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ABSTRACT 

The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with 
chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple mye-
loma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also ob-
served through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was con-
firmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % 
inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory tran-
scription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (sur-
vivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii 
essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further in-
vestigation to identify and purify the bioactive compounds followed by in vivo studies. 
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INTRODUCTION 

The secondary metabolites of medicinal 
plant in crude extracts are well known for 
their bioactivity such as chemo preventive 
agents against cancer. In Asian countries his-
torical background of medication shows that 
medicinal plants (products) have been uti-
lized in cancer treatment (Abate et al., 2017; 
Abebe et al., 2017; Asif, 2015a, c; Cahyana 
et al., 2017; Hamid et al., 2016; Prasanna et 
al., 2011; Yasir et al., 2016a, b). Pinus rox-
burghii, also known as chir pine, is native to 
Himalayas and distributed over a range of 
Himalaya range of Pakistan, Bhutan, Af-

ghanistan, China, Nepal and southern India 
(Shuaib et al., 2014). Five species of Pina-
ceae including P. roxburghii are found in 
Pakistan covering the total area of 1928 
thousand hectares and mostly located in the 
rangelands of North West Frontier, Baluchi-
stan and Punjab provinces (Hassan and 
Amjid, 2009). In Asian sub-continent, P. 
roxburghii is traditionally used as a medici-
nal plant for the treatment of dermatological 
and topical diseases, gastrointestinal disor-
ders, liver, spleen, ear, throat and skin, bron-
chitis, diaphoresis, giddiness, ulcer, inflam-
mation, itching ailments and to cure snake 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/158844767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EXCLI Journal 2018;17:233-245 – ISSN 1611-2156 
Received: September 27, 2016, accepted: February 17, 2018, published: March 12, 2018 

 

 

234 

bite (Sinha et al., 2013). Various authors re-
ported the anti-cancer activities of medicinal 
plants (Chouaïb et al., 2016; Devi et al., 
2015; Heo et al., 2014; Jose et al., 2016; 
Khlifi et al., 2013; Vuong et al., 2015; 
Yessoufou et al., 2015). Apart from tradi-
tional usage of P. roxburghii, the anti-
dyslipidemic (Puri et al., 2011), antioxidant 
(Qadir and Shah, 2014; Salem et al., 2014), 
anti-inflammatory, anticonvulsant, analgesic 
(Kaushik et al., 2012), antiparasitic (Farooq 
et al., 2008), antidiabetic (Kaushik et al., 
2014) and antimicrobial (Iqbal et al., 2011) 
activities have also been reported. Recent 
studies also revealed the anticancer activities 
of some species of Pinacea family (Cho et 
al., 2014; Jo et al., 2012; Kaushik et al., 
2015; Yang et al., 2010). 

Chemical composition of P. roxburghii 
(needles, stem, bark and essential oil) have 
been studied well (Iqbal et al., 2011; Qadir 
and Shah, 2014; Satyal et al., 2013) and car-
yophyllene, thunbergol, 3-carene, cembrene 
and α-pinene were the major constituents in 
P. roxburghii extracts (Hassan and Amjid, 
2009; Salem et al., 2014). In view of consid-
erable anticancer activities of Pinacea family 
plants, it will be of worth to study the anti-
cancer activity of P. roxburghii plant. There-
fore, the present investigation was conducted 
to appraise the anticancer potential of P. 
roxburghii leaves essential oil using different 
human cancer cell lines. Moreover, chemical 
composition of P. roxburghii essential oil 
(PREO) was also evaluated using advanced 
techniques. For anticancer activity evaluation 
of PREO, initially, different cell lines were 
used. After initial trails, two types of cells 
i.e., adherent (A549, HCT-116) and suspen-
sion (U-266, KBM-5) were selected. For 
colony forming assay adherent cancer cell 
lines line HCT 116 are required, whereas 
KBM-5 cell line was used to study apoptosis 
effect of PREO. 

