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Abstract—The automation of policy refinement, whilst promis-
ing great benefits for policy-based management, has hitherto
received relatively little treatment in the literature, with few
concrete approaches emerging. In this paper we present initial
steps towards a framework for automated distributed policy
refinement for both obligation and authorization policies. We
present examples drawn from military scenarios, describe details
of our formalism and methods for action decomposition, and
discuss directions for future research.

I. INTRODUCTION

The automated refinement of high level goals and policies
into implementable management and security policies would
facilitate non-programmers’ specifying policies in situations
such as service management, pervasive applications and for
military or healthcare services. Refinement involves generating
enforceable and implementable policies guaranteed to achieve
and preserve the high-level security and system management
goals from which the policies are derived. Some progress has
been made, but as yet there is no comprehensive, accepted
solution. This paper presents our ideas on the refinement of
authorization and obligation policies, with a preliminary view
of a formal framework, algorithms and representations.

We view the process of policy refinement as comprising
three essential aspects: decomposition, operationalization and
distribution. In policy decomposition, which is the main focus
of this paper, policies expressed at higher levels of abstraction
are mapped into lower-level policies; successive mappings
move closer to concepts that are directly implementable in
the policy system. The mapping is achieved using policy-
independent refinement rules, defined within the scope of an
application-specific system model. The paper describes the
syntax of the refinement rules, how they relate to and are
constrained by the system model, and the way they are applied
to authorization and obligation policies.

Operationalization associates abstract policy classes with
specific subjects responsible for initiating actions and specific
targets on which the actions are performed, obtained from the
system model. Required action parameters may also depend
on specific targets. The refinement process may itself need to
be distributed, e.g. to organizations part of a collaboration:
parts of the system model may be distributed, or there may
be concerns about the confidentiality of policies within or-
ganizations. In a rich, distributed policy scenario, we foresee
there being several phases of policy decomposition, followed
by operationalization, followed by distribution.
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There is a need to interleave policy refinement with analysis
to ascertain that the refined specification achieves the require-
ments and is consistent with system properties and limita-
tions, as well as with existing policies. Parallel, distributed
refinement could lead to policies which conflict with each
other as the refinement context will not be the same across
all entities. Consequently, in the current paper we build on
our previous work on policy analysis [1], [2], using the same
representation language, with a view to the future integration
of refinement and analysis in a single framework. The nature
of the interleaving itself is left for future work.

II. SYSTEM MODELS

A system model defines the scope for specification of
policies: the agents (human or automated) that can be subjects
and targets, services and devices on which actions can be
performed, detailed specification of the action parameters (c.f.
interface specification) as well as the organizational relation-
ships of all these entities. We use UML class diagrams to
define a system model as they are widely-used, well-supported
and perspicuous. Subjects and targets of policies are objects of
classes specified in the class diagram, with associations being
used to constrain the objects to satisfy specified properties. The
main relationships that refinement exploits are generalization,
aggregation, association and composition, so we currently
restrict the UML to these relationships between classes.

The examples used in this paper are taken from a more
detailed military policy scenario [3], involving platoons, divi-
sions, sensor networks, and the submission of daily activity
reports across the organizational structure. Figure 1 shows a
fragment of the UML system model for that scenario which
we will use in this paper. This example contains instances
of class specialization and generalization, named associations,
and aggregation (there is no composition).

Our representation language is a subset of first-order logic.
We use the Event Calculus [4] (EC) to describe the state
of the system, and to express the conditions under which
a policy applies; we therefore show how the UML used to
represent domains can be translated into the EC. The variant
of the EC we use is presented in full in [2]. holdsAt(-,")
is used to represent the changing properties of a system’s
state, with the first argument taking a fluent (a property
whose value changes over time) and the second a time at
which the system has the property expressed by the fluent.
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Fig. 1. UML structure for fragment of domain

Thus, holdsAt(obj(s, backupServer),4) could represent that
the object s exists as a backup server, at time 4.

There is no need to use the EC for static features of the
system model, as they can be encoded directly in first-order
logic. The classes of the UML in Figure 1 are accordingly
represented using the class predicate, as follows:

class(org) class(device) class(adminCentre)

To express the relationship between classes, we use isa for
class specialization; assType for association; compType for
composition; and aggregType for aggregation. The relevant
relationships from Figure 1 would be represented according
to the following model:

isa(division, unit) aggregType(org, part_of, cln)

isa(reportRepos, device) assType(org, supports, clin)

These represent the UML directly.

