
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Special section on Advances in Reachability Analysis and Decision Procedures

Contributions to abstraction-based system verification

Michael Huth1, Orna Grumberg2

1 Department of Computing, Imperial College London, South Kensington campus, London, SW7 2AZ, United Kingdom
2 Computer Science Department, TECHNION - Israel Institute of Technology, Technion City, Haifa 32000, Israel

January 4, 2009

Abstract. Reachability analysis asks whether a system
can evolve from legitimate initial states to unsafe states.
It is thus a fundamental tool in the validation of com-
putational systems – be they software, hardware or a
combination thereof. We recall a standard approach for
reachability analysis, which captures the system in a
transition system, forms another transition system as an
over-approximation, and performs an incremental fixed-
point computation on that over-approximation to deter-
mine whether unsafe states can be reached. We show this
method to be sound for proving the absence of errors,
and discuss its limitations for proving the presence of er-
rors, as well as some means of addressing this limitation.

We then sketch how program annotations for data
integrity constraints and interface specifications – as in
Bertrand Meyer’s paradigm of Design by Contract – can
facilitate the validation of modular programs., e.g. by ob-
taining more precise verification conditions for software
verification supported by automated theorem proving.

Then we recap how the decision problem of satis-
fiability for formulae of logics with theories – e.g. bit-
vector arithmetic – can be used to construct an over-
approximating transition system for a program. Pro-
grams with data types comprised of bit-vectors of finite
width require bespoke decision procedures for satisfia-
bility. Finite-width data types challenge the reduction
of that decision problem to one that off-the-shelf tools
can solve effectively, e.g. SAT solvers for propositional
logic. In that context, we recall the Tseitin encoding
which converts formulae from that logic into conjunc-
tive normal form – the standard format for most SAT
solvers – with only linear blow-up in the size of the for-
mula, but linear increase in the number of variables.

Finally, we discuss the contributions that the three
papers in this special section make in the areas that we
sketched above.

Key words: bounded reachability – abstraction – mem-
ory models – asynchronous systems – decision diagrams
– decision problems – bit-vector arithmetic

1 Introduction

We are pleased to introduce three outstanding papers
that report advances in reachability analysis and in de-
cision procedures. These papers were published in a con-
ference version in the proceedings of the Thirteenth In-
ternational Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2007),
held as part of the European Joint Conferences on The-
ory and Practice of Software (ETAPS) which ran from
24 March until 1 April 2007 in Braga, Portugal. These
papers were then rewritten and extended as journal pa-
pers, by our invitation. The criteria for inviting papers
were that papers were amongst the top papers published
in the TACAS 2007 proceedings, and that the papers re-
flected well on the intent of this journal: software tools
for technology transfer. So we very much hope that this
special section will be enjoyed by the readership of this
journal.

The purpose of this introductory paper is to put the
papers of this special section and their contributions into
an appropriate context and perspective, and to provide
some background – in an informal tutorial style – that
will make the technical aspects of these papers even more
accessible than they already are. Given that these pa-
pers draw from a very wide range of techniques and re-
sults, we can naturally only select some key issues in our
tutorial-style discussion and have to refer to the existing
literature for some technical aspects of these papers.

The tutorial part of this introductory paper begins
in Section 2, and the discussion of the special-section
papers can be found in Section 5.

2 Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures

2 Verifying safety through reachability analysis

The safety of programs is a concern of growing signifi-
cance. More and more, our daily lives and interactions
are controlled or assisted by devices that have computer
programs embedded in them – whether we like it or not.
The reliable functioning of these programs, therefore, be-
comes ever more important. Many program errors can
be avoided by detecting them at compile time. Typed
programming languages, e.g., help to shield against run-
time errors that result from dynamic type mismatches.
Program analysis tools, e.g., can alert to problematic
aspects of programs such as a portion of code that can
never be reached in program execution. But some pro-
gram errors are subtler or challenging to detect, e.g.

– the permanent blocking of a computation thread
– the corruption of structured data

Two instances of the latter are the inadvertent cre-
ation of a cycle in an acyclic list, and the violation of an
important data integrity constraint such as that account
balances be no less than the allowed overdraft limit.

It turns out that many pratically relevant program
errors can be abstractly characterized as being able to
reach system states that we deem to be dangerous or
undesirable. For example, whenever an account balance
falls below an allowed overdraft limit we can assume that
this stems from some portion of code that is able to
change the account balance. We can therefore insert “as-
sert” statements at all such locations in order to check
whether the integrity constraint is being preserved:

assert accountBalance >= allowedOverdraft;

where accountBalance and allowedOverdraft are pro-
gram variables already declared and managed for an ap-
propriate type such as double. Programs execute such
assert statements by evaluating their Boolean expres-
sions, here

accountBalance >= allowedOverdraft

If the Boolean expression evaluates to true, the state-
ment has no effect other than its mere evaluation. If it
evaluates to false, an error state has been reached. Most
research on program verification concerns itself with this
type of program error, and many approaches to program
verification utilize the above technique of defining error
states by annotating programs with assert statements.

2.1 Programs as formal transition systems

A prominent formal model of a computer program, then,
is a transition system consisting of

– a set of system states S,

– a transition relation R ⊆ S × S where (s, s′) ∈ R
models that the program may – if in system state
s – have the atomic effect of changing that system
state to s′ at run-time,

– a subset I of S that models those system states in
which the program may start executing, and

– a subset E of S that models those system states that
the verifier deems to be an error.

