Differences in the gene transcription state of Botrytis cinerea between necrotic and symptomless infections of lettuce and Arabidopsis thaliana

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1111/ppa.12907

Publisher: Wiley-Blackwell

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online
Differences in the gene transcription state of Botrytis cinerea between necrotic and symptomless infections of lettuce and Arabidopsis thaliana

C.J. Emmanuel

J.A.L. van Kan

M.W. Shaw

1 School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading UK

2 Current address: Department of Botany, Faculty of Science, University of Jaffna, Sri Lanka;

3 Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands

* Corresponding author. m.w.shaw@reading.ac.uk

Running head: Transcription in Botrytis infections

Keywords: systemic, Lactuca sativa, latent, transcription, botrydial, endophyte
Botrytis cinerea can establish long-lived, symptomless, systemic infections in plant species. It is unclear how the fungus colonizes plant tissues without causing tissue damage and necrosis. Three hypotheses are: (1) the fungus state is similar in the two forms of infection, but the plant defences are more effective, leading to multiple small quiescent centres; (2) excreted molecules that would trigger plant defences are suppressed; (3) signal exchanges occur avoiding both extensive host cell death and complete spatial restriction of the pathogen.

We tested these by comparing transcript levels of a set of B. cinerea genes between symptomless and necrotising infections. Four genes were analysed that participate in signalling pathways required for virulence, as well as five genes that directly participate in causing host cell death or degrading plant cell wall polysaccharides.

In lettuce, necrotic infections on detached leaves (12-48 h after inoculation) had similar gene expression patterns to necrotic infections on leaves 44 d after inoculation of the seedlings. Symptomless infections on leaves that expanded after inoculation of young seedlings had similar fungal gene expression patterns at 14, 24 and 34 d after inoculation, which clearly differed from those in necrotising infections. In A. thaliana, there were differences in gene expression patterns between droplet inoculations on leaves, resulting in necrotic lesions, and symptomless infections in stems and leaves. The fungal gene expression patterns differed in detail between lettuce and A. thaliana. The observations suggest that the physiological state of B. cinerea during symptomless infection is distinct from necrotising infections.

[238 words]
Introduction

Botrytis cinerea is a plant pathogenic fungus causing grey mould disease and post-harvest losses in more than 1000 crops ranging from ornamentals to vegetables and field crops (Elad et al., 2016). Symptoms produced by B. cinerea range from restricted lesions to dry or spreading soft rots which often produce conspicuous sporulating colonies (Williamson et al., 2007). In general, B. cinerea is considered to be a necrotroph which draws nourishment from dead host tissue and produces initially local (“primary”) necrotic lesions, which subsequently expand to actively cause plant tissue decomposition (Horst, 1985; Jarvis, 1994; Coertze & Holz, 2002; Elad et al., 2004). In contrast, recent studies have revealed that B. cinerea also can cause symptomless systemic infection in several host plants including Primula spp., lettuce (Lactuca sativa), Arabidopsis thaliana and Taraxacum vulgare (Barnes & Shaw 2003; Sowley et al., 2010; Rajaguru & Shaw, 2010; Shaw et al., 2016). In this type of infection the fungus grows along with the plant and enters newly expanding organs, without producing symptoms until the plant becomes physiologically susceptible, typically at flowering. At this point extensive areas of host tissue death develop simultaneously, followed by sporulation of the fungus. Several species in the genus Botrytis are able to infect in this way (Shaw et al., 2016). The physiological relationship between host and pathogen during symptomless systemic growth is unresolved. It is unclear how a fungus that can produce such a large arsenal of phytotoxic metabolites and proteins (van Kan et al., 2006) is able to grow inside plant tissue without causing extensive tissue damage and visual disease symptoms. The aim of the present study was to obtain preliminary insight into this question by comparing the expression of a set of fungal genes that participate in regulating virulence or in causing host cell death, between symptomless and necrotising infections, in two host species.

A previous study illustrated that in some species a high proportion of symptomless plants can be infected with B. cinerea. The distribution of the fungus appeared to be discontinuous and scattered over distinct tissues (Shaw et al., 2016). Given the unpredictable location of the fungus within plant
tissue and the low fungal biomass at any given time point, the abundance of Botrytis mRNA in total RNA extracted from a symptomless plant is expected to be low. Such low abundance hampers a full transcriptome study by RNAseq throughout the plant in order to detect changes associated with infection, as only abundant fungal transcripts would be reliably quantified by direct sequencing.

