
Methods for Efficient Resource Utilization
in Statistical Machine Learning Algorithms

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Helena Victoria Kotthaus

Dortmund

2018



Tag der mündlichen Prüfung: 7. Juni 2018
Dekan / Dekanin: Prof. Dr. Gernot Fink
Gutachter / Gutachterinnen: Prof. Dr. Peter Marwedel

Prof. Dr. Jörg Rahnenführer



Acknowledgments

First and foremost, I would like to thank my advisor Prof. Peter Marwedel for his
support, motivation and guidance over the past seven years. Thank you for pointing
my research to a rewarding direction and providing me with the opportunity to
work on this beautiful interdisciplinary field of research. I would also like to thank
Prof. Jörg Rahnenführer, for his commitment to participate as a second reviewer of
my thesis.

Special thanks go out to Prof. Jan Vitek for many fruitful and stimulating
discussions about speeding up statistical algorithms and to Prof. Floréal Morandat
for giving me the opportunity to work on the traceR profiling tool.

I would furthermore like to thank Prof. Uwe Ligges for introducing me to the
members of the Core R Team, which enabled me to gain detailed insights of the
development process of the R language.

My PhD studies would have been less exciting without the summer internship
at Oracle Labs, which had a great impact on my further development. I owe
special thanks to Prof. Pinar Tözün and to Prof. Michael Engel – thank you for this
unforgettable experience.

The development of the resource-aware model-based optimization framework
presented in this thesis would not have been possible without the previous work of
numerous colleagues at the statistics department of TU Dortmund University. In
this context, I owe special thanks to Jakob Richter, Michel Lang and Prof. Bernd
Bischl. On the implementation side, my work was further supported by Ingo Korb,
Andreas Lang, Felix Gonsior and Markus Künne.

The research leading to this thesis has received funding from the Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 -
Providing Information by Resource-Constrained Data Analysis - project A3.

I would furthermore like to thank all my colleagues, in particular those from
Dortmund, for many technical and fun conversations that brightened up my day-to-
day life. Special thanks go out to Malte Isberner, thank you for the time where you
offered me your beautiful working desk at your home in Silicon Valley for starting
the writing process of my thesis as well as for your encouragement and feedback. I
would also like to thank Christian Bockerman, thank you for tirelessly supporting
me during the writing process of my thesis.

Many thanks go to Prof. Helmut Dohmann who pushed me to move to TU
Dortmund University for my Master studies, and to my sister Catherine Kotthaus
for motivating me to pick up computer science as a profession.

Last but not least, I want to thank my family, my friends and my boyfriend for
their unconditional support and patience during the course of this thesis.

i





Abstract

In recent years, statistical machine learning has emerged as a key technique for
tackling problems that elude a classic algorithmic approach. One such problem, with
a major impact on human life, is the analysis of complex biomedical data. Solving
this problem in a fast and efficient manner is of major importance, as it enables, e.g.,
the prediction of the efficacy of different drugs for therapy selection. While achieving
the highest possible prediction quality appears desirable, doing so is often simply
infeasible due to resource constraints. Statistical learning algorithms for predicting
the health status of a patient or for finding the best algorithm configuration for
the prediction require an excessively high amount of resources. Furthermore, these
algorithms are often implemented with no awareness of the underlying system
architecture, which leads to sub-optimal resource utilization.

This thesis presents methods for efficient resource utilization of statistical learning
applications. The goal is to reduce the resource demands of these algorithms to
meet a given time budget while simultaneously preserving the prediction quality.
As a first step, the resource consumption characteristics of learning algorithms are
analyzed, as well as their scheduling on underlying parallel architectures, in order
to develop optimizations that enable these algorithms to scale to larger problem
sizes. For this purpose, new profiling mechanisms are incorporated into a holistic
profiling framework. The results show that one major contributor to the resource
issues is memory consumption. To overcome this obstacle, a new optimization based
on dynamic sharing of memory is developed that speeds up computation by several
orders of magnitude in situations when available main memory is the bottleneck,
leading to swapping out memory.

One important application that can be applied for automated parameter tuning
of learning algorithms is model-based optimization. Within a huge search space,
algorithm configurations are evaluated to find the configuration with the best
prediction quality. An important step towards better managing this search space is
to parallelize the search process itself. However, a high runtime variance within the
configuration space can cause inefficient resource utilization. For this purpose, new
resource-aware scheduling strategies are developed that efficiently map evaluations
of configurations to the parallel architecture, depending on their resource demands.
In contrast to classical scheduling problems, the new scheduling interacts with the
configuration proposal mechanism to select configurations with suitable resource
demands. With these strategies, it becomes possible to make use of the full potential
of parallel architectures. Compared to established parallel execution models, the
results show that the new approach enables model-based optimization to converge
faster to the optimum within a given time budget.
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Chapter 1

Introduction

1.1 Challenges in Statistical Learning Applications

In recent years, statistical machine learning has emerged as a key technique for
tackling problems that elude a classic algorithmic approach. One such problem,
with a major impact on human life, is the analysis of complex biomedical data.
Here, the complexity and the dimensionality of the data that has to be analyzed
is increasing due to new high-throughput technologies such as micro-arrays. Most
datasets are high-dimensional, consisting of a large number of features. For example,
when performing statistical analysis of medical records, the number of monitored
gene expressions for each patient is so large that the resulting data set is huge even
if the number of patients is fairly small [BG11].

Finding a model that describes the interaction between the high-dimensional
variables to identify important features and their interplay is a complex problem.
Solving this problem in a fast and efficient manner is of major importance, as it
enables, e.g., the prediction of the influence of different drugs for therapy selection
or the prediction of the survival time of a patient under a given medication. While
achieving the highest possible prediction quality appears desirable, it is often simply
infeasible due to time and budget constraints. This applies especially in the field
of personalized medicine, where the patient needs a treatment as soon as possible.
Typically, the trade-off between prediction quality and resource utilization can be
tuned by changing parameters of these algorithms. However, the correlation between
parameter values and both prediction quality and resource utilization is often highly
non-linear, such that finding a suitable parameter configuration is a challenging
problem in itself.

Statistical learning algorithms like classification for predicting the health status of
a patient or model-based optimization for finding the best algorithm configuration for
the prediction require an excessively high amount of resources. For the optimization
of such algorithms, the overall goal is to reduce resource demands to meet a given
time budget while simultaneously preserving the prediction quality. There exist
several different approaches that try to accomplish this goal.

Many existing approaches that tackle the problem of learning under resource
constraints seek to optimize the algorithm itself, thereby reducing its resource
demands. This naturally requires a thorough understanding of the theoretical
underpinnings of the algorithm that range far beyond the mere application [TS13;
NS17]. Another approach is to view the algorithm as a black-box and optimize the
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2 Chapter 1. Introduction

resource utilization by enhancing the runtime and memory consumption behavior
of the software environment, and the language the algorithm was implemented in.
In contrast to the first approach, the second approach – on which we focus in this
thesis – can be applied to a broad range of learning algorithms without the need of
detailed knowledge of the algorithm itself. However, it naturally only yields benefits
for algorithms that are implemented in the chosen language or rely on the chosen
runtime.

1.2 Selected Contributions to Statistical Learning

The most widely used programming language for statistical data analysis - and
biostatistics in particular - is the GNU R language [IG96]. While apparently
not affecting its popularity, its lavish use of resources makes it unsuitable in an
environment where high performance is required, or where computation and memory
resources are scarce. Here, performance and memory consumption are critical
aspects, that can lead to unacceptably long execution times. To solve this problem it
is important to find out where the bottlenecks are and thus where the biggest room
for improvement lies to develop new methods with a high optimization potential.

One important statistical learning application that requires a huge amount of
resources is Model-Based Optimization (MBO), which can be used for parameter
optimization of machine learning algorithms [HHL11]. Within a huge search space,
algorithm configurations with different resource demands are evaluated and compared
to find the configuration (model) with the best prediction quality. An important
step towards better managing the huge search space is to parallelize the search
process itself. However, doing this in a naive fashion that disregards the specifics of
the underlying parallel architecture or uses inefficient scheduling strategies may lead
to wasting resources.

This dissertation addresses methods for efficient resource utilization of statistical
machine learning applications. Regardless of whether we are looking at making a
single, specific machine learning algorithm faster or looking at an efficient paralleliza-
tion strategy for MBO, the motivation remains the same: being able to tackle larger
problem sizes without increasing the resource utilization or end-to-end runtime, or,
alternatively, reducing the resource utilization and runtime while the problem size
remains constant.

1.2.1 The Domain Specific Language R

R is an open source programming language, used as the de facto standard software
environment for the development of statistical applications. Its main characteristic is
a large set of dynamic features which allow the rapid development of new algorithms.
The Comprehensive R Archive Network (CRAN)1 includes over 11,000 software

1CRAN: http://cran.r-project.org, 2018

http://cran.r-project.org


1.2. Selected Contributions to Statistical Learning 3

packages for statistical computing and the Bioconductor2 repository contains over
1,300 packages for the analysis of genomic data.

However, the flexibility comes at a price: R is considered to be a rather slow
language consuming a huge amount of memory during execution [MHO+12], which
is a critical aspect for computation intensive applications like machine learning
algorithms. One of the reasons for this is the fact that R is an interpreted language,
stemming from the fact that classical ahead-of-time compilation of R code is chal-
lenging due to its dynamic nature. To overcome this, some developers make use of
the fact that R can interface with other languages such as C, C++ or Fortran [R
C18b], to improve the performance of computation-intensive parts of the algorithm.
This in turn places a higher burden on the developers who are forced to forgo the
convenience offered by the R language that made it so popular in the first place. It
also means they cannot rely on functions from other R packages for these parts.

While alternative languages for statistical computation have been proposed [Tie18;
RIn18], the statistics community has shown no interest in these in spite of R’s
performance issues. The main reason for this is the vast amount of open-source
software packages available in R. In recent years, multiple approaches have been
developed to optimize the runtime of R applications. There are projects with the goal
to create alternative, more efficient R implementations [Ber18; TDH12; KMM+14;
KE18]. However, most of these are experimental, and the user base remains fairly
small due to compatibility problems with the available R software packages. Other
projects [WWP14; Nea18] attempt to provide a faster R by modifying the original
GNU R instead of re-implementing it, in order to stay compatible with the available
R packages. For all of these projects, their authors have shown improvements
for simple R programs. However, whether these speed-ups translate to complex
real-world applications like learning algorithms is a different matter.

Optimizations for a faster execution and also for an efficient resource utilization
of statistical learning algorithms based on R can only be profitable if they cover two
aspects: They need to preserve compatibility with the available software packages
many R programs are based on and simultaneously cover the real resource bottlenecks
of those algorithms. As a first step, for guiding optimization efforts in the appro-
priate direction, it therefore is indispensable to analyze the runtime and memory
consumption characteristics of learning algorithms. With the analysis of bottlenecks
arising during execution, the optimization potential for resource utilization can
be estimated and new efficient optimizations can be developed. The R execution
environment already includes profiling tools such as Rprof [R C18d] for analyzing
bottlenecks, but the analysis is restricted to high-level characteristics only. Internal
functions like memory management of the R Interpreter itself are outside of the
scope of what can be profiled.

For a more precise analysis, new profiling mechanisms need to be developed to
analyze runtime and memory behavior of statistical machine learning algorithms.

2Bioconductor: http://www.bioconductor.org, 2018

http://www.bioconductor.org


4 Chapter 1. Introduction

To fully benefit from now-ubiquitous multi-core architectures, it is essential that the
analysis is not restricted to single-threaded algorithms but also includes parallel
(typically “embarrassingly parallel”) learning algorithms and their mapping and
scheduling on underlying parallel architectures.

1.2.2 Model-Based Optimization

One important parallel learning application with huge resource demands is MBO,
also known as Bayesian optimization. MBO is, for example, applied for automated
hyperparameter optimization of machine learning algorithms [HHL11]. It is a state-of-
the-art technique for efficient black-box optimization [JSW98]. A black-box function
is an unknown function f mapping elements from a d-dimensional space to some
(typically real-valued) quality metric. The goal is to find the global minimum (or
maximum) of the function in a limited time. For hyperparameter optimization, the
goal is to find the algorithm configuration with the best performance like prediction
quality for classification algorithms. Different algorithms with different parameters
are evaluated to find a well-performing configuration for the given data. Due
to the huge model space, a large amount of resources is needed to evaluate the
configurations [CVB+02]. In fact, the evaluation of a single configuration can take
several hours [VH04].

MBO is a global optimization method that is not only applied in statistics for the
optimization of machine learning hyperparameters but also for many other research
fields where expensive models have to be optimized to find a well-performing
configuration. To reduce the number of necessary evaluations of the black-box
function, MBO uses a regression model to approximate the objective function. The
processing cycle of MBO is shown in Figure 1.1.

Figure 1.1: Simplified Visualization of the Model-Based Optimization Procedure.

Starting on an initial design of already evaluated configurations, the regression
model guides the search to new configurations by predicting the outcome of the black-
box on yet unseen configurations (response surface). Based on this prediction, an infill
criterion (also called acquisition function) proposes a new promising configuration
for evaluation. In each iteration, the regression model is updated on evaluated
configurations of all previous iterations until the budget is exhausted.

Originally, the MBO algorithm sequentially proposes one configuration to be
evaluated after another. To allow for parallelization, several modifications to the
general technique or to the infill criteria have been suggested [HVC16] (such as
constant liar, Kriging believer, qEI [GLC10], qLCB [HHL12], MOI-MBO [BWB+14]),
that result in multiple points being proposed in each iteration. The number of
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proposed configurations is typically chosen to equal the number of available CPUs.
However, due to the heterogeneous resource requirements (CPU, memory etc.) for
evaluating the different configurations, this can lead to inefficient resource utilization:
Before new configurations can be proposed, the results of all evaluations within one
iteration need to be gathered to update the model. The slowest evaluation thus
becomes the bottleneck, and all other parallel worker processes idle after finishing
their evaluation before a new iteration can start. One approach to avoid idling is to
desynchronize the model update. Such asynchronous techniques have been suggested
and discussed by [GJL11; JLG11; JLG+12]. Here, the main problem is to avoid
evaluations of very similar configurations. Since the evaluation of a configuration
can take several hours, the evaluation of similar configurations with little or no
impact on the overall optimization is a waste of resources.

The overarching goal is to execute model-based optimization in a resource efficient
way to enable the processing of larger problem sizes within a given time budget
or, in other words, reduce the end-to-end wall-clock time for a constant problem
size. This calls for the development of new resource-aware scheduling strategies to
efficiently map configurations to the underlying parallel architecture, depending on
their resource demands. In contrast to classical scheduling problems, the scheduling
for MBO needs to interact with the configuration proposal mechanism to select
configurations with suitable resource demands for parallel evaluation, which is a
complex problem, since the resource demands need to be known (at least estimated)
before execution.

1.3 Contribution of this Thesis

This thesis presents multiple methods for achieving efficient resource utilization for
statistical machine learning applications.

One objective is to analyze the resource utilization of statistical learning applica-
tions implemented in the R programming language and develop optimizations that
enable these algorithms to scale to larger problem sizes. As a first step towards
this goal, the most common classification algorithms are analyzed with respect to
their resource requirements, to determine where the highest optimization potential
lies. This is enabled by enhancing and redesigning the R profiling framework traceR.
Even if the analysis is focusing on learning algorithms, the results also support the
development of new optimizations for the R programming language in general and
also optimizations for alternative R implementations. The results show that one of
the major contributors to the runtime issues is the memory consumption behavior.

To reduce the memory overhead of machine learning applications, a new op-
timization based on dynamic sharing of memory is developed. This optimization
avoids duplication of page contents for large data structures and optimizes the
copy-on-write mechanism of the R language. Its evaluation is based on different
benchmark sets also including classification algorithms. Especially when the OS
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starts to swap out memory the new optimization is able to speed up computation
by several orders of magnitude.

In addition to the above-described new memory optimization, parallelization
of the execution is used to speed up computation, which poses new resource uti-
lization challenges. To analyze the bottlenecks arising in embarrassingly parallel
machine learning applications like hyperparameter optimization, the traceR profiling
framework is extended for the analysis of parallel programs. For hyperparameter
optimization, the analysis with traceR shows that a high runtime variance in the
configuration space can cause inefficient resource utilization due to different comple-
tion times of evaluations running in parallel. The results produced by traceR are
used to develop new mapping and scheduling methods with respect to the resource
utilization.

To enable a resource-efficient parallel variant of model-based optimization, a
Resource-Aware Model-Based Optimization framework called RAMBO is developed
and evaluated. Here, different resource-aware scheduling strategies are included.
With RAMBO, it becomes possible to make use of the full potential of parallel
architectures in an efficient manner. Therefore, a runtime estimation model that
estimates the runtime for each evaluation of a configuration is developed to guide the
mapping of evaluations to available resources. In addition to the runtime estimates,
the scheduling strategies use an execution priority reflecting the estimated profit of
an evaluation for finding the best configuration.

Different experimental setups are used to evaluate the performance of the
RAMBO framework on heterogeneous and homogeneous parallel architectures. The
results show that RAMBO manages to balance long execution times more evenly
and thus executes more evaluations in the same time budget, leading to a higher
confidence in the optimization space compared to the default parallel execution
model. Compared to other parallel execution models for model-based optimization
that aim at reducing the idle time by asynchronously updating the model, RAMBO
converges faster to the optimum under the assumption that the resource estimates
are accurate. In addition, the results for the scheduling strategy designed for hetero-
geneous architectures show that RAMBO converges faster to the optimum while
consuming the same amount of energy compared to the competing approach.

1.4 Outline of this Thesis

The organization of the remaining parts of this thesis including the main contributions
is visualized in Figure 1.2.

• Chapter 2 provides an overview of the fundamentals of model-based optimiza-
tion that will be optimized within Chapter 6. Furthermore, the fundamentals
of the R language environment are presented, which builds the basis for the
optimization of the resource utilization of learning algorithms in Chapter 4.
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Figure 1.2: Organization and Contributions of the Thesis.

• Chapter 3 starts with the related work on performance optimizations for R.
It covers one of the main contributions of this thesis by presenting the analysis
of the resource utilization of statistical learning algorithms implemented in the
R programming language to support the development of new optimizations
that enable these algorithms to scale to larger problem sizes. To accomplish
this, a profiling framework was redesigned and enhanced.

• Chapter 4 picks up the main results of the analysis presented in Chapter
3, leading to the second main contribution of this thesis: an optimization
approach for efficient memory utilization of machine learning algorithms. Be-
sides an extensive evaluation of this optimization, this chapter also contains a
survey of related optimization approaches as well as the fundamentals of R’s
memory management system.

• In addition to the memory optimization in Chapter 4, the second major avenue
for optimizing learning algorithms that is explored in this thesis is paralleliza-
tion. Chapter 5, therefore, presents the analysis of parallel machine learning
algorithms with the goal to develop new resource-aware scheduling methods. It
furthermore includes the fundamentals of parallel execution models supported
by the R programming language and presents the parallel profiling mechanisms
of the profiling framework that was developed for the analysis.

• Chapter 6 picks up the results presented in Chapter 5. It contains one
of the main contributions of this thesis, a new resource-aware model-based
optimization framework (RAMBO) including scheduling strategies for paral-
lel MBO. The chapter starts by introducing the related approaches for the
parallel execution of MBO and continues with presenting RAMBO and the
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resource-aware scheduling strategies that can be applied on heterogeneous and
homogeneous system architectures. The strategies are evaluated extensively
and compared against existing approaches.

• Chapter 7 summarizes this thesis and provides an outlook on future work.

1.5 Author’s Contribution of this Thesis

According to §10(2) of “Promotionsordnung der Fakultät für Informatik der Technis-
chen Universität Dortmund vom 29.August 2011”, a dissertation within the context
of doctoral studies has to contain a separate list that highlights the author’s contri-
butions to research and results obtained in cooperation with other researchers. For
this purpose, the author’s contribution to publications which lead to the contents of
chapters 3, 4, 5 and 6 are described in the following:

• Chapter 3: In this chapter, an analysis of the resource utilization of statistical
learning algorithms implemented in the R programming language is presented
based on publications [KKL+14] and [KKK+14]. Those publications were
mainly written by the author of this thesis. The evaluation results were
performed in cooperation with Ingo Korb. The ideas and concepts of the
analysis were mainly developed by the author of this thesis and partly evolved
in discussions among co-authors.
The benchmarks [KL18] were designed in collaboration with Michel Lang, who
also carried out their implementation. The traceR tool [tra18] used for the
analysis, was originally developed by Morandat et al. [MHO+12]. An initial
redesigned and enhanced version was developed by the author of this thesis.
An improved version was later implemented by Ingo Korb.
Furthermore, the publication [KPM12] was referenced as a related approach.
It was mainly written by the author of this thesis, while the concepts evolved
in discussions among the co-authors.

• Chapter 4: This chapter is mainly based on publication [KKE+14] present-
ing an optimization approach for efficient memory utilization for learning
algorithms. Most sections of the publication were written by the author of
this thesis. The original idea for the optimization came from the author of
this thesis based on the results from [KKL+14] and was refined in discussions
among all co-authors. The implementation was carried out by Ingo Korb.
Furthermore, the publication [KKM16] was referenced as related approach.
Ingo Korb was the main author while the author of this thesis contributed
with the idea and concept of the evaluation part.

• Chapter 5: In this chapter an analysis of parallel learning algorithms based
on publications [KKM15a] and [KKM15b] is presented. The author of this
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thesis was the lead author of these publications. The evaluation results were
generated in cooperation with the co-author Ingo Korb, who implemented the
parallel extension of the traceR tool [tra18]. The other co-authors contributed
through technical discussions.

• Chapter 6: This chapter presents resource-aware scheduling strategies for par-
allel MBO and is based on publications [RKB+16], [KRL+16], [KRL+17] and
[KLN+17]. The general idea of optimizing MBO via resource-aware scheduling
came from Peter Marwedel. The main idea of the RAMBO framework and
its first evaluation including the first fit scheduling strategy were carried out
in [RKB+16]. Here, Jakob Richter and the author of this thesis contributed
equally. The concept of the RAMBO framework was entirely designed by the
author of this thesis, while Jakob Richter was responsible for the evaluation
part. The RAMBO framework is based on the mlrMBO library [BBH+14]
that was implemented by a multitude of people, among others Jakob Richter,
Michel Lang, Bernd Bischl and Janek Thomas.
In [KRL+17] and [KRL+16], an enhanced knapsack based scheduling strategy
and a comparison study with several other parallel MBO approaches was pre-
sented. The idea and concept of the scheduling algorithm and the comparison
study were mainly designed by the author. The scheduling algorithm was later
implemented in cooperation with the author’s bachelor student Andreas Lang.
The parallel MBO approaches that RAMBO was compared to were described
and implemented by Jakob Richter, Janek Thomas, Michel Lang and Bernd
Bischl. They and the other co-authors also contributed through technical
discussions. The first generation of evaluation results was done in cooperation
with Jakob Richter and later largely re-worked and analyzed by the author of
this thesis.
The RAMBO approach for heterogeneous systems [KLN+17] was written and
developed by the author of this thesis and later implemented in cooperation
with Andreas Lang, based on technical discussion among all co-authors. The
energy measurements were performed with a tool provided by Olaf Neuge-
bauer [Neu17], who also advised the author on carrying them out.
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Parts of this thesis have been published as short abstracts in the following
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Strategy for the R Language. In Abstract Booklet at the International R User
Conference (UseR!) WiP, page 68, Nashville, Tennessee, USA, 2012
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Chapter 2

Fundamentals:
Model-Based Optimization

and the R Language

This thesis addresses methods for efficient resource utilization of statistical machine
learning applications. For this purpose, this chapter provides an overview of the
fundamentals of model-based optimization, as a machine learning algorithm with huge
resource demands, and the GNU R programming language as the de facto standard
software environment for the development of statistical learning applications.

R is an open source programming language. Its main characteristic is a large
set of dynamic features which allow for the rapid development of new algorithms.
The Comprehensive R Archive Network (CRAN) supports the R ecosystem with
over 12,000 R software packages for statistical computing, and the Bioconductor
repository with over 1,300 R packages for the analysis of genomic data. Due to the
high amount of available software packages R is not only used as a programming
language in statistics, it is also a popular graphics tool and data analysis platform in
various areas like finance, biology or physics. As reported by Rexer Analytics, which
is the largest survey of data science in industry, R has gained high popularity in
recent years. While in 2007 only 23% of the respondents used R, in 2015 already 76%
of them were using R and more than a third use it as their primary data analysis
platform1. R is therefore also popular in the domain of machine learning.

R offers a wide variety of machine learning algorithms via packages2. Addition-
ally, frameworks that offer interfaces to several machine learning algorithms are
available like caret [Kuh08], mlr [BLK+16], Rweka [HBZ09] or h2O [Kt17]. Most of
the machine learning algorithms allow the adjustment of their parameters. The pa-
rameter configuration of an algorithm can highly influence its prediction performance
and also its resource utilization. Thus, it is important to adjust those parameters,
which require deep knowledge of the algorithms or, alternatively, an automatic
hyperparameter optimization approach [THH+13; LKM+15]. The hyperparameters
are the parameters of an algorithm that are configured before the learning algorithm
starts.

1Rexer Analytics: http://www.rexeranalytics.com/data-science-survey.html, 2018
2CRAN Task View: Machine Learning & Statistical Learning: https://cran.r-project.org/

web/views/MachineLearning.html, 2018
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For automated hyperparameter optimization, different approaches can be ap-
plied. One popular global optimization method is Model-Based Optimization
(MBO) [HHL11]. R also offers a toolbox for MBO called mlrMBO [BBH+14; BRB+17].
MBO is a state-of-the-art technique for efficient optimization of expensive black-box
functions [JSW98], it is also known as Bayesian optimization. A black-box function
is an abstraction of a system for which the internal working is unknown. For hyper-
parameter optimization the machine learning algorithm represents the black-box
function. To reduce the number of necessary evaluations of algorithm configurations,
MBO uses a regression model to approximate the outcome of the black-box. The
goal is to find the configuration with the highest quality of the output measured by a
given performance criterion within a limited time budget. Due to huge model spaces
(many different parameter configurations), a large amount of resources is needed to
evaluate these configurations [CVB+02; VH04]. MBO, as an important machine
learning algorithm with huge resource demands, is therefore addressed within this
thesis.

The remainder of this chapter is structured as follows: Section 2.1 presents the
fundamentals of MBO including hyperparameter optimization. An overview of the
R language environment including the R language characteristics and execution
model is given in Section 2.2. Section 2.3 summarizes this chapter.

2.1 Model-Based Optimization

In recent years, statistical machine learning has emerged as a key technique for
tackling problems that elude a classic algorithmic approach. One such problem,
with a major impact on human life, is the analysis of complex biomedical data.
Different machine learning algorithms are utilized like classification for predicting
the health status of a patient or MBO for finding the best algorithm configuration
for the prediction. While achieving the highest possible prediction quality appears
desirable, it is often simply infeasible due to time and budget constraints. This
applies especially in the field of personalized medicine, where the patient needs a
treatment as soon as possible.

The hyperparameters of an algorithm can heavily affect both its prediction
accuracy as well as its resource utilization. Therefore it is important to tune these
parameters. Different approaches can be applied. MBO is one popular method used
for hyperparameter optimization, that tries to minimize the number of necessary
configuration evaluations to find the best algorithm configuration as soon as possible.

In this section, first the concept of hyperparameter optimization is presented
in Subsection 2.1.1 and then the MBO algorithm as one method for automated
hyperparameter optimization is introduced in Subsection 2.1.2.
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2.1.1 Hyperparameter Optimization

The hyperparameter configuration of a machine learning algorithm highly affects its
prediction performance and also its resource utilization like its runtime. Dependent
on the algorithm and its parameters a single evaluation of a configuration can take
up to several hours [VH04].

A manual optimization of these parameters would require expert knowledge of
the implementation and is often infeasible due to the huge model space that spans
over all possible parameter configurations. Furthermore, the performance of an
algorithm and thus its optimal configuration can vary dependent on the input data
set.

Figure 2.1: Visualization of the mean missclassification error (mmce) as a perfor-
mance measurement for different configurations of a SVM classification
task with radial basis function kernel (SVM-RBF).

Figure 2.1 visualizes the heterogeneity of the performance of different configu-
rations of a Support Vector Machine (SVM) with a Radial Basis Function kernel
(RBF) used for classification. Dependent on how the parameter for the kernel γ on
the x-axis and the cost parameter C of constraint violations on the y-axis are chosen,
different mean misclassification errors (mmce) are generated [KBF+12]. Here, the
goal of hyperparameter optimization is to find the configuration with the lowest
mmce (light yellow) within a limited time budget.

In general, the hyperparameter optimization problem can be formulated as
follows: Given an algorithm A that is parameterized and problem instances I and a
cost metric c, find the parameter configuration θ∗ that minimizes (or maximizes)
c on I [HHL11]. For machine learning algorithms, the cost metric c quantifies the
quality of the configuration like, e.g., the classification performance that can be
evaluated via different resampling methods like, e.g., cross-validation [GWH+13].
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The space of possible configurations Θ forms the search space for the optimization
problem:

θ∗ ∶= argminθ∈Θ f(θ). (2.1)

Here, f(θ) denotes the evaluation of the algorithm with θ as parameter configu-
ration and can be interpreted as the evaluation of a black-box function f ∶ X → R,
were the parameter configurations form the input and the quality (e.g., prediction
quality) forms the output (see Subsection 2.1.2).

For automated hyperparameter optimization, several methods were developed,
e.g., the random search methods [BB12], evolutionary algorithms [LSS12; AST09],
meta-learning approaches [BGS+08], bandit-based methods [LJD+17], racing algo-
rithms [BBS07; LKM+15] or Bayesian optimization approaches like MBO [SLA12;
KFB+17]. Additionally, combinations of these methods can be applied, e.g., Hutter
et al. [FKH17] proposed a combination of bandit-based methods that are based on
the random search with MBO for hyperparameter optimization.