Set E may reflect a specific kind of error, such as
accessing any dangling program pointers. Alternatively,
a verifier may simply bundle all relevant error types to-
gether into this set. Relation R may be non-deterministic
if the program constructs contain, e.g., a pseudo-random
choice operator. In addition, set S is often unbounded,
since the program may support unbounded data types,
an unbounded number of threads, etc.

2.2 Sound reachability analysis through abstraction

Given such a formal model of the program and its error
states, how can we check its safety, i.e. that no error state
can ever be reached? Conceptually, this is very easy. Let

next(X) = {s′ ∈ S | ∃s ∈ X : (s, s′) ∈ R} (1)

be the set of system states that can be reached from any
state in X ⊆ S in one R-step. Then the program can
never reach an error state from any initial state if, and
only if

E ∩
⋃

n≥0

nextn(I) = {} (2)

where

next0(X) = X

nextn+1(X) = next(nextn(X)) (n ≥ 0) (3)

Equation (2) stipulates that if the program begins in a
state from I, then no finite sequence of R-steps can reach
an error state in E. This is so since nextn(X) captures
those states that can be reached from states in X by
an R-path of length n. Thus this correctly captures the
desired safety property.

The problem with this notion, though, is that S and
R may be infinite or very large and so an incremental
computation of

⋃
n≥0 nextn(I) may be infeasible. One

way of addressing this is by means of abstraction [11,
9,12,13]. Suppose that there is another, more abstract,
finite set of states Sα and a relation ρ ⊆ S × Sα such
that

∀s ∈ S ∃t ∈ Sα : sρt (4)

where we write sρt for (s, t) ∈ ρ. Then we can make Sα

into an abstract program model by setting

Rα = {(t, t′) ∈ Sα × Sα | ∃sρt, s′ρt′ : (s, s′) ∈ R}
Iα = {t ∈ Sα | ∃s ∈ I : sρt}
Eα = {t ∈ Sα | ∃s ∈ E : sρt} (5)

Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures 3

So abstract states are initial (respectively, error states) if
they are related to some concrete initial (respectively, er-
ror) state via ρ. Similarly, a transition between abstract
states is one that corresponds to a concrete transition
where the concrete source and target states relate to the
abstract source and target states via ρ. Since Sα is finite,
we can now verify

Eα ∩
⋃

n≥0

nextn(Iα) = {} (6)

by incrementally computing the finite set
⋃

n≥0 nextn(Iα),
where the definition of next is as before but now in
(Sα, Rα). This turns out to be a sound method for show-
ing that the program cannot reach any error states: If (6)
holds, we are assured that (2) holds as well – provided
that ρ is such that is satisfies (4).

The proof of this important fact is instructive as it
reveals that the abstract program model was defined ex-
pressly in order to secure this fact:

Using proof by contradiction, assume that (2) is
false. Then there is an R-path s0Rs1 . . . sn−1Rsn

from an initial state s0 ∈ I to some error state
sn ∈ E. By (4) there is some t0 ∈ Sα with s0ρt0.
By definition of Iα, we get t0 ∈ Iα. By induction
on n and by the definition of Rα, we get an Rα-
path t0R

αt1 . . . tn−1R
αtn with siρti for all 0 ≤

i ≤ n. We merely show the induction base case
for this claim: from (4) we infer the existence of
some t1 ∈ Sα with s1ρt1. But then (s0, s1) ∈ R
and s0ρt0 imply (t0, t1) ∈ Rα. In particular, tn ∈
Eα since sn ∈ E and snρtn. To summarize, we
constructed an Rα-path from an element in Iα to
an element in Eα, contradicting (6).

Condition (4) is often referred to as saying that re-
lation ρ is “left total”. It holds automatically for many
methods of synthesizing abstract program models, e.g.,
for predicate abstraction [15,1], where each state tα is a
bit-vector modelling which set of fixed predicates a con-
crete program state s satisfies – and so every concrete
state naturally has such a corresponding bit-vector and
ρ is then the graph of a total function.

2.3 Counter-example guided abstraction-refinement

Unfortunately, we cannot always infer that the program
can reach error states if the abstract program model can
reach an abstract error state: the non-emptiness of (6)
does generally not imply the non-emptiness of (2). The
reason is that, from (t, t′) ∈ Rα, sρt, and s′ρt′ we cannot
conclude that (s, s′) ∈ R and so not every Rα-step has a
corresponding R-step for a designated concrete successor
state. So an abstract counter-example to the safety of
the program (an Rα-path from set Iα into set Eα) may
be spurious in that it has no corresponding concrete R-
path from set I into set E. It is thus no surprise that
techniques have been developed that attempt to

– either verify that the abstract counter-example has
indeed a corresponding concrete counter-example (e.g.
[8]), or

– failing that, the spurious nature of the abstract counter-
example can be used to refine set Sα into a larger set
Sα1 and to redefine ρ over S × Sα1 (e.g. [8,10,14]).

The hope is then that either there are no abstract
counter-examples in the more concrete program model
(Sα1 , Rα1 , Iα1 , Eα1), or it has a non-spurious counter-
example. In general, one may have to iterate this process
to compute a sequence of abstract but increasingly more
concrete program models

Mαk = (Sαk , Rαk , Iαk , Eαk) (k ≥ 1) (7)

that all over-approximate the concrete program model
(S,R, I, E) so that

– there is some k ≥ 1 for which Mαk has no path from
an initial state to an error state – and so (2) holds

– there is some k ≥ 1 for which Mαk has a path from
an initial state to an error state, and that path has a
corresponding path from an initial state to an error
state in (S,R, I, E) – and so (2) does not hold

– or for all k ≥ 1 the abstract program model Mαk

has spurious abstract counter-examples but none of
them correspond to concrete error paths – and so the
computation diverges.

