three utility functions for optimal role assignments, a role utility, a UAV (sys-
tem) utility and role-UAV utility as shown in Figure 4.14. The role utility, priority(r),
measures the benefit of assigning role r with respect to the priority this role has com-
pared to other roles. The UAV utility, power(s), measures the benefit of using UAV
s with respect to battery power compared to other UAVs. The matching(r, s) utility
measures the benefit of assigning role r to UAV s with respect to capability match-
ing. The overall utility is computed by the AggregateUtility, which uses the weights
provided through policies (Figure 4.16) for each utility. AggregateUtility checks all

utilities that are loaded onto the management system (Figure 4.15) identifies their

4.2. Team Formation 129

types and aggregates their values, thereby enabling the addition of new utility func-

tions dynamically using policies.

«interface»

+ Utility

+ getUtilityName()
+ getUtilityObject()

A

+ RoleUtility + RoleSystemUtility + AggregateUtility + SystemUTtility
— - coefficients: double] [0.."] —
+ utiity() + addRoles() - coefficientsindex: Hashtable<String,Object> + utility()
A * adt?'Sy stem() - localDomain: Domain A
+ utilty() - maxNumUtility: int

A - myP20biject: P20bject
- numCoefficients: int

- utilities: P2Array

- roleSystemUtilities: Hashtable<String.Object>

+ AggregateUtility()

+ getlD()

+ getRoleSystemUtilities()
+ getUtilityName()

+ getUtilityObject()

+ handlelnput()

+ setCoefficient()

+ utility()

+ Priority

+ Matching

- default_priority: int
- default_priority_levels: int
- myP20bject: P20bject

- extra_capability_penalty: double
- myP20bject: P20bject
- roleKeys: Set<String>

+ Power

- INFINITY: double
- myP20bject: P20bject

- priorities: Hashtable<String,Object> - roles: Hashtable<String,BloomFilter> + Power()
- priority_levels: int - systems: Hashtable<String,BloomFilter> + getUtilityName()
+ getUtilityObject()
+ Priority() + Matching() + utility()
+ getUtilityName() + addRole()
+ getUtilityObject() + addRoles()
+ setPriority() + addSystem()
+ setPriorityLevels() + addSystem()
+ utility() + getUtilityName()
+ getUtilityObject()
+ setPenalty()
+ utility()

Figure 4.14: Utility Classes

Consider the reconnaissance team shown in Figure 4.6 again, with the required and
provided capabilities shown in Figure 4.8 and with the UAV arrival order, UAV; —
UAV, — UAV3 — UAV,, as shown in Figure 4.9. We have previously shown that the
team will never become complete with this arrival order. We will now show that using

the optimal assignment algorithm the team will reach its optimal configuration.

Figure 4.17 illustrates traces of the optimal assignment algorithm execution with the
inputs of the algorithm 7, = waiting time before optimisation = 1000 ms, ¢ = constant

to transform utility into cost = 1, weight(utility) = weight of a utility function, set

1 on assigned(role)
2 do loadUftility (“Matching” ,” Priority “,“Power” ,“ Aggregate”)
3 when role ("Commaonder”) and optimise (“frue”)

Figure 4.15: Utility Loading Policy

4.2. Team Formation 130

1 on assigned(role)
2 do setAggregateWeight (“Matching” .1, Priority ” ,0,“Power” ,0)
3 when role ("Commander”) and optimise (“true”)

Figure 4.16: Weight Policy

S; S;
S 0.952 0.975
A 0 0.007
R 0.016 0
H 0.045 0.045

(e) ® @

Figure 4.17: Trace of the Assignment Algorithm

by the policies shown in Figures 4.16 & 4.18. As can be seen from the policy in
Figure 4.16, for this example, the power and priority utilities are not included in
the aggregate utility computation because their weight is set to zero, which makes
the matching utility the deciding factor for assignment. In this example, the utility

function used for matching is utility(z) = where © = rAs is the symmetric

1
ax(1+x)
difference between role r’s required capability and UAV s’s provided capability. This
and a variant of this function (shown in the case study chapter) are used to capture
the utility of matching capabilities. Bloom filters [Blo70] are used to represent the

capability descriptions; this enables efficient computation of set operations. Figure

4.19 shows the matching utility function for a = 1.

As shown in Figure 4.17(a), first when s, is discovered its matching utility is computed

with each role waiting to be assigned. The same applies for UAVs s;, s3 and sy,

1 on discoveryReady ()
2 do setOptimRate (“1000")

Figure 4.18: Optimisation Rate Policy

4.3. Team Maintenance 131

u(x)

Matching utility

L L ! N N n
0 10 20 30 40 50 60
Symmetric difference

Figure 4.19: Capability Matching Utility Function

by which time the timer set by the policy shown in Figure 4.18 goes off and the
optimisation starts. The resulting cost matrix® of the optimisation is shown in Figure
4.17(e) and the edges of the bipartite graph that have zero cost are marked as shown
in Figure 4.17(f). The assignment will then take the edges with the lowest cost for
each role as shown in Figure 4.17(g) resulting in an optimal configuration where

every role is assigned to the best possible UAV.

4.3 Team Maintenance

The self-management framework maintains a team of hierarchically structured UAVs
by means of the management tree. Both manager and managed roles send periodic
state updates to each other, which are used for team maintenance. The content of
the state update can range from only including information necessary to maintain
the hierarchical management structure to mission specific operational information
such as hazard location to remote role references used for maintaining collaboration

structures.

4.3.1 Failure Management

In order to distinguish between intermittent communication link failures and per-

manent communication link or UAV node failures, different timeouts are used. Each

5In this example, the optimal assignment is found right after revising the cost matrix, i.e., before run-
ning the minimum-cost maximum-matching algorithm.

4.3. Team Maintenance 132

UAV periodically sends state information to its parent in the management tree; if the
state information is not received within a specified timeout it is considered that a
failure has occurred. The timeouts are: (a) 7¢: detects intermittent communication

link failure (b) 7v: detects permanent failures (T > T¢).

Failure of a communication link and/or a UAV causes partitioning of the team as well
as loss of functionality. A systematically defined identity for UAVs is used to facilitate
merging and re-joining of partitioned teams. The identity I of a UAV is defined as: I
=[M | H | S]where: M = mission ID, H = hierarchy level and S = a numbering system
used to ensure that all the UAVs in the management tree can be placed in a total

order. This identity lasts throughout the team configuration.

Adapting to Communication Link Failure

An intermittent communication link failure may be caused by either a temporary
signal blockage by physical objects or movement out of communication range. Al-
though local functions can keep operating, a temporary partitioning of the network
over which the management tree is formed can cause disruption of state aggrega-
tion as well as the flow of management commands. In addition, remote operations
will also be affected. The desired response to this type of failure is to continue mis-
sion execution with disconnected operations and resolve inconsistencies when the

communication link reappears.

When the team is partitioned as a result of failure, one or more teams without com-
manders will be formed. In order to keep the mission executing during the failure,
the top UAV in the hierarchy (which was already managing this sub-team during
normal functioning) will become the commander of the team. A partitioned sub-team
can also admit new UAVs. When the sub-team rejoins the parent team, the sub-team
commander reports its current state to its parent and the domain structure of all
UAVs in the mission is updated to indicate new members. To facilitate merging of
partitioned teams, we define the hierarchy level of the partitioned team to be the level
of its manager. Merging is performed by placing lower level hierarchy teams under

the management of higher level hierarchy teams.

In this approach, there is no new role assignment or reassignment of existing UAVs

to roles different from their original ones. Consequently, the mapping of existing

4.3. Team Maintenance 133

©
® ® @ @) o ®
® 6 ® JEEC@ eemem
(a) (b) ()

FANS W PR

(d)

Figure 4.20: Reconfiguration and Role Reassignment to Adapt to Failure

UAVs to roles remains the same whereas the management tree can be different, as
it is assumed that the adaptation is temporary. The initial configuration is shown in
Figure 4.20(a). When communication link disconnection occurs, as shown in Figure
4.20(b), partitioned sub-teams are created. These sub-teams perform reconfiguration
where the partitioned role, H, comes under the control of the other sub-team as

shown in Figure 4.20(c).

Adapting to System Failure

A permanent failure is caused by either a node or communication link failure (other
UAVs cannot distinguish between these). The result is the partitioning of the team
as well as a loss of roles. The partitioning problem is addressed using the approach
presented in Section 4.3.1. The response to the loss of roles is as follows (in order of
priority): (i) use replicated roles, if available, (ii) if there are unassigned or newly dis-
covered UAVs, perform a role reassignment, while keeping the existing team configu-
ration, to replace the lost role(s), and (iii) if none of the above is feasible, reconfigure
the team by swapping less crucial roles for more crucial roles. Should the reconfig-
uration incur role replacement, this takes place only in subsets of the team that are
lower in the hierarchy than the failed UAV. This is due to the fact that roles assigned
to higher level UAVs are assumed to be more crucial to the mission. In the case of

role reassignment and reconfiguration, state information migration takes place.

Figure 4.20 illustrates adaptation to permanent failures. The initial configuration
is shown in Figure 4.20(a). When a permanent failure occurs, as shown in Figure

4.20(d), partitioned sub-teams are created (Figure 4.20(e)). The response to this prob-

4.4. Comparison with Related Work 134

lem can be either reconfiguration as shown in Figure 4.20(f), where the partitioned
sub-teams are moved up in the management hierarchy and now managed by the
main commander, or a role replacement where the UAV that was previously assigned
to role S is now reassigned to the supposedly crucial role A as shown in 4.20(g).
All reconfigurations, reassignments and other responses are specified in terms of

policies.

4.4 Comparison with Related Work

Research in multi-robot and multi-agent systems has resulted in a number of ap-
proaches for dynamic team formation and role (task) assignment. In this section,
we compare our work to related work in this area. For a more complete description
of the related work, the background chapter can be consulted. Also, note that the
mission specification aspect of the related work, where applicable, is considered in

Chapter 3.

CDL [MAC97] takes the difference in capabilities of robots into consideration in that
behaviours are assigned to robots based on their capabilities. It is similar to our
approach in this aspect. However, it forms and maintains a team by using a static
matching and allocation of behaviours to robots and hence has no discovery and
optimisation elements. The matching and allocation is performed by the mission ad-
ministrator. CHARON [AGH'00] uses a similar static allocation but has no matching

element as it does not take the difference in capabilities of robots into consideration.

ALLIANCE [Par98], initially, forms a team in a static manner where the assignment of
behaviours to robots, based on their capabilities, is done by the administrator. Our
approach forms the initial team dynamically through discovery, optimisation and ca-
pability matching. Once formed statically, ALLIANCE’s team can, however, maintain
and optimise itself through time by using dynamic task reassignment that is facil-
itated by the broadcast of activities by each robot. Upon receiving the broadcast,
each robot decides whether to take a task away from the current robot performing
that task based on the motivational level computed using the received information.
AYYLU [Wer0OO] uses a similar static initial team formation with broadcast-based task

reassignment. The dynamic reassignment of tasks (behaviours) in both frameworks

4.5. Conclusion 135

applies only to existing members of the team since there is no means to introduce
new team members dynamically. In contrast, our framework allows for admission
of new UAVs in order to replace failed UAVs but does not perform re-optimisation.
Re-optimisation of all the role assignments either periodically, after a failure or when
a new node is discovered was considered. This would result in dynamic role reas-
signment, but we decided the cost of transferring roles, policies and state information

outweighed the benefits.

MURDOCH [GMO1, GMO02] uses auctions and contracts [Smi80, DS83] to form and
maintain a team dynamically. Its task allocation approach is completely distributed
as opposed to our hierarchical approach. Consequently, MURDOCH’s task assign-
ment decisions are based on the current and/or local situation only without taking
into account how the decision might affect the future and/or the global situation.
In effect, its task allocation approach may not always give the best solution. Our
approach takes the global and/or future situation into consideration. In the window
of time that every role assignment is done, the architecture performs optimisation on

the set of discovered UAVs and roles waiting to be assigned.

4.5 Conclusion

In this chapter, we have presented a distributed, dynamic team formation approach
that discovers UAVs and optimally assigns them to roles based on their capabili-
ties. The approach also caters for intermittent communication link disconnection

and permanent link or UAV failures by using policies to adapt to failure.

The framework is novel in that it starts with a single mission specification defining
the overall mission policies and distributes roles in an optimal manner as UAVs are
discovered. The overall management of team formation and maintenance of dynamic
teams is distributed among members of the team and hence is scalable and not de-
pendent on any single node. The policy-based local management decisions facilitate

adaptation to local context.

Automating the process of discovery and optimal role-to-UAV allocation is crucial,
for dynamic team formation, in applications where the types of UAVs are not known

in advance. Similarly, the ability to maintain the team is necessary in teams of

4.5. Conclusion 136

mobile autonomous systems where communication link or node failures can happen
frequently. In addition to enabling these abilities, the prominent advantage of our
approach is that instead of encoding all the decisions in the framework, we factor out
management decisions that may vary across missions and allow for adapting them

through policies.

Although the initial role assignment is done in an optimal manner, the framework
does not consider re-optimisation in order not to destabilise the team. However,
in cases where the re-optimisation benefit outweighs the cost, it would be useful to
allow this behaviour by specifying optimisation policies. For example, when role reas-
signment is performed to adapt to failures a global optimisation could be considered

instead of the much localised optimisation that considers only the failed roles.

Chapter 5

Communication Management

UAVs are equipped with wireless transceivers that would enable them to form a multi
hop mobile ad hoc network (MANET) . As mentioned in Chapter 1, communication
between any two UAVs in a team can be achieved by means of a MANET routing
protocol so long as there is a wireless network connectivity among team members.
However, given a set of UAVs when a UAV moves far enough from the rest of the
UAVs to an extent that it is not within the communication range of any of the other
UAVs, the UAV becomes disconnected from the rest of the network. Thus the MANET
routing protocol will not be able to provide full connectivity between all UAVs. The
impact of a UAV’s movement out of the communication range could result in its
isolation or it might even result in partitioning of the team if it is the sole relay path
within a part of the network. Connectivity can be maintained by enforcing strict
formation control, such as a geometric formation control [SY99], that would keep
the original network structure (as defined at mission startup) intact. This, however,
would render the team dysfunctional, for most but strongly coupled missions such
as coordinated transport of objects, as the formation control has to override the
mission requirements (i.e., requirements that would need the UAV to stay at a certain

location) all the time.

One, more general, way of addressing this issue is introducing a mission-specific
Relay UAV (UAV enacting a Relay role) whose sole purpose is extending the commu-
nication range of its manager role (UAV enacting the manager role that could be any

type of role depending on the mission specification) thereby providing more freedom

137

138

of movement to its manager role in particular and all the other team members in gen-
eral. Consider the reconnaissance team (Figure 4.6) at a certain arbitrary time with
the UAVs being in the positions shown as in Figure 5.1 (a). Figure 5.1(b) shows the
network connectivity graph (broken lines) and the management tree (solid lines) for
this team. In this figure, the UAV enacting the Hazard-detector role (U AVg), which is
managed by the Aggregator, is at a distance that is greater than the communication
range of the UAV enacting the Aggregator role (UAV;). However, it is still connected
to the rest of the team members because of the presence of the Relay UAV (U AV;).

7 - N N N
/ / A \ \
/ / \ \ o\
[A1 \ \ T
| = =
\ / /
A A yF
NN /oy !
RN N L s Z
\ S - /
\ e /
/ /
N N
e s
N - ~ -
(a). UAVs with Identical Communication Range (b). Network Connectivity Graph with the Management Tree

Overlayed on the Graph

Figure 5.1: Network Connectivity

Ideally, a mission can enhance its network connectivity by employing more Relay
roles thereby effectively creating a backbone network made up of relay nodes, which
are not constrained by mission requirements (i.e., other than the requirement to
stay within the communication range of their manager which gives more freedom
than other requirements that would need a UAV to stay at a certain location). This
solution, although feasible, is costly since if the mission has to solely depend on
dedicated Relay roles for communication link maintenance then a number of Relay
roles (depending on the size of the mission area, the communication range of the
UAVs and the number of UAVs in the team) are required. We can, however, augment
this solution by (1) requiring all UAVs to move in a manner that would maintain the
connectivity whenever they are not constrained by their mission requirement, and
(2) enforcing a rendezvous of all UAVs at a specified location, when disconnection
is imminent, in order to create intermittent connectivity. Our framework addresses
this issue by using two complementary measures. The first one is a proactive ap-
proach where the framework tries to prevent UAVs from becoming disconnected from

the network and the second one is a reactive approach, triggered by imminent loss

5.1. Maintaining Communication Links 139

of communication link among UAVs, where the framework tries to setup rendezvous
in order to enable communication at intermittent intervals. Both the movement and
rendezvous-based approaches do not necessitate the presence of UAVs dedicated to
performing Relay roles since UAVs in the mission can potentially perform the re-
lay function to maintain an ad hoc network by modifying their path of movement
to maintain communication range with neighbours while still performing their other
roles. However, having some nodes dedicated to relay roles can improve communi-
cation maintenance if most of the other roles do not have the flexibility in adjusting

movement patterns.

5.1 Maintaining Communication Links

The communication layer of the framework deals with communication link mainte-
nance by using two different approaches. Each approach is more suitable to distinct
types of missions or classes of missions. In the first approach, UAVs try to control
their movement so as to make sure that they stay within the communication range
3 (Section 5.1.1). Consequently, this approach is suitable for teams of UAVs that
operate in a convoy manner. In the second approach (Section 5.1.2), instead of re-
stricting the motion of the UAVs, UAVs perform disconnected individual operations
while maintaining the team structure by trying to ensure that all members of the
mission, regardless of destination or role, communicate at intermittent intervals. If
the second approach fails, the issue will go up to the failure management protocol in
the team layer. For missions or contexts that result in UAVs operating in a scattered
manner, the second (i.e., rendezvous-based) approach is more suitable as it does not
restrict the movement of UAVs. In this work, we use both approaches by starting
with the first approach and switching to the second approach when the need arises.
We do so in order to accommodate different types of missions without losing the ad-
vantage of each approach for specific types of missions. However, either one of the

algorithm can be disabled if the behaviour of the mission is known a priori.

In the following, we motivate the need for both types of approaches and then present
the algorithms. Consider a reconnaissance team that consists of a Commander, a
Surveyor and a Hazard-detector roles. The team members as a whole may effectively

move as one entity since every next point explored in the mission area is decided

5.1. Maintaining Communication Links 140

by the Surveyor with the other roles facilitating the process by providing functional-
ities that are not available in the Surveyor UAV (e.g., hazardous material detection
by the Hazard-detector UAV, and high-bandwidth long-range communication by the
Commander UAV). The first approach can then be used to maintain communication
among these UAVs, which are operating in convoy, by intermediate UAVs acting as
communication relays to the furthest ones. In this scenario, the team was able to
operate in convoy because the cooperation is based on functional partitioning (i.e.,
UAVs with different capabilities working near to each other at all time since each
capability is needed at every location they work on) as opposed to spatial partitioning
(i.e., UAVs with identical capabilities partitioning the mission area and performing
the reconnaissance accordingly). Although this approach allows UAVs involved in a
mission to maintain communication links and is suitable for teams operating as a
convoy, it does so by constraining the movement of UAVs. Consequently, it would
not be feasible (conflicts with mission requirements) in applications such as large
area reconnaissance where a larger number of UAVs need to operate in a scattered
and less constrained manner due to the partitioning of the mission area. The second
approach is suitable to this type of missions. It is also possible, in both cases, to use
dedicated mission-specific relay (repeater) UAVs whose sole purpose is relaying (ex-
tending the communication range) of other UAVs in the mission in order to maintain
communication link among UAVs. However, as mentioned before, solely depending
on this solution is costly as it increases the number of UAVs required to perform a

mission.

Before we discuss the algorithms and protocols involved in the communication man-

agement scheme, we will list the assumptions:

Each UAV knows its current location (e.g., by means of a GPS device) and also

its direction and speed of travel.

No clock synchronisation is assumed (although the clock rate on the UAVs is as-
sumed to be nearly equal, for example, 20 minutes on one UAV is approximately

equal to 20 minutes on another).

All UAVs have the same communication range (Cr) and,

A global/local co-ordinate system exists for specifying location and direction of

travel.

5.1. Maintaining Communication Links 141

e UAVs move on a plane and the dimensions of UAVs, when projected on to this

plane, is negligible compared to the communication range.

Consider again the UAV management tree shown in Figure 4.6. Each UAV periodically
reports its state information to its parent node and vice versa. Since this periodic
message contains the current location, direction of travel and speed of the UAV, it
allows UAVs to monitor the current position of each other. We will discuss the two

approaches in the next two sections.

5.1.1 Adapt Movement to Maintain Communication

In this section, we detail the approach that controls the movement of the UAVs to
ensure that they maintain communication with all member of the team. In this ap-
proach, one of the UAVs is the leader and thereby dictates the direction of movement.

All the other UAVs follow this UAV by using the following algorithm:

1. Receive state update, about other UAVs in the team, containing location, speed

and direction of travel.

2. After T amount of time, predict the distance between the leader UAV and each

non-leader UAV.

3. If the distance between self (the UAV running this algorithm) and the leader UAV
is the smallest then set the target UAV to be the leader UAV, otherwise compute
the distance between self and each non-leader UAV and set the target UAV to be
the nearest UAV to both self and the leader UAV.

4. If the distance between self and the target UAV is greater than the communi-
cation range threshold (modelled as a percentage of the communication range),

move to target.

In the following, we illustrate how this algorithm works. Assume that the position
at time 7T of the 5 UAVs listed in the management tree in Figure 4.6, are as shown
in Figure 5.2 (a). Starting at time 7', UAV S starts to move from its current location
to its future location S’ with constant speed and direction (fs). Since the direction

and speed of S are available to the rest of the UAVs in the team, they can predict

5.1. Maintaining Communication Links 142

©° Lo
° [] [] S i. [] R,
c A R C A
[] | []
H Time=T i H Time=T"
@ | (b)

Figure 5.2: Position of UAVs

the location of S at a later time (7”). If this position is beyond the communication
range of the rest of the UAVs in the mission, the closest UAV to S starts to move so
as to make sure that it still is within communication range of S. As per the scenario
mentioned above, we can see from Figure 5.2 (a) that UAV R is the closest to UAV S
and it is R’s responsibility to make sure S is within communication range and so it
moves accordingly. When S moves to S’ at time 7", R moves to R’ (Figure 5.2 (b)). The
amount that R has to move depends on its location and the location of S. By time 77,
R moves in a straight line to R’, which is the closest point to its current location that

is within communication range of 5’.

If UAV S keeps moving in the same direction and moves from position S’ to S” during
the next time period, then R would also move to keep S within communication range,
provided it does not lose communication with the rest of the group. In the event that
R along with S move out of communication range with respect to the rest of the UAVs
in the group, the UAV closest to R will start following R to keep it within communica-
tion range. If S keeps moving away, the rest of the UAVs form a “chain” that allows
them to maintain communication with S. Ideally, the algorithm enables the UAVs to
move in a convoy fashion while maintaining communication link among themselves.
However, even in a convoy type mission a UAV may not always be able to move when
it should do so due to (1) mission requirements (e.g., a Hazard-detector may not have
finished its detection process and hence cannot follow the Surveyor in time although
it is the nearest to the Surveyor and must have followed it immediately in order to
keep the communication link) (2) mission parameters — either the communication
range threshold not being small enough and/or the state update not being frequent
enough in order to trigger the follower movement in time. Hence, by the time the

movement is triggered the target may have travelled too far thereby rendering the

5.1. Maintaining Communication Links 143

link maintenance algorithm ineffective.

In the case of the conflict with mission requirement, we have made a design choice
of giving priority to the mission tasks thereby allowing UAVs to decide whether to
follow the leader or any other target UAV depending on whether they need to stay at
their current position or not. Although this choice incurs an occasional breakdown
of communication link among UAVs, this problem can be reduced by switching to
the second (rendezvous-based) approach when the movement-based communication

link maintenance approach does not work.

The choice of the communication range threshold and state update rate have consid-
erable impact on the success or failure of the algorithm. The effect of these param-
eters is evaluated and the result is presented in Chapter 8. The algorithm does not
introduce additional messages since it gets the location, speed and direction infor-
mation from state update messages that are already used to maintain the manage-
ment tree. However, it increases the size of these messages by introducing additional
states, i.e., location, speed and direction, and thereby introduces a bandwidth usage

overhead (discussed later in Chapter 8).

For a team consisting of n UAVs, the computational overhead for the UAV that is
nearest to the leader is O(n) since it has to perform n — 1 distance estimation com-
putations in order to decide the nearest UAV to the leader. For all other follower
UAVs, the computational overhead is O(n?) since they have to perform n — 1 distance
estimation computations in order to decide the nearest UAV to the leader followed by
(n" — 1)n'/2 computations to decide the nearest UAV to themselves, where n’ =n — 1,

i.e., the total number of UAVs less the leader UAV.

5.1.2 Rendezvous to Restore Communication

In this section, we will detail the approach that allows UAVs to perform disconnected
individual operations, while maintaining the team structure by trying to ensure that
all members of the mission regardless of destination or task, communicate at inter-

mittent intervals.

Consider again the UAV management tree shown in Figure 4.6. If the Commander

UAV notices that the distance between a child node and another member is greater

5.1. Maintaining Communication Links 144

than or equal to the range threshold (Tr, which is modelled as a percentage of the
communication range (C)), it initiates the rendezvous algorithm (Algorithm 3). Using
the current location, speed and direction of the UAVs in the mission, Algorithm 2
calculates a rendezvous area where all the UAVs are expected to rendezvous after a
specified time. Once an instance of the rendezvous algorithm is running, additional
requests are ignored, since the rendezvous area has already been calculated and it is
assumed that the newly departing UAV will eventually rendezvous at the same area.
After reaching the rendezvous area, the algorithm is restarted only if the need arises

again.

Algorithm 2 Calculate Rendezvous Area
Require: L, V, A
Ensure: REND_AREA

. - v1sinfy + vosinfs + ... + v, sinb,
1: 0 arctan(vicosf; + vocosfy + ... + vnc059n)
X:w1+w2+---+wn
n

N

(X, Y)=
Y ot ety

3: D:T*Umzn
. [Xpp =X+ D xcosb
4: (Xgrp, Yrp) { Yap =Y + D« sind

5. Calculate REND_AREA based on REND_PT = (Xgrp, Yrp)
6: return REND_AREA

Algorithm 3 Rendezvous Algorithm

1: Broadcast REND_MSG

2: Calculate rendezvous area

3: Send the REND_AREA and T to the team members
4: return

The rendezvous area is calculated as follows (shown in Algorithm 2 and used by Algo-
rithm 3). The direction of travel is calculated by computing the resultant direction of
travel of all the UAVs in the mission with respect to a common axis. Once the direc-
tion is calculated, the rendezvous area is calculated to be the area surrounding the
rendezvous point that is achieved by projecting the speed of the slowest UAV starting
from the average location onto the direction of travel over the requested time (7). The

notations used in the two algorithms are:

e REND_MSG: requests the UAVs to send their current location, speed and direc-

tion,

e n: number of member UAVs that reply to REND_MSG,

5.1. Maintaining Communication Links 145

e [: list containing the location of the UAVs, {(x1, y1), (z2, ¥2), .., (T, Yn)},
e V: list containing the speed of the UAVs, {vy, va, ..., Un},
e A: list containing the direction of the UAVs, {61, 0, ..., 0,,},

® Uin: Mminimum speed from among {vy, va, ..., v, },

0: resultant angle of the direction of travel,
e (X,Y): average location,

e T time to rendezvous (this time is relative to current time and indicates the

time in the future when the nodes need to rendezvous),

(Xgrp, Yrp): rendezvous point,

e REND_AREA: rendezvous area - a suitable expression for an area around

REND_PT, and

D: distance to rendezvous.

The rendezvous algorithm (Algorithm 3) is initiated by the Commander UAV when it
becomes aware that a member UAV is about to go out of range. This range (referred
to as range threshold and denoted by Tr) has a direct bearing on the protocol. Tx
must be less than or equal to the communication range of the UAVs (Cz) due to the
fact that the departing UAV (i.e., the UAV that is the cause of the rendezvous set up)
must receive information about the rendezvous area. Since the communication range
is a parameter that is known, T can be modelled as a function of the communication
range: Tr = 0% Cg, where 0 < ¢ < 1. ¢ is an adaptable parameter that can be changed
depending on the mobility of the UAVs involved in the mission. If the UAVs involved in
the mission are more or less stationary and their speeds are low, then ¢ can be a high
value (closer to 1) since the algorithm can compute and disseminate the rendezvous
area before the UAV moves out of communication range. If the mobility and speed of
the UAVs is high, the value of o should be low (lower range threshold). This would
trigger the rendezvous algorithm earlier, thus ensuring that the rendezvous area is
calculated and disseminated before the UAV moves out of communication range. The
mobility behaviour of the UAVs in the mission depends on the type of the mission

and hence o is set by the mission administrator.

5.1. Maintaining Communication Links 146

The Rendezvous Area is the area surrounding the rendezvous point (P) within which
UAVs must re-gather after a certain time (7') to re-establish communication. We draw
the rendezvous area as a circle (with radius R) that contains the rendezvous point.

There are three choices for drawing this circle (as shown in Figure 5.3).

Direction

Y

(a) (b) (©)

Figure 5.3: Drawing the Rendezvous Area around the Rendezvous Point

In Figure 5.3 (a), the rendezvous area is drawn by having P on the circumference
of the circle that denotes the rendezvous area with the area itself stretching in the
direction of travel. This is the most optimistic solution wherein it is assumed that
the slowest UAV (with speed = v,,;,) manages to speed up to reach P. This is a
valid assumption since it is quite likely that the UAV that is the slowest at the time
when information was exchanged for the execution of the rendezvous algorithm is

not travelling at its maximum speed.

In Figure 5.3 (b), the rendezvous area is drawn by having P as the middle point of
the area with the area as a circle of radius R around P. This is a less optimistic
solution as compared to the one in Figure 5.3 (a). In this scenario, there is a higher

probability of the slowest UAV reaching the area.

In Figure 5.3 (c), the rendezvous area is drawn by having P on the circumference
of the circle that denotes the rendezvous area. This circle is drawn with P as an
end point in the direction of travel. This is the most pessimistic solution of the
three mentioned in Figure 5.3. This solution assumes that the slowest UAV does not
increase its rate of speed and tries to ensure that the slowest UAV does indeed reach

the area.

5.2. Comparison with Related Work 147

Given the mission specifications and an idea about the terrain and area, it may
be possible to devise other mechanisms by which the area can be calculated. For
example, if it is known that the UAVs are being deployed within a building and the
map of the building is available, the rendezvous area could be specified with respect

to rooms within that building.

The time to rendezvous (7) is used in Algorithm 3 for calculating the rendezvous point
and consequently the rendezvous area. In Section 4.3.1, two timeout parameters,
namely 7 and T, corresponding to intermittent link disconnection and permanent
failure respectively were introduced. UAVs that are out of communication range for
longer than T are assumed to have failed and may be replaced by other UAVs.
Consequently, the rendezvous algorithm should decide on the rendezvous area such
that the UAVs can converge on that area before 7y amount of time has passed, i.e.,

T<Ty.

Some of the assumptions we have made introduce limitations to both algorithms
when applied in real-life missions. The assumption that all UAVs have the same
communication range will not hold in real-life thereby causing the need to use the
smallest communication range from the list of communication ranges corresponding
to each UAV. Also, the assumption about the knowledge of current location limits the

applicability of the algorithms in indoor missions where GPS reception is not reliable.

5.2 Comparison with Related Work

Multi-robot and multi-agent systems require communication in order to perform co-
operative missions. In this section, we compare our work to related work in this
area. For a more complete description of the related work [AGHT00, CKC04], the

background chapter can be consulted.

CHARON [AGH™00] has a formation control system that enables a leader robot to
move along prescribed trajectory while follower robots move with a pre-specified sep-
aration and bearing with respect to the leader robot. Similarly, the hybrid-automata
[Hen96] based paradigm for cooperating robots presented in [CKC04] has a leader-
follower type formation control that is based on broadcast of the position and velocity

of the leader to all the followers. Although the objective of these formation control

5.2. Comparison with Related Work 148

mechanisms is not communication link maintenance, we observe that they can be
used for this purpose provided that the separations are chosen in accordance with
the communication range of the robots. However, the algorithms are designed for
tightly coupled tasks such as cooperative transport and manipulation of objects and
consequently try to keep fixed separation among robots at all time. This results in
synchronised movement and hence will not allow one UAV to perform a stationary
task (e.g., hazard detection) while others are moving. In contrast, our movement-
based link maintenance algorithm allows this type of behaviour provided that the
movement patterns of the leader or target UAV do not result in them moving out of

communication range.

In [AOSY99], the authors presented a distributed algorithm that allows autonomous
mobile robots with limited visibility (robots can only detect the presence and estimate
the distance of a subset of all the robots in the mission) to converge to a single point
(the robots are assumed to be point size and collision is neglected). The algorithm
allows the robots to calculate their next position based on only the location informa-
tion of their neighbours (those that are visible); then move for a specified distance
and direction and then repeat the whole process until the robots converge to a single
point. The next position is calculated in such a way that the new region (a circle)
containing the robot and its neighbours is smaller than the current region. This is
achieved by computing, for the robot and all its neighbours, the maximum distance
each can travel towards a common (central) point without leaving the region, select-
ing the minimum distance out of the set of results, and then restricting the distance
a robot moves in every step to be less than this value. The common point itself may
also change in every step of the algorithm. Similarly, the authors in [Lin05, LMAO7]
address the problem of convergence to a single location of a group of mobile au-
tonomous agents. The authors employ two different strategies (with and without
common clock) that allow for mobile autonomous agents to rendezvous at a single
specified location. Both of the two approaches ([AOSY99, Lin05, LMAQO7]) are similar
to our rendezvous algorithm in that they set up rendezvous. However, there are sig-
nificant differences, mainly caused by their dependence only on “local” knowledge,
wherein each agent independently calculates its new location based only on its ob-
servation of neighbour information without any communication. This, local-strategy

based, approach is more robust in that the robots will always converge provided that

5.3. Conclusion 149

there is no hardware failure. Since the rendezvous (common) point can change with
time, the less capable robots can effectively pull this point towards themselves in
contrast to our approach where the point is fixed and robots that could not make it
to this point, due to change in circumstances after the point is agreed, will be left
out. However, in contrast to our approach, the local-strategy based algorithms do
not have an upper bound of rendezvous time, which is a drawback for time sensitive
applications. In addition, because the robots have to recompute the rendezvous point
after each step, these approaches have more computational overhead than ours. On
the other hand, these approaches have no communication overhead since the robots
sense neighbouring robots and estimate the distance. In a similar manner that our
approach needs a reliable positioning device, these approaches need a reliable dis-
tance (range) estimation devices such as sonar or infra red which are more costly

than GPS devices.

5.3 Conclusion

In this chapter, we have presented two complimentary approaches that try to pre-
vent communication link disruption among UAVs and setup a rendezvous to create

intermittent communication interval if the prevention fails.

Our approach is novel in that we address communication link maintenance as part of
the self-management architecture in contrast to multi-robot and multi-agent archi-
tectures that assume the existence of communication links throughout the mission
execution time, or immediately revert to failure management when the communica-

tion link fails.

A priority-based approach is used to resolve mission requirement and communica-
tion link maintenance requirement conflicts. In this work, we give priority to the
mission by default. A better way would be using a utility-function based approach.
We have factored out parameters that affect the behaviour of the communication
management in order to allow setting them through the mission specification and
adapting them through policies provided that suitable utility models to estimate these
parameters in accordance with the behaviour of the mission and characteristics of

the mission environment are developed.

Chapter 6

Case Study: Search and Rescue

6.1 Introduction

In this chapter, we consider a search and rescue mission scenario to exemplify our
self-management framework. Using this mission, we illustrate: (1) how a mission is
specified in terms of roles & policies and how the specification for one type of mission
can be reused for a similar or another type of mission, (2) policy-based dynamic team
formation in accordance with the mission specification, and (3) policy-based mission

adaptation.