 
MATERIAL AND METHODS 

Materials 
Antibodies against cyclinD1, matrixmel-

latoproteinase-9 (MMP-9), PARP, cellular 

inhibitor of apoptosis 2 (c-IAP2), Bcl-2, Bcl-
xl, c-Myc, β-actin and caspase-3 were ob-
tained from Santa Cruz Biotechnology 
(USA). Survivin antibody and antibody 
against cellular FLICE-inhibitory protein (c-
FLIP) were purchased from R & D Systems 
and Imgenex (San Diego, CA, USA), respec-
tively. Secondary antibodies i.e., goat anti-
rabbit and goat anti-mouse horseradish pe-
roxidase conjugates were purchased from 
Bio-Rad (Hercules, CA, USA). Penicillin, 
streptomycin, DMEM, RPMI-1640, Iscove’s 
DMEM and fetal bovine serum were ob-
tained from Invitrogen (USA).  

 
Cell lines 

Human cancer cell lines i.e., HCT-116 
(human colon cancer), KBM-5 (human mye-
logenous leukemia), U-266 (human multiple 
myeloma cells), MiaPaCa-2 (human pancre-
atic cancer cells), A-549 (human lung carci-
noma cells), SCC-4 (squamous cell carcino-
ma) were obtained from the American Type 
Culture Collection. The HCT-116, MiaPaCa-
2 and A-549 cells were cultured in DMEM, 
the U-266 cells were cultured in RPMI-1640 
medium, whereas KBM-5 cells were cul-
tured in Iscove’s DMEM. DMEM and RPMI 
media were supplemented with 10 % fetal 
bovine serum (FBS), whereas Iscove’s 
DMEM supplemented with 15 % FBS with 
1 % antibiotics (100 U penicillin/mL and 
100 mg streptomycin/mL) (Gibco, USA) was 
used.  

 
3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) cell 
proliferation assay 

PREO effect on the proliferation of can-
cer cell was determined by measuring the 
mitochondrial dehydrogenase activity using 
MTT assay. This assay relies on the mito-
chondrial dehydrogenases of viable cells 
which cleave the tetrazolium ring of MTT 
and yields formazan form, which is moni-
tored at 570 nm (ELISA micro plate reader, 
Bio-Tek, USA). Cells were seeded at a con-
centration of 5.0×103 cells/0.1 mL in a 96-
well plate for 12 h at 37 °C in a humidified 
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incubator in the presence of 5 % CO2 (CO2 
Incubator, Forma Scientific, USA). PREO 
was dissolved in DMSO and cells were 
treated in triplicate with 10, 25, 50 and 100 
µg/mL oil concentrations (with this solution 
being added to the appropriate growth media 
to yield a final DMSO concentration of 
0.1 % and final mixture was incubated for 72 
h at 37 °C). Then, 20 µL MTT (5 mg/mL) 
solutions were added and again contents 
were incubated for 2 h at 37 °C. Finally, 100 
µL buffers (cell lysis) was added and incu-
bated overnight at 37 oC. The optical density 
of the suspension was measured at 570 nm 
using MRX Revelation 96-well multiscanner 
(Dynex Technologies, Chantilly, VA) 
(Sankara et al., 2013). The percentage resid-
ual cell viability was determined using rela-
tion shown in Eq. 1. Where, ODs and ODc 
are the optical densities of sample and con-
trol, respectively. 

Cell	viability	 	% 1 x	10 (1) 

Trypan blue exclusion assay 
Cells were seeded in 96 well plates and 

treated with 25, 50 and 100 µg/mL PREO 
concentrations for 24 h at 37 °C and mixed 
with equal volume of isotonic trypan blue 
(0.4 %). Total cell number and fraction of 
nonviable, dye accumulating cells were 
counted after 2 min in Fuchs-Rosenthal he-
mocytometer under light microscope (Sung 
et al., 2013). 