This iterative process, over-simplified above, is known
as “counter-example guided abstraction-refinement” (CE-
GAR) and many verification tools use this scheme for the
verification of the unreachability of error states (e.g. [8,
10,14]). This process is not confined to verifying safety
properties. For example, the paper “An Abstraction-Based
Decision Procedure for Bit-Vector Arithmetic” in this
special section uses a similar process to decide whether
a formula of some logic is satisfiable.

2.4 Programming by contract

Computer programs are not written as monolithic in-
struction sets but are composed out of instantiations
of parameterized modules. This facilitates code re-use –
e.g., the use of library calls – and makes code develop-
ment more scalable, reliable, and maintainable. Thus,
assert statements that check for program errors will be
placed within such modules. But module boundaries and
module composition offer additional opportunities for
specialized assert statements.

We now illustrate this idea in a style similar to that of
the Java Modeling Language (JML) (with home page at
www.eecs.ucf.edu/~leavens/JML/) on a simple exam-
ple, adapted from [18]. In doing so we will deliberately
over-simplify some of the issues. Consider the declaration
of a class in some object-oriented programming language

4 Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures

public class Person {
invariant !name.equals("") & this.weight >= 0;
private String name;
private int weight;

... }

It states that an object of type Person has two private
fields name and weight. It also declares an invariant,
namely that the name not be the null string and that the
weight be non-negative. These are sensible constraints on
such data for persons. Invariants are meant to hold after
an object of that type has been constructed, and before
and after each non-constructor method call that manip-
ulates objects of that type. In particular, the invariant
can be violated during the execution of such methods.
Invariants are thus an effective means of expressing that
data integrity constraints are enforced at the appropriate
program states. It should be clear that we could check
compliance with an invariant by writing corresponding
assert statements and placing them around method and
constructor boundaries.

Invariants are not the only application of placing
assert statements around method boundaries. Bertrand
Meyer’s notion of Design by Contract [19] suggests that
each method has an explicit contract: a specification of
what the caller of a method has to ensure prior to a call
(often called a “pre-condition”), and a specification of
what the callee will guarantee upon termination of that
method (often called a “post-condition”).

For example, consider the interface specification

requires kgs >= 0;
ensures weight == \old(weight) + kgs;
public void addkgs(int kgs) { ... };

for method addkgs within class Person. That method
takes as input an integer variable kgs, returns nothing
(as the return type is void), and has its computation as
a side effect on the state of an object of type Person.

The contract for this method consists of two parts.
The keyword requires indicates a pre-condition, in this
case that the method can only be called with input val-
ues kgs that are non-negative. The keyword ensures
indicates a post-condition, in this case that the value of
the field weight in the object of type Person equals the
sum of the value it had prior to the method call (indi-
cated by the wrapper \old) with the input value kgs.
The semantics of this contract is usually that of partial
correctness: the post-conditions only have to be true if
the method actually returns (it could diverge).

It is pretty intuitive to see how such annotations
would expand into assert statements: all pre-conditions
have to be enforced prior to the execution of the first
statement in the method body; and all post-conditions
have to be enforced prior to any method return points.
At run-time one can therefore use these interface specifi-
cations for testing. But these interface specifications can
also be used in static reasoning where, in contrast, pre-
conditions are assumed to be true: For each method, we

can statically generate verification conditions that imply
that all post-conditions hold upon method return, under
the assumption that all pre-conditions and all class in-
variants hold prior to the method call. For example, if
we implement the method as in

requires kgs >= 0;
ensures weight == \old(weight) + kgs;
public void addkgs(int kgs) {

weight = weight - kgs;
}

we can then derive from this implementation and its con-
tract a verification condition that captures that the im-
plementation honors the contract. Here, this verification
condition is that the quantifier-free formula of first-order
logic with arithmetic

kgs ≥ 0 ∧ (weight = old(weight)− kgs) →
(weight = old(weight) + kgs) (8)

be valid, i.e. universally true. This is thus a task we
could delegate to a theorem prover for that logic. Such
a prover would certainly detect that the formula is not
valid, take for example kgs = 2 and weight = 67. In
fact the formula is true only when the value of kgs is
negative (in which case the contract is mute) or zero (in
which case the mistake of using subtraction instead of
addition has no effect).

Another important interface specification is that of
“frame conditions”. For a method, we often want to say
that it may only change the state of certain variables.
For the method above we could state

modifies weight;
public void addkgs(int kgs) { ... };

saying that method addkgs may modify the value of vari-
able weight (but is not required to do so), and that that
method must not modify the value of any other program
variable. In particular, this states that method addkgs
must not change the value of private field name.

We could achieve a similar effect for weight with
the specification ensures weight = \old(weight) but
this would not capture that any other variables won’t
change, and we may not even know the exact set of
other variables since we may not know in which con-
text method addkgs operates. Thus the frame condi-
tion expressed through the keyword modifies adds ex-
tra strength to interface specifications. But that strength
also makes it very difficult to reason about frame condi-
tions in a modular manner.

Finally, one may need the ability to check constraints
for each atom of a composite data object. For example,
the code fragment

Object[] a;
...
ensures \forall int i;

0 <= i < a.length; a[i] != null;
public void someMethod() { ... };

Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures 5

uses a specification pragma for universal quantification.
Method someMethod has as post-condition, saying that
all elements of array a be non-null. A pragma for exis-
tential quantification (\exists) is written in the same
style. Enforcing such constraints is more involved. In this
example, a dynamic check during testing needs to tra-
verse the entire array and verify that all array elements
have non-null object references. A static check of verifi-
cation conditions may require the use of theorem provers
that can deal with quantified formulae of first-order logic
with arithmetic. Such provers are known to often strug-
gle when reasoning about quantifiers.