As stated in Chapter 3, mission specification is performed by the mission administra-
tor using the mission, role and policy specification approaches discussed in Chapter
3. The mission administrator specifies a mission in terms of roles that are themselves
specified in terms of their interfaces and policies. In order to perform this specifica-
tion, the administrator needs to decide on what type of roles to use, how to organise
these roles (i.e., decide on the team structure) and what policies to use in order to
direct the team into achieving the goal of the mission. These issues involve the man-
ual process of refining the mission statement stated in a natural language in order
to identify roles and their interactions, possible organisation of roles, and policies
that dictate the roles’ behaviours so as to achieve the goals of the mission. We envis-
age a mission designer performing this process for a class of missions resulting in a
repertoire of role types, policies and role organisation structures that could be made

readily available for the mission administrator to facilitate a faster and easier mis-

150

6.2. Scenario 151

sion specification. Although refinement is not our framework’s concern, for the sake
of completeness and also to show that the example mission structure is based on a
sound design, we present the refinement process followed by elements that relate to

the framework.

The search and rescue scenario is loosely based on the urban reconnaissance sce-
nario presented in [ACO5] and the disaster scenario presented in [WRT04]. It was
elaborated using various examples of search and rescue in the literature [DMLO3,

SNO0O, Sch05, Mur0O4a, RKM*07].

Search and rescue missions have long been undertaken by teams of trained person-
nel around the world giving rise to the development of systematic organisation to
create search and rescue teams. Figure 6.1 shows the organisation for the United
States federal urban search and rescue task force [WR1t04]. We use this task force
organisation as an aid for identifying management relations between roles as we

manually refine the search and rescue mission.

Task Force Lagdar
12}
Salaty F[I-“- 1
[I I I 1 1
Saarch Team Rescua Team Hazmat Team Madlcal Loglstice Planning Taam
Manager (2) Manager {2) Manager (z) Managar (2} Manager (2} Manager (2}
K3 Saarch Rescus Squad |_ Hazmat L Madical Loglstics Structure
[4) Offlcar (4) Speciallst Specialist Specialist j4) Speclallst (2)
Specialist [20) (84]
Communications Tachnical
Tachnical Heawy y | Speciabist (2 Information
Search [2) Equipmant & ! Spaciallst [2)
Rigging i
Spacialist 1 Support
(2 ! Speclallet
& fup oD erivers)
(up o 30 non-deployes
support personnel)

Figure 6.1: Urban Search and Rescue Task Force Organisation [WR"04]

6.2 Scenario

A residential town was hit by an earthquake that has a magnitude of 7 on the Richter
scale leading to the collapse of most of the buildings in the town. Residential com-
plex Alpha was one of the seriously damaged areas. This complex had ten 4-story

buildings constructed on a one kilometre square area. The approximate number of

6.3. Search and Rescue Mission 152

residents is 500. Although some residents have managed to evacuate the complex
during the earthquake there are still about 300 residents that remain unaccounted.
Electrical power service has been interrupted and all electronic communication in-
frastructure including fixed and mobile telephone networks as well as wireless and

other Internet access channels have been destroyed.

The local observatory predicts that there will be several aftershocks within the first
24 hours of which some may have a high enough magnitude to cause more collapse.
The local health and safety office warns that biological and chemical substances from
a research laboratory of a collapsed hospital that was adjacent to the complex might

contaminate the area.

6.3 Search and Rescue Mission

The mission statement provided to the mission command centre is as follows:

e Rescue survivors, and if needed provide them with emergency medical assis-
tance before transporting them to a care centre. Information from the damage
assessment and hazardous material detection should be used to assist the res-
cue activity. For example, priority should be given to survivors in a contami-
nated area. On the other hand, if the intensity of the hazardous material is high
enough to significantly decrease the chances of survival of an identified sur-
vivor until rescued, priority should be given to survivors with a higher chance

of staying alive until rescued.

e Assess and report the damage caused by the earthquake. A visual documenta-
tion of the damage has to be compiled and reported for later use. Analysis of this
information as it is being collected has to be performed in order to detect and
report potential collapses that might happen during the mission. Information

about likely collapses should be used to prioritise rescue operations.

e Identify and report areas contaminated by hazardous materials. The areas
should be marked on a map and the types of hazardous materials should be

indicated.

6.4. Mission Specification 153

e Ensure the presence of communication link among team members in order to
report the progress of the mission to the command centre and keep all members

of the team up to date with information that concerns them.
This mission is best assisted by UAVs for various reasons including the following:

e The mission can be dangerous to humans as structures that have not yet col-
lapsed might collapse during the search and also the hazardous material may

contaminate them.

e Humans may not be able to see and get through small gaps in the debris.

6.4 Mission Specification

We call the process of generating a mission class specification from mission state-
ments a mission refinement. We use a multi-agent systems engineering approach
[DWSO01] to identify goals, structure them hierarchically and extract roles from the
goal hierarchy. The following goals can be identified from the mission statements

stated in Section 6.3:

1. Rescue survivors.

2. Provide emergency medical assistance to survivors.

3. Assess and report damage.

4. Identify and report areas contaminated by hazardous materials.

5. Ensure communication link among team members.
Now that we have captured both functional (1 - 4) and non-functional (5) goals, we
can structure them into a goal hierarchy, which is an iterative process involving
composition or decomposition of goals. As a first step we compose all the goals

and form an overall system goal, namely Manage earthquake disaster to create the

hierarchy shown in Figure 6.2.

We now decompose the goals continuously until we reach a point where further de-

composition would lead to a specific way of achieving a goal; at that point we shall

6.4. Mission Specification

154

Manage earthquake
disaster
\
L L l L 1
. Provide medical Assess & report Identify & report Ensure comm.
Rescue survivors . I N
assistance damage contamination link

Figure 6.2: Initial Goal Hierarchy

stop the decomposition because we do not want to bind the role and consequently
the UAV enacting the role to a specific means of achieving a goal. Figure 6.3 shows

the goal hierarchy after a sufficient amount of decomposition.

Manage
carthquake
disaster
Provide Assess & Tdentify & Ensure
Rescue -
medical report report comm
survivors Ny - .
assistance damage contamination link
Transport Move to
4 Make Report Detect Mark Report | | Monitor
Find survivors Locate Assist . increase
visual visual hazardous| | hazard | [hazardous signal
survivors to care survivors | | survivors : signal
doc. doc. material on map material strength ©
centre strength
Take
Search | | Tdentify | | Report Locate Pickup | |survivors Detect Detect
area survivors | |survivors | |survivors| |survivors to care chemical | |biological
centre hazard hazard

Figure 6.3: Goal Decomposition

The next step is identifying roles and outlining the interaction between the roles using
possible events that might occur in the search and rescue system. Each identified
role should satisfy one or more of the subgoals in the goal hierarchy. Using the goal
hierarchy, shown in Figure 6.3, we add roles to our system until we have sufficient
roles to satisfy the overall goal of the system. If we add a Surveyor (S) role that
satisfies the Find survivors and Assess & report damage subgoals, a Tranpsorter (T)
role that satisfies the Transport survivors to a care centre subgoal, then we satisfy
the Rescue survivors subgoal. Note that we could have added a role that satisfies

both subgoals and consequently satisfies the Rescue Survivors subgoal; the use of

two roles instead is a design choice driven by an intention to separate duty and

6.4. Mission Specification 155

thereby increase efficiency and minimise risk. On the other hand, in addition to
partially satisfying the Rescue Survivors subgoal the Surveyor role also satisfies the
Assess & report damage subgoal. Again, the use of one role to satisfy two subgoals
is a design choice motivated by efficiency since the Surveyor role can perform both
searching and visual documentation (e.g., taking pictures) simultaneously without
compromising any of the subgoals. A Medic (M), Hdetector (H) (stands for hazard-
detector), and Relay (R) roles are added to satisfy the Provide medical assistance,
Identify & report contamination and Ensure communication link subgoals respectively
leading to the satisfaction of the overall system goal, i.e., Manage earthqualke disaster.
A Commander (C) role and an Aggregator (A) role are added to control the mission and

facilitate information sharing respectively.

In the role identification process, we have decided that the Surveyor role has to sat-
isfy the Find survivors and Assess & report damage subgoals. To satisfy these two
subgoals, the subgoals under them which are Search area, Identify survivors, Report
survivors, Malke visual documentation and Report visual documentation should be sat-
isfied. The tasks of the role are then specified so as to satisfy these subgoals. A task
that performs an exploration using different coverage path planning approaches such
as randomised, cellular decomposition, etc. satisfies the Search area subgoal. This
task requires motion capability and a positioning system such as Global Positioning
System (GPS). A task that can identify survivors using an infra red (IR) imaging sys-
tem can satisfy the Identify survivors subgoal. This task requires infra red imaging
capability and a positioning capability to identify the location of survivors. A task
that performs video streaming or picture archiving satisfies the Make visual docu-
mentation subgoal. This task requires a video camera. The Report Survivors and
Report visual documentation subgoals can be satisfied by a task that sends a periodic
or event triggered report to the manager role of the role containing this task. Using
the same argument for the remaining roles, the tasks associated with each role and
the corresponding required capabilities are identified as shown in Table 6.1. This

serves as a basis for role specification as shown in Section 6.5.

Now that we have identified the roles in our system, we can outline the interaction
among them by extracting possible events that might occur in the system from the
mission statements as shown in Figure 6.4. The Commander role initiates the in-

teraction by providing the map of the disaster area to the Aggregator role, which in

6.4. Mission Specification 156

Role Type Tasks Required Capabilities
Surveyor Explore, IdentifySurvivor, ‘rnoti(?n, camera, Infrared
Report imaging, GPS

Aggregator BuildMap, AssessRisk motion, powerful processing
Transporter Transport motion, lifting, GPS

Medic AssistSurvivor motion, medical, GPS
Hdetector DetectHazard motion, GPS, chemical and bi-

ological hazard detection

motion, longrange communi-

Relay RelayFunction cation

motion, longrange communi-

Commander ManageEarthQuakeDisaster .
cation

Table 6.1: Role Types and Associated Tasks

turn notifies this area to the Hazard-detector and Surveyor roles so that they can
look for hazardous materials, search for survivors and assess the damage respec-
tively. When the Hazard-detector role detects a hazard, it marks the hazard on the
map and reports the update to the Aggregator, which uses this information to cre-
ate a map showing contaminated areas. The Surveyor role takes a picture of the
environment and sends it to the Aggregator while it is searching for a survivor. The
Aggregator uses this information to perform damage assessment as well as predict
potential collapses. When the Surveyor role finds a survivor, it informs the location of
the survivor to the Aggregator role, which assesses the risk this survivor is exposed
to, using the contamination map and its potential-collapse prediction, and decides
whether this survivor should be rescued at all and if so whether the survivor should
be given priority. The Aggregator communicates its risk assessment to the Surveyor,
and if the assessment is to rescue the survivor, the Surveyor informs the location of
the survivor to all Transporters it has access to. The Transporters will compute their
distance to the survivor and reply with that information, which the Surveyor uses
to select one among them. If the risk assessment indicates the need for emergency

medical assistance, the Surveyor contacts both Medic and Transporter roles.

In a similar manner to the role identification process, some of the interactions among
roles are dictated by design choices. For example, because we have chosen an auc-
tion based approach for selecting a UAV to transport a survivor among a number of
UAVs enacting the Transporter role, the Surveyor role communicates the location of a

survivor to all Transporters. The same applies to Medic roles. On the other hand, the

6.5. Role Specification 157

2000000

Disaster area:

List of team o
members Visual "
documentation

|
Survivor location:
|
Survivor risk assessment

(-Survivor location{
Dist. from
K sunvivor
Assist/Ignore
Survivor 7]

2 Survivor
Assisted

-Survivor location
|

Dist. from
Survivor

Transport/lgnore
Survivor
i

Survivor
Survivor Transported
Statu rescued

Figure 6.4: Role Interactions

Aggregator role makes the decision of which UAV surveys what area by itself, which
can be observed in the interaction diagram where the Aggregator informs the area to

the Surveyor role without any prior negotiation.

The policies of a role can be identified from the goals as well as the mission statement.
Some of the events that trigger these policies can be identified from the outline of role
interactions discussed in section 6.4. The goals, which themselves are identified from
the mission statement can serve as a basis for specifying some fundamental policies
such as if a survivor is injured call Medic. However, since the goal identification
process does not consider operational details, it is necessary to refer to the mission
statement in order to identify operational policies such as give priority to survivors in

contaminated area if they have a chance to survive.

6.5 Role Specification

In the previous section, we have presented a mission refinement process as a basis
for the administrator’s mission specification task. In this section, we will show how
the mission administrator can specify the roles in the search and rescue mission.
Recalling the role specification approach presented in Chapter 3, a role specification
has the elements — (1) policies relating to the role, (2) the tasks of the role, (3) oper-

ations and notification that are provided by the role, (4) operations and notifications

6.5. Role Specification 158

that are required by the role, and (5) the capabilities requirement of the role. The role
specification process mainly consists of deciding what tasks to include in the role,
determining the capability requirement of the role based on the tasks, deciding the
interface to be exposed to collaborating roles based on role interactions and finally
specifying policies (role missions) that dictate the role behaviour. For the search and
rescue mission, the administrator specifies the Surveyor, Aggregator, Transporter,
Medic, Relay, Hazard-detector and Commander roles as shown in Figures 6.5 & 6.6,

and Figures B.1 - B.7 (Appendix B).

Figures 6.5 & 6.6 show the specification for the Surveyor role. This role contains
three tasks — FEaplore, IdentifySurvivor and Report — of which one of them, Explore,
has some of its operations (e.g., setArea(input = dmrc.util.Area), getPicture(output =
dmrc.util. DmrcImage)) and notifications (e.g., batteryLevel) exposed, i.e., become part
of the external provided interface of the role. As a result policies of other roles such
as the Comunander, Aggregator, etc. can invoke these exposed operations and can
be triggered by these exposed notifications. The other two tasks do not have ex-
posed operations and notifications. Consequently, none of the operations from these
tasks can be invoked by remote policies and none of the notifications generated by
these tasks can trigger remote policies. Local policies, i.e., policies of the Surveyor
role, however, can invoke operations from these tasks and can be triggered by no-
tifications generated by these tasks (e.g., survivorDetected). In order to make the
presentation manageable, not all local operations and notifications are shown in the
figures. The notification, survivorRescued, is an exposed notification of the role that
can be used by remote roles. This is generated by the role itself as a result of its
management functions or interaction with other roles as opposed to those, such as
survivorDetected, generated by the tasks in the role. As can be seen from the spec-
ification, the Surveyor role requires a number of operations and notifications from
other roles. All the operations and notifications listed within the require tag are those
that are provided to the Surveyor role by collaborating roles. The specification for the

remaining roles is shown in Appendix B (Figures B.1 - B.7).

6.5. Role Specification

159

© ® N U W N =

<xml>
<role name=’Surveyor >

<policy uri='http://192.168.0.1/search_rescue/policy/surveyor’/>
<tasks>
<task name=’Explore >
<expose>
<operations>
<operation name=’setArea’>
<argument>
<name>area</name>
<type>dmrc. util . Area</type>
</argument>
</operation>
<operation name=’getPicture >
<result>
<name>picture</name>
<type>dmrc. util . DmrcImage</type>
</result>
</operation>
<operation name=’returnToBase’/>
</operations>
<notifications>
<notification name=’batteryLevel >
<attribute name='name’/>
<attribute name=’level />
</notification>
</notifications>
</expose>
<local>
<operations>
<operation name=distanceFrom >
<argument>
<name>from< /name>
<type>dmrc. util . Location</type>
</argument>
<argument>
<name>to</name>
<type>dmrc. util . Location</type>
</argument>
<result>
<name>distance</name>
<type>Double</type>
</result>
</operation>
</local>
</task>
<task name=’IdentifySurvivor ">
<local>
<notifications>
<notification name=’survivorDetected >
<attribute name=’'name’ />
<attribute name=’survivorLocation’/>

</notification>
</notifications>
</local>
</task>
<task name=’Report’/>
</tasks>
<expose>
<notifications>

<notification name='survivorRescued ">
<attribute name=’name’/>
<attribute name=’survivorLocation’/>
</notification>
</notifications>
</expose>
<local>
<notifications>
<notification name='UAVFailure ">
<attribute name='name’ />
<attribute name='uav’/>
</notification>
</notifications>
</local>

Figure 6.5: Search & Rescue Role Specification - Surveyor Role (Part 1)

6.5. Role Specification 160
75 <require>

76 <operations>

77 <operation name=’uploadVisualDcoument’>
78 <argument>

79 <name>visualDocument< /name>

80 <type>dmrc. util . Media</type>

81 </argument>

82 </operation>

83 <operation name=’assist >

84 <argument>

85 <name>survivorLocation</name>

86 <type>dmrc. util.Location</type>

87 </argument>

88 </operation>

89 <operation name=’transport >

90 <argument>

91 <name>survivorLocation</name>

92 <type>dmrc. util.Location</type>

93 </argument>

94 <argument>

95 <name>destination</name>

96 <type>dmrc. util.Location</type>

97 </argument>

98 </operation>

99 <operation name=’assessRisk >

100 <argument>

101 <name>survivorLocation</name>

102 <type>dmrc. util . Location</type>

103 </argument>

104 </operation>

105 <operation name='measureMetric >

106 <argument>

107 <name>roleld</name>

108 <type>dmrc. util. Roleldentity</type>
109 </argument>

110 <argument>

111 <name>metricType</name>

112 <type>String</type>

113 </argument>

114 <result>

115 <name>metricValue</name>

116 <type>Double</type>

117 </result>

118 </operation>

119 </operations>

120 <notifications>

121 <notification name=’riskAssessed >

122 <attribute name=’'name’ />

123 <attribute name=’survivorLocation’/>
124 <attribute name=’riskLevel’ />

125 </notification>

126 <notification name=’survivorAssissted ">
127 <attribute name='name’ />

128 <attribute name=’survivorLocation’/>
129 </notification>

130 <notification name=’survivorTransported >
131 <attribute name='name’ />

132 <attribute name=’survivorOriginalLocation ’/>
133 <attribute name=’survivorNewLocation />
134 </notification>

135 </notifications>

136 </require>

137 <capability>

138 <require>

139 <type>motion</type>

140 <type>camera</type>

141 <type>IRImaging</type>

142 <type>GPS</type>

143 </require>

144 </capability>

s </role>

146 </xml>

Figure 6.6: Search & Rescue Role Specification - Surveyor Role (Part 2)

6.6. Mission Class Specification 161

6.6 Mission Class Specification

Once the roles of the mission are specified, the next step is organising these roles in
a hierarchy that would facilitate the search and rescue goal. This is achieved by the
mission class specification, which organises roles into a management hierarchy. For
the search and rescue mission, the organisation shown in Figure 6.7 is used, using
the roles’ interactions as a basis for deciding the management relations between
them. The decision, which is made by the mission administrator, may take a number

of factors into consideration including:

1. The ability of a role to provide the information necessary for initiating activi-
ties, e.g., the Commander role provides information about the disaster area and

hence should be at the top of the hierarchy.

2. Efficient use of information, e.g., the Aggregator role uses information from
the Hazard-detector role to provide the Surveyor with a risk assessment for a
survivor and hence the Aggregator role should manage the Hazard-detector and

Surveyor roles.

3. Frequency of interaction, e.g., the Medic and Transporter roles interact fre-
quently, and only, with the Surveyor role and hence these roles should be man-

aged by the Surveyor role.

Using the management hierarchy and mission parameters, the mission class for the
search and rescue mission is specified as shown in Figure 6.8. The mission param-
eters are specified in lines 6 to 12. The comTimeout and failureTimeout parameters
specify timeouts, in milliseconds, for intermittent communication link and perma-
nent communication link or UAV failure detection. The discoveryRate, optimisation-
Rate and stateUpdateRate specify the frequency of discovery beacon broadcast, opti-

misation, and state update message sending respectively.

The minBatteryLevel parameter specifies the minimum battery power, in milliampere
hour, a UAV is required to have to commence or continue its participation in the
mission. The disasterArea parameter specifies the area where the search and rescue

mission is performed.

6.6. Mission Class Specification 162

Figure 6.7: Management Hierarchy

The rest of the mission specification specifies the remaining roles participating in the
mission with their maximum cardinality and encodes the management relationship
among them. For example, in lines 14 - 20, we can observe that the Commander
is responsible for managing the Relay and Aggregator roles. However, as the mis-
sion class is a skeletal form of the mission, neither the actual number of roles nor
their behaviour is yet specified. This delayed cardinality and behaviour specification

enables us to use this mission class for other search and rescue missions.

After specifying the mission class, the administrator specifies a mission class in-
stantiation that is tailored to meet the context of the search and rescue mission at
residential complex Alpha (the disaster area as stated in Section 6.2). The adminis-
trator decides on the values of mission parameters and role cardinalities. The role
behaviours, which are specified using policies, are provided through URIs that are
used by the UAV assigned to the role (or the Commander role if it pre-fetches the
policies before starting the team formation) to download the policies from the policy

repository.

The mission parameters such as failure timeouts and minimum battery level are
specified taking the size and nature of the mission area into consideration. The

maximum distance a UAV might travel from its managing UAV depends on the size

6.6. Mission Class Specification 163

<xml>

<missionClassParameters>
<Name>SearchAndRescue</Name>

</missionClassParameters>

<missionParameters>
<comTimeout>int</comTimeout>
<failureTimeout>int</failureTimeout>
<discoveryRate>int</discoveryRate>
<optimisationRate>int</optimisationRate>

10 <stateUpdateRate>int</stateUpdateRate>

11 <minBatteryLevel>double</minBatteryLevel>

12 <disasterArea>URI</disasterArea>

13 </missionParameters>

12 <commanderBehaviour>

© ® N g oA W N

15 <cardinality>int</cardinality>

16 <roleManagement>

17 <manages>relay</manages>

18 <manages>aggregator</manages>
19 </roleManagement>

20 </commanderBehaviour>
<aggregatorBehaviour>

)

22 <cardinality>int</cardinality>
23 <roleManagement>

24 <manages>surveyor</manages>
25 <manages>hdetector</manages>
26 </roleManagement>

27 </aggregatorBehaviour>
28 <surveyorBehaviour>

29 <cardinality>int</cardinality>

30 <roleManagement>

31 <manages>medic</manages>

32 <manages>transporter</manages>
33 </roleManagement>

34 </surveyorBehaviour>

35 <hdetectorBehaviour>

36 <cardinality>int</cardinality>
37 <roleManagement/>

38 </hdetectorBehaviour>

39 <relayBehaviour>

40 <cardinality>int</cardinality>
41 <roleManagement/>

42 </relayBehaviour>

43 <medicBehaviour>

44 <cardinality>int</cardinality>
45 <roleManagement />

46 </medicBehaviour>

47 <transporterBehaviour>

48 <cardinality>int</cardinality>
49 <roleManagement />

50 </transporterBehaviour>

51 </xml>

Figure 6.8: Search & Rescue Mission Class Specification

of the mission area and the materials in the mission area. This distance helps in
providing a relative estimate of the duration to wait before deciding that either a
communication link or a UAV has permanently failed, i.e., communication and failure
timeouts. For example, if the buildings are made of steel structure, frequent radio

signal blockage might occur when a UAV is inside the remnants of the buildings.

6.6. Mission Class Specification 164

<xml>

<missionParameters>
<comTimeout>3000</comTimeout>
<failureTimeout>7000</failureTimeout>
<discoveryRate>500</discoveryRate>
<optimisationRate>20000</optimisationRate>
<stateUpdateRate>400</stateUpdateRate>
<minBatteryLevel>1000</minBatteryLevel>
<disasterArea>http://192.168.0.1/map/alpha</disasterArea>

10 </missionParameters>

© ® N g oA W N

11 <commander>
12 <cardinality>1l</cardinality>
13 <policy>http://192.168.0.1/ policy /commander</policy>

14 </commander>

15 <aggregator>

16 <cardinality>1l</cardinality>

17 <policy>http://192.168.0.1/ policy/aggregator</policy>
18 </aggregator>

19 <surveyor>

20 <cardinality>1</cardinality>

21 <policy>http://192.168.0.1/ policy/surveyor</policy>

22 </surveyor>

23 <hdetector>

24 <cardinality>1</cardinality>

25 <policy>http://192.168.0.1/ policy/hdetector</policy>
26 </hdetector>

27 <relay>

28 <cardinality>1l</cardinality>

29 <policy>http://192.168.0.1/ policy/relay</policy>

30 </relay>

31 <medic>

32 <cardinality>3</cardinality>

33 <policy>http://192.168.0.1/ policy /medic</policy>

34 </medic>

35 <transporter>

36 <cardinality>3</cardinality>

37 <policy>http://192.168.0.1/ policy/transporter</policy>
38 </transporter>

39 </xml>

Figure 6.9: Search & Rescue Mission-Class Instance Specification - for Mission Area
Alpha

Other factors may also indirectly contribute to the choice of values for the failure
timeout parameters. For example, if an aftershock is expected in a short time, a
more fast-paced rescue mission may be necessary so the failure timeouts need to be
shorter and battery levels need to be higher. The value of the mission parameters can

be changed at runtime using policies.

The mission class can now be instantiated using the mission class instantiation spec-

ification shown in Figure 6.9 resulting in the team shown in Figure 6.10.

The mission class specification used for residential complex Alpha can be reused for
another mission with another mission-class instance specification that has larger
cardinalities, as shown in Figure 6.11, for a search and rescue mission in residential

complex Beta, which has a larger area than Alpha.

6.6. Mission Class Specification 165

(a)- Mission Area (b). Team

Figure 6.10: UAV Team for Search & Rescue Mission of Residential Complex Alpha

The cardinality of a role type is the total number of role instances of that type allowed
to be assigned by a single manager role. The total number of role instances of a
given role type is determined by the cardinality of that role and the cardinality of
its manager role. For example, assuming that cardinality(C) = 1, the total number of
Surveyor roles for our mission class is cardinality(A)cardinality(S), which gives us one
Surveyor role for mission instance Alpha and two Surveyor roles for mission instance

Beta. The total number of roles in the mission can be computed as:

(cardinality(C) + cardinality(C) (cardinality(R) + cardinality(A) (cardinality(S)

(cardinality(M) + cardinality(T)) + cardinality(H))))

In addition to the role cardinalities, the values for the mission parameters are also
adapted to suite the mission. The Aggregators can partition the area and allocate the

Surveyors to different partitions as shown in Figure 6.12.

w

6.6. Mission Class Specification 166

<missionParameters>
<comTimeout>3000</comTimeout>
<failureTimeout>7000</failureTimeout>
<discoveryRate>500</discoveryRate>
<optimisationRate>10000</optimisationRate>
<stateUpdateRate>400</stateUpdateRate>
<minBatteryLevel>2000</minBatteryLevel>
<disasterArea>http://192.168.0.1/map/beta</disasterArea>
</missionParameters>
<commander>
<cardinality>1</cardinality>
<policy>http://192.168.0.1/ policy /commander</policy>
</commander>
<aggregator>
<cardinality>2</cardinality>
<policy>http://192.168.0.1/ policy/aggregator</policy>
</aggregator>
<surveyor>
<cardinality>2</cardinality>
<policy>http://192.168.0.1/ policy /surveyor</policy>
</surveyor>
<hdetector>
<cardinality>l</cardinality>
<policy>http://192.168.0.1/ policy/hdetector</policy>
</hdetector>
<relay>
<cardinality>2</cardinality>
<policy>http://192.168.0.1/ policy/relay</policy>
</relay>
<medic>
<cardinality>1</cardinality>
<policy>http://192.168.0.1/ policy /medic</policy>
</medic>
<transporter>
<cardinality>l</cardinality>
<policy>http://192.168.0.1/ policy/transporter</policy>
</transporter>
</xml>
</xml>

Figure 6.11: Search & Rescue Mission Class Instance Specification (for Mission Area
Beta) - Role Cardinalities & Behaviours

(a). Mission Area (b). Team

Figure 6.12: UAV Team for Search & Rescue Mission of Residential Complex Beta

6.7. Policy Specification 167

6.7 Policy Specification

In the previous sections, we have specified the roles for the search and rescue mission
that serve as building blocks for the team. We have also specified the mission class,
which defines the team structure and the mission instance, which defines the actual
form of the team in accordance with the team structure. The individual behaviours
of roles, which are the building blocks of the team as well as the team as a whole, are
specified by policies as shown in the next two sections where a number of policies

that specify adaptive team formation and mission behaviours are presented.

The search and rescue mission, as can be observed from the mission statement
(Section 6.3) and the mission specification (Section 6.4), has a number of conditional
actions and interactions that depend on the context of the mission. Policies can

capture these behaviours thereby allowing an adaptive search and rescue mission.

6.8 Search and Rescue Team Formation

The search and rescue team is formed in accordance with the mission specification as
aresult of interacting UAVs that are loaded with the self-management framework. As
mentioned in Chapter 3, all elements of the framework are stored in a domain struc-
ture. Consequently, loading the UAV with the self-management framework involves
creating these elements and putting them in the domain structure. The bootstrap
process used to load the common elements of the framework on all UAVs is discussed
in Chapter 7. Other elements such as roles are added later on through policies as
part of the mission execution. Note that the dynamic team formation involves UAVs

that are already loaded with the management framework.

The search and rescue team formation is initiated manually by the mission admin-
istrator through loading the mission class specification with the required mission
instance specification onto the Commander role. The assignment of the Commander
role, unlike other roles, is done by the administrator. The assignment is performed
by loading a mission startup policy, shown in Figure 6.13, to a UAV that is run-
ning the self-management framework. The administrator then triggers this policy to

startup the mission. The mission class and instance names as well as the path to

6.8. Search and Rescue Team Formation 168

//Mission startup policy

policy := root/factory/ecapolicy create.
policy event: /event/missionStartup;
action: [:missionClassSpec :missionlnstanceSpec :repository |

//Load the Commander role code if it is not already
//loaded on to the domain structure
root/factory at: “commander” ifAbsent: |
root/factory at:”commander”
put: (root load: “dmrc.role.Commander”).].
10 //Create an entry for the Commander role in the
1 //domain structure if it is not already there
12 root/role at: "commander” ifAbsent: [
13 Toot/role at: “commander” put: ((root load: "Domain”) create).].
14 //Create a Commander role instance
15 root/role/commander at: “commander”
16 put: (root/factory/commander create).
17 //Load the mission class and instance
18 //specification, i.e., startup the mission
19 root/role/commander/commander
20 mecspec: “http://”+repository+”/mission_class_spec_case_study.dist_role”
21 instspec:”http://”+repository+”/mission_class_instance_spec_case_study_dist_role”.
22 .
23 policy active: true.

© ® N g oA W N

Figure 6.13: Search & Rescue Mission Startup

the repository are passed to the action part of the policy through the missionStartup

event attributes.

In addition to the mission startup approach shown here, which uses a policy local to
the Commander role, the administrator also has a choice of loading the mission class
and instance specifications remotely (i.e., by importing the Commander role reference

to its management console and invoking the mcspec : instspec : operation on the role).

Upon mission startup, the Commander role loads policies associated to it, shown in
Figures 6.15 & 6.16, including role assignment policies, which drive the team for-
mation, and starts the discovery service. Figure 6.14 illustrates the dynamics of the
framework elements as dictated by the Commander’s policies. The solid labeled lines
with arrows indicate policies (e.g., newUAV [notAllAssigned] addUav stands for the
addUav policy, with the condition notAll Assigned, which is triggered by the newU AV
event). The arrow indicates the (target) framework element that is managed by the
policy. The numbered broken lines with arrows indicate the interactions initiated by

the policies.

The first policy, startDiscovery, shown in Figure 6.15 (lines 2 - 21) creates the discov-
ery service, binds it to the role that is going to perform the discovery and assignment
(in this case the Commander role) and activates the Relay and Aggregator role as-

signment policies. It also sets (1) the threshold factor (¢), which is used by the com-

169

Search and Rescue Team Formation

6.8.

AV IOPUBWIWIOD) 9] U0 JIOMIUIEI,] JUSUWIdFeURA) JO 20URISU] 19 2INS1]

C dan
[ons| Jomod Aiapeq = whmnEsmz (C (uoneduUNWWOD 81NJ3S) J9|PUBH UOHEDIUNWIWOD
elawed = % i T T
Buibewy| = 8 |
; . i i {uoneoo ‘ewiy} Sojol
co_ﬁmw“_uoc = aw i @ snoazepusy Joyebaibby % Aejoy
J1afken wodsbueibuo| = W woy/o} jepdn 2jeis
uojjesIunwwo) ledlpaw = "o 9oueusjure
Buny| = ¢ Pavnl v_c__r ,.hsﬁ_ow_
Buissaooud = 2 Japuag abessapy :
uonjow = +o 0
jouuBYD 81N08g : ' 0 = z
9 jseopeolg g m
| sAvn Jequisw .m T
| / Joeesien Obo
” / 523
\\ R - \\\\\\\\\\\\\\\\\\\\\\\\\\\L\\\\\\\\\\\\\\\\\\\\o - R e i e
i oy o og N
1oken 2Lr0|81r0| 8520 | 8ue0| v $69°0 | 652°0 | 269°0 | 0800| z ¢ @ {uorssiw-gns = *AVN £93
{uorssiw-ans 'y "AvN} 835
wea]) T2 [
v6.°0 | 8LLO| L ! kel 9Z.'0 €810 L ! bl H00pL} (o0 'S0 *+0 20 *10} AV s m
{002} {% 50 '%0 *€0 *20 *ko} AV} @ S8
AVN | AV | 2AVN | AV AVN | SAVN | 2AVN | AV {{oosz} {*0 9 ‘o 20 "o} {eAvNl} =
_ : ey 2g g})
[Z7Ruoudlamodbuiydjew | [1 Auondiamodbuiyojew | ydesb juswubisse Wﬁooowv { H{avnh
ay} ysnd : i @
. 9 | apoN 281
Amn R L0 = B~ Aumn Q Josjwnd @ fienoosia l¢— F | SEENL o TR J10jebaibby sje
Buyare L 0= b || sjebaibby ydelb ayy 1Aeo ‘a 901 Juswabeuep ajepdn } v oS
: , N HO =DM | :_><3ucmﬁ /(89886 + 7L
2°0 = 1yBIaM aj01 yoes O Spu0dss 2 o
@ 10 Aunn oy 0Z= oyeywndo Joye) s :
andwon ydeub appediq yoye4 mm mev. Vu.m., ,Wo
= [i
 uBemo b | N L m@iowew\‘f A S A
[eneymoomp | W s ¢ 90 j @pou
safen Jayio ayy) S, \eo.w e e ¢ g/ Jepuewwoy
uoissiy L = ubom Q@Q a«.s@c\o i PPV sapou Aejo
/o//ﬂ s % / 9 J0jebaIBby
My, A?\V/ QQ/Q.W /
0 éuﬁmw\csms oy, .foo,,w sinoawy
oy, K Jepuewiuiod aanjfe} NOD 8 AVN
Sy 188 ‘10}e62166y

L~ AuoudiamodBuiysjew
[€ < paianoosip] Avnmau

(o) amis olRan0

6.8. Search and Rescue Team Formation 170

munication link maintenance element to determine the range threshold as discussed
in Chapter 5, and (2) the leader role for movement-adaptation based communication
link maintenance (as discussed in Chapter 5). The policy also turns off the discov-
ery service’s trigger mechanism that makes the optimiser start optimisation when as
many UAVs are discovered as are required to fulfil available roles. This behaviour,
which may speed up the team formation when there are sufficient numbers of UAVs,
could result in a long or indefinite wait when sufficient number of UAVs are not dis-
covered in a short period of time. When this behaviour is disabled, the optimiser
walits for a specified period of time (set by a policy and/or mission parameter) before
starting optimisation thereby either allowing for the possibility of more UAVs to be
discovered or cutting short the waiting period (and assigning some of the roles using
the available UAVs) in case insufficient UAVs to fulfil available roles, are discovered
within the prescribed time. The policy’s last operation instructs the discovery ser-
vice to generate a discoveryReady notification, which as we later on will see, triggers
other policies, and starts broadcasting. The immediate interactions initiated by this
policy are the broadcast and secure channel setup (if one or more UAVs reply to the

broadcast) as shown in Figure 6.14 (numbers 2 and 3 respectively).