 
Clonogenic assay 

Cells were grown and colonized by clon-
ogenic assay. HCT-116 cells were seeded in 
6-well plates 1.0×103 cells/well. After 24 h, 
cells were treated with essential oil 25, 50 
and 100 µg/mL concentrations, incubated at 
37 °C for 48 h and subjected to clonogenic 
assay as reported elsewhere (Gupta et al., 
2013).  

 
Apoptosis assay 

For determination of apoptotic effects of 
PREO on colon cancer cells, Live/dead assay 
kit (Molecular Probes, Eugene, OR) method 

was used, which determines the intracellular 
esterase activity and plasma membrane in-
tegrity. Intracellular esterases from live cells 
convert nonfluorescent, cell-permeable cal-
ceinacetoxy methyl ester to the intensely 
green fluorescent calcein, a polyanionic dye 
which was retained within cells. This assay 
was also used to examine the damaged 
membrane of cells (the ethidium bromide 
homodimer-1 enters damaged cells when 
bound to nucleic acids, it produces a bright 
red fluorescence). HCT-116 cells were seed-
ed in 96-well plates 2.0×104/well. After 12 h, 
cells were treated with 25, 50 and 100 
µg/mL PREO concentrations for 24 h and 
then, washed with PBS (Gupta et al., 2011).  

 
Propidium Iodide (PI) staining for  
apoptotic cells 

KBM-5 cells were seeded at 2×106 

cells/1 mL in 6 well plates and incubated for 
2 h at 37 °C, then treated with 10, 25 and 
50 µg/ mL PREO for 24 h at 37 °C. Cells 
were harvested by centrifugation (2000 rpm, 
1 min at 4 °C) and washed with PBS and re-
suspended in 0.3 mL of PBS followed by 
700 µL ethanol with constant slow stirring. 
After complete mixing, the content kept at -
20 °C for 30 min, centrifuged and superna-
tant was decanted and cells were washed 
with PBS. The pellets obtained were re-
suspended in 0.5 mL Propidium Iodide (PI) 
(1 mg/mL in PBS) and 5 µL of RNAse (Li et 
al., 2004).  

 
Western blot analysis 

The PREO effect on protein expression 
was studied using KBM-5 cells following 
method reported elsewhere (Buhrmann et al., 
2013). In colony forming assay adherent 
cancer cell lines are required and HCT-116 is 
a type of adherent cell line, so far, it was for 
colony and apoptosis assay instead of KBM-
5. Briefly, KBM-5 (2.0×106) cells were 
seeded in 12-well plates for 2 h at 37 °C and 
treated with 10, 25, 50 and 100 µg/mL 
PREO concentrations for 24 h at 37 °C. Cells 
were harvested by centrifugation (14000 rpm 
for 30 sec at 4 °C), washed twice with cold 
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PBS. Prepared cells mixed with cell lysis 
buffer (20 mM Tris, pH 7.4, 250 mM NaCl, 
2 mM EDTA, pH 8, 0.1 % Triton X-100, 
0.01 mg/ml aprotinin, 0.005 mg/ml leupep-
tin, 0.4 mM phenyl methyl sulfonyl fluoride, 
and 4 mM NaVO4) for 20 min. The contents 
were centrifuged for 10 min at 14000 rpm 
and supernatant was collected for further 
analysis. Protein contents were measured by 
Bradford assay. Proteins were separated on 
10 % SDS-polyacrylamide gel electrophore-
sis (PAGE) and proteins were electro-
transferred to nitrocellulose membranes us-
ing Trans-Blot apparatus (Bio-Rad Laborato-
ries, Hercules, CA, USA) and blocked for 1 
h in 5 % (w/v) skimmed milk powder in 
PBS/0.1 % Tween 20. Nitrocellulose mem-
branes were incubated overnight (4 °C) with 
the primary antibody directed against MMP-
9, cyclinD1, PARP, c-IAP2, Bcl-2, Bcl-xl, c-
Myc, β-actin, c-FLIP, survivin and caspase-3 
at a 1:3,000 dilution in blocking buffer at 
4 °C on a shaker, washed thrice with wash-
ing buffer and then, incubated with second-
ary antibody conjugated with alkaline phos-
phatase for 90 min at ambient temperature. 
Membranes were washed five times. Specific 
antigen-antibody complexes were detected 
by enhanced chemiluminescence (Amersham 
Pharmacia Biotech, Piscataway, NJ) using 
ECL reagent (GE Healthcare). 