This thesis will solely focus on MBO approaches for hyperparameter optimization,
since MBO is one of the most efficient methods for reducing the number of necessary
evaluations of configurations [BRB+17; Jon01].

2.1.2 Model-Based Optimization Algorithm

The MBO algorithm is not only applied in statistics for the optimization of hyper-
parameters, but also in many other research fields where expensive models have
to be optimized to find a well-performing configuration. MBO is a state-of-the-art
algorithm for expensive black-box functions in the field of Design and Analysis of
Computer Experiments (DACE) [SWM+89].

The challenge of this global optimization method is to find the best configuration
possible or so-called global optimum of a given black-box function f ∶ X → R,
f(x) = y, x = (x1, . . . , xd)T with a d-dimensional input domain X ⊂ Rd and an output
y. Here, f is usually expensive to evaluate and thus the number of configuration
evaluations is limited by a time budget. It is furthermore assumed that X ⊂ Rd is
expressed by simple box constraints. The values of X can not only be numeric but
also categorical. The goal is to find the input x∗ (former θ∗ see Equation (2.1)) and
thus the best configuration of the black-box with:

x∗ ∶= argminx∈X f(x). (2.2)

Sequential Mode-Based Optimization (SMBO) Algorithm: The general
Sequential MBO (SMBO) algorithm is visualized in Figure 2.2. Starting on an initial
model with already evaluated configurations of f , a regression model f̂ is fitted. The
initial set can be generated with different sampling methods described in [MBC00].
The regression model tries to describe the dependencies between the configuration of
the algorithm (input) and the quality of its output (response) measured by a given
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performance criterion. The evaluated configurations of the initial set are usually
chosen in a space-filling manner to uniformly cover the input space.

Setup Initial 
Model

Propose New Candidate 
based on Infill Criterion

Update
Regression Model

Evaluate 
Configuration

Figure 2.2: Visualization of the Sequential MBO (SMBO) Algorithm.

The regression model guides the optimization by estimating its response surface.
The response surface represents the estimated outcome of the black-box function on
yet unseen configurations. A surrogate model is often used as a regression model,
as it is comparably inexpensive to evaluate and therefore often used when function
evaluations are very expensive [FSK08]. It iteratively proposes a new promising
configuration x that is determined by optimizing a so-called infill criterion (also
called acquisition function).

The infill criterion quantifies the improvement of a configuration based on a
compromise between good predicted outputs and uncertainty about the search space
region (a high potential to optimize the quality of the regression model). To obtain
the objective value y, f(x) is evaluated and the surrogate is refitted and a new
configuration is proposed for the next iteration. This process is repeated until a
target objective value is reached or a predefined budget is exhausted.

SMBO Example: Figure 2.3 visualizes two exemplary MBO iterations steps.
Here, y (solid line) in the upper parts of both MBO iteration steps denotes the
output of the unknown black-box function f while ŷ (dotted line) denotes the
outputs of the surrogate regression model f̂ that tries to approximate the black-box
function. The gray area around ŷ represents the uncertainty of the surrogate model.

In the first MBO iteration (see Figure 2.3, upper part) the initial set of configu-
rations (red dots) are already evaluated. Based on the corresponding minimum of
the infill criterion in the lower part of the MBO iteration figures (dotted line, lcb) a
new configuration (blue triangle upper part) is proposed for evaluation.

In the second MBO iteration (see Figure 2.3, lower part) f̂ is refitted with the
evaluated configuration (green rectangle) and a new configuration is proposed (blue
triangle) based on the infill criterion (lcb). This process continues until the budget
is exhausted. This popular Efficient Global Optimization (EGO) algorithm was
proposed by Jones et al. [JSW98].

Surrogate Model: EGO sequentially proposes one point to be evaluated after
another using Kriging as a surrogate and the Expected Improvement (EI) as an infill
criterion (2.3). Kriging (also called Gaussian process regression) is one of the most
popular and flexible variants of a surrogate model [RW05; JSW98]. It is recommended
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Figure 2.3: Visualization of two exemplary SMBO iterations with the Lower-
Confidence Bound (LCB) as infill criterion.

when the input domain is numeric X ⊂ Rd. If X contains, e.g., categorical variables,
the Random Forest algorithm is commonly used as surrogate [HHL11].

Infill Criterion: The infill criterion guides the optimization by quantifying the
improvement of a configuration x based on a compromise between good predicted
outputs µ̂(x) (exploitation) and uncertainty about the search space region ŝ(x)
(exploration). The former described surrogate model based on Kriging is often
combined with the popular EI criterion or with the Lower-Confidence Bound (LCB)
criterion.
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The EI criterion is defined as follows:

EI(x) = E(max(ymin − µ̂(x), 0))

= (ymin − µ̂(x))Φ(ymin − µ̂(x))
ŝ(x) ) + ŝ(x)ϕ(ymin − µ̂(x)

ŝ(x) ) .
(2.3)

Here, Φ is the distribution, ϕ is the density function of the standard normal distri-
bution and ymin is the best observed objective value so far.

Alternatively, the comparably simpler LCB infill criterion can be utilized:

LCB(x, λ) = µ̂(x) − λŝ(x), λ ∈ R, (2.4)

where µ̂(x) denotes the posterior mean and ŝ(x) the posterior standard deviation of
the surrogate model for configuration x. Exploitation and exploration are balanced,
a good (low) expected value of the solution µ̂(x) is rewarded, and high estimated
uncertainty ŝ(x) is penalized. The λ variable guides the exploration-exploitation
trade-off.

In addition to the presented infill criteria, several other infill criteria [Jon01], spe-
cializations, e.g., for categorical search spaces like in the SMAC Framework [HHL11]
and noisy optimization [RGD12] have been introduced. In this thesis, we will focus
on the EI and LCB criterion.

Both EI and LCB are very popular and can be used for SMBO, where only one
point is proposed per MBO iteration. To allow for parallelization within one MBO
iteration, multiple points need to be proposed per iteration. To accomplish this,
infill criteria based on the defined EI and LCB were suggested in [GLC10; HHL12]
and will be explained in more detail in Section 6.1.

In the next section, the R language environment, which is used for the develop-
ment of efficient model-based optimization within this thesis, will be presented.

2.2 The R Language Environment

The R language was designed by Ihaka and Gentleman and first released in
1993 [IG96]. It is influenced by two languages, the statistical programming language
S [BC84] that was developed at Bell Laboratories in 1980 and the Scheme program-
ming language [Dyb09]. Figure 2.4 visualizes the most important parts that the R
language environment is built on and influenced by.

R is maintained by the R Core Team and the R Foundation of statistical
computing and is available under the GPL license [R C18b]. R has also commercial
support like the TERR environment, developed by TIBCO [F18] or Microsoft R,
former Revolution R, provided by Revolution Analytics and is used and supported
by many other global companies like Google, Oracle, Microsoft and IBM.
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Figure 2.4: Categories that influence and build up the R language environment.

The R implementation includes about 700 built-in packages. Packages are
libraries including R functions that can be dynamically loaded into an R program.
Besides the built-in packages that contain the basic functions of R, R can be
extended with over 13,000 packages, available on different repositories like CRAN3,
Bioconductor4, and GitHub. The CRAN repository offers several task views where
those packages are sorted by topics.

Once a year the R community meets at the UseR! conference to present and
discuss their new packages and optimizations for R. Furthermore, since 2015 a
group of researchers, including members of the Core R Team that concentrates on
alternative R implementations and performance optimizations for R meet once a
year at the R Implementation, Optimization and Tooling Workshop (RIOT).

Since R is highly extensible, it can interface with other languages, thus packages
contain not only R code but also code from other languages like C, C++, or
Fortran [R C18d]. The R language has so far no formal language specification.
There exists only a first draft that was published at the end of 2017 [R C17b], the
specification is only given by R’s source code that is frequently changed.

The R Language is processed by an Interpreter that is mostly written in C code.
In 2011 a bytecode compiler was added to the R language by Tierney [Tie01]. It
provides the option to compile R code into a bytecode representation for faster
evaluation. This enables optimizations which are generally beneficial for explicit loops
in R code. R is commonly used interactively via a command-line interface, called
Read-Eval-Print-Loop (REPL) that supports the rapid prototyping of statistical
applications [R C18a]. The next section presents the language characteristics of R.

3CRAN: http://cran.r-project.org, 2018
4Bioconductor: http://www.bioconductor.org, 2018

http://cran.r-project.org
http://www.bioconductor.org
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2.2.1 Language Characteristics

R is a vector-based language with functional paradigms but also has object-oriented
characteristic and is dynamically typed. This section is based on the draft of the R
language specification [R C17b] and the analysis of the R languages characteristics
by Morandat et al. [MHO+12].

Vector-based: In R everything is an object that is represented by a so-called
S-Expression (symbolic expression) in the underlying C code representation [R C18c].
The S-Expression type describes how the contents of the object are treated, which
is important for the execution by the interpreter. The basic data structure in R is a
vector object. Vectors contain elements of the same type, e.g., primitive data types
like, logical, integer, real, complex, character or raw.

The values of a vector can be accessed via indexing operations, e.g., x[3] -
returning the third element of vector x. Missing observations, which are commonly
needed in statistics are represented by the value NA. Vectors that contain values of
any type of an R object are called lists or generic vectors. R objects can contain
attributes. Attributes are name-value pairs. For example, if a vector contains an
attribute called “dim” (dimension) this vector represents a matrix.

Furthermore, R offers special compound objects called factors and data frames.
Factors are used to categorize data and are stored as a vector of integers with a
corresponding set of characters. Data frames are used for storing data tables. They
consist of a generic vector of vectors, factors or matrices. R has also several other
data types used for internal processing like environments, function objects, built-in
objects, pairlists or promises (for further details see Chapter 3).

Functional paradigms: In R functions are treated as first class objects. They
can be manipulated as any other R object, returned by other functions, and passed
as arguments to other functions. Function objects consist of an argument list,
a function body, and an environment and are thus closures. An environment is
created when a function is called and contains references to variables that can be
accessed and manipulated by the function. Thus functions are lexically scoped like
in imperative programming languages. R also provides a global environment and
environments for packages.

Each argument of a function is stored in a promise for lazy evaluation. A
promise contains the reference to the lexical environment of the argument. R
provides referential transparency by passing arguments by deep copy (pass-by-value
semantics) except for environments that are passed by reference. However, side
effects are possible, since the environment of a function that holds the variables, can
be manipulated after its creation.

Dynamic characteristics and computing on the language: The R program-
ming language has a dynamic type system, arguments that are passed to a function
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are frequently type checked or converted inside the function. Furthermore, R allows
for computing on the language. The user can create new language objects at runtime
to store code that can then be passed around and executed via the so-called “eval”
function. Environments can directly be created by the user. They can be attached to
the search path or to a function. The concept of reflection allows the manipulation
of variables inside environments including the call stack.

Object-oriented: R supports several object-oriented systems that are influenced
by the functional characteristics of the language and thus different from languages
like Java or C++. The two most popular ones are called S3 and S4 [Cha16].

The S3 system is based on so-called generic functions with single dispatch and
has no formal definition of classes. Instead of the object, the generic function
decides which method is called. An S3 object has an attribute attached called “class”
attribute. This attribute is a vector of strings that is used to decide in which order
methods are resolved. The generic functions take the S3 object as a parameter and
look up the class attribute to dispatch the matching function from most to least
specific. This system is commonly used in R and also applied for the internal parts
of the interpreter to dispatch on built-in functions.

The S4 system also uses generic functions like S3, but introduces formal classes
that define the inheritance structure instead of just using an attribute. Furthermore,
it allows for multi-methods, meaning that the method dispatch supports multiple
arguments to decide which method to call. The S4 system is complex and not that
often used compared to the S3 system.

2.2.2 Execution Model

The R language is evaluated by an interpreter [R C17b]. This evaluation process is
visualized in Figure 2.5.

The R Parser converts the textual R code expressions into an internal repre-
sentation that represents an Abstract-Syntax-Tree (AST). The AST consists of R
language objects like language expressions (Exp) and constant values (C) or symbols
(S). It is traversed and executed by the R Evaluator. The evaluator returns the
value (V) of the parsed expression.

Most language objects in this AST are stored as function calls that contain
the function name and a list of arguments. Function objects are dispatched to
the evaluation of their bodies together with their argument lists that are stored as
promises for lazy evaluation. Each time a function is invoked a context is created
and placed on a stack that is needed for error handling or control flow operations
like the return operation. When the evaluation of the context has finished, it is
removed from the stack [R C17b].
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Figure 2.5: Execution Model of the R Language.

2.3 Summary

This chapter provided an overview on the fundamentals of this thesis including MBO -
a machine learning algorithm with huge resource demands - and the R programming
language - the de facto standard software environment for the development of
statistical learning applications.

In the following chapters, different methods for efficient resource utilization in
statistical machine learning algorithms based on the R programming language will be
presented. While Chapter 3 and Chapter 4 focus on single-threaded machine learning
applications and their resource bottlenecks induced by the R programming language,
Chapter 5 and Chapter 6 will focus on parallel machine learning applications and
the optimization of the parallel variant of the described MBO approach.





Chapter 3

Profiling of Machine Learning
Algorithms

This chapter presents an analysis of the resource utilization of statistical learning
algorithms implemented in the R programming language and is based on the
papers by Kotthaus et. al. [KKL+14; KKK+14]. GNU R is the most widely used
programming language for statistical data analysis in general, and biostatistics in
particular. While apparently not affecting its popularity, its lavish use of resources
makes it unsuitable in an environment where high performance is required, or
where computation and memory resources are scarce. Here, runtime performance
and memory consumption are critical aspects, that can lead to unacceptably long
execution times. To solve this problem it is important to find out where the
bottlenecks are and thus where the biggest room for improvement lies.

One major hurdle for efficient R programs is that classical ahead-of-time compi-
lation of R code is hindered by R’s highly dynamic nature. This leads some users
to re-implementing performance critical parts of their algorithms in C or C++ to
achieve a higher execution speed. However, translating bigger parts of an R program
to another language is a complex task, since R programs rely on functions from R
libraries or basic functions included in the R interpreter execution environment that
might not be readily available in other environments.

In fact, one of the main drivers behind R’s popularity is the vast amount of
available open source software packages, a fact that has also proven to be a near-
insurmountable obstacle for alternative statistical computation languages that have
since been proposed [Tie18; RIn18]. In spite of R’s well-known performance issues,
these languages have never gained any significant traction within the statistics
community. In recent years, multiple approaches have been developed to improve
the execution speed of R applications. There are projects with the goal to create
alternative, more efficient R implementations [Ber18; TDH12; KMM+14; KE18].
However, most of these are experimental, with only a few users due to compati-
bility problems with the available R software libraries. Other projects [WWP14;
Nea18] attempt to provide a faster R by modifying the original GNU R to stay
compatible with the available R libraries without the need of reimplementation.
All of these projects have usually shown improvements for simple R programs and
micro-benchmarks, but they exhibit fairly mixed results when it comes to speeding
up complex real-world applications like machine learning algorithms.

25
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Optimizations for a faster execution and also for an efficient resource utilization
of statistical learning algorithms based on R can only be profitable if they cover
two aspects: Staying compatible with the available software packages most R
programs are based on, and simultaneously covering the real resource bottlenecks of
those algorithms. It is therefore indispensable to analyze the runtime and memory
consumption characteristics of learning algorithms. With the analysis of bottlenecks
arising during execution, the optimization potential for resource utilization can
be estimated and new efficient optimizations can be developed. The R execution
environment already includes profiling tools such as Rprof for analyzing bottlenecks,
but the analysis is restricted to high-level characteristics only. In particular, internal
functions like memory management of the R Interpreter itself are outside of the
scope of what can be profiled. For a precise analysis, new profiling mechanisms need
to be developed to analyze runtime and memory behavior of real-world R programs.

The objective of this chapter is to analyze the resource utilization of statistical
learning algorithms to support the development of new optimizations that enable
these algorithms to scale to larger problem sizes. As a first step towards this
goal, the most common classification algorithms are analyzed with respect to their
resource requirements, to determine where the highest optimization potential lies.
To accomplish this, an R profiling framework, called traceR [tra18], is redesigned
and enhanced. Even if the analysis is focusing on learning algorithms, the results
also support the development of new optimizations for the R programming language
in general.

This chapter is structured as follows: First, Section 2.2 gives an overview of the R
language environment including the R language characteristics and execution model
of R. First, the related approaches of optimizations for the R language are presented
in Section 3.1. Section 3.2 then describes the profiling framework that serves as a
basis for the performance analysis. An overview of the machine learning benchmarks
and their input data sets used in the analyses is given in Section 3.3, followed by
a detailed analysis of their runtime and memory behavior. This analysis serves as
a starting point for developing approaches to overcome the identified bottlenecks.
Finally, the results are summarized in Section 3.4.

3.1 Optimizations for R - Existing Approaches

A major hurdle for general speedups of R programs is that R is executed by
interpretation as opposed to it being compiled to machine code. Classic ahead-of-
time compilation of R code is hindered by the fact that R is highly dynamic. Thus
information like data types which is needed for optimizations in the compiler is only
available at runtime. For example, when a function is declared in an R program, no
data types need to be specified for the parameter list. When such a function is called,
there are multiple ways to pass the same set of arguments. These features make R
very convenient for the user, but very inconvenient for ahead-of-time compilation.
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Other languages with a similarly dynamic nature like Matlab or Python have
overcome such runtime issues by using Just-In-Time (JIT) based compilation ap-
proaches [AP01; BCF+09]. These approaches use knowledge gained at runtime to
specifically compile fragments for the time-intensive parts instead of either compiling
the entire program at once or interpreting the program statement-by-statement.

One popular runtime environment that provides a just-in-time compilation is
the Java Virtual Machine (JVM) [LYB+14]. Kotthaus et al. [KPM12] presented a
concept for implementing an optimized version of R by targeting the JVM. Exist-
ing alternative R execution environments that also target the JVM are the fastR
project [KMM+14; SWH+16] and Renjin [Ber18]. But also other VM implemen-
tations were utilized to speed up R, e.g., the NQR project that targets the Parrot
VM [KE18]. Furthermore, approaches that propose experimental specialized JIT
compilers for R exist [TDH12; TDH14]. These approaches reimplement the original
R interpreter that is written in C, in another language such as Java or C++ and
benefit from optimizations available to their runtime environments. However, the
reimplementations cannot yet guarantee full compatibility with existing R programs
and libraries due to the complex and evolutionary development of the R language
and its missing formal specification.

Other projects like pqR [Nea18] or Orbit VM [WWP14; WPW15] attempt to
provide a faster R interpretation by modifying the original R interpreter instead
of reimplementing GNU R to stay compatible. The original GNU R execution
environment also contains the option to compile R functions into byte code for faster
evaluation which provides some improvement in runtime especially for programs
that use loops [Tie01]. Furthermore, additional libraries were developed to speed up
arithmetic operations by taking advantage of specific processor architecture features
like the Intel MKL [Int18] library or OpenBLAS [ZWW18]. Such libraries are opti-
mized implementations of the reference BLAS (Basic Linear Algebra Subprograms)
library that is included in the R execution environment.

All of the described optimization approaches have usually shown improvements
for simple R programs or specific R functions, but they exhibit fairly mixed results
when it comes to speeding up complex real-world applications like machine learning
algorithms. One of the objectives of this thesis is to provide insights into the runtime
and memory behavior of these algorithms on the original R execution environment.
The hope is that both alternative R implementations as well as the original GNU R
can use these results to develop optimizations that improve the runtime performance
and resource utilization of real-world code.

Morandat et al. [MHO+12] already analyzed bottlenecks for R programs from
different fields of statistics. Here, mostly artificial input data sets where used.
However, as the characteristics of the input datasets vastly influence the runtime
behavior of a program, only realistic data can yield results which are beneficial
in practice. In this thesis, we focus specifically on machine learning algorithms
combined with real-world input data sets from the UC Irvine machine learning
repository (UCI) [BL18] in order to ensure a realistic scenario when analyzing
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the main reasons for the lavish use of resources of R. Therefore, the R profiling
framework traceR, presented in the next Section, is redesigned and enhanced.

3.2 Profiling Tool for R - traceR

The traceR framework, used for the profiling of machine learning algorithms in this
thesis, was originally developed at the Purdue University [Rea12] for R version 2. As
part of this thesis, traceR was reimplemented and redesigned with improved usability
and analysis capabilities to provide more detailed insights, such as gathering more
information about the sizes of vector data structures used during the execution of
an R program. Besides, traceR was also ported to the current R version 3 and
is available on GitHub [tra18]. In addition, traceR was also augmented with new
profiling mechanisms to allow for profiling parallel R applications (see Chapter 5).

The R runtime environment already provides profiling tools like Rprof [R C18d]
and several libraries like profviz [CLC+17] to visualize the profiling data generated by
Rprof. However, in contrast to traceR, Rprof is a sampling profiler, meaning it stops
the execution of a program at regular intervals to record which function is currently
executed. The advantage of a sampling profiler is the relatively low measurement
overhead, which however comes at the cost of a greatly reduced precision. In fact,
the results can vary greatly between two profiling runs of the same problem with
the same input data, especially when many functions with short execution times
are involved. The runtime of functions with an isolated runtime smaller than the
timing interval can be miscalculated since these function invocations might remain
invisible to the profiler as they “fall through the cracks”. This may be true even
if the cumulated runtime of such functions has a significant impact on the overall
execution time of a program. In the worst case, the program consists of many short
function runtimes that when summed up even dominate the runtime of the entire
program but are mostly missed by the profiler.

Using Rprof furthermore restricts the analysis to high-level characteristics only;
details about the internals of the R runtime environment functions are not provided.
Also, the available memory profiling tools like Rprofmem [R C18d] are unsuitable
for the purpose of a detailed memory behavior analysis – for example, memory
allocations related to certain types of user data are reported, but internal data types
like pairlists, which are used for passing arguments in a function call, are outside of
the scope of what can be profiled.

For the development of new efficient optimization for R it is indispensable to
have a detailed view into the internals of the R execution environment or so-called
interpreter. The traceR profiling mechanisms are directly integrated with the R
interpreter code, which enables the generation of more detailed data. For instance,
data about how much of the program is spent in C/Fortran code supplied by R
packages can be measured, or the runtime needed for memory management tasks
like garbage collection can be analyzed. The traceR framework uses a deterministic
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profiling approach, where each interesting location of the R interpreter is instrumented
with an explicit call to the profiler. Thus, no function call can be missed, but a
larger overhead is incurred compared to the sampling approach. To reduce the
overhead, traceR is separated into two instrumented versions of the R interpreter,
one to record runtime information and one to analyze non-time-related behavior like
memory allocations or details about function parameters. This separation removes
the overhead of the memory measurements from the runtime measurements.

The next section presents the benchmarks that were used for the analyses based
on traceR.

3.3 Profiling of Machine Learning Algorithms
Written in R

To determine where the highest potential for efficient optimizations of machine
learning R algorithms lies, the runtime and memory behavior of these algorithms
is analyzed in this section. Here, the most common classification algorithms are
profiled with respect to their resource utilization. As the characteristics of the input
data set can influence the runtime and memory behavior of an algorithm, real-world
input data sets from the UCI repository [BL18] are used to ensure a realistic scenario
when analyzing the main reasons for the lavish use of resources. Subsection 3.3.1
gives an overview of the machine learning benchmarks used in the analyses. The
results for the runtime behavior are presented in Subsection 3.3.2 and the results
for the memory behavior are described in Subsection 3.3.3.

3.3.1 Experimental Setup

For a thorough analysis, a large number of some of the most popular machine learning
algorithms is used and applied on seven publicly available classification tasks as
input data from the UCI repository [BL18]. The benchmark selection is based on
the popularity and availability of the algorithm’s implementations. The benchmarks
are publicly available [KL18]. In the following all classification algorithms that are
considered in the analyses are listed:

• AdaBoost, in package ada [CJM12]
• Conditional inference trees, in package party [HHZ06]
• Gradient boosting machine, in package gbm [Ro13]
• k-nearest neighbour classification, in package kknn [SH13]
• Support vector machine, in package kernlab [KSH+04]
• Linear discriminant analysis, in package MASS [VR02]
• Logistic regression, in package stats [VR02]. Binary classification decision

derived using a probability cutpoint of 0.5.
• Least-squares support vector machine, in package kernlab [KSH+04]
• Naive Bayes, in package e1071 [MDH+12]
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• Multi-nominal regression, in package nnet [VR02]
• Random Forest, in package randomForest [LW02] using majority voting of

classification trees
• Regularized discriminant analysis, in package klaR [WLL+05]
• Classification tree (CART), in package rpart [TAR13]

Dataset Observations Numeric Integer Factor
Blood Transfusion Service Center 748 2 2 0
ILPD (Indian Liver Patient Dataset) 579 5 4 1
Pima Indians Diabetes 768 8 0 0
Credit Approval 653 6 0 9
German Credit 1000 7 0 13
Spambase 4601 57 2 0
MAGIC Gamma Telescope 19020 10 0 0

Table 3.1: UCI classification tasks after pre-processing. The dataset ID, the number
of observations and the number of features of the data sets are stored
as numeric, integer or factor.

Even though most of the algorithms allow the adjustment of their parameters to
increase the predictive performance, a fair comparison of the predictive performance
would require deep knowledge of the algorithms or, alternatively, an automatic
parameter tuning approach (as described in Chapter 6), which is not the focus
of this chapter. Thus, for the analysis the algorithms are configured with either
the most meaningful defaults, or, if available, the internal auto-tuning process was
enabled.

The input datasets are listed in Table 3.1. Here, the most important criteria
for the dataset selection are (a) being a 2-class classification problem, (b) a having
sufficiently large number of observations to achieve accurate results in the profiling,
and (c) having a realistic mixture of data types. As a pre-processing step, missing
values in all observations were removed from the data.

The analyses in this chapter focus on the profiling of runtime and memory
behavior of the algorithms, not on the performance of classification. However, the
performance of the prediction is an important indicator that ensures an error-free
program flow to avoid meaningless results. Therefore, the mean misclassification
rate (as a performance measurement for the prediction) of a 10-fold cross validation
is also monitored and presented in Table 3.2. Here, no errors that could result in
constant or random predictions were observed.
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ada ctree gbm kknn ksvm lda logreg
IndianLiver 0.30 0.28 0.28 0.31 0.29 0.29 0.27
PimaIndiansDiabetes 0.24 0.25 0.35 0.27 0.24 0.23 0.23
GermanCredit 0.23 0.27 0.30 0.28 0.25 0.25 0.25
MAGICGammaTelescope 0.14 0.15 0.35 0.16 0.13 0.22 0.21
Spambase 0.05 0.09 0.39 0.08 0.07 0.11 0.07
BloodTransfusion 0.22 0.22 0.24 0.24 0.21 0.23 0.23
CreditApproval 0.13 0.14 0.45 0.16 0.14 0.13 0.15

lssvm naiveBayes nnet randomForest rda rpart
IndianLiver 0.29 0.45 0.29 0.29 0.31 0.34
PimaIndiansDiabetes 0.23 0.25 0.33 0.23 0.24 0.25
GermanCredit 0.26 0.25 0.30 0.23 0.29 0.27
MAGICGammaTelescope 0.20 0.27 0.24 0.12 0.21 0.18
Spambase 0.25 0.29 0.06 0.05 0.33 0.11
BloodTransfusion 0.26 0.25 0.24 0.25 0.24 0.21
CreditApproval 0.14 0.23 0.19 0.13 0.37 0.15

Table 3.2: Mean misclassification rates over 10-fold cross validation for all input
data sets.
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Figure 3.1: Execution times for 10-fold cross validation of all machine learning
algorithms, including model fit, prediction and calculation of the
misclassification error on all selected datasets. Y axis is on log10 scale.

To conveniently apply all machine learning algorithms on the receptive datasets,
the machine learning R library mlr [BLK+16] is used. This library introduces some
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overhead that influences both runtime and memory consumption. For example, it
converts the input data from a matrix data type to a data frame or vice versa, which
is a frequent pre-processing operation. However, it is expected that these operations
do not affect the interpretation of the results since in a real-world scenario such
transformations are done by the user.

Figure 3.1 gives an overview of the execution times of each algorithm applied to
all datasets. To minimize the influence of start-up costs and provide a clear view
on the bottlenecks, the following analyses will focus on those benchmarks that use
the Magic Gamma Telescope dataset, as this input data set results in the highest
aggregate runtime for all machine learning algorithms. In the next section, the
results of the runtime behavior analysis will be presented.

3.3.2 Runtime Behavior Analysis

The runtime behavior analysis presents an overall runtime profile for each machine
learning benchmark to expose runtime bottlenecks and suggest optimization ideas.

The following measurements are executed on a computer equipped with 2 AMD
Opteron 2378 processors (quad-core, 2.4 GHz) and 16 GB of main memory, using a
Debian Linux 7.3 as operating system. The profiling framework traceR is based on
R version 3, compiled with the default compiler flags (just -O2) with GCC version
4.7.2. Under the default settings, the installed libraries (packages) included in the
R interpreter are bytecode compiled and the default BLAS library (Basic Linear
Algebra Subprograms) is used. The R bytecode compiler provides the option to
compile R code into a bytecode representation. This enables optimizations which
are generally beneficial for explicit loops in R code.

For the sake of clarity, the measurements for the runtime behavior analysis are
summarized into eleven categories that can be split into three groups based on their
optimization potential. Figure 3.2 illustrates the categorization for the runtime
optimization potential of R Code.

Figure 3.2: Categorization of the runtime optimization potential of R code.