Therefore, quantitative RT-PCR was used to estimate relative concentrations of a selected set of nine fungal transcripts, encoding signalling components involved in virulence or proteins directly involved in necrotising infection.

Materials and Methods

Plant growth

Lettuce (Lactuca sativa) ‘Tom Thumb’ (Thomson & Morgan, Ipswich UK) was used in all experiments reported here. Two 80 cell modular seedling trays were filled with compost (“Levington F1 seed and modular compost” Westland Ltd, UK), and in each tray 1 seed per cell was sown, covered with a thin layer of compost. Seed germination and initial seedling growth was in controlled environment chambers: 20° C in 12 h day and 18°C in night, RH 65%. The compost was kept damp to touch all the time. Seven days after inoculation (14 days after seed sowing) 40 inoculated and 40 non-inoculated seedlings were transplanted into 1L pots filled with potting compost (John Innes 2 compost + 4g/L Osmacote). Later the seedlings were moved to a vented glasshouse under natural light in summer (May-Aug, 15-16.5 h day-length, temperature maintained at 18° C minimum at night, rising to about 30° C in day time. Plants were watered daily.

Arabidopsis thaliana (Col-0) seeds were surface disinfected in 70% ethanol for 2 min and then 20% bleach (1% NaOCl) for 5 min and finally thoroughly rinsed in sterile water 5 to 6 times. After surface disinfection seed stratification was done at 4 °C for four days. Seeds were sown singly on the surface of the compost in pots covered with transparent polystyrene propagation covers with vents, and grown on in these propagators. The propagators were maintained at positive pressure via a pumped filtered airflow within a controlled environment cabinet at 22 °C day and 18 °C night.
temperature, 65% relative humidity, 16 h light and 8 h dark period, 200-250 μmol/m²/s light intensity. The plants were watered from below every day sufficiently to keep the compost just moist up to two weeks from sowing, then at two-day intervals. Inside the isolation propagator, the average day time temperature was 26.5 °C and night 18.5 °C; relative humidity in day and night ranged between 80% to 85%. The dew point temperature within the covers during the day was about 22 °C and at night about 16 °C; light intensity was 170-220 μmol/m²/s.

Inoculation and sampling
Leaves were sampled from lettuce ‘Tom Thumb’ (Thomson & Morgan, Ipswich UK) and Arabidopsis thaliana Col-0 plants. In all cases, B. cinerea isolate B05.10 (van Kan et al, 2017) was used for inoculation. This is an isolate sampled in Münster, Germany from an unknown source (Büttner et al., 1994). In conventional droplet inoculations it is aggressively pathogenic on both lettuce and A. thaliana and numerous other hosts.

Production and sampling of symptomless infected plants
Internal infection of tissues was verified by isolation on selective agar (Edwards & Seddon, 2001), following surface sterilisation by immersion in 1% sodium hypochlorite and detergent (JANGRO Bleach, Jangro Ltd, Bolton, UK) for 2-3 min followed by three rinses in sterile distilled water.

Lettuce plants with symptomless infection were produced by inoculation at the 4-leaf stage using dry dusting of spores diluted in talc at about 90 spores/mm² of leaf, followed by 48h at high humidity produced by enclosure in a polythene bag, but without direct wetting of plant surfaces. In a high proportion of instances this resulted in endophytic, symptomless colonization (Shaw et al, 2016; Table 1). Mock inoculated plants were sampled as control for pre-existing or background infection, and used as negative controls in the RNA quantification. No amplification was seen with any primer pair in mock inoculated plants.
Symptomless lettuce tissues were sampled at 14, 24 and 34 days after transplantation to their final
growing pots. Colonization by \textit{B. cinerea} was determined by growth on selective medium as above.
Two plants which had internal \textit{B. cinerea} infection in most of their sampled leaves were selected as
biological replicates and RNA extracted from samples frozen at 14, 24 and 34 days after inoculation.
Ten days after the third sampling, 44 days after inoculation, three of the dust-inoculated plants had
developed necrotic lesions, and mycelium of \textit{B. cinerea} was visible on older leaves. RNA was
extracted from necrotic tissue of two of these plants.