 
Electrophoretic Mobility Shift Assay (EM-
SA) for Nuclear Factor (NF)-κB 

KBM-5 cells were seeded in 12-well 
plates (2.0×106 cells/1 mL), incubated for 2 h 
at 37 °C and treated with 10, 25 and 50 
µg/mL PREO concentrations. After 8 h of 
incubation, cells were harvested and washed 
twice with cold PBS. Swelling induction in 
cell was induced by adding cold cytoplasmic 
extraction buffer and content was kept in ice 
for 15 min. The cytoplasmic cell fraction 
was lysed by adding 3.125 µL, 10 % Igepal 
(Sigma-Aldrich, St. Louis, MO)/100 µL 
CEB and mixed on vortex for 20 sec. Then, 
suspension was centrifuged for 5 min and 
cytosolic supernatant was discarded and cold 
nuclear extraction buffer was added to the 

pellet. Nuclear suspension was incubated for 
30 min on ice (mixed the contents after every 
5 min on vertex) and then, centrifuged at 
10,000 rpm for 10 min. Nuclear protein con-
centration was determined by Bradford as-
say. The binding reaction was initiated by 
adding 15 µg nuclear extract to binding buff-
er (100 µM HEPES, pH7.9; 50 µMEDTA; 
100 µMDTT; and 10 % glycerol), 2 µg poly 
(dI:dC) (Amersham Biosciences, Pisca-
taway, NJ), 3.0 ×105 counts per minute 32P-
labeled 45-mer double-stranded NF-κB oligo 
nucleotide (15 μg of protein with 16fmol 
DNA) from the human immunodeficiency 
virus long terminal repeat (5′-
TTGTTACAAGGGACTTTCCGCTGGGG 
ACTTTC CAGGGAGGCGTGG-3′) and 
1 % Igepal (total volume, 20 µL) and incu-
bated the mixture for 30 min at 37 °C. The 
reaction was terminated by adding 4 µL 6X 
DNA loading dye and sample was placed on 
ice and then, loaded on a pre-run 6.6 % pol-
yacrylamide gel electrophoresis. A double-
stranded mutated oligonucleotide (5′-
TTGTTACAACTCACTTTCCGCTGCTCA 
CTTTCCAGGGAGGCGTGG-3′) was used 
to examine the specificity of binding of NF-
κB to the DNA. The gel was dried and 
placed on film for autoradiography (Han et 
al., 2014). 

 
Gas chromatography/mass spectrometry 
(GC-MS) analysis  

The PREO analysis was performed using 
GC–MS analysis (Agilent-Technologies, Lit-
tle Falls, CA, USA) 6890N Network gas 
chromatographic (GC) system, equipped 
with an Agilent-Technologies 5975 inert XL 
Mass selective detector and Agilent-
Technologies 7683B series auto injector 
used for oil analysis and GC-MS analysis 
performed as precisely reported (Hossain et 
al., 2012).  