The first group includes External code parts of the benchmarks like C or Fortran
routines. R provides multiple ways for interfacing with external code to allow both
the use of generic external libraries as well as libraries that are specifically written
for use within R. The difference between those two is the way parameters are passed
– for the generic interface, the R interpreter handles all required type conversions
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itself. Libraries written specifically for R receive the internal representation of values
instead, and handle any required conversions themselves. External code represents
the lowest optimization potential as it is executed outside of the R interpreter.

The second group consists of functions directly provided by the R interpreter
(R-Provided) like arithmetic operations or built-in functions. The categories that
belong to this group will be later discussed in detail and are shown in Figure 3.5.
Their optimization potential varies depending on the specific function.

The third group, where the highest optimization potential is to be expected,
are the R-Internal tasks of the R interpreter that are not directly visible to an
R programmer, but still important for the execution of an R program, such as
memory management tasks. The categories that belong to the R-Internal tasks are
represented in Figure 3.4 and will be explained in detail.

Figure 3.3 shows the percentage of runtime (see x-axis) spent in the eleven
categories by the benchmarks (see y-axis). Since the execution time of the individual
benchmarks varies greatly (see Figure 3.1), relative proportions of the runtime are
used to ensure comparability. Here, a higher proportion of time spent in a category
is considered to be a valid hint for the optimization potential of this category.
For the development of optimizations that are beneficial for all machine learning
algorithms, the analysis also focuses on the total time spent in a specific category
for all benchmarks to approximate the potential for optimization.

However, as described above, the optimization potential can vary depending on
the group a category belongs to (External, R-Provided or R-Internal). Furthermore,
optimizations affecting one category may also influence the runtime spent in other
categories. For example, an optimization that reduces the number of memory
allocations would reduce the time needed for these allocations (MemAlloc) and also
influence the time spent in garbage collection (GC ) since fewer memory objects
need to be checked. In the following, the results for the runtime spent in each group
and category will be discussed.

External

The benchmark results in Figure 3.3 are sorted by the category External, which is
the time spent executing non-R-code like C or Fortran libraries. This proportion
varies between the benchmarks, as some of them are mostly implemented in R,
while others make heavy use of external code. The highest amount of time spent
on external code appears in the nnet and randomForest benchmarks, which both
spend over 79.0% of their runtime outside of R. This demonstrates that the authors
of these algorithms considered the runtime issues of R to be serious enough that
they implemented large parts of their libraries in a faster language like C, even
though this generally requires more effort than directly implementing an algorithm
in R. On the other end of the scale, the rda and lssvm benchmarks both spend less
than 0.1% of their runtime on external code. Coincidentally, they also are two of
the slowest algorithms within the benchmark set.
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Figure 3.3: Runtime profiles relative to the total execution time of each benchmark.

However, one cannot conclude that the runtime of a benchmark is directly
correlated with the use of R versus external code, as is emphasized by the runtime
performance of the ada and randomForest benchmarks: In spite of them being
among the four slowest algorithms, both spend more than 45.0% of their runtime in
external code. Thus, even the use of external code does not guarantee fast execution
times, as the complexity of the algorithm itself can largely influence its runtime
and memory footprint. It is worth considering that the overall sum of time spent
in external code parts for all benchmarks only accounts for about 15% of the total
runtime. Hence, we can still expect significant improvements from optimizations on
the R code side alone.

R-Internal

The group of the R-Internal functions is represented by six of the eleven categories –
Lookup, Match, Duplicate, GC, MemAlloc and EvalList. These categories are also
visualized in Figure 3.4. The gray arrows represent which of the R-Internal function
categories can influence each other’s runtime. For example, the more memory is
allocated, the more time is needed in garbage collection (see arrow between GC and
MemAlloc). As already mentioned, those categories have the highest optimization
potential, especially for benchmarks that spend less time in external code like rda,
lssvm or naiveBayes.

Lookup: For these, the amount of time spent in the category Lookup that looks
up variables and functions during execution can be up to 16.1% of the total runtime.
The reason for this large amount of lookup time lies in the behavior of the R
programming language: before a function can be executed or a variable can be
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Figure 3.4: Runtime profile categories of the R-Internal functions.

accessed, the R interpreter has to look up its definition or value through a chain
of environments. An environment provides a mapping from a symbolic name to a
variable or function. Initially there is only the global environment, also known as
the user workspace. Each function call adds one more environment to the end of
this chain. The look up search has to be repeated every time an R program uses
the name of a variable or function. This could be avoided by caching the result of
the lookup function. Again, the R language creates additional problems for such
an approach: R is a very dynamic language that allows a program to change the
definition of a function during execution. This complicates a lookup cache as it
would need to ensure that it never returns a cached lookup that has already been
redefined by the R program.

Match: After the R interpreter has located a function definition that should be
called, it needs to Match the arguments given in the call to the parameters given in
the definition. Function arguments in R can be passed by name, by position or via
the ’...’ argument, which is used to pass a variable number of parameters. The
time spent on matching is up to 3.1% of the total runtime of the rda benchmark.
Aggregated over all benchmarks, only 1.9% of the total runtime is needed for
matching. Furthermore, the results show that there were no function calls with more
than 17 parameters and over all benchmarks, 84.8% of all function calls had no or
just one parameter. This indicates that the machine learning benchmarks rarely use
the full flexibility of argument passing that R provides, which has a positive effect
on runtime and is thus not a bottleneck compared to other R programs.

Duplicate: R uses a copy-on-write mechanism for function argument, the value
of a parameter is in general only duplicated when it is modified by the called
function, although exceptions exist. R uses this mechanism to implement call-by-
value semantics. Duplication is marked as Duplicate in Figure 3.3. Its proportion
varies between 0.3% (ksvm) and 13.0% (ctree) of the total runtime. Although
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duplication itself contributes only 3.0% of the total runtime for all benchmarks, it
increases the time spent in memory allocation (MemAlloc) and garbage collection
(GC ) because the duplicated values need to be stored and removed later. Besides
the function lookup, the memory allocation and garbage collection are two main
contributors to the runtime from the group of R-Internal tasks.

GC & MemAlloc: The garbage collection (GC ) scans data that was allocated
for values that are no longer in use and removes them. The time spent on garbage
collection varies between 3.9% for randomForest and 34.0% for the logreg bench-
mark. Across all benchmarks, 9.0% of the total runtime is spent in GC. This runtime
proportion is influenced by the number of memory allocations and by the memory
footprint that is needed for the data structures of the R program.

The influence of the memory footprint can be illustrated by the ksvm benchmark,
where 10.6% of the runtime is spent in garbage collection, even though only 0.9%
of the runtime is spent in memory allocation (MemAlloc). Here, the time spent
in memory allocation is low, because the benchmark allocates a small number of
data structures (vectors), but the time spent in garbage collection is high, since
each of those data structures has a large size and thus a large memory footprint (as
described in Subsection 3.3.3). For other benchmarks the memory allocation can be
a more important part of the runtime with a maximum of 24.6% in the naiveBayes
benchmark. Here, a large amount of vectors with a small memory footprint is
allocated. The dependence between memory allocation, memory footprint and
garbage collection will be explained in more detail in Section 3.3.3 as this is one of
the most important bottlenecks within the R-Internal tasks.

EvalList: The last category of the R-Internal tasks is EvalList, which represents
a pre-processing step needed for a set of functions that are directly provided by
the R interpreter. Thus, this category will be discussed after the categories of the
R-Provided tasks.

R-Provided

The group of R-Provided functions includes three of the eleven categories – Subset,
Arith and Builtin/Special (see Figure 3.3). Those categories are also illustrated in
Figure 3.5.

Subset: For some of the machine learning benchmarks, a significant contributor
to the overall runtime are subsetting operations (Subset) and the basic arithmetic
operations (Arith). Those functions are part of the built-in functions of the R
interpreter. The category Builtin/Special includes the time spent in built-in functions
except for arithmetic and subset operations. Subsetting operations are used for the
evaluation of vector index expressions. Those operations are, for example, used to
generate training data subsets. The highest amount of runtime spent on subsetting
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Figure 3.5: Runtime profile categories of the R-Provided functions.

occurs in the lssvm benchmark with 14.9%. Since subsetting has to allocate new
memory to return results, it directly influences the time spent on memory allocation,
as well as garbage collection.

Arith: The basic arithmetic operations (Arith) are operations like addition or
matrix multiplication. Since R usually operates on vector data structures, these
operations could benefit from the use of vector-oriented instructions in the CPU,
which R currently utilizes only if special libraries are used. However, over all
benchmarks, just 5.5% of the total runtime is needed for arithmetic operations. This
implies that optimizing the runtime of these functions is unlikely to have a large
impact on the overall runtime.

Builtin/Special: Before an arithmetic operation happens, the R interpreter has
to run several pre-processing steps such as type checks or type conversions to ensure
that the data has a valid format for the operation. This enables the dynamic type
system of R. The runtime of those pre-processing steps is included in the category
Builtin/Special and is part of the built-in functions. Those pre-processing steps are
not only needed for arithmetic operations, but for almost all functions.

The overhead of these pre-processing steps could be reduced by the use of function
specialization, which is a common compiler optimization. This optimization takes a
generic function that can accept any data type and converts it into a specialized
version that accepts only specific data types, which avoids the overhead needed for
type checking. Such a specialization has been implemented at the byte code level in
the Orbit VM [WWP14] in addition to other optimizations, yielding a total speedup
of 3.5x over the standard bytecode interpreter on a set of R benchmarks that were
mainly looping over data. The category Builtin/Special also contains the time spent
on special functions. Special functions include R control-flow structures like if or
return. Considering the time spent in this category over all benchmarks, 24.8%
of the total runtime is spent in these functions. This number includes the time
needed for type checks and data conversion, both of which could be optimized by
the previously mentioned function specialization.
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EvalList & Other: For the built-in functions provided by the R interpreter,
another required pre-processing step is shown as EvalList in Figure 3.3. In this step,
all arguments of a built-in function are evaluated before they are passed, which needs
6.3% of the total runtime over all benchmarks. R usually delays this evaluation
when other types of functions like user functions or special functions are called.
However, since the evaluation of arguments is needed to call built-in functions, its
optimization potential is low. The final category called Other includes the remainder
of the runtime like the start-up time of the interpreter and does not represent a
viable optimization target.

Summed up, the runtime spent in memory allocation MemAlloc and garbage
collection GC forms one of the bottlenecks with the highest optimization potential
and is influenced by different categories like Duplicate or Subset. Thus, the next
subsection analyzes the memory consumption of the considered benchmarks in more
detail.

3.3.3 Memory Consumption Analysis

The analysis of the memory consumption has the goal to support the development
of optimizations that reduce the footprint of the data structures used internally by
the R execution environment (Internal Data) and data used by the algorithm itself
(User Data). The memory allocation of those two groups of data structures and
the runtime influence each other. Therefore, also the relationships between runtime
and memory consumption behavior will be analyzed. In the following analysis, the
same experimental setup is used as for the runtime behavior analysis of the previous
subsection. First, the amount of allocated memory is compared to the amount of
memory that was actually used during execution. Here, the amount of allocated
memory ignores later removals of data by the garbage collector.

Figure 3.6 shows the maximum amount of memory that was used (Memory
Used) compared to the total memory that was allocated (Memory Allocated) during
execution for each benchmark. The memory used is measured as reported by the
operating system using the getrusage system function. This function reports the
maximum amount of memory (peak memory usage) that the program has requested
from the operating system. The value is lower than the total allocated memory value
since the garbage collection removes unused values from memory during runtime.

Across all benchmarks, 55.7 times more memory was allocated compared to
the maximum amount used at once. This ratio can be used as one explanation for
the amount of runtime spent on garbage collection and memory allocation. The
benchmark with the highest ratio between allocated and used memory is rda with
a factor of 512. This value also influences the 32.1% of runtime that it needs for
memory allocation and garbage collection (see MemAlloc and GC in Figure 3.3).
Furthermore, benchmarks with a high ratio between allocated and used memory and
benchmarks that have in general a high memory consumption also suffer from long
execution times. While rda and ada have the highest ratio, lssvm and randomForest
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Figure 3.6: Maximum memory usage versus total memory allocation for each
benchmark. Y-axis is on log scale.

consume the highest amount of memory. Those four benchmarks have also the
longest execution times.

To provide a clearer view of the influence of the allocated memory on the overall
runtime, the following analyses focus on the allocations of new data in memory, but
ignore their later removal by the garbage collector. The first part gives an overview
of the distribution of data structures that are allocated while the second part focuses
specifically on vector data structures.

Data Structure Allocation

The data structures that are allocated during execution of an R program can
be separated into two groups, visualized in Figure 3.7. Data structures that are
primarily used for R-internal tasks are presented by the categories Pairlists, Promises,
Environments and Other. Data structures that primarily hold User Data are included
in the categories External and Vectors. Figure 3.8 shows the distribution of the
allocated data structures. Since the memory allocations of the benchmarks vary,
relative proportions are used to ensure better comparability.

Pairlists: Pairlists are mostly used as internal data in the R execution environment.
Although pairlists are utilized in different parts within the R interpreter, one major
contributor to their allocation is the creation of argument lists that are needed for
each R function call. Thus most benchmarks with a high amount of R function calls
suffer from a higher memory overhead induced by the allocation of pairlists, which
negatively influences their runtime.
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Figure 3.7: Memory profile categories of allocated R Data Structures.

The percentage of memory allocated for pairlists ranges from 1.1% for ksvm to
58.5%-60.4% for rda and naiveBayes. It is worth noting that a high amount of
allocated pairlists corresponds to a larger proportion of time spent in the runtime
category Lookup shown in Figure 3.3 (e.g., in rda). The overhead incurred by
pairlist allocation triggered from R function calls could be reduced by a dynamic
compilation approach, which could reduce the number of function calls by inlining
small functions into their caller.
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Figure 3.8: Memory profiles relative to the total memory allocation of each bench-
mark.
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Promises: The next category discussed are Promises. Due to the functional
characteristics of the R language, a function argument can not only be bound to a
simple value, but also to a complex expression like a function call. Such an expression
is only evaluated when its result is really needed, which can happen either in the
immediate callee itself, or when the callee passes a not-yet-evaluated expression
to another function that then requires its result. This mechanism is called lazy
evaluation, and is implemented by boxing each function argument in a so-called
“promise”.

A promise needs 56 bytes (on a 64 bit system), besides additional information
stored in the header, each Promise contains a reference to the original argument and
its corresponding environment. Aggregated over all benchmarks, only 2.5% of the
total allocated memory is used for promises, even though the absolute values reveal
some optimization potential. Three of the benchmarks (lssvm, naiveBayes and
rda) use more than 1 GB of memory allocations just for promises with a maximum
of almost 6 GB for rda. The analysis with traceR also shows that in 86.4% of all
cases, the creation of a promise was not necessary since its evaluation happened
directly in the function that it was initially created for. However, as explained
by Morandat et al. [MHO+12], it is not always possible to replace the creation of
promises with eager evaluation.

Environments: The last important category in the group of interpreter-internal
data structures are Environments. Similar to promises, they only contain references
to other values and are mainly created when an R function is called. Considering all
benchmarks, 1.2% of total memory allocations is used for environments. Since the
interpreter needs to search through the chain of environments during lookups, this
apparently small value has a strong influence on the runtime required for lookups.
As described in subsection 3.3.2, lookups are the second-largest bottleneck in the
interpreter internal tasks.

There are also a few additional internal data structures that require memory
allocation, but since they use less than one percent of the total allocated memory of
all benchmarks, the Other category is not an interesting optimization target.

Summed up, all internal data structures described above contribute 40% to the
total allocated memory. Thus, almost half of the allocated memory is used for the
execution of the R program, and not for the user data it processes.

User Data: The user data structure allocations are divided into allocations that
are triggered by external code parts (Externals) and the allocation of Vectors.
Memory allocation from external libraries requires just 0.5% of the total allocated
memory, while vectors account for 61.2% of the total allocated memory over all
benchmarks. As such, Vectors are the biggest consumer of memory allocations in
the benchmark set and will therefore now be analyzed in more detail.



42 Chapter 3. Profiling of Machine Learning Algorithms

Vector Data Structure Allocation

Vectors are the most important data structure in the R language, and higher-
dimensional structures like matrices and arrays are internally constructed from them.
When R allocates memory for a vector, it differentiates between different classes
of vectors to reduce the memory allocation overhead. Depending on the size of the
vector, the memory allocations are pooled for small vectors or allocated via the
malloc C library function for large vectors. Small vectors can store up to 16 double
or 32 integer or logical values (up to 128 bytes), while large vectors are used when
the total size of elements exceeds this limit. In addition to these two categories of
vectors, the analysis also considers vectors with exactly one element separately from
the small vectors (as well as vectors with zero elements), since single-element vectors
have a special optimization potential:

In R, each vector needs a header block so it can be integrated in the memory
management subsystem of R. The size of this header is 40 bytes (on a 64 bit system)
per vector. For vectors with fewer elements, the relative overhead of this header
increases. The worst case are single-element vectors: A 40 byte header is needed
to manage an object whose size is just 4 or 8 bytes, thus in the worst case the
header needs 10 times more memory compared to the real data. This suggests an
optimization potential for introducing scalar values that are not boxed within a
vector and thus could use a smaller header. If such a scalar value is only used within
a function, a just-in-time compiler may even be able to keep the value in a CPU
register instead of storing it in main memory, saving the time for both allocation
and garbage collection. However, the potential of reducing the memory footprint of
a benchmark by introducing scalar values is only high if those single-element vectors
dominate.
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Figure 3.9: Vector memory profile relative to the total memory allocation of vectors
for each benchmark.
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Figure 3.9 shows the proportions of the allocated vector sizes in relation to
the total vector memory allocation for each benchmark. In most benchmarks the
proportion of allocated memory for Large Vectors dominate. Even though Figure 3.9
shows only the ratios for the processing of the Magic Gamma Telescope data set, the
distribution between Large and Small/Single-Element Vectors is roughly the same for
all input data sets. NaiveBayes is the only benchmark where Zero-Element Vectors
appear, reaching about 4.0% of the total vector memory allocated compared to less
than 0.2% for all other benchmarks. The benchmarks rda and naiveBayes use a
much higher percentage of single-element vectors compared to the other benchmarks.
This factor also influences their time spent on MemAlloc (see Figure 3.3) along with
a large number of pairlists created in these benchmarks.

However, over all benchmarks large vectors dominate and only 20.4% of all
allocated vector memory is used for single-element or small vectors. Thus, for most
benchmarks, optimizing the allocation of large vectors has a high optimization
potential compared to optimizing the allocation of single-element vectors by intro-
ducing scalar values. The size of the underlying memory region of a vector is fixed
at allocation time and cannot be changed; changing the length of a vector hence
prompts the R interpreter to create a copy with the new length. The old instance
might be discarded by the garbage collector if no more references to it exist. This
produces a huge copy overhead, especially for large vectors that can potentially
span multiple memory pages. Here, a general memory optimization like sharing of
memory pages could be used to reduce the memory footprint and thus the runtime
needed for memory allocation and garbage collection.

3.4 Summary

This chapter presented an analysis of the most popular statistical machine learning R
algorithms. With this analysis, detailed insights into the runtime and memory issues
of these algorithms were gained, with the goal to outline optimization approaches
that overcome the discovered bottlenecks. The results can guide the development of
alternative R execution environments and support optimizations for the original R
implementation that enable the algorithms to scale to larger problem sizes. For the
analysis, an R profiling framework called traceR was redesigned and enhanced. All
algorithms were applied to real-world data sets from the UCI [BL18] repository.

For the algorithms that are implemented mostly in R code, the runtime overhead
incurred by function calls (Lookup) that triggers the allocation of argument lists
(Pairlists) was one significant contributor to their runtime. A dynamic compilation
approach may be able to provide improvements for this bottleneck, as it could
reduce the number of function calls by inlining small functions into their caller.
Another area where such an approach can be helpful is the time spent on functions
provided by the R interpreter (Builtin/Special): to support the dynamic type system
of the R language, these functions must perform type checking and conversion of
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their arguments. Using specialization techniques, this overhead could be avoided
whenever the data types used in the call are known to the compiler.

Overall, the analysis demonstrates that the memory management (GC and
MemAlloc) is a major contributor to the total runtime of the benchmarks and has a
high optimization potential. The time spent on memory management is influenced
by different R-internal and R-provided functions (like Subset and Duplicate), as well
as by the number of data structures that are allocated and their footprint. Vector
data structures on the user data side and pairlists on the side of the data that is
internally used are the main data structures that are used in memory allocation.
Here, especially large vectors that can span multiple pages of memory dominate.

The analysis suggests a general memory optimization like sharing of memory
pages to reduce the memory footprint and thus the runtime needed for memory
allocation and garbage collection. Such a memory optimization can be done without
the need of implementing a new compiler or significant changes of the R execution
environment, which is important for compatibility reasons (keep in mind that R has
no language specification). The next chapter will therefore present an optimization
of the memory consumption for R and thus for the analyzed machine learning
algorithms.



Chapter 4

Efficient Memory Utilization for
Machine Learning Algorithms

This chapter presents an optimization approach for efficient memory utilization of
machine learning algorithms that are written in the R programming language. It
is based on the work of Kotthaus et al. [KKE+14]. Optimizations for an efficient
resource utilization of statistical learning algorithms based on R can only be profitable
if they do not break compatibility with the software libraries most R programs are
based on and simultaneously address the real resource bottlenecks of those algorithms.
As shown by Morandat et al. [MHO+12], as well as by the analysis of bottlenecks
in machine learning R algorithms presented in the previous Chapter 3, the R
execution environment has several drawbacks leading to slow and memory-inefficient
program execution. Especially in the domain of machine learning algorithms, the
R interpreter induces a large memory overhead due to wasteful memory allocation
policies [KKL+14].

In R programs, most data structures are vectors (or based on vectors). De-
pending on the size of these vectors, the R interpreter chooses between multiple
allocation strategies to reduce fragmentation. When the size of a vector is above a
certain threshold, the interpreter allocates a large vector. As shown in the memory
consumption analysis presented in Section 3.3.3, the allocation of large vectors
dominates in most of the analyzed machine learning algorithms. For each large
vector, a dedicated block of memory is allocated, potentially spanning multiple pages.
These pages, even when unused, take up memory. When the amount of memory
required for computations exceeds the physical memory available to the application,
the execution is drastically slowed down by frequent page swaps that require disk
I/O, a phenomenon also known as “thrashing”. The performance penalty due to
thrashing might render complex computations entirely infeasible.

Existing R optimizations are mostly based on dynamic compilation or native
libraries. However, the performance penalty incurred by thrashing is several orders
of magnitude higher than the benefit either of both methods can provide. The basic
features of R are extended by over 11,000 packages available in public repositories
like CRAN [R C18b]. There also exist dedicated libraries for processing large
datasets, particularly addressing more efficient memory management strategies (e.g.,
using sparse matrices [KN17]). However, libraries are often tailored to concrete
applications, and thus cannot simply be used by arbitrary R programs. In contrast,
the optimization approach in this thesis targets the memory management layer
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between the R interpreter and the operating system, making it applicable for any R
program.

The goal of the memory optimization approach presented in this chapter is to
enable efficient memory utilization especially for memory-hungry R applications
like machine learning algorithms. It reduces the memory overhead for large data
structures by ensuring that memory will only be allocated for memory pages that
are definitely required by the R algorithm (avoiding duplications) and by enabling
the sharing of already allocated pages (deduplication).

The sharing of memory contents usually incurs a time-memory-trade-off: the
more aggressively pages are shared, the more time must be spent to unshare them
when they are modified. Blindly optimizing would therefore incur a larger runtime
penalty compared to a strategy that takes into account the expected use of the
memory, avoiding sharing when it is expected that no memory could be saved.
While there already exist similar OS level optimizations such as lazy page loading
(meaning a page is only allocated when it is written to or read from for the first
time) or sharing of pages with the same content (deduplication), these optimizations
lack knowledge about the specific memory behavior of the runtime environment.
This reduces the ability of the operating system to make qualified decisions about
optimizing the memory usage. For example, the OS cannot know if a memory block
requested by a function will be written to immediately or only at a later time. As a
remedy for this, the approach presented in this thesis uses additional information
from the R runtime environment to guide the optimization, taking into account,
e.g., the short-term usage pattern of a memory block. Its evaluation is based on
different benchmark sets, including benchmarks that were used to evaluate related
approaches, as well as statistical machine learning algorithms. Especially when the
memory consumption hits the point that the OS starts to swap out memory, the
new optimization approach is able to speed up computation by several orders of
magnitude.

This chapter is structured as follows: Section 4.1 gives a survey of related
memory optimization approaches and general optimization approaches for the R
language. The fundamentals of R’s memory management are explained in Section
4.2. Section 4.3 presents the optimization strategies for efficient memory utilization
of R algorithms developed in this thesis. The evaluation of the memory optimization
is presented in Subsection 4.3.5. Finally, Section 4.4 concludes with a summary.

4.1 R Optimizations and Memory Footprint Reduction
- Existing Approaches

A number of projects already work on various optimizations for the R language envi-
ronment. Some of these projects like FastR [KMM+14; SWH+16], Renjin [Ber18] or
Riposte [TDH12; TDH14], reimplement the original interpreter in another language
such as Java or C++. These approaches benefit from optimizations available in their
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runtime environments. However, they cannot yet guarantee full compatibility with
existing R programs and libraries due to the complex and evolutionary development
of the R language and its missing formal specification. Optimizations from other
projects like pqR [Nea18] or Orbit VM [WWP14; WPW15] concentrate on specific
bottlenecks of the R interpreter by using, e.g., function specialization or by introduc-
ing scalar data optimizations. For other interpreter-based dynamic languages, there
are similar approaches realized in projects like MaJIC [AP01] and PyPy [BCF+09].

In contrast to the above-described approaches, the memory optimization of
this thesis works on a layer between the R interpreter and the OS. This enables
optimizations of arbitrary R applications with only small modifications to the R
interpreter and without requiring application changes. Thus, in the following, the
related system-level approaches for reducing memory utilization will be discussed.

In general, related work on utilizing main memory more efficiently can be cat-
egorized into two groups: memory compression approaches, often influenced by
embedded systems resource constraints, and memory deduplication, which is mostly
used in virtualization. Memory compression tries to reduce the swapping activity
of a system by compressing memory contents instead of swapping pages to the
secondary storage. A memory trace-based evaluation of different deduplication and
compression approaches is presented by Deng et al. [DSH13], showing that deduplica-
tion yields better results than memory compression. Compression approaches share
the drawback that a significant amount of processor time is spent on compressing
and decompressing memory contents.

In contrast, memory deduplication reduces the memory overhead by mapping
virtual pages with identical contents to a single physical page. This is often beneficial
in virtualized environments where large amounts of read-only memory, such as shared
libraries, are used in multiple virtual machines [SK12]. However, deduplication can
introduce significant computational overhead, since the contents of pages have to be
scanned periodically in order to identify pages with identical content. An often used
implementation of deduplication that has been the subject of multiple improvements
is available in Linux as the Kernel Samepage Merging (KSM) [AEW09]. For example,
Miller et al. [MFR+13] use I/O-based hints to prioritize the scanning of pages
that were recently read from disk, reducing the time needed to detect shareable
pages. KSM has also been optimized in [CWC+14] by introducing a classification
scheme based on access characteristics, comparing only pages within the same class
to reduce the overhead of page scanning.

However, all of these improvements are still reactive, meaning that they can
only eliminate duplicate pages after they have been created, not prevent them.
Although some information is used to improve the time needed to detect duplicates,
the application-specific knowledge of why the data was copied in the first place is
ignored.

Sharing memory pages within a single process appears to be a rarely-used
concept: on Linux, it is automatically used to map a set of newly allocated virtual
pages to a single physical page filled with null bytes. This can cause performance
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issues in high-performance environments since each write to any newly allocated
page will trigger a page fault. Here, an enhancement by Valat et al. [VPJ13]
was proposed that avoids unnecessary page removal when the application knows
that it will overwrite a page in the near future. A language-level version of this
copy-on-write technique, operating on objects instead of memory pages, is sometimes
implemented using reference counters. Tozawa et al. have analyzed the details
of PHP’s copy-on-write scheme and proposed improvements in [TTO+09]. The
R language also implements a copy-on-write scheme. Here, the complete object
(potentially spanning multiple pages) is copied when it is modified, resulting in page
duplications for partial modifications.

Compared to the above-described deduplication approaches, the memory opti-
mization in this thesis employs specific knowledge about the interpreter state to
reduce the number of pages that need to be scanned for identical content. Here,
scanning itself has a low overhead, since it is content-based and only checks for
all-zero pages, which can terminate at the first non-zero element. In contrast to the
previously described, purely reactive approaches, the memory optimization described
in this chapter proactively avoids the main sources of identical-content pages from
object allocation and duplication by optimizing the copy-on-write mechanism for
partial object modification. It is furthermore aware of data structures used by
the R interpreter and their contents. Thus, a better prediction and avoidance of
unnecessary deduplication is enabled.

The next section gives an overview of the memory allocation behavior of the R
runtime environment.

4.2 Memory Allocation in the R Runtime Environment
- Fundamentals

The lifecycle of an object, (e.g., a vector data structure) in the R execution envi-
ronment starts with its allocation. In R vectors are assumed to be made up of a
contiguous block of (virtual) memory. Depending on the size of the object, the
R interpreter uses a system of multiple memory pools for vector objects with a
data size of up to 128 bytes. For larger vectors, memory is allocated directly via
the malloc C library function instead of pooling the allocations. This reduces the
memory fragmentation when many small objects are created and some of them are
released. The R language does not require the programmer to explicitly manage
memory, thus a garbage collection is needed to automatically free memory. The
garbage collector in R is a mark-and-sweep, non-moving, generational collector. It
can be manually triggered, but it also runs automatically when the interpreter is in
danger of running out of heap space.