\textit{A. thaliana} plants were inoculated at early rosette stage, 21d after sowing, also to a density of about
90 spores/mm2. They were sampled 10 days after inoculation, at the start of flowering. Rosette
leaves, flowering stem, root, stem leaves and flowers were collected separately, and half of each
sampled tissue placed on selective medium (Edwards & Seddon, 2001) to detect the presence of
symptomless \textit{B. cinerea} (Table 2). In cases where the plated tissue showed \textit{B. cinerea} outgrowth, the
remainder of each tissue sample was used for RNA extraction. Two \textit{A. thaliana} plants that had the
highest extent of internal symptomless infections were used as biological replicates for RNA
extraction from rosette leaves and stem samples.

\textbf{Production and sampling of necrotic infections}
Samples of RNA from necrotic samples of lettuce were collected from two distinct sources: one was
a necrotising infection resulting in about a day from inoculation of detached leaves with droplets of
spore suspension; the second was the delayed necrotising infection which eventually developed in
systemically infected lettuce following the approximately 40 d symptomless phase of infection.
Rapidly necrotising infections of \textit{A. thaliana} were obtained following droplet inoculation of attached
leaves on intact plants. For the droplet infections, spore suspensions were prepared from 20 day old
\textit{B. cinerea} cultures and applied to leaves as 10 µl droplets of spore suspension (2×105 spores/mL) in
12g/L potato dextrose broth (Oxoid, UK). Leaves of lettuce with visible symptoms were sampled at
12 h, 24 h and 48 h post inoculation. *A. thaliana* leaves were sampled at 3 h, 6 h, 12 h, 24 h and 48 h post inoculation.

RNA extraction and quantification

RNA extraction used RNeasy plant mini kits (Qiagen, Hilden, Germany) following the manufacturer’s protocol. DNA was removed in two stages. The first was column treatment during the extraction procedure using Pure-link DNase kits (Life Technologies, USA). After extraction, Turbo DNase kits (Life Technologies) were used for further purification. cDNA preparation was carried out using High capacity RNA-to-cDNA kit s(Applied Biosystems, USA).

Transcript levels of ten *B. cinerea* genes were quantified in the RNA samples using the primers listed in Table 3. Four of the genes analysed encode proteins that act in signal transduction during the infection process: the gene *Bcg1* encoding a heterotrimeric Ga protein (Gronover et al. 2001); the gene *Bccnb1* encoding the calcineurin β subunit (Harren et al. 2012); the adenylate cyclase gene *Bac* (Klimpel et al, 2002); and the MAP kinase gene *Bmp1* (Zheng et al, 2000). Single deletion mutants in each of these genes results in reduction or complete loss of virulence (reviewed in Williamson et al, 2007; Schumacher, 2016). A further five genes analysed encode proteins involved in host tissue degradation or cell death induction: endopolygalacturonase genes *Bcpg1* and *Bcpg2* (the latter gene was only studied in samples from lettuce); the botrydial biosynthetic gene *Bcbot1*; the superoxide dismutase gene *Bcsod1*; and the *Bcnep1* gene encoding a phytotoxic necrosis- and ethylene-inducing protein (reviewed by van Kan, 2006). Transcript levels of these virulence-related genes were normalised to that of *Bcrpl5*, which is the most steadily expressed housekeeping gene, encoding ribosomal protein RPL5 (Zhang et al, 2011). The β-tubulin gene *BctubA* (Benito et al, 1998) was also used as an internal standard, but its transcript was scarce and not detected consistently in symptomless samples. In pilot work, the actin gene *BcAct2* was initially tested but also failed in symptomless samples; the elongation factor *Bcef1a* amplified anomalously early with a non-exponential pattern.
qPCR assays for the lettuce samples and *A. thaliana* samples were carried out separately. qPCR reactions were carried out in a partially balanced block experimental design to reduce experimental error; the reactions for each technical replicate of a sample were carried out in separate 96 well plates, and in each plate a subset of genes were tested using all the test extracts, so as to balance comparisons between genes over the whole experiment and minimise effects due to inter-plate differences. Each plate included negative and positive controls and cDNA from all symptomless and necrotic samples from two biological replicates. The amounts of housekeeping gene (*Bcrpl5*) and four genes out of tested nine were quantified in each plate. The assays were carried out in triplicate using the following cyclic conditions: 95 °C for 2 min, then 40 cycles of 95 °C for 15s, 60 °C for 30s, using StepOnePlus™ Real-Time PCR System (Applied Biosystems, USA). After each run, melting curves were acquired by heating to 95 °C for 15s, cooling to 60 °C for 1min and heating to 95 °C at 0.3 °C, before holding at 95°C for 15s with data collection.