 
RESULTS AND DISCUSSION 

PREO was studied against human cancer 
cell lines i.e., cultured HCT-116 (colon can-
cer), KBM-5 (myelogenous leukemia), U-
266 (multiple myeloma cells), MiaPaCa-2 
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(pancreatic cancer cells), A-549 (lung carci-
noma cells) SCC-4 (squamous cell carcino-
ma) cell lines by MTT assay. The percentage 
inhibition activity of PREO was found to be 
concentration-dependent (Figure 1). U-266 
exhibited maximum inhibition of 83 %, 
while HCT-116, SCC4, MiaPaCa-2, A-549 
and KBM-5 showed 71, 69, 73, 73 and 76 
(%) inhibitions, respectively. These finding 
are in line with previous studies i.e., effect of 
P. roxburghii oil against A-549 (lung), C6 
(glioma), T47D (breast), MCF-7 (breast) and 
TH-1(colon) cell lines by MTT assay that oil 
exhibits cytotoxicity against all tested cancer 
cells (Qadir and Shah, 2014). In another 
study, needle and bark oil of P. roxburghii 
showed cytotoxicity against MCF-7 cell at 
100 µg/mL (Satyal et al., 2013). Similarly, 
petroleum, ether and chloroform extract of P. 

roxburghii also showed cytotoxicity against 
IMR-32 human neuroblastoma cell lines 
(Kaushik et al., 2012). The cytotoxicity of 
PREO was correlated with high concentra-
tions of terpinen-4-ol, (E)-caryophyllene, 
and α-humulene, which have been shown to 
be cytotoxic to MCF-7 cells (Wright et al., 
2007). Initially, different cell lines were used 
and the result showed that oil is effective 
against all cell lines. Then, the PREO oil ac-
tivity against two types of cancer cell lines a) 
adherent (A549, HCT-116) and b) suspen-
sion (U-266, KBM-5) was tested (depending 
on the cell condition) because some assays 
perform good with adherent cell lines and 
some performed better with suspension cell 
lines (since assays are specific due to their 
adherent and suspension nature) (Gupta et 
al., 2016; Kang et al., 2011). So far HCT-116 

 
Figure 1: Effect of Pinus roxburghii on tumor cell proliferation. U266, A549, HCT16, SCC4, MiaPaCa2 
and KBM-5 (5×103 cells/well) were seeded in triplicate in 96-well plates; cells were treated in triplicate 
with (0, 10, 25, 50 and 100 μg/mL) concentrations of Pinus roxburghii essential oil (PREO) for 72 h, 
and then assayed for cell viability by the MTT method. 
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cells were treated with different concentra-
tions of PREO for 24 h and subjected to 
live/dead assay. The apoptotic cells percent-
ages were 2.07, 13.22 and 68.87 (%) at 25, 
50 and 100 µg/mL (Figure 2A, B), respec-
tively. It was observed that PREO had less 
effect on colony formation of HCT-116 cells 
at 25 μg/mL, but it completely suppressed 
the colony-forming ability of tumor cells at 

100 μg/mL concentration. The colonies were 
reduced from 417 to 6 as the concentration 
of PREO increased (Figure 3). Most of the 
studies were performed using the human 
myeloid cell line KBM-5 because these cells 
express tumor necrosis factor (TNF) recep-
tors and the inflammatory pathway in these 
cells is well understood (Han et al., 2014).

 
Figure 2: HCT-116 cells were seeded in 96-well plates 2.0×104. After 12 h, cells were treated with 
(25, 50 and 100 μg/mL) concentrations of PREO for 24 h, removed the media and washed with PBS. 
Cells were then stained with assay reagents for 30 min at ambient temperature. Cell cytotoxicity was 
determined by live/dead assay. Data represent the mean±SD of three field measurements. 

Figure 3: HCT-116 cells were seeded in 6-well plates 1.0 ×103. After 24 h, cells were treated with (25, 
50 and 100 μg/mL) concentrations of PREO. After 48 hours, the medium containing essential oil was 
washed off; the cells were allowed to form colonies for 12 days. Stained with 0.5 % crystal violet solu-
tion, washed once with PBS, air-dried, and counted. 
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In order to investigate the changes in cell 
cycle regulation, the KBM-5 cells were 
treated with different concentrations of 
PREO i.e., 10, 25 and 50 µg/mL for 24 h and 
subjected to FACS analysis. Treatment with 
PREO showed a significant increment in the 
percentage of cells in the G0/G1 phase and 
proportion of cells in S phase was also in-
creased with time (Figure 4). Similar to pre-
sent investigation, the P. massoniana bark 
extract also induced apoptosis in Hep-G2 
cells (Ma et al., 2010) and P. koraiensis es-
sential oil induced G1-arrest and inhibits cell 
proliferation and migration in human colon 
cancer cells (Cho et al., 2014). Thus, present 
study revealed that Pinus plant influences the 
cell cycle and induced apoptosis. 