The R interpreter ensures that an allocated object is always initialized – either
by explicit initialization or implicit by writing the results of a computation to it.
After the object is allocated and initialized, it can be used as input for various R
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functions such as the plus operator. The fact that functions can modify an object, in
conjunction with R implementing call-by-value semantics, means that objects need
to be copied when being passed to a function. However, at this point a copy-on-write
optimization is triggered: copying an object is done by merely sharing the reference;
the actual copy is delayed until the object is modified (if at all). The interpreter
now has two references to the same object that may be modified later. When this
modification happens, the copy process is triggered and a full copy of the affected
object, potentially spanning multiple pages, is created using the interpreter-internal
duplicate function. This is illustrated in Figure 4.1.

H A B DC . . .. . .

H A B DC . . .. . . H A B DC H’ A B DX . . .. . .

H A B DC A B DXH’ . . .. . .

R-Object
virtual

memory

physical
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duplicate + write
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Figure 4.1: Example of the copy-on-write mechanism in the GNU R interpreter.
R copies (duplicates) at object level instead of page level granularity.

On the left-hand side, a large R vector object consisting of a header H and four
pages A to D is shown both in virtual memory on the top (marked with dotted lines)
and its corresponding allocated physical memory on the bottom (solid lines). On
the right hand side, the situation after a duplication that was triggered by a write
access is shown. Now there are two R objects shown in the virtual memory on top
and their corresponding physical memory on the bottom. In one of the copies, page
C was modified and is now marked as X, the copy has its own header H’. Although
unmodified, the R interpreter needs to use additional memory to create duplicates
of pages A, B and D (marked in gray) since it assumes that objects are organized as
contiguous blocks of memory and thus it has to duplicate at object level granularity.

The memory optimization presented in this chapter has the goal to reduce this
memory overhead by copying only parts of the object instead, sharing the same
memory pages between multiple objects as long as they are not modified. This
scheme is transparent to the interpreter’s memory management including the garbage
collection, requiring only small changes in memory allocation and freeing, as well as
in the duplicate function. The details of this optimization will be presented in the
next section.
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4.3 Memory Footprint Reduction via Dynamic Page
Sharing Strategies

This section describes the optimization strategies for efficient memory utilization
of R algorithms developed in this thesis. The approach that proactively avoids the
duplication of memory pages for R is described in Subsection 4.3.1. It is based on
optimizing the allocation and duplication mechanisms of the R interpreter. This
approach is further refined by using static annotations that reduce the optimization
overhead, presented in Subsection 4.3.2 and by a dynamic refinement using a page
content analysis for page deduplication to increase the amount of shared memory,
introduced in Subsection 4.3.3. Subsection 4.3.4 presents the interplay of the
described memory optimization strategies.

4.3.1 Page Duplication Avoidance

As shown in the previous section, the R interpreter can only allocate complete objects
that potentially span multiple pages. The first part of the memory optimizations of
this thesis is based on the object allocation mechanism of R. To enable the allocation
and thus the sharing of memory at page level granularity instead of object granularity,
a custom memory allocator is employed when a large vector has to be allocated, as
shown in Figure 4.2. When the internal function of the R interpreter allocVector
is called to allocate a large vector, the optimized interpreter selects between the
custom allocator to share memory on page granularity or the default malloc function
if this is not required. In both cases, the allocated memory is accessible within the
address space of the R interpreter.
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Figure 4.2: Memory allocation scheme for dynamic page sharing strategies.

The custom allocator uses a memory management scheme similar to standard
virtual memory schemes commonly used in OS kernels. For ease of implementation,
it is completely implemented in the user space.

The downside of such a user space implementation is that it needs to replicate
certain data structures that are already present in the OS (e.g., for mapping virtual
to physical memory) because those kernel data structures are not sufficiently exposed
to user space. This replication could be avoided by implementing the optimization
in the kernel (cf. [KKM16]), which however is significantly more invasive and not
applicable in a lot of environments where the user has no control over the kernel
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running on the machine. Considering that the user space has no direct access to
physical memory, a single file located on a RAM disk (see custom heap in Figure
4.2) is used.

The allocation of physical memory from this file is realized via a simple free-
bitmap based allocator. The file can be dynamically enlarged if needed. Mapping
physical pages into the virtual address space of the R interpreter can be accomplished
by utilizing the mmap Unix system call. For changing the access permissions of these
physical pages the mprotect system call that modifies the settings of the memory
management unit of the processor is employed. Besides these system calls an
additional page table is needed to enable the mapping from a virtual address to
a physical address. For simplicity reasons a hierarchical page table with the same
four-level structure as used by the processor is implemented. To enable the sharing of
pages, the user space memory management system needs to map the same physical
page to multiple locations in virtual memory. Therefore, a reference counter is
required for each physical page. A reference counter greater than 1 indicates that
the page is shared between multiple objects or multiple times within one object.

To avoid the zero-initialization of allocated large vector objects a global shared
zeroed page is utilized. This also ensures that memory is only allocated for pages
that are actually written to at a later time. Figure 4.3 illustrates an example for
this optimized R object allocation. Here, the custom memory allocator was asked
to allocate an object with a total size of five pages.

H 0 0 00 . . .. . .

H 0 . . .. . .

virtual

memory

physical

memory

write

H X 0 00 . . .. . .

H X 0 . . .. . .
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Figure 4.3: Optimized object allocation via sharing a global zeroed page.

While the object has the requested size of five pages in virtual memory (dotted,
left upper part), physically it only consists of two pages (left lower part). Those two
pages are a single non-shared page, in the beginning, marked with H for header,
followed by a shared page, marked with 0, called the global zeroed page. The
numbers in small print below the physical pages are the reference counters. The
zeroed page has a reference counter of 4 since it is shared four times within the
allocated object (mapped four times into virtual memory). The shared zeroed page is
filled with zero-bytes. The concept of prepared zeroed pages is already implemented
in OS kernels. However, the standard R interpreter does not benefit from this
concept since it immediately writes to all memory that it allocates for initialization.
The non-shared initial page H is required as it will contain not just data but also
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the object header. The R interpreter writes this object header to the front of the
allocation area. Since it will be updated frequently (e.g., during garbage collection),
it is not shared between multiple objects. Since the header page H is mapped only
once, its reference count is 1.

The R interpreter now has the illusion that it has allocated five pages of memory,
even though only two pages are allocated physically. To sustain this illusion, the
optimized allocation mechanism has to ensure that any write access to a virtual
page that points to a shared physical page can be detected and handled. If such a
write access is not handled correctly, it would affect not only the intended virtual
page but also all virtual addresses where the same physical page is shared. For
the example in Figure 4.3 this would mean that a write to one of the four virtual
instances of the zeroed page would be mirrored in its other three instances, resulting
in incorrect object contents. Therefore, all pages with a reference counter greater
than 1 are marked as read-only, ensuring that a write access triggers a segmentation
fault. This fault is caught by a signal handler that performs the unsharing of the
affected page. To determine the affected physical page the handler uses the virtual
address of the write access. It then allocates a new page, copies the contents of the
original page to it and replaces the page that caused the segmentation fault with
the new one. The resulting situation is shown on the right side of Figure 4.3: One
of the instances of the zeroed page which was written to was replaced with a new
page marked with X. This updates the reference count of both the zeroed page and
the newly allocated page. Since the new page is only mapped once, it can now be
marked read-write and further accesses would not require special handling anymore.

As noted in Section 4.2, the R interpreter can only copy on the object level. Thus,
if an object consists of multiple pages, parts of the copy may end up with identical
content as the original (see Figure 4.1). To avoid this, the duplicate mechanism of
the interpreter is optimized by improving the granularity of the copy from object
level to page level. While the allocation optimization avoids the immediate allocation
of pages by using the global zeroed page, the duplicate optimization allows the reuse
of already-allocated pages of the original object instead of allocating new pages. An
example of the duplicate optimization is shown in Figure 4.4.

On the left side the situation before the duplication is shown: An object occupies
five virtual pages, two of which reference the global zeroed page. Unlike the original
R interpreter that would need to allocate five new pages for the copy of this object,
the optimized version reduces this to a single allocated physical page. This is shown
on the right side with the original object on the top and its copy on the bottom.
Here, a virtual-only copy of the first page that contains the object header is not
created, since the header of the copy is updated immediately by the R interpreter
after the duplication which would trigger an unsharing of this page. To avoid the
overhead of this event, the optimized duplication immediately creates a physical
copy of the header page. Since most of the pages of the original object are now
mapped twice in virtual memory, the reference counters of the corresponding pages
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Figure 4.4: Optimized copy mechanism on page-level instead of object level granu-
larity via page sharing.

are updated and both the original and copy are marked as read-only to allow for
unsharing on write accesses.

Overall, the finer copy granularity of the optimization enables storing both
the original and copied objects from the example in just five pages of memory. In
contrast, the original R interpreter would need ten pages of memory to store the same
objects. Although the mechanism of sharing pages during allocation and duplication
described above always result in a valid view on memory for the interpreter, there are
cases where additional overhead is caused that can be avoided by further refinements
described in the next subsection.

4.3.2 Static Refinement via Annotations

To reduce the runtime overhead caused by proactively avoiding page duplications,
a static refinement that consists of two kinds of annotations is applied. The first
annotation is based on the expected utilization of an object immediately after
allocation and the second annotation is based on the size of the allocated object.

The optimized memory allocation described in the previous subsection (see Figure
4.3) reduces the memory footprint by utilizing a global zeroed page, assuming that
not all pages of the allocated object will be written to immediately. However, this
assumption is not always valid, as for example (built-in) vector arithmetic functions
in the R interpreter allocate a new object and immediately write to all pages of
it to store their results. This would cause a segmentation fault for the first write
of every page, triggering the memory allocation for all pages of the object. These
segmentation faults cause runtime overhead that would not occur when allocating
an object with non-shared pages.

To avoid this overhead, annotations are placed in the C source code of the R
interpreter built-in functions where newly allocated memory is completely overwritten
directly after allocation. Here, the custom allocator returns an object where every
virtual page references a new physical page, so no segmentation faults will be
triggered by write accesses. Although these R objects do not save memory on
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allocation, they still have the opportunity for later optimizations, e.g., when they
are duplicated. Currently, the annotations for these “full-overwrite” functions need
to be manually in the R interpreter’s C source code by locating calls to allocVector,
followed by loop structures that write to every element of the newly-allocated object.
Those manually placed annotations could also be automated by a static code analysis
that checks for allocation calls followed by loops that write to the newly-allocated
object similar to the pseudo-code in Figure 4.5.

1 o b j e c t = a l l o c V e c t o r ( l ength )
2 for ( i = 0 ; i < length ; i ++):
3 o b j e c t [ i ] = c a l c u l a t i o n ( i )

Figure 4.5: Pseudo-code of a “full-overwrite” - where pages are not shared during
allocation.

The second annotation for reducing the runtime overhead incurred by the
optimization relates to the size of the object that is allocated. The R interpreter can
allocate objects with a variety of sizes, not all of which span multiple pages. The
optimized custom allocator is therefore only enabled for object sizes that indicate a
potential for page sharing. Here, the potential is limited for smaller objects. The
first page of an object stores not just data but also the frequently modified object
header that is therefore never shared. Thus R objects smaller than two pages of
memory are passed to the standard, non sharing memory allocator. This size limit
could also be used as a tunable parameter to select a trade-off between memory
savings and runtime overhead.

In addition to the above-described static refinements, an additional dynamic
refinement for increasing the number of shared pages is applied and will be presented
in the next subsection.

4.3.3 Dynamic Refinement via Page Contents

During the execution of an R program, allocated objects are updated with the
results of calculations. Those updates can result in multiple distinct pages with
same contents, which opens up the opportunity for sharing those pages. The general
idea of locating identical objects in a system and saving memory by reducing them
to a single object is known as deduplication (as described in Section 4.1).

The memory optimization of this thesis employs a restricted version of locating
identical contents. Here, the content scan only checks for pages identical to the
already existing global zeroed page. The deduplication of zeroed pages is illustrated
in Figure 4.6. On the left side, the situation before the page content scan is shown
where an object contains two identical zero pages. One of those pages is already
mapped to the global zeroed page (shown in bold), while the other uses a separate
physical page. On the right side, the situation after deduplication is shown. Here,
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Figure 4.6: Deduplication optimization for zeroed pages.

the content check has detected the separate copy and mapped its virtual page to
the global zeroed page, freeing the memory used for the unnecessary duplicate.

Although a general scan that is able to detect duplicated pages with arbitrary
content, could be applied, such a scan would incur a significant runtime overhead
(e.g., due to the calculation of hash values) compared to scanning just for zeroed
pages. While a scan for zeroed pages can use an early abort condition as soon as a
non-zero element is found, a scan for arbitrary content would need to check the full
content of all pages in the system. The overhead incurred by deduplication of zeroed
pages is influenced by the frequency of the content check and by the number of pages
that need to be scanned. To reduce this overhead, the scan is only activated after the
completion of a garbage collection in the interpreter. This avoids scanning of pages
that would soon be discarded and also provides a natural regulation mechanism for
the frequency of content checks as the frequency of garbage collection depends on
the memory requirements of the executed program.

With the above-described deduplication optimization, pages that were previously
excluded from sharing the global zeroed page, e.g., in arithmetic vector operations
(as described in Subsection 4.3.2) can now be dynamically shared. Thus, both the
static and the dynamic refinements of the memory optimization complement each
other. The interaction of the refinement strategies and the general page duplication
avoidance strategy will be described in the next section.

4.3.4 Dynamic Page Sharing Optimization

The main functionality of the optimization is shown as pseudo-code in Figure 4.7.
The optimized custom allocator function is presented in lines 1 to 22. It includes
both static refinements (as described in Subsection 4.3.2). The first refinement
(line 3) uses the size of the allocated object to decide if the optimization should
be enabled. If the object is sufficiently large, the allocator first needs to allocate
a region of virtual memory to map the object (alloc_virtspace, line 8). This is
emulated with the mmap system call, that lets the kernel select a free region of
virtual memory. Although the mmap call maps data into this region, this mapping
can be later overwritten with the map_page function call (line 21).

The second static refinement is realized via the expect_full_write parameter.
Callers that immediately overwrite the object after allocation set this parameter to
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indicate that they will not benefit from an initialization via the shared zero page.
This parameter is used in line 14 to select if the allocator should return references
to the global zeroed page or directly allocate physical memory. Line 21 then calls
the map_page function to map the selected page for the new object.

The pseudo-code of the map_page function is shown in Figure 4.8 (lines 1–12).
It receives two parameters, a physical page and an address of a virtual page to which
the physical page should be mapped. First, it adds a mapping from the virtual
page to the physical page to the page table. Then the actual mapping in virtual
memory is updated in line 3, which uses the remap_file_pages Linux system call to
change an existing mapping. Finally, the reference counter of the physical page is
incremented (line 6). If the reference counter is greater than one (see line 9), the
page is marked as read-only since it is shared between multiple objects. Otherwise,
it is mapped just once into virtual memory and is marked as read-write (not shared).

Both static refinements used in the custom allocator’s alloc function (see Fig-
ure 4.7) reduce the overhead for cases where no optimization potential is expected.
Compared to other OS level page sharing optimizations the optimization described
in this thesis utilizes additional information about the caller of the alloc function
and the knowledge where the R interpreter stores the frequently modified object
header. For this reason, the first page of an object is not shared (see first_page_flag
in line 16), saving the time required for the page fault handling.

After an object was allocated by the custom allocator, it may need to be copied.
The duplication optimization (see Figure 4.4) augments the existing copy-on-write
mechanism of the R interpreter, enabling the sharing of pages other than the
global zeroed page. Lines 24 to 45 of Figure 4.7 show the pseudo-code of the
optimized duplicate function, which changes the copy-on-write granularity to page
level granularity, avoiding unnecessary copies. Similar to the allocation function,
the optimized duplicate does not share the first page of the copy (lines 27 and 32-36)
as it contains not just data but also the object’s header. In line 30-44 the function
iterates over the virtual pages of the original object and its copy and maps the
same physical pages that are used for the original to the copy. Since these pages
now need a reference count of at least two as they are mapped in both the original
and the copy objects, map_page in line 44 automatically marks them as read-only.
Additionally, in line 42 the page in the original object is also marked as read-only.
Both mappings of a physical page must be marked to ensure that a write access
triggers a segmentation fault that can then be used to allocate a new physical copy
of the affected page. Thus, the optimized version of duplicate enables lazy page
allocation for copied objects.

The dynamic refinement (as described in Section 4.3.3) that is applied to enable
the deduplication of pages via a page content check is shown in the content_check
function at the end of Figure 4.7 in lines 47 to 55. This optimization is enabled for
each object that was allocated by the custom allocator and that is still alive after a
garbage collection call. Each page is scanned (line 49) for zero contents that are
not already shared by the global zeroed page. The global zeroed page is mapped
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1 alloc ( ob jec t_s i ze , expect_fu l l_wr i t e ) :
2 #static refinement: object size
3 if o b j e c t _ s i z e < 2_pages :
4 return s tandard_al loc ( o b j e c t _ s i z e )
5

6 else :
7 #reserve a virtual address space
8 o b j e c t = a l l o c _ v i r t s p a c e ( o b j e c t _ s i z e )
9 f i r s t_page_f l ag = true

10

11 for_each ( virt_pg in o b j e c t ) :
12 #the first page is always physical ,
13 #static refinement: full overwrite
14 if expect_fu l l_wr i t e or f i r s t_page_f l ag :
15 new_pg = get_free_physpage ( )
16 f i r s t_page_f l ag = f a l s e
17

18 else :
19 new_pg = ZEROED_PAGE
20

21 map_page(new_pg , virt_pg )
22 return o b j e c t
23

24 duplicate ( or ig_obj ) :
25 #reserve a virtual address space for copy
26 copy_obj = a l l o c _ v i r t s p a c e ( s i z e o f ( or ig_obj ) )
27 f i r s t_page_f l ag = true
28

29 #map virtual pages of copy to physical pages of original
30 for_each ( virt_orig_pg in orig_obj ,
31 virt_copy_pg in copy_obj ) :
32 if f i r s t_page_f l ag :
33 #first page is copied
34 physpg = get_free_physpage ( )
35 f i r s t_page_f l ag = f a l s e
36 copy_content ( physpg , virt_orig_pg )
37

38 else :
39 #remaining pages are just mapped to
40 #the physical pages of the original object
41 physpg = pagetable_lookup [ virt_orig_pg ]
42 set_readonly ( virt_orig_pg )
43

44 map_page( physpg , virt_copy_pg )
45 return copy_obj
46

47 #dynamic refinement:
48 content_check ( ) :
49 for_each ( pg in a l l_pages ) :
50

51 #check if the page (pg) is a copy of the global zeroed page
52 if pg != ZEROED_PAGE and page_content_is_zero ( pg ) :
53 #map the global zeroed page instead
54 unmap_page( pg )
55 map_page(ZEROED_PAGE, pg )

Figure 4.7: Pseudo-code of the memory optimization core.
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1 map_page ( phys_page , virt_page ) :
2 pagetable_add ( virt_page , phys_page )
3 remap_file_pages ( virt_page , phys_page )
4

5 #update reference counter
6 r e f count [ phys_page ] += 1
7

8 #shared pages must not be write -able
9 if r e f count [ phys_page ] > 1 :

10 set_readonly ( virt_page )
11 else :
12 se t_readwr i te ( virt_page )
13

14

15 write_fault_handler ( fault_pg ) :
16 phys_pg = pagetable_lookup ( fault_pg )
17

18 #allocate new phys. copy if page was shared
19 if r e f c o u n t s [ phys_pg ] > 1 :
20 new_pg = get_free_page ( )
21 copy_content (new_pg , phys_pg )
22 unmap_page( fault_pg )
23 map_page(new_pg , fault_pg )
24

25 #page is now known to be non -shared and can
26 #be used directly
27 se t_readwr i te ( fault_pg )

Figure 4.8: Page mapping and page fault handler.

to the pages that have zero contents and are not already shared (line 52). The
unmap_page function in line 54 removes the duplicated zero pages from the page
table and frees the memory that was previously used by them. This function is the
counterpart of the map_page function. Additionally, it decrements the reference
counter of the previously-mapped page and marks the page as free if its reference
counter is zero. The map_page function in line 55 then maps the global zeroed page
into the virtual page occupied by the object and increases its reference counter by
the number of saved pages.

The above-described functions from Figure 4.7 all use the map_page function.
This function marks shared pages (mapped more than once into virtual memory) as
read-only to trigger a function call of the write_fault_handler shown in Figure 4.8
(line 15–27). This fault handler allocates a new page (line 20), copies the content of
the accessed page to it (line 21) and updates the virtual mapping (lines 22-23) of
the page where the write access occurred (called fault_page). This new page is not
shared yet and thus marked as read-write (line 27). Since a mapping of a virtual
page is removed, the reference counter of the corresponding physical page decreases,
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which is handled by the unmap_page function. If all but one virtual instance of
a shared page were written to, the handler has created physical copies for all of
these pages. The last instance, which has a reference count of one, is still marked
read-only at this point because the handler only updates the pages for which a
fault occurred. On a write access of this last instance the allocation and copy steps
are omitted: As the reference count indicates the page is not shared anymore (line
19), it can just be marked as read-write (line 27). After the handler has mapped a
new read-write page at the fault location, the interpreter can resume its execution
and the write access will now succeed. Generally, such a return from a custom
segmentation fault handler is not supported by the POSIX standards, but Linux
and other operating systems offer extensions to allow this. Therefore, the write fault
handler is implemented via the existing libsigsegv library [GNU18] that offers a
common API for handling page faults in user mode.

In the next section, the memory savings and runtimes of the previously described
memory optimization strategies are evaluated.

4.3.5 Evaluation

The results obtained by applying the proposed memory optimization strategies
for R to real-world machine learning benchmarks are presented in this section.
The experimental setup evaluation methodologies are described in Subsection 4.3.5.
Subsection 4.3.5 discusses the results related to the memory consumption while Sub-
sections 4.3.5 and 4.3.5 evaluate the runtime effects of the page sharing optimization
strategies.

Experimental Setup

For the following experiments, a computer equipped with a 2.67 GHz Intel Core i5
M480 CPU and 6 GB of RAM, using a 64-bit version of Debian Linux 7.0 as the
operating system is used. On this system, memory pages have a size of 4096 bytes.
Although a larger page size than the system page size could be used for the memory
optimization, the same size was chosen as it is expected to maximize the amount
of memory that can be shared. (Using a smaller page size than the system size
is inefficient since the optimization relies on the hardware MMU for efficient page
access protection.) To evaluate the proposed memory optimization approach, the
memory usage and runtime of the R interpreter including the described optimizations
is compared to the standard GNU R interpreter. Both the standard as well as
the optimized R interpreter are compiled using GCC version 4.7.2 with the default
optimization flags (-O2) selected by the build system of R version 3.1.0.

The standard memory measurement functions for user space functions in Linux
only measure the virtual memory of a process. Since the optimization approach
maps the same physical page multiple times into virtual memory, these functions
are not sufficient for the evaluation. They are not able to measure the amount of
physical memory saved since they only count every virtual instance of a shared
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physical page. Therefore a separate memory measurement function was created. To
measure the amount of memory allocated by the default allocator, the standard
allocation functions like malloc are overwritten with versions that track the current
total amount of memory allocated and the original functions are called afterwards.
For the optimized custom allocator, the number of physical pages that need to be
reserved is directly tracked as well as the size of the memory management data
structures. With these mechanisms, the amount of allocated physical memory can
be measured accurately.

For the evaluation of the optimization, two different benchmark sets are applied.
The first set is a shorter-running set of benchmarks, selected from the R benchmark
2.5 suite [GU08] that was originally developed to measure the performance of various
configurations of the R interpreter plus one additional benchmark, listed in Table 4.1.
The R benchmark 2.5 suite was also applied in other optimization approaches that
focus on dynamic compilation for R [KMM+14; WWP14]. To analyze if the memory
optimization is also beneficial for algorithms that already try to reduce the memory
footprint by utilizing application-specific knowledge, the additional benchmark
glmnet is included. This benchmark utilizes an existing sparse matrix optimization
implemented as an R package. For accurate measurements, the iteration counts for
the outer loop of each benchmark was scaled to result in a runtime of approximately
1 minute with the standard R interpreter.

Benchmark Description
b25-1 Linear regression over a 3000x3000 matrix
b25-2 FFT of 2,400,000 random values
b25-3 Inverse of a 1600x1600 random matrix
b25-4 Grand common divisors of 400,000 pairs (recursive)
glmnet regression using glmnet on a sparse 20000x1000 matrix

Table 4.1: Misc Benchmark Set.

The second set of benchmarks is based on a set of long-running real-world machine
learning benchmarks, listed in Table 4.2. The choice of these classification algorithms
is based on the method’s popularity and the availability of its implementation. These
algorithms were also used in Chapter 3 and are publicly available [KL18]. As in
Chapter 3 the default parameters or, if available, the implementation’s internal
auto-tuning process was used to configure the algorithm parameters. The input
data set is a 2-class classification problem and has a sufficiently large number of
observations to achieve accurate results. The machine learning benchmarks were
configured to use a 20-fold cross-validation. The size of the input data set (15000
samples with 200 numeric features) was chosen to ensure that the runtime of the
fastest algorithms is approximately one minute on the standard interpreter. To
allow for a better comparison of the memory requirements, the same data set was
applied to all machine learning algorithms.
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Benchmark Description
ada Boosting of classification trees
gbm Gradient boosting machine
kknn k-nearest neighbour classification
lda Linear discriminant analysis
logreg Logistic regression. Binary classification

decision derived using a probability cutpoint of 0.5
lssvm Least-squares support vector machine
naiveBayes Naive Bayes classification
randomForest Random classification forest
rda Regularized discriminant analysis
rpart Recursive partitioning for classification trees

Table 4.2: Machine Learning Benchmark Set.

Each benchmark was executed 10 times with the standard and the optimized
version of the R interpreter. The results in the following sections are given as the
arithmetic mean of these 10 executions. To reduce non-determinism, the random
number seed is selected as a fixed value placed as the first statement in each of
the benchmarks. Each repetition was started in a fresh interpreter process, thus
initialization costs are included in the measurements (an expected overhead on the
order of one second or less). The R interpreter does not use adaptive optimizations.
All system services that might interfere with the measurements were disabled. Both
runtime and memory usage were measured simultaneously. For these measurements,
a 95% confidence interval is calculated as well as the ratio of the means using
the percentile bootstrap method. Means over these ratios are calculated using the
geometric mean to reduce the influence of outliers.

In the next section, the influence of the new page sharing approach on memory
consumption of the selected benchmark sets is presented and discussed.

Memory Consumption

This section analyzes the benefits of the page sharing optimization techniques with
regard to the memory consumption. Therefore the global peak memory usage as
well as the average memory usage of each benchmarks is evaluated. The Peak usage
represents the maximum amount of memory that was consumed during execution of a
benchmark. However, the peak memory consumption does not represent information
about changing memory usage over time, since the peak memory usage may occur
only for an instant of time depending on the benchmark. To gain a complete view
of the memory consumption the short-term peak usage is measured in intervals of 1
second, resulting in a memory-over-time profile. The Average usage of memory is
calculated as the arithmetic mean of these 1 second measurements and used as a
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second indicator besides the peak usage to allow easier comparisons of the memory
behavior.

Figure 4.9 shows the peak (Peak usage) and average (Average usage) memory
consumption of each benchmark running with the page sharing optimization. The
100% baseline represents the standard R interpreter without optimizations. Values
below this baseline indicate relative memory savings realized by the page sharing
strategies. Error bars have been omitted as the confidence intervals were smaller
than 0.5% for all values.
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Figure 4.9: Relative memory usage with page sharing optimization compared
to standard R (lower is better). The 100% baseline represents the
standard R interpreter (std. R) without optimizations. Geometric
means for the memory savings are 13.6% for peak and 18.0% for
average memory usage.

The detailed values are presented in Table 4.3. Here, also the number of
pages identified as shareable by the content check are listed since they indicate the
optimization potential of the dynamic refinement (deduplication of zero pages).

The gain for reducing the peak memory usage (GainP) of the standard R
interpreter (Std Peak) ranges from -0.9% for gbm to 53.8% for lssvm. However, the
negative values in the columns GainP and GainA of Table 4.3 indicate that the
page sharing optimizations do not gain memory savings for three of the benchmarks.
Here, the peak memory consumption for two of the benchmarks (gbm, b25-2) is
slightly increased as well as the average memory consumption for one benchmark
(naiveBayes). This is caused by the additional data structures that are needed for
the internal handling of memory pages.
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Benchmark Std Peak Opt Peak GainP Std Avg Opt Avg GainA ZPG
[MB] [MB] [%] [MB] [MB] [%] [#]

b25-1 296.2 228.1 23.0 259.6 192.2 25.9 13
b25-2 131.1 131.4 -0.2 128.8 128.0 0.6 13
b25-3 197.2 164.8 16.4 157.7 112.6 28.6 37919
b25-4 134.2 119.7 10.8 127.2 114.6 9.9 194892
glmnet 354.9 332.8 6.2 249.5 246.0 1.4 46877
ada 187.2 170.1 9.1 156.0 126.2 19.1 2031992
gbm 191.5 193.2 -0.9 147.7 136.0 7.9 464
kknn 316.5 287.6 9.1 274.0 231.0 15.7 421
lda 216.2 208.2 3.7 184.8 175.1 5.3 20447
logreg 213.0 186.7 12.3 184.7 162.8 11.9 955
lssvm 1365.1 631.0 53.8 820.2 381.1 53.5 3972699
naiveBayes 143.6 126.2 12.1 80.8 81.3 -0.6 78
randomForest 565.5 520.4 8.0 390.8 242.7 37.9 1130650
rda 254.1 227.7 10.4 197.0 177.3 10.0 707
rpart 144.5 125.8 12.9 130.7 103.3 20.9 56214

Table 4.3: Memory Optimization Results: Std Peak - peak memory usage by the
standard R interpreter; Opt Peak - peak memory usage by optimized
interpreter; GainP - relative peak memory reduction achieved by opti-
mization; Std Avg - average memory usage by the standard interpreter;
Opt Avg - average memory usage by optimized interpreter; GainA -
relative average memory reduction achieved by optimization; ZPG -
number of zero pages found by the content check.