The second policy, newUAV, shown in Figure 6.15 (lines 24 - 29) adds newly discov-
ered UAVs to the bipartite graph built by the discovery service using available roles
and UAVs that can be potential team members. The interactions initiated by this
policy are those that involve the request and reply of low-level capability descriptions
(4) including battery power levels encoded in XML. In the diagram (Figure 6.14), the

replies of four UAVs are shown in a flattened format.

The policies shown in Figure 6.15 (lines 31 - 42) are assignment policies for the
Aggregator and Relay role. These policies effectively set the low-level capability re-
quirements of the roles as shown in Figure 6.14. The Aggregator assignment policy
also sets the priority of the Aggregator role (line 33), which is used for computing
the utility of this role (if the priority utility is considered). The higher the number
the higher the utility. In our prototype implementation, unless the priority level is
explicitly set by a policy, the default levels are 5. The last policy (lines 45 - 55) is used
to import role references of managed roles (Relay and Aggregator) and configure the
state update sent by them. A similar policy (used by the Aggregator role) is discussed

in detail later.

6.8. Search and Rescue Team Formation 171

//Discovery startup policy

policy := root/factory/ecapolicy create.
policy event: /event/newCommander;
action: [:name :role :instance|

//Create the discovery and optimiser services.

//The code for these services should already be

//loaded on to the UAV with other framework elements.

root at: “discovery” put: (root/factory/discovery create).

root at: “optimiser” put: (root/factory/optimiser create).

10 root/discovery setRole: role instance: instance.

11 //Enable the role assignment policies

12 root/policy/assignAggregatorOpt active: true.

13 root/policy/assignRelayOpt active:true.

14 root/comlinkmaintainer thresholdFactor: 70.8”.

15 root/comlinkmaintainer setLeader: ”surveyor”

16 //Turn off the discovery trigger for optimisation

17 root/discovery/opportunisticOpt : false.

18 //Generate the discoveryReady notification and start broadcasting.
19 root/discovery ready.].

20 root/policy at: ”startDiscovery” put: policy.

21 policy active: true.

22 //If all of the roles managed by the Commander are not assigned

23 //add this UAV as a potential member

24 policy := root/factory/ecapolicy create.

25 policy event: /event/newUAV;

26 condition:[root/discovery notAllAssigned.];

27 action: [:lowLevelCap :uav |root/discovery adduav: uav cap: lowLevelCap].
28 root/policy at: "addUav” put: policy.

29 policy active: true.

30 //Aggregator assignment policy

31 policy := root/factory/ecapolicy create.

32 policy event: /event/discoveryReady;

33 action: [root/utility/priority setpriority: 4 role: “aggregator”.
34 root/discovery has:#(”motion” ”processing”) assign:”aggregator”].
35 root/policy at: “assignAggregatorOpt” put: policy.

s policy active: false.

37 //Relay assignment policy

ss policy := root/factory/ecapolicy create.

39 policy event: /event/discoveryReady;

40 action: [root/discovery has:#(”motion” “longrangecom”) assign:”relay”].
41 root/policy at: "assignRelayOpt” put: policy.

42 policy active: false.

43 //Import references of managed roles (Surveyor and Hazard-detector),
14 //set state update type

45 policy := root/factory/ecapolicy create.

46 domainFactory := root load: "Domain”.

47 policy event: /event/roleAssigned;

4g action: [:name :role :instance :address :path|

40 root/role at: role ifAbsent:[root/role at:role

50 put:(domainFactory create).].

51 (root/role resolve: role) at: instance

52 put:(root import: path from: address).

53 (root/role resolve: (role+”/"+instance)) setStateUpdateType: “management”.].
54 root/policy at: ”“importRole” put: policy.

55 policy active: true.

© ® N g oA W N

Figure 6.15: Search & Rescue Mission — Commander Role, Assignment & Discovery
Policies

In the next set of policies of the Commander shown in Figure 6.16, the first policy,
matchingOnly (lines 4 - 8) sets the weight of the matching utility to 1 thereby forc-
ing the utility aggregation process to ignore all the other utilities. Since this policy

is triggered by the newCommander event the Commander role, as soon as it starts,

6.8. Search and Rescue Team Formation 172

will have the behaviour of selecting UAVs for the Relay and Aggregator roles based
on the UAVs’ capabilities only (i.e., whether the capabilities of the UAVs match the
requirements of the roles). However, if the number of discovered UAVs exceeds three,
the second policy (lines 11 - 19), matchingPower Priority;, which is triggered by the
newlU AV event resets the weight parameters enabling the consideration of other util-
ities (role priorities and battery power level) in computing the aggregate utility. Since
the availability of UAVs is not known a priori, this adaptive behaviour is useful in
order to relax or tighten the vetting process with respect to the quality of UAVs de-
pending on availability of UAVs. The interactions initiated by these policies are those
that involve the Optimiser, Aggregate Utility, Priority, Matching and Power elements
(5, 6) as shown in Figure 6.14.

The optimRate policy (lines 33 - 40) adapts the waiting period before optimisation,
which is measured from the time the first UAV is discovered up to the time optimisa-
tion starts, depending on the number of discovered UAVs. This parameter, i.e., the
waiting period, was initially specified to be 20 seconds in the mission instance specifi-
cation (Figure 6.9). The policy will shorten this period if the required number of UAVs
to fulfil roles are discovered in a shorter period of time. If the number of discovered
UAVs, during the period Ty, fulfils the number of roles waiting to be assigned and the
remaining waiting period (20 — 73;) at this time is longer than 5 seconds, the policy
results in only 5 more seconds of waiting to see if more UAVs would be discovered

before starting the optimisation as opposed to 20 — T,; seconds.

The last policy, rendezvous (lines 42 - 47), initiates the rendezvous algorithm when
a memberGoingOutO f Range notification is received. As discussed in Chapter 5, the
rendezvous-based approach is managed by the Commander and consequently the
policy that manages the rendezvous-based communication link maintenance is spec-
ified only on the Commander role. The Commander role monitors the distance
among member UAVs using the state update messages and when it detects a trend
that would result in potential communication link disconnection, it generates the
memberGoingOutO f Range notification, which will trigger the policy that sets up the
rendezvous if one is not already setup. The immediate interactions initiated by these
policies involve those between the Optimiser and the Discovery service (7), and the
Communication Link Maintenance, Management Tree Node, Communication Handler

elements (13 & 14) as shown in Figure 6.14.

6.8. Search and Rescue Team Formation

173

//Set the matching utility weight.

//Setting the weight of one of the utilities

//to one will set the other weights to zero.

policy := root/factory/ecapolicy create.

policy event: /event/newCommander;

action: [root/utility/aggregate utility:”matching” setweight:
root/policy at: "matchingOnly” put: policy.

policy active: true.

//If the number of discovered UAVs is greater

10 //than three, set the weights for the three utilities.

11 policy := root/factory/ecapolicy create.

12 policy event: /event/newUAV;

13 condition:[root/discovery discovered > 3];

14 action: [

15 root/utility /aggregate utility:”matching” setweight: 70.7”.
16 root/utility /aggregate utility:”power” setweight: 70.1”.

17 root/utility /aggregate utility:”priority” setweight: 70.27.].
18 Toot/policy at: "matchingPowerPriority_1” put: policy.

19 policy active: true.

20 //Different weights

21 policy := root/factory/ecapolicy create.

22 policy event: /event/newUAV;

23 condition:[root/discovery discovered > 3

24 action: [

25 root/utility /aggregate utility:”matching” setweight: 70.5”

26 root/utility /aggregate utility:”power” se 70.37.

27 root/utility /aggregate utility:”priority” setweight: 70.2”.].
28 root/policy at: "matchingPowerPriority_2” put: policy.

29 policy active: false.

30 //Set the waiting period before optimisation (in miliseconds)
31 //1if the number of discovered UAVs is equal to

32 //the number of roles waiting to be assigned.

33 policy := root/factory/ecapolicy create.

34 policy event: /event/newUAV;

35 condition:[(root/discovery discovered) ==

36 (root/role /commander/commander numRoles)];

37 action: [(root/optimiser remainingperiod > 5000)

ss ifTrue: [root/optimiser setoptimrate: 5000]].

39 root/policy at: “optimRate” put: policy.

40 policy active: true.

41 //Initiate the rendezvous algorithm

42 policy := root/factory/ecapolicy create.

43 policy event: /event/memberGoingOutOfRange ;

42 condition:[(root/comlinkmaintainer rendezvousActive)==false |;
45 action: [root/comlinkmaintainer startRendezvous.].

46 Toot/policy at: ”rendezvous” put: policy.

47 policy active: true.

© ® N g oA W N

Figure 6.16: Search & Rescue Mission — Commander Role Optimisation & Commu-

nication Policies

Figure 6.14 also illustrates the role assignment process using the Commander role’s

policies discussed so far and four UAVs (UAVy,UAV,, UAV3, U AV,) with the capabil-

ities shown in the figure. The Aggregator and Relay roles are assigned to UAV;

and U AV, respectively (the optimiser’s decision is highlighted in the role-uav matrix

shown in the figure) as these UAVs have the lowest cost (highest aggregate utility)

for the corresponding roles. The values of the aggregate utility depend on the weight

given to each utility type and the utility functions. The utility functions included in

6.8. Search and Rescue Team Formation 174

the prototype implementation and used for the case study are shown below.

; 0 level(uav) < minBatteryLevel

tilit =

it y(uav) level(uav)—minBatteryLevel
level(uav)

level(uav) > minBatteryLevel

utility(role) = { ___priority

priority Levels

k
utility(uav, role) = (proveap (uav) A reqeap(role))penalty+1 proveap(uav) A regeap(role) < k
Proveap(uav) A reqeqap(role)

(proveap (uav) A reqeap(role))penalty+1

Proveap(uav) A regeqp(role) > k

The first function, utility(uav), is a system utility that maps the battery level of UAV
uav into a number between O and 1. The value of this function depends on the
battery power level of the UAV received in the capability summary and the minimum
battery level mission parameter set by the mission specification. The second function,
utility(role), is a role utility that maps the priority given to a role role into a number
between O and 1. The value of this function depends on the priority given to the role
(through a policy) and the levels of priority defined by the mission (with a default
value of 5 levels). The third function, wtility(uav,role) is a role-system utility that
maps the capability of UAV wav with respect to satisfying the requirement of the
role role into a number between O and 1. The value of this function depends on
the capability of the UAV (prov.qp), the capability requirement of the role (reqcqp), the
penalty parameter and the Bloom filter parameter k. The penalty parameter is used to
amplify the difference in capability for situations where small differences matter. The
default value of this parameter is 1 and it can be set through a policy. When the value
of this parameter is high, UAVs with only a slightly higher number of capabilities than
required by a role will have smaller utilities. The parameter %k represents the number
of hash functions used by the Bloom filter. As mentioned in Chapter 4, Bloom filters
are used to represent the capabilities of UAVs as well as the requirements of roles.
A Bloom filter is a space-efficient randomised data structure that can represent a
set with n elements by an array of m bits (initially all set to 0) using & independent
hash functions (k) that map each item in the universe to a random number uniform
over the range 1 to m. For each element ¢, the bits h;(c) of the array are set to 1
for 1 < ¢ < k. Whether or not ¢ is a member of the set can then be decided by
checking whether all h;(c) are set to 1. The capability of a UAV and the requirement
of a role are represented in Bloom filters of identical parameters and the symmetric

difference (A) set operation is used to compute the difference in capabilities. The

6.8. Search and Rescue Team Formation 175

Commander computes the aggregate utility for each discovered UAV using the weights
set by the policy matchingPowerPriority-1 (Figure 6.16, lines 11 - 19) and the utility
functions. As can be seen in the figure the matchingPowerPriority_1 policy gives
much more weight to matching (0.7) than to UAV battery power (0O.1) and role priority
(0.2). The assignment decision based on this policy is shown in Figure 6.14 where
the Aggregator is assigned to UAV; and the Relay is assigned to UAV,. To illustrate
the impact of the choice of weight another weight policy, matching Power Priority_2 is
included in Figure 6.16 (lines 21 - 29). This policy gives a weight of 0.5 to matching,
0.3 to UAV battery power and 0.2 to role priority. When this policy is activated, the
assignment decision changes as can be seen in Figure 6.14 where the Aggregator
is still assigned to UAV; but the Relay is assigned to UAV3, which has much more
capabilities than needed by the Relay but also has more battery power than UAV}. In
this example, we have changed the weight policies while keeping the number and type
of UAVs constant. Given a certain weight policy, if the number and/or types of UAVs
are changed and re-optimisation is performed the assignment decision changes in a
similar manner and the team becomes destabilised. For this reason, as mentioned

before, we do not consider re-optimisation on already assigned roles during failure.

Once the decision as to which UAVs to use for the two roles is made, the Commander
role creates Message Sender elements for UAV; and U AV,, which are used for com-
munications such as role (re)assignment messages that need a reliable channel. It
then sends role assignment messages (which contain the sub-mission related to each
role) to the UAVs (11) and adds these two roles in its instance of the management tree
(9). It also creates a State Aggregator element (10), with the node (UAV) and commu-
nication link failure timeouts using the values provided through the mission instance
specification, which will receive state updates from these two roles (12) and updates
the management tree instance (13) accordingly, and generates failure notifications

when updates are not received within the given timeouts.

When UAV;, and UAV;, which are running the same management framework as the
Commander UAV (since all UAVs run the same framework), receive the role assign-
ment messages, the Message Router elements of these UAVs route the messages to
the Role Manager elements as shown in Figure 6.18 for the Aggregator UAV (U AV4).
This results in the roles being loaded onto the UAVs and their associated policies

taking control. The policies related to the Aggregator role are shown in Figure 6.17

6.8. Search and Rescue Team Formation 176

and the interactions (numbered from 1 - 18) initiated by these policies are shown in

Figure 6.18

The startDiscovery policy of the Aggregator role also activates the role assignment
policies, creates the tasks of the Aggregator role (i.e., BuildMap and AssessRisk tasks),
configures and binds them to the role. The use of policies for adaptive task creation,
configuration and binding has been discussed in detail in Chapter 3. The next four
policies, addUav, assignSurveyorOpt, assignH detectorOpt and matchingOnly (lines 30 -

49) are also similar to the Comunander role policies.

In a similar manner to the start Discovery policy of the Commander role, the first policy
starts the discovery service that is used by the Aggregator role to discover and assign
the Surveyor and Hazard-detector roles. In addition, for the movement-adaptation
based communication link maintenance, this policy sets the leader for the Aggregator
role to be the Surveyor (line 9). Unlike the rendezvous approach, which is managed by
the Comunander, the movement-adaptation based approach is distributed and hence
each role needs to specify the leader role. As can be seen in the corresponding policies
of the roles, in the search and rescue mission, all the roles set the Surveyor as their
leader which results in each UAV trying to stay within the communication range of
either the Surveyor UAV or another member UAV that is closer to both itself and the
Surveyor. If a UAV’'s movement trend is such that it will not be able to stay within
the communication range of the leader UAV (either by staying close to it or by staying
close to one that is close to the leader), the Commander would be able to detect this
trend since it monitors the distance between member UAVs periodically by means
of the state update messages. The detection results in the memberGoingOutO f Range

event, which triggers the Commander’s policy that sets up a rendezvous.

The importRole policy (lines 52 - 60), which is triggered by the roleAssigned event,
imports a reference to the Surveyor and Hazard-detector roles and stores it in the do-
main structure so that the policies of the Aggregator will be able to invoke operations
provided by these roles. For example, the policy itself uses the reference to invoke
the setStateUpdateType operation on the role corresponding to the imported reference
(line 59). These operations set the state update type to management which enforces
the corresponding role to send a specific state update type. The Aggregator role
itself sends state updates to its manager (Commander) and managed (Surveyor and

Hazard-detector) roles and hence could set its state update type or rely on the default

6.8. Search and Rescue Team Formation 177

© ® N U W N =

~

//Start the discovery and optimisation services,
//create, configure and bind tasks of the Aggregator role.

policy := root/factory/ecapolicy create.
policy event: /event/newAggregator;
action: [:name :role :instance|

root at: “discovery” put: (root/factory/discovery create).
root at: “optimiser” put: (root/factory/optimiser create).
root/discovery setRole:role instance: instance.
root/comlinkmaintainer setLeader: ”surveyor”.
//Create tasks of the Aggregator role if they are not already created.
((root/task asHash) has: “buildmap”) ifFalse :[
root/task at: "buildmap”

put:((root load:”dmrc. task.BuildMap”) create)].
((root/task asHash) has: "assessrisk”) ifFalse: [
root/task at: “assessrisk”

put:((root load: “dmrc.task.AssessRisk”) create)].
//Configure tasks.
root/task/assessrisk bindMotionTask:(/ root/task/motion).
root/task/assessrisk bindBuildMapTask: (/root/task/buildmap).
//Bind tasks.
(root/role resolve: (role+”/”+instance))
bindAssessRiskTask: (root/task/assessrisk).
(root/role resolve: (role+”/”+instance))
bindBuildMapTask: (root/task/buildmap).
root/policy/assignSurveyorOpt active: true.
root/policy/assignHdetectorOpt active:true.
root/discovery ready.].
root/policy at: ”startDiscovery” put: policy. policy active: true.
//Add discovered UAV as a potential member.
policy := root/factory/ecapolicy create.
policy event: /event/newUAV;
condition:[root/discovery notAllAssigned.];
action: [:lowLevelCap :uav |root/discovery adduav:uav cap:lowLevelCap].
root/policy at: “addUav” put: policy. policy active: true.
//Surveyor and Hazard-detector role assignment policies.

policy := root/factory/ecapolicy create.
policy event: /event/discoveryReady;
action: [:name|root/discovery has:#(”motion”

“camera” “IRImaging” "GPS”) assign:”surveyor”].

root/policy at: “assignSurveyorOpt” put: policy.

policy active: false.

policy := root/factory/ecapolicy create.

policy event: /event/discoveryReady;

action: [root/discovery has:#(”motion” "hdetection” "GPS”) assign:”hdetector”].
root/policy at: “assignHdetectorOpt” put: policy. policy active: false.
policy := root/factory/ecapolicy create.

policy event: /event/newAggregator;

action: [root/utility/aggregate utility :"matching” setweight:1].
root/policy at: “matchingOnly” put: policy. policy active: true.
//Import references of managed roles (Surveyor and Hazard—detector),
//set state update type

policy := root/factory/ecapolicy create.

domainFactory := root load: ”Domain”.

policy event: /event/roleAssigned;

action: [:name :role :instance :address :path|

; root/role at: role ifAbsent:[root/role at:role put:(domainFactory create).].

(root/role resolve: role) at: instance
put:(root import: path from: address).
(root/role resolve: (role+”/”+instance)) setStateUpdateType: “management”.].
root/policy at: “importRole” put: policy. policy active: true.
//Make the Surveyor return to base when its battery power is low
policy := root/factory/ecapolicy create.
policy event: /event/batteryLevel;
condition:[: role :level|(role=="surveyor”) &
(level < (root/role resolve: (role+”/”+instance)
missionParam : ”"minBatteryLevel”)];
action: [:name :level :role :instance]
(root/role resolve: (role+”/”+instance)) returnToBase.].
root/policy at: "surveyorBatteryLow” put: policy. policy active: true.

Figure 6.17: Search & Rescue Mission — Aggregator Role Policies

178

AV 101889133y 9] UO SIOMIUIEI] JUSWSFEURA 9] JO 20UeIsU] QT 9 21N

|1an9| Jamod Alapeq = sJlaquinN
elaweo = 60
Buibew|y| = 8

Search and Rescue Team Formation

6.8.

uono9lepy = L0 m . dan u
Sdo =9 | (uoneslunNWWod 2Jndas) JajpueH UOEDIUNWWIOD)
wooabuelbuo) = S W
|edlpaw = Mo | {uoneoo ‘awiy} $9|04 J0}08}8pH
Bumyl| = No SNOAZapUSY 9 Jokaning
19fe Buissaooid = 20 wouy/0} depdn ajelg
uopesUNWWod uopow =0
soueUBUIBK
Japuag abessapy AU Wwoed
dnjes :
|oUUBYD 8INJ9g i Sl
9 }seopeolg i
[sAvN sequew T
i 10 ajEIS 199 5% +
! / o
““““ R A U A -
weoy (400 9 (0 Losstu-ane - s EY
oney (4 : o ‘ NW < {{o00z} {0 '@ *1o}}
|lIM oMy / e "}Seopeoiq
J8yjo ayy) {0002} ‘{60 80 %0 "9 Lo} {AvVN}} K1aA02SIp S JOpUBWIWOD
L= .mm_o>> {00z} ‘{50 ‘S0 “ra *€0 20 *1a} “{EAvN)} ay} 0} b___nm,amo A|day
(s) udes6 {{oogz} ‘{20 %0 %0 20 10} FPavN})
i Juswubisse |
au} usng W W
A N " . o 8PON |/ 01860155y o1 JoBeuepy
funn ore09105 ydesb ay) oo e oroa o811 Juswsbeue [Ngon " Vv SIS Ayngeden
BuolRN ul AV pue paianoosip - : .
8|01 yoes ale SV oM} usym > o i ;
10 Ayn ay) ydeub eypediq ysng 3¢ %o
= X / i
sindwon T s Zz25 |
| 223 E2 592
| 23 EQ 3<%
““““ v s A - Qs 4 /
uoIssI 9|0J JapuewWwo) i / $¢0 o0 um w 7] ,ﬂ\,‘ 10}e68166y
1SS! woyy obessow | 7 “py, qc.:a 255 < ppy Sepou
Juswubisse a0y | m$$o~¢$ g8 / ; 10}08}9pH
Y Q&we .m ©® 9 JoAening

Jobeuey ajoy wSowE:
ainjie; NOO B AvN
19s ‘10)e62166y

8)e)S 9jeaI)

Jojebalbby

““““ @:i._o«mmm‘_mm/\ peo7 /7

6.8. Search and Rescue Team Formation 179

setting (which is the case here). By default, all roles send a state update referred to
as alive, which contains minimal information needed for the functioning of the man-
agement framework. The types of state updates are discussed in detail in Chapter
7. The imported role references are used by other policies as well. For example, the
surveyor BatteryLow policy (lines 62 - 69), which is triggered by the batteryLevel event,
invokes the returnToBase operation on the source role of this event if the battery level
is less than the minimum battery level prescribed by the mission specification and

the role type is a Surveyor.

The Relay role does not perform role assignment since it has no role management
responsibility as shown in the mission class specification in Figure 6.8. The same
applies to the Hazard-detector, Medic and Transporter roles. In addition, with respect
to team-wide interactions these roles mainly receive orders to provide assistance,
transport, etc. which require little or no coordination. Consequently, these roles
have a smaller and less complex set of policies. Although there are no additional
types of policies (compared to the policies considered in this chapter) introduced in

these roles, for the sake of completeness, they are included in Appendix B.

The Surveyor role, on the other hand, searches for survivors and organises the res-
cue of survivors resulting in a complex set of policies which we will discuss in the
following. The first set of policies of the Surveyor shown in Figure 6.19, however,
are similar (with one significant difference) to those of the Aggregator role in that
they configure the role, activate the role assignment (for the Medic and Transporter
roles) policies, set optimisation parameters, start the discovery service and import
references to assigned (managed) roles for future policy-based operation invocation.
Unlike the Aggregator role, the Surveyor imports (lines 7 - 10) a reference to its man-
ager (the Aggregator role), which is necessary if its policies need to invoke operations
on the Aggregator’s interface as we will see later on. As mentioned before, both the
Commander and Aggregator use policies to import references to their managed roles
(Figure 6.15, lines 45 - 55 & Figure 6.17, lines 52 - 60 respectively) and set the
state update type to management, which makes the managed roles (Relay and Ag-
gregator, and Surveyor and Hazard-detector) include (in the state update messages)
information, i.e., role identity objects pertaining to themselves and their managed
roles, which enables the manager role to maintain the domain structure. Recall that

the domain structure is used for maintaining collaboration organisation structures.

6.8. Search and Rescue Team Formation 180

© BN gk W N~

//Surveyor role startup policy

policy := root/factory/ecapolicy create.
policy event: /event/newSurveyor;
action: [:name :role :instance

:parentrole :parentinstance :parentaddress :parentpath |
//Import parent role reference.
root/role at: parentrole ifAbsent:[root/role at:parentrole put:
(domainFactory create). |.
(root/role resolve: parentrole) at: parentinstance put:
(root import: parentpath from: parentaddress).
root at: “discovery” put: (root/factory/discovery create).
root at: “optimiser” put: (root/factory/optimiser create).
root/discovery setRole:role instance: instance.
//Create tasks.
((root/task asHash) has: “explore”) ifFalse: [
root/task at: "explore” put:((root load: “dmrc.task.Explore”) create)].
((root/task asHash) has: “identifysurvivor”) ifFalse: |
root/task at: “identifysurvivor” put:
((root load: “dmrc.task.IdentifySurvivor”) create)].
((root/task asHash) has: “report”) ifFalse: [
root/task at: “report” put:
((root load: “dmrc.task.Report”) create)].
//Configure tasks.
root/task/identifysurvivor bindExploreTask:(/ root/task/explore).
root/task/explore bindCameraTask:(/root/task/camera).
root/task/explore bindMotionTask:(/root/task/motion).
root/task/explore bindBuildMapTask: (/root/task/buildmap).
//Bind tasks.
(root/role resolve: (role+”/”+instance))
bindExploreTask: (root/task/explore).
(root/role resolve: (role+”/”+instance))
bindIdentifySurvivorTask : (root/task/identifysurvivor).
(root/role resolve: (role+”/”+instance))
bindReportTask: (root/task/report).
//Activate role assignment policies.
root/policy/assignTransporterOpt active: true.
root/policy/assignMedicOpt active:true.
root/discovery ready.].
policy active: true. root/policy at: “surveyorStartup” put: policy.
//Role assignment policies
policy := root/factory/ecapolicy create.
policy event: /event/discoveryReady;
action: [root/discovery has:#(”lifting” "GPS” "motion”) assign:”transporter”].
root/policy at: "assignTransporterOpt” put: policy. policy active: false.

policy := root/factory/ecapolicy create.
policy event: /event/discoveryReady;
action: [root/discovery has:#(”medical” "GPS” “motion”) assign:”medic”].

root/policy at: “assignMedicOpt” put: policy. policy active: false.
//Discovery policy

policy := root/factory/ecapolicy create.

policy event: /event/newUAV;

condition:[root/discovery notAllAssigned.];

action: [:lowLevelCap :uav |

root/discovery adduav:uav cap:lowLevelCap].

root/policy at: "addUav” put: policy. policy active: true.
//Optimisation policies

policy := root/factory/ecapolicy create.

policy event: /event/newSurveyor;

action: [root/utility/aggregate utility :”matching” setweight:1].
root/policy at: ”"matchingWeight” put: policy. policy active: true.
policy := root/factory/ecapolicy create.

policy event: /event/discoveryReady;

action: [root/optimiser setoptimrate: 20000].

root/policy at: “optimRate” put: policy. policy active: true.
policy := root/factory/ecapolicy create.

domainFactory := root load: "Domain”.

policy event: /event/roleAssigned;

action: [:name :role :instance :address :path|

root/role at: role ifAbsent:[root/role at:role put:(domainFactory create).].
(root/role resolve: role) at: instance put:(root import: path from: address).].
root/policy at: “importRole” put: policy. policy active: true.

Figure 6.19: Search & Rescue Mission — Surveyor Role Policies (Part 1)

6.8. Search and Rescue Team Formation 181

Figure 6.20 shows the collaboration organisation structure maintained by the search

and rescue team in accordance with the aforementioned policies.

A

{Ap, S, T2p,
Mip, T1ip, Hip}

Figure 6.20: Search & Rescue Collaboration Organisation Structure

The broken lines show the collaboration with the line starting from the role that
maintains the reference and ending with an arrow at the role to which the reference
relates to. The solid lines show the management tree and the upward and downward
state updates. The upward state updates contain role identity objects, which are
used to maintain the collaboration organisation structure, as well as the velocity and
location of the UAVs (not shown in the figure) while the downward messages contain
only the velocity and location of UAVs (not shown in the figure). For example, the
state update message sent by the Hazard-detector to its manager role (the Aggrega-
tor) contains H;p, which is the Hazard-detector’s identity consisting of its role type,

identity number, path and address. Note that the Surveyor, unlike the other manager

6.9. Search and Rescue Mission Adaptation 182

roles, has a reference to its manager role (the Aggregator) since it has a policy that
imports a reference to its manager role. Also, none of the non-manager roles have a
reference to any role since they do not have policies to do so. Should non-manager
roles need to import and maintain references to their manager roles (e.g., the Medic
role maintaining a reference to the Surveyor role), only adding a policy that imports
the reference during the non-manager role’s startup suffices since the role assign-
ment message contains the necessary information for importing the reference and
the alive messages are sufficient for maintenance. As mentioned before, the decision
of whether to import remote role references is made by the administrator based on

the roles’ interactions and dictated by policies.

Using its discovery and assignment policies, the Surveyor role performs the Medic
and Transporter role assignments, which completes the team formation resulting in
the team shown previously in Figure 6.10. Since it may be the case that not enough
UAVs are available during the mission startup, the team may take time to reach
the complete configuration shown in the figure and hence the mission should adapt
to availability of UAVs. In addition, on the way to or after achieving the complete
configuration the team may keep changing due to (1) the mobile nature of UAVs
resulting in some members departing and (2) failure of UAVs or communication links.
The rescue strategy also may change through time depending on the result of the
disaster and risk analysis such as whether the damage is uniform across the mission
area and/or further collapse is prominent. In the next section, we will show how the
mission adapts to changes in context such as availability of UAVs as well as the
rescue strategy using the Surveyor role’s policies, which dictate its interaction with

the Medic and Transporter roles.

6.9 Search and Rescue Mission Adaptation

The Surveyor role, as it can be seen from the outline of role interactions (Figure 6.4),
is responsible for coordinating the rescue of a survivor once the survivor is detected
by the Surveyor role itself and the risk is assessed by the Aggregator role with the
help of the report gathered from the Hazard-detector and Surveyor roles. In the
previous section, we have seen a subset of the Surveyor’s policies that are related to

discovery and assignment. In this section, we will consider more policies that dictate

6.9. Search and Rescue Mission Adaptation 183

the behaviour of the role depending on current context. In the following, we will

present these policies part by part to make them manageable for presentation.

The first policy, assessRisk, shown in Figure 6.21 (lines 74 - 82) is triggered by the
survivor Detected event, which is generated by the Surveyor role itself as a result of its
search for survivors. This event starts a chain of rescue-related operations, the first
of which is risk assessment performed by the Aggregator. The Aggregator, upon per -
forming the risk assessment, generates the riskAssessed event, which triggers some
out of a number of policies depending on the rescue strategy (considered later on).
The next two policies, reAssignTransporter and reAssignMedic (lines 84 - 102) relate
to managing the failure of the Transporter and Medic roles respectively. As discussed
in Chapter 4, the management framework attempts to resolve UAV failures trans-
parently by reassigning roles on failed UAVs to idle (previously discovered but not
assigned) or newly discovered UAVs. However, when there are no idle or newly dis-
covered UAVs, the response depends on the failure management policies. The Trans-
porter failure policy (lines 84 - 92) withdraws any role (other than the Transporter)
that is managed by this role (the Surveyor) and satisfies the capability requirements
of the Transporter role, and reassigns it to a Transporter role. The scheme (line 90)
indicates (1) which role to withdraw when there are multiple role types and/or in-
stances that satisfy the requirement and/or (2) which failed Transporter to reassign
when multiple Transporter roles have failed. Although we only have one scheme,
namely default in the prototype implementation, we have factored out this behaviour
to be set by a policy envisaging the addition of other schemes in future work. In the
default scheme, the role with a lower role ID is withdrawn (assuming that it is new
to the mission and removing it causes less disruption), and if more than one role has

failed the one that failed first will be reassigned.

The Medic role failure management policy has the same behaviour as the Trans-
porter’s policy. Since the Surveyor role manages only these two types of roles,
when a Transporter role fails, if the Transporter failure management policy is ac-
tive then a Medic role will be withdrawn and reassigned to a Transporter role and
vice versa. Consequently, only one of the failure management policies should be
active to avoid oscillation in the event of frequent simultaneous failures of the two
roles. The decision as to which policy to activate depends on the strategy of the

rescue, i.e., whether it focuses on providing medical assistance first or transporting

6.9. Search and Rescue Mission Adaptation 184

the survivors out of the rubble. We will later on come back to these policies when
we discuss mission adaptation based on the rescue strategy. The remaining two
policies, surveyorBatteryLowSearchPattern and surveyor BatteryLowPicture (lines 104
- 122) enable the Surveyor role to adapt its search pattern and visual services to
the current context, i.e., the level of battery power and the strength of the wireless

communication link radio signal.

72 //When a survivor is detected, perform risk assessment

73 //using the Aggregator’s ’assessRisk’ operation.

74 policy:=root/factory/ecapolicy create.

75 policy event: /event/survivorDetected ;

76 condition:[(root/role/aggregator size) > O];

77 action: [:survivorLocation :name|

78 aggregator := (root/role/aggregator listObjects) at: O.

79 aggregator assessRisk: survivorLocation.

80 |.

81 root/policy at: “assessRisk” put: policy.

g2 policy active: true.

s3 //Transporter failure policy

s+ policy := root/factory/ecapolicy create.

85 policy event: /event/UAVFailure;

ss condition:[:role| (role=="transporter”) & (((root/role asHash) has: "medic”)
87 ifFalse: [false] ifTrue: [((root/role/medic size) > 0)])];
ss action: [:role :name :parentrole :parentinstance|

89 (root/role resolve: (parentrole+”/”+parentinstance)) reassign:

90 role scheme:”default”].

91 root/policy/common at: "reAssignTransporter” put: policy.

92 policy active: false.

93 //Medic failure policy

94 policy := root/factory/ecapolicy create.

95 policy event: /event/UAVFailure;

96 condition:[:role| (role=="medic”) & (((root/role asHash) has: "transporter”)
97 ifFalse: [false] ifTrue: [((root/role/transporter size) > 0)])];
98 action: [:role :name :parentrole :parentinstance|

99 (root/role resolve: (parentrole+”/”+parentinstance)) reassign:

100 role scheme:”default”].

101 root/policy/common at: "reAssignMedic” put: policy.

102 policy active: false.

103 //When the battery power gets low, change the search pattern

104 policy := root/factory/ecapolicy create.

105 policy event: /event/batteryLevel;

106 condition:[:level :role :instance |

107 (level >= (root/role resolve: (role+”/”+instance)) missionParam:
108 “minBatteryLevel”)) &

109 (level < 3x*((root/role resolve: (role+”/”+instance)) missionParam:
110 "minBatteryLevel”))];

111 action: [:name :role :instance|

112 (root/role resolve: (role+”/”+instance)) setSearchPattern: “random”.].
113 root/policy at: ”surveyorBatteryLowSearchPattern” put: policy.

114 policy active: true.

115 //Send a lower quality picture when the signal strength is low.

116 policy := root/factory/ecapolicy create.

117 policy event: /event/comStatus;

ns condition:[:level :role :instance :strength | (level < 4)];

119 action: [:name :role :instance|

120 (root/role resolve: (role+”/”+instance)) setPictureQuality: “low”.].
121 Toot/policy at: ”surveyorBatteryLowPicture” put: policy.

122 policy active: true.