Pinus roxburghii inhibits TNF-α induced 
NF-κB activation in a dose-dependent  
manner 

The chronic myeloid leukemia cells 
(KBM-5) were used for TNF-α induced NF-
κB activation study since these cells express 
tumor necrosis factor (TNF) receptors and 
also inflammatory pathway is well under-
stood (Han et al., 2014). The cells were 
treated with different concentrations of 
PREO and activated with TNF-α for NF-κB. 
As evident from results, the PREO induced 
TNF-α (NF-κB) in KBM-5 cells, the TNF-α-
induced NF-κB activation was dose-
dependent to PREO concentration. It was 
observed that the inhibition in NF-κB activa-
tion was maximum at 50 μg/mL dose (Figure 
5). In support of these findings, the analgesic 
and anti-inflammatory activity of P. rox-
burghii has also been reported elsewhere 
(Kaushik et al., 2012). 

 
 

 

Figure 4: Cells were seeded at 1–2×106 cells in 12 well plates and incubated for 2 h, then treated with 
(10, 25 and 50 μg/mL) concentrations of PREO for 24 h. Stained cells were protected from light until 
they were evaluated on flow cytometry, which was performed using an Epics XL-MCL flow cytometer. 

Control  10 µg/ml 

25 µg/ml 50 µg/ml 
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Figure 5: Effect of Pinus roxburghii on NF-κB ac-
tivation. Pinus roxburghii suppresses TNF-
induced NF-κB activation in a dose-dependent 
manner. KBM-5 cells (2.0×106 cells/mL) were 
pre-incubated with PREO (0, 10, 25, 50 μg/mL) 
for 8 h and then treated with 0.1 nM TNF for 30 
min. Nuclear extracts were prepared and as-
sayed for NF-κB activation by EMSA (left panel). 
Values below the EMSA gel indicate percent 
growth inhibition. Percent inhibition of NF-κB by 
PREO was calculated by quantitation of NF-κB 
bands using a Storm 820 phosphorimager 
equipped with ImageQuant software (Amersham) 
(right panel). Data represent the mean±SD of 
three measurements. *p<0.05, versus control. 
 
 
Pinus roxburghii represses TNF-α–induced 
NF-κB–dependent gene products associated 
with survival, proliferation, invasion, and 
metastasis 

Since PREO inhibited the survival of 
cancer cells, also PREO can inhibit the ex-

pression of gene products involved in tumor 
cells survival, which was also investigated. 
The effect of PREO on anti-apoptotic pro-
teins such as Bcl-2, Bcl-xL, c-IAP-2, and 
surviving were studied, which are well 
known to contribute in cell survival. The ef-
fect of PREO on cell proliferative proteins 
i.e., cyclin D1 and c-Myc was investigated, 
both of which are known to play a major role 
in cell proliferation. Results revealed that all 
proteins were down-regulated by increasing 
the PREO concentration. The effect of 
PREO on the expression of gene products 
was higher at a concentration of 100 μg/mL. 
In next step, effect of PREO was investigat-
ed on the activation of caspase-3 and poly 
(ADP-ribose) polymerase (PARP) cleavage. 
It was observed that caspase-3 cleaved in a 
dose-dependent manner. Moreover, PREO 
also induced PARP cleavage in dose-
dependent manner (Figure 6). There is lack 
of reports about the expressions of proteins 
by PREO. Although, the effect of P. densi-
flora leaf essential oil on expression of 
caspases, PARP, Bcl-2, Bax and XIAP in 
YD-8 human oral cancer cells have been re-
ported and a similar trend was observed in 
the present investigation (Jo et al., 2012). 