For gbm, still a reduction of the average memory usage by 7.9% (GainA) is
achieved. For naiveBayes the situation is reversed: The optimization saves 12.1% of
its peak memory usage while its average memory usage (-0.6%) is slightly increased.
Since the number of pages recovered by deduplication (see column ZPG) is low (78),
the savings of the peak memory usage are assumed to be induced by the proactive
avoidance of page duplicates via the optimized allocation and duplication strategies.
For b25-2 the optimization was not able to save memory for peak memory usage
and no meaningful amount for the average memory usage was saved (GainA). The
reason why b25-2 does not gain from the optimization is that even though it uses
large vectors with 2.4 million elements, it allocates a vector which is immediately
filled with random numbers similar to the pseudo-code shown in Figure 4.5. Thus,
it does not profit from the optimized allocation and the content check can only
recover a low number of zero pages as shown column ZPG (13). Furthermore, b25-2
does not use any object duplication which is why the optimized duplication has no
potential for saving memory.

Even though the page sharing optimization results in a slight increase of peak
or average memory usage for the three benchmarks described above, all of the
twelve other benchmarks profit from the optimization with savings in both peak and
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average memory usage. The geometric mean over all fifteen benchmarks results in a
reduction of peak memory usage by 13.6% and a reduction of average memory usage
by 18.0%. Here, the highest amount of memory that could be saved occurs in the
lssvm benchmark with 53.8% for peak usage and in randomForest with 37.9% for
the average memory usage. Both of these benchmarks have a high number of zero
pages recovered by the content check. Thus for those benchmarks, the reduction
of the memory footprint is not just triggered by the allocation and duplication
optimization but also by the dynamic refinement that deduplicates zero pages.

Table 4.3 shows summarized values for the memory consumption over the
complete runtimes of all benchmarks. To gain additional insights about the memory
consumption behavior, the complete profile of the memory usage over runtime will
be also analyzed. Therefore, the four most interesting memory consumption profiles
for the benchmarks (glmnet, gbm, randomForest and naiveBayes) are shown in
Figure 4.10. For each benchmark, the run with the execution time closest to the
average of its 10 executions is selected. The confidence intervals over all 10 runs
of each benchmark are less than 1%, thus the figure shows only the data from a
single run. The x-axis represents the runtime in seconds while the y-axis represents
the corresponding memory consumption of the benchmark. Both the profile for
the standard R interpreter (yellow curves) and the interpreter including the page
sharing optimizations (green curves) are presented. The straight lines at the top
indicate the peak memory usage, while the dotted lines mark the average memory
usage.

glmnet: As mentioned in Section 4.3.5 the glmnet benchmark utilizes an already-
existing memory optimization for sparse matrices. It is included in the evaluation
to determine if the page sharing optimization can offer additional memory savings
in the presence of an optimization that applies specialized application knowledge.
In the top left of Figure 4.10 the memory-over-time behavior of this benchmark
is illustrated. While there is only a small improvement for the average memory
usage (see dotted green line), 6.2% of the peak memory consumption is saved (see
lines on the top). The memory consumption curves show that at all local memory
peaks the optimized version of the R interpreter saves a small amount of memory
while the memory consumption during the remaining parts of the execution is
largely unaffected. This results in only a minor reduction of the average memory
consumption. Still, even in the presence of a very specific optimization for sparse
matrices the page sharing optimization can offer additional memory savings. As
can be seen from column ZPG in Table 4.3 those savings are triggered by a large
number of pages recovered by deduplication (46877).

gbm: Not all benchmarks profit from the content checks though. For example,
Table 4.3 shows that in gbm only 464 zero pages are recovered. This benchmark
profits more from the optimizations in allocation and duplication. The corresponding
memory-over-time behavior is shown in the top right of Figure 4.10. Here, the
optimization does not reduce the peaks of the memory consumption, but there is a



4.3. Memory Footprint Reduction via Dynamic Page Sharing
Strategies 65

Figure 4.10: Memory consumption over time profiles for benchmarks with different
memory behavior for the standard R interpreter vs. the interpreter
with the page sharing optimization. Lines at the top indicate the
peak memory usage, dotted lines mark the average memory usage.

marked reduction of memory usage in the valleys between the peaks, reducing the
average memory consumption by 7.9%.

naiveBayes: Another benchmark that does not profit from the content checks
is naiveBayes with just 78 zeroed pages recovered. Its memory-over-time profile is
illustrated in the bottom left of Figure 4.10. In naiveBayes only the peak memory
usage is reduced by the optimization (large distance between the straight lines at
the top), but the average memory usage (small distance between the dotted lines)
is not affected. The profile also shows that naiveBayes has much smaller peaks
compared to gbm. Thus, the large reduction of memory usage at those peaks results
only in a small effect on the average memory consumption.

randomForest: Finally, randomForest in the bottom right of Figure 4.10 rep-
resents one of the benchmarks where the recovery of zeroed pages triggers high
memory savings. Here, the content checking reclaims 1,130,650 pages that corre-
sponds to slightly more than 4 GB of memory. The randomForest profile shows
a sawtooth curve for the optimized interpreter (see green curve). This indicates
that the benchmark uses large blocks of memory that are slowly written to. For
the page sharing optimizations, this represents an ideal memory usage pattern as
the allocation of memory is delayed until the benchmark writes data to it. This
results in a 37.9% improvement of the average memory consumption (large distance
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between dotted lines) – the average time during which the benchmark has a high
memory consumption is reduced.

Looking back at the profile of glmnet (top left), the green curve which shows the
profile for the optimized interpreter is longer than the yellow curve for the standard
interpreter and there is an increasing shift between the peaks of both curves over
time. The reason for this lies in the additional CPU time needed to provide the page
sharing optimizations. The runtime overhead induced by the memory optimization
will be analyzed in more detail in the next section.

Runtime Overhead

There are multiple reasons for the runtime overhead caused by the optimization: First,
in the optimized allocation both virtual and physical pages need to be managed. The
static refinement (as described in Section 4.3.2) that disables the custom allocator
for objects above a size limit of two pages avoids this overhead for small objects
where the optimizations potential is low.

Second, the first write access to a shared page requires intervention of the fault
handler, which also induces runtime overhead. To reduce this overhead another
static refinement that excludes functions which are known to immediately overwrite
their memory allocation is applied. However, this refinement only covers the case
where both the allocation and write access happen in the same function. If the
immediate write after allocation is caused by calculations from different functions
the benchmark, the static refinement is not able to detect this.

Third, the dynamic refinement that checks the content of pages for deduplication
also adds runtime overhead. Its overhead is expected to be low since it only checks
for pages which contain zero bytes.

Table 4.4 shows the execution times of the benchmarks for both the unoptimized
standard (Std) R interpreter and the interpreter including the optimization (Opt).
The relative overhead of the optimization is given in the column Loss and the number
of times the content check optimization was triggered is given in column CC. Here,
the confidence intervals have been omitted as they were smaller than 1.0% .

The highest amount of runtime overhead is caused in the b25-4 benchmark
(16.9%). Here, the immediate write access after allocation does not happen in
the same function and thus can not be detected by the static refinement. b25-4
recursively calculates the greatest common divisors for two vectors. The R interpreter
duplicates those vectors passed as function parameters in each recursion and the
benchmark updates these vectors. The overhead of the content check is expected
to be low for benchmarks where it does not contribute significantly to the memory
savings. An example of a low overhead for content checks is represented by the
ada benchmark with 1.8%. Here, the content check was triggered 12113 times (see
column CC ) resulting in over two million recovered zero pages according to Table
4.3. On the other hand, in the lssvm benchmark, with an overhead of 13.3%, just
1002 content checks were performed that recovered almost four million zero pages.
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Benchmark Std [s] Opt [s] Loss [%] CC [#]
b25-1 69.3 69.8 0.8 10
b25-2 61.6 62.0 0.7 58
b25-3 57.2 58.4 1.9 23
b25-4 60.2 70.3 16.9 1045
glmnet 59.3 64.0 7.9 156
ada 9874.3 10055.7 1.8 12113
gbm 160.4 168.0 4.7 287
kknn 2030.8 2063.6 1.6 486
lda 86.5 98.1 13.3 334
logreg 82.8 89.6 8.2 280
lssvm 530.5 601.2 13.3 1002
naiveBayes 1539.7 1555.6 1.0 31466
randomForest 4107.1 4135.5 0.7 224
rda 7617.8 7871.8 3.3 11849
rpart 61.5 64.2 4.4 304

Table 4.4: Runtime Results: Std - runtime with standard R interpreter; Opt -
runtime with optimized R interpreter; Loss - relative runtime overhead
incurred by optimized R interpreter; CC - number of executed content
checks; Geometric mean of runtime loss is 5.3%; Confidence intervals
have been omitted as they were smaller than 1.0% for all values.

This shows that the overhead of the content check depends not just on the number
of times it is triggered but also on the number of pages it has to search through.

Overall, the runtime overhead for all benchmarks is just 5.3%.
The static refinement that checks the object size to determine if the custom

allocator should be enabled provides the opportunity to modify the size limit in
order to change the runtime overhead. Here, an increase of the object size limit
is expected to result in a decrease of the number of objects that are considered
for optimization which results in a trade-off between memory savings and runtime
overhead.

This trade-off is illustrated in Figure 4.11 for the logreg benchmark. The x-axis
shows five different object size limits for the custom allocator. The y-axis represents
the runtime (grey) and peak memory consumption (black) of the optimization
relative to the same values for the standard R interpreter. Error bars have been
omitted as the confidence intervals were smaller than 0.3% for all values. For both
memory and runtime, a lower percentage is better, since the 100% baseline represents
the values of the standard R interpreter. The 8 KB limit is the limit that was chosen
in the previously presented measurements.

The results show that for logreg increasing the size limit for custom-allocated
objects reduces the gain of the optimizations as fewer objects can be optimized.
With a size limit of 1024 KB, the gain is even slightly negative as the optimization
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induces some memory overhead due to additional data structures needed for the
page sharing. This shows that for the logreg benchmark memory savings are only
triggered by R object allocations with a size smaller than 1024 KB. Furthermore, the
increase of the size limit reduces the number of objects handled by the optimization
thus the overhead contributes less to the overall runtime of the benchmark.
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Figure 4.11: Static refinement using different object size limits; Error bars have
been omitted as the confidence intervals were smaller than 0.3% for
all values (lower is better).

In all previous measurements, the RAM available in the system was sufficient to
hold all data used by the benchmark. If this is not the case, the above-discussed
runtime overhead can become insignificant which will be illustrated in the next
section.

Runtime Reduction

When the amount of RAM in the system is too small to hold all data required
by the benchmark, there are situations where the proposed memory optimization
is also able to reduce the runtime of the benchmark instead of adding overhead.
This is due to frequent page swaps that require disk I/O when the total capacity
of RAM is exceeded, a phenomenon also known as “thrashing”. To analyze this
situation, two benchmarks are considered. The first one is the lssvm benchmark
where the optimization provides a large reduction in memory consumption. The
second benchmark is an instance of logreg where the optimization provides only
smaller memory gains.

For the analysis the memory requirements of the benchmarks need to be increased
beyond the capacity of the RAM in the system. Instead of increasing the data
set size of both benchmarks, the system is limited to just 1 GB of RAM instead,
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Benchmark Std Opt Gain Std Opt Gain
Peak [MB] Peak [MB] Peak [%] Avg [MB] Avg [MB] Avg [%]

logreg-2 1 GB 1228.2 1094.8 10.9 965.7 789.6 18.2
logreg-2 6 GB 1228.2 1094.8 10.9 967.8 823.2 14.9
lssvm 1 GB 1365.1 631.1 53.8 970.0 381.3 60.7
lssvm 6 GB 1365.1 631.0 53.8 820.2 381.1 53.5

Benchmark Std [s] Opt [s] Speedup (CI)
logreg-2 1 GB 6395.5 5785.6 1.1051.144

1.071

logreg-2 6 GB 579.8 598.5 0.9690.971
0.967

lssvm 1 GB 3080.3 593.8 5.1885.350
5.029

lssvm 6 GB 530.5 601.2 0.8820.885
0.880

Table 4.5: Evaluation results with two configurations of RAM; see Table 4.3 and
4.4 for column descriptions, except Speedup: Runtime speedup factor
(Std / Opt). Confidence intervals for runtime are shown (CI), others
have been omitted as they are smaller than 0.8%.

since the runtimes of the benchmarks do not scale linearly with the data set size,
leading to excessively high execution times. However, since the logreg benchmark
has a much smaller memory consumption than 1 GB, the data set size for logreg is
additionally increased to 70000 samples with 300 numeric features, which increases
the memory requirements of this benchmark to approximately the same level as
lssvm. This still results in acceptable execution times for logreg.

Table 4.5 shows the results for the previous 6 GB system configuration and the
limited 1 GB RAM configuration for both benchmarks. The logreg benchmark is
now shown as logreg-2 because it was executed with the previously described larger
data set. In the 1 GB configuration, the system had to swap for both the standard
and optimized interpreters, resulting in a large increase in runtime over to the 6
GB configuration. The peak memory usage for the interpreters is identical in both
configurations while the average memory usage differs as this value is time-dependent
and thus influenced by swapping. This swapping also increases the variability in
the runtime measurements, thus the confidence intervals for the speedup factors are
also included (see lower part of Table 4.5).

Reducing the available memory from 6 GB to 1 GB has drastically increased
the runtime for both versions the standard R interpreter (Std) as well as the
interpreter including the memory optimization (Opt). Still, the reduction in memory
consumption for logreg-2 has turned the slowdown (factor 0.969) in its 6 GB
configuration into a small speedup (factor 1.105) when the RAM is limited to 1 GB.
Depending on the benchmark and its memory usage pattern, a different situation
could also happen: In the worst case, the content check of the optimized interpreter
touches a large number of pages, forcing them to be swapped in. This additional
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swap activity can increase the runtime so that the gains from a reduced memory
footprint may become irrelevant.

The second benchmark lssvm shows something closer to the best case for the
optimization: Here, the page sharing optimization manages to save enough memory
to avoid swapping. In this case, significant speedups are gained as shown in the
lower part of Table 4.5 for the 1 GB configuration of lssvm.

Similar to logreg-2, the memory usages do not vary much between both con-
figurations (see upper part of Table 4.5). Considering the runtime results, the
optimized interpreter Opt only needs 593.8 seconds to run the lssvm benchmark
which is almost unchanged from the 6 GB configuration (601.2 seconds). On the
other hand, the standard interpreter Std has now increased its runtime to 3080.3
seconds (51.3 min.) when limited to 1 GB of RAM. This makes the overhead of
the memory optimization irrelevant as the time gained by avoiding page I/Os is
much larger. The page sharing optimization enables a speed up by a factor of 5.2
for llsvm by reducing the peak memory consumption by 53.8%. This speed up is
also illustrated in Figure 4.12 that shows the memory consumption profile for one
exemplary execution of the lssvm benchmark.

Figure 4.12: Exemplary memory consumption over time profile for the lssvm
benchmark. Reaching a speed up by a factor of 5.2 on a system with
1GB of RAM. Lines indicate the peak memory usage, dotted lines
mark the average memory usage.

This shows that reducing the memory consumption with the page sharing
optimization can significantly improve the runtime for memory–hungry benchmarks
if the available RAM is constrained. In turn, this can enable the processing of larger
data sets.
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4.4 Summary

In the domain of machine learning algorithms, the R interpreter induces a large
memory overhead due to wasteful memory allocation policies [KKL+14]. The goal of
the presented memory optimization approach was to enable efficient memory utiliza-
tion, especially for memory-hungry R applications like machine learning algorithms.
To accomplish this goal, this chapter presented an application-transparent memory
optimization approach that employs page sharing at a memory management layer
between the R interpreter and the operating system’s memory management. The
optimization benefits a large number of applications since it preserves compatibility
with the available software libraries that most R programs are based on, and covers
one of the most important resource bottlenecks of machine learning algorithms. By
concentrating on the most rewarding optimizations – the sharing of zero-filled pages
and deduplicating at the page level instead of the object level –, the overhead of
more general OS level memory optimization approaches such as deduplication and
compression is avoided. With the proposed optimization, considerable reductions of
the memory consumption for a large number of typical real-world benchmarks have
been achieved, which is an important step towards processing larger input sizes. It
also significantly speeds up the computation in cases where previously pages had to
be swapped out due to insufficient main memory.

Currently, the optimization approach has to replicate a subset of the virtual
memory information that is already available in the OS kernel. Korb et al. [KKM16]
developed a hybrid user level/kernel mode implementation of the presented page
sharing approach, which results in a small reduction of the overhead of the current
user mode-only implementation. The optimizations are based on a new system
call that uses the existing copy-on-write functionality of the Linux kernel to avoid
duplicating memory when data is copied. For a further reduction of the overhead,
machine-learning techniques could be applied to optimize the trade-off between
runtime and memory, since the parameters of the presented approach allow for
dynamic tuning. However, this is outside the scope of this thesis and left as a
direction for future work.

In addition to the proposed memory optimization, the second major avenue
for speeding up statistical machine learning algorithms that we will explore in this
thesis is parallelization. Parallelizing the execution poses new resource utilization
challenges. In order to fully benefit from parallel execution, it is essential to analyze
the resource utilization of the parallelized version of these learning algorithms. The
next chapter therefore presents a performance analysis of parallel machine learning
algorithms, with the goal to develop new resource-aware mapping and scheduling
methods.





Chapter 5

Profiling of Parallel
Machine Learning Algorithms

This chapter presents an analysis of parallel machine learning algorithms imple-
mented in the R programming language and is based on the papers by Kotthaus et
al. [KKM15a; KKM15b]. As outlined in Chapter 2, the GNU R language is the most
widely used programming language for statistical data analysis. While apparently
not affecting the popularity of the R language, its lavish use of resources makes it
unsuitable in an environment where high performance is required, or where resources
are scarce. Since R is increasingly used to process large data sets, parallelization
is used to speed up computation, which poses new resource utilization challenges.
Building upon the analysis of bottlenecks arising during parallel execution, the opti-
mization potential for resource utilization can be estimated. To fully benefit from
multi-core architectures, it is therefore essential that the analysis is not restricted to
single-threaded algorithms, but also includes parallel learning algorithms and their
mapping and scheduling on underlying architectures.

This chapter presents the parallel profiling mechanisms of the traceR profiling
framework [tra18] and the analysis of bottlenecks arising in embarrassingly parallel
machine learning applications. As presented in Chapter 3, traceR allows for profiling
the resource usage of an R application to locate bottlenecks and develop new
optimizations [KKL+14; KKK+14]. Its profiling functionality was previously limited
to sequential R applications. Profiling parallel R applications therefore required
improving the tool with new profiling mechanisms.

The analysis with traceR focuses on algorithms that consist of embarrassingly
parallel independent tasks. While there are many different parallel machine learn-
ing algorithms, the analysis in this chapter will mainly focus on hyperparameter
optimization for machine learning algorithms, which is an algorithm with huge
resource demands. The goal of hyperparameter tuning is to find the best parameter
configuration for building a model for the given data in a limited time budget.
Evaluating these configurations usually requires a huge amount of resources. The
goal of the analysis is to support the development of new optimization methods for
parallel machine learning applications, including mapping and scheduling methods
with respect to the resource utilization.

This chapter is structured as follows: The fundamentals of parallel execution
mechanisms of the R language are introduced in Section 5.1. Section 5.2 describes
the parallel profiling mechanisms of the traceR profiling framework that serve as
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a basis for the analysis. Section 5.3 presents the runtime analysis and examines
the memory consumption and CPU utilization of parallel executed hyperparameter
tuning. Finally, Section 5.4 concludes with a summary of the results.

5.1 Parallel Execution Mechanisms in R
- Fundamentals

The R language has a single-threaded design and is not thread-safe. Since 2012
it however contains the ability of parallelizing full processes, e.g., via the fork
mechanism. Furthermore, R can be extended with external multi-threaded libraries
like the OpenBLAS library [ZWW18] used for basic vector or matrix operations, or
with packages that use threading (e.g., pthreads [IE94], OpenMP [DM98]) in their
external C code parts [R C17a].

The CRAN task view for high-performance and parallel computing with R1 gives
an overview of all packages that support parallel computing within R. Figure 5.1
visualizes this broad range of parallel execution mechanisms supported via R packages.

Figure 5.1: Parallel execution mechanisms in R supported via packages.

Besides packages for parallelization on GPUs, there are several libraries that
implement parallelism for specific applications. Some of those specific applications
exploit the general parallel execution mechanism that R supports by default. From
the user perspective, there are two ways to incorporate parallelism in an application:
implicit and explicit. Implicit means that the parallelization is transparent to the
user, while explicit requires the user to manage the parallelization, including the
task and data distribution and partitioning.

This thesis solely focuses on explicit parallelization strategies. Therefore, the
following parts of this chapter will focus on parallel applications consisting of
computation intensive independent tasks that do not need to communicate and that

1CRAN Task View: High-Performance and Parallel Computing: https://cran.r-project.org/
web/views/HighPerformanceComputing.html, 2018

https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
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utilize the basic parallel mechanisms of R via the parallel package [R C17a]. The
parallel package was included in the R language in 2012 for the direct support of
parallel computation and is thus the most common kind of explicit parallelism used.
A common parallel application is to execute the same function on different input
data sets. Therefore, two different basic computation models are offered:

Prescheduling: The first computation model is called prescheduling. It is recom-
mended when the parallel tasks (jobs) have similar execution times. In this model,
so-called worker processes are started (e.g., one worker per available CPU). The
parallel application that runs the same computation on different data sets in parallel
is split into equal-sized sets of jobs, where the number of sets should equal the
number of worker processes. Those sets of jobs are then sent to the worker processes.
A master process waits for all jobs to finish and then terminates the workers.

Load balancing: The second parallel computation model is called load balancing
and is recommended when jobs have widely varying execution times. Instead of
pre-splitting the jobs into equal-sized sets, the master process consecutively sends a
single job to each worker process. It then waits for any worker to finish its job, and
sends the next job to the next idle worker, until all jobs are completed.

In the next section, the parallel profiling mechanisms of the traceR framework
are presented that will later serve as a basis for the analysis. Both of the above-
described parallel computation models will be analyzed.

5.2 Parallel Profiling Mechanisms - traceR

The traceR profiling tool [tra18] that was presented in Section 3.2 can also be
utilized for examining parallel R applications. It supports common cases like
profiling of parallelization on multiple cores (Subsection 5.2.1) or multiple machines
(Subsection 5.2.2). The parallel profiling mechanisms enable the analysis of the
CPU utilization of parallel tasks and the memory usage of parallel programs during
execution.

Since the gain from parallel execution can turn into a heavy penalty if the
memory requirements of all parallel processes exceed the capacity of the system,
causing thrashing, the profiling data can help determine the maximum degree of
parallelism. The data can furthermore be utilized to detect inefficient resource
utilization and guide scheduling decisions with respect to the resource utilization
and thus supports the development of new optimizations for parallel applications.

This section illustrates the mentioned profiling mechanisms on an example
program for calculating a Mandelbrot fractal in parallel. Those mechanisms will
later serve as a basis for the profiling of parallel machine learning algorithms in
Sections 5.3.



76 Chapter 5. Profiling of Parallel Machine Learning Algorithms

5.2.1 Single Machine Profile

The traceR framework produces profiles that visualize the relative CPU utilization
and memory consumption for applications executed in parallel. Additionally, traceR
also generates more detailed runtime and memory profiles for each parallel process
separately [tra18]. This section demonstrates the profiling mechanisms of the traceR
framework on a single machine with multiple cores. For this purpose, a parallelized R
program for calculating a Mandelbrot fractal image is used as an example application,
profiled on a Lenovo L512 notebook with an Intel Core i5 (dual-core, 2nd Gen)
processor with 2.5 GHz and hyper-threading, running R version 3 on Linux.

To execute the Mandelbrot fractal calculation in parallel, the computation is
partitioned into jobs, each calculating a different block of lines of the final image.
The so-called mclappy function of the parallel package [R C17a] is used, which by
default uses the prescheduling mechanism as described in Section 5.1. The mclapply
function first splits the jobs into as many sets as the number of cores specified, and
then sends them to the worker processes, each covering more than one job.
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Figure 5.2: Relative CPU utilization and memory consumption of a parallel R
program for calculating a Mandelbrot fractal on 4 cores on a single
machine with prescheduling.

Figure 5.2 shows the traceR profile for the described Mandelbrot fractal cal-
culation conducted on four cores. This kind of profile will also be later used in
the analysis of parallel machine learning applications. The y-axis on the right side
shows the memory utilization of the Mandelbrot fractal computation. The memory
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behavior is described by two curves. The green curve shows the amount of free main
memory during program execution, as reported by the Linux kernel. The black
curve shows the amount of memory allocated by all parallel processes over time.
The values for the free and the allocated memory are sampled once per second. The
x-axis represents the runtime in seconds. The runtime and the CPU utilization
of the parallel processes are illustrated by horizontal lines. The length of a line
represents the runtime. Here, the color of the line can vary from blue via purple
to orange and indicates the relative CPU utilization of a process, averaged over its
entire runtime.

The measurements for the master process shown in the first horizontal line
indicate a low CPU utilization (blue) since the master only waits for the workers to
finish and gathers the results at the end without running any calculations.

Since mclapply uses one worker process per core, Figure 5.2 shows four orange
lines for the worker processes. The worker processes are orange since their CPU
utilization is high. This indicates that they did not have to wait for CPU resources
instead, they received the maximum amount of CPU time. If their color would
shift to purple or blue this would indicate that they had consumed less CPU time
than their wall-clock runtime. This could be caused by other concurrent processes
running on the same machine, by running more processes than CPU cores available
or just by processing delays that are for example caused by I/O operations.

In the above-described example, the total runtime of the Mandelbrot fractal
calculation was reduced by executing it on four cores in parallel. To further reduce
the runtime, a common way is to distribute the execution across multiple machines
that together may comprise even more cores. This scenario will be described in the
next section.

5.2.2 Multiple Machine Profile

Besides analyzing the memory consumption and CPU utilization on a single machine,
traceR is also able to profile programs running on multiple machines in a distributed
fashion. To demonstrate this profiling mechanism, the Mandelbrot fractal calculation
of the previous section is used. For simplicity, we assume that two machines with
four cores each are used. For distributed execution, R’s parallel package offers
various functionalities like, e.g., the makePSOCKcluster function. This function
launches copies of the R interpreter on specified machines (hosts) to set up worker
processes which listen on a socket for evaluation jobs via the Rscript front end,
an alternative front end for using R in scripts. These machines together form a
“cluster”.

When the calculation of a program is distributed across multiple hosts, traceR
creates one sub-profile for each host. In this case, the master process is only shown
in the sub-profile of the machine it was executed on. Figure 5.3 presents the traceR
profile for calculating the Mandelbrot image on two hosts and eight cores. Compared
to the runtime (approximately 140 seconds) shown in the profile of Figure 5.2 where
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the program was executed on four cores, only minor runtime savings were gained
when calculating the Mandelbrot image on eight cores (approximately 120 seconds,
i.e., 20 seconds less).
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Figure 5.3: Relative CPU utilization and memory consumption of an R program
for calculating a Mandelbrot fractal using 8 cores on 2 machines.

This indicates an inefficient resource utilization. One reason for this is the
overhead of using Rscript to launch copies of the processes. The CPU utilization of
the worker processes on host2 where the master process is executed (see blue line in
lower part of Figure 5.3) suggests another reason. In the previous profile where the
program was executed on a single machine, all worker processes had a high CPU
utilization and also a variance in completion times. Now the individual runtimes
of the worker processes are very similar to each other and their CPU utilization is
lower (purple colored lines). The reason for this is that the worker processes are not
able to stop execution when their computation is finished, they have to wait for the
master process and the master first waits for all computations to be finished before
it shuts down the worker processes.

In summary, using two machines for the Mandelbrot example produces excessive
overhead and thus does not lead to an efficient runtime reduction. A single machine
with more cores might have yielded a higher speed-up due to reduced overhead.

The next section analyzes the parallel runtime performance of machine learning
algorithms based on the presented profiling mechanisms.
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5.3 Profiling of Parallel Machine Learning Algorithms

The goal of the analysis in this section is to support the development of new
optimization methods for parallel machine learning applications, including mapping
and scheduling methods with respect to the resource utilization. While there are
many different parallel machine learning algorithms, the analysis in this section
will focus on hyperparameter tuning of machine learning algorithms, which is an
algorithm with huge resource demands. The goal of hyperparameter tuning is to find
the best parameter configuration for building a model for the given data in a limited
time budget. To speed up the tuning process, the configurations are evaluated in
parallel, which typically requires a large amount of resources.

In the following, the runtime behavior (Subsection 5.3.2) and the memory
consumption together with the CPU utilization (Subsection 5.3.3) of a real-world
application for tuning the hyperparameters of a Support Vector Machine (SVM)
classification are analyzed.