Data analysis

The contrasts between the C\textsubscript{T} of *Bcrpl5* and each gene studied under the two (*A. thaliana*: symptomless, necrotic after inoculation with spore suspension) or three (lettuce: symptomless, delayed necrotic, necrotic after inoculation with spore suspension) types of infection were estimated by REML (restricted maximum likelihood) separately for each mRNA species and host, using Genstat (VSN International, www.vsni.co.uk). Sample origin (including sampling time) was treated as a fixed effect. Random effects were plate, biological replicate, and technical replicate nested within the interaction term between sample origin and biological replicate.
Results

Lettuce

As the host lettuce plants grew, *B. cinerea* spread into newly expanded leaves and was recovered from the majority of (uninoculated) symptomless lettuce leaf tissues plated on selective medium (Table 1; Fig. 1).

In lettuce, consistent qRT-PCR amplification could not be achieved from leaf-pairs more distal to the inoculation site (leaves 1-4) than leaves 5-6. Therefore, we present only the results from 5th and 6th leaves, at successive time-periods.

Signalling genes.

There were no clearly significant differences in transcript levels of the *Bcg1* (P=0.4), *Bac* (P=0.09) or *Bccnb1* (P=0.8) genes (Fig. 2, cyan, thicker, symbols) between time-points or types of infection. The level of the signalling gene *Bmp1* transcript was higher (P=0.004) in late symptomless stages, 24 and 34 dpi, than in other samples.

Genes involved in cell death or tissue degradation.

The relative concentrations of transcripts of *Bcpg2* and *Bcnep1* differed significantly at consecutive time points in detached lettuce leaves developing necrotic infection (Fig. 3, magenta symbols). *Bcpg2* transcript first increased between 12 and 24 hpi and then decreased at 48 hpi, whereas *Bcnep1* showed the highest transcript level at 12 hpi and strongly dropped at 24 and 48 hpi (Fig. 3, magenta symbols). In necrotic infections which developed following symptomless infection, levels of *Bcpg2* and *Bcnep1* transcripts were low (Fig. 3, black symbols). *Bcbot1* was expressed at a steady level in detached leaf necrotic infections, but significantly less (P=0.007) in the delayed necrotic infection.

Transcript levels of the genes *Bcpg1* and *Bcsod1* were quite similar in both types of necrotic
infections, both on detached lettuce leaves inoculated with spore suspensions (12, 24 and 48hpi) and the delayed necrotic lesions forming from symptomless colonization.

Transcript patterns of genes were quite distinct in the non-symptomatic infection (Fig. 3, cyan, thicker, symbols) and the necrotic infections (Fig. 3, magenta and black symbols). Notably, \textit{Bcbot1} transcript was undetectable in non-symptomatic lettuce tissues, abundant in necrotic infections of detached leaves and scarce in delayed necrotic infection. By contrast, there was more \textit{Bcnep1} transcript in non-symptomatic tissues than in either type of necrotic infection (P<0.001). The level of \textit{Bcpg2} transcript rose slightly over time in symptomless infection and was comparable with that in necrotic infections of detached leaves but much higher than in delayed necrotic infection. \textit{Bcpg1} transcript was consistently lower in non-symptomatic or delayed necrotic infections than in necrotic infection from direct inoculation (P=0.05). There were no differences over time or between types of infection in levels of \textit{Bcsod1} transcript.

\textbf{Arabidopsis thaliana}

Dry spore inoculated plants remained symptomless over the entire length of the experiment (Fig. 1).