Annotation languages such as the one sketched above
have been used for the static verification of programs
(e.g. JML and ESC/Java [6], and Spec# [2]), and for
the automated generation of unit tests (e.g. [20]). An-
other application of annotation languages is that they
can be used to provide a mapping between some abstract
system model and concrete program code. Such an ap-
plication can be seen in the paper “A Low-Level Model
and the Accompanying Reachability Predicate” in this
special section that uses an abstract yet formal model of
low-level memory.

3 Decision procedures for logics

As we have already touched upon, logics are natural for-
mal languages for expressing program state and program
behavior. For example, a bit-vector over two variables
x1 and x2 may describe the abstract state of a com-
puter program where truth of x1 encodes that y < z + 1
is true, and truth of x2 represents that y 6= 0 is true,
and where these predicates may stem from control ex-
pressions in said computer program. Given an atomic
program statement such as y := y + z; we then want to
understand its effect as a transducer of abstract states.

3.1 Satisfiability checks generate abstract transitions

For example, if the current abstract state is 01, saying
that x1 is false and x2 is true, is 11 a possible abstract
successor state of 01 after that assignment executed?
Let us write y′ and z′ to represent the values of these
variables after that assigment. Then 11 is an abstract
successor state of 01 if, and only if, the quantifier-free
formula of first-order logic given by

φ1 = ¬(y < z + 1) ∧ (y 6= 0) ∧ (y′ < z′ + 1) ∧ (y′ 6= 0)
∧(z′ = z) ∧ (y′ = y + z) (9)

is satisfiable. These six conjuncts encode the abstract
state 01 (first two conjuncts), the putative abstract suc-
cessor state 11 (next two conjuncts), and the effect of the
assigment (the last two conjuncts). This formula is satis-
fiable, e.g., choose y = −1, z = z′ = −10, and y′ = −11.

So we can conclude that there is an abstact transition
from 01 to 11 for the transducer y := y + z.

Now what if we refine our abstract model to intro-
duce a third variable x3 whose truth represents the truth
of z ≥ 0? From the abstract state 011, then, execution
of y := y + z cannot lead to any abstract state 11b for
b ∈ {0, 1} since the formula

φ2 = φ1 ∧ (z ≥ 0) ∧ (z′ ≥ 0) (10)

is unsatisfiable. To see this, we have y + z = y′ < z + 1
and so y+z < z+1 which implies y < 1. Since y 6= 0 this
renders y < 0 and so from z + 1 ≤ y < 0 we infer that
z < −1 which contradicts the conjunct z ≥ 0 in (10).

Needless to say, such manual derivations are error-
prone and won’t scale to real programs. Therefore we
want fully automated techniques for deciding such prob-
lems. But note that our reasoning above implicitly as-
sumed a “background theory”, meaning that we inter-
preted the constants 0 and 1, equality = and the strictly
less than relation < according to rules that we would ex-
pect to hold, e.g. that < is transitive, that 0 < 1, etc. So
we need to consider decision problems for logics enriched
with appropriate theories.

If the decision problem of satisfaction is undecidable
for a logic – and it is for many – we want automated tech-
niques that approximate such decisions soundly. Suppose
we could not decide whether a formula such as (10) is sat-
isfiable. For verifying the unreachability of error states it
is then always sound to state that a formula is satisfiable
even though we do not know this and it may be false.
The reason is that this finds all abstract transitions be-
tween all abstract states of the computer program that
stem from satisfiable formulae, and may just add some
extra, spurious transitions for unsatisfiable formulae. So
this over -approximates the abstract transition system
obtained by always correctly guessing satisfiability. If on
that over-approximating abstract model no error state
can be reached from an initial state, then this is surely
true in the abstract model it over-approximates – as we
discussed and proved already in the previous section. By
the same token, the latter would then guarantee that the
computer program itself cannot reach such error states,
since any path in the computer program has a corre-
sponding path in that abstract model by construction –
again, by the same argument as already made in the
previous section.

3.2 Satisfiability checks for bit-vector arithmetic

The logic of our example was the quantifier-free fragment
of first-order logic with a theory of ordered arithmetic.
This seemed entirely appropriate for program variables
y and z that have integral or real numbers as values. But
most practical programming langugages declare integer
or real types with a fixed precision. This creates friction
with the clean and idealized world of a mathematical

6 Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures

logic. For example [17], consider the formula

¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z) (11)

in the logic aforementioned. This formula is clearly sat-
isfiable, e.g. take x = 0, y = 1, and z = 2. But what
if these variables are declared as bit-vectors of width 1,
i.e. as single bit flags? Then the formula becomes unsat-
isfiable. This illustrates the challenges faced by decision
procedures for formulae with bit-vector variables of fixed
width.

A naive Boolean encoding of abstract states needs
to be enriched with constraints that accurately capture
the behavior of constants, functions, and relations within
their finite width context-of-use. A technique known as
“bit blasting” [3] translates in this manner a formula
of bit-vector arithmetic into a formula of propositional
logic such that the latter is satisfiable if, and only if, the
fomer is. Thus one can reduce the decision problem for
formulae over bit-vector arithmetic to that of formulae
of propositional logic.