 
GC-MS analysis of P. roxburghii 

The PREO was subjected to GC-MS 
analysis for identification of individual com-
ponents in PREO. Total fifty-four compo-
nents were identified constituting 99.47 % of 
PREO (Table 1). The major constituents in-
clude α-pinene (27.11 %), which is an im-
portant component in pinus species (Asta et 
al., 2006). Other components identified were 
monoterpenes hydrocarbons 3-carene 
(9.20 %), β-pinene (7.02 %) and D-limonene 
(2.33 %). Caryophyllene (2.46 %) and longi-
folene (0.87 %) sesquiterpenes and oxygenat-
ed sesquiterpenes caryophyllene oxide 
(10.83 %) and humulene epoxide II (2.04 %) 
were also identified. These results were in 
good agreement with reported finding i.e., α-
pinene was the major component in P. rox-
burghii needles oil having percentage com-
position of 29.3 % (Iqbal et al., 2011). Some  
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Figure 6: Pinus roxburghii suppresses expression of gene products involved in tumor cell survival, 
proliferation, and metastasis. KBM-5 cells were treated (10, 25, 50 and 100 μg/ml) of PREO for 24 h. 
Whole cell protein extracts were prepared, separated by electrophoresis, and then transferred to the 
nitrocellulose membrane. The membrane was sliced according to molecular weight to probe with dif-
ferent antibodies. After stripping, the membrane was reprobed with β-actin to verify equal protein load-
ing. 

 
 

Table 1: Chemical composition of Pinus rox-
burghii essential oil  

Components Composi-
tion (%) 

Mode of 
identifica-

tion 
Monoterpene  
hydrocarbons 

  

β-Thujene 0.32 RT, MS 
α-Pinene 27.11 RT, MS 
Camphene 1.16 RT, MS 
o-Cymene 0.27 RT, MS 
β-phellandrene 0.18 RT, MS 
(-)-β-Pinene 7.02 RT, MS 
β-myrcene 1.27 RT, MS 
3-Carene 9.20 RT, MS 
p-Cymene 1.24 RT, MS 
D-Limonene 2.33 RT, MS 
o-Cymenene 0.16 RT, MS 
Pinane 0.52 RT, MS 
Oxygenated  
monoterpenes 

  

Ethanone, 1-(1,4-
dimethyl-3-
cyclohexen-1-yl)- 

0.63 RT, MS 

α-Campholenal 0.27 RT, MS
trans-(-)-
Pinocarveol 

0.41 RT, MS 

trans-2-carene-4-ol 0.79 RT, MS 
Levomenthol 0.16 RT, MS 

Ethanone, 1-(1,4-
dimethyl-3-
cyclohexen-1-yl)- 

0.47 RT, MS 

α-Terpineol 0.70 RT, MS 
(-)-Myrtenol 0.43 RT, MS 
cis-Verbenol 0.26 RT, MS 
Verbenone 0.19 RT, MS 
Chrysanthenone 0.15 RT, MS 
α-Phellandrene 0.27 RT, MS 
Eucarvone 0.97 RT, MS 
Sesquiterpene 
hydrocarbons

  

Longifolene 0.87 RT, MS
Caryophyllene 2.46 RT, MS
Humulene 0.84 RT, MS
Oxygenated  
sesquiterpenes 

  

Caryophyllene  
oxide 

10.83 RT, MS 

β-Santalol 0.22 RT, MS 
Humulene epoxide 
II 

2.04 RT, MS 

cis-Z-α-Bisabolene 
epoxide 

0.19 RT, MS 

10,10-Dimethyl-
2,6-
dimethylenebicy-
clo [7.2.0]undecan-
5.beta.-ol

0.35 RT, MS 

Isoaromadendrene 0.32 RT, MS
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epoxide 
Farnesol 1.20 RT, MS
Farnesal 0.22 RT, MS
Oxygenated  
Diterpene 

  