\textit{Signalling genes.}

Transcript levels of the signalling genes differed between infection types (Fig. 4). Transcript levels of \textit{Bcg1} were higher in symptomless stem samples (cyan, thicker, symbols) than in any necrotic stage (magenta symbols), or in symptomless rosette leaves (cyan symbols). Transcripts of the \textit{Bac} gene were detected in only one of 4 samples from symptomless infections, suggesting a substantial depletion of cAMP signalling in the asymptomatic \textit{A. thaliana} infection. The transcript levels of \textit{Bccnb1} were similar in symptomless leaves and stems (both cyan symbols), and in all necrotic stages (magenta symbols). Transcript levels of \textit{Bmp1} were marginally higher in symptomless infections than in early necrotic infections.
Genes involved in cell death or tissue degradation.

Transcript levels of virulence-related genes also differed between sample timings and infection types (Fig. 5). The transcript levels of \(Bcnep1 \), \(Bcbot1 \), and \(Bcpg1 \) rose between 24 and 48 h old necrotising infections, coinciding with the appearance of necrotic lesions; \(Bcsod1 \) rose, but less extremely. The transcripts of \(Bcnep1 \) were not detected in any of the symptomless samples while \(Bcbot1 \) transcripts were (barely) above the detection threshold in only one of the samples (magenta symbols). By contrast, transcript levels of \(Bcpg1 \) and \(Bcsod1 \) in symptomless samples were comparable to those in the 48 hpi necrotising samples.

Discussion

The experiments reported here show that the transcriptional state of \(B. \) cinerea in a symptomless, systemic growth phase in lettuce cv. Tom Thumb and \(A. \) thaliana is distinct from that of a necrotizing infection, either developing on detached leaves following inoculation with spore suspensions or developing from non-symptomatic \(B. \) cinerea-infected plants obtained by dusting low amounts of dry spores onto seedlings.

It would be useful to know how general the results are. In lettuce Tom Thumb and \(A. \) thaliana col-0 there are some clear differences: in \(A. \) thaliana the signalling gene \(Bac \) is much more transcribed in the symptomless samples than in the necrotic, which is not the case in lettuce (\textit{cf} Fig. 2 and Fig. 4); transcript levels of the toxin-producing gene \(Bcbot1 \) are similar and low in symptomless and late-appearing necrotic infections in lettuce (\textit{cf} Fig. 3 and Fig. 5), but not in \(A. \) thaliana. Lettuce ‘All the Year Round’ and several other wild and cultivated plant species (Shaw et al., 2016) support symptomless and systemic infection. It would be of great interest to see whether transcript pool patterns in \(B. \) cinerea fell into distinct groups; it would also be extremely interesting to see whether the other \(Botrytis \) species found to establish symptomless systemic infections (Shaw et al., 2016) have similar patterns of up- and down-regulation of transcript pools.
For the genes involved in virulence-related signal transduction, it was not particularly surprising to note that their transcript levels were mostly similar between necrotizing *B. cinerea* infections and non-symptomatic infected tissue. Although these genes are essential to establish necrotic infections, signal transduction pathways involving heterotrimeric G proteins, cAMP, calcium and/or MAP kinase activity are also essential in various developmental stages in the fungal life cycle (Schumacher, 2016). These signalling pathways affect many post-transcriptional and post-translational feedback mechanisms. With the exception of the *Bac* transcript in symptomless *A. thaliana* tissues, the transcript levels of these genes are similar. It is therefore difficult to infer from these observations any regulatory pathways in the fungus that may explain the differences between the types of infection. The extremely low level of the *Bac* transcript in symptomless *A. thaliana* implies that the fungus is experiencing a depletion of cAMP, however, the resulting impact on the production of enzymes or secondary metabolites that damage or kill plant cells remains unknown. There are no reports of studies of a functional link between cAMP levels and the expression of *Bc nep1* and *Bcbot1*.