Finally, classOp facts are included which describe the
operations possible on instances of a given class, and the types
of the arguments these operations take. For instance:

classOp(unit, fileRep(report))
classOp(backupServer, backup(document))

To aid reasoning over the structure of our domain models, we
introduce the following transitive version of the isa predicate:

isa_trans(X,Y) < isa(X,Y). 1)
isa_trans(X, Z) < isa(X,Y), isa_trans(Y, Z).

If there were a special kind of report repository called a
‘mobile report repository’, for instance, with an associated
fact isa(mobileRepRep, reportRepos) in our knowledge base,
then we could conclude that this too was a device, using the
transitivity of the isa relationship.

Specific instances of the above classes are needed for policy
operationalization. For instance, there may be both UK and US
organizations as part of a single coalition; the US may have
two divisions, eastDivision and westDivision, with devices,
soldiers, commanders, and so on. In our example, all divisions
and platoons have a commander, a communications officer, a
log, report repository, and backup server. We consider this con-
figuration to be stable over timescales of policy specification
although our approach would allow for changes. Facts about
the specific instances of classes in existence at a time 7' are
represented, in the EC, as follows:

holdsAt(obj(ita, cltn), T)

holdsAt(obj(

holdsAt(obj(eastDivision, division),T')
holdsAt(obj(eastPlatOneComOf, commsOfficer), T')

obj(us,org),T)

We define a recursive clause for the obj fluent, using a new
obj_trans fluent similar to the isa relationship above.

holdsAt(obj_trans(O, C), T) < holdsAt(obj(O,C),T). (2)
holdsAt(obj_trans(O, C),T) «
holdsAt(obj(O,C"),T), isa_trans(C’,C).

This allows us to reason, for instance, that each platoon
communications officer is also a soldier—required for an
authorization policy giving access to a certain document to
all soldiers in the Eastern division is to be correctly applied.

Relationships between instances of classes are depicted as
follows (we show a representative sample).

holdsAt(aggreg(uk, member, ita),T')
holdsAt(aggreg(eastDivision, part_of, us,T)
holdsAt(ass(usAdminCentre, serves, us), T')

Definition 1 A class definition C is a set of ground instances
of the predicates

class, isa, assType, aggregType, compType, classOp

together with the definition (1) of the isa_trans predicate, if
that set does not include cycles in the isa relationship.! We
require that

o if isa(c, ) € C, then class(c), class(c') € C;

o if assType(c,a,c’) € C, then class(c), class(c') € C;

o if aggregType(c,a,c’) € C, then class(c), class(c") € C;

o if compType(c,a,c’) € C, then class(c), class(c') € C;

e if classOp(c,0,n,l) € C, then class(c) € C, and for all

¢ €1, class(c’) € C, and [ has length n. N

I'Say, by containing the atoms isa(dog, mammal), isa(mammal, vertebrate)
and isa(vertebrate, dog).



In this way, the definition of classes, and their associations
and operations is self-contained.

Definition 2 An instance definition at t, where t is a time
variable or ground member of the Time sort, is a set of ground
of holdsAt, all of whose second arguments are ¢, and whose
fluents are instances of obj, ass, aggreg or comp. a

The following defines the proper relationship between class
and instance definitions.

Definition 3 Let C be a class definition, and Z an instance
definition at some time ¢. I is said to be correct with respect
to C if:
o If holdsAt(obj(o,c),t) € T then class(c) € C
o If holdsAt(obj(o,c),t), holdsAt(obj(o,c’),t) € I then
C E isa_trans(c, ) V isa_trans(c’, ¢)
o If holdsAt(ass(o,a,0’),t) € Z, there are ¢, ¢’ such that

<),
')

CUZ = holdsAt(obj_trans(o, c), t)A
holdsAt(obj_trans(o’,c'),t) A assType(c, a,c')

o If holdsAt(aggreg(o,a,0'),t) € I, there are ¢, ¢ such
that

CUZ E holdsAt(obj_trans(o, c), t)A
holdsAt(obj_trans(o',c),t) A aggregType(c, a, c')

o If holdsAt(comp(o,a,0'),t) € Z, there are ¢, ¢ such that

CUZ = holdsAt(obj_trans(o, c), t)A

holdsAt(obj_trans(o',c'),t) A compType(c,a,c') o

In Section IV we introduce refinement rules to define the
relationship between objects and actions seen at a higher
level of abstraction, to their lower-level details, contents and
implementations. These rules’ forms will be constrained by
the UML class structure of the domain to which they apply.