Figure 6.21: Search & Rescue Mission — Surveyor Role Policies (Part 2)

Recalling the chain of actions started by the survivorDetected event, we have pre-

viously seen that the Surveyor role’s assessRisk policy invokes a risk assessment

6.9. Search and Rescue Mission Adaptation 185

operation on the Aggregator role. The Aggregator role, upon performing the risk
assessment, generates a riskAssessed notification, which triggers policies relating to
enlisting (adding to a queue of survivors maintained by the Surveyor role) a survivor
for future medical assistance and transport, or provision of immediate medical assis-

tance and transport depending on the rescue strategy and other current context.

Consider a situation where the damage across the disaster area is nonuniform result-
ing in a rescue strategy where survivors (identified by their location) facing prominent
danger (due to hazardous materials, likely collapse, etc.) are given higher priority for
getting medical assistance and transport to the care centre. The policies shown in
Figures 6.22 - 6.25 relate to the behaviour of the mission with respect to assistance

and transport of survivors.

The first policy, priorityAssistSingleMedic, shown in Figure 6.22 (lines 124 - 139) re-
sponds to the riskAssessed event and is relevant when there is only one Medic role
and the risk assessment categorises the survivor as injured (lines 126 - 127). Pro-
vided that these conditions are satisfied, the priority of the survivor is computed (by
the Surveyor role, line 132) and if the survivor has a high priority, the idle opera-
tion of the Medic role is invoked to check whether the Medic role is idle or engaged.
If the Medic role is idle its assist operation, with the survivor location as a param-
eter, is invoked (line 137). If the Medic role is assisting another survivor or if the
priority of the survivor is not high, the survivor is added to a waiting list for later
assistance (line 134). When the number of Medic roles is more than one, the sec-
ond policy, priorityAssist Mutiple M edic, becomes relevant. In a similar manner to the
single-medic priority-based policy, if the survivor does not have a high priority the
corresponding action is adding the survivor to a waiting list for later assistance (line
150). However, if the survivor has a high priority the measureMetric (lines 153 - 154)
and idle (lines 157 - 158) operations are invoked on all Medic roles. The engaged
Medic roles are then filtered out (lines 163 - 166). Depending on the result of the
filtering, if there is only one idle Medic, the assist method is invoked on this Medic. If
there is no idle Medic at all, the survivor is enlisted for later assistance (lines 169 -
172). If there are more than one idle Medics, the nearest to the survivor is selected
based on the measured metric, which is distance in this case (lines 180 - 186), and
the assist operation is invoked on the selected Medic (line 188). Both policies are

presented with comments.

6.9. Search and Rescue Mission Adaptation 186

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

148
149
150
151
152
153
154
155
156
157
158
159
160

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

//Single Medic priority—based assistance
policy:=root/factory/ecapolicy create.
policy event: /event/riskAssessed;

condition: [:riskLevel| (((root/role asHash) has: ”"medic”) ifFalse: [false]
ifTrue: [((root/role/medic size) == 1)]) & (riskLevel=="injured”)];

action: [:survivorLocation :name|

//Compute the priority of this survivor.

surveyor := (root/role/surveyor listObjects) at: O.

medic := (root/role/medic listObjects) at: O.

priority:= surveyor computePriority: survivorLocation risk: riskLevel.
((priority == “high”) & (medic idle.)) ifFalse: [

surveyor queue: “assist” add: survivorLocation priority: priority] ifTrue: [
medic := (root/role/medic listObjects) at: O.

//Invoke the ’'assist’ operation on the medic role.

medic assist: survivorLocation.].].

root/policy/nonuniform at: ”priorityAssistSingleMedic” put: policy.
policy active: true.

//Multiple Medic priority—based assistance
policy:=root/factory/ecapolicy create.

policy event: /event/riskAssessed;

condition: [:riskLevel| (((root/role asHash) has: ”"medic”) ifFalse: [false]
ifTrue: [((root/role/medic size) > 1)]) & (riskLevel=="injured”) 1];

action: [:survivorLocation :name|

//Compute the priority of this survivor.

surveyor := (root/role/surveyor listObjects) at: O.

priority:= surveyor computePriority: survivorLocation risk: riskLevel.
(priority == ”high”) ifFalse: [

surveyor queue: “assist” add: survivorLocation priority: priority] ifTrue: [
//Invoke the ’'measureMetric: metricType:’ operation on all medic roles.
//The result is an array containing all the replies (results).
distance := (root/role/medic collect: [
:name :medic| medic measureMetric: “distance”]).
//Invoke the ’idle’ operation, which has a boolean result depending on
//whether the medic role is assisting a survivor or not, on all medic roles.
status := (root/role/medic collect: [
:name :medic| medic idle.]).
//Get a copy of the reference (external interface) for each of the
//medic roles, in an array.
medics :=(root/role/medic collect: [:name :value| value]).
//Filter out the non—idle medic roles.
index := O.
status do: [:value|(value) ifFalse: [
medics remove: index. distance remove: index]
ifTrue: [index.]. index := index+1.].
//If all medics are engaged, enlist the survivor for later assistance
//if there is only a single idle medic role then use that.

((medics size) == 0) ifTrue: |

surveyor queue: "assist” add: survivorLocation priority: priority |

ifFalse: [((medics size) == 1) ifTrue: [(medics at: 0) assist: survivorLocation]
ifFalse: [

//otherwise select the medic with the smallest distance (nearest) to the
//survivor while(the size of the result array > 1){
//Compare the result at index O with the result at the last index
//remove the greater from the results list, remove the medic role
//reference at the same index as the greater result
//}
//the remaining medic is the one with the smallest distance (nearest)
[((distance size) >1)] whileTrue: [
((distance at:0) < (distance at:((distance size)—1))) ifTrue: [
distance remove: ((distance size)—1).
medics remove: ((medics size)—1).]
ifFalse: [distance remove:0. medics remove:0.].].
//Get the role reference.
selectedMedic:=medics at:0.
//Invoke the ’'assist’ operation on the selected medic role.
selectedMedic assist: survivorLocation.
1.1.1.1.
root/policy /nonuniform at: ”priorityAssistMutipleMedic” put: policy.
policy active: true.

Figure 6.22: Search & Rescue Mission — Surveyor Role Policies (Part 3)

6.9. Search and Rescue Mission Adaptation 187

192 //Single Transporter priority—based policy

193 policy:=root/factory/ecapolicy create.

194 policy event: /event/survivorAssisted;

195 condition: [((root/role asHash) has: “transporter”) ifFalse: [false]

196 ifTrue: [((root/role/transporter size) == 1)]];

197 action: [:survivorLocation :name|

198 transporter := (root/role/transporter listObjects) at: O.

199 careCentre := ((root/role/surveyor listObjects)

200 at: O) missionParam: “careCentre”.

201 surveyor := (root/role/surveyor listObjects) at: O.

202 priority := surveyor getPriority: survivorLocation.

203 (priority=="high”& (transporter idle.)) ifFalse: [

204 surveyor queue: “transport” add: survivorLocation priority: priority] ifTrue: [
205 transporter transport: careCentre survivorLocation: survivorLocation.]].

206 Toot/policy/nonuniform at: ”priorityTransportSingleTransporter” put: policy.
207 policy active: true.

Figure 6.23: Search & Rescue Mission — Surveyor Role Policies (Part 4)

Upon completion of providing the assistance, the Medic role generates the survivor
Assisted notification, which triggers the single-transporter and multiple-transporter
priority-based transport policies shown in Figures 6.23 & 6.24 respectively. These
policies are similar in structure to the single-medic and multiple-medic priority-
based assistance policies with one significant difference in the case of the multiple-
transporter policy. In this policy, when there are more than one idle Transporters
to choose from, the selection is done by computing a weighted cost using distance
(to survivor) and battery power, and then selecting the one with the minimum cost
(lines 245- 272). Both policies are presented with comments. The priority-based sin-
gle and multiple assistance and transport policies we have seen previously become
relevant when there are at least one Medic and Transporter roles respectively. In the
following, Figure 6.25, we consider policies that dictate the behaviour of the rescue
mission when it is the case that no Medic and/or Transporter roles are available (e.g.,
roles not assigned yet, UAV departed or failed, etc.). In addition, policies that handle

survivors that are enlisted for future assistance and transport are shown.

As shown in Figure 6.25, the noMedicEnlistForAssistance (lines 280-288) and no
Transporter EnlistForTransport (lines 290-297), policies enlist the survivor for med-

ical assistance and transport respectively.

The directlyEnlistUninjuredForTransport policy (lines 299 - 305), which is triggered
by the riskAssessed event, unlike the other transport policies that are triggered by
the survivorAssisted event, enlists survivors that do not need medical assistance for

transport.

6.9. Search and Rescue Mission Adaptation 188

208 //Multiple Transporter priority—based policy
209 policy:=root/factory/ecapolicy create.
210 policy event: /event/survivorAssisted;

211 condition: [:riskLevel| (((root/role asHash) has: “transporter”) ifFalse: [false]
212 ifTrue: [((root/role/transporter size) > 1)]) [;

213 action: [:survivorLocation :name|

214 //Compute the priority of this survivor.

215 surveyor := (root/role/surveyor listObjects) at: O.

216 priority:= surveyor computePriority: survivorLocation risk: riskLevel.

217 (priority == "high”) ifFalse: [

218 surveyor queue: ’“transport” add: survivorLocation priority: priority]

219 ifTrue: [
220 //Invoke the ’'measureMetric: metricType:’ operations on all transporter roles
221 //the result is an array containing all the replies (results).

B

222 distance := (root/role/transporter collect: [

223 :name :transporter| transporter measureMetric: “distance”]).
224 power := (root/role/transporter collect: [

225 :name :transporter| transporter measureMetric: “power”]).

226 //Invoke the ’idle’ operation, which has a boolean result depending on

227 //whether the transporter role is transporting a survivor or not,

228 //on all transporter roles.

220 status := (root/role/transporter collect: [

230 :name :transporter| transporter idle.]).

231 //Get a copy of the reference (external interface) for each of the

232 //transporter roles, in an array.

233 transporters :=(root/role/transporter collect: [:name :value| valuel).

234 //Filter out the non—idle transporter roles.

235 index := O.

236 status do: [:value|(value) ifFalse: [

237 transporters remove: index. distance remove: index. power remove: index]
238 ifTrue: [index.]. index := index+1. |.

239 //If all transporters are engaged, enlist the survivor for later transportation
220 //1f there is only a single idle transporter role then use that.

241 ((transporters size) == 0) ifTrue: |
242 surveyor queue: “transport” add: survivorLocation priority: priority |
243 ifFalse: [((transporters size) == 1) ifTrue: [

244 (transporters at: 0) transport: careCentre survivorLocation: survivorLocation]
245 ifFalse: [

216 //Assign weights to distance and battery power depending

247 //on the distance from the survivor’s location to the care centre.

248 ((surveyor distanceFrom: survivorLocation To: careCenter) > 100) ifFalse: [
249 distanceWeight := 75. powerWeight := 25.] ifTrue: [distanceWeight := 25.

250 powerWeight :=75.]

251 //Find out the maximum battery power.

252 [((temp size) >1)] whileTrue: [(((temp at:0)> (temp at:((temp size) —1))))
253 ifTrue: [temp remove: ((temp size)—1)] ifFalse: [temp remove: O.] .].
254 maxPower := temp at: O.

255 //while (the size of the result array > 1){

256 //compute the weighted cost of using a transporter role as

257 //distance_of_-uavxdistanceWeight + ((max — battery_-power_of-uav)* powerWeight)
258 //where max = the mwdmum battery power among the received result from the

259 //measurement compare the result at index O with the result at the last index
260 //remove the greater from the results list, remove the transport role reference at
261 //the same index as the greater result

262 //}

263 //the remaining transporter is the one with the smallest cost (highest utility)
264 [((distance size) >1) | whileTrue: [

265 ((((distance at:0)xdistanceWeight + (maxPower — (power at: O0))xpowerWeight)) >

266 (((distance at: ((distance size) — 1))xdistanceWeight +

267 (maxPower — (power at: ((power size) — 1)))*powerWeight)))

268 ifTrue: [distance remove: ((distance size) — 1). power remove: ((power size) —1).
269 transporters remove: ((transporters size) —1).]

270 ifFalse: [distance remove: O. power remove: O. transporters remove: O.].].

271 //Get the role reference.

272 selectedTransporter:=transporters at:0.

273 //Invoke the ’transport’ operation on the selected transporter role.

274 selectedTransporter transport: careCentre survivorLocation: survivorLocation.
275 |.]1.1.1.

276 Troot/policy/nonuniform at: ”priorityTransportMutipleTransporter” put: policy.
277 policy active: true.

Figure 6.24: Search & Rescue Mission — Surveyor Role Policies (Part 5)

6.9. Search and Rescue Mission Adaptation 189

w
h g

//No Medic, there is no domain entry for the Medic role (not assigned yet) or
//the domain structure entry is there but the instance is not (due to failure).

policy := root/factory/ecapolicy create.
policy event: /event/riskAssessed;
condition: [:riskLevel| (((root/role asHash) has: “medic”)
ifFalse: [(riskLevel=="injured”)]
ifTrue: [((root/role/medic size) == 0)]) & (riskLevel=="injured”)];
action: [surveyor := (root/role/surveyor listObjects) at: O.

5 surveyor queue: “assist” add: survivorLocation.].

root/policy/nonuniform at: "noMedicEnlistForAssistance” put: policy.

policy active: true.

//No Transporter (similar to the no medic policy)

policy := root/factory/ecapolicy create.

policy event: /event/survivorAssisted;

condition: [:riskLevel| (((root/role asHash) has: “transporter”)
ifFalse: [true] ifTrue: [((root/role/transporter size) == 0)])];

action: [surveyor := (root/role/surveyor listObjects) at: O.

surveyor queue: ’transport” add: survivorLocation.].

root/policy/nonuniform at: "noTransporterEnlistForTransport” put: policy.

policy active: true.

//Enlist survivors that are not injured for transport without medical assistance.

policy := root/factory/ecapolicy create.

policy event: /event/riskAssessed;

condition: [:riskLevel| (riskLevel != “injured”) |;

action: [surveyor := (root/role/surveyor listObjects) at: O.

surveyor queue: ’transport” add: survivorLocation.].

root/policy /common at: "directlyEnlistUninjuredForTransport” put: policy.

policy active: true.

5 //Assist survivors in the waiting list

//after completing assistance to another survivor.
policy:=root/factory/ecapolicy create.

policy event: /event/survivorAssisted;

condition: [((root/role/surveyor queueSize: “assist”) > 0)];
action: [:role :instance|

medic := (root/role resolve: (role+”/”+instance)).

surveyor := (root/role/surveyor listObjects) at: O.
survivorLocation := surveyor queue: ”assist” remove.

medic assist: survivorLocation.]].

s root/policy /common at: ”assistNextAfterCompletion” put: policy.

policy active: true.
//Assist survivor in the waiting list if idle.
policy:=root/factory/ecapolicy create.
policy event: /event/stateUpdate;
condition: [:role :status |(role=="medic”)&(status=="idle”)

& ((root/role/surveyor queueSize: "assist”) > 0)];
action: [:role :instance :status|
medic := (root/role resolve: (role+”/”+instance)).
surveyor := (root/role/surveyor listObjects) at: O.
survivorLocation := surveyor queue: ”assist” remove.
medic assist: survivorLocation.]].
root/policy /common at: ”assistNext” put: policy. policy active: true.
//Transport survivor in the waiting list
//after completing transportation of another survivor.
policy:=root/factory/ecapolicy create.
policy event: /event/survivorTransported;
condition: [((root/role/surveyor queueSize: ’transport”) > 0)];
action: [:role :instance|
transporter := (root/role resolve: (role+”/”+instance)).

s surveyor := (root/role/surveyor listObjects) at: O.

survivorLocation := surveyor queue: ”transport” remove.
transporter transport: careCentre survivorLocation: survivorLocation.]].
root/policy /common at: ”transportNextAfterCompletion” put: policy.
policy active: true.
//Transport survivor in the waiting list if idle.
policy:=root/factory/ecapolicy create.
policy event: /event/stateUpdate;
condition: [:role :status |((role=="transporter”)&(status=="idle”)
& (root/role/surveyor queueSize: "transport”) > 0)];
action: [:role :instance :status|
transporter := (root/role resolve: (role+”/”+instance)).
surveyor := (root/role/surveyor listObjects) at: O.
survivorLocation := surveyor queue: ”transport” remove.
transporter transport: careCentre survivorLocation: survivorLocation.]].
root/policy /common at: “transportNext” put: policy. policy active: true.

Figure 6.25: Search & Rescue Mission — Surveyor Role Policies (Part 6)

6.9. Search and Rescue Mission Adaptation 190

Since the Surveyor receives periodic state updates from its managed roles (i.e., Medic
and Transporter), it generates the stateUpdate notification when it detects change
in the status (whether it is idle or not) of the Medic and/or Transporter role. This
event triggers policies that invoke either the assist or transport operation, if there is a
survivor waiting for these services, depending on whether the event relates to a Medic
(assistNext policy, lines 319 - 328) or Transporter (transportNext policy, lines 342 -
351) role respectively.

Upon assisting or transporting a survivor, the Medic and Transporter roles gener -
ate survivorAssisted and survivorTransported notifications respectively which in turn
may trigger policies relating to medical assistance (assist NextA fterCompletion policy,
lines 308 - 317) or transport (transportNextAfterCompletion policy, lines 331 - 340)

depending on the existence of more survivors in the waiting list.

Figure 6.26 illustrates the interaction between the Surveyor, and Medic and Trans-
porter roles and the evolution and/or devolution of the sub-team as UAVs become
available and/or depart/fail as specified by the policies shown in Figures 6.21 - 6.25.
The labeled solid lines with arrows represent policies. The lines originate from the
role that performs the invocation (the subject of the policy) and terminate with ar-
rows at the role on which the invocation is made (the target). The labels, P;, refer
to the policies considered in the scenario (these subscripted aliases are used only
for convenience in the diagrams). Table 6.2 shows the mapping of the aliases, used
in the current (Figure 6.26) and later diagrams, to the path and name of the actual

policies.

We will now add two more assistance and transport policies that will later on be used
by adaptive policies that perform policy substitution. These policies, shown in Figure
6.27, enlist survivors for future transport (enlist For Assistance policy, lines 353 - 358)
and medical assistance (enlist ForTransport policy, lines 360 - 365) irrespective of the

priority of the survivor and the number of available Medic and Transporter roles.

191

ssion Adaptation

i

Search and Rescue M

6.9.

UOISSIIA 9N0S X} OIe3S PIsed-ALIoL] 97 9 9INJI]

$9[0J BY} JO BUO UO Ajuo
payoAul aJe suojjesado
podsuel; g }sISSe :9J0N
asdi||e 8y} dpisul

||'B SSAJOAUL UOjoRIS}UI
ayj Jo/pue asdij@

ayj} apisul e 0} saydde ‘
Aoljod ayj yey) seyeo|pu| el

pasneo ‘uojjesado payoaul Av
ay} Buipnjour ‘uopoeid|

uofoe
s, Aojjod ayj jo uonoalg

Aoljod 'd
podsuey; 1o} anany 19
9oue)sISSEe [edlpaw Joj anan) YD

(©)

toamcmh Jsisse

P! Jalp!

Hd .ern— .nn_ ‘g \ o& 6& _nl

(o vo)
aAowal ‘ppe

Koijod e Aq ,., » - B

pETE ‘ 'q jo9lgns g ‘OLyg ‘6 ‘id

(©) P

$9|0J dY} JO BUO UO AJUO Pa3OAUl
suopjesado podsuel; % jsisse .

.
, N

,Hodsuex Jsisse G

tomwcmb

.4 Hgogigig O

‘OUIBNRINSEAW ‘o0 ainsesw .
oo _ (o o)
IP! , 'aIpl :
o aAowal ‘ppe
°d “d "d
(*o Yo)
aAowal ‘ppe
(@) (e)
(*o vo)
aAowal ‘ppe

zg b
°d “d “d d7d

(o vo)
aAowal ‘ppe

6.9. Search and Rescue Mission Adaptation 192

Alias Policy

P root/policy/nonuniform/noMedicEnlistForAssistance

P root/policy /nonuniform/noTransporterEnlistForTransport
Ps root/policy /nonuniform/priorityAssistSingleMedic

Py root/policy /nonuniform/priorityAssistMutipleMedic

P root/policy/common/assistNextAfterCompletion

P root/policy/common/assistNext

P root/policy/common/directlyEnlistUninjuredForTransport
Ps root/policy/nonuniform/priorityTransportSingleTransporter
Py root/policy/nonuniform/priorityTransportMutipleTransporter
Pio root/policy/common/transportNextAfterCompletion

Py root/policy/common/transportNext

Pio root/policy/uniform/enlistForAssistance

Pi3 root/policy/uniform/enlistForTransport

Pia root/policy/common/reAssignTransporter

Pis root/policy/common/reAssignMedic

Pig root/policy /uniformRiskHighCollapse

P root/policy /uniformRiskLowCollapse

Pig root/policy/nonUniformRisk

353
354
355
356
357
358
359
360
361
362
363
364

Table 6.2: List of Surveyor Role Policies

//Enlist survivor for medical assistance.

policy := root/factory/ecapolicy create.

policy event: /event/riskAssessed;

action: [

surveyor := (root/role/surveyor listObjects) at: O.

surveyor queue: "assist” add: survivorLocation.].
root/policy/uniform at: ”enlistForAssistance” put: policy. policy active: false.
//Enlist survivors who have received medical assistance for transport.

policy := root/factory/ecapolicy create.

policy event: /event/survivorAssisted;

action: [

surveyor := (root/role/surveyor listObjects) at: O.

surveyor queue: ’transport” add: survivorLocation.].
root/policy/uniform at: “enlistForTransport” put: policy. policy active: false.

Figure 6.27: Search & Rescue Mission — Surveyor Role Policies (Part 7)

The policies we have seen so far enable adaptation of the mission to changes in

context. It is also possible to achieve multiple levels of adaptation by employing

policy substitution that define ranges of adaptive behaviours for different strategies

(which themselves are context dependent). The rescue strategy we have considered

so far is a priority-based one, which is suitable when the damage across the disaster

6.9. Search and Rescue Mission Adaptation 193

area is nonuniform and consequently some survivors need immediate rescue than
the others. On the other hand, if the damage across the disaster area is uniform, a
non-priority based rescue with more focus either on transport or medical assistance
depending on whether further collapse is highly or less likely may be suitable. The
damage pattern itself may not be known a priori and hence the rescue mission needs

to self-adapt to different rescue strategies as it determines the pattern of the damage.

The Commander role, using information gathered from all the other roles determines
the damage pattern and generates the risk Pattern notification when there is a change
in pattern. This event triggers one of the adaptation policies shown in Figure 6.28
which in turn activates/deactivates groups of policies depending on the damage pat-

tern. All the policies that are activated/deactivated are discussed previously.

The first policy, nonUniformRisk (lines 367 - 390) becomes relevant when the dam-
age pattern is nonuniform (line 369) and employs a priority-based rescue strategy
by deactivating all policies that do not apply to this strategy (lines 372 & 373) and
activating all policies pertaining to this strategy (lines 375 - 378). It also selects a
failure management policy depending on whether there are more survivors waiting
for medical assistance or transport (lines 381 - 388). It is worth noting that although
we show the activation/deactivation of policies one by one for the sake of clarity,
the policies that apply to different strategies are grouped in a domain structure and
hence can be collectively activated or deactivated succinctly. For example, all the
priority-based (nonuniform pattern) or the non-priority-based (uniform pattern) poli-

cies can be activated as follows:

(root/policy resolve: pattern) do: [:value| value active: true].

The second policy, uniformRiskHighCollapse, (lines 392 - 410) becomes relevant when
the damage pattern is uniform and further collapse is highly likely (line 394). It deac-
tivates all policies that do not apply to this context (lines 397 - 400) and activates the
non-priority based assistance and transport policies (lines 402 & 403). Since collapse
is highly likely in this context, more weight is given to transporting survivors out of
the disaster area than assisting them on the spot and hence the failure management
strategy is an immediate reassignment of a Transporter (resulting in withdrawal of
a Medic role) when it fails. Consequently, this policy deactivates the Medic failure

policy and activates the Transporter failure policy (lines 406 & 407).

6.9. Search and Rescue Mission Adaptation 194

// Priority—based rescue strategy
policy := root/factory/ecapolicy create.
policy event: /event/riskPattern
condition: [:pattern :name| pattern == "nonuniform”];
action: [
//Deactivate policies that do not apply to this risk pattern.
root/policy/uniform/enlistForAssistance active: false.
root/policy/uniform/enlistForTransport active: false.
//Activate policies that apply to this risk pattern.
root/policy /nonuniform/priorityAssistSingleMedic active: true.
root/policy /nonuniform/priorityAssistMutipleMedic active: true.
root/policy /nonuniform/priorityTransportSingleTransporter active: true.
root/policy /nonuniform/priorityTransportMutipleTransporter active: true.
//Activate/deactivate failure management policies depending on whether
//there are more survivors waiting for medical assistance or transport.
((root/role/surveyor queueSize: “assist”) >

(root/role/surveyor queueSize: “transport”)) ifTrue: [
root/policy /common/reAssignMedic active: true.
root/policy /common/reAssignTransporter active: false.
] ifFalse :[

s Toot/policy /common/reAssignMedic active: false.

root/policy /common/reAssignTransporter active: true.]

o

root/policy at: "nonUniformRisk” put: policy.

policy active: true.

//Non—priority—based rescue strategy, with likely collapse.

policy := root/factory/ecapolicy create.

policy event: /event/riskPattern

condition: [:pattern :name| pattern == “uniform” & collapse == “high”];
action: [

s //Deactivate policies that do not apply to this risk pattern.

root/policy /nonuniform/priorityAssistSingleMedic active: false.
root/policy /nonuniform/priorityAssistMutipleMedic active: false.
root/policy /nonuniform/priorityTransportSingleTransporter active: false.
root/policy /nonuniform/priorityTransportMutipleTransporter active: false.
//Activate policies that apply to this risk pattern.
root/policy/uniform/enlistForAssistance active: true.
root/policy/uniform/enlistForTransport active: true.

//Activate Transporter failure management

//deactivate Medic failure management

s Toot/policy /common/reAssignMedic active: false.

root/policy /common/reAssignTransporter active: true.

o

root/policy at: “uniformRiskHighCollapse” put: policy.

policy active: true.

//Non-priority—based rescue strategy with less likely collapse.

policy := root/factory/ecapolicy create.

policy event: /event/riskPattern ;

condition: [:pattern :name| pattern == "uniform” & collapse == "low”];
action: [

//Deactivate policies that do not apply to this risk pattern.

root/policy /nonuniform/priorityAssistSingleMedic active: false.
root/policy /nonuniform/priorityAssistMutipleMedic active: false.
root/policy /nonuniform/priorityTransportSingleTransporter active: false.
root/policy /nonuniform/priorityTransportMutipleTransporter active: false.
//Activate policies that apply to this risk pattern.
root/policy/uniform/enlistForAssistance active: true.
root/policy/uniform/enlistForTransport active: true.
//Activate/deactivate failure management policies .

root/policy /common/reAssignMedic active: true.

root/policy /common/reAssignTransporter active: false.

o

root/policy at: "uniformRiskLowCollapse” put: policy.

policy active: true.

Figure 6.28: Search & Rescue Mission — Surveyor Role Policies (Part 8)

The third policy, uniformRiskLowCollapse, (lines 412 - 429) becomes relevant when

the damage pattern is uniform but collapse is less likely. In a similar manner to

195

ssion Adaptation

i

Search and Rescue M

6.9.

uone)depy Jo S[eAT 9[dNINIA — UOISSTA 9NOSIY X YIIBIS :GE 9 9INSI]

podsuesy Joy ananb : ip

aouejsisse

Jeaipaw Joj ananb : Yo

$9]04 3y} Jo auo uo Ajuo payoaul
suonesado podsuel) g Jsisse |

00000 ®

*,y\) \7‘\+ ﬁ
,Modsuen Jsisse Hodsuey

OIONBINSEAU "OLIDNRINSEOW Lhy ‘0 ‘By *2q

\ ‘3lp! ,9lp! J
g Oy 6y Ig 9d Sd “'d

anowal
‘ppe

o Vo) Std[D >¥0]
anowal [0 <¥0]
‘ppe

anIsal

std[+o >vo]
paseq-Ajuoud

‘rdl 1D <v0l

(to Vo)
m ppe

slg'slg
Blg g _ .,‘..‘ _ i (‘o *v0)
yodsues} 1sIsse isisse sy 2g ppe
g Oy ftg / 94 S " 5dd
(‘o Vo)
anowal
Tig Ehg Thyg rid €hg .N(—m ‘ppe
asdejjoo Alay1] —
aIoW Y)Im anasal
paseq-Ajuoud-uoy
9tg'lig
, ; o o)
ol tonw:m_,ﬂ Jsisse sisse thg g ppe
d “'d “d _..,_. .,‘.,‘ °d “d ; 94 ‘Sd

(o Vo)
dA0WI
‘ppe

(*o Vo)
aAoWal
Sig ‘etg &(.m_ i Thg ‘ppe

asdejjoo Ay
SS3| YiIM andsal
paseq-Ajuoud-uon

6.10. Conclusion 196

the uniformRiskHighCollapse policy, it deactivates all policies that do not apply to
this context and activates the non-priority-based assistance and transport policies.
It, however, gives more weight to medical assistance on the spot as collapse is less
likely. Consequently, it deactivates the Transporter failure policy and activates the

Medic failure policy (lines 425 & 426).

The three policies nonUniformRisk, uniformRiskLowCollapse and uniformRiskHigh
Collapse select a mission behaviour that is suitable to the current context with re-
spect to the damage pattern. The selected mission behaviour itself adapts to current
context as we have seen previously. Consequently, the search and rescue mission is

capable of achieving multiple levels of adaptation as shown in Figure 6.29.

The semantics of the symbols used in this diagram (Figure 6.29) is as described
before in Figure 6.26 with one additional expression [condition] P; which means that
policy P; is activated when condition is true. The actual policies represented by the

subscripted aliases are also shown before in Table 6.2.

6.10 Conclusion

In this chapter, we have used a search and rescue scenario to show how a mission
for a group of UAVs can be specified in terms of roles and how the role behaviours
can be specified using policies giving rise to a reusable mission specification and an

adaptable mission.

By using a set of policies to achieve a first level of adaptation to current context
including the availability of UAVs, battery power, communication link, departure or
failure of UAVs, and another set of policies to substitute these adaptation policies

depending on another context, multiple levels of adaptation were illustrated.

Although we have illustrated the mission design process starting from scratch, we
envision a trend where roles, tasks, policies and mission class specifications are
stored in a repository and the mission administrator fetches suitable specifications

for the mission statements at hand and use them with little or no adaptation.

The mission refinement in this chapter was done manually; tool support for this task

would enhance the framework. Work in this direction has been done in [BLMRO04,

6.10. Conclusion 197

BLR'06]. The work in refinement is continuing in the UK Ministry of Defence (MoD)
and US Army Research Lab (ARL) funded International Technology Alliance (ITA)

consortium.

Chapter 7

Implementation

In this chapter, we will present details of our prototype implementation of the self-
management framework. The framework is built by extending the implementation of
the self-managed cell [LDST08] system, which has an asynchronous event bus and

a policy service.

7.1 Overview of the Implementation

The management framework is designed and implemented as a composition of inter-
acting entities organised in three layers, i.e., mission, team and communication. It
is implemented using the Java-based Ponder2 [Pon] policy toolkit with most of the
entities implemented as Ponder2 managed objects and stored in a domain! struc-
ture. An outline of the framework is shown in Chapter 3 (Figure 3.2). Although the
majority of interactions take place between the entities inside the same or adjacent
layer, the layering is not strict in that bypassing a layer to interact with entities in a

non-adjacent layer is allowed.

In the following sections, we present a brief overview of the domain structure that
is used to store entities of the framework followed by implementation details of the
different framework elements. A note on managed objects is presented in Appendix

B (Section B.4). Class diagrams are shown in Appendix C.

IDomains are similar to directories.

198

7.2. Domain structure 199

7.2 Domain structure

The management framework stores controllers, tasks, policies, roles and other en-
tities in a domain structure as shown in Figure 7.1(a). Any entity in the domain
structure can be loaded, enabled, disabled, or removed at run time using policies. A
UAV stores two types of role objects or role-object references, namely local and re-
mote where the role object representing the role to which the UAV has been assigned
is local and references to the roles (role objects) enacted by collaborating UAVs are
remote. The domain structure shown in Figure 7.1(b) is the role sub-domain of a
UAV enacting the Surveyor role in the search and rescue mission (Chapter 6). Hence,
it contains the Surveyor role object (local interface for local policies), the external
interface of the Surveyor role (for remote roles’ policies) and references (external in-
terfaces) to the Aggregator (its manager role) as well as Transporter and Medic roles
(its managed roles), which are enacted by other UAVs. In the example domain struc-
ture, note the absence of domain entries for other roles of the search and rescue
mission such as the Commander. This is because the Surveyor policies used to im-
port remote roles (Figure 6.19, lines 7 - 10 and lines 67 - 71) do so only for the
manager (Aggregator), and managed (Medic & Transporter) roles since the Surveyor
interacts only with these roles. This selective and policy-based approach to import-
ing role references enables the mission administrator to control and minimise the
domain-structure maintenance overhead. Figure 7.1(c) shows the role sub-domain

structure for the Aggregator role in the same search and rescue mission.

A UAV bootstraps the framework by creating the domain structure used to store
framework and mission-dependent elements. It then loads framework elements.
Mission-dependent elements are generally loaded after a UAV is assigned to a role.
The bootstrapping PonderTalk commands are shown in Appendix B (Figure B.8). The
underlying mechanism for accessing a remote role’s operations is Java’s RMI (Remote

Method Invocation). Hence, all UAVs maintain an RMI registry.

7.3 Mission Layer

The mission layer consists of three main entities, namely Mission, Role Manager and

Role. The Mission entity deals with parsing the XML mission class specification and

7.3. Mission Layer 200

AN
i surveyor bl aggregator aggregator; -~
Extemal External
nterace aggregator, nrface
actuator
aggregator aggregaton; N surveyor
H task
N
m o e
L External L External
) " inertoces
policy id 2
medicy
role H medic 4 hdetector hdetecor
medic,
(a). Management framework (b) . The role sub-domain (c) . The role sub-domain
domain structure structure of the Surveyor role structure of the Aggregator role

Figure 7.1: Domain Structure

instantiating the mission using the mission-class instance specification. The mission
class and instance specifications may be provided directly to the Mission entity or

they can be fetched from a repository if the mission administrator provides a URI.

Loading a Mission

The Mission entity is implemented by the MissionClass class. This class provides
methods to load, instantiate and get a sub-mission instance. In the remaining part
of this section, we will refer to the MissionClass class as Mission entity, since the
Mission entity is implemented by this single class there will be no loss of seman-
tics. A mission administrator, from a management console, or the commander role
through its mission-loading policy invokes the loadMissionClassSpec method to load

the mission class specification.

loadMissionClassSpec (String mcSpec, boolean isURI)

The mcSpec parameter can contain either the mission class specification itself in XML

format or a URI to the mission class specification. The isURI flag selects the input

type.

The Mission entity recursively builds a role tree in accordance with the mission class

specification using the Commander role as the root node of the tree. The role tree is

7.3. Mission Layer 201

stored using a nested instance of Java’s Hashtable data structure. It contains mis-
sion parameters, roles and place holders for the associated role missions, structured
hierarchically based on the management relation specified in the mission class spec-
ification. The tree does not contain the actual role-missions as these are specified in
the mission class instantiation specification. The mission class is instantiated using

the instantiateMissionClas method.

instantiateMissionClass (String mciSpec, boolean isURI, boolean fetchAll)

This method populates the role tree formed during the mission class loading with
values from the mission-class instance specification. The fetchAll flag instructs the
method either to fetch and put the actual role-missions (policies) in the role-mission
place holder or put URI's (values from the mission instance specification) and let
the roles fetch their own role-mission later on. The Commander role implements
the mcespec : instspec : PonderTalk message that invokes these two methods, with the
input selection flag set to true for both methods?.