An obvious hypothesis as to how systemic infection can progress without visible symptoms is that transcription of necrosis-related genes is suppressed, since the production of enzymes or secondary metabolites that damage or kill plant cells would be detrimental in sustaining a non-symptomatic, endophytic interaction between a fungus and its host plant. Consistent with this hypothesis, the *Bcbot1* transcript, coding for a crucial enzyme in the biosynthesis of the toxin botrydial, was undetectable in symptomless infections (both in lettuce and *A. thaliana*). However, in plants containing a symptomless *B. cinerea* infection we observed high levels of transcripts from the *Bc nep1*, *Bcpg1* and *Bcpg2* genes in lettuce and *Bc nep1* and *Bcpg1* in *A. thaliana*. BcNEP1 protein can induce host programmed cell death in leaf tissue of all dicots tested (Schouten et al, 2007; Cuesta Arenas et al, 2010). In symptomless infections, its cell death-inducing capacity may be mitigated by other fungal (suppressor) proteins, or by a reduction of protein excretion. Alternatively,
physiological changes in the plant might make it locally insensitive to BcNEP1-induced death. Although receptors required for NEP1-like-protein (NLP)-mediated immune response activation (but not death) have been identified (Albert et al, 2015), the mechanisms underlying plant cell death induction by NLPs remain to be unravelled. Besides production of phytotoxic proteins like BcNEP1, secretion of endopolygalacturonases BcPG1 and BcPG2 by *B. cinerea* is potentially damaging to plants, as these enzymes hydrolyse pectin and thereby affect plant cell wall architecture and integrity. Both enzymes, when infiltrated into leaf mesophyll tissue, may cause rapid tissue collapse (Kars et al, 2005). More recently, *B. cinerea* endopolygalacturonases have been shown to act as MAMPs that in *A. thaliana* can be recognized by an LRR-type receptor (Zhang et al, 2014). It remains elusive why the relatively high expression of the above three genes does not result in visible tissue damage. Whether the transcripts are actually translated into proteins that are secreted into the host tissue could not be investigated for lack of a sufficiently sensitive detection method. Taken together, the observations clearly suggest that host and pathogen do interact during symptomless infection. The results reject the hypothesis that the symptomless state is due to many very small, spatially restricted necrotic infections. The symptomless state involves pathogen growth in association with the host and involves exchanges between host and pathogen, but the outcome of this exchange differs from a necrotising infection. Histological understanding of the interaction would be desirable. However the extreme relative scarcity of fungal RNA in samples from symptomless infected tissue - and therefore low density of fungal cells - makes it hard to observe the fungus within plant tissue, and work with fluorescently marked, but otherwise physiologically normal, *B. cinerea* is needed.

Acknowledgements

This work was paid for by a grant to CJE from the Commonwealth Scholarships Commission. We are extremely grateful for technical assistance provided by George Gibbings and Matthew Richardson.

Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the *Arabidopsis* receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGLUCURONASES. *Plant Physiology* **164**, 352-364

Figure Legends

Figure 1. (a-d) Successive stages of growth (14, 24, 34 and 44 d post inoculation (dpi)) of lettuce inoculated at the 4-leaf stage with dry spores of *Botrytis cinerea*; (d) shows severe internal necrosis. Apparent variation in colour is due to varying natural light conditions at the time of photography. Pot diameter is 13 cm in each picture. (e) Detached lettuce leaf 48 h after inoculation with droplets of a spore suspension of the same isolate of *B. cinerea*. (f) *Arabidopsis thaliana* growing in an isolation propagator at the time of inoculation with dry spores of *B. cinerea* (photograph was taken through the polystyrene propagator cover); (g) *A. thaliana* 10 dpi, with the propagator lid removed for sampling.