III. PoLiCY LANGUAGE

The first stage of policy refinement is to translate the
most abstract representation of a policy into a formal lan-
guage upon which automated refinement techniques can work.
Accordingly, we assume that policies are specified, at the
highest level of abstraction, in a structured natural language,
having a constrained lexicon and syntax designed for policy
expression; automated translation could then compile this into
the abstract, logical language we describe below. Work on
structured natural languages for policies is known [5].

We present a brief summary of the language we use to
represent policies. This language is abstract, in the sense that
it is not meant to serve as an implementable policy language,
deployed into policy decision points; rather, it is intended to
serve as a generic formal language into and out of which
multiple policy languages can be translated. The base language
is that of constraint logic programs—normal logic programs
with constraints—and we use the constraints to order the times
at which the conditions of the policy must be true. Policies are
expressed as rules, with the head being an instance of one of

the predicates permitted, denied or obligation, and the body
of the rule representing circumstances in which the policy
applies. A fuller version of the language for authorization
policies is given in [1].

Two preliminary definitions. A constraint c is given by:

¢ = s1 =82 |81 <s2| 81 <82

s u=mn|v|si+s2|s1—s2

where n € RT U {0} and v is a variable. A condition is a
literal of one of the predicates holdsAt, happens, permitted,
denied, obligation, do, req.

The language is divided into two parts: one for the policies
and one for the system the policies are used to control. There
are bridges between these parts that model the role of a Policy
Enforcement Point. Authorization policies take the form

[permitted/denied)(Sub, Tar,Act, T') < 3)
Li,...,Lm,Ch,...,Ch.

where the L; are conditions in the sense defined above, and the
C; are constraints, also as above. Where the conditions L; are
true, subject to the constraints C;, then the Sub is permitted
(/denied permission) to perform Act on Tar at time 7. For
example, consider the domain we sketched in Section II. A
policy that [Red Cross devices are permitted to access logs of
coalition platoons] might be formalized as

permitted(Sub, Tar, read, T') + “)
holdsAt(obj(Sub, device), T,
holdsAt(ass(Sub, owner, redCross), T),
holdsAt(obj(Tar, log), T),
holdsAt(ass(Tar, owner,C),T),
holdsAt(obj(C, org), T),

holdsAt(ass(C, member, clin), T).

In the conditions, the subject Sub is constrained to be a device
owned by the Red Cross; the target must be a log belonging
to a nation which is a member of the coalition. There are no
constraints over 7', hence the permission does not have time
restrictions.

Obligations require an action to be performed within a
certain period; thus, in addition to the time 7' at which the
obligation holds, reference is needed to the times 7% and 7T,
which are the limits of the period in which the action should
be performed. Our obligation policies have the form

obligation(Sub, Tar,Act, Ts, Te, T) + 5)
Li,....,Lm,Ch,...,Ch.

The L; and C; are as before—conditions and constraints.
These obligations are not event-condition-action (ECA) rules,
as found in many systems, such as Ponder [6]. They are similar
to the obligations found in work on norm-governed systems.
Although a time-limit is set for the obligation to be fulfilled,
it may, instead, be violated. This is appropriate for distributed
inter-organizational systems where human or automated agents
may not fulfill obligations. Thus, if there is an obligation



to read a file f on a user u, obligation(u, f,read,5,10,T),
5 < T < 10, then this will ultimately refine into ECA rules,
to notify the user of his obligation, and take appropriate actions
when the obligation is fulfilled or violated.

As an example of an obligation policy, consider [Platoon
communications officers must file daily activity reports to the
backup servers of their platoons between 2000h and 2200h].
This can be formalized as follows:

obligation(Sub, Tar, fileRep(R), 2000h, 2100k, T') + 6)

holdsAt(obj(Sub, commsOfficer), T,
holdsAt(ass(Sub, belongs, P),T),
holdsAt(obj( P, platoon), T,
holdsAt(obj(Tar, backupServer), T),
holdsAt(ass(Tar, serves, P), T,

(obj(

(

holdsAt(obj(R, report), T),
holdsAt(ass(R, reportType, dailySummary), T,
2000h < T < 2200h.