3.3 Relevant concepts from propositional logic

Propositional logic is generated by the grammar

φ ::= x | ¬φ | φ ∧ φ | φ ∨ φ (12)

where x is from an unbounded set of Boolean variables,
¬ denotes negation, ∧ conjunction, and ∨ disjunction.
The decision problem for this logic, whether a formula
is satisfiable, univerally referred to as SAT, is hard. All
known algorithms that decide this problem have expo-
nential worst-case running times in the size of the input
formula. At the same time, a history of SAT solver build-
ing and fine-tuning has resulted in today’s sophisticated
SAT solvers that can solve this problem on many if not
most formulae that reflect encodings of practical applica-
tions such as planning problems in artificial intelligence,
equivalence checking of hardware circuits, etc. But there
are exceptions such as checking the satisfiability of some
unsatisfiable formulae. For example, one can encode the
question of whether n pigeons can fit into n − 1 pigeon
holes without any pigeons sharing holes as a formula of
propositional logic. Such encodings are unsatisfiable by
construction yet modern SAT solvers struggle to show
this for moderate sizes of n for such encodings (see e.g.
the discussion in [17]).

Most SAT solvers operate on formulae in conjunctive
normal form (CNF), generated by the grammar

L ::= x | ¬x

D ::= L | L ∨D

C ::= D | D ∧ C (13)

as expressions C. In particular, such formulae are in
negation normal form (NNF): only variables are negated.
For example ¬x1 ∧ (x2 ∨x1)∧ (x1 ∧x3 ∧¬x2) is in CNF.

Fortunately, there is a technique for efficiently en-
coding formulae in CNF: Tseitsin’s encoding [21] takes
a formula φ of n variables and computes a formula T (φ)
in CNF with n+p variables where p and the size of T (φ)
are linear in the size of φ. The price we pay are the extra
p new variables, whose values for satisfying assignments
also do not really interest us. What we gain is that φ is
satisfiable if, and only if, T (φ) is satisfiable.

For example (adapted from [17]) let n = 3 and p = 2,
where the NNF φ = ¬x1 ∨ (x2 ∧ x3) gets a new variable
for each binary operator: a1 for ∨ and a2 for ∧. We
then stipulate that a1 is true if, and only if, φ is true;
a2 is true if, and only if, x2 ∧ x3 is true; and a1 is true
(since φ needs to be made true). Each stipulation is easily
transformed into a short CNF – e.g. the first stipulation
turns into (a1 ∨ x1) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬x1 ∨ a2) –
and the conjunction of these three CNFs is the desired
Tseitin encoding of φ.

For a CNF φ that is unsatisfiable, an unsatisfiable
core is any subset of its clauses C that, seen as a CNF
in its own right, is again unsatisfiable. Naturally, one is
interested in a small subset of such clauses and many
SAT solvers that operate on CNFs will compute such
a small unsatisfiable core when they check the satisfi-
ability of an unsatisfiable input formula. Furthermore,
resolution-based methods can then be used on an un-
satisfiable core to procude a formal proof that this core,
and therefore also φ, is unsatisfiable. This complements
thus the ability to find a satisfying assignment if a for-
mula is satisfiable. The latter is very easy to do for SAT
solvers. The former proof of unsatisfiability, though, re-
quires more work as it needs to find such a formal proof.

4 Bounded reachability analysis

Bounded reachability is a technique that attempts to
detect errors in systems by unfolding the system from
its initial states a finite, bounded number of times. This
technique thus computes an under-approximation of the
set of states reachable from the initial states. Specifi-
cally, let (S, R, I, E) be our system model as above. We
can then define the set of states reachable from the ini-
tial states through method reachability whose body
performs a least fixed-point computation, where union
denotes set union, I denotes I, and next(X) denotes the
set next(X) = {s′ ∈ S | ∃s ∈ X : (s, s′) ∈ R} already
defined earlier on:

reachability() {
Reach = I;
repeat {
Cache = Reach;
Reach = Reach union next(Reach);
} until (Cache == Reach)
return Reach;

}

Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures 7

If S is infinite, then this computation may well di-
verge. The computation, as defined in this method, is
also not the most efficient one for finite sets S, but we
here focus on conceptual clarity. We can, similarly, write
a method boundedReachability that takes as input a fi-
nite bound and computes a bounded version of the above
fixed-point:

boundedReachability(B : int) {
Reach = I;
for (i = 1; 0 < i <= B) {
Reach = Reach union next(Reach);

}
return Reach;

}

Whenever the bound is non-negative we have that the
set of states returned by boundedReachability(B) is
contained in the set of states reachability(). This is
useful since it gives us a sound way of exposing errors.
Let E represent the set E of error states, let and denote
set intersection, and let {} represent the empty set in
method errorFound:

errorFound(B : int) {
return (E and boundedReachability(B) != {})

}

which returns a Boolean value. When this method re-
turns true, we know that there is some state s ∈ S that
is reachable from some initial state i ∈ I such that s ∈ E.
Therefore, we have found an error. It is a different mat-
ter, though, to then expose a witness path from i to s.
The method errorFound, as written, is of little help here
since it just intersects the bounded reachability set with
the set of error states. Such Boolean approaches to er-
ror detection forget the temporal structure of paths and
thus may have to do some post-processing so that useful
diagnostic information can be regenerated. For example,
knowing that s ∈ E is reachable from I, one could do a
backwards search in (S, R) from s and stop as soon as
some element of I has been reached.

The advantage of using bounded reachability analysis
is that we can unfold the system incrementally and ex-
pose errors as soon as they occur in the unfolding of the
system. For example, concurrency errors such as dead-
locked states typically will happen on a relatively short
transition path in (S,R) from I, and so a finite, incre-
mental unfolding may mean that the system size stays
manageable for tools until errors are found. A full system
check, on the other hand, may never complete as tools
may not be able to handle the size of the full system.