Figure 2. Relative amount of mRNA of selected *Botrytis cinerea* signalling-related genes at successive time points following inoculation of lettuce plants (indicated on the common x-axis as days after inoculation). Width of symbols shows the likelihood of C_t values around the mean, assuming normality, with the observed SEM between biological replicates, based on all time points. Horizontal bars in the symbol show the estimated mean. Infections were: (magenta) necrotic resulting from droplet infection of detached leaves; (cyan and thicker) symptomless in the 5th and 6th leaves, or (black) necrotic developed in the 5th and 6th leaves following symptomless infection. Black horizontal lines show the threshold detection level, calculated as the difference between the mean C_t value of *Bcrpl5* and the detectable maximum C_t value of the reaction, which was always 40. All values are relative to *Bcrpl5* which therefore forms the 0-line on the y-axis (ie, the values are in effect ∆C_t from *Bcrpl5*). Testing for differences between time-points by REML, omitting samples with no RNA signal: *Bccnp1*, P=0.8, s.e. = 1.1; *Bac*, P=0.09, s.e. = 1.1; *Bcg1*, P=0.4, s.e. = 0.55; *Bmp1*, P=0.004, s.e. = 0.86. Where no detectable amplicon was formed, the possible range of ∆C_t is shown as a vertical line terminating at the threshold level.
Figure 3: Relative amount of mRNA of selected *Botrytis cinerea* pathogenicity-related genes at different time points following inoculation of lettuce plants. Symbols, colour-coding, thresholds and abbreviations as in Fig. 2. Testing for differences between time-points by REML omitting samples with no RNA signal: *Bcsod1*, P=0.6, s.e. = 0.89; *Bcpg1*, P=0.05, s.e. = 1.3; *Bcpg2*, P=0.008, s.e. = 1.5; *Bcnep1*, P<0.001, s.e. = 0.75; *Bcbot1*, P=0.007, s.e. = 0.9. All values are relative to *Bcrpl5* as in Fig. 2. Where no detectable amplicon was formed, the possible range of ΔCt is shown as a vertical line terminating at the threshold.

Figure 4: Relative amount of mRNA of selected *Botrytis cinerea* signalling genes at different time points following inoculation of Arabidopsis thaliana col1 plants. Symbols, abbreviations and common x-axis as in Fig. 2. Infections were: (magenta) necrotic, resulting from droplet infection of attached rosette leaves; (cyan, thicker) symptomless 10 days after inoculation in newly produced rosette leaves; or (cyan) symptomless in stem and stipule samples 10 days after inoculation of the rosette. All values are relative to *Bcrpl5* as in Fig. 2. Testing for differences between time-points by REML, omitting samples with no RNA signal: *Bccnb1*, P=0.06, s.e. = 0.71; *Bcac*, P<0.001, s.e. = 0.5; *Bcg1*, P=0.001, s.e. = 0.92; *Bmp1*, P=0.01, s.e. = 0.77. Where no detectable amplicon was formed, the possible range of ΔCt is shown as a vertical line terminating at the threshold detection limit. A dashed line indicates one replicate had no detectable amplicon; the other replicate is shown as a small circle.

Figure 5: Relative amount of mRNA of selected *Botrytis cinerea* pathogenicity-related genes at different time points following inoculation of Arabidopsis thaliana col-0 plants. Symbols and abbreviations as in Fig. 2; colour-coding and vertical lines as in Fig. 4. Testing for differences between time-points by REML, omitting samples with no RNA signal: *Bcsod1*, P=0.004, s.e.=0.78; *Bcpg1*, P<0.001, s.e. = 0.92; *Bcnep1*, P<0.001, s.e. = 0.46; *Bcbot1*, P=0.006, s.e. = 2.2.
Table 1. Numbers of samples of lettuce leaf tissue (n=10) from which *Botrytis cinerea* was recovered following incubation on Botrytis selective medium, with or without surface sterilisation of tissue samples taken after destructive harvest of inoculated plants at three intervals after inoculation. At 44d post inoculation necrotising lesions were common on older leaves.

<table>
<thead>
<tr>
<th>Leaf number*</th>
<th>Not surface sterilised</th>
<th>Surface sterilised</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14dai<sup>b</sup></td>
<td>24dai</td>
</tr>
<tr>
<td>5-6</td>
<td>10</td>
<td>nt<sup>c</sup></td>
</tr>
<tr>
<td>7-8</td>
<td>10</td>
<td>nt</td>
</tr>
<tr>
<td>9-10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>11-12</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>13-14</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>15-16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17-18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stem</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Root</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

*Leaf pairs numbered in order of expansion; lettuce has opposite phyllotaxis

¹Days after inoculation with a dust of *Botrytis* spores at the 4 leaf stage

²Not tested, for logistic reasons (symptomless infection was already common at the previous occasion)