In addition to obligation policies of the form above, the syntax
allows for the specification of obligations defined for classes of
objects, where any member of the class (as supposed to every
member of the class as above) can fulfill the obligation. These
obligations are not discussed further in the current paper.

An obligation on a subject to perform an action on a target
is fulfilled when the action is done. An obligation is violated
when the time at which it could have been fulfilled runs out.

Sulfilled(Sub, Tar, Act, Ts, Te, T) @)
do(Sub, Tar,Act, Ty, ),
obligation(Sub, Tar, Act, Ts, Te, Tuo),
Ts < T < Te, Tup <T.

violated(Sub, Tar, Act, Ts, T., T') + 8)
obligation(Sub, Tar,Act, Ts, Te, Te),
not fulfilled(Sub, Tar,Act, Ts, Te, Te),
T, <T.

obligation(Sub, Tar,Act, T, T.,T) must be defined such that
the constraints in its body imply T < T.; however, the
obligation may only be fulfilled at a time 7}, before T.

IV. REFINEMENT RULES

In defining the management and security policies of a
system, it ought only to be necessary to specify the policies
at the highest level of abstraction, and then use refinement
techniques to map those higher-level policies, in successive
phases, to the lowest level. Policies that refer generically to
sensors as targets of configuration actions, for instance, may
first be mapped to types of sensor (audio, or video, say). The
policies derived for audio sensors may then be mapped onto
policies for different models of audio sensors, with model-
specific configuration operations. Finally, policies controlling
configuration operations intended for a given model of audio
sensor may be mapped into policies concerning messages sent

to a certain port of all audio sensors of the relevant model
known to be currently attached to a sensor network.

To achieve this gradual refinement, we use rules to relate
subjects, targets and actions described abstractly, or described
en masse, to the lower level. The basic components of such
rules are known as conditioned actions—expressions which
represent the performance of an action on a target by a subject
in certain contexts, and where the contexts place constraints
on the types of the subjects, targets and actions and the
relationships between them.

Definition 4 Let £ be a policy representation language.”? A
conditioned action for L has the form

(Sub, Tar, Act) : C1,...,Ch.

where each C; has one of the forms 0bj(O, C), ass(O, A, O"),
aggreg(0O, A, O") or comp(O,A,O"). In each case, C' must
be a ground class name from the domain, and A must be a
ground association, aggregation, or composition name from
the domain. Any variable occurring in Sub, Tar, Act must also
occur in one of the C;. J

For example, a conditioned action

(Sub, Tar, read(locDev, wQuad)) : )
0bj(Sub, device), ass(Sub, owner, X),

obj(Tar, locationServer), ass(Tar,owner, X).

represents the performance of an action of reading information
on the location of devices in the West Quadrant by devices
which belong to the same organization as the location server
from which the information is read. Such conditioned actions
form the basic components of refinement rules.

Definition 5 Let £ be a policy representation language, and
C a class definition. A refinement rule is an expression

C = (i then --- then C, (10)

where C,Cy,...,C, are conditioned actions, and 7 > 1. C is
called the fop of such a rule, and the C; are bottoms.
More precisely, suppose R has the form

(Sub, Tar, Act) : Conds =
(Sub1, Tar,,Acty) : Condsy
then ...
then (Subn,, Tar,,Acty) : Condsy,

an

We require

1) There must be obj(Sub,C) and obj(Tar,C’) in the
conditions of C, such that for some N and L

C | class(C) A class(C") A classOp(C" Act, N, L)
Nisa_trans(C',C"")

and further, in each Conds;, 1 <1 < n:

2See [2]. £ defines the language used to specify both policies and the
domains they operate on.



2. there is an expression obj(Sub;, C;) (resp. obj(Tar;, C;))
in Conds;, but not Conds, with C = isa_trans(C;, C)
and obj(Sub,C) (resp. obj(Tar,C)) is in Conds—or
Sub; = Sub (resp. Tar; = Tar);

3. there is aggreg(Sub;, A, Sub) (resp. aggreg(Tar;, A, Tar)
in Conds; which is not in Conds, and such that
C [ aggregType(C;, A,C), Conds = obj(Sub,C)
and Conds; | obj(Sub;, C;)—or else Sub; = Sub
(resp. Tar; = Tar);

4. there is comp(Sub;, A, Sub) (resp. comp(Tar;, A, Tar) in
Conds; but not in Conds, with C |= compType(C;, A, C),
Conds = obj(Sub,C) and Conds; = obj(Sub;, C;)—or
Sub; = Sub (resp. Tar; = Tar).