5.3.1 Experimental Setup

The classification performance of a SVM highly depends on its parameter configura-
tions, therefore it is important to tune those parameters by evaluating the prediction
performance of different configurations. Here, different parameter configurations are
evaluated, based on the mlr R library [BLK+16]. The configurations are selected via
a random search and evaluated in parallel. The parameters γ and cost C are both
box-constrained to the interval [−15, 15] on a log2-scale. The SVM implementation
is based on libsvm2 and implemented in the R library e1071 [ADK06]. The data
set w8a3 is used as the input for the SVM optimization. The prediction performance
of automated parameter tuning algorithms will be analyzed in Chapter 6. Therefore,
the analysis in this chapter solely focuses on the resource utilization performance of
parallel execution.

The mlr library utilizes the R function mclapply of the parallel R package [R
C17a], which is configurable with two different parallel computation models: pre-
scheduling and load balancing (as described in Section 5.1). Both configurations
will be examined. The profiling of the SVM classification is conducted on a Lenovo
L512 notebook with an Intel Core i5 (dual-core, 2nd Gen) processor with 2.5 GHz
and hyper-threading, running R version 3 on Linux.

5.3.2 Runtime Behavior Analysis

In the following, the runtime behavior of the parallelized hyperparameter tuning
algorithm described above is analyzed with traceR. The SVM classification configu-
rations are evaluated on a single machine using four cores and 4 GB of main memory.

2Chang, C. et. al: https://www.csie.ntu.edu.tw/~cjlin/libsvm
3Platt, J.C.: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w8a

https://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w8a
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First, the runtime behavior of the prescheduling parallel computation mechanism is
examined, and then the load balancing model is analyzed.

Prescheduling Mechanism

When the default prescheduling mechanism of the parallel package is used, a pool of
worker processes is created. The master process is replicated via fork and the overall
set of jobs is split into smaller sets, each of which is assigned to a single worker
Each job represents the evaluation of the performance of the SVM with a specific
parameter configuration. Figure 5.4 presents the traceR profile of the parallel SVM
parameter tuning benchmark with prescheduling (as described in Section 5.2.1).
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Figure 5.4: CPU utilization and memory consumption of an R program evaluating
different parameter configurations of a SVM classification using 4 cores
on a single machine with the default prescheduling mechanism.

The measurements for the master process shown as the first horizontal line
indicate a low CPU utilization (blue) since the master only waits for the workers to
finish and gathers the results at the end without running any calculations. The four
orange lines represent the runtime and the CPU utilization of the worker processes.
The worker processes are orange and thus have a high CPU utilization, which
indicates that they did not have to wait for CPU resources, instead they received
close to an entire CPU core each.

However, the completion times of the worker processes have a high variance,
which is indicated by the differing lengths of the horizontal lines at the end of
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the execution. The default computation model of prescheduling hence produces
an inefficient resource utilization for the SVM application. The parallel package
supports a mechanism for balancing jobs with high runtime variances more evenly,
which will be analyzed in the following.

Load Balancing Mechanism

Load balancing is recommended if the jobs of a parallel program have varying
completion times or if the underlying architecture is heterogeneous, e.g., different
CPU cores having different frequencies. Figure 5.5 presents the traceR profile for
CPU utilization and memory consumption of the SVM parameter tuning program,
now executed with the load balancing mechanism. To visualize the load balancing
option, the profile shows one horizontal line for the CPU utilization of each job
instead of each worker process. All jobs are still processed on four cores.
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Figure 5.5: CPU utilization and memory consumption of an R program evaluating
different parameter configurations of a SVM classification using 4 cores
on a single machine with the load balancing mechanism.

Compared to the profile from Figure 5.4, where prescheduling was activated
instead of load balancing, the dynamic allocation of jobs to workers did not translate
into major runtime savings (approximately 160 seconds). This is due to the fact that
there still is a high variance of completion times at the end of the program, leading
to an inefficient resource utilization. This shows that neither the load balancing
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nor the prescheduling mechanism is sufficient for achieving an efficient utilization
of resources for the SVM parameter tuning algorithm. However, a high variance
of execution times is not specific to this SVM example, but is a common case for
parameter tuning of machine learning algorithms. This calls for the development of
new, more resource-efficient parallelization strategies.

Inefficient resource utilization can not only be caused by insufficient load balanc-
ing. In the next section, an example case where it is caused by creating too many
parallel processes is discussed.

5.3.3 Memory Consumption and CPU Utilization Analysis

The gain from parallel execution can be negated if the memory requirements of
all processes running in parallel exceed the capacity of the main memory. In this
situation, the operating system starts to swap out memory which dramatically slows
down the execution.
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Figure 5.6: CPU utilization and memory consumption of an R program evaluating
different parameter configurations of a SVM classification using load
balancing on 4 cores on a single machine with 2 GB of main memory.

The traceR profile in Figure 5.6 illustrates this scenario. Here, the SVM param-
eter tuning program was profiled running with lower memory resources of 2 GB of
main memory instead of 4 GB.

In comparison to Figure 5.5, the system runs out of free main memory, indicated
by the green curve that in some phases of the execution is close to zero. This also
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leads to a high delay in execution time as indicated by the total runtime on the
x-axis. Furthermore, this profile includes blue lines indicating a low CPU utilization.

Since the parallelly executed evaluations of the SVM parameter configurations
are all independent, they are not aware of each others memory usage, thus one job
cannot trigger garbage collection in another and free memory for it. This example
demonstrates that the execution of too many parallel processes leads to wasted
resources due to inefficient allocation of resources. The profiling data produced by
the traceR framework thus can serve as an indicator to determine the maximally
feasible degree of parallelism.

5.4 Summary

This chapter summarized the parallel execution mechanisms included in the R
programming language and presented the parallel profiling mechanisms of the traceR
profiling framework that were developed in this thesis. The profiling mechanisms
were used for analyzing the bottlenecks of a parallelized machine learning application.

The problem of high runtime variance of parallel processes, even when using the
load balancing option of the R runtime environment, was examined and the issue
of executing too many parallel processes leading to inefficient resource utilization
was discussed. The results of the analysis show that the parallel computation
models of the R language are not sufficient for machine learning applications like
hyperparameter tuning, as they do not enable an efficient utilization of resources.

The results of the analyses gathered by traceR can guide the development of
new optimization methods for parallel machine learning applications, including
new scheduling strategies with respect to resource utilization. Such strategies are
especially important if the system architecture is heterogeneous or if the parallelly
executed jobs of an application have varying resource requirements depending on
the input data. Overall, the results of the analysis call for the development of
new resource-efficient parallelization strategies. Chapter 6 of this thesis therefore
concentrates on the development of optimized scheduling strategies for parallel
machine learning applications.





Chapter 6

Resource-Aware Scheduling
Strategies for Parallel

Machine Learning Algorithms

This chapter presents resource-aware scheduling strategies for parallel machine
learning algorithms based on the papers by Kotthaus et al. [RKB+16; KRL+16;
KRL+17; KLN+17]. While there are many different parallel machine learning
algorithms, we will focus solely on Model-Based Optimization (MBO), which is a
learning algorithm with huge resource demands. As described in Chapter 2, MBO
is a state-of-the-art global optimization method for black-box functions that are
expensive to evaluate. A black-box function is an abstraction of a system for which
the internal working is unknown, hence the only way to establish a relationship
between input parameters and output values is to evaluate it at each respective point
in the input space. One of its uses is hyperparameter tuning of machine learning
algorithms where the black-box is a machine learning algorithm [THH+13; LKM+15].
The goal is to find the parameter configuration of the algorithm with the highest
quality of the output measured by a given performance criterion within a limited
time budget. Due to huge model spaces (many different parameter configurations),
a large amount of resources is needed to evaluate these configurations [CVB+02].
Here, resource requirements like CPU utilization or memory usage vary heavily
depending on the type and configuration of the applied machine learning algorithm.

Figure 6.1 visualizes the heterogeneity of the resource requirements and the
classification quality for different parameter configurations of a Support Vector
Machine (SVM) with a radial basis function kernel (RBF) that is commonly used
in SVM classification tasks. Dependent on how the kernel parameter γ on the
x-axis and the cost parameter C of constraint violations on the y-axis are chosen,
different execution times and misclassification errors are produced. The left part of
Fig. 6.1 shows the heat map for the execution times. Here, the runtime can vary
heavily depending on the configuration. Dark blue configurations are long running
configurations, while light green configurations have short execution times. The
right part of Fig. 6.1 represents the heat map for the mean misclassification error
(mmce). Here the performance criterion has the goal to find the configuration that
has the lowest mmce (light yellow) within a limited time budget.

To reduce the number of necessary evaluations of the black-box function (e.g., a
SVM classification like in Figure 6.1), conventional MBO uses an iteratively refined
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Figure 6.1: Runtime and mean misclassification error (mmce) for different config-
urations of an SVM classification.

regression model on a set of already evaluated configurations to approximate the
objective function. Starting with an initial set of already evaluated configurations,
the regression model guides the search to new promising configurations by estimating
the outcome of the black-box function on yet unseen configurations. Based on this
prediction, the so-called infill criterion (also called acquisition function) proposes a
new promising configuration for evaluation. In each iteration, the regression model
is updated based on evaluated configurations of all previous iterations until the
budget is exhausted.

In its original formulation, the MBO algorithm operates purely sequentially (as
described in Section 2.1), it proposes one configuration to be evaluated after the
other [JSW98]. In order to propose multiple points simultaneously in a parallel
setting, several modifications to the infill criteria or the general technique (such as
constant liar, Kriging believer, qEI [GLC10], qLCB [HHL12], MOI-MBO [BWB+14])
have been suggested that result in multiple configurations being proposed in each
iteration. The number of simultaneously proposed configurations is typically chosen
to equal the number of available CPUs. However, these modifications in general
neglect the heterogeneous resource requirements (CPU, memory etc.) for evaluating
different configurations in the model space, which often leads to inefficient resource
utilization.

Before new configurations are proposed, the results of all evaluations within one
iteration are usually gathered to update the model. Thus the slowest evaluation
becomes the bottleneck, and all other parallel worker processes idle after finishing
their evaluation before a new MBO iteration can start. One approach to avoid idling
is to desynchronize the model update. Such asynchronous techniques have been
suggested and discussed by [GJL11; JLG11; JLG+12]. Here, the main problem
is to avoid evaluations of very similar configurations. Since the evaluation of a
configuration can take several hours, the evaluation of similar configurations with
little or no impact on the overall optimization are a waste of resources.

The goal is to execute MBO in a resource-efficient way to enable the processing
of larger problem sizes within a given time budget or, in other words, reduce the
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end-to-end wall-clock time for a constant problem size. This calls for the development
of new resource-aware scheduling strategies to efficiently map configurations to the
underlying parallel architecture, depending on their resource demands. In contrast
to classical scheduling problems, the scheduling for MBO needs to interact with the
configuration proposal mechanism to select configurations with suitable resource
demands for parallel evaluation, which is a complex problem, since the resource
demands need to be known (at least estimated) before execution.

This chapter presents the Resource-Aware Model-Based Optimization framework
(RAMBO), enabling a resource-efficient parallel variant of MBO by integrating
different resource-aware scheduling strategies. With RAMBO, it becomes possible
to make use of the full potential of parallel architectures in an efficient manner. To
accomplish this goal a runtime estimation model that estimates the runtime for each
evaluation of a configuration is developed to guide the mapping of evaluations to
available resources. In addition to the runtime estimates, the scheduling strategies
use an execution priority reflecting the estimated profit of an evaluation for finding
the best configuration. Different experimental setups are used to evaluate the
performance of the RAMBO framework including the new scheduling strategies.

This chapter is structured as follows: First, the fundamentals and the related
approaches of parallel MBO are presented in Section 6.1. An overview of the
RAMBO framework that includes the new resource-aware MBO method developed
in this thesis is given in Section 6.2. Section 6.3 presents the new resource-aware
scheduling strategies, including their evaluation and comparison to the existing
parallel MBO variants on homogeneous multiprocessor cluster systems. Section 6.4,
in contrast, proposes a concept for the new resource-aware scheduling strategies for
MBO on heterogeneous embedded systems. Finally, the results are summarized in
Section 6.5.

6.1 Parallel Execution of Model Based Optimization
- Existing Approaches

For applications like hyperparameter tuning for machine learning algorithms or
computer simulations, parallelization has become of increasing interest to reduce
the overall execution time [HVC16]. The most important parallel extensions of
MBO that this thesis focuses on update the regression model either synchronously
or asynchronously. The synchronous variant uses infill criteria with multi-point
proposals wherein each MBO iteration multiple configurations are proposed and
evaluated in parallel. Here, the model is updated after all evaluations within one
iteration are finished. The asynchronous variant updates the model every time
an evaluation is finished. In this case, each worker process generates one new
configuration proposal individually. Both variants are based on different infill
criteria and have different challenges presented in the following.
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6.1.1 Parallel Synchronous Execution

To allow for parallelization with a synchronous model update, infill criteria and
techniques (constant liar, Kriging believer, qEI [GLC10], qLCB [HHL12], MOI-
MBO [BWB+14]) have been suggested that propose multiple configurations in
each iteration. Multi-point proposals are able to derive q configuration proposals
x∗1 , . . . , x∗q simultaneously instead of only proposing one configuration x∗ from a
surrogate model. As described in the fundamentals of Chapter 2, the surrogate
model is used as a regression model, as it is comparably inexpensive to evaluate and
therefore often used when function evaluations are very expensive [FSK08].

Hutter et al. [HHL12] introduced the qLCB criterion which is an extension of the
single-point LCB (2.4) criterion using an exponentially distributed random variable
to generate q different candidate proposals by drawing random values of λj ∼ Exp(λ)
(j = 1, ..., q) from the exponential distribution.

qLCB(x, λj) = µ̂(x) − λj ŝ(x) with λj ∼ Exp(λ) (6.1)

The λ variable guides the exploration-exploitation trade-off. Sampling multiple
different λj thus might result in different “good” configurations by varying the
impact of the standard deviation term.

Figure 6.2 presents two exemplary MBO iterations where qLCB is used, proposing
two configurations per iteration for parallel execution. As described in Figure 2.3 of
Chapter 2, the y (solid line) in the upper parts of the two MBO iteration figures
denotes the output of the unknown black-box function f , while ŷ (dotted line in
upper parts) denotes the outputs of the surrogate regression model f̂ that tries to
approximate the black-box function. Gray areas around ŷ represent the uncertainty
of the surrogate model.

In the first iteration step, the initial set of configurations (red dots) are already
evaluated. In the lower part of the visualization of iteration one, two dotted lines
represent the qLCB infill criterion for q = 2 with two different values for λ with
qLCB(x, λ1) and qLCB(x, λ2) to vary the impact of the standard deviation ŝ(x).
Based on these two different λ values, different minima for the infill criterion (lcb)
are computed, to propose two new configurations (blue triangles).

In the second iteration, f̂ is refitted with the evaluated configurations (green
rectangles) and two new configurations are proposed (blue triangles). This process
continues until the budget is exhausted. The qLCB criterion is comparably inex-
pensive for generating many independent candidate proposals and thus used in the
resource-aware scheduling strategies for parallel MBO [RKB+16; KRL+17], which
are part of this thesis.

Another popular multi-point infill criterion is the qEI criterion [GLC10] which di-
rectly optimizes the single-point EI (2.3) criterion over q points. As the computation
of EI is using Monte Carlo sampling, it is quite expensive [CG13]. Therefore, a less
expensive alternative, the Kriging believer approach [GLC10], is often chosen. Here,
the first configuration is proposed based on the standard single-point EI criterion. Its
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First MBO iteration

Second MBO iteration

Figure 6.2: Visualization of two exemplary MBO iterations with qLCB as infill
criterion and two parallel configuration evaluations per iteration.

posterior mean value is treated as a real value of f to refit the surrogate, penalizing
the surrounding region with a lower standard deviation for the next point proposal
using EI again. This is repeated until q proposals are generated.

The above mentioned multi-point infill criteria can cause inefficient resource
utilization when the parallel executed evaluations have heterogeneous resource
demands like execution times. For the synchronous parallel execution of MBO,
the number q of proposed configurations is usually chosen to equal the number of
available CPUs.

Figure 6.3 shows an exemplary schedule for q = 4 jobs (evaluations) on 4 CPUs
where the jobs have varying execution times. The vertical arrows indicate the start
of an MBO iteration where the multi-point criterion proposes 4 job configurations
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x1, . . . , x4 for the first iteration. The boxes represent the jobs execution times. At
the end of the iteration, the model gets updated with the results of the configurations
x1, . . . , x4. All CPUs have to wait for the slowest evaluation (e.g., configuration x2
in iteration one) to finish before receiving new proposals. This can lead to idling
CPUs that are not contributing to the optimization. Here, spaces between jobs and
the vertical arrow (model update) indicate idling CPU time caused by heterogeneous
execution times of the jobs executed within one MBO iteration. After the results of
all jobs are gathered the model is updated synchronously and new proposals can be
generated and executed for the second MBO iteration. The general goal is to use the
underlying parallel architecture in a resource-efficient way to solve the optimization
problem.

Figure 6.3: Exemplary scheduling for synchronous parallel MBO with q = 4 exe-
cuted evaluations (jobs) per MBO iteration, with varying execution
times leading to idling CPUs.

Varying execution times of parallel evaluations have already been addressed by
Snoek et al. [SLA12] where the authors suggest to model these with an additional
surrogate leading to an “expected improvement per second”, favoring less expensive
configurations. The parallel MBO approaches developed in this thesis also use
regression models to estimate resource requirements, but instead of adapting the
infill criterion, they use it to guide the scheduling of parallel evaluations. Here, the
goal is to guide MBO to interesting regions in a faster and resource-efficient way
without directly favoring less expensive configurations.

Another approach that addresses heterogeneous execution times of configuration
evaluations executed in parallel is the asynchronous execution of MBO, which is
described in the next paragraph.

6.1.2 Parallel Asynchronous Execution

In the asynchronous parallel execution approach, instead of evaluating multiple
configurations in batches and synchronously refit the model, the model is refitted after
each evaluation to avoid CPU idling. Here, the number of worker processes equals the
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number of available CPUs, but each worker proposes the next point for evaluation
independently, even if configurations xbusy are currently under evaluation on other
CPUs. The main challenge is to avoid evaluations of very similar configurations by
modifying the infill criterion to deal with points that are currently under evaluation.
Here, the less expensive Kriging believer approach [GLC10] that is based on EI (also
used for multi-point proposals) can be applied to block these regions.

Another approach that imputes pending values is the Expected EI (EEI) [GJL11;
JLG+12; SLA12]. Here, the unknown value of f(xbusy) is integrated out by cal-
culating the expected value of ybusy via Monte Carlo sampling, which is, simi-
lar to qEI, computationally demanding. For each Monte Carlo iteration values
y1,busy, . . . , yµ,busy are drawn from the posterior distribution of the surrogate regres-
sion model at x1,busy, . . . , xµ,busy, with µ denoting the number of pending evaluations.
These values are combined with the set of already known evaluations and used to
fit the surrogate model. The EEI can then simply be calculated by averaging the
individual expected improvement values that are formed by each Monte Carlo sample
(nsim denotes the number of Monte Carlo iterations):

ÊEI(x) = 1
nsim

nsim

∑
i=1

EIi(x) (6.2)

Besides the advantage of an increased CPU utilization, asynchronous execution can
also cause additional runtime overhead due to the higher number of model updates
and the computational costs for new point proposals, especially when the number
of available CPUs increases. Furthermore, heterogeneous execution times of job
configurations can lead to very similar point proposals due to model updates that
are based on similar histories.

Figure 6.4: Exemplary scheduling for asynchronous parallel MBO to avoid CPU
idling, with varying execution times that can lead to evaluations of
similar configurations.

Figure 6.4 shows an exemplary schedule for asynchronous parallel MBO. Here,
each worker process proposes the next configuration for evaluation (job) itself,
indicated by the vertical arrows. Like in Figure 6.3 the boxes represent the execution
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times of the jobs. New configurations like x7 on CPU 1 are evaluated even if other
configurations like x2,busy on CPU 2 are still under evaluation. When a job finishes,
its result is combined with the set of already known results and used to update the
model and propose a new configuration.

This mechanism can cause evaluations of very similar configurations since the
combined results may have the same history. For example, when the evaluations of
x1 on CPU 1 finishes (vertical arrow), the model update and the new proposal are
based on the combination of results f(x1), f(x3) and f(x4). At the approximately
same time, the model update performed after x3 has the same history of results
(f(x1), f(x3), f(x4)) to perform the point proposal. Here, x7 and x6 could be very
similar configurations that are evaluated in parallel and thus can lead to wasting
resources. Furthermore, model updates that are based on the same history lead to
computational overhead.

Instead of using asynchronous execution to efficiently utilize parallel computer
architectures, the new approach developed in this thesis uses the synchronous
execution combined with resource-aware scheduling. Section 6.3.4 will present a
comparison of this approach with the above-described synchronous and asynchronous
parallel variants of MBO.

6.2 Resource-Aware Model-Based Optimization

The synchronous and asynchronous parallel MBO variants described above neglect
the resource requirements (CPU, memory etc.) for evaluating different configurations
in parallel, which can lead to inefficient resource utilization.

The asynchronous parallel variant of MBO has the advantage of reducing the
CPU-idle time by desynchronizing the model update. However, the frequent model
updates after each evaluation can cause computational overhead for the configuration
proposal. In addition, model updates that are based on similar histories of results
can cause evaluations of very similar configuration. The evaluation of a configuration
can take several hours, thus evaluating similar configurations is a waste of resources.

The synchronous parallel variant of MBO has the advantage of less frequent
model updates and thus less computational overhead. Here the model is only
updated per MBO iteration and multiple configurations are proposed simultaneously
after each update. However, heterogeneous execution times of parallel evaluated
configurations can cause CPU-idling and thus unused resources.

The goal of the new resource-aware MBO variant presented in this thesis is to
reduce the end-to-end wall clock time needed for parallel MBO in a resource-efficient
way and thus converge faster to the optimal configuration. To accomplish this
goal this thesis proposes new resource-aware scheduling strategies to efficiently map
parallel running evaluations to the underlying architecture, depending on their
resource demands.
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Resource-aware scheduling is an active field of research which is often tailored
specifically for different hardware platforms, from small embedded systems [TLB+15]
up to heterogeneous clusters [DK14; GAK+14]. In contrast to these classical
scheduling problems, the new scheduling strategies for MBO are in control of the job
generation and therefore interact with the job proposal mechanism (infill criterion)
to postpone or skip suggested configurations if deemed not promising enough or if
their resource demands are not suitable. Therefore, the resource demand of each
configuration evaluation needs to be known or at least estimated before execution,
which is a complex problem.

To enable the interaction between the new resource-aware scheduling strategies
and the general MBO process, a new framework is proposed and presented in the
next section.

RAMBO: Resource-Aware Model-Based Optimization Framework

The optimization cycle of the Resource-Aware Model-Based Optimization framework
(RAMBO) is shown in Figure 6.5. RAMBO aims at efficient utilization of parallel
computer architectures through resource-aware scheduling strategies to guide MBO
to interesting regions of the black-box function in a faster and resource efficient way.
Its foundations are based on the mlrMBO library [BBH+14].

RAMBO consists of three main steps. In the first step, the MBO Method builds
the surrogate model according to the MBO algorithm and settings based on previous
evaluations. At the same time, the Job Utility Estimator produces job profiles for
the configurations through an additional regression model. These job profiles include
runtime estimates that are later used as input for the scheduling strategies.

Scheduling &
Job Tracker

Job Profile:
#Resource 

Demands
#Priority

Mapping Method
Outlier Handling

Job Selection

Syn. vs. Asyn. 
Feedback

System 
Description:
#CPUs
#Memory
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Job Utility Estimator Infill-Criterion

Figure 6.5: Resource-Aware Model-Based Optimization Framework.

The Job Selection follows the MBO principles for point proposals and generates
a set of candidate proposals based on the selected infill criterion and the available
resources (System Description). In combination with the estimated resource demands
of a proposed point (derived from the regression model) a job is formed. For each job,



94
Chapter 6. Resource-Aware Scheduling Strategies for Parallel

Machine Learning Algorithms

a priority is calculated based on the infill criterion. Finally, the Scheduling strategy
allocates the jobs (configurations to evaluate) based on the system description and
based on the job profile to the available resources.

Job profiles for the proposed configurations are only estimated, thus under- or
overestimation, e.g., of execution times, can occur. In such a case, a job might
need to be rescheduled or stopped to guarantee efficient resource utilization by
the Job Tracker that monitors the execution. After a job has finished, there are
two possibilities to update the model. For the Synchronous Feedback the results
of all jobs within one MBO iteration are gathered before the model is updated
following the synchronous parallel execution. For the Asynchronous Feedback each
result directly triggers a call of the MBO method to update the model. Whether
asynchronous or synchronous feedback is chosen also depends on the costs of a model
update.

Since RAMBO can be configured with different MBO methods, infill criteria,
and scheduling strategies, it not only includes new resource-aware MBO scheduling
methods but also supports the development and evaluation of new MBO methods.
The new RAMBO scheduling strategies including the job utility estimation and the
job priorities will be presented and evaluated in the following.

6.3 Resource-Aware Scheduling Strategies

The scheduling strategies presented in this thesis are aiming at guiding MBO to
interesting regions in a faster and resource-aware way. The goal is to acquire the
feedback of the workers in the shortest possible time to avoid MBO model update
delay while reducing the CPU idle time on the workers. To efficiently map the
proposed jobs to the available resources, the scheduling needs to know the resource
demands of each job before execution. Additionally, an execution priority is needed
to update the model with the most promising jobs as soon as possible. Both the
estimated resource utilization and the priority of the proposed candidates are used
as inputs for the scheduling strategies.

Priorities for Job Selection

To model the usefulness of a candidate for the objective function, Kriging is used as
a surrogate regression model and qLCB (6.1) is used as multi-point infill criterion to
generate a set of job proposals. Compared to the multi-point proposal qEI [GLC10],
the qLCB criterion is more suitable since it is able to propose a set of independent
candidates. qLCB can simultaneously generate q candidates by drawing q random
values of λj ∼ Exp(λ) (j = 1, . . . , q) from the exponential distribution. Each λj

results in a different trade-off between exploitation (λj ↓) and exploration (λj ↑) and
thus leads to a different optimal configuration x∗j after solving

x∗j ∶= argmin
x
[LCB(x, λj)] = argmin

x
[ŷ(x) − λj ŝ(x)] , (6.3)
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where ŷ(x) denotes the posterior mean and ŝ(x) denotes the root of the posterior
standard deviation of the surrogate model at point x.

Since there is no direct order of the set of proposed candidates x∗j in terms of
how promising one candidate is, an additional order is introduced to guide the search
for the best candidate towards more promising areas. Therefore, the highest priority
is given to the point xj that was proposed using the smallest value of λj and is
thus closest to the optimum (exploitation). The priority for each job is defined as
pj ∶= −λj .

Resource Utility Estimation

The runtime estimates of the set of jobs proposed in each MBO iteration are needed
for the scheduling to avoid execution of jobs with high runtime variances and thus
reduce idling worker processes. This is accomplished by using an additional regression
model. In the same way, as for the MBO algorithm itself, the runtime of a job is
predicted in each iteration based on the runtime of all previously evaluated jobs to
build the runtime model of the black-box function. For the model, Kriging is used
for homogeneous CPU systems, since the runtime is expected to be a continuous
function. For parallel architectures with heterogeneous CPUs, Random Forest is
used for the model instead. Here, the runtime of a job is estimated for different
CPU types (as described in Section 6.4).

The accuracy of the runtime estimation also influences the scheduling decision.
Thus a scheduling strategy is only able to efficiently map jobs to the underlying
parallel architecture if the estimates are reliable. Therefore the runtime estimation
quality is evaluated in Section 6.3.4. The following section will present two different
scheduling strategies that are included in the RAMBO framework.

6.3.1 First Fit Scheduling Strategy

One of the first scheduling strategies included in the RAMBO Framework is a
First Fit heuristic [RKB+16], which takes the parallel synchronous execution of
MBO as a basis. The goal is to reduce the CPU idle time on the workers that
evaluate the configurations while acquiring the results in the shortest possible time
to avoid model update delay. The set of candidates proposed by the multi-point
infill criterion qLCB forms a set of jobs J = {1, . . . , q} that should be executed on
the available CPUs K = {1, . . . , m} within each MBO iteration. For each job the
estimated runtime is given by t̂j and the corresponding priority is given by pj .

To reduce idle times caused by evaluations of configurations with a low priority,
the maximal runtime for each MBO iteration is defined by the runtime of the job with
the highest priority j∗ ∶= arg maxj pj . Lower prioritized jobs have to subordinate. In
this way, the surrogate model of the black-box function is updated as soon as possible
with the results of the most promising configuration (highest priority indicated by
the infill criterion) which optimizes the job proposal for the next MBO iteration
and thus helps the search to progress quickly.
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In each MBO iteration, a list of q = 3m job proposals is generated, where m is
the number of available CPUs. Note that for a useful scheduling, the number of
candidates q should be considerably larger than available CPUs. Then the job with
the highest priority is determined and mapped to CPU k = 1 exclusively. Accordingly,
on a system with m homogeneous CPUs the remaining jobs are scheduled on CPUs
2, . . . , m, limited by the upper time bound t̂j∗ , which is directly derived from the
estimated runtime of job j∗. Jobs which have an estimated runtime t̂j ≤ t̂j∗ are
mapped in decreasing order of their priorities to the remaining CPUs in a greedy first
fit manner. A job j is mapped onto CPU k if its runtime satisfies t̂j ≤ t̂j∗ −∑j∈Jk

t̂j

where Jk is the set of jobs already mapped to CPU k. Jobs included in the initial
list J that do not fit on any CPU are discarded and will be proposed again in the
next MBO iteration if they are promising enough.

Figure 6.6: Exemplary schedule of the resource-aware First Fit strategy with q = 9
jobs and m = 3 CPUs.