@Ponder2op ("mcspec:instspec:”)

loadMission(String mcSpec, String mciSpec)

This operation can be used to load the mission (both class and instance specifica-

tions) using a policy and a URI as follows (only the action part of the policy is shown):

root/role/commander/commander
mespec: "http://192.168.0.1/ mission_class_spec_case_study”
instspec:”http://192.168.0.1/ mission_class_instance_spec_case_study”

fetchAll: false.

During role assignment the manager role, i.e., the role performing the assignment, re-

quests the Mission entity for a mission instance using the getSubMcInstance method.

getSubMclInstance (String role)

Upon receiving the request, the Mission entity forms a subtree of the role tree where
the role to be assigned is the root of the subtree and replies to the manager role with

the subtree and mission parameters.

2For the relation between PonderTalk operations, the @Ponder2op annotation and Java methods in
managed objects such as roles, see Appendix B, Section B.4.

7.3. Mission Layer 202

When a UAV is assigned to a role, if the role is a Commander role, the Role Manager
requests the Mission entity for a mission instance. For all other roles, the mission
instance is received with the role assignment message. The Role Manager entity then
retrieves the mission instance from the role assignment message and updates the

Mission entity using the setMissionClassInstance method.

setMissionClassInstance (Hashtable<String, Object> mcInstance)

The Mission entity can later be queried, during role assignment, for sub-mission

instances if the role manages others roles through its getSubMcInstance method.

The Role Manager

The Role Manager entity, implemented by the RoleManager class, is responsible for
loading and withdrawing a role during mission startup and reconfiguration respec-
tively. It receives messages from the UAV enacting the manager role and instantiates
the role the local UAV is assigned to. The local UAV may already have the role code
loaded on to the domain structure but not instantiated (see the management frame-
work bootstrapping statements in Appendix B, Figure B.8), or the code may not be
loaded but available locally. The RoleManager can fetch the role code from the repos-
itory if the code for the assigned role type is unavailable in the local UAV.

The RoleManager class provides the loadrole method, which is used to load a role.

loadRole (RoleAssignmentMessage roleAssignmentMessage)

The RoleAssignmentMessage class is a data structure that contains the identity (dis-
cussed later on) of the assignee role, the identity of the assigner role, a subset of the
mission class instance (sub-mission instance) that is going to be managed by the role
(note that this also may include role-mission policies). This data structure also has a
place holder for another data structure, namely State, which is set to the failed role’s

state when the message is a role reassignment one.

Using the information from the role identity, the Role Manager creates two elements
corresponding to the role — (1) the role object and (2) the associated adaptor object
representing the role’s external interface. It, then, creates a domain entry for the role

type and puts these elements in the corresponding domain entry. Finally, it starts

7.3. Mission Layer 203

the role by invoking the start method of the role, and sends a confirmation message
to the manager role that sent the role assignment message. In the confirmation mes-
sage, the path to the adaptor object representing the external interface is included
as opposed to that of the role object. Should the manager role rely on services pro-
vided by this role, it imports the adaptor object to its domain structure, for use by its
policies thereby creating a collaboration link (part of the collaboration organisation

structure) between itself and the role.

Role

Roles are mission dependent and hence every mission has its own types of roles.
However, all roles are subclasses of the abstract Role class, which implements the
mission-independent management functions of a role such as role assignment. The
mission-specific role classes implement PonderTalk messages that make some of
these functionalities available to policy actions as well as other elements of the frame-

work.

The start method of the Role class is used by the Role Manager to start the role,
with the role assignment message received from the manager role (parent role), after

completing the domain entry and role-object creation.

start (RoleAssignmentMessage roleAssignmentMessage)

When a role is instantiated, if it is a manager role, i.e., responsible for assigning
other roles, it creates the necessary entities for team formation. It will then generate
a waiting list for the roles it has to assign and provides this to the team layer, which
uses it to optimise role assignments. A role can determine whether it is a manager
role or not by checking the mission instance from the assignment message it receives

through its start method from the Role Manager.

The start method creates an instance of the ManagementTreeNode and sets up the
management relationship using the role identities retrieved from the role assignment
message. It then retrieves the mission class instance from the role assignment mes-
sage, and if this role is a manager role it creates a waiting list for assignment that can

be retrieved by other framework elements through the getWaitingRolesList method.

@Ponder2op (" getwaitinglist ")

7.3. Mission Layer 204

getWaitingRolesList ()

The start method also creates an instance of the StateAggregator using the failure
timeouts from the mission class instance, loads its policies using the mission class
instance and generates a new[R] event, where R is the role type. This event triggers
policies that load role-responsibility dependent (whether the role is a manager role or
not) framework elements such as the discovery service and mission-specific elements
such as tasks (e.g., the newAggregator event that triggers the policy shown in lines
3 - 21, Figure 6.17, which creates the discovery service). After this point, the role is
fully functional. For example, it is able to discover UAVs and assign the roles it has
put in the waiting list. The State Aggregator updates the waiting list during failure

using the addToWaitingRolesList method.

addToWaitingRolesList (RoleIdentity roleld, State state)

Roleldentity and State are data structures used to uniquely identify roles in the mis-

sion, and store and/or communicate the state of a role respectively.

The identity I of a role is defined as: I = M : H : S where M = mission ID, H =
hierarchy level and S = sequence number. The mission ID and hierarchy level are
each represented using one byte. The sequence number, which uniquely identifies
roles that are managed by the same manager role, is represented as an array of bytes
with a variable length (depends on depth of the management hierarchy as specified
by the mission class). Each role gets its identity from its manager role during role
assignment. The mission ID is set through the mission specification (parameters or
policy) with a default ID of 0. Both the hierarchy level and sequence number start
from O and progress during assignment. Consequently, by default, the Commander
role has an identity of 0 : 0 : 0. Each manager role (including the Commander role)
generates an identity for its managed roles as M : H + 1 : IncrementAfter(S[H + 1])
where S[H + 1] is the (H + 1)’th byte of the sequence byte array. For example, for
the search and rescue team of the case study (Figure 6.10), if the Aggregator role is
assigned before the Relay and the Surveyor is assigned after the Hazard-detector, and
one of the Transporters is the last role to be assigned among those managed by the
Surveyor, the role identities (numbers shown in hexadecimal) for the Commander,

Aggregator, Surveyor and the last Transporter would be 00 : 00 : 000000, 00 : 01 :

7.3. Mission Layer 205

010000, 00:02:010100, 00:03:010105 respectively.

The Discovery Service requests the role for a role assignment message using the
getRoleAssignmentMessage method.
@Ponder2op ("role :uav:lowlevelcap :requirement”)

getRoleAssignmentMessage (String roleType, String uav, String lowLevelCap,

P2Array requirement)

The roleType is the type of the role to be assigned, uav is the ID of the UAV that is
going to enact this role, lowLevelCap is the low-level capability description of the UAV
encoded in XML and requirement is the capabilities requirement of the role as set by
the role assignment policy. This method prepares the role assignment by populating
the role assignment message data structure with this role’s identity (parent identity)
the managed role’s identity (child identity) and the sub-mission class instance cor-
responding to the managed role. The discovery service must already have used the
uav, lowLevelCap and requirement to vet the UAV. These arguments are passed to this
method so that the role stores them and uses them later in order to make imme-
diate reassignment (by withdrawing another role) during failure (if there is a policy

dictating to do so).

The roleReassign method is used by policies to enforce reassignment of a failed role
as opposed to waiting for new UAVs to be discovered.

@Ponder2op ("reassign :scheme: ")

roleReassign (String failedRole, String scheme)

The method checks if one of the role-enacting UAVs satisfies the capabilities require-
ment of the failedRole. If so, it removes the role instance (external interface) enacted
by this UAV from the domain structure (if the role’s reference had been imported),
removes the failed role with its state from the waiting list, prepares and sends a role
assignment message to the UAV forcing it to withdraw the current role and enact the
new role. It, then, adds the withdrawn role to the waiting list with its current state.
Since the discovery service (unless it is turned off by a policy) checks the waiting list
whenever a new UAV is discovered, the withdrawn role may eventually be assigned
when (if) a new UAV is discovered. The discovery service, as well as other framework

elements, can check if a role needs to perform an assignment of a given role type by

7.3. Mission Layer 206

checking the waiting list using the checkWaitingList method.

@Ponder2op ("checkWaitingList: ")

checkWaitingRolesList(String roleType)

A role registers its interest in remote notifications by accessing the Role class’ required
Notifications list. Other roles check this list through the isRequired (String eventName
) method provided by the role. The role also declares its exposed notifications by reg-
istering the exposed notification types in exposedNoti fication list. These registrations
are made for notifications defined as required and exposed in the role specification
respectively. When events occur inside a role (in its tasks or itself), if the event is in
the exposedNoti fication list, the role checks whether other roles in the domain struc-
ture require this notification through the isRequired method of the external interfaces
of the roles and invokes the notify (P20bject event) method on the external interface

for all that require the event.

Tool Support

A tool that can be used to generate Java source code for the role and its correspond-
ing external interface classes from the XML role specification is implemented. The
main console of this tool is shown in Figure 7.2. The left-side panel shows the XML
specification; the middle and right-side panels show the generated Java code for the

role and its external interface respectively.

The role class generated by this tool contains all the common management opera-
tions and role-specific operations that are forwarded to the tasks of the role. The
administrator can then add additional code depending on the role’s mission-specific
program logic. The external interface class, on the other hand is an adaptor class
that can be used as it is, since the sole purpose of this class is forwarding calls
from remote roles to the local instance of the role, and all the code relating to this

functionality is generated from the role specification.

The main elements in the code generation of the role and its external interface are

summarised in Table 7.1.

7.4. Team Layer 207

Ll
Specification ’EXDT
Expart role specification, .. |
B Export role cod = T T Gateh (PSRAErIE¥CEpEion e] (& prinestack | 21 public void bind (P2Cbiecta]
z il 2z role=rolelnstance;
5 198 @Pan op (Mupdatelaphazard:) 23
e 199 public void updateMap (PZ0hject location, P - e mm—
5 <poliey uri='http://192.168.0.1/search 208 eyl 25 public void setDisasterir
& ey & 201 BuildMapTask.operation (myP20hject, "updatel T
7 <eask nave=! AssessRisk's 202 b patEh. HPCEACRATXOSPEIGR.) HERRiestack 27 role.operation(myFzobiect
8 <Exposes il 2) catch (PonderzExceptior
N e RLERSE 204 [@Fonder?op (MuploadVisualbeounent) 204
i L R R 205 public void uploadVisualDcouwment (PZObject 30§ T me———
11 HEE TS 206 ey i1 public void updatelap(Pic
1 A e e 207 BuildNapTask.operation(wyPZOkjsct, "uploady 32 ey o
1% <tgpesdmrc.util,Locat ionc/t 203t catch (PonderZException] {e.printitack 33 role.operation(wyP2okieet
14 </argument> LA 34 } pateh (Ponder2Excentior
15 wereratiang 210 FPronderZop ("assessRigki™) a5
i PR e 211 public void assessRisk(P20bject survivorlo a6 . AR A Ea
17 LT EEI TSR iz otry { 27 public void uploadVisuall
15 SEaveE BausAR WA eaieeieey 213 AssessRiskTask.operation(myPZObject,"asses 55 e 1
13 CHBECINUEE ARIES NRET Zl4 t catch (PonderZException] {e.print3tack 35 role.operation(myP2ohject
20 <attribute name='survivorloca e) J 40 } cateh (Ponder?Exceptior
2l <attribute name='risklevel'/> £1 R B TR 4L}
= e 217 public PZObject hindBuildmapTask(PZObject i (rassesERisk: ")
2% SO CRERSE Zl% BuildMapTask=tagkInstance: 45 public void assessRisk(PZ
24 </exposesr 219 ey d 44 try {
25 S rReks 220 tagkIngtance.operation(myPZObject, "bindRo 45 role.operation(wyF2okiect
26 <task name='Buildiap' > 22k 3 matoh(Rondegakxception. el d 4% } catch (PonderzExceptior—
27 <exposa> _ILI 222 e.princSeackTrace () _I-j 47y &
A — B S — g [— 3
GenerateRoleCode:

Figure 7.2: Role Specification and Code Generation Tool

7.4 Team Layer

The team layer has entities that are available in all UAVs irrespective of the role they
are enacting: Capability Manager, State Aggregator and Management Tree Node as
well as other entities whose existence depend on whether the UAV is a manager role

or not: Discovery and Optimiser.

Management Tree and State Aggregation

The management tree is a distributed data structure used to maintain a UAV team. It
is by means of this data structure that the framework represents and maintains the
hierarchical management structure. The local component of this distributed struc-
ture, the Management Tree Node entity, which is responsible for keeping track of the
state of the local role as well as roles managed by the local role is implemented by
the ManagementTreeNode data structure. The state information maintained by this
entity is used for management purposes such as failure detection and role reassign-
ments. The data structure mainly consists of the identity and state of the manager
role (parent) of the node, the identities and states of the managed roles (children
nodes) as well as the role’s own state. The ManagementTreeNode class provides a

number of methods to add, retrieve and update children nodes (i.e., their identities)

7.4. Team Layer

208

Code

Role
Specification Class
Element
Mission-
All tasks specific role

Add Ponder2op annotated task binding
methods corresponding to each task
in order to support PonderTalk oper-
ations that bind the task place holders
in the role object to the task object in
the domain structure.

External
interface of None.
the role
Add a Ponder2op annotated method,
Mission- corresponding to each exposed opera-

Exposed operations from

tasks specific role

tion, which would accept a PonderTalk
operation and forward the invocation
to the task object.

Add a Ponder2op annotated method,

External corresponding to each exposed opera-
interface of tion, which would accept a PonderTalk
the role operation and forward the invocation
to the role object.
Add a Ponder2op annotated method,
Missi corresponding to each operation,
ission-

Local operations from

tasks specific role

which would accept a PonderTalk
operation and forward the invocation
to the task object.

External
interface of None.
the role
I Add code that registers these notifica-
Mission-

All exposed notifications specific role

tions in the exposedNotifcations table
of the Role class.

External
interface of None.
the role
s Add code that registers these notifica-
Mission-

Required notifications specific role

tions in the requiredNoti fcations table
of the Role class.

External
interface of
the role

None.

Table 7.1: Generating Role Code from the Specification

and their corresponding state. These methods are used by the StateAggregator class,

which implements the State Aggregator entity.

The State Aggregator is responsible for collecting state information from the managed

7.4. Team Layer 209

roles and providing the information to the Management Tree Node entity as well as
aggregating and sending state updates to the manager role. It is also responsible
for generating the appropriate notifications when events such as communication link
disconnection and permanent UAV or link failure occur and updating the waiting list
accordingly using the addToWaitingRolesList (RoleIdentity roleld, State state) method
of the role (Section 7.3). It does so when the state information is not received within

the specified timeouts.

The State data structure is used to communicate and persist the state of a role. The
management and operational state of the role is aggregated and stored by persisting
the Management Tree Node instance of the role and operational states that are de-
pendent on the specific role. The management state mainly contains the list of role
identity objects of the active (non-failed) roles managed by this role. The operational
state is a list of name-value pairs added by the role that is sending the state update.
The role adds the operational state to the table maintained by the StateAggregator

using the addOpState method provided by the State Aggregator class.

addOpState(String name, Object object)

Unlike the management state, which is interpreted by the framework, the opera-
tional state is passed to the role receiving the state update as it is, and the role
has to understand and interpret the semantics of the state. State update from a role
could be (1) a default keep alive message (consisting of role identity number, location,
speed and direction) in which case the State data structure is not used for efficiency
reasons, or (2) management state only, in which case, the management tree node
is persisted and added to the state, or (3) operational state only, in which case, a
copy of the operational state table maintained by the State Aggregator is added to
the state, or (4) complete state, i.e., both management and operational state. The
State Aggregator class provides the setStateUpdateType method to allow adaptation of
state update types through policies. The type can be one of the strings — alive, man-
agement, operational, complete. Roles implement the setStateUpdateType : PonderTalk
message and forward the call to the Role class, which invokes the method provided
by the StateAggregator class.

@Ponder2op ("setStateUpdateType : ")

setStateUpdateType (String type)

7.4. Team Layer 210

Manager roles’ policies set the state update type of their managed roles (e.g., Figure
6.17, line 59). While the choice is mission dependent, setting the update type of
managed roles remotely is less conflict prone than using local policies to set the
update types at the managed roles themselves since this would create difficulty in
aggregation at the manager role when differing update types are used by managed
roles. Manager roles, however, set their own state update type (what they send to

their managed roles) using local policies.

On manager roles the State Aggregator class performs bundling of state update mes-
sages received from managed roles so as to decrease the communication protocol
overheads and best utilise the communication bandwidth. When the state update
type is alive roles send their identity number, location and velocity to their manager.
This information is bundled in a flattened form of — idy, z1, y1, speed;, thetay, ids, 22,
Yo, speeds, thetas, ..., idy,, Xn, Yn, speed,, theta, where n is the number of roles man-
aged by the manager role. If the mission solely relies on the rendezvous algorithm
(i.e., the movement-based link maintenance approach is turned off), aggregation can
be performed at each manager role by computing average locations and summa-
tion of velocity components for resultant direction estimation in order to decrease
the size of the state update message. When the state update type is management,
roles persist and send their management tree nodes. From these data structures,
the StateAggregator extracts the role identity object of children roles, if any, bundles
them into a list, adds the list to the management tree node, persists and sends the
management tree node. Note that while the role identity number is a unique num-
ber used to identify roles, as discussed before, the role identity object is a complex
data structure containing, among other data, information that enables collaborating
roles to import remote role references. While the role assignment and confirmation,
and default alive messages suffice for formation and maintenance of hierarchical do-
main structures respectively, for other structures, additional messages are required
for formation and maintenance. Hence, when a mission needs a domain structure
different from a hierarchical one, it has to set the state update type to management
or complete to allow the role references to be disseminated beyond their manager and

managed roles.

7.4. Team Layer 211

Discovery and Optimisation

The Discovery entity periodically broadcasts discovery beacons over UDP. However,
subsequent communication between this entity and the discovered UAV uses the
secure communication channel implemented by the Cormununication Handler entity
in the communication layer. The Discovery entity, implemented by the UxzvDiscovery

class, provides several PonderTalk operations.

The has : assign : operation, which is used by role assignment policies, is implemented
by the assign method.

@Ponder2op ("has:assign:")

assign (P2Array requirement, String roleType)

This method adds the role type and its required capabilities to the list of roles and
their capability requirements maintained by the UxzvDiscovery class. The list uses the

BloomF'ilter data structure to represent the capability requirements.

When a UAV is discovered, the adduav : cap : PonderTalk message, implemented by
the addUav method of the UzvDiscovery class, is invoked by policies.

@Ponder2op ("adduav:cap:”)
addUav(String uav, String capability)

If the UAV satisfies the capability requirement of at least one role in the role capa-
bility requirements list, it is added to the BipartiteGraph data structure built by the
UzvDiscovery where the roles are one bipartition and the UAVs are the other and the
edge between them is the aggregate utility associated with assigning the role to the
UAV. As discussed in Chapter 4, the aggregate utility is a measure of the benefit of
assigning a role to a UAV considering the benefit of assigning that role, assigning it
to the specific UAV and using the specific UAV. It is a weighted sum of role utilities,
role-system utilities and system utilities with weights that are set through policies
(discussed in Chapter 4). The AggregateUtility class provides the utility : setweight :
operation, which is used by policies to set weights for utilities.

@Ponder2op (" utility :setweight:”)

setWeight (String name, String weight)

7.4. Team Layer 212

In the BipartiteGraph data structure, both roles and UAVs are represented in terms
of their capability requirements and capability provisions respectively. The capability
sets are represented using Bloom filters [Blo70] in order to enable efficient storage
and comparison of capabilities. Our implementation of bloom filters uses the lower
bound for false positives and the optimal value for the number of hash functions as
described in [BMO04]. The parameters of the Bloom filter including the maximum al-
lowable false positive and the type of hash function can be changed through policies.
The MD5 digest is used as a default hash function. The BloomFilter data structure
provides methods for performing set operations. For example, whether a UAV satis-

fies the capability requirement of a role is determined by using the isSubSet method.

isSubSet (BloomFilter a, BloomFilter b)

The broadcast rate and other behaviours of the discovery service can be adapted
through policies. For example, the discovery service may trigger the Optimiser when
as many UAVs are discovered as are required to fulfil available roles if this behaviour
is enabled through the opportunisticOpt : operation (discussed in Section 6.8, for poli-
cies shown in Figure 6.16).

@Ponder2op (”opportunisticOpt:”)

opportunistic (boolean flag)

The Optimiser entity fetches or receives the bipartite graph depending on the policies

managing the behaviour of the Discovery and Optimiser services.

The Optimiser entity is implemented by the Optimiser class. It computes a minimum
cost maximum matching of the bipartite graph, using the O(n?) improved Hungarian
algorithm [Kuhb5, Kuh56, Munb7, BL71, CMT88], and provides the result to the
role, which uses it to perform the role assignments. The rate of optimisation, until
all available roles managed by the role performing the assignment are assigned, can
be set by the setOptimRate method provided by the Optimiser class. In previous
examples, this parameter is also referred to as the waiting period before optimisation
since it controls the period between the discovery of the first UAV and the beginning
of the optimisation process.

@Ponder2op ("setoptimrate:”)

setOptimRate(int rate)

7.4. Team Layer 213

7.4.1 Capability

The capability of a UAV is the set of operations that its software and hardware sup-
port as well as the events it generates. This depends on the current set of software
tasks loaded on to the UAV. The capability specification of a UAV is generated dynam-
ically by querying the tasks in a UAV. The Capability Manager entity is responsible
for querying and preparing the description. It is implemented by the Capability and
Capability Advertiser classes, which generate and advertise the description respec-
tively. As stated before, it is assumed that tasks can be queried for their interface
description. A task implements a task interface with a naming scheme where the
interface name is the task name suffixed by an T. For example, an Explorer task
implements an interface called Explorerl. To facilitate the capability description gen-
eration, task interfaces are annotated using two annotations, namely TaskInterface
and TaskEvent. The TaskInterface annotation is used to mark (and indicate the
name of the corresponding task) that an interface is a task-interface, which implies
that it has operations/notifications that can be included in the capability description.
This marking is used later, while generating the capability description, to differenti-
ate between the various interfaces a task implements. The TaskEvent annotation is
used to mark events so that it would be possible to differentiate between the task’s
operations and its events. Our algorithm for capability description generation of a
single task is shown in Algorithm 4. The algorithm reads the interfaces implemented
by the task, using Java Reflection, and decides whether to consider the interface
in general or the methods of the interface in particular by using the annotations.
The Capability class provides methods to query for low-level capability description
(generateLowLevelCapabilityDesc), full capability description (generateCapabilityDesc)
and check support for specific capabilities (haslowcap:).

@Ponder2op (”genlowcapdesc)

generateLowLevelCapabilityDesc ()

@Ponder2op ("gencapdesc”)

generateCapabilityDesc ()

@Ponder2op ("haslowcap:”)

hasLowLevelCap (String cap)

7.5. Communication Layer 214

When a UAV is attempting to join a team, these methods are used by the class
to query for the capability descriptions of the UAV and send it to the remote role
performing the discovery. If the attempt succeeds and the UAV is assigned to a role,
the remote role concludes its communication with the Capability Advertiser by sending
a role assignment message that the Capability Advertiser uses to invoke the loadrole

method of the RoleManager.

Algorithm 4 Algorithm for Capability Description Generation

Determine all interfaces implemented by the task.
for all interfaces implemented by the task do
Check for a @TaskInterface annotation.
if the annotation is detected then
Check if the task matches the task indicated in the annotation.
if it matches then
for all methods in the interface do
Check for a @TaskEvent annotation.
if the annotation is detected then
Add the method to the description as an event.
else
Read the argument types.
Add the method as an operation.
end if
end for
else
return Error
end if
else
return Empty description
end if
end for
return Description

7.5 Communication Layer

The communication layer consists of the Message Sender, Message Router, Commu-

nication Handler and Communication Link Maintenance entities.

The Message Sender entity is implemented by the MessageSender class, which pro-
vides a message passing method that is used by framework elements that need re-
liable message sending. Framework elements can create their own message sender

object with the required timeout and retry limits.

The Message Sender entity uses the Communication Handler entity for secure com-

munication. The Communication Handler, implemented by the Communication class,

7.5. Communication Layer 215

is built upon UDP and provides a secure communication channel between UAVs. As
described in Chapter 4, the Certificate Public Key Infrastructure (C-PKI) system is
used to exchange a common secret key generated using the Diffie-Hellman protocol
between each manager and managed role. The communication class provides the
createSecure : key : operation that is used to create a secure channel during the man-
agement framework’s bootstrap stage by using the certificate (certFile) and public key
(keyFile).

@Ponder2op ("createSecure:key: ")

Communication (P20bject myP20bject, String certFile, String keyFile)

The extra argument, myP20bject, is not part of the createSecure : key : PonderTalk
message. It is a mechanism used in the Ponder2 implementation to get a reference to
an adaptor object that represents the managed object instance created by construc-

tors (note that the above method is a constructor for the Communication class).

The Message Router entity, implemented by the Message Router class, handles incom-
ing messages for multiple roles (and other framework entities) residing in a UAV. This
entity enables registration of other entities to receive packets of a certain type and/or
source as well as de-registration. Entities register using the register method of the
MessageRouter class by indicating the type of messages they are interested on and

providing their reference using the MessageRouter Registration data structure.

register (MessageRouterRegistration reg, MessageReceiver receiver)

The MessageRouter Registration data structure consists of the message type and source
information. All entities that receive messages from other UAVs implement the

MessageReceiver interface.

In the case when an entity registers to receive packets of more than one type (or
source) that intersect, the registrations are aggregated. A separate exclusion table is
kept when an entity de-registers, if that entity and the registration it is de-registering
from lies in an aggregate registration. When a new packet arrives, the dispatch table
as well as the exclusion table are checked before the packet is passed to the registered

roles.

The Communication Link Maintenance entity, which deals with the two communica-

tion link maintenance algorithms, was implemented by my colleague Dr. Anandha

7.6. Proof-of-concept Demonstration 216

@ paintlight
@ Painttight

@ Background

@ DEF ground Soid

@ DEF short_rock_t Soid
@ DEF short_rock_2 Solid
@ DEF short_rack_3 Sold
@ DEF short_rack_4 Sold
@ DEF chort_rock_5 Sold

@ solid

@ solid

@ solid

@ solid

@ DEF KOALA Diferentialiheels
@ DEF KOALA Differentialthesls
@ DEF KOALA Differentialvthesls
@ DEF KOALA Differentialitheels
@ DEF KOALA Diferentialwheels
@ supervisor

[supervisar] orighlar igregatort; leader = surveyort; parsnt
[supervisar] origha veyort learer = relay1; parent = nul; 3y
[supervisar] orighlame = relay1; leader = nul; parent = null; x = 1735; v = 2683; ang = 30; sp = 0; seqhlo = 0

=-291; y = 1411; ang = 21; sp = 36; seghlo =52
= 2182 ang = 3; sp = 33 seqhlo =52

Figure 7.3: Snapshot of Webots Simulation

Gopalan. This entity was implemented and evaluated in the Webots [Ltd] simula-
tor but was not tested on actual robots due to difficulty in controlling the wireless
network range. A snapshot of the simulation is shown in Figure 7.3 and simulation-

based evaluation of the algorithms is presented in Chapter 8.

7.6 Proof-of-concept Demonstration

The self-management architecture was tested on the Koala robots [kt]. The Koala
robot is a mobile robot that has 16 infra red proximity sensors around the body of
the robot, and a camera. It is controlled by an Asus EEE PC® running windows
and Java through a USB to serial cable. The scenario chosen for the demonstration
was a search and rescue mission of a wounded soldier. The soldier is assumed to
possess a wearable computer and a body sensor network that monitors the soldier’s
condition. The wearable computer was another Asus EEE PC, while the commander
was a laptop and two robots were used as the unmanned vehicles. None of the
wireless devices were connected to the infrastructure and all the devices were part of

the same ad hoc network. The steps are as follows:

(i) Soldier is wounded in the battlefield,

3Intel(R) Celeron(R) M CPU 900 MHz, 512 MB RAM.

7.6. Proof-of-concept Demonstration 217

(if) Wearable computer sends a distress signal to the base reporting on the soldier’s

condition,

|

Soldiiie'r's- computer. se@ﬁs
dis‘,‘tr\e-s*S"Signa}l escue
- mission assembled.

g

Figure 7.4: Snapshot of Proof-of-concept Demonstration — Distress

(iif) The Commander assembles the mission for assistance, comprising unmanned
vehicles capable of navigation, communication, surveillance and hazard detection.

In this scenario, two roles are assigned: the Surveyor and the Aggregator,

Figure 7.5: Snapshot of Proof-of-concept Demonstration — Mission Assembly

(iv) The Surveyor starts to move towards the soldier and detects a hazard along the

7.6. Proof-of-concept Demonstration 218

way,

Hé‘%érd"deteicted“ﬁ; rob_.ot
| .Qe&comes disabledt

Figure 7.6: Snapshot of Proof-of-concept Demonstration — Hazard

(v) On detecting the failure, the Surveyor role is reassigned to the Aggregator by the
Commander. Since the Commander has been collecting state information through
the management tree, the last position of the previous Surveyor is estimated from

the last received state update so that the new Surveyor can avoid the “hazard”,

(vi) The new Surveyor is able to avoid the hazard using the information provided,

reen\robot avoids hazard.

. 9\

Figure 7.7: Snapshot of Proof-of-concept Demonstration — Hazard Avoided

7.7. Summary 219

(vii) The new Surveyor reaches the soldier and delivers assistance, as necessary. This
proof-of-concept demonstration was shown as part of the Annual Conference of the
ITA, 2008 (ACITA 2008) [ACI]. Snapshots of the demonstration are shown in Figures
7.4 - 7.8. The first Surveyor robot stops on detecting the “hazard” (which is a yellow
cylinder). The second Surveyor (which used to be the Aggregator before the role

reassignment) avoids the hazard and reaches the soldier.

Green robot Iocates the

%\
sgrldlen.— mission complete

Figure 7.8: Snapshot of Proof-of-concept Demonstration — Mission Completed

7.7 Summary

In this chapter, we have presented the prototype implementation of the self-
management framework, which was built upon the self-managed cell. The imple-
mentation is modular in that one can seamlessly add or remove entities from any
of the three layers. The prototype implementation was tested on the Koala mobile

robots.

Chapter 8

Evaluation

The self-management framework enables the specification of missions in terms of
roles whose behaviour is controlled through policies. In accordance with this specifi-
cation, a self-managing team is formed and maintained. While these approaches were
demonstrated in the case study chapter, in order to determine the applicability of the
framework in real-life missions, we evaluate its performance using three broad mea-
sures — response time, success rate and communication overhead. The first measure
is crucial since the framework is targeted for time critical missions such as disaster
management and military applications. The second measure is relevant to some be-
haviours of the framework such as optimal role assignment and communication link
maintenance. The third one is also important since communication resources are
scarce in wireless applications in general and in mission environments targeted by

the framework in particular.

In this chapter, we evaluate our self-management framework through analysis, and
performance evaluation of the prototype implementation. First, we study the commu-
nication overhead incurred by formation and maintenance of the management tree.
The communication overhead is evaluated analytically. In doing so, in addition to the
overhead of forming and maintaining the hierarchical management structure, we are
able to easily evaluate the overhead that would be introduced for different collabora-
tion structures since the management tree is used to maintain the domain structure,
which is used for collaboration purposes. We then present results of experimental

evaluation of the prototype implementation performed to evaluate the performance

220

221

of the framework with respect to response time (e.g., mission setup and failure re-
sponse) and success rate (e.g., communication link maintenance) and conclude with

a critical analysis of the framework.

As mentioned in Chapter 4, the hierarchical management structure, while having
several advantages, introduces an inherent latency in mission setup time due to the
fact that a manager role itself has to be discovered and assigned to a role before it
performs assignment (i.e., propagation delay introduced by the hierarchy). Since the
time it takes to form the team is crucial in target applications of the self-management
framework such as disaster management, we ask whether the hierarchical structure
introduces too much of a delay that could have been avoided by using another viable
structure. We hypothesise that although the performance of the hierarchical ap-
proach for management with respect to mission setup time is largely affected by the
delay introduced by the hierarchies, the distribution of management decisions would
result in a significant gain in time to enable the hierarchical structure to outperform

the centralised structure for higher number of roles.

In Section 8.2.1, we evaluate the above hypothesis by comparing the hierarchical
structure to a centralised structure where there is no communication delay in propa-
gation since there is only a single manager role (i.e., the commander). We also study
the effect of distribution of management responsibilities for smaller and larger size

teams in Section 8.2.2.

We do not consider other structures such as peer-to-peer for comparison since these
structures do not capture the management semantics and hence are not viable op-
tions as a management structure. However, since the collaboration organisation
structure maintained by the domain structure can have an arbitrary organisation
structure, we do not rule out other structures in the message complexity analysis of
the management tree maintenance, since the tree can be used to form and maintain

these structures.

The self-management framework enables adaptation to failure that is achieved by
means of policies as illustrated in the case study (Chapter 6). The response time to
failure is a crucial parameter and is controlled by the failure timeouts. As long as
the mission administrator has chosen the failure timeouts depending on the required

responsiveness of the mission to failed roles and specified policies to manage failures

222

of different roles, the framework will respond to failures of UAVs after the specified
timeouts. However, we ask, what if the failure involves too many roles simultaneously
— how would the framework perform? This is necessary in real-life missions where
UAVs in geographic proximity could fail simultaneously due to the nature of the
environment, or attacks in military applications. The evaluation presented in Section

8.2.3 is performed to answer this question.

In Chapter 4, we have argued that assigning UAVs as soon as they are discovered,
which we referred to as immediate role assignment, may lead to an incomplete team
while there are sufficient UAVs to fulfil all the roles of the team. The evaluation
presented in Section 8.2.5 is performed to validate this argument by using a sample
set of UAVs and roles and random arrival sequences of UAVs and showing that when
using the optimised assignment approach, the framework achieves a complete team
in all cases as opposed to the 80% success rate achieved when using the immediate
assignment approach. We also study the time taken to perform assignment by each

approach.

The communication layer tries to maintain communication links among UAVs by
using two approaches — one based on movement control and the other based on
rendezvous setup. The success of these two approaches is measured in different
ways. While for the first approach success is measured by whether the team is
able to move in a convoy fashion thereby maintaining communication links, for the
second one the measure is whether the members of the team manage to arrive at
the rendezvous point in time. Note that because UAVs know the rendezvous location
whether or not a UAV will reach at the point is not the concern since as long as
its motion capability is not impaired, a UAV will eventually reach there unless it
fails (UAV failure) in which case the issue is the concern of the failure management

protocol.

For the first approach, the issue concerns the conditions at which the team would
succeed in moving in a convoy fashion. In Chapter 5, we have stated that the choice
of the range threshold and state update rate have considerable impact on the success
rate of the approach. We have also argued, in Chapter 4, that a large range threshold
and infrequent state update rate results in lower performance with respect to success
rate. The evaluation presented in Section 8.2.6 tests this hypothesis. For the second

approach, since time of arrival instead of arrival is the issue, we test whether the

8.1. Message Complexity 223

algorithm’s estimate of speed (the average speed) results in arrival of all the UAVs
within the specified time. We also investigate the performance of the algorithm with
respect to the success rate (arriving at the rendezvous point within the specified time)

when each UAV continues to the rendezvous point at its current speed and top speed.

