A perturbation theory of classical simple fluids

Tarun K Dey
Department of Physics, Government Mahila Inter College,
Purnia-854 201, Bihar, India

Bimal P Karki and Surekha K Sinha*
Department of Physics, L. S College,
B. B. A. Bihar University, Muzaffarpur-842 001,
Bihar, India

Abstract The Weeks-Chandler-Andersen (WCA) perturbation theory of classical simple fluid is re-examined using the 'modified' Born-Green-Yvan expression for the function $Y(r)$ of the hard sphere fluid. We calculate the thermodynamic properties of the Lennard-Jones (12-6) fluid. They are found to be in good agreement with the Verlet-Weis, Boublik and Simulation results.

Keywords Perturbation theory, free energy, equation of state

PACS Nos. 05.70.Ce, 64.10.+h, 47.10.-g

1. Introduction

Weeks-Chandler-Andersen (WCA) [1] perturbation theory with the semi empirical expression for the hard-sphere radial distribution function (RDF) $g_{HS}(r)$ [2,3] is in error in some applications. This difficulty can be avoided by using a better expression for $g_{HS}(r)$.

In the present work, we are primarily concerned with the WCA theory and the 'modified' Born-Green-Yvan (BGYM) expression for $Y_{HS}(r)$ for $r \leq \ell$, obtained by Chae, Ree and Rec [4]. These values for $Y_{HS}(r)$ are in much better agreement than those of PY-values [5].

2. Theoretical formulation

We consider a system, whose molecules interact via the LJ (12-6) potential

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right],$$

where ε and σ are constants with units of energy and length, respectively.

Using the division of potential according to the WCA scheme [1], the excess free energy per particle is given by

$$f = f_0 + f_1,$$

where f_0 is the excess free energy per particle of the reference system and f_1 is the first order perturbation correction to it. Thus

$$f_1 = 2\pi \rho \int_0^\infty g_0(r) u_p(r) r^2 dr,$$

where $g_0(r)$ is the RDF of the reference system.

3. Reference system

The free energy of the reference system is expressed in terms of that of the hard spheres of diameter d, which can be determined by the Verlet-Weis method [2, 3].

In the present work, to evaluate d, we use the BGYM expression for $Y_{HS}(\ell/d)$, given as [4]

$$Y_{HS}(\ell/d) = g_{HS}(d) \exp \left[\pi \rho d \right] g_{HS}(d) \left[\frac{(1/12)(\ell/d)^2}{-(\ell/d)+((1/12))} \right]$$

for $\ell \leq d$.

© 2001 IACS
where $g_{HS}(d)$ is the hard sphere RDF at the contact and given by [6]

$$g_{HS}(d) = (1 - \eta / 2) / (1 - \eta)^3. \quad (5)$$

where $\eta = \pi \rho d^3 / 6$ is the packing fraction. Then d is given by

$$d = d_s [1 + (\sigma_1 / 2 \sigma_0) \delta]. \quad (6)$$

where

$$d_s = \frac{\int_0 (1 - \exp[-\beta u_0(r)]) dr}{\int_0 (1 - \exp[-\beta u_0(r)]) dr} \quad (7)$$

and

$$\delta = \int_0 (d/d_s - 1)^2 (d/dr) (\exp[-\beta u_0(r)]) dr \quad (8)$$

and

$$\sigma_1 / 2 \sigma_0 = (1 - (11 / 2) \eta + (17 / 4) \eta^2 + \eta^3) / (1 - \eta)^3. \quad (9)$$

Only $\sigma_1 / 2 \sigma_0$ differs from that derived by Verlet and Weis (VW).

The virial equation of state for the reference system is given by [2, 3]

$$\beta P_s / \rho = Z_0 = Z_{HS} + 4 \delta \Delta Z. \quad (10)$$

where Z_{HS} is the hard sphere compressibility factor and given by [6]

$$Z_{HS} = (1 + \eta + \eta^2 + \eta^3) / (1 - \eta)^3 \quad (11)$$

and ΔZ is derived using the GYBM expression for $Y_{HS}(r/d)$

$$\Delta Z = -2 \eta^2 (1 - \eta / 2)^2 / (1 - \eta)^9 \quad (12)$$

which differs from that given by Verlet and Weis [2, 3].

With the help of eq. (10), we obtain an expression for the free energy per particle for the reference system

$$\beta f_s = \beta f_{HS}^{el} + 4 \delta \beta \Delta f. \quad (13)$$

where [6]

$$\beta f_{HS}^{el} = \eta (4 - 3 \eta) / (1 - \eta)^2 \quad (14)$$

is the excess free energy of the hard sphere system and

$$\beta \Delta f = (1 / 30) (\eta^2 / (1 - \eta)^3) - (1 / 8) (\eta^2 / (1 - \eta)^4) - (1 / 10) (\eta / (1 - \eta)^5) + (15 / 16) (\eta^2 / (1 - \eta)^5) \quad (15)$$

4. First order perturbation term

In the WCA theory, the RDF $g_0(r)$ of the reference system is approximated as [1]

$$g_0(r) = \exp [-\beta u_0(r)] Y_{HS} (r / d) \quad (16)$$

Substituting eq. (16) in eq. (3), we obtain

$$f_1 = 2\pi \rho \int Y_{HS}(r / d) u_p (r) r^2 dr + O(\delta). \quad (17)$$

In the present calculation, we use the MC [2, 3] and MD [2, 3] values of $g_{HS}(r)$ for $r > d$.

5. Results and discussion

We compare our results of $\beta P / \rho$ and $\beta U / N$ for the LJ (12-6) fluid with VW [2], Boublik [7] and MC [2] values in a range of reduced density ρ^* at $T^* = 1.15$ in Table 1. The agreement is quite good. At low density, Boublik theory [7] is superior to the present theory due to the second order perturbation terms.

Table 1. Values of $\beta P / \rho$ and $\beta U / N$ for the LJ (12-6) fluid at $T^* = 1.15$

<table>
<thead>
<tr>
<th>ρ^*</th>
<th>Exact</th>
<th>Present</th>
<th>VW</th>
<th>Boublik</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.12</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.50</td>
<td>-0.13</td>
<td>-0.28</td>
<td>-0.27</td>
<td>-0.19</td>
</tr>
<tr>
<td>0.65</td>
<td>-0.31</td>
<td>0.17</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>0.75</td>
<td>1.17</td>
<td>1.12</td>
<td>1.10</td>
<td>1.09</td>
</tr>
<tr>
<td>0.80</td>
<td>1.95</td>
<td>-1.60</td>
<td>-1.60</td>
<td>-1.83</td>
</tr>
<tr>
<td>0.90</td>
<td>-3.02</td>
<td>-2.86</td>
<td>-2.86</td>
<td>-3.02</td>
</tr>
<tr>
<td>0.75</td>
<td>-3.87</td>
<td>-3.89</td>
<td>-3.89</td>
<td>-3.90</td>
</tr>
<tr>
<td>0.75</td>
<td>-4.46</td>
<td>-4.42</td>
<td>-4.43</td>
<td>-4.45</td>
</tr>
</tbody>
</table>

Thus we come to the conclusion that the WCA perturbation theory, using the BGYM integral equation for $Y_{HS}(r/d)$ for $r \leq d$, can be employed to calculate the equilibrium properties of simple fluid.

Acknowledgments

We acknowledge the financial supports of the University Grants Commission, New Delhi.

References