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A B S T R A C T

Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences.
Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract
oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase
(SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of
some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of
AMPK.

Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct
antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by im-
munoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay.

No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with
the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and per-
oxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds
and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly
increased the SIRT1 expression and the activation of AMPK.

Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to
increase SIRT1 expression and AMPK activation.

1. Introduction

Oxidative stress is commonly defined as an imbalance between the
production of reactive oxygen species (ROS, free radicals) and anti-
oxidant defences [1,2]. Reactive oxygen and nitrogen species (RONS)
are ubiquitous reactive derivatives of O2 and nitrogen metabolism,
responsible for numerous types of cell damage. At this purpose, there is
a general agreement on the fact that a chronic imbalance between
formation of RONS and antioxidant systems is a relevant determinant
involved in the pathogenesis and development of a variety of chronic
and degenerative diseases, including aging, cancer, cardiovascular

disease and neurodegenerative disorders (Alzheimer’s and Parkinson’s
Diseases) [2–5]. In support of this view, there has been growing evi-
dence that oxidative stress and specific human diseases can be pre-
vented by including in the diet plant foods that contain large amounts
of antioxidants, such as vitamins C, E or natural antioxidants, such as
polyphenols [6,7]. Dietary antioxidants act as free radical scavengers,
radical chain reaction inhibitors, metal chelators, oxidative enzyme
inhibitors and antioxidant enzyme cofactors [8–11].

Nowadays, a huge amount of studies support the beneficial role of
antioxidants to counteract RONS both in sedentary subjects and in
athletes. In this respect, many supplements, characterized by natural
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compounds, are commercialized with the “therapeutic” purpose of
improving the antioxidant defences. Some of these supplements are
characterized by polyphenols, such as ferulic acid, quercetin, tyrosol,
catechin and curcumin and natural compounds as berberine.

Polyphenols, such as ferulic acid, quercetin, tyrosol, catechin and
curcumin, are secondary metabolites of plants and are usually classified
based on their chemical structure, according to the number of phenol
rings and on the basis of structural elements [12–14]. Research in an-
imal and human models has shown that these compounds possess a
wide range of biological protective effects, such as anti-inflammatory,
antibacterial, anti-allergic and antioxidant ones. In addition, the pro-
tective role of polyphenols has been showed in cardiovascular, neuro-
degenerative and neoplastic diseases [15–17].

Berberine, a quaternary ammonium salt from the protoberberine
group of benzylisoquinoline alkaloids, is the principal component for
many popular medicinal plants (Coptidis chinensis, Phellodendron
chinense and Mahonia bealei) [18]. The numerous pharmacological
activities of berberine, in the last two decades, have been attracting
high-level interests within the scientific community [19,20]. Indeed,
berberine has been shown to have therapeutic effects on hypoglycemia,
inflammation, cancer and it is also useful for prevention and treatment
of Alzheimer’s disease and cerebral ischemia [21,22]. Berberine is also
able to ameliorate and alleviate oxidative stress both in vitro and in
vivo models [23–26].

The fundamental mechanism of action underlying polyphenols’ and
berberine’s impact on human health is probably represented by their
action on Sirtuin 1 (SIRT1) and Adenosine Monophosphate-Activated
Protein Kinase (AMPK), two important proteins involved in many pa-
thophysiological processes, able to activate each other: AMPK activates
SIRT1 (by increasing the Nicotinamide phosphoribosyltransferase
(NAMPT)levels) and SIRT1 stimulates AMPK through LKB1 deacetyla-
tion [27–30].

SIRT1 is a NAD+ dependent histone/protein deacetylase able to
deacetylate a lot of substrates, including p53, NF-kB, FOXO transcrip-
tion factors, Ku-70, PPAR-γ, and PGC-1α, with roles in cellular pro-
cesses ranging from energy metabolism to cell survival [31–36].

AMPK is a fuel-sensing enzyme activated by a decrease in a cell’s
energy state that inhibits anabolic processes and increases the catabolic
ones with the aim of restoring ATP reserve [37]. Recent works suggest a
relationship between SIRT1/AMPK and the oxidative stress, under-
lining how their activation could be crucial in this context and poten-
tially protective against oxidative stress [38].

Based on this premise, the aim of this study was to evaluate the
direct and specific antioxidant activity of some natural compounds
(Fig. 1), such as quercetin, tyrosol, ferulic acid, catechin, berberine and
curcumin. Moreover, to shed light on these compounds’ molecular
mechanisms, we evaluated the ability of these substances to increase
the expression of SIRT1 and the activation of AMPK.