8.1 Message Complexity

8.1.1 Model

For the purpose of message complexity analysis, we represent the UAV wireless net-
work using unit disk graphs [CCJ90], which are widely used as an idealised repre-
sentation of wireless networks for analysis. In this model, nodes are assumed to be
placed in an Euclidean plane and have identical communication range of one unit
(Cr normalised to one). Two nodes are then connected by an undirected edge (bidi-
rectional communication link) if the distance between them is at most one, i.e., both
nodes lie within the intersection of the two unit radius circles drawn around each of

the nodes.

Hence, we represent the UAV ad hoc network using the resulting graph G4 = (Apav,
L) where Ay 4y is the set of available UAVs and L is the set of bidirectional commu-
nication links (edges) between the UAVs in the unit disk graph. Each link is denoted
by l;; where UAV; and UAV; are the vertices (UAVs) connected by the link in the unit
disk graph. An example set of UAVs and the corresponding unit disk graph is shown
in Figure 8.1.

We make the following assumptions:

1. The communication range of all UAVs is identical. From this assumption, it
follows that all links are bidirectional, i.e., we consider two UAVs to be linked

only when they are within the transmission range of each other.

2. At the time a manager role is broadcasting its discovery beacon, there are at
least as many UAVs as needed by this role. The tree formation algorithm does
not make this assumption; as the discovery service broadcasts periodically it

will eventually discover as many UAVs as needed. However, this would make

8.1. Message Complexity 224

— le7
Ve -~ Iss \
/ / J Y
/ / Y
[AT \ \ [% loy —1 vAv, |——st-—| uAv; |‘-\——-/sv —
i N T N
0| Bl | [oaw] e :
o " A
\ /< N / / : /,12 \\\ i \\ II
{ A { Noaw] - [oav]d 0 uan) /| Le AN Y/
N) < e [- 7 UAV, = b= UAV,
‘ \ \\-u:/ T /\/\ﬂ(T / | o7
"N SL v / B w
\ _\/\/_/ _/// : ////
\ N / Lz
< < | @ |
~ =
(a). UAVs with Identical Communication Range (b). Unit Disk Graph

Figure 8.1: UAV Network Model

the message complexity unbounded or at least dependent on the time it takes
for UAVs to be available. We will perform the analysis disregarding the fact that
UAVs may not be available from the start but discuss the implications of this

and the other assumptions later on.

3. Local broadcast [Per98], i.e., the delivery of data to every UAV within range of
the transmitter, is supported by the UAVs wireless network interface (e.g., it
is supported if UAVs use IEEE 802.11b). This, with the previous assumption

(assumption (2)), leads to a single discovery message per manager role.

4. UAVs do not move out of the direct (single-hop) communication range, with

respect to their manager UAV, while the discovery process is taking place.

5. The size of messages is independent of the size of the team (number of roles)
and each message generated by the self-management framework incurs only

one message at the network level.

8.1.2 Message Complexity of the Management Tree Formation

The management tree is formed through a series of discovery broadcasts made by
each manager role in the mission specification. In doing so, a spanning tree G =
(V,E) where V is the set of roles and E is the set of edges is formed. The first UAV
(UAV, in Figure 8.1) to perform discovery is the one enacting the Commander role.

The number of messages sent over the link between the discovering UAV and the one

8.1. Message Complexity 225

that is being discovered depends on the degree of success of the discovery. Assuming
that all UAVs have the necessary credentials and hence will pass the authentication
stage, there are three possible values for the number of messages sent over the link

between the discovering and discovered UAV as shown below.

Link between the

. . Number of
discovering and Messages Remark
discovered UAV g

1+2*5, i.e., 1 join request message, 2
signed certificate-exchange messages
and 2 Diffie-Hellman exchange mes-
sages, 1 capability summary message

Any link 11

11+2*2, i.e., 11 messages + 1 capabil-
15 ity request and 1 capability description
messages

Link to potential
team-member UAV

15+2*2, i.e., 15 messages + 1 role as-
19 signment message + 1 role confirma-
tion message

Link to UAV
assigned to a role

Except for the discovery and join request messages, all other messages, including
the role confirmation message, are acknowledged and hence each incur one more
message. This could, to some extent, be optimised by piggybacking acknowledgement
with a message in the other direction. The role confirmation message is not a simple
confirmation since it consists of information used by the parent role to import the

assigned role. Hence, it is an acknowledged message as the others.

Now assume the mission class specification of the case study (Chapter 6) with the
corresponding mission instance specification (modified to contain a single Medic and
two Transporter roles for the sake of space) are used. Also, assume the capabilities of
UAV, & UAV, are suitable for the Aggregator and Relay roles respectively. As shown
in Figure 8.2 (a), the Commander discovers UAVs 1, 2 & 4 and assigns the Aggregator

and Relay roles to UAVs 1 & 4 respectively.

In Figure 8.2, the edges labelled as e, correspond to the management tree edges
formed as a result of this assignment where z and y are roles. For example, ec4
is the edge between the Commander role and the Aggregator role. The number of
messages sent by the Commander UAV for performing this discovery and assignment
is 1 discovery message, 19 messages through /y;, 15 messages through [y, and 19

messages through ly,.

8.1. Message Complexity 226

(a). The Commander assigns the Aggregator and Relay roles (b). The Aggregator assigns the Surveyor and Hazard-detector roles

(c). The Surveyor assigns one Medic and two Transporter roles (d). The Management Tree

Figure 8.2: Management Tree Formation

The discovery and assignment process is in turn repeated by the assigned roles until
all roles are assigned. In Figure 8.2 (b), the Aggregator discovers UAVs 5 & 2 and
assigns the Surveyor and Hazard-detector roles to them respectively. In Figure 8.2
(c), the Surveyor discovers UAVs 7, 6 & 8 and assigns one Medic and two Transporter

roles to them respectively. The resulting management tree is shown in Figure 8.2 (d).

Each of these assignments incur 19 messages resulting in a total of 7*19 messages
incurred by all discovered and assigned UAVs as there are 7 roles (excluding the Com-
mander). In addition, there is one discovery message associated with each manager
role resulting in a total of 3 discovery messages sent by all manager UAVs as there
are three manager roles (Commander, Aggregator, Surveyor). Also, 15 messages were
incurred when the Commander discovered U AV, although it did not assign it to a

role. The total messages, sent by all involved UAVs, over the network in forming the

8.1. Message Complexity 227

example management tree is then: 3 + 7*19 + 15. Now let us generalise this result to

estimate the message complexity of the management tree formation.

e In our example, there were 3 discovery messages corresponding to three man-
ager roles out of a total of 8 roles in the mission. In general, given n = |V| roles,
there can be as many as n— 1 manager roles (forming a degenerate tree/a chain)

resulting in n — 1 discovery messages.

e All the successful assignments result in an edge in the management tree G. As
there are |V| — 1 edges in G there will be a total of 19(|V| — 1), i.e., 19(n — 1)

messages incurred by all successful (assigned) UAVs.

e Unsuccessful UAVs, i.e., UAVs that are authenticated but not assigned as not
needed because of unsuitable or less suitable (lower utility) capability, incur
either 11 or 15 messages depending on whether they were candidates (lower
utility) for assignment or not (unsuitable). In our example, only U AV, incurred
these messages as it was the only one within the direct reach of two manager
roles. In general, all the UAVs that would later be assigned to one of the roles,
i.e., n — 1 UAVs, could be within the direct reach of each other. As mentioned
before, in general, there can be as many as n—1 UAVs (forming a chain) resulting
inn—2 (i.e., n—1 less the assigned UAV) unsuccessful UAVs for each assignment.
Taking the higher number of messages, i.e., 15, the total number of messages

incurred by these unsuccessful UAVs could be as much as:

1575@' = 15(n—92)(n—1)

Hence, to form a management tree G = (V, E) with n = |V| nodes (roles) and |E| =
|V|—1 edges, the (maximum) total number of messages sent by all involved UAVs over

the network is:
n=1)4+19(n—-1)+2(n-2)(n—1)=2Bn*—n-2)
Consequently, the message complexity for the management tree formation is O(n?).

There are three points worth noting: (1) the overhead caused by member UAVs irre-
spective of the team size (number of roles) is only 20 or 19; since the total number

of messages sent by a successful UAV (team member) is either 20 or 19 depending

8.1. Message Complexity 228

on whether it is a manager role or not respectively, (2) to study the worst case com-
plexity, we have considered an unrealistic team structure such as a management
hierarchy where every role except one is a manager role thereby resulting in a de-
generate management tree (a chain). It is worth noting that the polynomial degree
complexity comes from this scenario. In reality, a mission administrator would not
specify a mission class that would result in this management tree and hence the av-
erage case complexity can be significantly better, (3) on the other hand, there is one
possibility we have not considered in the analysis — in general, there may be n’ num-
ber of unsuccessful UAVs within the direct communication range of the discovering
UAV. This number, n’, is limited by the communication range of the discovering UAV.
This would raise a scenario where the message complexity that would be O(n % n’) is
unbounded with respect to n, i.e., number of roles in the team and be of polynomial
complexity (if n” = cxn where c is a constant) even with the absence of the hypothetical

degenerate-tree management hierarchy.

Going back to the implications of our assumptions stated in Section 8.1.1, assump-
tion (1), i.e., all UAVs have identical communication ranges, does not hold true in a
team composed of heterogeneous UAVs. The difference in communication range re-
sults in some links being unidirectional thereby leading to the possibility that some
UAVs in the transmission range of the discovering UAV not being discovered. How-
ever, this does not impact the actual message complexity as long as local broadcast
(assumption (3)) is used by the discovering UAV, since one message is sent for dis-

covery irrespective of the number of receivers.

Assumption (2) that all required UAVs are within range at the start of the discovery
process may not be true. This would require periodic rebroadcast of the discovery
message. Consequently, the communication overhead introduced by the discovery
messages will be higher than the value used in the analysis (a single broadcast/dis-
covery message for each manager role). As the manager role broadcasts the discov-
ery message periodically, the overhead depends on the mission’s broadcast rate (the

discoveryRate mission parameter) and UAV availability.

Assumption (4) and assumption (5), i.e., that a managed UAV not moving out from
the direct communication range of the manager UAV for the duration of assignment
and message size being independent of the number of roles respectively have more

significant implications on the communication overhead of maintenance of the man-

8.1. Message Complexity 229

agement tree than on the formation and are discussed in the next section.

8.1.3 Message Complexity of the Management Tree Maintenance

The management tree, which is formed as a result of a series of discovery and role
assignments, is maintained by means of state aggregation and dissemination. Each
role (node) uses the management tree, which is a spanning tree, to propagate its
state. Consequently, the total number of messages sent over the network for one
round of state update is twice the number of edges of the tree, i.e., 2(|E|) = 2(|V|—1) =
2(n—1), as each role sends one message and receives another message on each state
update. Hence, the message complexity for one round of state update is O(n) and the
communication overhead for maintaining the management tree is 2(n—1)/7 messages
per second where 7 is the state update rate (corresponding to the stateUpdateRate
mission parameter) in seconds. This result is based on the assumption that the
size of the state update messages is independent of the size of the team (number of
roles). However, since the state update messages contain (1) location and velocity
of UAVs, and may include (2) information used for domain structure (collaboration
organisation structure) maintenance, the size of the message is dependent on the
size of the team. Since manager nodes aggregate state updates, the first element
(location and velocity) can be safely assumed to have a constant size for moderately
sized teams (e.g., 50 UAVs) or a multiple of a constant size for larger size teams. This
is because the size of the state information included in the state update message per
UAV is small enough that a single state update message can contain state information
of a number of UAVs. The location components (two dimensions), speed and direction
are each represented in 4 bytes float data type accounting to a total of 16 bytes per
UAV and the role identity number (not object) consists of the mission ID (1 byte),
hierarchy level (1 byte) and sequence number (d — 1 bytes where d is the number of
hierarchy levels in the team). For example, for a team consisting of 50 UAVs with
5 hierarchy levels a total of 22 bytes (16+1+1+4 = 22) per UAV is used for the state
update and hence the aggregated state will have (n-1)*22 = 49*22 = 1078 bytes which
becomes 1129 bytes, after inclusion of the framework (23 bytes) and UDP/IP headers
(20 bytes + 8 bytes), is well below the MSDU (MAC service data unit) size (2304 bytes)

[IEEO7] of an 802.11 system (assuming UAVs are using this system).

8.1. Message Complexity 230

As mentioned in Chapter 4, the collaboration organisational structure (maintained
in the domain structure) is mission dependent. Manager roles get the information
that enables them to import remote role references to their managed roles from the
role confirmation messages and managed roles get similar information pertaining to
their manager roles from the role assignment message. Hence, neither the forma-
tion nor the maintenance of a hierarchical domain structure, which is sufficient for
missions whose role interactions are constrained between manager and directly man-
aged roles (e.g., the Surveyor role and its managed Medic and Transporter roles in the
case study), does need additional communication. The mission administrator only
needs to specify policies to import role references during assignment and the domain
structure is formed (e.g., the Surveyor role policies for importing Medic and Trans-
porter role references shown in Figure 6.19, lines 67 - 71). The domain structure
maintenance does not need additional information in the state update message as a
manager role will be able to know the status of its managed roles from the default

keep alive message.

However, as mentioned in Chapter 4, in general, missions may have roles whose
interactions may go as far as involving all roles, and as mentioned in Chapter 7,
collaboration organisation structures different from the hierarchical one require a
management state update type that involves aggregation and sending of role identity
objects. Although role identity objects are also aggregated by manager roles, the same
assumption (single message per update) cannot be made since these are complex
objects with significant size. Recall that role identities are data structures consisting
of role identity number, the role name (type), last known location and velocity, the

remote address and path of the role.

In the following, we investigate the communication overhead of the management tree
maintenance when a complete domain structure (peer-to-peer collaboration organi-
sation structure) and a partial domain structure are used by the mission to study

the overhead in the most extreme and likely role interaction patterns respectively.

Maintaining a Complete Domain Structure on All Roles

The size of the messages involved in the domain structure maintenance largely de-

pends on the number of roles as can be seen in Figure 8.3. This makes the com-

8.1. Message Complexity 231

(C\D) A|D1 SlDy T2\D)
Mip, T1p, Hio}

\{‘C.D, Rio}
R}

{A\D) SlD) T2|D i
Mip, T1ip, Hio}

{Ap, Sip, T2ip, Mip,

\Thuy Cip, Rio}

4 T2p,

M, T10}

{Sib, Mo, T1ip,

A, Hio,Cip, iy

{Sib, Mo, T1ip,
A, Hip,Cio, Rin}

l(swuy Mip,
T1i0,Ap,
T1

Hio,Cio, Rin} {

Figure 8.3: Management Tree Maintenance with Complete Domain Structure

munication overhead dependent on whether all roles in the team need to be aware of

each other or not.

Figure 8.3 shows the state updates that are sent up and down the management tree
(location and velocity not shown) when it is the case that all roles should be aware of

each other, i.e., the collaboration organisation structure is peer-to-peer.

Each role sends its identity, directly managed role identities and indirectly man-
aged role identities up the management tree and receives identities of all other roles
except its own and its (directly and indirectly) managed roles. For example, the
message from A (the Aggregator role) to S (the Surveyor role) contains the Aggregator
and Hazard-detector role identities since the Aggregator manages the Hazard-detector
role. This is necessary when all roles require an operation and/or notification from
each other since it allows them to update the domain structure when UAVs join and
leave the team. Recall from Chapter 7 that the role identity object contains the nec-
essary information to import a reference of a remote role into the domain structure.
On each edge of the management tree, the sum of the number of role identity objects

, i.e., the

included in the state update messages (sent and received) is equal to |V

number of roles. Hence, the communication overhead for maintaining the domain

8.1. Message Complexity 232

structure is |E| * |V|/7 = (n — 1)n/7 role identity objects per second where 7 is the

state update rate in seconds.

Maintaining a Partial Domain Structure

Recalling the search and rescue mission considered in Chapter 6, to which the exam-
ple management tree that we are using in the analysis refers, all roles did not need
to interact with each other. In addition, the interactions involve operation invocation
by manager roles on their managed roles but not vice versa. The communication
overhead can be decreased for such types of missions by limiting the scope of the
information contained in the downward state update. A manager role can send in-
formation pertaining to the sub-team consisting of itself and its (immediate/directly
managed) children as shown in Figure 8.4. This results in each role maintaining a
partial domain structure that comprises its immediate children, its manager and sib-
ling roles if the role itself is a manager role (e.g., the Surveyor). If it is not a manager
role (e.g., the Medic and the Transporters), it only needs to maintain manager and
sibling roles. In addition, since the upward state update message sent and received
by a manager role contains information about the indirectly managed roles, each
manager role can add its indirectly managed children to its partial domain structure
resulting in a partial domain structure with nested hierarchical organisation shown

by the shaded concentric regions in Figure 8.4.

The communication overhead for maintaining the management tree is then |E|k/7 =
(n — 1)k/T < (n — 1)n/7 role identity objects per second where 7 is the state update
rate in seconds and k < n is the average number of messages (sent and received) per
edge. In the example tree shown in Figure 8.4, n =8 and k = 32/(n—1) = 32/7 since a
total of 32 role identity role objects are sent and received over all edges. Compared to
the 56 messages n(n— 1) = 8«7 sent over all edges for maintaining a complete domain
structure, the partial domain structure maintenance reduces the communication
overhead by more than 40%. The value of k£ depends on the mission specification
(management hierarchy as well as actual number of instances of roles of each type)
but is always less than n unless the management hierarchy is a centralised one, i.e.,
all roles are directly managed by the Commander role. The mission administrator

can enforce this behaviour of partial domain structure maintenance using policies

8.1. Message Complexity 233

\.

{Co, A} \{«C'D’ Ro}

(AlDy S\Dv
T2|D! M\Dl
{Rio} T1ip, Hig

{Ai, Sip}

{Ap, Hio}

4 T2ID)

Mip, T1i0}

~ {Sio, Mip, T1ip}

{Sio, Mip, T1ig}

Figure 8.4: Management Tree Maintenance with Partial Domain Structure

(discussed in Chapter 7) depending on the interaction of roles. Other forms of partial
domain structure maintenance such as hierarchical coalitions can also be used to

control the communication overhead.

In general, state update messages contain both management and operational
(mission-dependent) information and hence in addition to the number of roles in
the team and the scope of the domain structure maintained, the message size de-
pends on the specific mission type and its associated operational state aggregated

through the management tree.

Also, mobility of UAVs has an effect on the communication overhead incurred by
the management tree maintenance. Since discovery is performed on a single hop
basis, in its initial form any edge of the management tree corresponds to only one
physical link. However, as UAVs move around due to different reasons such as
mission requirements, the tree depends on multi-hop communication thereby its
edges being stretched over multiple physical links. This has a direct bearing over the
network with respect to communication overhead as the state updates exchanged
between a manager and (directly) managed role traverse multiple hops. In the worst

case scenario, a management tree edge can be stretched as much as n — 1 hops

8.2. Performance Evaluation of the Implementation 234

thereby increasing the communication overhead.

8.2 Performance Evaluation of the Implementation

The prototype implementation was evaluated through experimentation on a testbed of
Linux machines running Java to study the scalability of our framework with respect
to the number of roles involved in a mission, the effect of cluster type failures, the
effect of the depth of the management tree, the impact of large number of policies
on the mission setup time, the effect of immediate role assignment and the time
complexity of optimised role assignment. At the beginning of the simulation, the
number and types of roles are changed in the mission class specification and the
requisite number of instances of the framework are started on various machines. The
experimental setup consisted of machines! on a Local Area Network?. We simulated
different subnets by using IP filter policies. Each manager role was assigned to a
separate machine and a different subnet, while other roles were running in parallel
(with a maximum of 20 roles per machine). However, each role runs on its own
management framework and hence the number of roles is the same as the number

of UAVSs, i.e., one machine simulates up to 20 UAVs.

8.2.1 Mission Setup Time

In this experiment, we fixed the depth of the management tree to 5 levels and com-
pared its performance, with respect to mission setup time, with a centralised ap-
proach by varying the number of roles in the mission. The mission setup time in-
cludes the time taken for discovering the UAVs, assigning the roles, downloading the
policies from the repository and loading them, and starting the roles. Figure 8.5
shows the result for 19 experiments plotted with a 95% confidence interval. The re-
sult illustrates that as the number of roles increases the hierarchical management
approach outperforms the centralised one. Although the centralised approach per-
forms better for missions involving smaller number of roles with respect to mission
setup time, its ability to alleviate the problem of a single point of failure and increase

availability, to cope with communication or geographic constraints as well as capture

IIntel(R) Core(TM)2 Duo CPU 3.00GHz, 4GB RAM.
21Gb Ethernet.

8.2. Performance Evaluation of the Implementation 235

the management semantics in real-life missions makes the hierarchical approach

more attractive.

160 | " Centralised % - -
D Hierarchical (5 levels) —-m—
o 140 P
=120 e
= I
2 -
o 100 1
@ . ''''''' _._ ''''''' ij’f—“‘";'; '''''' *-' '''''' ~.
S 80Ff L]
E 60 ;?" -]
40 I I l l I

100 120 140 160 180 200
Number of Roles

Figure 8.5: Comparison of Mission Setup Time between Centralised and Hierarchical
Mission Management

8.2.2 Effect of the Depth of the Management Tree and Number of

Roles

In this experiment, we varied the number of roles between 20 and 200 and the depth
of the management tree between 1 (centralised) and 10. We then measured the time
taken to setup the mission provided that UAVs consisting of all required capabilities
are available during the mission startup time. Figure 8.6 shows the result for 25
experiments. For higher number of roles, the mission setup time decreases as we
increase the depth of the tree as a result of load balancing. However, this trend stops
and the setup times starts to increase slowly as the tree becomes very deep due to
the delay in role assignment created by an increase in the number of hops. This
behaviour suggests the existence of a ratio of number of roles to depth, for a given
management tree, which guarantees a minimal mission setup time. For smaller
number of roles, the mission setup time is minimal at depths 1 and 2 and after that
the setup time increases with depth due to the overhead introduced by the added

number of hops without any gain in load balancing as the number of roles is already

8.2. Performance Evaluation of the Implementation 236

sufficiently small to be managed by few manager roles. It is also interesting to note
that the depth at which the minimal setup time occurs increases as we increase the

number of roles.

140 ‘ Num. Roles
‘\\\ 20
120

100

80

Mission Setup Time (s)

1 2 3 4 5 6 7
Depth

Figure 8.6: Measure of Time Complexity against the Depth of the Management Tree

8.2.3 Mean time to Reassign Roles after Failure

In this experiment, we study the response time of our mission management system
when a cluster of failures occur as in typical disaster response or military scenarios
it is likely that a group of UAVs could be affected by an event causing them all to
fail. We used a mission specification that has 100 Surveyor roles and 100 Aggregator
roles and a reassignment policy that dictates that whenever a Surveyor role fails an
Aggregator role should be withdrawn from a working UAV and replaced by a Surveyor
role. The results are shown in Figure 8.7. We note that the reassignment time scales

linearly with the number of failed nodes.

8.2. Performance Evaluation of the Implementation 237

I | I I I
Time taken for Reassignment ----%---

0 20 40 60 80 100
Number of Failed Roles

Time taken (s)
O P, N W b O1 O N 0
|
|

Figure 8.7: Measurement of Time Taken to Reassign Roles in a Cluster Failure Sce-
nario

8.2.4 Mean time to Load Policies

Our framework depends heavily on policies, which are used for configuration, opti-
misation and adaptation. This gives rise to a large number of policies thus the need
to evaluate the time complexity of loading these policies, which has a direct impact

on the mission setup time.

In this experiment, we measured the time taken to fetch policies from the repository
(web server) and load them. Figure 8.8 shows the result for 10 experiments plotted
with a 95% confidence interval. The policy loading time increases linearly with the

number of policies in the mission.

8.2.5 Comparison of the Immediate and Optimal Role Assign-

ment Approaches

In this experiment, we compare the performance of the immediate and optimal role
assignments with respect to time complexity and success rate of assignment. We
considered a mission that has 10 role types and 10 UAV types as shown in Table 8.1.
The capabilities of the first half of the UAV types, i.e., s; up to s5, can each satisfy
one role type (one out of r; up to r;). Each of the second half of the UAV types (s¢ up

8.2. Performance Evaluation of the Implementation 238

500 T I I I T T L) T
Policy Loading Time ----%---
450 i

400 .
350 |- .
300 L xﬁ%ﬁ;ﬁ’
250 | ; %xx*%x¥/ .
200 - %*\%x*%%x -
150 ¥ i

Policy Loading Time (ms)

100 |- FEs §
50 - x** .

10 20 30 40 50 60 70 80 90 100
Number of Policies

Figure 8.8: Policy Loading Time

to s19) has capabilities that are diverse enough to satisfy the capability requirement
of any of the first five role types (r; up to r;) as well as one other role type out of the
second half of the role types (r¢s up to r19). Each of the first five role types can be
assigned to one of the 6 possible UAV types while each of the rest of the role types

can only be assigned to one UAV type.

If we perform an immediate role assignment on a first-discovered first-assigned basis,
it may be the case that one or more of role types r; up to r; are assigned to a UAV of
type s¢ up to sjp leading to an incomplete team since role types rg up to r19p can only
be assigned to UAV types s up to sjg respectively. The team can be complete only if
the UAVs arrive in a sequence where all the first half of UAV types arrive before any
of the UAV types of the second half, i.e., s1, s2, s3, 84,55 — Sg, S7, Ss, S9, S10. There are
5! % 5! possibilities of this arrival out of 10! possible arrival sequences. In the worst
case scenario, all of the second half of the UAV types can arrive first leading to a team

where only 50% of the roles are assigned.

In our experiment, we varied the number of roles and UAVs keeping their numbers
equal and the role and UAV types and their proportions constant. In the case of the
optimised role assignment, all the roles were assigned in all the experiments. Figure

8.9 shows the result of the immediate role assignment for 20 experiments plotted with

8.2. Performance Evaluation of the Implementation 239

Role Required UAV Provided

Type Capability Type Capability

1 {01, 02} S1 {01, 02}

T2 {01, 03} 52 {01, 03}

3 {01, 04} S3 {01, 04}

T4 {01, 05} S4 {01, 05}

s {e1,c6} 85 {c1,c6}

T6 {e1, e} 86 {c1,¢2,¢3,¢4,¢5, 6,07}
r7 {es} 87 {c1,¢2,¢3, 4,05, 6,8}
T8 {eo} 58 {c1,¢2,¢3,c4,¢5,¢6,Co}
T9 {c10} 89 {c1,¢2,¢3,¢4,¢5,¢6,C10}
710 {611} 510 {61, C2,C3,C4,C5, Cp, 011}

Table 8.1: Capability Requirements and Provisions

a 95% confidence interval where Role Assignment Success Rate is the percentage of
roles assigned to UAVs out of the total number of available roles. The plot labelled as
Immediate shows the observed success rate of the immediate role assignment scheme
during the experiment. Note that the success rate of this assignment scheme varies
as it depends on UAV arrival sequences. The plot labelled as Optimised shows the
observed success rate of the optimised role assignment scheme. Theoretically, this
success rate can also be achieved in the immediate role assignment scheme (best
case scenario) provided that the UAVs arrive in an ideal sequence, i.e., all the first
half of UAV types (shown in Table 8.1) arrive before any of the UAV types of the second
half, which is impractical. The plot labelled as Immediate (worst case) shows what
the success rate would be if the UAVs arrive in the worst possible sequence, i.e., all

of the second half of the UAV types (shown in Table 8.1) arrive before the first half.

Figure 8.10 shows the time taken for assignment for both immediate and optimised
role assignments. The assignment time is measured from the time the first UAV is
discovered to either the time the last role is assigned (in the case of the optimised
assignment) or all UAVs have been discovered and all roles that can be assigned are
assigned (in the case of the immediate assignment). The polynomial time complexity
of the optimised assignment is attributed to the O(n?) algorithm® we used to compute
the minimum-cost maximum bipartite matching of the assignment graph. Although

the assignment algorithm, for the sake of the experiment, starts optimisation after

3n is the number of roles/UAVs.

8.2. Performance Evaluation of the Implementation 240

Role Assignment Success Rate (%)

Immediate ----x---
Optimised —-#—

100 - ——m— - — W R Immediate (worst case) - --e- -

R L I T R o
60 4

oo -0 . * - -o - -0) * -9
40 4
20 4

1

10 20 30 40 50 60 70 80 90 100

Number of Roles

Figure 8.9: Role Assignment Success Rate

all UAVs are discovered, in reality the waiting period is set by a policy and there is a

tradeoff between the length of this period and the success rate of the assignment.

Role Assignment Time (ms)

4000

3500 [

3000

2500

2000 [

1500

1000

500 |

Immediate ----*---
Optimised --=—

N
-

L
1
Q(J

\
\
[Re v

20 40 60 80 100
Number of Roles

Figure 8.10: Time Complexity of the Optimised and Immediate Assignment Algo-

rithms

8.2. Performance Evaluation of the Implementation 241

8.2.6 Evaluation of Communication Management

The communication management scheme was implemented using the Webots mobile
robotics simulator [Ltd], which is a prototyping environment for modelling, program-
ming and simulating mobile robots. A total of five UAVs, with a management tree as

shown in Figure 4.6, were used for this experiment

Evaluation of Approach 1: Adapt Movement to Maintain Communication

In the first experiment (Figure 8.11), the effect of range threshold was evaluated with
respect to the speed of the UAVs, while the second experiment (Figure 8.12) evaluated
the update time versus the speed of the UAVs. The success rate is defined as the
number of UAVs that successfully manage to follow the lead UAV to its destination
(including the lead UAV itself). For the purpose of the experiments, the Surveyor was
acting as the leader UAV. For the value of speed, a magnitude of 1 denotes a speed of
4.5 mm/s. For the first experiment, the update time is set to 2s, while for the second

experiment, the range threshold is set to 75% (i.e., 75% of the communication range).

160 I I | I I
Range Threshold = 50% —+—
140 | Range Threshold = 60% ---x---
Range Threshold = 70% ------
120 F Range Threshold = 80% - B _
Range Threshold = 90% --® -
2 100 F % % P i
m N N R \ \\\
A 80 i
@ AN N
8 \\ \\\
A 60 - x X .
40 | -
20 | o -l u -
O | | | | |
0 10 20 30 40 50 60
Speed

Figure 8.11: Communication Management (Changing the Range Threshold)

From Figure 8.11, we see that the range threshold (7r) has a significant impact on

the performance. As the value of T increases, fewer and fewer UAVs are able to

8.2. Performance Evaluation of the Implementation 242

160 , : | - |
Update Time = 0.5 —+—
Update Time = 1.0 ---x---
140 Update Time = 1.58 ---*--- 7]
Update Time =2.0s &
120 Update Time = 2.5 —-®— |
Update Time = 3.0s --o -
L 100 = - % y) |
s AN \
14 N \
7 N \
g 8o y]
s N N
g AN \
n 60 l\ = \\ i
\\‘ \\\
40 N W\ |
\‘\ \\
N RN
20 -— |
O I | | | |
0 10 20 30 40 50 50
Speed

Figure 8.12: Communication Management (Changing the Update Time)

follow the leader. This is especially true in the case when the speed is greater than
30, since only the leader is able to reach its destination. Setting the value of Tx
much lower (50%) enables all UAVs to reach the destination, but this (1) gives less
time for follower UAVs to complete their task at their current position, and (2) may
be detrimental since it results in the leader being followed too closely and may result
in a cluster failure (e.g., due to a hazardous terrain). Hence, instead of setting the
value of Ty a priori, it is better to set the value dynamically based on the current
speed and task status of the target UAV. We did not consider a model for computing
Tr in this adaptive manner. However, we have made 7T adaptable during mission

execution thereby enabling extension of the framework.

From Figure 8.12, we can see that the change in update time adversely affects the
UAVs when they are travelling at a high speed. This is to be expected since the
follower UAV uses the location updates of its leader to map its path. Having a small
update rate (0.5s) results in all UAVs following the leader to the destination. However,
this has an adverse effect on network traffic and the battery life of the UAVs due to

the excess communication.

8.2. Performance Evaluation of the Implementation 243

Evaluation of Approach 2: Rendezvous to Restore Communication

In this experiment, we evaluate the speed of the UAVs and the time taken by them
to reach the rendezvous area with respect to the rendezvous time. We evaluate three
schemes: (i) the UAVs continue to the rendezvous area at their current speed, (ii) the
UAVs continue at an average speed (an estimate of the speed required to reach the
rendezvous point) , and (iii) the UAVs continue at their maximum allowed speed. For
the value of speed, a magnitude of 1 denotes a speed of 4.5 mm/s. The speed of the
UAV (the Surveyor for the purpose of this experiment) that departs and causes the
rendezvous setup was set to 30. The range threshold is set to 75%. The rendezvous

time is varied between 10 and 50 seconds and the maximum speed is set to 50.

90 T T T T T
- Current Speed —+—
> 80 L Maximum Speed ---*--- N
2 Average Speed - & -
<
2 70} .
©
2 60 |]
(2]
3
S 50 F o
(]
©
o)
g 40 s
e
S 30 S N
Y4
8
o 20 F |
=
}_
o 10 |
>
< *°

0 1 1 1 1 1

10 20 30 40 50

Rendezvous Time (s)

Figure 8.13: Communication Management (Rendezvous Time)

From Figure 8.2.6, we can see that as the rendezvous time increases, the time taken
in all the schemes also increases. This is to be expected, since the rendezvous area
is a little bit further away each time. The result also shows that the UAVs reach
the rendezvous area on time provided that they travel at the average speed. This
would allow faster UAVs to conserve their energy by reducing their speed. Slower
UAVs would have to increase their speed, but since they are travelling at the average
speed, the energy consumed is not very much. Also, we can see from the result

that there is a significant difference in the time taken when the UAVs move at their

8.3. Critical Evaluation of the Framework 244

top speed. This is especially useful in the scenario when it is critical to reach the

rendezvous area as soon as possible.

8.3 Critical Evaluation of the Framework

Our framework enables the specification of adaptable and reusable missions for au-
tonomous systems. In accordance with the mission specification, a team is formed
dynamically by discovering UAVs and assigning roles to them in an optimal man-
ner. In addition, the framework deals with communication link maintenance among
team members and recovery from failure. The management task is distributed in
that all manager roles in the team perform role assignment and decisions pertaining
to adaptation in relation to roles managed by them. This distribution enables the
framework to meet application specific requirements such as the hierarchical organ-
isation of a search and rescue team. As illustrated in the performance evaluation,
the framework is scalable with respect to the number of roles and policies involved
in the mission, and optimal with respect to role assignments. From the analysis of
the message complexity of the management tree formation and maintenance, we ob-
serve that the communication overhead is significant. Although it is shown that the
overhead can be decreased for missions that do not involve interactions between all
of the mission roles, enabling a more fine grained control of this overhead through
policies is required to make the framework feasible in missions in which communi-
cation links have low bandwidth. The primary limitation of our framework is the lack
of automated or semi-automated mission refinement. The refinement of a mission
statement into roles and policies is an intensive manual or semi-manual task that
needs much research to create tools that may assist in this process. Work is being
done within our group in this direction. The refinement of general high-level poli-
cies into more specific policies is considered in [BLMRO0O4, BLRT06] that provides tool
support and partial policy refinement automation. Our framework also does not con-
sider policy conflicts. A mechanism for analysing policies in order to detect conflicts

[MS94, LS99, CLM™09] is necessary.

The framework assigns UAVs to roles based on their capabilities and credentials.
However, a selfish autonomous system might advertise less capabilities in order to

avoid duty. Similarly, a malicious autonomous system might advertise more capa-

8.4. Summary 245

bility and be assigned to a role it cannot perform in order to sabotage the mission.
Although UAVs are authenticated before they are assigned to any role, selfish or ma-
licious systems which have the necessary credentials but lack the goodwill to achieve
the goals of the mission can exploit the framework after the authentication phase.
The implicit assumption that all authenticated UAVs are trusted is detrimental in
some application scenarios and hence the framework could be enhanced with a trust
management system. Research in open multi-agent systems [RHJO05, HJS06] has

looked into this issue.