Figure 6.6 shows an exemplary schedule for the resource-aware First Fit schedul-
ing strategy. Here, the set of job proposals consists of 3m = 9 jobs with m = 3 CPUs
(see left table in Figure 6.6). The job with the highest priority j = 1 (marked in
green) is mapped to CPU k = 1 exclusively. This job defines the time bound t̂1∗ = 20
for the MBO iteration. The jobs that are marked in red do not fit this time bound
and are thus discarded (j = 2, j = 8, j = 9). The remaining jobs are mapped with the
First Fit heuristic, in decreasing order of their priorities pj on CPU 2 and 3 if their
runtime t̂j is smaller or equal to t̂1 −∑j∈Jk

t̂j .

If any CPU is left without a job, the regression model for the runtime estimation
can be optionally queried for new jobs with a runtime smaller or equal to t̂j∗ to fill
gaps. When all scheduled jobs are evaluated, both regression models – one for the
black-box function and one for the runtime estimates of the black-box function –
are updated and the MBO iteration starts over.
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Evaluation of the First Fit Scheduling Strategy

To evaluate the First Fit scheduling strategy for MBO, it is compared to two
established alternatives, namely the random search [BB12] and the synchronous
qLCB approach [BWB+14].

RS: The random search is a naive but often effective approach that asynchronously
evaluates a randomly selected point directly after each evaluation to guarantee
maximum CPU load.

qLCB: The synchronous qLCB approach uses the multi-point qLCB criterion, with
Kriging as a surrogate model. In each MBO iteration as many configurations
as available CPUs q = m are proposed and evaluated to solve with random
λj ∼ Exp(1

2).

As benchmark for the comparison, a hyperparameter optimization of a SVM
with RBF kernel is used.

k(x, x′) = exp(−γ ∥x − x′∥2). (6.4)

The kernel parameter γ and the cost C of constraint violations are both box-
constrained to the interval [−15, 15] on a log2-scale. The SVM implementation is
based on libsvm1 and implemented in the R library e1071 [ADK06]. Two data sets
w6a2 and magic043 are used as input for the SVM kernel parameter optimization.

To interface the SVM machine learning algorithm, the R library mlr [BLK+16]
is used. The synchronous qLCB approach and the random search are implemented
in the R library mlrMBO [BBH+14], which is also the basis for the RAMBO frame-
work that includes the First Fit strategy. To parallelize the evaluation on high
performance clusters, the BatchExperiments [BLM+15] R library is used. For the
evaluation of the results, an outer 10-fold cross-validation is used while a 3-fold cross
validation is used to define the objective function for the hyperparameter tuning. For
comparability reasons, all optimization approaches start with the same initial latin
hypercube design [MBC00] including 10 evaluated configurations and are conducted
on m = 4 CPUs. The initial designs are fixed per outer cross-validation fold. The
budget for each approach is defined via the elapsed time.

For the comparison the mean misclassification error (MMCE) of the best SVM
configuration found after 1, 10, 120 and 180 minutes across all 10 cross-folds is shown
in Figure 6.7 (lower is better). Both input data sets w6a and magic04 are separated
into test and training data sets for the hyperparameter tuning of the SVM. The
left hand side of Figure 6.7 shows the MMCE of the hyperparameter tuning data
sets, while the right hand side represents the MMCE of the test data sets for both
w6a and magic04 (lower is better). On these data sets only marginal improvements
are achieved with the RAMBO First Fit strategy. Still, RAMBO yields comparable

1Chang, C. et. al: https://www.csie.ntu.edu.tw/~cjlin/libsvm
2Platt: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w6a
3Bock: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

https://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w6a
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
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Figure 6.7: Averaged mean misclassification errors (MMCE): tuning error (left)
and test data error (right) for the best observed configuration within
a given time budget (lower is better).

performance and sometimes less variance compared to the synchronous approach
qLCB. A low variance across all 10 cross-folds is important since it indicates a higher
confidence in the optimization result.

The reason for less variance in the RAMBO results lies in the optimized scheduling.
Figure 6.8 presents an exemplary visualization for the scheduling of the parallel
executed SVM configurations (jobs) for qLCB and RAMBOs First Fit strategy.
Each gray box represents the execution of a job on the respective CPU (see y-axis).
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Figure 6.8: Scheduling of MBO approaches: Runtime on x-axis and mapping of
proposed candidates (gray boxes) to m = 4 CPUs on y-axis. Vertical
lines indicate the end of a MBO iteration. Gaps represent idle time.

The vertical lines indicate the end of a MBO iteration. Here, for both w6a
(left) and magic04 (right) the necessity of the resource estimation for jobs with
heterogeneous execution times becomes obvious, as qLCB (lower part of 6.8) can
cause long idle times by running jobs with large runtime differences together within
one MBO iteration. In contrast, the First Fit strategy of RAMBO balances long
execution times more evenly (upper part of 6.8). The runtime estimation is reliable
so that only 2.3% of the evaluations exceed t̂ + 2 ⋅ s(t̂). The visualization of the
scheduling on magic04 also shows that the resource-aware First Fit Strategy not
only prefers short jobs but is also able to schedule long jobs more efficiently. On



6.3. Resource-Aware Scheduling Strategies 99

w6a twice as many SVM configurations are evaluated compared to the synchronous
qLCB approach in the given time budget. In contrast, 25% more configurations
were evaluated on magic04 indicating that promising configurations have longer
runtimes than average and vice versa for w6a.

Those first results show that the First Fit scheduling heuristic of RAMBO
already leads to improved resource utilization and thus to more evaluations within
the same time budget potentially yielding a better knowledge of the hyperparameter
space. Besides the above-described First Fit scheduling strategy, an additional
optimized version based on the knapsack algorithm is also integrated into the
RAMBO framework [KRL+17] and will be presented in the next section.

6.3.2 Knapsack based Scheduling Strategy

As for the First Fit heuristic, the goal of the knapsack based scheduling strategy is
also to reduce the CPU idle time on the workers while acquiring the feedback of the
workers in the shortest possible time to avoid model update delay. Here the qLCB
multi-point infill criterion is used to form a set of jobs J = {1, . . . , q} that should
be executed on the available CPUs K = {1, . . . , m}. As for the First Fit strategy
the estimated runtime is given by t̂j and the corresponding priority by pj for each
job proposal. The time bound for each MBO iteration is here also defined by the
runtime of the highest prioritized job.

The goal is to maximize the profit, given by the priorities, of parallel job
executions within each MBO iteration. To solve this problem, we apply the 0 − 1
multiple knapsack algorithm for global optimization routines [Bor16]. Here, the
knapsacks are the available CPUs and their capacity is the maximally allowed
computing time, defined by the runtime of the job with the highest priority. The
items are the jobs J , their weights are the estimated runtimes t̂j and their values are
the priorities pj . The capacity for each CPU is accordingly t̂j∗ , with j∗ ∶= arg maxj pj .
To select the best subset of jobs the algorithm maximizes the profit Q:

Q = ∑
j∈J
∑
k∈K

pjckj , (6.5)

which is the sum of priorities of the selected jobs, under the restriction of the capacity

t̂j∗ ≥ ∑
j∈J

t̂jckj ∀k ∈K (6.6)

per CPU. The restriction with the decision variable ckj ∈ {0, 1}

1 ≥ ∑
k∈K

ckj ∀j ∈ J, ckj ∈ {0, 1}. (6.7)

ensures that a job j is at most mapped to one CPU.
As the job with the highest priority defines the time bound t̂j∗ it is mapped

to the first CPU k = 1 exclusively and single jobs with higher execution times are
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directly discarded. (Discarded jobs will be proposed again in the next MBO iteration
if they are promising enough.) Then the knapsack algorithm is applied to assign
the remaining candidates in J to the remaining m − 1 CPUs. This leads to the best
subset of J that can be run in parallel minimizing the delay of the model update.
As for the First Fit heuristic, if a CPU is left without a job the regression model
can be optionally queried for a job with an estimated runtime smaller or equal to
t̂j∗ to fill the gaps.

Figure 6.9 shows an exemplary schedule for the above-described resource-aware
knapsack based scheduling strategy. Here, the set of job proposals q = 9 with 3

Figure 6.9: Exemplary schedule of the resource-aware knapsack based strategy
with q = 9 jobs and m = 3 CPUs.

CPUs is similar to the First Fit strategy example in Figure 6.6. The job j = 1 with
the highest priority p1 = 10 is mapped to CPU k = 1 exclusively. The time bound
for the MBO iteration and thus the capacity for each CPU is given by the runtime
of job j = 1. Jobs that do not fit this time bound are discarded (j = 2, j = 8, j = 9).
To maximize the profit, given by the priorities the knapsack algorithm is applied
to map the remaining jobs to CPU k = 2 and k = 3. In comparison to Figure 6.6
that illustrates the First Fit strategy, the jobs are mapped more evenly and thus no
CPU idle time occurs.

To reduce computational overhead the First Fit heuristic is integrated into the
knapsack implementation and is applied instead of the knapsack algorithm if the
number of remaining jobs in J is equal to the number of available CPUs. Before
evaluating the knapsack based scheduling approach a refinement of the job priorities
is presented in the next section, which can be optionally applied in combination
with the proposed scheduling strategies.

6.3.3 Refinement of Job Priorities

The refinement of job priorities has the goal to avoid parallel evaluations of very
similar configurations and can be optionally used for all scheduling strategies included
in the RAMBO framework. Approaches to specifically propose configurations that
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are promising but yet diverse are described in [BWB+14]. qLCB performed well and
was chosen here because it is comparably inexpensive to create many independent
candidates. However, qLCB does not include a penalty for the proximity of selected
configurations, which might become a problem if the number of parallel evaluations
is high. Therefore, the Euclidean distance is used to reprioritize pj to p̃j , encouraging
the selection of configurations that are more scattered in the domain space.

First, a set of q >m configurations is sampled from the qLCB criterion. These
configurations are then hierarchically clustered by their distance in the domain space
of the objective function using the complete linkage method. The procedure starts
with the configuration that has previously been assigned the highest priority and
assigns it to the first position in the list of selected jobs J̃ . For each following step
i ≥ 2, all candidates are split into i clusters according to the hierarchical clustering.
Of these i clusters the i − 1 clusters that already contain candidates with assigned
positions are discarded, leaving one cluster. The position i in J̃ is assigned to the job
with the highest priority within this cluster. This is continued until all q candidates
have assigned positions. Thereby an ordering that follows the hierarchy induced
by the clustering is generated. Finally, new priorities p̃j are assigned based on the
order of J̃ , i.e. the first job in J̃ gets the highest priority q and the last job gets the
lowest priority 1.

As a result, the set of candidates contains batches of jobs with similar priority
that are spread in the domain space. The new priorities serve as input for the
scheduling which groups the q jobs to m CPUs using the runtime estimates t̂.

6.3.4 Evaluation

To evaluate the resource-aware MBO scheduling strategies that are included in the
RAMBO framework a comparison with different synchronous and asynchronous
parallel MBO approaches is performed. The comparison includes two asynchronously
executed MBO strategies that aim at using all available CPU time to solve the
optimization problem in parallel. Both of them [GJL11; JLG11] use Kriging as a
surrogate, with the EEI criterion (6.2) [JLG+12] and the Kriging believer [GLC10]
criterion. In Kotthaus et al. [KRL+17] RAMBO was also compared to a third
asynchronous execution strategy that is included in the SMAC (Sequential Model-
based Algorithm Configuration) tool [HHL11] which uses a Random Forest surrogate.
The results showed that RAMBO and the two other asynchronous execution strategies
always converged faster to the optimum compared to SMAC, which is why SMAC
is not included in the following evaluation.

Besides the comparison with the asynchronous strategies, the following evaluation
also includes two synchronously executed MBO approaches. One of them uses the
qLCB multi-point infill criterion (6.1) and one uses the qEI criterion [GLC10]. All
parallel MBO approaches including the new RAMBO approach are evaluated on a
set of established continuous synthetic functions combined with simulated execution
times to ensure a fair and disturbance-free environment.
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Figure 6.10: Visualization of the synthetic test functions for d = 2, used for the
evaluation. bohachevsky(d) and rosenbrock(d) (upper part) show
a smooth surface while ackley(d) and rastrigin(d) (lower part)
are highly multimodal.

The usage of synthetic functions rules out technical problems emerging on
multi-user systems (swapping, network congestion, CPU cycle stealing, other users
occupying fast caches, . . . ). Furthermore, synthetic functions ease the evaluation of
MBO approaches on different difficulty levels. Therefore two different categories of
objective functions (implemented in the R library smoof [Bos16]) are considered:

1. Functions with a smooth surface: rosenbrock(d) and bohachevsky(d) with
dimension d = 2, 5, 10, that are likely to be fitted well by MBO.

2. Highly multimodal functions: ackley(d) and rastrigin(d) (d = 2, 5, 10), for
which MBO is expected to have problems achieving good results.

For each objective function a 2-, 5- and a 10-dimensional version are used, each
of which is optimized using 4 and 16 CPUs in parallel to investigate scalability.
Figure 6.10 visualizes the synthetic test functions for d = 2.

Since synthetic functions are illustrative test functions, they have no significant
runtime. Therefore, these functions are also used to simulate different runtime
behaviors. For each benchmark two different synthetic functions are combined: One
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determines the number of seconds it would take to calculate the objective value of the
other function. E.g., for the combination rastrigin(2).rosenbrock(2) it would
require rosenbrock(2)(x) seconds to retrieve the objective value rastrigin(2)(x)
for an arbitrary proposed configuration x. Technically, the benchmark sleeps
rosenbrock(2)(x) seconds before returning the objective value. The runtime is
simulated with either rosenbrock(d) or rastrigin(d) and all combinations of the
four objective functions are analyzed, except where the objective and the time
function are identical. For the unification of the input space, values from the input
space of the objective function are mapped to the input space of the function that
simulated the runtime behavior. The output of the runtime functions are scaled to
return values between 5 min to 60 min.

To examine how fast the parallel approaches converge to the optima of the
benchmark functions within a limited time budget the distance between the best
found configuration at time t and a predefined target value (optimal configuration)
is measured. This measurement reflects the accuracy of the receptive MBO approach
within the given time budget. To make this measurement comparable for all objective
functions, the function values are scaled to [0, 1]. Here, 0 is the target value, defined
as the best configuration y reached by any optimization approach within the given
time budget. The upper bound 1 is the best y found in the initial set of already
evaluated configurations and is identical for all approaches per given benchmark.
Both values are averaged over 10 repetitions. If an optimization needs 2 h to reach an
accuracy of 0.5, this means that within 2 h half of the way to the best configuration
0 has been accomplished, after starting at 1. The differences between the approaches
are compared at three accuracy levels 0.5, 0.1 and 0.01. The optimizations are
repeated 10 times and conducted on m = 4 and m = 16 CPUs to examine the
scalability.

As time budget the optimization approaches run for 4 h on 4 CPUs and for 2 h
on 16 CPUs in total including all computational overhead and CPU idling. All
experiments are executed on a Docker Swarm cluster using the R library batch-
tools [LBS17]. The initial set is generated by latin hypercube sampling [MBC00]
with n = 4 ⋅ d configurations and all of the following optimizations start with the
same initial set in all 10 repetitions:

rs: Random search, serves as a base-line.
qLCB: Synchronously executed MBO approach using qLCB where in each

MBO iteration q =m configurations are proposed.
ei.bel: Synchronously executed approach using Kriging believer where in

each MBO iteration m configuration are proposed.
asyn.ei.bel: Asynchronously executed MBO approach using Kriging believer.

asyn.eei: Asynchronously executed MBO approach using EEI (100 Monte
Carlo iterations).

rambo: New synchronously executed MBO approach using qLCB with
job priority refinement and the knapsack based resource-aware
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scheduling strategy, where in each iteration q = 8 ⋅m candidates
are proposed.

qLCB and ei.bel are implemented in the R library mlrMBO [BBH+14]. asyn.eei,
asyn.ei.bel and rambo are also based on mlrMBO. For all MBO approaches a
Kriging model is used from the library DiceKriging [RGD12] with a Matern5

2 -
kernel [Mat60] and a nugget effect of 10−8 ⋅Var(y), where y denotes the vector of
all observed function outcomes.

For the evaluation, the rambo configuration with the knapsack based scheduling
including the job priority refinement (as described in Subsection 6.3.3) is chosen
since it delivered the best results compared to the other scheduling strategies.

Figure 6.11 shows an exemplary result comparing the scheduling strategies
included in the RAMBO framework for rastrigin(10).rosenbrock(10) on 16
CPUs, which is one of the most complex benchmarks.

rastrigin.rosenbrock_10d
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Figure 6.11: Averaged y value representing the best found configuration within a
time budget of 2 h comparing the resource-aware scheduling strategies
for the rastrigin(10) objective function with the rosenbrock(10)
time functions on 16 CPUs (lower is better).

The y-axis represents the original (unscaled) y value of the configuration that
was found after a certain amount of time, here, lower is better (closer to the optimal
configuration). Transparent areas represent the deviations in the 10 repetitions
while straight lines represent the median of these repetitions. The x-axis shows the
runtime.

Here, the knapsack based strategy with the job priority refinement rambo.ks.rf
outperforms its counterpart rambo.ks without the refinement as well as the First Fit
heuristic rambo.ff that was presented in 6.3.1 and is thus selected in the following
evaluation of the RAMBO framework.
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Evaluation of the Resource Estimation

The quality of resource-aware scheduling naturally depends on the accuracy of the
resource estimation. Without reliable runtime predictions, the scheduler is unable
to optimize for efficient utilization. The runtime for all benchmarks is simulated
with either rosenbrock(d) or rastrigin(d).
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Figure 6.12: Residuals of the runtime estimation in the course of time for the
rosenbrock(5) and rastrigin(5) time functions on 4 CPUs com-
bined with bohachevsky(5) as objective function. Positive values
indicate an overestimated runtime and negative values an underesti-
mation.

Figure 6.12 exemplarily shows that the runtime estimation for the rosenbrock(5)
time function works well (left part). Here, the residual values for the runtime
estimation of the evaluated configurations are getting smaller over time. However,
the runtime prediction for rastrigin(5) (right part) is comparably imprecise. For
the 2 and 10-dimensional versions the results are similar.

This encourages to consider scenarios separately where runtime estimation
has a high quality (rosenbrock(⋅)) and where runtime estimation is error-prone
(rastrigin(⋅)), for further analysis.

Evaluation with High Resource Estimation Quality

Figure 6.13 shows box plots for the time required to reach the three different accuracy
levels in 10 repetitions within a budget of 4 h on 4 CPUs (upper part) and 2 h on
16 CPUs (lower part). The faster an approach reaches the desired accuracy level,
the lower the displayed box and the better the approach. If an approach was not
able to reach an accuracy level within the given time budget, the respective time
budget (4 h or 2 h) plus a penalty of 1000 s is inputted.

Table 6.1 lists the aggregated ranks over all objective functions, grouped by
approach, accuracy level, and number of CPUs. For this computation, the approaches
are ranked w.r.t. their performance for each repetition and benchmark before they
are aggregated with the mean. If there are ties in Figure 6.13 (e.g., if an accuracy
level was not reached), all values obtain the worst possible rank.



106
Chapter 6. Resource-Aware Scheduling Strategies for Parallel

Machine Learning Algorithms

●

●

● ●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●

●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

1
0

d
 (4

 C
P

U
s
)

5
d

 (4
 C

P
U

s
)

2
d

 (4
 C

P
U

s
)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

accuracy level

h
o

u
rs

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs

●●

●●●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

1
0

d
 (1

6
 C

P
U

s
)

5
d

 (1
6

 C
P

U
s
)

2
d

 (1
6

 C
P

U
s
)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

accuracy level

h
o

u
rs

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs

Figure 6.13: Accuracy level vs. execution time for different objective functions
using time function rosenbrock(⋅) (lower is better).
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4 CPUs 16 CPUs
Algorithm 0.5 0.1 0.01 0.5 0.1 0.01
asyn.eei 3.53 (3) 3.91 (3) 4.91 (3) 3.64 (3) 4.30 (3) 5.30 (3)
asyn.ei.bel 3.21 (2) 3.66 (2) 5.04 (4) 2.93 (2) 3.31 (2) 4.48 (2)
rambo 2.47 (1) 3.40 (1) 4.23 (1) 2.54 (1) 2.98 (1) 3.72 (1)
ei.bel 3.64 (4) 4.36 (5) 5.31 (5) 3.81 (4) 4.57 (4) 5.70 (5)
qLCB 4.02 (5) 4.24 (4) 4.83 (2) 4.27 (5) 5.04 (5) 5.40 (4)
rs 5.57 (6) 5.89 (6) 5.89 (6) 5.17 (6) 5.71 (6) 5.82 (6)

Table 6.1: Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all benchmarks
with rosenbrock(⋅) time function on 4 and 16 CPUs with a time budget
of 4 h and 2 h, respectively.

The benchmarks indicate an overall advantage of the new resource-aware MBO
algorithm rambo: On average, rambo is always fastest on 4 and 16 CPUs. rambo is
closely followed by the asynchronous MBO variant asyn.ei.bel for accuracy levels
0.5 and 0.1 on 4 CPUs but the lead becomes more clear on 16 CPUs, especially for
the highest accuracy level 0.01. In comparison to the conventional synchronous MBO
approaches ei.bel and qLCB, rambo as well as asyn.eei and asyn.ei.bel reach
the given accuracy levels in shorter time on 16 CPUs. This is especially true for
objective functions that are highly multimodal and thus hard to model (ackley(⋅),
rastrigin(⋅)) by the surrogate as seen in Figure 6.13.

Table 6.1 shows that the less expensive asyn.ei.bel approach performs better
than the computationally demanding asyn.eei on 16 CPUs. On 4 CPUs the
synchronous qLCB approach is faster than the asynchronous approaches for the
highest accuracy level 0.01. This result is influenced by the good performance
of qLCB on functions with a smooth surface, as can be seen in the upper part of
Figure 6.13 in the 5 and 10-dimensional version of the bohachevsky(⋅) benchmark.

When comparing the performance of the approaches for the 2-dimensional versus
the 10-dimensional versions of the benchmarks, Figure 6.13 clearly shows that
the new rambo approach outperforms all other approaches at higher dimensional
problems compared to lower dimensions. All presented MBO approaches outperform
the base-line random search rs on almost all benchmarks and accuracy levels.

For a thorough analysis, Fig. 6.14 exemplarily visualizes the mapping of the
parallel configuration evaluations (jobs) for all MBO approaches on 16 CPUs for
the 5d versions of the benchmarks. Each gray box represents the execution time
of a job evaluation on the respective CPU. The gaps represent CPU idle time. For
the synchronously executed MBO approaches rambo, qLCB and ei.bel the vertical
lines represent the end of an MBO iteration. Red boxes indicate that the CPU is
occupied with a point proposal.

The necessity of a resource estimation for jobs with varying runtimes becomes
obvious, as the synchronous variants qLCB and ei.bel can cause long idle times
by queuing jobs together with large runtime differences. The scheduling in rambo
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manages to clearly reduce this idle time. This effect of efficient resource utilization
increases with the number of CPUs. rambo reaches nearly the same effective resource-
utilization as the asynchronous approaches (see Figure 6.14) and at the same time
reaches the accuracy level fastest (see Table 6.1).

The Monte Carlo approach asyn.eei generates a high computational overhead as
indicated by the red boxes, which reduces the effective number of evaluations. Here,
the overhead for a new point proposal sometimes needs the same amount of time as
the job evaluation. Idling occurs because the calculation of the EEI is encouraged
to wait for ongoing EEI calculations to include their proposals. This overhead
additionally increases with the number of already evaluated points. In contrast,
asyn.ei.bel has a comparably low overhead and thus basically no idle time. This
seems to be an advantage for asyn.ei.bel on 16 CPUs where it performs better
on all accuracy levels on average than its computational demanding counterpart
asyn.eei, especially for higher dimensional problems.

Table 6.2 lists the number of evaluated configurations across all 10 repetitions
and for all objective functions, grouped by approach, number of CPUs and dimension.
These numbers reflect the scalability of the different MBO approaches. Due to the
high overhead of the asynchronous asyn.eei approach, its number of evaluated
configurations has only a small increase on 16 CPUs versus 4 CPUs. This is especially
true for higher dimensional problems (see 4 CPUs 10d column vs 16 CPUs 10d col-
umn) where the number of evaluated configurations for the 10-dimensional problems
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4 CPUs 16 CPUs
Algorithm 2d 5d 10d 2d 5d 10d
asyn.eei 2683 2518 2359 4249 3592 2841
asyn.ei.bel 2976 2676 3974 5485 4291 5978
ei.bel 1649 1974 3255 1815 2241 3927
qLCB 1757 2161 4011 2200 2699 4909
rambo 4832 4260 5046 8364 6535 7212

Table 6.2: Number of evaluated configurations per dimension across all 10 repe-
titions and objective functions with rosenbrock(⋅) time function on
4 and 16 CPUs with a time budget of 4 h and 2 h, respectively.

is even smaller than the number of evaluations for the conventional synchronous
approaches. This indicates that the asyn.eei approach has an inefficient resource
utilization. In contrast, the asyn.ei.bel approach manages to increase the number
of evaluations for all dimensions when the number of CPUs increases.

Both synchronous MBO approaches qLCB and ei.bel have a low number of
evaluations compared to the asynchronous asyn.ei.bel approach and rambo and
are also not able to decently increase their number of evaluations when the number
of CPUs increases. Overall, the resource-aware rambo approach has the highest
number of evaluated jobs in all problem dimensions and is also able to scale its
evaluations with the number of available CPUs.

If the resource estimation that is used in rambo has a high quality, rambo clearly
outperforms the conventional synchronous MBO approaches. This indicates that
the resource utilization obtained by the scheduling in rambo leads to faster and
better results, especially, when the number of available CPUs and the dimension
of a problem (number of configurable parameters) increases. On average rambo
converges faster to the optimum than all considered asynchronous approaches.

Evaluation with Low Resource Estimation Quality

The time function rastrigin used in the following scenario is difficult to fit by the
runtime regression model, as visualized by the left residual plot in Figure 6.12. For
this reason, the benefit of our resource-aware strategy is expected to be minimal.
For example, in a possible worst case multiple supposedly short jobs are assigned to
one CPU but their real runtime is considerably longer leading to a delayed model
update.

Similar to the previous subsection, Figure 6.15 shows box plots for the benchmark
results, but with rastrigin(⋅) as the time function. Table 6.3 provides the mean
ranks for Figure 6.15 and Table 6.4 the number of evaluated configurations, calculated
in the same way as in the previous evaluation with high resource estimation quality.
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Figure 6.15: Accuracy level vs. execution time for different objective functions
using time function rastrigin(⋅) (lower is better).
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Despite possible wrong scheduling decisions, rambo still manages to outperform
the synchronous qLCB approach and also performs better than ei.bel and asyn.eei
on the highest accuracy level 0.01 on average (see Table 6.3).

4 CPUs 16 CPUs
Algorithm 0.5 0.1 0.01 0.5 0.1 0.01
asyn.eei 3.78 (4) 3.93 (4) 4.52 (3) 3.91 (4) 4.02 (3) 4.58 (3)
asyn.ei.bel 2.98 (1) 3.48 (1) 4.30 (1) 3.06 (1) 3.19 (1) 4.13 (1)
rambo 3.50 (3) 3.69 (2) 4.40 (2) 3.47 (2) 4.04 (4) 4.17 (2)
ei.bel 3.19 (2) 3.83 (3) 5.08 (5) 3.61 (3) 3.67 (2) 4.79 (4)
qLCB 3.79 (5) 4.13 (5) 4.83 (4) 4.01 (5) 4.49 (5) 4.88 (5)
rs 5.56 (6) 5.61 (6) 5.70 (6) 5.26 (6) 5.41 (6) 5.64 (6)

Table 6.3: Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems
with rastrigin(⋅) time function on 4 and 16 CPUs with a time budget
of 4 h and 2 h, respectively.

This is also reflected in Table 6.4: rambo has executed more jobs compared to
the qLCB and ei.bel approach in most cases. For the 10-dimensional problems
rambo also evaluated more configurations than the asyn.eei approach and closely
follows the number of evaluations of the asyn.ei.bel approach. In comparison to
Table 6.2, where the rosenbrock(⋅) time function was used, here the rastrigin(⋅)
time function produces less job evaluations on all approaches in general. Similar
to the previous benchmarks with the rosenbrock(⋅) time function, the simplified
asyn.ei.bel seems to benefit from its reduced overhead and places first on 4 and
16 CPUs, where it is closely followed by rambo for the highest accuracy level 0.01
(see Table 6.3).

4 CPUs 16 CPUs
Algorithm 2d 5d 10d 2d 5d 10d
asyn.eei 1348 1512 1919 2050 2195 2338
asyn.ei.bel 1304 1588 2116 2178 2316 2831
ei.bel 1041 1391 1987 1537 1833 2512
qLCB 1034 1462 1978 1593 1918 2461
rambo 1128 1532 2023 1589 2127 2549

Table 6.4: Number of evaluated configurations per dimension across all 10 repeti-
tions and objective functions with rastrigin(⋅) time function on 4 and
16 CPUs with a time budget of 4 h and 2 h, respectively.

Overall, rambo appears not to be able to outperform the asynchronous asyn.ei.bel
approach as unreliable runtime estimates likely lead to suboptimal scheduling deci-
sions. However, rambo reaches comparable results to asyn.eei and compared to
the conventional synchronous approaches it is a viable choice.
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Summary

The comparison study of the new resource-aware scheduling for MBO included in
the RAMBO framework against the popular synchronous and asynchronous MBO
approaches on a set of illustrative test functions for global optimization methods
shows that rambo was able to outperform the synchronous MBO approach qLCB on
the benchmark functions. On setups with high runtime estimation quality rambo
converged faster to the optima than the competing MBO approaches on average,
which is especially true for higher dimensional problems (higher number of possible
parameter configurations). This indicates that the resource utilization obtained by
the approach developed in this thesis improves MBO, especially, when the number
of available CPUs increases.