In addition, for each 7 such that 1 <i < n

5. C U Conds U Conds; = classOp(Tar;,Act;, N;, L;) for
some N;, L;. J

The meaning of such rules is that the succession of actions
referred to in Cy,...,C, correspond to a refinement of the
higher-level action in C, with then intended to denote tem-
poral sequence. The constraints 1-5 ensure that our refinement
rules respect to the UML system model.

Specifically, constraint 1 ensures that the subjects and
targets of the high-level conditioned action appearing in the
refinement rule must be objects of the domain, as defined by
the UML,; this constraint also forces the high-level action to
be one of the operations the target supports. Constraints 2—4
ensure that, as we refine, we move to more specific subjects
and targets; for each C; that constitutes a lower-level action,
either the subject or the target must be more specific, and
neither should be more general or abstract. For instance, if
the subject of the top of a refinement rule is defined to be a
platoon, then the subject of the action into which we refine
could be a soldier belonging to that platoon (this would be
a case of aggregation). Or, the target might be constrained,
in the top of the refinement rule, to be a sensor—a possible
target of the bottom of the refinement rule could be an audio
sensor, the sensor class being a generalization of audio sensors.
Finally, constraint 5 ensures that the refinement rules are well-
formed—the actions Act; of the lower-level parts of the rules
must be operations it is possible to perform on the targets Tar;.

As an illustration, consider an action of filing a daily activity
report within the US military. We suppose the workflow for
filing reports is predefined centrally within the US army, and
the procedure must be followed throughout the organization.
Seen at a more abstract perspective, soldiers file reports to
units (not necessarily their own). However, for a soldier to
file a report, a series of actions specified at a more concrete
level must occur. He must first send the report to the report
repository of the unit to which the report is to be filed. He must
then backup the report to that unit’s backup server. When this
has been done, the soldier must notify the communications
officer of the unit that the upload has been completed. The
following refinement rule represents this picture:

(Sub, Tar, fileRep(R)) :

obj(Sub, soldier), obj(Tar, unit)

4

(Sub, Tar, send(R)) :

obj(Tar1, reportRepos), aggreg(Tary, belongs, Tar)
then (Sub, Tarz, backup(R)) :

obj(Tarz, backupServer), ass(Tarz, belongs, Tar)
then (Sub, Tars, notify(upload(R))) :

obj(Tars, commsOfficer), ass(Tars, belongs, Tar)

(12)

Note that the same variable Sub occurs as subject of all actions,
both in the top and bottom of the rule: the same soldier must
send the report, then back it up and make the notification.
However, the target varies: from a report repository, to a
backup server, to a communications officer.

In [7] we used concepts from data integration to formulate
rules and algorithms for the refinement of targets and actions,
for the same broader goal of policy refinement. Data inte-
gration concerns the way in which heterogeneous databases
are mapped to each other so their vocabularies (schemata) are
inter-translatable. Refinement rules as we define them here are
a generalization of that previous work.

V. PoLICY DECOMPOSITION

In this section, we examine in detail the decomposition
stage of policy refinement. This itself divides into two parts.
Matching verifies whether a refinement rule is applicable to a
policy; and decomposition proper performs the refinement.

A. Matching

Recall policy (6). In order to refine this using rule (12),
variables are first standardized apart between policy and
refinement rule. Then, an attempt is made to unify the
head of the top of the refinement rule—in our example,
(Sub, Tar, fileRep( R))—with the corresponding features of the
head of the policy. Let variables in the policy (6) which are
shared with the refinement rule be given a mark ’ to separate
them; the subject, target and action can be matched using the
most general unifier (m.g.u.) @ = {Sub/Sub’, Tar/Tar’, R/ R'}.