The disadvantage of bounded reachability analysis
seems to be that when method errorFound returns false
we only know that there was no error within the first B
unfoldings. But we do not know what happens in sub-
sequent unfoldings of the system. The error may just
be one unfolding away. It is therefore not suprising that
research has tried to address this shortcoming.

One approach, for example, is to establish the di-
ameter d of the directed graph (S, R) – e.g. by an in-
strumented bounded reachability analysis [16][page 183].
Then B = d as bound will guarantee that the method
boundedReachability(B) computes the same set as does
method reachability(), since there is no cycle in (S, R)
larger than d. This technique is effective, e.g., for reason-
ing about some protocols. So domain-specific knowledge
may be exploitable to compute graph diameters.

Equally, knowledge of the structure of a system may
guide the modeling and implementation of bounded reach-
ability analysis. For example, consider bounded dead-
lock detection in a system that is globally asynchronous
and locally synchronous. We may abstractly represent
such a system via a set of asynchronous events E =
{α1, α2, . . . , αK}. The overall system model is then

S = S1 × S2 × · · · × SK

Si = {0, 1, . . . , ni − 1}
I = whatever the system demands
E = {s ∈ S | ∀s′ ∈ S : (s, s′) 6∈ R} (14)

So a state is a tuple (s1, s2, . . . , sk) where each local state
si corresponds to event αi ∈ E and is from a state space
of finite size ni > 0. The initial states are those required
by the application. The error states are those that do
not have a successor state (those states that deadlock).
Finally, the transition relation R is defined as follows:
we have (s, s′) ∈ R if, and only if, for all 1 ≤ i ≤ K
we either have that the local state si for event αi equals
s′i, or s′i is the result of the synchronous effect of αi on
local state si. For example, that effect may be the par-
allel execution of several assignments to local variables
(not modeled above). Abstractly, one can write the en-
tire transition relation R as a disjunction of conjunc-
tions

∨
αi∈E

∧
r synchrEffectαi

r where r ranges over the
resources that are affected by αi in local state si and
each constraint synchrEffectαi

r accurately captures how
this effect can transform resource r in local state si.

The challange and opportunity here is to exploit the
logical structure of this formula, its two-level layer, so
that the locality of interactions can lead to more com-
pact representations of the bounded reachability anal-
ysis. Such a development is at the heart of the paper
“Decision-diagram-based Techniques for Bounded Reach-
ability Checking of Asynchronous Systems” featured in
this special section.

5 The special section

All papers in this special section demonstrate advances
in reachability analysis for computer systems or in the
efficiency of decision procedures that reason about im-
portant data types for programs. We discuss briefly the
contributions of each of these papers:

8 Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures

“An Abstraction-Based Decision Procedure for
Bit-Vector Arithmetic” deals with the decision prob-
lem for quantifier-free formulae over bit-vector arith-
metic for vectors of bounded width. That is to say, given
a formula from that logic, is this formula satisfiable? The
decision problem for these formulae often has to be im-
plemented as part of a verification tool, whether it rea-
sons about software which – in part – manipulates data
structures built out of bit vectors (e.g. code for 64-bit in-
tegers) or whether it reasons about hardware structures
that manipulate bit-vectors to realize desired functional-
ity at low system levels (e.g. checking the equivalence of
a higher-level hardware program and its realization at
the register transfer level). Efficient techniques for de-
ciding this problem are therefore desirable and will have
high impact on improving such verification tools.

The approach taken in this paper is as follows: from
an initial formula an under-approximating formula is
computed by translating it into propositional logic – as
familiar from “bit blasting” – but where some bit-vector
variables are represented with fewer Boolean variables
than the width of the bit-vector variable. If that under-
approximation is satisfiable (which can be checked with
any SAT solver), the initial formula is satisfiable, too. If
the under-approximation is unsatisfiable, a proof of un-
satisfiability can be generated from an unsatisfiable core
(where the SAT solver needs to support such a proof gen-
eration feature). The terms participating in that proof
are then used to construct an over-approximation of the
initial formula. If that over-approximation is unsatisfi-
able (checked by any SAT solver), then so is the ini-
tial formula. Otherwise, a satisfying model of the over-
approximation (revealed by the SAT solver) can guide
the refinement of the under-approximation by increasing
the number of Boolean variables that are used for rep-
resenting some bit-vector variables. This CEGAR-like
process is completely automated, guaranteed to termi-
nate, and renders a correct implementation of the above
decision procedure.

The avdantage of this technique over, say, conven-
tional “bit blasting” is that it can be much more ef-
ficient than conventional methods when satisfiable bit-
vector formulae have solutions that are representable via
a small number of bits. It also is expected to work well
for unsatisfiable bit-vector formulae that have a proof of
unsatisfiability involving only a relatively small number
of terms. The paper describes this approach in detail and
its experimental results corroborate that this technique
can dramatically improve performance for formulae of
the aforementioned types and for other benchmarks in
software verification.

Other points of interest in this paper are that

– the approach can work on formulae represented as
Boolean circuits, as opposed to representations in
conjunction normal form, and this has advantages

when dealing with specific bit-vector operators such
as ITE

– the approach does not rely on a chosen set of oper-
ators for bit arithmetic but only requires that vari-
ables have finite width and that formulae have propo-
sitional encodings

– it offers translations from the Boolean encodings of
the over- and under-approximations into conjunctive
normal form and so generalizes, in a way, Tseitin’s
encoding to the class of bit-vector formulae.