Although the framework enables the specification of role behaviours using policies
and the formation of a team in accordance with a high-level mission specification, the
lack of a monitoring entity limits the spectrum of adaptation that would have been
possible. Both the role and team behaviour are readily adaptable through policies.
However, there is a need for an entity that monitors the performance of the team
and generates events to initiate the adaptation, and policies to make a higher level
of adaptation where the policy defining the behaviour of the role or the team itself is

adapted.

The framework does not require pre-mission-setup knowledge of the capabilities re-
quirement of the roles or the capabilities provision of the UAVs. However, it is im-
plicitly assumed that there is an agreement on the vocabulary of capabilities, more
generally on the ontology of capabilities and services. For example, when a role puts
forward gps as a required capability, it is assumed that (1) all UAVs advertising gps in
their capability mean the same thing and (2) any advertisement that does not contain
the keyword gps does not satisfy the requirement of the role. An explicit definition
of ontology of UAVs would make the team formation seamless and also facilitate se-
mantic based capability matching, i.e., allowing for the more realistic setting that

capabilities with differing names may satisfy the same requirement.

8.4 Summary

In this chapter, we have presented analysis of the communication overhead incurred
by the management tree, performance evaluation of the prototype implementation

and a critical evaluation of the framework.

8.4. Summary 246

We have discussed the limitations and vulnerabilities of the framework. The frame-
work is vulnerable to rogue capability advertisements by selfish or malicious UAVs. It
also lacks an automated or semi-automated means of mission refinement. The XML
based capability description and matching assumes an implicit ontology and does

not support semantic based matching.

We have shown through the evaluation of the proof-of-concept implementation that
the framework is scalable with respect to the number of roles and policies involved
in a mission. We have also shown that the framework performs optimal role assign-

ments and can cope with simultaneous failures of a large number of UAVs.

Chapter 9

Conclusions

In this chapter, we will summarise the thesis achievements and compare them against
the requirements for a self-management framework stated in the introduction of this
thesis. We also indicate directions for future work based on our critical analysis of

the framework and conclude the thesis.

9.1 Achievements

The first requirement for the self-management framework is support for a mission
specification approach that enables specifying missions in an adaptable and reusable
manner for teams of mobile autonomous systems. We have proposed a novel role-
based mission specification for teams of mobile autonomous systems where the be-
haviour of individual members as well as the team as a whole is specified using
policies thereby allowing us to enforce team (organisational) as well as individual
norms. The team can be adapted in two ways: a policy can change the behaviour of
the team in response to an event or a policy governing the behaviour of the team can

itself be adapted.

A mission for a team of mobile autonomous systems is specified in three levels,
namely policy, mission class and mission-class instance specifications allowing for
reuse of specifications. This enables a policy to be used with different mission classes

and a mission class to be used with different mission-class instance specifications

247

9.1. Achievements 248

tailored to specific scenarios.

The second requirement for the framework is support for secure and optimal for-
mation, usage and maintenance of dynamic teams. In our framework, autonomous
systems are discovered, authenticated and assigned to roles dynamically and when
they depart or fail they are replaced with other autonomous systems. The role assign-
ment is based on the credentials and capabilities of the autonomous system, and the
requirement of the role. Instead of immediately assigning roles in a greedy manner,
we delay the assignments and attempt to perform utility-function based optimisation
on the set of discovered systems and required roles. The framework detects intermit-
tent communication link disconnection and permanent link or system failures and
reconfigures itself in accordance with failure management policies. The behaviour
of the team management part of the framework can also be adapted using policies.
For example, one can change discovery, role assignment, optimisation and failure

parameters at run time.

The final requirement is support for communication link maintenance among mobile
autonomous systems. The communication layer of the framework actively tries to
maintain communication between team members using two techniques: adapting
the movement of autonomous systems so that each node always has one or more
other nodes within communication range to maintain an ad hoc network, and setting
up a rendezvous within a defined rendezvous area at a specified time in order to
enable communication at regular intervals. In the event that a UAV is unable to
reach the rendezvous area, it is assumed to have failed and the failure management

scheme in the team layer is used to recover.

The applicability of the framework to real-life problems was illustrated using a search
and rescue scenario. We have described the mission specification process, which

involves mission, role and policy refinement.

We have implemented our framework using the Ponder2 policy toolkit and tested
the prototype implementation using a search and rescue mission with the Koala
robots, in a controlled environment. We have also evaluated the performance of the
framework and shown that it is efficient with respect to mission setup time, scalable
with respect to the number of roles and policies involved in the mission, and optimal

with respect to role assignments.

9.2. Future Work 249

9.2 Future Work

Although the mission specification in our framework is adaptable and reusable, when
done from scratch the specification process involves manual refinement of mission
statements into policies and roles, which are used as the building blocks of the spec-
ification. Developing tools which could assist in this process would make the frame-

work more applicable in real-life scenarios.

This thesis has only addressed reconfiguration triggered by the need to adapt to
failure; further work is needed to investigate the impact of reconfiguration that is
driven by the necessity to improve the performance of the team. A monitoring service
possibly with a learning module would help in generating the necessary events for
adaptation and selecting appropriate mission parameters based on experience. Util-
ity functions, which can be used to measure the quality of possible reconfigurations

in order to compare and select one out of the many possibilities, are necessary.

In order to be able to match capabilities that have syntactic differences, a semantic-
based capability matching approach, with an ontology for mobile autonomous system
capabilities needs to be developed. The capability description scheme needs to be

enhanced to support semantic-based matching.

In a dynamic and open team such as the one considered in this thesis, it is imprac-
tical to assume that all authenticated autonomous systems are trusted. Malicious
systems can sabotage the mission in a number of ways, consequently the framework

could be enhanced with a trust management system.

An autonomous system may be captured or, as a result of a fault, start behaving
anomalously. It is necessary to be able to detect anomalous behaviour, take action to
isolate the anomalous system from the team and possibly distribute new secret keys

to other team members.

9.3 Closing Remarks

The framework proposed in this thesis has been motivated by the need for enabling

self-management in the increasingly ubiquitous mobile autonomous systems. The

9.3. Closing Remarks 250

novel approaches we proposed for mission specification, team formation and com-
munication link maintenance will facilitate the application of mobile autonomous

systems such as UAVs in real-life missions.

Appendices

251

Appendix A

PonderTalk Basic Types and

Operations

As discussed in Chapter 2, PonderTalk has basic (built in) objects that are Array,
Number, String, Boolean, Nil, Hash, Xml and the special object Block. Since the
Array and Hash objects support a number of operations and these operations are
used in example policies in the thesis, a listing and description of the operations is

shown here.

252

253

Operation

Remark

do: aBlock

Takes a block and executes the block once for each entry in
the array and returns the result of the last block executed.
The arguments to the block are the name of the entry and

the value of the entry.

collect: aBlock

Takes a block and executes the block once for each entry in
the array. The arguments to the block are the name of the
entry and the value of the entry. The result of each block is

collected and returned in an array.

add: aP20bject

Adds aP20bject to the array and returns itself.

addAll: anArray

Adds all object in the array anArray to the array and returns
itself

at: anlndex

Returns the object at anIndex.

at: anlndex

put: aP20bject

Inserts aP20bject in the array at anlndex and returns the

insterted object — aP20bject.

remove: anln-

Returns the value at anIndex and removes it from the array.
dex
removeObject: Removes anObject from the array. All copies of anObject
anObject will be removed. Returns true if one or more were removed.
removeAll Removes all objects stored in the array and returns itself.
hasObject:

Returns true if anObject is in the array.
anObject
size Returns the number of elements in the array.

Table A.1: Messages (operations) Supported by PonderTalk’s Array Object

254

Operation Remark
Takes a block and executes the block once for each en-
do: aBlock try in the table and returns the result of the last block

executed. The arguments to the block are the name of
the entry and the value of the entry.

collect: aBlock

Takes a block and executes the block once for each entry
in the table. The arguments to the block are the name of
the entry and the value of the entry. The result of each
block is collected and returned in an array.

Returns an array containing the names of all the entries

listNames of the table.
listObjects Returns an array of objects containing all the entries in
the table.
Returns an array containing a flattened hash table in
asArray

the form of name, value, name, value ... entries.

at: aKey put: anObject

Store anObject in the table with aKey and returns the
stored object — anObject. If aKey already exists, the pre-
vious value is overridden.

remove: aKey

Returns the value associated with the given key and re-
moves it from the table. Returns Null if it is not found.

Removes anObject from the table. All copies of anOb-

?::EloveOb_]ect: anOb- ject will be removed. Returns true if one or more were
J removed.

Removes all objects stored in the table and returns it-
removeAll

self.

Returns true if the given key exists in the table other-
has: aKey

wise false.

hasObject: anObject

Returns true if anObject is in the table.

Returns the value associated with the given key. If not

at: aKey ifAbsent: found, evaluate block (with no arguments) and return
aBlock .
its result.
at: aKe Returns the value associated with the given key. Throws
’ y a Ponder2ArgumentException error if not found.
size Returns the number of elements in the table.

Table A.2: Messages (operations) Supported by PonderTalk’s Hash-table Object

Appendix B

Role Specifications and Policies

B.1 Role Specifications

Role specifications of the case study search and rescue mission are shown in this

section.
1 <xml>
2 <role name='Aggregator >
3 <policy uri='http://192.168.0.1/search_rescue/policy/aggregator’/>
4 <tasks>
5 <task name=’AssessRisk ">
6 <expose>
7 <operations>
8 <operation name=’assessRisk >
9 <argument>
10 <name>survivorLocation</name>
11 <type>dmrc. util . Location</type>
12 </argument>
13 </operation>
14 </operations>
15 <notifications>
16 <notification name='riskAssessed’>
17 <attribute name='name’/>
18 <attribute name=’survivorLocation’/>
19 <attribute name=’riskLevel’ />
20 </notification>
21 </notifications>
22 </expose>
23 </task>

Figure B.1: Search & Rescue Role Specification - Aggregator Role (Part 1)

255

B.1. Role Specifications 256

24 <task name=’BuildMap >

25 <expose>

26 <operations>

27 <operation name=’setDisasterArea >
28 <argument>

29 <name>area</name>

30 <type>dmrc. util . Area</type>

31 <name>base</name>

32 <type>dmrc. util . Location</type>
33 </argument>

34 </operation>

35 <operation name=’updateMap >

36 <argument>

37 <name>location</name>

38 <type>dmrc. util . Location</type>
39 </argument>

40 <argument>

41 <name>hazard</name>

42 <type>dmrc. util . HazardType</type>
43 </argument>

44 </operation>

45 <operation name=’getMap >

46 <argument />

47 <result>

48 <name>result</name>

49 <type>dmrc. util .DmrcMap</type>
50 </result>

51 </operation>

52 <operation name=’uploadVisualDcoument’>
53 <argument>

54 <name>visualDocument< /name>

55 <type>dmrc. util . Media</type>
56 </argument>

57 </operation>

58 </operations>

59 </expose>

60 </task>

61 </tasks>

62 <expose>

63 <notifications>

64 <notification name=’rescueStatus >

65 <attribute name='name’ />

66 <attribute name=’coverage />

67 <attribute name='rescued’/>

68 </notification>

69 </notifications>

70 </expose>

71 <require>

72 <operations>

73 <operation name=’setArea’>

74 <argument>

75 <name>area</name>

76 <type>dmrc. util . Area</type>

77 </argument>

78 </operation>

79 </operations>

80 <notifications>

81 <notification name=’survivorRescued >
82 <attribute name='name’ />

83 <attribute name=’survivorLocation’/>
84 </notification>

85 <notification name=’batteryLevel >

86 <attribute name=’'name’ />

87 <attribute name='level '/>

88 </notification>

89 </notifications>

90 </require>

91 <capability>

92 <require>

93 <type>motion</type>

94 </require>

95 </capability>

96 </role>

97 </xml>

Figure B.2: Search & Rescue Role Specification - Aggregator Role (Part 2)

B.1. Role Specifications

257

1 <xml>

2 <role name=’Hdetector >

3 <policy uri='http://192.168.0.1/search_rescue/policy/hdetector’/>
4 <tasks>

5 <task name=’DetectHazard >

6 <expose>

7 <operations>

8 <operation name=’setArea’>

9 <argument>

10 <name>area</name>

11 <type>dmrc. util . Area</type>

12 <name>base</name>

13 <type>dmrc. util . Location</type>
14 </argument>

15 </operation>

16 </operations>

17 <notifications>

18 <notification name=’hazardDetected ">
19 <attribute name=’'name’ />
20 <attribute name=’hazardLocation’/>
21 <attribute name=’hazardType’ />
22 </notification>
23 </notifications>
24 </expose>
25 </task>
26 </tasks>
27 <expose/>
28 <require>
29 <operations>
30 <operation name=’updateMap ">
31 <argument>
32 <name>location</name>
33 <type>dmrc. util . Location</type>
34 </argument>
35 <argument>
36 <name>hazard</name>
37 <type>dmrc. util . HazardType</type>
38 </argument>
39 </operation>
40 </operations>
41 </require>
42 <capability>
43 <require>
44 <type>motion</type>
45 <type>chemicalDetection</type>
16 <type>biologicalDetection</type>
47 </require>
48 </capability>
49 </role>
50 </xml>

Figure B.3: Search & Rescue Role Specification - Hazard-detector Role

B.1. Role Specifications

258

1 <xml>

2 <role name=’Medic ">

3 <policy uri='http://192.168.0.1/search_rescue/policy/medic’/>
4 <tasks>

5 <task name=’AssistSurvivor ">

6 <expose>

7 <operations>

8 <operation name=’assist >

9 <argument>

10 <name>survivorLocation</name>

11 <type>dmrc. util . Location</type>
12 </argument>

13 </operation>

14 <operation name=’measureMetric >

15 <argument>

16 <name>roleld</name>

17 <type>dmrc. util . Roleldentity</type>
18 </argument>

19 <argument>
20 <name>metricType</name>
21 <type>String</type>
22 </argument>
23 <result>
24 <name>metricValue</name>
25 <type>Double</type>
26 </result>
27 </operation>
28 </operations>
29 <notifications>
30 <notification name=’survivorAssissted ">
31 <attribute name='name’/>
32 <attribute name=’survivorLocation’/>
33 </notification>
34 </notifications>
35 </expose>
36 </task>
37 </tasks>
38 <expose/>
39 <require/>
40 <capability>
41 <require>
42 <type>motion</type>
43 <type>medical</type>
44 </require>
45 </capability>
46 </role>
47 </xml>

Figure B.4: Search & Rescue Role Specification - Medic Role

B.1. Role Specifications

259

1 <xml>

2 <role name='Transporter’>

3 <policy uri="http://192.168.0.1/search_rescue/policy/transporter’/>
4 <tasks>

5 <task name=’Transport >

6 <expose>

7 <operations>

8 <operation name=’transport >

9 <argument>

10 <name>survivorLocation</name>

11 <type>dmrc. util . Location</type>
12 </argument>

13 <argument>

14 <name>destination</name>

15 <type>dmrc. util . Location</type>
16 </argument>

17 </operation>

18 <operation name=’measureMetric ">

19 <argument>
20 <name>roleld</name>
21 <type>dmrc. util . Roleldentity</type>
22 </argument>
23 <argument>
24 <name>metricType</name>
25 <type>String</type>
26 </argument>
27 <result>
28 <name>metricValue</name>
29 <type>Double</type>
30 </result>
31 </operation>
32 </operations>
33 <notifications>
34 <notification name=’survivorTransported ">
35 <attribute name=’'name’ />
36 <attribute name=’survivorOriginalLocation ’/>
37 <attribute name=’survivorNewLocation’ />
38 </notification>
39 </notifications>
40 </expose>
41 </task>
42 </tasks>
43 <expose/>
44 <require/>
45 <capability>
46 <require>
47 <type>motion</type>
48 <type>lifting</type>
49 </require>
50 </capability>
51 </role>
52 </xXml>

Figure B.5: Search & Rescue Role Specification - Transporter Role

B.1. Role Specifications 260

1 <xml>

2 <role name=’Relay >

3 <policy uri='http://192.168.0.1/search_rescue/policy/relay’/>
4 <tasks>

5 <task name=’RelayFunction >

6 <expose>

7 <operations>

8 <operation name=’setMembers >
9 <argument>

10 <name>uavList</name>

11 <type>dmrc. util . List</type>
12 </argument>

13 </operation>

14 </operations>

15 <notifications>

16 <notification name='memberOutofRange ">
17 <attribute name='name’/>

18 <attribute name=’uav’/>

19 </notification>
20 </notifications>
21 </expose>
22 </task>
23 </tasks>
24 <expose/>
25 <require/>
26 <capability>
27 <require>
28 <type>motion</type>
29 <type>longrangecom</type>
30 </require>
31 </capability>
32 </role>
33 </xmb>

Figure B.6: Search & Rescue Role Specification - Relay Role

B.1. Role Specifications 261

1 <xml>

2 <role name=’Commander >

3 <policy uri="http://192.168.0.1/search_rescue/policy /commander’ />
4 <tasks>

5 <task name=’ManageEarthQuakeDisaster ">
6 <expose>

7 <operations>

8 <operation name=’setDisasterArea ">
9 <argument>

10 <name>area</name>

11 <type>dmrc. util . Area</type>
12 <name>base</name>

13 <type>dmrc. util . Location</type>
14 </argument>

15 </operation>

16 </operations>

17 <notifications>

18 <notification name=’memberOutofRange ’>
19 <attribute name=’'name’ />
20 <attribute name=’uav’/>
21 </notification>
22 </notifications>
23 </expose>
24 </task>
25 </tasks>
26 <expose/>
27 <require>
28 <require>
29 <operations>
30 <operation name=’setMembers >
31 <argument>
32 <name>uavList</name>
33 <type>dmrc. util . List</type>
34 </argument>
35 </operation>
36 </operations>
37 <notifications>
38 <notification name=’rescueStatus >
39 <attribute name='name’/>
40 <attribute name=’coverage’/>
41 <attribute name=’rescued’/>
42 </notification>
43 </notifications>
44 </require>
45 </require>
16 <capability>
47 <require>
48 <type>motion</type>
49 <type>longrangecom</type>
50 </require>
51 </capability>
52 </role>
53 </xml>

Figure B.7: Search & Rescue Role Specification - Commander Role

B.2. Bootstrapping the Management Framework 262

B.2 Bootstrapping the Management Framework

The PonderTalk statements for bootstrapping the management framework are shown

here.

© ® N ® U AW N =

//Import the Domain code and create the default domains.
domainFactory := root load: ”Domain”.
root

at: “factory” put: domainFactory create;

at: ”policy” put: domainFactory create;

at: “event” put: domainFactory create;

at: “task” put: domainFactory create;

at: ”"role” put: domainFactory create;

at: ”utility” put: domainFactory create.
//Put the domain factory into the factory directory.
root/factory at: “domain” put: domainFactory.
//Import event and policy factories.
root/factory.

at: “event” put: (root load: ”EventTemplate”);

at: “ecapolicy” put: (root load: ”"ObligationPolicy”);

at: “authpolicy” put: (root load: ”AuthorisationPolicy”).
//Import and create the Event bus.
root/factory at:”eventservice” put: (root load: ”SMCCore.EventService”) .
root at:”eventbus” put: (root/factory/eventservice create).
//Import and create the Mission entity.
root/factory at: “mission” put:(root load:”dmrc.mission.MissionClass”).
root at: “mission” put:(root/factory/mission create).
//Import mission—specific role code. Creating
//the role objects depends on the role the
//UAV would enact and is done by a policy.
//UAVs may not have loaded all types of roles
//of a mission, upon assignment they can load the necessary role code.
//Surveyor role code
root/factory at:”surveyor” put:(root load: "dmrc.role.Surveyor”).
root/factory at:”surveyorexternal” put:(root load: “dmrc.role.SurveyorExternal”).
//Aggregator role code
root/factory at:”aggregator” put:(root load: “dmrc.role.Aggregator”).
root/factory at:”aggregatorexternal”

put:(root load: "dmrc.role.AggregatorExternal”) .
//Import and create the Role Manager.
root/factory at: “rolemanager” put:(root load:”dmrc.mission.RoleManager”) .
root at: ”“rolemanager” put:(root/factory/rolemanager create).
//Import and create the Capability Manager elements.
root/factory at:”capadvertiser” put: (root load:”dmrc.team.CapabilityAdvertiser”).
root at:”capadvertiser” put:(root/factory/capadvertiser create).
root/factory at:”capability” put:(root load: “dmrc.team.Capability”).
root at:”capability” put:(root/factory/capability create).
//Import the Discovery and Optimiser code.
//Creating these services is done by a
//policy depending on the role of the UAV.
root/factory at:”discovery” put: (root load: “dmrc.team.UxvDiscovery”) .
root/factory at:”optimiser” put: (root load: “dmrc.optim.Optimiser”).
root at:”optimiser” put: (root/factory/optimiser create).
//Import and create the Message router.
root/factory at:”messagerouter” put: (root load: “dmrc.com.MessageRouter”).
root at:”messagerouter” put: (root/factory/messagerouter create).
//Import and create the reliable Message sender.
//root/factory at:”messagesender” put: (root load: “dmrc.com.MessageSender”) .
//root at:”messagesender” put: (root/factory/messagesender create).
//Import the Communication service code.
root/factory at:”communication” put: (root load: “dmrc.com.Communication”).
//Creating the service involves using credentials of the UAV (certificate & key)
root at:”communication” put: (root/factory/communication
createSecure: "uav.der” key:’uavkey.der”).

//Import and create the communication link maintainer.
root/factory at:”comlinkmaintainer” put:(root load:”dmrc.com.ComLinkMaintenance”) .
root at:”comlinkmaintainer” put:(root/factory/comlinkmaintainer create).
//Import and create the PonderTalk interpreter.
root/factory at:”pondertalk” put:(root load: ”"PonderTalk”).
root at: ”pondertalk” put:(root/factory/pondertalk create).

Figure B.8: Bootstrapping the Management Framework

B.3. Policies 263

B.3 Policies

Policies of the search and rescue mission (case study) that were not included in

Chapter 6 are shown in this section.

© ® N U oA W N~

© ® N U oA W N~

[SIEC I S

policy := root/factory/ecapolicy create.
policy event: /event/newRelay;
action: [:name :role :instance|

//Create tasks.

((root/task asHash) has: “rangeextend”) ifFalse: [

root/task at: "rangeextend” put:((root load: “dmrc.task.RangeExtend”) create)].
//Configure tasks.

root/task/rangeextend bindMotionTask:(/ root/task/motion) .

//Bind tasks.

(root/role resolve: (role+”/”+instance))

bindRangeExtendTask: (root/task/rangeextend) .

root/comlinkmaintainer setLeader: ”surveyor”.

|

policy active: true.

Figure B.9: Search & Rescue Mission — Relay Role Policies

policy := root/factory/ecapolicy create.
policy event: /event/newHdetector;
action: [:name :role :instance|

//Create tasks.
((root/task asHash) has: “explore”) ifFalse: [
root/task at: "explore” put:((root load: “dmrc.task.Explore”) create)].
((root/task asHash) has: "detecthazard”) ifFalse: [
root/task at: "detecthazard” put:((root load: "dmrc.task.DetectHazard”) create)].
//Configure tasks.
root/task/detecthazard bindExploreTask: (/root/task/explore).
root/task/explore bindCameraTask:(/root/task/camera) .
root/task/explore bindMotionTask:(/root/task/motion) .
root/task/explore bindBuildMapTask: (/root/task/buildmap).
//Bind tasks.
(root/role resolve: (role+”/”+instance))
bindDetectHazardTask: (root/task/detecthazard).
root/comlinkmaintainer setLeader: “surveyor”.].
policy active: true.

Figure B.10: Search & Rescue Mission — Hazard-detector Role Policies

policy := root/factory/ecapolicy create.
policy event: /event/newMedic;
action: [:name :role :instance|

//Create tasks.
((root/task asHash) has: "assistsurvivor”) ifFalse :[root/task at: "assistsurvivor”
put:((root load: "dmrc.task.AssistSurvivor”) create)].
//Configure tasks.
root/task/assistsurvivor bindMotionTask:(/ root/task/motion) .
//Bind tasks.
(root/role resolve: (role+”/”+instance))
bindAssistSurvivorTask: (root/task/assistsurvivor).
root/comlinkmaintainer setLeader: “surveyor”.].
policy active: true.

Figure B.11: Search & Rescue Mission — Medic Role Policies

B.3. Policies 264

policy := root/factory/ecapolicy create.
policy event: /event/newTransporter;
action: [:name :role :instance|

//Create tasks.
((root/task asHash) has: “transport”) ifFalse: [
root/task at: "transport” put:((root load: “dmrc.task.Transport”) create)].
//Configure tasks.
root/task/transport bindMotionTask:(/root/task/motion) .
//Bind tasks.
(root/role resolve: (role+”/”+instance))
bindTransportTask: (root/task/transport).
root/comlinkmaintainer setLeader: ”surveyor”.].
policy active: true.

Figure B.12: Search & Rescue Mission — Transporter Role Policies

B.4. A Note about Managed Objects 265

B.4 A Note about Managed Objects

The means for controlling the entities of the framework, which are implemented as
Ponder2 Managed objects, using policies are PonderTalk messages (discussed in
Chapter 2, Section 2.6.1). For example, in some of the sample policies (e.g., Fig-
ure 6.15, line 27) shown in the thesis, we have seen the statement root/discovery
adduav: uav cap: lowLevelCap in the action part of the policies. The policies were
able to perform this operation — "adduav uav: cap: lowLevelCap” - that is used
to add newly discovered UAVs to the assignment graph, because the discovery ser-
vice that is implemented by the UxzvDiscovery class is a managed object that, among

”

other messages, can be sent the "adduav : cap : 7 PonderTalk message. Classes,
such as UzvDiscovery , implementing managed objects, such as the discovery ser-
vice, which need to receive PonderTalk messages annotate the corresponding method
with Ponder2’s @Ponder2op annotation in order to tie the PonderTalk message to the
corresponding Java method as shown below.

@Ponder2op ("adduav:cap:”)

public void addUav(String uav, String capability)

addUxv(uav, capability);

}

Compilation of the managed object results in an adaptor object that maps the Pon-
derTalk messages to the Java methods in the managed object. This adaptor object is
named as < ManagedObjectClassName > P2Adaptor. This naming pattern is used by
Ponder2 to load the corresponding adaptor object when requested to load a managed
object. Note that it is this adaptor object that is loaded into the domain structure
in place of the actual managed object. The adaptor object receives the PonderTalk

messages and forwards them to the actual managed object.

Appendix C

Class Diagrams

266

267

«interface»

dmrc.com

+ dmrc.com.MessageReceiver

+ handlelnput()

N

«interface»
+ SMCCore.EventBuslIntf

SMCCore

+ dmrc.team.Roleldentity
dmrc.team

Roleldentity()
asString()
generateChildld()
getAddress()
getHierarchyLevel()
getMissionID()
getMySequence()
getMySequenceString()
getPath()
getRolelnstanceName()
getRoleName()
parseRolelnstanceName
+ parseString()
setAddress()
setPath()
setRolelnstanceName()
setRoleName()
toString()

+ + + + + + o+t o+ o+ 4+

+

+ o+ o+ o+ o+

«Import, Call, Instantiate|

«interface» «interface»
+ SMCCore.SMCNotifiable + SMCCore.ldentifiable
SMCCore SMCCore
+ notify() + getlD()
+ notify() A
+ Role

- bus: EventBuslntf

der: H

exposedNotifications: Vector<String>
messageRouter: MessageRouter

<String,\ der

#role_id_seq_len:int

+ dmrc.team.State
dmrc.team

- stateType: int

State()
getComLinkState()
getCreationTime()

«Import, Call, Instantiate»

node: ManagementTreeNode
requiredNotifications: Vector<String>
roleP20bject: P20bject

¥ rolesinWaiting: Hashtable<String,Object>
stateAggregator: StateAggregator

publish()
publish()

subscribe()
unsubscribe()

«Import, Call, Instantiate

+ SMCCore.SMCid
SMCCore

SMCid()
SMCid()
SMCid()

getDepth()
getiD()
getNode()

getWaitingList()
handlelnput()

isRequired()

notify()
publish()

getMgmtState()
getOpState()
getRoleldString()
getRolelnstanceName()
getStateType()
getTime()

getUxvState()
setComLinkState()
setMgmtState()
setOpState()
setRoleldString()
setRolelnstanceName()
setStateType()
setTime()

setUxvState()

+ stateFromPacket

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

roleReassign()

setNode()

start()
stopRole()

o+ 4 o3 3o oI oI o+ B 4 o+ o+ o+ o+ o+ 4+ 4 B

addToW aitingRolesList()
checkWaitingRolesList()

getRoleAssignmentMessage()
getTotalNumPalicies()
getTotalNumRoles()
getWaitingListSize()

isRoleW aitingForCapability()
isWaitingListForRoleEmpty()
removeFromW aitingList()

sendMessageToChildren()
sendMessageToParent()

setStateUpdateType()

«Import, Call»

SMCid()
asBytes()
asString()

equals()
getTransportType()
setTrasnportType()
toString()

+ o+ o+ o+ o+ o+ o+ o+ o+ o+

+ SMCCore.SMCPacket
SMCCore

+HSHK_1:byte

+ HSHK_2: byte

+ HSHK_3: byte

+ MAX_PACKET_LEN: int
+ MAX PAYLOAD LEN:int
+ PKT_ACK: byte

+ PKT_ACKGRP: byte

+ PKT BROADCAST: byte

+ dmrc.team.RoleAssignmentMessage
dmrc.team

- myNode: ManagementTreeNode
- opState: Hashtable<String,Object>

getMyNode()
getOpState()
readXmi()

setMyNode()
setOpState()

+ o+ o+ o+ o+

«Import, Call, Instantiate»

+ SMCCore.SMCEvent
SMCCore

SMCEvent()
SMCEvent()
SMCEvent()
flatten()
getAttribute()
getAttribute_B()
getAttribute_D()
getAttribute_F()
getAttribute_I()
getAttribute_L()
getAttribute_S()
getAttributesArray()
hasMoreAttributes()
length()
putAttribute
putAttribute
putAttribute:
putAttribute
putAttribute
putAttribute:
putAttribute()
removeAttribute_B()
removeAttribute_D()
removeAttribute_F()
removeAttribute_|()
removeAttribute_S()
removeNextAttribute()
toString()

()
()
()
()
()
()

A T T T T T T T S T T S S S S S A

«Import, Call, Instantiate»

+ PKT_COMMAND: byte
+ PKT_DATA: byte

+ PKT_DHKEYSH: byte
+ PKT_DIECONN: byte
+ PKT_ENCCAP: byte

+ PKT_EVENT: byte

+ PKT_GRPKEY: byte

+ PKT_HSK1_C: byte

+ PKT_JOINREQ: byte
+ PKT_PKCERT: byte

+ PKT_ROLE: byte

+ PKT_ROLE_CONFIRM: byte
+ PKT_ROLE_RE: byte
+ PKT_STATE: byte

+ PKT_SUBSCR: byte

+ PKT_UNICAST: byte

- packet: byte

+ SMCPacket()
+ SMCPacket()
+ debug()
+ generateAckPacket
+ generateAckablePacket
+ generateDataPacket
+ generatePacket(
+ getAckNumber()
+ getBufferLength()
getHeaderLength()
getPacketLength()
getPayload()
getPayloadLength()
getRawSourcelD()
getRawSourcelDAsString()
getSource()
getType()
isAckable()
setAckNumber()
setSource()
typeToString

+ o+ o+ o+ o+ o+ o+ o+ o+ 4

+

Figure C.1: The Role Class with its main Datastructures

268

+ RoleManager

- activeRoleObject: P20bject

- myP20biject: P20bject

+ RoleManager()
+ handlelnput()
+ loadRole()

+ run()

[<Instantiate, Im

o

+ dmrc.com.MessageSender
dmre.com

jI..+ receiverld: SMCid

«Call»

“._«Import, Gall»

+ dmrc.team.ManagementTreeNode
dmrc.team

- childrenLowLevelCapReq: Hashtable<String,P2Array>
- childrenOptimalConfig: boolean

- childrenState: Hashtable<String,Object>

- depth: int

- lastRoleOptimalConfigTime: long

- lastRoleStartTime: long

- managesRole: boolean

- missionClasslnstance: Hashtable<String,Object>
- myChildren: Vector<Object>

- myDescendants: Vector<Object>

- myParent: Roleldentity

- myParentSmel D: SMCid

- myRoleld: Roleldentity

- mySmeld: SMCid

- myState: Hashtable<String,Object>

- optimalConfig: boolean

- parentState: State

- roleOptimalConfigTime: long

- roleStartTime: long

- selfOptimalConfig: boolean

- uxvLowLevelCapability: Hashtable<String, Object>

+ senderld: SMCid
- fries: int

+ Role

Call}

«Instantiate, Import,

MessageSender()
ack()

add()

destroy()
handlelnput()
run()

o+

- bus: EventBuslIntf

exposedNotifications: Vector<Strings
messageRouter: MessageRouter

T H
missionClass: MissionClass

node: ManagementTreeNode

requiredNotifications: Vector<String>

roleP20bject: P20bject

rolesInWaiting: Hashtable<String, Object>
stateAggregator: StateAggregator

+ dmrc.com.MessageRouter
dmrc.com

- myP20bject: P20bject

+ MessageRouter()
+ getlD()

+ handlelnput()

+ register()

+ unregister()

«Import, Call»

+ addToWaitingRolesList()
checkWaitingRolesList()
+ getDepth()

+ getID()

+ getNode()

getRoleAssignmentMessage()
+ getTotalNumPolicies()

+ getTotalNumRoles()

+ getwaitingList()

+ getWaitingListSize()

)

«Import, Instantiate, Call»

isRequired()
isRoleWaitingForCapability()
isWaitingListForRoleEmpty()
notify()

publish()
removeFromWaitingList()

ToChildren()

+ ManagementTreeNode()

+ addChikd()

+ allMyChikdrenPlaySameRole()

+ getChildLowLevelCapReq()

+ gelChildrenOptimalContig()

+ getChildrenState()

+ getChildrenUxvLowLevelCapability()
+ getChildstate()

+ getDepth()

+ getLastRoleDepth()

+ getLastRoleOptimalConfigTime()
+ geLastRoleStartTime()
+ getMissionClasslnstance()
+ getMyChildren()

+ getMyParent()

+ getMyParentSmclD()
+ getMyRoleld()

+ getMyRoleName()

+ getMySmeld()

+ getMyState()

+ getParentState()

+ getRoleld()

+ getRoleldBylnstance()
+ getRoleldForUxv()

+ getRoleOptimalConfigTime()
+ getRoleStartTime()

+ getSelfOtptimalConfig()

+ getUxvLowLevelCapability()

+ hasChild()

+ isChildrenOptimalContfig()

+ isLastRoleParamsUpdated()
+ isOptimalConfig()

+ managesRole()

+ removeChild()

+ setChildLowLevelCapReq()

+ setChidState()

+ setChildrenState()

+ setLastRoleOptimalConfigTime()
+ setManagesRole()

+ setMissionClassInstance()

+ setMyParent()

+ setMyParentSmcID()

+ setMyRoleld()

+ setMySmeld()

+ setMyState()

+ setParentState()

+ setRoleOptimalConfigTime()

+ setRoleStartTime()

+ setSelfOtptimalConfig()

+ setTeam()

+ setUxvLowLevelCapability()

+ 10String()

+ dmrc.team.StateAggregator
dmrc.team

+ CHILD_UPDATE_RATE: int
- childrenStateSent: boolean

- role: Role

- stateMessage: SMCPacket
- stateUpdateType: int

- t: GenericTransport

+ UPDATE RATE: i

StateAggregator()
addOpState()
getOpState()
handlelnput()
isRoleWithdrawn()
run()
setRoleWithdrawn()
setStateUpdateType()
updateState()