2. Materials and methods

2.1. Chemicals and antibodies

Ascorbic acid, KMBA (α-cheto-γ-(methylthiol)butyric acid)), 2,2′-
azo-bisamidinopropane (ABAP), Diethylenetriaminepentaacetic acid
(DTPA) and 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Cell culture re-
agents were purchased from Lonza (Basel, Switzerland) and Gibco-BRL
(Grand Island, NY). General laboratory chemicals were purchased from
Sigma-Aldrich (St. Louis, MO, USA) and Carlo Erba (Milano, Italy).
Tyrosol, (+)- Catechin, Berberine Chloride Hydrate, Curcumin,
Quercetin Dihidrate and Ferulic Acid also were from Sigma-Aldrich (St.
Louis, MO, USA). All substances were dissolved in DMSO (Sigma-
Aldrich, St. Louis, MO, USA). The final concentrations of DMSO in
culture were between 0.05–0.2%, which had no effect on cell viability
(data not shown).

Ripa Lysis Buffer System, Protease Inhibitor Cocktail, Phosphatase
Inhibitor Cocktail C, phenyl-methane-sulfonyl-fluoride (PMSF), Sodium
Orthovanadate and Sodium Pyrophosphate were from Santa Cruz
Biotechnology (California, USA). CellTiter-Blue Cell Viability Assay was
purchased from Promega (Madison, USA). Reagents, protein markers
and membrane for Western Blot were from Biorad Laboratories
(California, USA), Rabbit polyclonal antibody against SIRT1 (H-300, sc-
15404), mouse monoclonal antibody against Actin (C-2, sc-8432), goat
anti-rabbit IgG-HRP antibody (sc-2004) and goat anti-mouse IgG-HRP
antibody (sc-2005) were purchased from Santa Cruz Biotechnology
(California, USA). Rabbit polyclonal antibody against Phosho-AMPKα
(Thr172, #2531) and rabbit polyclonal antibody against Total AMPKα
(#2532) were from Cell Signaling Technologies (Massachussets, USA).
Luminata Crescendo Western HRP Substrate for chemiluminescent de-
tection of bands were from Millipore (Massachussets, USA). Glutathione
Fluorometric Assay Kit (GSH, GSSG and Total) was purchased from
BioVision (California, USA).

2.2. TOSC assay

The total oxidant scavenging capacity (TOSC) assay was described
in detail in our previous work [39]. Briefly, peroxyl radicals were
generated by thermal homolysis of 20 mM ABAP at 35 °C in 100mM
potassium phosphate buffer, pH 7.4. Hydroxyl radicals were generated
at 35 °C by the iron plus ascorbate-driven Fenton reaction (1.8 μM
Fe3+, 3.6 μM EDTA, and 180 μM ascorbic acid in 100mM potassium
phosphate buffer, pH 7.4). Peroxynitrite was generated from the de-
composition of SIN-1 in the presence of 0.2 mM KMBA, 100mM po-
tassium phosphate buffer, pH 7.4, and 0.1 mM DTPA (Diethylene
Triamine Penta Acetic Acid), at 35 °C. The concentration of SIN-1 was
varied to achieve an ethylene yield equivalent to the iron–ascorbate and
ABAP systems. Reactions with 0.2 mM KMBA were carried out in 10ml
vials sealed with gas-tight Mininert® valves (Supelco, Bellefonte, PA) in
a final volume of 1ml.

Ethylene production was measured by gas-chromatographic ana-
lysis of 200 μl aliquots taken from the head space of vials at timed in-
tervals during the course of the reaction. Analyses were performed with
a Hewlett-Packard gas chromatograph (HP 6890 Series, Andoven, MA)
equipped with a Supelco DB-1 (30×0.32×0.25mm) capillary
column and a flame ionization detector (FID). The oven, injection and
FID temperatures were respectively, 35, 160 and 220 °C. Hydrogen was
the carrier gas (at a flow rate of 1ml/min); a split ratio of 20:1 was
used. Total ethylene formation was quantified from the area under the
kinetic curves that best define the experimental points obtained for
control reactions and after addition of quercetin, tyrosol, ferulic acid,
catechin, and berberine and curcumin during the reaction. TOSC values
were quantified from the equation TOSC=100 – (SA/CA×100),
where SA and CA are the integrated areas for sample and control re-
action, respectively.

TOSC values were quantified from the equation
TOSC=100− (SA/CA×100), where SA and CA are respectively the
area under the curve (AUC) for sample and control reaction. A TOSC
value of 0 corresponds to a sample with no scavenging capacity. A
TOSC value of 100 is attributed to a compound that entirely suppresses
the ethylene formation whereas a pro-oxidant compound shows a ne-
gative TOSC value. Consequently, antioxidants and pro-oxidants mo-
lecules can be distinguished by the obtained results. The linearity of
dose–response curve quercetin, tyrosol, ferulic acid, catechin, and
berberine and curcumin concentration (μM) and the antioxidant (TOSC
value) response was tested and good correlation coefficients (generally
greater than 0.9) were obtained at the different doses used to test the
validity of our experiments (Fig. 2). Each experiment was performed in
duplicate to account for the intrinsic variability of the method. The
results obtained with quercetin, tyrosol, ferulic acid, catechin, and
berberine and curcumin were expressed in TOSC units, and compared
to each other. In our hands, the coefficient of variation (CV) of the

J. Fusi et al. Biomedicine & Pharmacotherapy 101 (2018) 805–819

806



Fig. 1. Chemical structures of the analysed natural compounds.(A) Ferulic Acid; (B) Quercetin; (C) Curcumin; (D) Berberine; (E) Tyrosol; (F) Catechin. Source pubchem https://pubchem.
ncbi.nlm.nih.gov/search/search.cgi#.