On setups with low runtime estimation quality, the simplified asynchronous
Kriging believer performed best. Unreliable estimates likely lead to suboptimal
scheduling decisions for rambo. While the asynchronous Kriging believer approach
and rambo benefited from increasing the number of CPUs, the overhead of the
asynchronous approach based on EEI increased.

If the runtime of point evaluations is predictable the new rambo approach
is suggested for parallel MBO with high numbers of available CPUs and higher
dimensional problems. Even if the runtime estimation quality is obviously hard
to determine in advance, for real applications like hyperparameter optimization
for machine learning methods, predictable runtimes can be assumed. The results
also suggest that on some setups the choice of the infill criterion determines which
parallelization strategy can reach a better performance.

6.4 Resource-Aware Scheduling Strategies for
Heterogeneous Embedded Architectures

The above-described scheduling strategies are not only applicable for homogeneous
computer architectures, but also for heterogeneous ones. This section presents
the approach of resource-efficient execution of parallel MBO on heterogeneous
architectures via RAMBO. Heterogeneous architectures are commonly found in
mobile embedded devices. Such devices typically consist of different processors with
different frequencies and memory sizes and are characterized by tight resource and
energy restrictions. When MBO is executed on heterogeneous systems, the execution
time of the evaluation of configurations can vary heavily not only depending on
the configuration itself – as was shown for homogeneous architectures – but also
depending on which processor an evaluation is executed.

The original parallel package [R C17a] that is part of the R language targets
problems that can be decomposed into independent tasks that are then processed in
parallel. While sufficient for parallelizing MBO on homogeneous architectures, it lacks
dedicated support for heterogeneous architectures. To address this shortcoming, the
parallel package was enhanced by Kotthaus et al. [KLN+17] to support heterogeneous
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architectures. This change has already been upstreamed into the R language4 [R
C17a].

The key to the heterogeneous MBO approach is a resource utility estimation
that uses a regression model that estimates the execution times of a configuration
for each available processor type. In combination with an extended knapsack-based
scheduling strategy and the enhancement of the parallel package that allows for
allocating tasks to specific processors, this yields a resource-aware scheduling of
MBO tailored for heterogeneous architectures.

Subsection 6.4.1 presents the extension of the knapsack based scheduling strategy
(described in Subsection 6.3.2) including the new resource utility estimation model.
The evaluation of this approach is described in Subsection 6.4.2.

6.4.1 Knapsack based Scheduling Strategy for
Heterogeneous Architectures

As described in Section 6.3 the resource-aware scheduling for MBO uses two inputs:
the estimated resource utilization and the priority of the proposed candidates. While
the priority of a candidate is computed as described in Section 6.3, the estimation
of the resource utilization needs to be enhanced for heterogeneous systems.

Resource Utility Estimation for Heterogeneous Systems

The regression model that is used to estimate the execution times of the candidates
was previously based on Kriging, now Random Forest is applied instead. Random
Forest is more suitable for heterogeneous systems since the job execution times build
up a discontinuous model due to the addition categorical variable that represent the
processor type.

The regression model now needs to estimate the runtime t̂j for each candidate
in the proposed set of jobs J = {1, . . . , q} per available CPU K = {1, . . . , m}, since
the execution of a job might result in different execution times depending on which
processor type the job is scheduled on. If the underlying heterogeneous architecture
is known, the number of runtime estimates per job can be reduced to the number
of different processor types. Thus the runtime of a job j ∈ J is predicted for each
available processor type k ∈K in each MBO iteration based on the runtime of all
previously evaluated jobs to build the runtime model of the black-box function and
is therefore denoted as t̂kj .

Knapsack based Scheduling Strategy for Heterogeneous System

To apply the 0 − 1 multiple knapsack algorithm for the scheduling on heterogeneous
architectures the original formulation from Section 6.3.2 needs to be extended.

4Kotthaus et al.: Support for Heterogeneous Processors - Section 8. Setting the CPU Affin-
ity with mclapply: https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.
pdf,2018

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
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Now the items that represent the jobs J , have different weights represented by the
different runtime estimates t̂jk per processor type k. Since the capacity of the CPUs
is now heterogeneous, a reformulation is needed. For this purpose, a ratio variable
that represents an approximated ratio of the runtime differences produced by the
different processor types is introduced.

To minimize the delay of the model update with the results of the most promising
candidate, the job with the highest priority j∗ ∶= arg maxj pj is now always placed on
the CPU k∗ ∶= argmink t̂kj∗ that leads to the shortest estimated runtime for j∗. The
capacity for the remaining CPUs and thus the time bound for each MBO iteration
is accordingly defined by the shortest estimated runtime of the highest prioritized
job t̂k∗j∗ . Additionally, the ratio variable t̂k∗j∗/t̂kj∗ that represents the runtime
difference of the highest prioritized job on the remaining k CPUs is introduced.

Note that in general, the assumption that runtimes on different CPU types differ
by a constant factor refers to the uniform processor model described by Pinedo,
which is a simplified model of real hardware [Mar18]: for example, one CPU might
offer vector instructions that some jobs heavily benefit from, whereas others barely
make use of them. Instead of relying on statically precomputed ratios (e.g., derived
from the ratio of CPU frequencies), the selected job j∗ is used as the “benchmark”
for comparing CPU speeds in a given MBO iteration, under the assumption that
in this iteration the speed on CPU k differs from k∗ by a factor of t̂k∗j∗/t̂kj∗ . The
formulation of the restriction of the capacities for the remaining CPUs is thus as
follows, while the rest of the knapsack algorithm remains as described in 6.3.2:

t̂k∗j∗
t̂k∗j∗

t̂kj∗
≥ ∑

j∈J
t̂k∗jckj ∀k ∈K. (6.8)

Here, the estimated execution times of the remaining candidates on the fastest
CPU t̂k∗j on the right hand side of equation (6.8) is expected to be approximately
similar to the estimated runtime of a job on the remaining CPUs t̂kj multiplied with
the ratio variable:

t̂k∗j ≈ t̂kj
t̂k∗j∗

t̂kj∗
∀k ∈K,∀j ∈ J. (6.9)

This formulation is needed to reduce the number of weights (number of runtime
estimates per CPU type) per item j to a single weight t̂k∗j in order to apply the
original knapsack algorithm.

In the next section, the RAMBO framework including the above-described
scheduling strategy will be evaluated.
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6.4.2 Evaluation

The effectiveness of the heterogeneous RAMBO approach is evaluated by targeting
the ARM big.LITTLE architecture5 of the Odroid-XU3 platform6 that is also
commonly found in mobile devices [KLN+17]. This platform is equipped with four
“big” Cortex A15 CPUs (quad-core) with a frequency that can be scaled up to 2.0
GHz and four “little” Cortex A7 CPUs that have about half the processor speed (1.4
GHz). The Odroid-XU3 platform also includes a Mali-T628 GPU (not considered
for the evaluation) and 2 GB of main memory.

For the evaluation of RAMBO on heterogeneous processing architectures, not
only the runtime that is needed to find the best possible configuration is examined
but also the energy consumption. This is accomplished by reading from the power
measurement sensors INA231 offered by the Odroid-XU3 platform, which report
energy consumption for both processor types as well as for the RAM and the GPU.
To measure the energy consumption of the resource-aware scheduling strategy and
its competing MBO approaches, a so-called Relay Reader [Neu17] is used to read
out the sensor data in regular intervals of approximately one second via threads
for both CPU types. These threads are executed on separate CPUs and do not
influence the runtime measurements of the MBO approaches.

A subset of the setup described in Subsection 6.3.4 is used as the experimental
setup. RAMBO will be compared to the conventional synchronous MBO approach
that uses the qLCB multi-point infill criterion (6.1) and to the asynchronous MBO
approach that aims at using all available CPU time to solve the optimization problem
in parallel and uses the Kriging believer criterion [GLC10]. All MBO approaches
are evaluated on the 2-dimensional versions of the synthetic functions presented in
Subsection 6.3.4 and executed on four CPUs, two of each type (i.e., Cortex A15 and
Cortex A7).

The runtime of the objective functions was previously simulated by sleeping for
a given time, determined via an additional synthetic function, that represented the
runtime behavior of the respective objective function. For the energy measurements,
a real computation is needed. This is accomplished by repeatedly executing a
function that draws random numbers. The runtime of this real computation is
still controlled via an additional synthetic function that defines the number of
repetitions and thus simulates the time that is needed for calculating the objective
value. For the synthetic function that simulates the runtime of the objective
functions the rosenbrock(d) function is used, since it delivers a more reliable
runtime estimation than rastrigin(d) (see Subsection 6.3.4). The output of the
rosenbrock(2) function is scaled to return values between 5 min to 50 min.

5ARM big.LITTLE Technology: https://developer.arm.com/technologies/big-little,
2018

6Odroid-XU3: https://developer.arm.com/graphics/development-platforms/odroid-xu3,
2018

https://developer.arm.com/technologies/big-little
https://developer.arm.com/graphics/development-platforms/odroid-xu3
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The MBO approaches run for 2 h on m = 4 CPUs including all computation
overhead and CPU idling. The initial set is generated as for the homogeneous
experiments by the latin hypercube sampling [MBC00] with n = 4 ∗ d configurations
and all of the following approaches start with the same initial set in all 10 repetitions:

asyn.ei.bel: Asynchronously executed MBO approach using Kriging believer.
qLCB: Synchronously executed MBO approach using qLCB where in each

MBO iteration q =m configurations are proposed.
rambo: New synchronously executed MBO approach using qLCB with

the knapsack based resource-aware scheduling strategy for hetero-
geneous systems, where in each iteration q = 3 ⋅m candidates are
proposed.

Evaluation of the MBO Performance

Table 6.5 lists the aggregated ranks over all 2-dimensional objective functions,
grouped by accuracy level. As described in Section 6.3.4, the approaches are ranked
w.r.t. their performance for each of the 10 repetitions as well as each benchmark
before they are aggregated into the mean.

Figure 6.16 shows the corresponding box plots for the time required to reach
the three different accuracy levels, as described in Subsection 6.3.4. The faster an
approach reaches the desired accuracy level, the lower the displayed box and the
better the approach.

Algorithm 0.5 0.1 0.01
rambo 1.90 (1) 1.77 (1) 1.90 (1)
asyn.ei.bel 2.07 (2) 2.43 (2) 2.63 (2)
qLCB 2.67 (3) 2.63 (3) 2.70 (3)

Table 6.5: Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems
with rosenbrock(2) time function on 4 CPUs with a time budget of
2 h.

The benchmarks indicate an overall advantage of the new knapsack based
algorithm for heterogeneous systems, especially for the highest accuracy level 0.01
(see Figure 6.16). On average, rambo is always fastest in reaching each of the three
accuracy levels and thus converges faster to the optimum in the given time budget
of 2 h (see Table 6.5).

Figure 6.16 shows that in comparison to rambo, the conventional synchronous
MBO approach qLCB is not able to reach the highest accuracy level 0.01 for the
rastrigin(2) and ackley(2) functions within all of the 10 repetitions. The same can
be said about the asynchronous MBO approach asy.ei.bel for the bohachevsky(2)
and rastrigin(2) functions.
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Figure 6.16: Accuracy level vs. execution time for the 2-dimensional objective
functions using time function rosenbrock(2) (lower is better).

Table 6.6 lists the number of evaluated configurations and the number of MBO
iterations in brackets over all 10 repetitions for each objective function. The
asynchronous approach asy.ei.bel has no MBO iterations, it desynchronizes the
model update (see Subsection 6.1.2) aiming at using all available CPU time to solve
the optimization problem.

Algorithm bohachevsky ackley rastrigin
rambo 407 (131) 431 (148) 403 (108)
asyn.ei.bel 415 399 380
qLCB 331 (66) 340 (65) 297 (56)

Table 6.6: Number of evaluated configurations and performed model updates in
brackets (for the synchronous MBO approaches), across all 10 repeti-
tions for each objective functions with rosenbrock(2) time function on
4 CPUs with a time budget of 2 h.

The knapsack based scheduling for heterogeneous systems included in rambo
always manages to evaluate a higher amount of configurations compared to the qLCB
approach within the given time budget. When looking at the number of performed
MBO iterations, rambo outperforms qLCB by a factor of almost two.

The asy.ei.bel approach aims to produce no CPU idle time by desynchroniz-
ing the model update. For the rambo approach, the CPU idle time can occur in
cases where the selected configurations do not ideally fit into the MBO iteration
time bound, which is defined by the runtime of the configuration with the highest
priority. However, within the given time budget, the number of evaluations per-
formed by rambo is at least very similar to the number of evaluations performed by
asy.ei.bel, and on most benchmarks even exceeds it.

Since rambo evaluates more configurations compared to qLCB and asy.ei.bel
for most of the benchmarks within the same time budget, it might also consume
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more energy. The energy consumption of all three approaches is therefore analyzed
in the next section.

Evaluation of the Energy Consumption

Figure 6.17 shows the box plots for the energy consumption over all 10 repetitions
for each benchmark on each CPU type (upper part, Cortex A7 and Cortex A15) and
over all CPUs (lower part, combined). The less energy an approach consumes, the
lower the displayed box.
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Figure 6.17: Energy consumption in kJ on the two A15 CPUs (2.0 GHz), the
two A7 CPUs (1.4 GHz) and combined consumption on both CPU
types across all 10 repetitions for each objective function, with rosen-
brock(2) time function and a time budget of 2 h (lower is better).

The results in Figure 6.17 indicate that rambo consumes more energy compared
to the default qLCB approach on the “slow” Cortex A7 CPUs, while it consumes
less energy on the “fast” Cortex A15 CPUs. In comparison to the asy.ei.bel
approach, rambo manages to consume less energy on the “slow” Cortex A7 CPUs.



6.5. Summary 119

The reason for the higher energy consumption of rambo compared to the syn-
chronous qLCB approach on the “slow” Cortex A7 CPUs (see upper part of Figure 6.17)
lies in the resource-aware scheduling strategy that is able to utilize the less energy
consuming A7 CPUs more efficiently by mapping jobs to specific CPUs. Furthermore,
only jobs with a runtime smaller or equal to the job with the highest priority are exe-
cuted within one MBO iteration, thus longer running jobs with a lower optimization
potential are discarded and more MBO iterations can be performed in the given time
budget. In contrast, qLCB is not able to map jobs to specific CPUs, it just starts
four jobs on the 4 available CPUs that were proposed by the infill criterion in each
MBO iteration, without respect to the heterogeneity of the underlying architecture
and the job execution times.

Another contributing factor to the higher energy consumption of the qLCB
approach is that it executes more jobs on the more energy-consuming A15 CPUs
due to the OS scheduling. Within one MBO iteration, the OS scheduler migrates
jobs from a “slow” A7 CPU to a “fast” A15 CPU, for cases where a job on a fast
CPU finishes earlier than a job on a slow CPU, to speed up computation and thus
execute more MBO-iterations. Hence, qLCB has nearly no idle time on the A15 CPUs.
However, the conventional synchronous approach does only perform approximately
half as many MBO iterations as rambo (see Table 6.6).

As shown in Table 6.6, rambo in general executed more job evaluations in the
given time compared to both competing MBO approaches. However, the combined
energy consumption on all four CPUs depicted in the lower part of Figure 6.17
shows that rambo consumes approximately the same amount of energy as qLCB,
while it consumes less energy compared to asy.ei.bel for the bohachevsky(2) and
ackley(2) benchmark functions.

The asynchronous asy.ei.bel approach in most cases consumes more energy
than rambo since it has nearly no CPU idle time, however, it still converges slower
to the optimum. The reason for this is that rambo is able to select more promising
candidates with shorter runtimes since it only executes jobs with a shorter or equal
runtime than the most promising candidate and thus aims at finding the cheapest
way of evaluations through the model.

Overall, the results show that the resource utilization obtained by the scheduling
for heterogeneous architectures in rambo enables MBO to converge faster to the
optimum, without consuming more energy resources than the competing approaches.

6.5 Summary

This chapter presented new resource-aware scheduling strategies for parallel machine
learning algorithms. While there are many different parallel algorithms, this chapter
focused on the optimization of parallel MBO, a state-of-the-art global optimization
method for expensive black-box functions with huge resource demands. The goal
was to execute MBO in a resource-efficient way to enable the processing of larger
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problem sizes within a given time budget or, in other words, reduce the end-to-end
wall-clock time for a constant problem size.

In contrast to classical scheduling problems, the scheduling for MBO needs to
interact with the configuration proposal mechanism to select black-box configurations
with suitable resource demands for parallel evaluation, which is a complex problem
since the resource demands need to be known (at least estimated) before execution.

For this purpose, a new resource-aware model-based optimization framework
called RAMBO was presented and evaluated. With RAMBO it becomes possible
to make use of the full potential of parallel architectures in an efficient manner.
This was accomplished by developing an estimation model for the runtimes of each
evaluation of a black-box function to guide the scheduling of configurations to
available resources. In addition, an execution priority reflecting the estimated profit
of a black-box evaluation was used to guide MBO to interesting regions in a faster
and resource-efficient way without directly favoring less expensive configurations.

The presented scheduling strategies aim at guiding MBO to interesting regions
in a faster and resource-aware way, to acquire the feedback of the parallel worker
processes that evaluate the black-box configurations, in the shortest possible time
to avoid model update delay while reducing the CPU idle time.

Two different scheduling strategies were proposed and analyzed, the First Fit
scheduling strategy and the knapsack based scheduling strategy. The results for
the First Fit scheduling strategy showed that RAMBO managed to balance long
execution times more evenly and thus executes more evaluations in the same time
budget, leading to a higher confidence in the optimization space compared to
conventional synchronous parallel execution model. The knapsack based scheduling
approach was compared to existing parallel synchronous MBO approaches and to
approaches that aim at reducing the idle time by asynchronously updating the model.
Here, the results showed that RAMBO converged faster to the optimum than the
existing approaches in cases where the resource estimates were reliable. The concept
of RAMBO was especially efficient for complex high dimensional problems and also
strongly improved upon the existing approaches in terms of scalability when the
number of available CPUs was increased.

Furthermore, the knapsack based scheduling strategy was enhanced to optimize
parallel MBO on heterogeneous architectures that are commonly found in embedded
systems. The results showed that RAMBO converged faster to the optimum com-
pared to the synchronous and asynchronous parallel MBO approaches. Thanks to a
more efficient resource utilization obtained by the scheduling, RAMBO managed
to evaluate more configurations in the given time budget without consuming more
energy than the competing approaches.



Chapter 7

Conclusion and Outlook

In the preceding chapters of this thesis, it has been shown that running machine
learning algorithms like model-based optimization in homogeneous or heterogeneous,
resource-constrained environments poses a number of challenges that classical ap-
proaches fail to address adequately. RAMBO has been proposed as a potential
means to a more efficient utilization of resources in such environments. RAMBO
significantly outperforms other approaches, meaning that it can find better algorithm
configurations with better prediction quality in a shorter amount of time. RAMBO
is a significant step forward to reaching the goal of efficient resource utilization for
statistical machine learning algorithms, especially for the execution on small and
computationally weak devices that surround us and make our lives better or - in
the case of medical devices - might even work to save them.

7.1 Summary of Research Contributions

This thesis started off by introducing the concept of model-based optimization
(MBO), an important global optimization approach with huge resource demands,
which can be applied for automatically configuring parameterized algorithms, as
well as giving an overview of the R programming language, the de facto standard
software environment for the development of statistical learning applications.

The potential for new optimizations that enable statistical learning algorithms
to scale to larger problem sizes was analyzed in Chapter 3. Previously published
optimization approaches have usually shown improvements for simple R programs or
specific R functions, but they exhibited fairly mixed results when it came to speeding
up complex real-world applications like machine learning algorithms. Building upon
the observation that real-world programs are different from synthetic benchmarks,
the most common classification algorithms were analyzed combined with real-world
input data sets to identify the main reasons for their lavish use of resources. On the
basis of the redesigned and enhanced traceR profiling framework, detailed insights
into the runtime and memory behavior of these algorithms were provided.

The analysis with traceR focused on learning algorithms, both alternative R
implementations as well as the original GNU R language can use the results to guide
the development of optimizations that improve the resource utilization of real-world
code. Overall, the conducted analysis demonstrated that memory management
is one of the major contributors to the total runtime of the algorithms. It was
shown that the time spent in memory management is inflated by wasteful memory
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allocation policies of the R execution environment, as well as by the footprint and the
number of allocated vector data structures. Here, especially vector data structures
that span multiple pages of memory dominated. The results suggested a general
memory optimization to reduce the memory footprint and thus the runtime needed
for memory allocation and garbage collection.

In Chapter 4, the results of the analysis from Chapter 3 were used to develop
an optimization for efficient memory utilization. This optimization is application-
transparent and employs page sharing at a memory management layer between the
R interpreter and the operating system’s memory management. The optimization
benefits a large number of applications since it preserves compatibility with the
available software libraries that most statistical programs are based on, and covers
one of the most important resource bottlenecks of machine learning algorithms. It
avoids duplication of page contents for large vector data structures and optimizes
the copy-on-write mechanism of the R language. By concentrating on the most
rewarding optimizations - the sharing of zero-filled pages and deduplicating at the
page level instead of the object level -, the overhead of more general OS level memory
optimization approaches such as deduplication and compression is avoided. The
proposed optimization achieved a considerable reduction of the memory consumption
by up to 53.5% with an average of 18% for a large number of typical real-world
benchmarks. It also significantly speeds up the computation up to a factor of 5.2
in cases where previously pages had to be swapped out due to insufficient main
memory.

In addition to the proposed memory optimization, the second major avenue for
optimizing statistical machine learning algorithms that was explored in this thesis is
parallelization, which poses new resource utilization challenges. In order to fully
benefit from parallel execution, the bottlenecks arising in embarrassingly parallel
applications were analyzed in Chapter 5. This was enabled by enhancing the R
profiling framework traceR for the analysis of parallel programs. For hyperparameter
optimization, the results showed that a high runtime variance in the configuration
space causes inefficient resource utilization due to different completion times of evalu-
ations running in parallel. Overall, the results showed that the parallel computation
methods provided by R packages are not sufficient and can lead to inefficient resource
utilization, which calls for the development of new resource efficient parallelization
strategies, including new scheduling strategies.

Chapter 6 of this thesis focused on the development of resource-aware scheduling
strategies for parallel machine learning applications. While there are many different
parallel algorithms, this thesis focused on the optimization of parallel MBO, a state-
of-the-art global optimization method for expensive black-box functions with huge
resource demands. To efficiently map the evaluations of black-box configurations
to the underlying parallel architecture, depending on their resource demands, new
scheduling strategies are needed. In contrast to classical scheduling problems, the
scheduling for MBO needs to interact with the configuration proposal mechanism to
select black-box configurations with suitable resource demands for efficient parallel
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evaluation, which is a complex problem since the resource demands need to be
known (at least estimated) before execution. For this purpose, a new resource-aware
model-based framework called RAMBO was presented.

With RAMBO and its integrated scheduling strategies, it becomes possible to
make use of the full potential of parallel architectures in an efficient manner. The
scheduling strategies presented in this thesis are aiming at guiding MBO to interesting
regions in a faster and resource-aware way. The goal was to acquire the feedback
of the parallel worker processes that evaluate the black-box configurations in the
shortest possible time to avoid MBO model update delay while reducing the idle time
on the workers. Therefore, a model that estimates the runtime for each evaluation
of a black-box function has been developed to guide the scheduling of configuration
evaluations to available resources. In addition, an execution priority reflecting the
estimated profit of a black-box evaluation was used to guide MBO to interesting
regions in a faster way without directly favoring less expensive configurations.

Two scheduling strategies have been proposed and extensively evaluated, the
First Fit scheduling strategy and the knapsack based scheduling strategy. The results
for the First Fit scheduling strategy showed that RAMBO managed to balance long
execution times more evenly and thus executed more evaluations in the same time
budget, leading to a higher confidence in the optimization space compared to the
conventional synchronous MBO execution model.

The knapsack based scheduling approach has been compared to existing parallel
synchronous MBO approaches and to approaches that aim at reducing the idle time
by asynchronously updating the model. Here, the results showed that RAMBO
converged faster to the optimum than the existing approaches in cases where the
resource estimates were reliable. The concept of RAMBO was especially efficient for
complex high-dimensional problems and also strongly improved upon the existing
approaches in scalability performance, when the number of available CPUs was
increased.

Furthermore, the knapsack based scheduling strategy has been enhanced to
optimize parallel MBO on heterogeneous architectures that are commonly found in
embedded systems. The results showed that RAMBO is also able converged faster
to the optimum on heterogeneous architectures compared to the exiting approaches.
Thanks to the resource utilization obtained by the scheduling, more configurations
were evaluated in the given time budget while consuming the same amount of energy
compared to the competing approaches.

Overall, RAMBO significantly outperforms other parallel MBO approaches,
meaning that it finds better algorithm configurations in a shorter amount of time.
For reaching the goal of efficient resource utilization in statistical machine learning
algorithms, RAMBO is thus a significant step forward.
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7.2 Future Research

Extended Profiling: The data produced by the traceR profiling tool can be
utilized to enable profile-driven optimizations and thus avoid overhead of unnecessary
optimizations. For example, the R runtime environment offers the possibility of
dynamic compilation that can be enabled and disabled during runtime and thus
could be guided by profiling data. The traceR framework itself could be extended for
a precise analysis of read and write behavior on large data structures for applying
the memory optimization presented in Chapter 4 more selectively and thus reducing
its runtime overhead.

Memory Optimization Opportunities: The memory optimization presented
in Chapter 4 includes a static refinement (see Section 4.3.2) that disables the
optimization for objects above a size limit of two pages, which avoids overhead
for small objects where the optimization potential is low. To further reduce this
overhead, machine-learning techniques could be applied to optimize the trade-off
between runtime and memory, since the parameters of the approach allow for
dynamic tuning.

Resource-Aware MBO Optimization: In Chapter 6 a comprehensive frame-
work for resource-aware model-based optimization has been presented that can be
used for future work, guiding the development of new resource-aware optimizations.
Further work for RAMBO could concentrate on integrating a memory estimation
model. As shown in Section 5.3.3 the memory usage heavily influences runtime
if the amount of available main memory in the system is too small to hold all
required data. Here the traceR profiling tool presented in Sections 3.2 and 5.2 could
be applied to gather profiling information of memory usage during runtime that
can then be leveraged to guide the scheduling decisions for experiments with high
memory demands.

Parallel MBO can be executed synchronously or asynchronously as described
in Sections 6.1.2 and 6.1.1. RAMBO already includes resource-aware scheduling
strategies for synchronous parallel execution. As shown in the evaluation results
of Section 6.3.4, the asynchronous execution has several disadvantages, such as
high computational overhead caused by frequent model updates performed after
each evaluation. For future work, a resource-aware strategy for the asynchronous
approach might be helpful to reduce its overhead. This could be accomplished by
integrating the runtime estimation model into the asynchronous execution model, to
control the frequency of model updates. By utilizing the runtime estimates of busy
job evaluations, a model update could be delayed in cases where the time needed
to finish a busy job and model updates performed on other CPUs is very short.
This would reduce the number of unnecessary model updates and also improve the
candidate selection since the model is enriched with more results.
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Resource-Aware Scheduling Strategies for MBO: In comparison to existing
synchronous MBO approaches (see Section 6.1.1) the resource-aware scheduling
strategies developed in this thesis, reduce the CPU-idle time for an efficient utilization
of parallel architectures. However, CPU idling can still occur. The MBO iteration
time bound is determined by the estimated runtime of the job with the highest
priority to avoid model update delay with the most promising result. The remaining
candidates that are proposed to run in parallel with the best candidate are discarded
if they do not meet this time bound (see Section 6.3.2). Candidates with a smaller
runtime than this time bound can thus produce idle time. To avoid CPU idling, a
new scheduling strategy that is able to migrate jobs during runtime to other CPUs
might be useful for future work. For this propose, the R programming language
has to be extended with a job migration mechanism to allow jobs to be executed
on different CPUs during the optimization process. If jobs can be migrated during
execution the CPU idle time can be further reduced by enhancing the knapsack
based scheduling.

Multi-Objective Candidate Selection for MBO: The performance and re-
source utilization of MBO is influenced by the selection of the candidates, proposed
for evaluation by the infill criterion. The infill-criterion has the goal to reduce
the number of necessary black-box evaluations by proposing the most promising
candidates to find the best configuration in the shortest possible time. Further-
more, the resource-aware scheduling strategies presented in Chapter 6 are applied
to optimize the parallel execution of the proposed candidates, to guide MBO in
a resource-efficient way to the optimum in a given time bound. To optimize the
selection of the candidates with respect to their resource demands and their perfor-
mance in one step, a multi-objective infill criterion might be helpful for future work.
The infill criterion quantifies the improvement of a candidate evaluation based on
a compromise between good predicted outputs and uncertainty about the search
space region (a high potential to optimize the quality of the regression model).

For future work, a group-infill criterion could be developed that proposes different
sets of candidates and thus assigns one priority to each set. This criterion can be
based on the available hardware resources, the runtime variance of the candidates,
that lead to different amounts of CPU-idle time, the memory consumption of these
candidates, the distance of the candidates in the model space to avoid evaluations of
similar configurations and the predicted outputs as well as the uncertainty about the
search space, in order to find the cheapest way through the model. With such an infill
criterion the resource-awareness would be directly integrated with the configuration
proposal mechanism. For this purpose, an extensive analysis would be required to
figure out the amount of influence each objective should have in order to build a
group priority.
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