Next, a test is made to determine whether the constraints
on the action in the body of the top of the refinement rule—
in our example, obj(Sub’, soldier) and obj(Tar',unit) with 0
applied—are consistent with the conditions on the subject,
target, and action found in the policy. The purpose of this
consistency check is to ensure that there is an overlap between
the circumstances in which the refinement rule and policy
apply. The consistency check is made as follows. Let Conds
be the set of conditions in the top of the refinement rule, and
Condsp be the set of holdsAt conditions in the body of the
policy, with 6 applied. Let Condsp0 be the result of stripping
the holdsAt(-,-) predicates from the members of Condsp0,
leaving the fluents. In our case, we have



Conds® = {obj(Sub’, soldier), obj(Tar', unit)}
Condsp0 = {obj(Sub’, commsOfficer), aggreg(Sub’, belongs, Us),
obj(Us, platoon), obj(Tar’' , division),
aggreg(Us, part_of, Tar'), obj(R', report),
ass(R', reportType, dailySummary)}

We now check Condsf and Conds},6 for logical consistency,
with respect to the background UML formalization. (The
details are given below, in Definition 6.) If this phase succeeds,
then the refinement rule is known to be applicable to the policy.

Definition 6 Let £ be a policy representation language, C a
class description. Given an obligation policy P

obligation(Sub’, Tar' , Act', Ts, T., T') + Condsp, Consp.

or an authorization policy

[permitted/denied)(Sub’, Tar', Act', T) < Condsp, Consp.

where Condsp are literals and Consp are constraints, and a
refinement rule R of the form (11), whose variables have
been standardized apart, we say that P and R head-match
with 0 if there is an m.g.u.  such that (Sub, Tar,Act)f =
(Sub’, 0’ Act')0. Further, if P and R head-match on 6, let
Condsyp be defined as

{F | 3T (holdsAt(F,T) € Condsp, F is obj, ass, aggreg or comp}
U {—=F | 3T (not holdsA:(F,T) € Condsp F is an obj, ass,
aggreg or comp fluent}

Let X be C U Condsp U Conds. R is said to match P on 0 if

Yolobj(o, c), obj(o,c') € X —

E X — (isa_trans(c, c') < —isa_trans(c’, c))]

If a refinement rule matches a policy on some 6 according to
Definition 6, then the rule can be applied to the policy during
policy refinement.

B. Policy Decomposition

After a successful matching process, the policy is decom-
posed. Part of the conditions defining the scope of the refined
policies comes from the original policy, part from the top of
the refinement rule, and part from the conditioned actions in
the bottom of the refinement rule. The circumstances in which
the refined policy applies will be the intersection of these three.

Given conditioned actions Cq, ..., C, in the bottom of the
refinement rule, n copies of Pf are made, with the subject,
target and action of P@ replaced by those of each C;f.
Conditions from the top of the refinement rule that are not
implied by the conditions of the original policy are added to
each of these copies. Conditions from each C; are added to the
policy. Conditions are added deriving from each conditioned
action C; that the actions at the head of each C;, j < ¢, have
been performed, and in the right order.

Returning to our running example, let PolicyConditions be:

holdsAt(obj(Sub’, commsOfficer), T),
holdsAt(aggreg(Sub’, belongs, Us),T),
holdsAt(obj(Us, platoon), T),
holdsAt(obj(Tar', division), T),
holdsAt(ass(Us, part_of, Tar'), T),
holdsAt(obj(R', report), T),

holdsAt(ass(R', reportType, dailySummary), T,

These are the literals that will be inherited from the higher-
level policy. The results for our example are shown below (the
source of the various conditions in the bodies of the policies
has been marked to their left). The policy stemming from the
first conditioned action, Cq, is:

obligation(Sub’, Tar', send(R'), 2000k, 2200h, T') <

C holdsAt(obj(Tar1, reportRepos), T),
holdsAt(aggreg(Tar1, belongs, Tar'), T'),

13)

T PolicyConditions,
POUEY 1 2000h < T < 2200h.

The policy coming from the second conditioned action, Cy:

obligation(Sub’, Tara, backup(R'), Ty, 2200h, T) +

[ holdsAt(obj(Tars, backupServer), T),
| holdsAt(aggreg(Tarz, belongs, Tar'), T,

(14)
Co
[ PolicyConditions,

2000k < T7 < 2200h,

do(Sub’, Tar1, send(R'), Th),
Cy1 | holdsAt(obj(Tary, reportRepos) ,Th),
holdsAt(ass(Tary, belongs, Tar'), Ty ).

policy

Finally, the policy derived from Cj is:

obligation(Sub’, Tars, notify(upload(R')), Tx, 2200k, T') < (15)
[ holdsAt(obj(Tars, commsOfficer), T),

from C; holdsAt(aggreg(Tars, belongs, Tar'), T'),
[ PolicyConditions,
policy | 2000h < T7 < 2200k,

T <Th < 2200h,

do(Sub', Tar1, send(R'), T ),
Cy | holdsAt(obj(Tary, reportRepas), Th),
holdsAt(ass(Tar1, belongs, Tar'), Tt ),

do(Sub', Tars, backup(R'), T>),
Ca | holdsAt(obj(Tarz, backupServer), T),
holdsAt(ass(Tarz, belongs, Tar’), T').