We are pleased to report that this approach has al-
ready been adopted by Synopsys (www.synopsys.com),
a company that – according to its web site – “provides
tools and services for digital system-on-chip design”, in
one of their tools called Hector – an equivalence checker
between RTL and C++.

The authors of “A Low-Level Model and the Ac-
companying Reachability Predicate” note a gen-
uine need to transfer existing methods and tools for ver-
ifying object-oriented programs written in a high-level
programming language such as Java, C++ or C# into
the realm of systems software. The latter, though, is
mostly written in low-level languages – such as C – that
have access to and exploit low-level features of computer
memory. The authors point out that already the verifica-
tion of programs written in a high-level language such as
Java is challenging since the verfication conditions gener-
ated for such programs need to capture – e.g. – the heap
shape of dynamically allocated data structures, arith-
metic constraints on values of numeric program variables
or interface specifications for method boundaries.

Verification conditions are often written as formulae
of some logic. The encoding of dynamically linked data
structures and their state therefore needs to rely on the
ability to state that one node of the heap is reachable by
another node in the heap through links of perhaps a spe-
cific kind. Transitive closure operators naturally capture
such reachability predicates. But it is well known that
such operators and precidates are not expressible in first-
order logic (which allows for the quantification over pro-
gram varibles but not over relations on such variables).

The authors thus consider a first-order logic extended
with a reachability predicate and relevant theories that
has already been used in the verification of Java-like pro-
grams. In this paper they adapt this logic and the process
of verification-condition generation to obtain relatively
exact verification conditions that allow the verification
of a practically important wide range of programs for
system software.

The logic used for higher-order languages matches
well the encapsulation of low-level memory models pro-
vided in such Java-like languages, since heap nodes of
interest are captured directly by object references, and
thus as variables in the logic. Many linked data struc-
tures in system software, however, are lists whose nodes
are continous segments of memory, and heap nodes of

Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures 9

interest are often only found within such list nodes by
performing a contant shift of bytes in that segment of
memory. For each such constant shift in the program’s
data structures, the authors define a correponding reach-
ability predicate that accurately models this constant
shift.

A challenge in this approach to the generation of ver-
ification conditions of heap-manipulating programs re-
mains: Program effects that change the heap shape or
state need to be reflected in corresponding updates of
the impacted reachability predicates so that they still
accurately model the current state of the heap. Addi-
tionally, the generation of verification conditions needs
a formal abstract memory model so that all operations
on memory, be they access-related (such as a write op-
eration) or management-related (such as the freeing of a
segment of memory), get an operational semantics based
on this abstract model. This is a delicate task as there is
an inherent trade-off between the scalability of program
verification and the degree of precision of this abstract
memory model.

In this paper the authors describe how one can au-
tomatically compute the precise updates for the low-
level reachability predicates, and how theorem provers
for first-order logic can reason about such predicates
soundly. They also design an annotation language that
uses familiar constructs from design by contract but also
allows the use of the low-level reachability predicates
and a special contract pragma for memory management.
The prototype implementation HAVOC takes a C pro-
gram with such annotations and translates this into an
annotated BoogiePL program. The Boogie verifier next
generates the verification conditions whose validity then
implies partial correctness of the BoogiePL program. Fi-
nally, the verification condition is then checked for va-
lidity with the Z3 theorem prover.

The authors validate their approach on a representa-
tive set of small to moderately sized C programs. This
shows that, in principle, one may obtain strong verifi-
cation engines for systems software based on automated
theorem proving of first-order logic. Two promising av-
enues for future work are the development of techniques
that can infer annotations – thus alleviating the annota-
tion burden put on programmers or verifiers, and the ex-
tension of these low-level reachability predicates to data
structures that are more complex than linked lists – such
as trees.

“Decision-diagram-based Techniques for Bounded
Reachability Checking of Asynchronous Systems”,
last but not least, develops new approaches to bounded
reachability analysis, specifically for finding deadlocks in
systems that exhibit global asynchronicity but local syn-
chronicity. The authors model such systems abstractly
by a set E of (asynchronous) events such that each event
α ∈ E is in turn modeled by a synchronous compo-
sition of smaller components. Such models then have

states that are tuples over E as an index set. Entries
of these tuples represent states for the corresponding
events. The transition relation of such systems is then an
asynchronous composition of locally synchronous com-
positions of events. States and transitions alike are thus
amenable to symbolic representations. For example, the
transition relation is logically in disjunctive normal form.
And so one can compute bounded reachability sets sym-
bolically for these kinds of systems.

One approach to symbolic representations is to ex-
press the constraint returned by method errorFound(B),
discussed earlier, through the satisfiability of a (huge)
formula of propositional logic, and to then use a SAT
solver to detect whether that formula is actually satis-
fiable (and thus to detect an error state reachable from
initial states) [4]. This approach, as pointed out by the
authors, is widely considered to be instrumental in lever-
aging the strength of bounded reachability analysis. But
there has also been some work in the literature that
demonstrated that alternative approaches, such as rep-
resenting bounded reachability analysis through Binary
Decision Diagrams (e.g. [5]), are a viable alternative to
SAT-solver-based techniques in the verification of sys-
tems that are synchronous in nature.

The authors remark, though, that the current think-
ing is that such alternative techniques based on deci-
sion diagrams cannot be competitive with those based
on SAT solvers in the verification of asynchronous sys-
tems. We hasten to add that the latter type of system
is of growing importance, e.g., in the hardware industry
where the paradigm shift to multi-core computing means
that many hitherto synchronous systems are now in part
asynchronous.