³Leaf not yet expanded
Table 2. Recovery of *Botrytis cinerea* from *Arabidopsis thaliana* col0 tissues following incubation on Botrytis selective medium, with or without prior surface sterilisation of tissue samples. Plants were inoculated 10 d after sowing and destructively harvested 10 d later.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Number sampled per plant</th>
<th>Number sampled per treatment(^a)</th>
<th>Not surface sterilised</th>
<th>Surface sterilised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rosette leaf</td>
<td>3</td>
<td>30</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>Stem</td>
<td>2</td>
<td>20</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Stem leaf</td>
<td>2</td>
<td>20</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Flower</td>
<td>2</td>
<td>20</td>
<td>16</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^a\) Equal numbers of samples were incubated with and without surface sterilisation.
Table 3: Primers used for qRT-PCR of mRNA in tissue samples from symptomless systemic infections of lettuce or Arabidopsis thaliana with Botrytis cinerea. All primer pairs were designed to cross an exon-exon junction, except for Bcpg1, where no introns are present.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Gene product</th>
<th>Gene ID</th>
<th>NCBI accession numbers</th>
<th>Sequence (5’-3’)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcg1</td>
<td>Heterotrimeric G-protein α subunit</td>
<td>Bcin05g06770</td>
<td>Y18436.1</td>
<td>F- CAAGATGCTTTCTTTGGAG R- TGATTTGGACTGTGTTGCTGA</td>
<td>139</td>
</tr>
<tr>
<td>Bmp1</td>
<td>Mitogen-activated protein kinase 1</td>
<td>Bcin02g08170</td>
<td>AF205375.1</td>
<td>F- GCTTATGGTTTGTCTGCTC R- TAGCCTCATCTCAGGAAGTG</td>
<td>120</td>
</tr>
<tr>
<td>Bac</td>
<td>Adenylate cyclase</td>
<td>Bcin15g02590</td>
<td>AJ276473.1</td>
<td>F- GGTAAGACGGATAGATCAAAGTAG R- CTCCGCTGGGGACACATTAG</td>
<td>121</td>
</tr>
<tr>
<td>Bccnb1</td>
<td>Calcineurin β subunit</td>
<td>Bcin03g05990</td>
<td>KC935338.1</td>
<td>F- GTGAATCCTCTAGCCTACAGAA R- GAAATGCGTGGGACTCCAG</td>
<td>97</td>
</tr>
<tr>
<td>Bcsod1</td>
<td>Superoxide dismutase</td>
<td>Bcin03g03390</td>
<td>AJ555872.1</td>
<td>F- ATGGAGGCTATTGCGGCTG A R- TGGACATTTCCTTTGAACCCC</td>
<td>77</td>
</tr>
<tr>
<td>Bcpg1</td>
<td>Endopolysaccharide lyase 1</td>
<td>Bcin14g00850</td>
<td>EF195782.1</td>
<td>F- ACTTTGCTGGAGATGCTGGT R- GACGAGACAGATTAATCTTGG</td>
<td>97</td>
</tr>
<tr>
<td>Bcpg2</td>
<td>Endopolysaccharide lyase 2</td>
<td>Bcin14g00610</td>
<td>AY665553.1</td>
<td>F- GGAACGTCCACTTGTGTTAC R- TTCATCCCACATCTTGGTCC</td>
<td>126</td>
</tr>
<tr>
<td>Bcbot1</td>
<td>Botrydial biosynthetic enzyme</td>
<td>Bcin12g06380</td>
<td>AY277723.2</td>
<td>F- TTATGCGCACCACCTACCGAGA R- TCCAGGAGGAGTACACCAT</td>
<td>103</td>
</tr>
<tr>
<td>Bcnepl</td>
<td>Necrosis ethylene-inducing protein 1</td>
<td>Bcin06g06720</td>
<td>DQ2111824.1</td>
<td>F- GATAATGGTAACACCGATGGT R- AGCCACCTCGGACATAGGT</td>
<td>96</td>
</tr>
<tr>
<td>Bcrpl5</td>
<td>Ribosomal protein large subunit 5</td>
<td>Bcin14g04230</td>
<td>AL116000.1</td>
<td>F- GATGAGACCGGTCAATGGTTCC R- CAGAAGCCCACGTTACGACA</td>
<td>137</td>
</tr>
</tbody>
</table>
Days after inoculation

Mean ΔCt

Bac

Mean ΔCt

Bcg1

Mean ΔCt

Bccnb1

Mean ΔCt

Bmp1