Some description of what has happened here is appropriate.
We focus on the third derived policy. The action is determined
by the conditioned action

(Sub, Tarsnotify(upload(R))) :
obj(Tars, commsOfficer)
ass(Tars, belongs, Tar)

from the rule (12). The first set of conditions in the derived
policy’s body is inherited from the specific conditioned action
in the bottom of the action-refinement rule: these define the



nature of the target of the derived policy (it is this target, and
the action in the head of the policy, that are altered from the
high-level policy). Next, there are conditions come from the
high-level policy: these define the subject which must perform
the lower level notify(-) action, the kind of report referred to,
and the relationship of the subject to platoons and divisions.

There are two additional sets of conditions in (15). These
require that, for the obligation policy to hold, the obligations
derived from other conditioned actions in the action decom-
position rule must have been fulfilled. This is a result of
the structure of the refinement rule: one should only notify
of an upload, once the report has been sent and then the
report has been backed up. In general, given a refinement
rule C = C; then --- then C,, the ordering of actions
is crucial. An obligation to do the action of C is an obligation
to do the actions of the Cq, ..., C, in order, and so C; must be
performed only if C;, for j < 4, have been correctly executed.
To return to our example policy, the times between which the
action that the policy requires must be performed, are 75 and
2200h. 2200h is the final time from the original high-level
policy; 75 is the time at which the obligation derived from
the previous conditioned action Cy was fulfilled.

The refinement of positive authorization policies (with
permitted in their heads) is very similar. The only difference
concerns the temporal constraints on when the derived policies
hold. In an obligation policy, an interval is given, within which
the action must be performed; when the policy is refined, we
have interpreted this to mean that the entire sequence of lower-
level actions must be performed in the interval, in the correct
order. But with authorization policies, in general, a reference
is made in the head of the policy to a single time at which
the action is authorized. We therefore adopt the convention
that it is the final action in the sequence that is authorized at
this time. The high-level policy can be seen as authorizing the
production of certain effects (those which the high-level action
achieves), and these effects are only guaranteed to be achieved
when the entire sequence of actions as been performed.

For negative authorization policies (with denied in their
head), a slightly different tactic is taken. The denial of a high-
level action is the denial of permission to execute a sequence,
but one might interpret this to mean, either the denial of
permission to perform every action in the sequence, or denial
to perform only some of these actions, selected according
to some appropriate criterion. We take the latter approach,
and have chosen in the current work to disallow the final
action of the sequence, as the one that achieves the sequence’s
completion. However, there is no reason why this choice of the
way in which to refine negative authorization policies should
not be made available to the user. Note that the final action of a
sequence is denied, in this model, only if the previous actions
of the sequence have already been performed; this qualification
is achieved by conditions in the body of the derived policy.

Definition 7 Let P be either an obligation or authorization
policy, of any of the forms

obligation(Sub’, Tar' | Act', Ts, T, T') + Condsp, Consp,

[permitted/denied)(Sub’, Tar', Act', T)) < Condsp, Consp.

Let R be a refinement rule C = C; then --- then C,,. C
has the form (Sub, Tar,Act) : Conds, and each C; has the form
(Sub;, Tar;,Act;) : Conds;. Assume that R matches P with
m.g.u. 6. Recall the meaning of Condsp from Definition 6.
Matching ensures that Conds and Conds}> are consistent with
respect to the UML class definitions. Let holdsAt(Conds) be
defined as the set {holdsAt(F,T) | F € Conds} and let
holdsAt" (Conds) is defined to be

{holdsAt(F,T) | F € Conds and Condsp U C £ holdsAt(F,T)}

(i) if P is an obligation policy, then the refinement of P
w.r.t. R is the set of policies

[ obligation(Sub;, Tar;,Act;, T;, Te, T) + (16)
Condsp, holdsAt™ (Conds),
Donen, . ..,Done;—1. |0
Where Done;, for 1 < j < is
do(Subj, Tar;j,Act;, T;), a7

T <T; <Te,
holdsAt™ (C;).