N I S

sendMessageToParent()
setNode()
setStateUpdateType()
start()

+
+

#

#

+

#

#

roleReassign()
#

#

#

+

+

+ stopRole()

sinstantiate, Import

Call»

«Instantiate, Import, Call»

+ MissionClass

- depth: int

- missionClassInstSpec: TaggedElement

missionClass|nstance: Hashtable<String, Object>
- missionClassSpec: TaggedElement

- missionClassTable: Hashtable<String,Object>

- totalNumRoles: int

MissionClass()
buildRoleManagementTable()
computeDepth()
computeTotalNumRoles()
displayMissionTable()
getDepth()
getMissionClassSpec()
gelMissionClassTable()
getSubMclinstance()
getSubMclnstance()
getTotalNumRoles()
giveMissionToRoles()
instantiateMissionClass ()
loadMissionClassSpec()
setMissionClassnstance()
traverseRoleBehaviourTree()

B I I T A R A

Figure C.2: Mission Layer Elements

269

Ofpn +

(wboas +
(undpppuey =
[
(ouenfiied =
(1sopIBNuIISASatoI6 +
(ans6 +
(fanerscassy «

SIUOWIG I9AeT wea], ¢) 9In31]

(wapupenyes +
unowenias +

(aenuno +
(umwnocnenyed
(xapunfrene ~
(kapurenet ~
(xapuigapociad =
(Eenuni6 +
Detenpurmyat =

Dudeiompredg +
(uderomymdg
(udeipmprdig +

(nas

<Burgs iebaiul>depioai,

<Buag>ias

WA -
Upuiog tupwogIRo) -
903090'Bul 15 >RESEH HpulsUaY

<1eBau BulAS>TRLSEH

<soy00fg Bl S >9RESEH e -

1 LsnogAe -

<O BUpIS>AIGEISE fSa(01 -

xepupen -

o -

Shaparos -
xapupros -

MRS

TSR =
()sdApuopounyserges =

“TREnBTSaE +
(nawaiuys) +
o= =

Bz todk

a10001S

<aoeyal-

JUISNGIUSAT BI00DNS *

i vioda) s

wiydoraawp.

oot wdooIwp +

Lol

[

192U o3 ynejap -

(aspudo + widoronp

i1g'wndoroiwp +

Lol

wpdorap
AupnereBoiBBy-undo-diwp +

Oapes +
(udeioEpEdRITg +

(sesupdo +

IUERULO oiEpUlUORES YKo -
1o9k0zd oslgoad A -
10 wops ageE
900D ALININI -
Hianoosicr Aincosip -

wpdoraip
Jesjupdo wndouwp +

IS e

OBugoL@ms +
Ouns =

(uapusy g fyeden =

1ald0ed 1osla0Ediespapydes -

(nduyapoey +
5 -
Qo Lferdsp =

D Tied

sepueinduiingedes -

ancosiadors +
rcues -
(acues =
(aeyscopeorges =
jsdLuseHucogies +
—

deoInisanbas +
ipras =
(ogurmoddo +

(OpouBissyiviou =
(ogsnnyioddos|

(uswonbages +
OadAiurenmos +
(deoaaimopes +
Oarguior +

Dapuy +
(adfyienspied ~
R ——————

Viodi] ‘siEplEsu

60| a1} EISHOLST] -
o e BpoOILKOAOLHE -

[

feLvzd wewaimbal -
wadfyyareu -
widep - Buygs degjamapeol -

(rduppy + <RI SEEEH SISUPIS - <Bujas>ioioan om0+
wwa0q
<heivzd ‘betideo)anamoTuRIPIu - M
.
saBBseoE ~
FIED 'S5220y ‘Moduw|
(amsaepdn ~
(enpe + OadAarepcinprmisios +
(fmozmimn +

S ek

108lq0zd Hosia0zAA -

wozromp
JeIn0HoBESSAN WO AW +

(mequarshsareisust +

(1osa0AaRdeoA PoTaRIRE6 +
()osageapaqquIsRiauss +
(joseqhmgedegareiaust

deuaes +
O himegies =

deamorsey +

2sageONIaGEIRIUE +

ey - g,

Oinduapey +
(ioolaozaasd -
(anet ~

iespianpy yedeg +

Awnqedeg + \

1oslqozd 198H0zd

<19y 001G B S >GESEH YN -
JOOIgBLS >R ESEH FEraI -
<Kesnyzq Bupis>aqRsEH asrbadegalol -
190z ‘aj0s -

19660 ALUBISS Yoot LIaBB0TSE: -

(useipymaetst +
(hncuppuey

wBalEByaITIS +

o —
i oy

WAV Evadn ©
odsuey opauag 3 -

L
ueaooq puncgudomau -
Tosla02d 10Rla0zdAL -

1w 00K arepaners -
HoEdONS abessepeiEs -
ooy 191

I 100G BUIAS > DITEIISTH HS{TaIOKBISTLL -
o ojoon smjocy -

) ovmgopRog -

Buiag iodueHwoo -

\degayedig e LU ssE -

uealo0q paUBIsSYSaIOLIE -

upalo
WAV 3IVadn a0 T

Jojebaibbyarers +

IesiuarpyAl

Kionoosigaxn +

[r—
1opugaBesSaN WO MW +

Oredspucy -

100fq0pabeus’zIopuodou +

Zipucdiau

woraup

1oNB9a BRSSO WO DIWP +

270

«interface»
+ MessageReceiver

+ handlelnput()

«Implement:

+ MessageSender

+ receiverld: SMCid
+ senderld: SMCid
- tries: int

«interface»
+ SMCCore.ldentifiable
SMCCore

+ net.ponder2.ManagedObject

«interface»

net.ponder2

+ getlD()

i

«Implement>

+ CommunicationHandler

+ CommunicationHandler()

+ getlD()
+ run()

<Import, Instantiate, Call

+ Ci

+ ComLinkMaintenance

«Import, Call:

- myP20bject: P20bjec

+ rmibase()
+ run()

- Communication()
- Communication()
- Communication()

Import, Instantia

+ MessageRouter

+ SMCCore.Security.SecUtil

SMCCore.Security

- myP20bject: P20bject

MessageSender()
ack()

add()

destroy()
handlelnput()
run()

o+ o+ o+ o+

Figure C.4: Communication Layer Elements

MessageRouter()
displayDisptachTable(}
displayTable()

getID()

handlelnput()
register()

unregister()

o+

SecUtil()
SecUtil()
buildCertPkt()
buildCertPkt2()
buildPkt()
buildSignedPkt()
decryptData()
encryptData()

+
+
+
+
+
+
+
+
+
.
.
.
.
.
.

genCertFr)
genDHKeys()
genDHParams()
genDHSecretKey()
genPKFromEncoded()
getID()

getPrivKey()

+_hexEncode!

.
.
.
+
+
+

loadCert()
loadCert2()
signMsg()
verifyCert()
verifyCert2()
verifyMsg()

- leader: Roleldentity

- myP20bject: P20bject

- rendezvous_active: boolean
- sigma: double

- T: double

- ComLinkMaintenance()
maintainLink()
rendevousActive()
run()

setLeader()
setRendevousTime()
setSigma()
startRendevous()

ottt o+ o+ o+

Appendix D

Koala Robot’s Low-level

Control Software Interface

(@) koa_setPidPosition(device_id, proportional,integral, derivative) :sets the proportional,
integral and derivative parameters of the position controller of the specified device
through device_id. Identifying the device is necessary because in addition to the
motion controller of the robot other devices (such as camera) attached to the robot

can be controlled through the KoreBot.

(b) koa_set PidSpeed(device_id, proportional,integral, derivative): sets the proportional, in-

tegral and derivative parameters of the speed controller.

(c) koa_setPositionCounter(device_id,left,right): sets the 32 bit position counter of the

two (left and right) motors where one unit corresponds to 0.045 mm.

(d) koa_setPosition(device_id,left,right): sets an absolute position to be reached where

one unit corresponds to 0.045 mm.

(€) koa_readSpeed(device_id, speed_arrayl]): reads the instantaneous left (speed_table|0])

and right (speed_table[1]) motor speed where one unit corresponds to 4.5mm/s.

(f) koa_setSpeed(device_id,left,right): sets the left and right motor speed where the

unit is 4.5mm/s.

(8) koa_readPosition(device_id, position_array(]): reads the 32 bit position counter of the

left (position_array[0]) and right (position_array[l]) motors.

271

272

(h) koa_setProfile(device_id, max_speed_left, acceleration_left, max_speed_right,
acceleration_right): sets the speed and the acceleration for the trapezoidal speed
shape of the position controller where the units for speed and acceleration are

4.5mm/s and 1.758 mm/s? respectively.

(i) koa_readStatus(device_id, status_arrayl]): the status is returned in three parameters,
namely target (status_array|0]), mode (status-array[l]) and error (status_array[2]). If
target=0, the robot is moving, if target=1, then the robot has reached the position.
If mode=0 the current displacement is controlled in the position mode and if mode

=1 the current displacement is controlled in the speed mode.

(G) koa_readSensor(device_id, sensor): reads the robot’s management sensors where de-
pending on the value of sensor it provides information about : provides informa-
tion about battery voltage (sensor=0), current consumption (1), ambient temper-
ature (2) , left motor current (3), right motor current (4) and battery temperature

(5).

(K) koa_readBattery(device_id): reads the battery charge level of the robot where the
unit is mAh.

() koa-readProximity(device_id,infrared_sensor[]): provides the readings of 8 or 16,

depending on the robot type, infra red proximity sensors.

(m) koa_readAmbient(device_id, ambient_sensor|]): provides the readings of 8 or 16, de-

pending on the robot type, ambient light sensors.

Bibliography

[ABHT02]

[ACO5]

[ACI]

[ADET00]

[AGH'00]

[AGST09]

A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, D. Mc-
Dermott, S.A. Mcllraith, S. Narayanan, M. Paolucci, T.R. Payne, et al.
DAML-S: Web service description for the semantic web. 2002.

Stephanie Appleyard and Victoria Chapman. Development of vignettes
to be used in a study into implicit instructions and command intent in
the context of autonomous systems. QinnetiQ Proprietary, Unclassified,

Ref:DTC/RAO/WPE/N03571/SEAS, June 2005.

International technology alliance in network and information science.

Available at http://www.usukita.org (20/08/2008).

R. Alur, A.K. Das, J.M. Esposito, R.B. Fierro, G.Z. Grudic, Y. Hur, V. Ku-
mar, 1. Lee, JP Lee, J.P. Ostrowski, et al. A Framework and Architecture
for Multirobot Coordination. Lecture Notes in Control and Information Sci-

ences; Vol. 271, pages 303-312, 2000.

Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Mod-
ular specification of hybrid systems in charon. In HSCC ’00: Proceedings
of the Third International Workshop on Hybrid Systems: Computation and
Control, pages 6-19, London, UK, 2000. Springer-Verlag.

E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and E. Lupu. A Mission
Management Framework for Unmanned Autonomous Vehicles. In Mobile
Wireless Middleware: Operating Systems and Applications. Second Inter-
national Conference, Mobilware 2009, Berlin, Germany, April 28-29, 2009.

Proceedings, page 222. Springer, 2009.

273

BIBLIOGRAPHY 274

[AHWO3]

[AHWO7]

[Alb93]

[AndO02]

[AOSY99]

[Ark87]

[Ark98]

[BAFHS84]

[BekO05]

[BFGT97]

[BL71]

Naveed Arshad, Dennis Heimbigner, and Alexander. L. Wolf. Deployment
and dynamic reconfiguration planning for distributed software systems.
In ICTAI °03: Proceedings of the 15th IEEE International Conference on
Tools with Artificial Intelligence, page 39, Washington, DC, USA, 2003.

IEEE Computer Society.

N. Arshad, D. Heimbigner, and A.L. Wolf. Deployment and dynamic re-
configuration planning for distributed software systems. Software Quality

Journal, 15(3):265-281, 2007.

J.S. Albus. A reference model architecture for intelligent systems design.

1993.

F. Andreasen. Session description protocol (SDP) simple capability dec-
laration. Request for comments 3407, The Internet Society, 2002.

H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless
point convergence algorithm for mobile robots with limited visibility. IEEE

Transactions on Robotics and Automation, 15(5):818-828, October 1999.

R. Arkin. Motor schema based navigation for a mobile robot: An approach
to programming by behavior. Robotics and Automation. Proceedings. 1987

IEEE International Conference on, 4, 1987.

Ronald C. Arkin. A Behavior-based Robotics. MIT Press, Cambridge, MA,
USA, 1998.

A.J. Barbera., J.S. Albus, M.L. Fitzgerald, and L.S. Haynes. RCS: The
NBS real-time control system. In Robots 8 Conference and Exposition,

Detroit, MI, June 1984.

George A. Bekey. Autonomous Robots: From Biological Inspiration to Im-

plementation and Control. The MIT Press, first edition, 2005.

R.P. Bonasso, R.J. Firby, E. Gat, D. Kortenkamp, D.P. Miller, and M.G.
Slack. Experiences with an architecture for intelligent, reactive agents.

JETAI 9(2-3):237-256, 1997.

Francois Bourgeois and Jean-Claude Lassalle. An extension of the
munkres algorithm for the assignment problem to rectangular matrices.

Commun. ACM, 14(12):802-804, 1971.

BIBLIOGRAPHY 275

[BLMRO4]

[Blo70]

[BLRT06]

[BMO4]

[BMYO02]

[Bri]

[Bro86]

[Bro90]

[Bur93]

[Bur95]

[CBCD91]

A.K. Bandara, E.C. Lupu, J. Moffett, and A. Russo. A goal-based ap-
proach to policy refinement. In Proceedings of the 5th IEEE Workshop on
Policies for Distributed Systems and Networlks, 2004.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422-426, 1970.

Arosha K. Bandara, Emil C. Lupu, Alessandra Russo, Naranker Du-
lay, Morris Sloman, Paris Flegkas, Marinos Charalambides, and George
Pavlou. Policy refinement for ip differentiated services quality of service
management. Network and Service Management, IEEE Transactions on,

3(2):2-13, April 2006.

A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Internet Mathematics, 1(4):485-509, 2004.

Jean Bacon, Ken Moody, and Walt Yao. A model of oasis role-based access
control and its support for active security. ACM Trans. Inf. Syst. Secur.,

5(4):492-540, 2002.

Encyclopdia Britannica. autonomic nervous system. Available at
http://www.britannica.com/EBchecked /topic/45079/autonomic-
nervous-system (20/08/2009).

Rodney A. Brooks. A robust layered control system for a mobile robot.

IEEE Journal of Robotics and Automation, RA-2(1):14-23, March 1986.

R.A. Brooks. The Behavior Language; User’s Guide. Technical report,
MIT, 1990.

M. Burgess. Cfengine: a system configuration engine. Technical report,

University of Oslo, 1993.

M. Burgess. Cfengine: a site configuration engine. USENIX Computing
systems, 8(3), 1995. http://www.cfengine.org/pages/science.

L. Champeny-Bares, S. Coppersmith, and K. Dowling. The terregator mo-
bile robot (Technical Report: CMU-RI-TR-93-03). Carnegie Mellon Univer-
sity, The Robotics Institute, 1991.

BIBLIOGRAPHY 276

[CCJO0]

[CGMT04]

[CKCO04]

[CL91]

[CLMT09]

[CMO5]

[CMTS8S8]

[CSWWO04]

[DamO02]

[DDLSO01]

[DH76]

Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk
graphs. Discrete Mathematics, 86(1-3):165-177, 1990.

R. Chinnici, M. Gudgin, J.J. Moreau, J. Schlimmer, and S. Weerawarana.
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
guage. W3C Working Draft, 26, 2004.

Luiz Chaimowicz, Vijay Kumar, and Mario F. M. Campos. A paradigm
for dynamic coordination of multiple robots. Auton. Robots, 17(1):7-21,
2004.

P.R. Cohen and H.J. Levesque. Teamwork. Nous, pages 487-512, 1991.

Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, and
Arosha Bandara. Expressive policy analysis with enhanced system dy-
namicity. In ASIACCS ’09: Proceedings of the 4th International Symposium
on Information, Computer, and Communications Security, pages 239-250,

New York, NY, USA, 2009. ACM.

J. Carlson and RR Murphy. How UGVs physically fail in the field. IEEE
Transactions on Robotics, 21(3):423-437, 2005.

G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the as-
signment problem. Annals of Operations Research, 13(1):191-223, 1988.

D.M. Chess, A. Segal, I. Whalley, and S.R. White. Unity: Experiences
with a prototype autonomic computing system. In Proceedings of the First
International Conference on Autonomic Computing, pages 140-147. IEEE

Computer Society, 2004.

Nicodemos C. Damianou. A Policy Framework for Management of Dis-
tributed Systems. phd thesis, Imperial College of Science, Technology
and Medicine, February 2002.

Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
The Ponder policy specification language. In Proceedings of Policy 2001,
Workshop on Policies for Distributed Systems and Networks, pages 18-39.
Springer-Verlag LNCS, 2001.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644-654, 1976.

BIBLIOGRAPHY 277

[Dic]

[DKFS02]

[DLSDO1]

[DMLO3]

[DMTO3]

[DS83]

[DVSDO04]

[DWSO01]

[FFMM94]

[GMO1]

Merriam-Webster Online Dictionary. Mission. Available at

http://www.merriam-webster.com/dictionary/mission (20/08/2009).

Mads Dam, Gunnar Karlsson, Babak Sadighi Firozabadi, and Rolf
Stadler. A research agenda for distributed policy-based management.

Report, The Royal Institute of Technology(KTH), 2002.

N. Dulay, E. Lupu, M. Sloman, and N Damianou. A policy deployment
model for the ponder language. In Proceedings of IEEE/IFIP International
Symposium on Intergrated Network Management, pages 529-543. IEEE
press, May 2001.

S.A. DeLoach, E.T. Matson, and Y. Li. Exploiting agent oriented software
engineering in cooperative robotics search and rescue. International Jour-

nal of Pattern Recognition and Artificial Intelligence, 17(5):817-835, 2003.

DMTF. CIM concepts white paper. White paper CIM Versions 2.4+, Docu-
ment Version 0.9, Distributed Management Task Force, Inc.(DMTF), June
2003.

R. Davis and R.G. Smith. Negotiation as a Metaphor for Distributed Prob-
lem Solving. Artificial Intelligence, 20:63-109, 1983.

V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: Introducing social
structure, norms and ontologies into agent organizations. In ProMAS,

volume 2004, pages 181-198. Springer, 2004.

S.A. DeLoach, M.F. Wood, and C.H. Sparkman. Multiagent systems en-
gineering. International Journal of Software Engineering and Knowledge

Engineering, 11(3):231-258, 2001.

Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml
as an agent communication language. In CIKM '94: Proceedings of the
third international conference on Information and knowledge management,

pages 456-463, New York, NY, USA, 1994. ACM.

Brian P. Gerkey and Maja J. Mataric. Principled communication for dy-
namic multi-robot task allocation. In ISER '00: Experimental Robotics VII,

pages 353-362, London, UK, 2001. Springer-Verlag.

BIBLIOGRAPHY 278

[GMO2]

[H*99]

[Hab07]

[Hen96]

[HJSO06]

[HK73]

[HMOO]

[HorO1]

[IEEQ7]

[[HAKO2]

BP Gerkey and MJ Mataric. Sold!: Auction methods for multirobot coor-
dination. IEEE Transactions on Robotics and Automation, 18(5):758-768,
2002.

R. Housley et al. Internet X. 509 Public Key Infrastructure Certificate and
CRL Profile. Technical report, RFC 2459, January, 1999.

M.K. Habib. Humanitarian Demining: Reality and the Challenge of
Technology-The State of the Arts. International Journal of Advanced
Robotic Systems, 4(2):151-172, 2007.

T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual IEEE Symposium on Logic in Computer Science (LICS, 1996.

T.D. Huynh, N.R. Jennings, and N.R. Shadbolt. An integrated trust and
reputation model for open multi-agent systems. Autonomous Agents and

Multi-Agent Systems, 13(2):119-154, 2006.

J.E. Hopcroft and R.M. Karp. An n°/? Algorithm for Maximum Matchings
in Bipartite Graphs. SIAM Journal on Computing, 2:225, 1973.

J. Hendler and D.L. McGuinness. The DARPA agent markup language.
IEEE Intelligent systems, 15(6):67-73, 2000.

P. Horn. Autonomic computing: IBMs perspective on the state of infor-

mation technology. IBM Corporation, October 2001.

Ieee standard for information technology-telecommunications and infor-
mation exchange between systems-local and metropolitan area networks-
specific requirements - part 11: Wireless lan medium access control (mac)
and physical layer (phy) specifications. IEEE Std 802.11-2007 (Revision
of IEEE Std 802.11-1999), pages C1-1184, 12 2007.

A.A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Partitionable ser-
vices: A framework for seamlessly adapting distributed applications to
heterogeneous environments. In 11th IEEE International Symposium on
High Performance Distributed Computing, 2002. HPDC-11 2002. Proceed-
ings, pages 103-112, 2002.

BIBLIOGRAPHY 279

[IMNO4]

[Inc]

[INPSO3]

[Jen00]

[Jet]

[KCO3]

[KIKO3]

[KNSO06]

[Kon97]

[kt]

[Kuh55]

[Kuh56]

M. Ionescu, N. Minsky, and T. Nguyen. Enforcement of communal policies
for peer-to-peer systems. In Proc. of the Sixth International Conference on

Coordination Models and Languages. Citeseer, 2004.

C.O. Inc. CPLEX Linear Optimizer and Mixed Integer Optimizer. Suite,
279:930.

Luca Iocchi, Daniele Nardi, Maurizio Piaggio, and Antonio Sgorbissa.
Distributed coordination in heterogeneous multi-robot systems. Auton.

Robots, 15(2):155-168, 2003.

Nicholas R. Jennings. On agent-based software engineering. Artificial

Intelligence, 117(2):277-296, 2000.

Jet Propulsion Labratory. Mars exploration rover mission. Available at

http://marsrovers.nasa.gov/overview/ (20/08/2009).

Jeffrey O. Kephart and David M. Chess. The vision of autonomic comput-

ing. IEEE Computer, 36(1):41-50, 2003.

T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component de-
ployment in wide-area networks using Al planning techniques. In Parallel
and Distributed Processing Symposium, 2003. Proceedings. International,

pages 10—, 2003.

M. Koes, I. Nourbakhsh, and K. Sycara. Constraint optimization coor-
dination architecture for search and rescue robotics. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Con-
ference on, pages 3977-3982, May 2006.

K. Konologie. The Saphira architecture: A design for autonomy. Journal

of Experimental & Theoretical Artificial Intelligence, 9(2):215-235, 1997.
k team. Available at http://www.k-team.com (20/08/2009).

HW Kuhn. THE HUNGARIAN METHOD FOR THE ASSIGNMENT PROB-

LEM1. Naval research logistics quarterly, page 83, 1955.

H.W. Kuhn. Variants of the Hungarian method for assignment problems.

Naval Research Logistics Quarterly, 3:253-258, 1956.

BIBLIOGRAPHY 280

[KWO04]

[LA89]

[LCN9O]

[LDS108]

[LinO5]

[LMAO7]

[LMSY96]

[LMWO2]

[LOCOO0]

JO Kephart and WE Walsh. An artificial intelligence perspective on auto-
nomic computing policies. Policies for Distributed Systems and Networks,
2004. POLICY 2004. Proceedings. Fifth IEEE International Workshop on,
pages 3-12, 2004.

DM Lyons and MA Arbib. A formal model of computation for sensory-
based robotics. Robotics and Automation, IEEE Transactions on, 5(3):280-

293, 1989.

H.J. Levesque, P.R. Cohen, and J.H.T. Nunes. On acting together. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence (AAAI-
90), pages 94-99. Boston, MA, 1990.

E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes, K. Twi-
dle, S.L. Keoh, and A. Schaeffer-Filho. AMUSE: Autonomic management
of ubiquitous e-health systems. Concurrency and Computation: Practice

& Experience, 20(3):277-295, 2008.

Jie Lin. Distributed mobility control for fault-tolerant mobile networks.

In Proceedings of Systems Communications, 2005.

J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent ren-
dezvous problem. part 1: The synchronous case. SIAM J. Control Optim.,
46(6):2096-2119, 2007.

Emil C. Lupu, Damian A. Marriott, Morris S. Sloman, and Nicholas
Yialelis. A policy based role framework for access control. In RBAC
'95: Proceedings of the first ACM Workshop on Role-based access control,
page 11, New York, NY, USA, 1996. ACM.

N. Li, JC Mitchell, and WH Winsborough. Design of a role-based trust-
management framework. In 2002 IEEE Symposium on Security and Pri-

vacy, 2002. Proceedings, pages 114-130, 2002.

M. Lindstréom, A. Oreback, and HI Christensen. BERRA: A research ar-
chitecture for service robots. Robotics and Automation, 2000. Proceedings.

ICRA’00. IEEE International Conference on, 4:3278-3283, 2000.

BIBLIOGRAPHY 281

[LS99]

[Ltd]

[M+01]

[MA92]

[MAC97]

[Mey93]

[MFO*+06]

[MMRMO5]

[MPBOS8]

[MRMMO5]

EC Lupu and M. Sloman. Conflicts in policy-based distributed systems
management. IEEE Transactions on software engineering, 25(6):852-869,

1999.

Cyberbotics Ltd. Webots. Available at http://www.cyberbotics.com
(20/08/09).

B. Moore et al. Policy core information model. Request for Comments

3060 Version 1, The Internet Society, February 2001.

RR Murphy and RC Arkin. SFX: An architecture for action-oriented sen-
sor fusion. Intelligent Robots and Systems, 1992., Proceedings of the 1992
I[EEE/RSJ International Conference on, 2, 1992.

Douglas C. MacKenzie, Ronald C. Arkin, and Jonathan M. Cameron. Mul-
tiagent mission specification and execution. Auton. Robots, 4(1):29-52,

1997.

Alex Meystel. An Introduction to Intelligent and Autonomous Control, chap-
ter Nested Hierarchical Control, pages 129-161. Kluwer Academic Pub-
lishers, 1993.

A. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver, C. Baker,
S. Thayer, C. Whittaker, and W. Whittaker. Recent developments in sub-
terranean robotics. Journal of Field Robotics, 23(1), 2006.

S. Malek, M. Mikic-Rakic, and N. Medvidovic. A decentralized redeploy-
ment algorithm for improving the availability of distributed systems. Lec-

ture notes in computer science, 3798:99, 2005.

Robin R. Murphy, Kevin S. Pratt, and Jennifer L. Burke. Crew roles
and operational protocols for rotary-wing micro-uavs in close urban en-
vironments. In HRI 'O8: Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, pages 73-80, New York, NY, USA,

2008. ACM.

M. Mikic-Rakic, S. Malek, and N. Medvidovic. Improving availability in
large, distributed component-based systems via redeployment. Lecture

notes in computer science, 3798:83, 2005.

BIBLIOGRAPHY 282

[MS94]

[MSGT08]

[MUOQ]

[Mun57]

[Mur00]

[MurO4a]

[Mur04b]

[Nil94]

[NRO3]

[OASO3]

[OmiO1]

[Par94]

[Par96]

J.D. Moffett and M.S. Sloman. Policy conflict analysis in distributed sys-

tem management. Journal of Organizational Computing, 4:1-22, 1994.

Robin R. Murphy, Eric Steimle, Chandler Griffin, Charlie Cullins, Mike
Hall, and Kevin Pratt. Cooperative use of unmanned sea surface and
micro aerial vehicles at hurricane wilma. J. Field Robot., 25(3):164-180,
2008.

Naftaly H. Minsky and Victoria Ungureanu. Law-governed interaction: a
coordination and control mechanism for heterogeneous distributed sys-

tems. ACM Trans. Softw. Eng. Methodol., 9(3):273-305, 2000.

James Munkres. Algorithms for the assignment and transportation prob-
lems. Journal of the Society for Industrial and Applied Mathematics,
5(1):32-38, 1957.

Robin R. Murphy. Introduction to Al Robotics. MIT Press, Cambridge, MA,
USA, 2000.

Robin R. Murphy. Rescue robotics for homeland security. Commun. ACM,
47(3):66-68, 2004.

R.R. Murphy. Trial by fire. IEEE robotics & automation magazine,
11(3):50-61, 2004.

Nils J. Nilsson. Teleo-reactive programs for agent control. Journal of

Artificial Intelligence Research, 1:139-158, 1994.

P. Norvig and SJ Russell. Artificial intelligence: a modern approach. Pren-

tice Hall, 2003.

OASIS Provisioning Services Technical Committee. Service provisioning

markup language (SPML), June 2003.

A. Omicini. SODA: Societies and infrastructures in the analysis and de-
sign of agent-based systems. Lecture Notes in Computer Science, pages

185-194, 2001.
L.E. Parker. Heterogeneous multi-robot cooperation. 1994.

L.E. Parker. L-ALLIANCE: Task-oriented multi-robot learning in
behavior-based systems. Advanced Robotics, 11(4):305-322, 1996.

BIBLIOGRAPHY 283

[Par98]

[Per98]

[PHO5]

[PhiO7]

[PKPS02]

[Pon]

[RHJO5]

[RKM*07]

[RLHOG6]

[Sch05]

[She71]

[SKWL99]

LE Parker. ALLIANCE: An architecture for fault tolerant multirobot coop-
eration. Robotics and Automation, IEEE Transactions on, 14(2):220-240,
1998.

C. E. Perkins. Mobile ad hoc networking terminology. INTERNET DRAFT

Version 1, Internet Engineering Task Force, November 1998.

Manish Parashar and Salim Hariri. Autonomic computing: An overview.

Lecture Notes in Computer Science, 3566:257-269, August 2005.

D. Philpott. Border Security: New Eyes in the Skies. Homeland Defense
Journal, 5(2):5, 2007.

M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic match-
ing of web services capabilities. Lecture Notes in Computer Science, pages

333-347, 2002.
Ponder2. Available at http://ponder2.net (20/08/2009).

S.D. Ramchurn, D. Huynh, and N.R. Jennings. Trust in multi-agent

systems. The Knowledge Engineering Review, 19(01):1-25, 2005.

K.A. Remley, G. Koepke, E. Messina, A. Jacoff, and G. Hough. Standards
development for wireless communications for urban search and rescue
robots. In 9th Ann. Int’l Symp. on Advanced Radio Tech, pages 26-28,
2007.

Y. Rekhter, T. Li, and S. Hares. RFC 4271: a Border Gateway Protocol
4 (BGP-4). Request for comments 4271, The Internet Society, January
2006.

C. Schlenoff. A robot ontology for urban search and rescue. In Proceed-
ings of the 2005 ACM workshop on Research in knowledge representation
Jor autonomous systems, pages 27-34. ACM New York, NY, USA, 2005.

William Shelton. The united states and the soviet union: Fourteen years

in space. Russian Review, 30(4):322-334, 1971.

K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service match-
making among agents in open information environments. ACM SIGMOD

Record, 28(1):47-53, 1999.

BIBLIOGRAPHY 284

[SLK9§|

[S1lo94]

[Smi80]

[SNOO]

[SS]

[SWKLO2]

[SY99]

[Tam97]

[TCFT02]

[TCWT04]

K. Sycara, J. Lu, and M. Klusch. Interoperability among heterogeneous
software agents on the Internet. The Robotics Institute, Carnegie Mellon

University, Pittsburgh, USA, page 35, 1998.

M. Sloman. Policy driven management for distributed systems. Journal

of Network and Systems Management, 2(4):333-360, 1994.

R.G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. Computers, IEEE Transactions

on, C-29(12), 1980.

National Search and Rescue Committee (NSRC). United States National
Search and Rescue Supplement to the International Aeronautical and

Maritime Search and Rescue Manual. 2000.

Wei-Min Shen and B. Salemi. Distributed and dynamic task reallocation
in robot organizations. Robotics and Autornation, 2002. Proceedings. ICRA

’02. IEEE International Conference on, 1.

K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking
among heterogeneous software agents in cyberspace. Autonomous agents

and multi-agent systems, 5(2):173-203, 2002.

I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal on Computing, 28(4):1347-
1363, 1999.

M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence,

7:83-124, 1997.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,
and P. Vanderbilt. Grid service specification. In Open Grid Service Infras-

tructure WG, Global Grid Forum, Draft, volume 2, page 17, 2002.

Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Se-
gal, lan Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent
systems approach to autonomic computing. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Sys-

tems, pages 464-471. IEEE Computer Society, 2004.

BIBLIOGRAPHY 285

[THRROG]

[Tid93]

[TPCOO]

[UEWAO7]

[Upnal

[Upnb]

[Ver02]

[VSDO3]

[VSDFO05]

[WT01]

[WerOO]

WF Truszkowski, MG Hinchey, JL Rash, and CA Rouff. Autonomous and
autonomic systems: A paradigm for future space exploration missions.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews, 36(3):279-291, 2006.

G. Tidhar. Team-oriented programming: Preliminary report. Technical

Note, 41, 1993.

M. Tambe, DV Pynadath, and N. Chauvat. Building dynamic agent orga-

nizations in cyberspace. IEEE Internet Computing, 4(2):65-73, 2000.

P. Ulam, Y. Endo, A. Wagner, and R. Arkin. Integrated mission specifi-
cation and task allocation for robot teams - design and implementation.
IEEE International Conference on Robotics and Automation, pages 4428-

4435, April 2007.
UpnP Forum. Upnp. Available at http://www.upnp.org (20/08/2009).

UpnP Forum. UpnP Resources. Available at
http://www.upnp.org/resources/upnpresources20051215.zip
(20/08/2009).

Dinesh C. Verma. Simplifying network administration using policy-based

management. IEEE Network, 16(2):20-26, March/April 2002.

Javier Vazquez-Salceda and Frank Dignum. Modelling electronic orga-
nizations. In CEEMAS’03: Proceedings of the 3rd Central and Eastern
European conference on Multi-agent systems, pages 584-593, Berlin, Hei-

delberg, 2003. Springer-Verlag.

J. Vzquez-Salceda, V. Dignum, and F.Dignum. Organizing multiagent
systems. Autonomous Agents and Multi-Agent System, 11(3):307-360,
November 2005.

A. Westerinen et al. Terminology for policy-based management. Request

for comments 3198, The Internet Society, November 2001.

B.B. Werger. Ayllu: Distributed port-arbitrated behavior-based control.
In Proceedings, The 5th Intl. Symp. on Distributed Autonomous Robotic
Systems, pages 25-34, 2000.

BIBLIOGRAPHY 286

[WHWT'04] Steve R. White, James E. Hanson, Ian Whalley, David M. chess, and

[WJKOO]

[WMOO]

[WNOS§|

[WPTO3]

[WRT04]

[YamO04]

Jeffrey O. Kephart. An architectural approach to autonomic computing.
In Proceedings of the International Conference on Autonomic Computing,

pages 2-9. IEEE Computer Society, May 2004.

M. Wooldridge, N.R. Jennings, and D. Kinny. The Gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent

Systems, 3(3):285-312, 2000.

B.B. Werger and M.J. Mataric. Broadcast of local eligibility for multi-
target observation. In Proceedings, 5th International Symposium on Dis-

tributed Autonomous Robotic Systems (DARS), 2000.

B. Wilcox and T. Nguyen. Sojourner on Mars and lessons learned for fu-
ture planetary rovers. In SAE, International Conference on Environmental

Systems, 28 th, Danvers, MA, 1998.

R. Want, T. Pering, and D. Tennenhouse. Comparing autonomic and

proactive computing. IBM Syst. J., 42(1):129-135, 2003.

J. Wong, C. Robinson, et al. Urban Search and Rescue Technology Needs:
Identification of Needs. Department of Homeland Security/FEMA, Final
report, 1, 2004.

B. Yamauchi. PackBot: A versatile platform for military robotics. Pro-

ceedings of SPIE Conference 5422: Unmanned Ground Vehicles VI, 2004.