Fig. 2. Dose–response curve of natural tested compounds scavenging capacity towards peroxyl radicals (ROO%), hydroxyl radicals (OH%) and peroxynitrate (HOONO).
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method ranged between 2% and 5%.

2.3. Cell culture

Human Cervical Carcinoma cells (HeLa) were cultured in DMEM
supplemented with 10% (v/v) fetal bovine serum, 1% antibiotics (pe-
nicillin and streptomycin) and 1% L-glutamine at 37 °C in a humidified
air atmosphere with 5% (v/v) CO2.

The cells were grown to a confluence of 80%, were then trypsinized,
counted with a Burker chamber and plated (100.000 cells/well). The
day of the experiment, the cells were treated with the substances at the
concentrations considered (1,5 and 10 μM) and left in incubation for 3,
6 and 24 h.

At the end of the incubation periods, the cells were washed with PBS
(pH 7.4) and collected in a 1.5ml microtube with 0.130ml of lysis
buffer (RIPA buffer) containing a protease inhibitor cocktail, a phos-
phatase inhibitor cocktail, PMSF, sodium orthovanadate and sodium
pyrophosphate.

They were lysed by three freezing-thawing cycles and then the su-
pernatants were recovered.

A part of the lysate was used to quantify the protein content with
the spectrophotometer (Thermo Scientific Multiskan FC, Thermo
Scientific), using a commercial kit based on the Bradford assay. The
final concentrations are expressed in μg/μl.

2.4. Western blot analysis

The cell lysates (25 μg/μl) were combined with the appropriate
amount of 1× SDS sample buffer (0.5 M Tris-HCl pH 6.8, 20% SDS,
10% [vol/vol] glycerol, 5% [vol/vol] β-mercaptoethanol, 0.2% bro-
mophenol blue), heated at 95 °C for 5min, separated by SDS-PAGE and
then transferred to polyvinylidene difluoride membranes (PVDF).

The membranes were blocked with 5% (wt/vol) nonfat dry milk in
Tris-buffered saline with Tween buffer (T-TBS) (20mmol/l Tris-Hcl, pH
7.6, 0.138mol/l NaCl, and 0.1% Tween 20) for SIRT1, β-actin and total
AMPK, with 5% (wt/vol) albumin (BSA, bovine serum albumin) in T-
TBS for phosho AMPKα.

The expression of SIRT1 and AMPK activation were analyzed in-
cubating the membranes in the presence of specific primary antibodies
and, subsequently, of secondary peroxidase-conjugated antibodies,
suitable diluted in 5% BSA in T-TBS. Primary Antibodies were used
overnight at 4 °C at the following conditions: anti-SIRT1, rabbit
(1:1000); anti-phospho-AMPKα, rabbit (1:200); total-AMPK, rabbit
(1:200); anti-β-actina, mouse (1:1000). Secondary antibodies were in-
stead used at two different dilutions: goat anti-rabbit (1:10,000) for
SIRT1, goat anti-mouse (1:10,000) for β-actin, goat anti-rabbit (1:2000)
for total and phospho-AMPK.

Bound antibodies were visualized using Chemiluminescence
Luminata Crescendo Western HRP Substrate and bands were detected
and analyzed by the Kodak Image Station 440CF (Eastman Kodak,
Rochester, NY, USA).

2.5. CellTiter-blue cell viability assay

The CellTiter-Blue Cell Viability Assay provides a homogeneous,
fluorometric method for estimating the number of viable cells present
in multiwell plates. It uses the indicator dye resazurin to measure the
metabolic capacity of cells, an indicator of cell viability. Viable cells
retain the ability to reduce resazurin into resorufin, which is highly
fluorescent. Nonviable cells rapidly lose metabolic capacity, do not
reduce the indicator dye, and thus do not generate a fluorescent signal.

For this purpose, were set up 96-well plates, containing medium,
cells to the desired density and the substances to be analyzed, appro-
priately diluted in DMSO.