In the case where j = 1, the condition T;_; < T} < T¢ is
replaced by Ty, < T; < T,. The Done; expressions ensure that
the previous actions in the series of those required have been
correctly (i.e. with the the right conditions) performed.

(1) if P is a positive authorization policy, then the refinement
of P w.rt. R is the set of policies

[ permitted(Sub;, Tar;,Act;, T) <
Condsp, holdsAr* (Conds),
. ,Doneifl. }9

(18)

Done, ..

For positive authorization policies, the definition of Done
changes so that the temporal constraints are T} _; < T;. Where
7 = 1, there is no constraint; where j = 7 — 1, the constraint
isT;_1<T.

(741) finally, if P is a negative authorization policy, then the
refinement of P with respect to R is

[ denied(Subr, Tary,Acty,, Ty) < (19)
Condsp,
holdsAt™ (Conds),
Donex, . ..,Donen—1. 10
The definition of Done is the same as for permitted. a

This definition formalizes the preceding discussion.

VI. OPERATIONALIZATION AND DISTRIBUTION

Operationalization in software engineering is the process
of assigning specific resources for the performance of goals.
In the context of policy refinement, we understand it as the
selection of named entities for the execution of policies.



In a centralized refinement model, we would expect the
following arrangements. There would be a set of policy
refinement rules of the form given by (5), together with a
class definition C, and an instance repository which stores
information about the instances of classes known to exist, and
their relationships (instance repositories can be represented as
instance definitions, as in Section II). A policy to be refined
enters the refinement component, and the refinement rules are
iteratively applied to it—more than one refinement rule may,
of course, apply to a given policy. When policies have reached
the point that no more refinement rules are applicable to them,
then their form is tested against a subset of the language which
is known to describe concretely implementable components
of the domain: class names of actual rather than abstract
devices, and the lowest level of concrete description of the
properties of those devices. If the policies are expressed in this
“implementable” subset of the policy representation language,
then they may be operationalized.

Authorization policies grant or deny the permission to per-
form an action on a target; their operationalization accordingly
means grounding the targets referred to in the heads of rules.
If the target is not currently ground, then those literals in the
body of the authorization policy which include the variable
appearing in the head of the rule as target are collected,
together with literals transitively sharing variables with them.
These are then passed, as a query, to the database holding
the current instance repository. Answers return supply a set of
ground values for the target of the policy; it is to those targets
that the policy is distributed, with the ground target replacing
the target variable in the rule.

In the case of obligation policies, the last stage of refinement
transforms the policy into ECA-type policies which (7) will
notify subjects of the obligation of its imminence, and (i3) take
any necessary action if the obligation is fulfilled or violated.
Operationalization here means the selection of the appropriate
policy monitors to carry out these notifications and responses.

In a fully distributed refinement scenario, partially-refined
policies may be distributed to other refinement-centres, with
local knowledge of devices and their refinement rules. Phases
of decomposition, operationalization and distribution are then
made locally.

VII. RELATED WORK

Policy refinement remains one of the most ambitious goals
in policy-based security management because it aims to auto-
mate the realization of high-level requirements in executable
implementations. Early studies (e.g. [8]) have highlighted
some of the specific issues and have attempted to address them
in a very restricted way. However, there has been renewed
interest in this problem in recent years as demonstrated by the
panel discussion at IM 2007 and several recent studies [9],
[10], [11], [12] which address subsets of the problem such
as goal decomposition for refinement or transforming specifi-
cations using predefined mappings. [13] considers a planning
approach to refining change requests into implementable tasks,
but does not consider policies. In [14] a goal is essentially

a utility function which can be optimised to select a set of
parameters for policies used to configure a sensor network. Our
approach is much more general than these rather specialised
forms of policy refinement.

VIII. CONCLUSION

In this paper, we have described the process of action
decomposition in a policy refinement framework we are de-
veloping. Future work must address the formalization of op-
erationalization and distribution, as well as the full integration
of distributed policy refinement with policy analysis.

We are testing the approach for specifying policies relating
to inter-organizational collaborations and the use of sensor
networks. We intend to develop tools to help non-technical
users refine their goals into policies.
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