Thunbergol 0.27 RT, MS 
Others   
3-Methylpentane 2.91 RT, MS 
Hexane 4.74 RT, MS 
trans-3-Methyl-2-
pentene 

5.34 RT, MS 

Toluene 1.97 RT, MS 
Bicy-
clo[2.2.1]heptane-
2-carboxaldehyde, 
3-methyl-,  
(2-endo,3-exo)- 

0.20 
 

RT, MS 

Phenyltrime-
thylsilane 

0.95 RT, MS 

3-Methylphenol 0.20 RT, MS 
Bornyl acetate 0.57 RT, MS 
Cyclohexane, 2-
ethenyl-1,1-
dimethyl-3-
methylene- 

0.60 RT, MS 

Benzyl alcohol 0.36 RT, MS 
2,6-Octadiene, 2,6-
dimethyl- 

0.55 RT, MS 

α-Terpenyl acetate 2.15 RT, MS
Geranyl acetate 0.44 RT, MS
Isovaleric acid 0.41 RT, MS
2,6 dimethyl-1,3,6-
heptatriene 

0.35 RT, MS 

trans-Farnesol ac-
etate 

1.00 RT, MS 

Methyl dehydro-
abietate 

0.44 RT, MS 

RT = retention time, MS = Mass spectrometry 
 
 

authors also reported the composition of 
PREO grown in diverse climates (Adams et 
al., 2014; Hassan and Amjid, 2009). PREO 
from Algeria showed β-caryophyllene and β-
selinene major component (Mimoune et al., 
2013). From Nepal, β-caryophyllene was 
recorded to be a major component (Satyal et 
al., 2013) and α-pinene, β-pinene, limonene, 
camphene, betapinene, β-caryophyllene and 
α-terpinol form India has been reported as 
major components (Qadir and Shah, 2014). 
From Egypt, α-pinene, 3-carene, β-pinene 
and longifolene were reported (Salem et al., 
2014). The slight difference in chemical 

composition of essential oil might be due to 
climatic, seasonal, geographical or genetic 
variations (Farooq et al., 2008). However, 
these findings are in agreement with previ-
ous results demonstrating the anti-
inflammatory activity of P. roxburghii 
(Kaushik et al., 2012). Plants are a potential 
sources of drug development of cancer 
chemoprevention or treatment (Bayala et al., 
2014) since plants are potent source of bio-
active compounds (Ashraf et al., 2015; Asif, 
2015b; Aslam et al., 2016; Gull et al., 2015; 
Hameed et al., 2015; Mensah and Golomeke, 
2015). However, a lot of studies are neces-
sary to carry out on the anti-cancer activity 
of PREO. However, interest in medicinal 
plant as a source of drug development has 
increased. However, few researchers report-
ed the cytotoxicity for essential oils 
(Cavalieri et al., 2004; Lampronti et al., 
2006). However, there is a long road before 
using PREO them as an anticancer agent 
since very few studies have been done on the 
PREO. So far, there is need to study the 
composition of PREO and in vivo trials to 
test the PERO anticancer activity. 

 
CONCLUSIONS 

The anticancer, anti-inflammatory activi-
ties and chemical composition of PREO was 
evaluated. Cytotoxicity was evaluated by 
MTT assay using colon, leukemia, multiple 
myeloma, pancreatic, head and neck and 
lung cancer cells. PREO caused cancer cell 
death and apoptosis at low concentration. 
PREO inhibited cell proliferation and in-
duced apoptosis in cancer cells and this ef-
fect was correlated with the suppression of 
NF-κB. The TNF-induced inflammation was 
also inhibited by PREO at very low concen-
tration. On the other hand, the low-dose of 
PREO did not show cytotoxicity associated 
with normal physiological function. There-
fore, the use of PREO might be a potential 
candidate as an anticancer agent, which 
needs to be investigated in vivo because 
p450 enzymes can metabolize the active 
compound in PREO. Future studies will be 
focused to identify and purify the bioactive 
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compounds and in vivo anticancer activity 
evaluation.  
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