In this paper, the authors adapt the existing body
of work on saturation [7] – an alternative to conven-
tional breadth-first search – and on various forms of de-
cision diagrams to demonstrate convincingly that tech-
niques for bounded reachability analysis based on de-
cision diagrams can indeed generally perform as well,
and in some cases even better, than SAT-solver-based
techniques. The experimental evidence that they supply
is based on benchmarks for deadlock detection in Petri
nets, and all benchmarks do contain deadlocks.

The authors overcome interesting technical challenges
in transferring these existing techniques into their asyn-
chronous setting. For example,

– they need to bound the symbolic traversal in the
nested fixed-point comuputations of the usual Sat-
uration algorithm

– they trade the avdantages of a more advanced itera-
tion order in the Saturation algorithm over breadth-
first-search approaches against the overhead result-
ing from more expensive symbolic data structures –
demonstrating that this trade off is often effective in
both time and memory consumption

10 Michael Huth and Orna Grumberg: Advances in Reachability Analysis and Decision Procedures

– and they can ensure the termination of the Satura-
tion algorithm that is adapted to a type of decision
diagram that does not encode distance information.

As future work, the authors plan to research whether
the Bounded-Saturation algorithm of their article can be
applied or adapted to problems other than reachability
checking, e.g. to model checking temporal logics that
can express behavior of interest for such glocally asyn-
chronous and locally synchronous systems. They also
mean to investigate to what extent the event locality of
such systems can be exploited by the SAT-solver-based
approaches to bounded reachability analysis.

Acknowledgments

Daniel Kroening kindly pointed out to us that the ap-
proach in the paper “An Abstraction-Based Decision Pro-
cedure for Bit-Vector Arithmetic” has been adopted in
a Synopsys tool.

References

1. T. Ball and S. K. Rajamani. The SLAM project: debug-
ging system software via static analysis. In Conference
Record of the 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–3, Port-
land, Oregon, 16-18 January 2002. ACM Press.

2. M. Barnett, K. Rustan M. Leino, and W. Schulte. The
Spec# programming system: An overview. In Con-
struction and Analysis of Safe, Secure, and Interoperable
Smart Devices, volume 3362 of Lecture Notes in Com-
puter Science, Springer, 2005.

3. S. Berezin, V. Ganesh, and D. Dill. A decision procedure
for fixed-width bit-vectors. Technical report, Computer
Science Department, Stanford University, April 2005.

4. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
Model Checking without BDDs. In Proc. of the Fifth Int’l
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 1579 of Lecture Notes
in Computer Science, pages 193–207. Springer Verlag,
1999.

5. R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Comput-
ers 35(8): 677–691, 1986.

6. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. Rustan M. Leino, and E. Poll. An
overview of JML tools and applications. Int’l Journal
on Software Tools for Technology Transfer, 7(3):212-232,
June 2005.

7. G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation:
an efficient iteration strategy for symbolic state-space
generation. In Proc. of the Ninth Int’l Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pages 328-342, Springer-Verlag, 2001.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc.
of the 12th Int’l Conference on Computer Aided Verifica-
tion, volume 1855 of Lecture Notes in Computer Science,
pages 154–169, Berlin, Germany, 2000. Springer Verlag.

9. E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16(5):1512–1542,
1994.

10. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction
Refinement for Termination. In Proc. of the 12th Int’l
Symposium on Static Analysis, volume 3672 of Lecture
Notes in Computer Science, pages 87–101, London, Eng-
land, 7-9 September 2005. Springer Verlag.

11. P. Cousot and R. Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs. In Proc.
of the Fourth ACM Symp. on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

12. D. Dams. Abstract interpretation and partition refine-
ment for model checking. PhD thesis, Technische Uni-
versiteit Eindhoven, The Netherlands, 1996.

13. D. Dams, R. Gerth, and O. Grumberg. Abstract interpre-
tation of reactive systems. ACM TOPLAS, 19:253–291,
1997.

14. A. Dimovski, D. R. Ghica, and R. Lazić. Data-
Abstraction Refinement: A Game Semantic Approach.
In Proc. of the 12th Int’l Symposium on Static Analy-
sis, volume 3672 of Lecture Notes in Computer Science,
pages 102–117, London, England, 7-9 September 2005.
Springer Verlag.

15. S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In Proc. of the 9th Intl. Conference
on Computer Aided Verification, volume 1254 of Lecture
Notes in Computer Science, pages 72–83, Haifa, Israel,
June 1997. Springer Verlag.

16. D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

17. D. Kroening and O. Strichman. Decision Procedures: An
Algorithmic Point of View. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer Verlag, 2008.

18. G. T. Leavens and Y. Cheon. Design By Con-
tract with JML. Tutorial paper available at
ftp://ftp.cs.iastate.edu/pub/leavens/JML/, 2003.

19. B. Meyer. Design by Contract. In B. Meyer and D. Man-
drioli, editors, Proc. of Advances in Object- Oriented
Software Engineering, pages 1–50, Prentice-Hall, 1991.

20. R. P. Tan and S. H. Edwards. Experiences evaluating the
effectiveness of JML – JUnit testing. ACM SIGSOFT
Software Engineering Notes 29(5): 1–4, 2004.

21. G. Tseitin. On the complexity of proofs in proposi-
tional logics. In J. Siekmann and G. Wrightson, edi-
tors Automation of Reasoning: Classical Papers in Com-
putational Logic 1967–1970. Volume 2., Springer-Verlag
(1983), originally published in 1970.