More precisely, were seeded 5000 cells per well, in a volume of
medium such that the final volume was 100 μL per well. The cells were

treated with the 6 substances and incubated for 3, 6 and 24 h.
At the expiry of treatment, the reagent (20 μL/well) was appro-

priately added and the plate was incubated in the dark for 4 h at 37 °C.
Finally, the fluorescence (560Ex/590Em) was detected using the
Cytofluor 2300 (Millipore). The fluorescence produced is directly pro-
portional to the number of viable cells and, through the analysis, it was
obtained a percentage value compared to the control (cells without
treatment).

2.6. GSH/GSSG analysis

The level of reduced glutathione (GSH) was measured using a GSH
assay kit, according to the manufacturer’s instructions (BioVision,
Mountain View, CA, USA). Briefly, cell samples were homogenized in
ice cold GSH assay buffer (100ml). The homogenate was added to a
prechilled tube containing perchloric acid (10ml) and vortexed for
several seconds. It was kept on ice for 5min and centrifuged for 2min
at 13,000g, and the supernatant collected. Potassium hydroxide (20ml)
was added to 40ml of supernatant in order to neutralize the samples.
After 5min of centrifugation at 13,000g, the supernatant was taken for
the assay. For GSH detection, the samples (10ml) were diluted with
80ml of assay buffer. For GSH/oxidized GSH (GSSG) detection, the
samples (10ml) were diluted with 60ml of assay buffer, mixed with
10ml of GSH quencher at room temperature (20_C) for 10min and
reduced with 10ml of reducing agent. Finally, all samples were mixed
with 10ml of o-phthalaldehyde probe and agitated at room temperature
for 40min in the dark. The fluorescence intensity was measured using a
microplate reader (Thermo Scientific Multiskan FC, Thermo Scientific)
at Ex/Em of 340/450 nm. The ratio of GSH/ GSSG was calculated as
described elsewhere [40,41].

2.7. Statistical analyses

Statistical analyses were performed using the statistical package
Statview, version 5.0.1 (SAS Institute, Abacus Concept, Inc., Berkeley,
California), the spreadsheet program Microsoft Excel 2010 and the
statistical package GraphPad Prism 6 (GraphPad Software, Inc., La
Jolla, California).

In detail, Western Blot data were analyzed by two-way analysis of
variance (ANOVA) with Bonferroni post hoc test, while all TOSC, GSH/
GSSG and cytotoxicity data significance was evaluated by applying the
one-way ANOVA with Bonferroni post hoc test and, in the latter case, to
perform a statistical analysis that was as complete as possible, the
Pearson index correlation was calculated.

P < 0.05 was considered to be statistically significant. Data are
expressed as means ± SE.

3. Results

3.1. CellTiter-blue cell viability assay (Promega) results

Hela cells were treated with the 6 compounds and incubated for 3, 6
and 24 h. Cell viability assay results show that no statistically sig-
nificant decrease in the number of viable cells was obtained in any of
the three experimental times. In detail, quercetin was tested at the
following concentrations: 1 μM, 5 μM, 10 μM, 20 μM and 50 μM.
Analysis of the data showed a no significant p-value and a negative
linear correlation coefficient, index of a strong negative correlation
between the two variables, both at 3h (p=0.81, r=−0.88), that at
6 h (p=0.97, r=−0.95) and 24 h (p=0.06, r=−0.88), respectively
(Fig. 3A). A no significant p-value and a negative linear correlation
coefficient it was obtained also for ferulic acid, tyrosol, berberine, ca-
techin and curcumin, tested at same concentrations of quercetin.
(Fig. 3B–F).
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3.2. Total oxyradical scavenging capacity (TOSC) assay

Quercetin, ferulic acid, tyrosol, berberine, catechin and curcumin
were tested at 1 μM to evaluate their Total Oxyradical Scavenging

Capacity. Fig. 4 shows the specific TOSC values of natural compounds
towards the various RONS, as compared to the reference antioxidant vs.
peroxyl, hydrodyl radicals and peroxynitrite derivates according to
Franzoni et al. [42]. Quercetin showed the best antioxidant activity

Fig. 3. CellTiter-Blue Cell Viability Assay (Promega) results: no sta-
tistically significant decrease in the number of viable cells was ob-
tained in any of the experimental conditions. Hela cells were treated
with the 6 compounds, tested at six different concentration (1 μM,
5 μM, 10 μM, 20 μM, 50 μM and 100 μM) and incubated for 3, 6 and
24 h. Indeed, analysis of the data (one-way ANOVA) showed a no
significant p-value and a negative linear correlation coefficient, index
of a strong negative correlation between the two variables, for all the 6
compounds. A) Quercetin (Q) : 3 h (p= 0.81, r=−0.88), 6 h
(p=0.97, r=−0.95) and 24 h (p= 0.86, r=−0.99), respectively.
B) Ferulic Acid (FA) : 3 h (p= 0.09, r=−0.91), 6 h (p= 0.07,
r=−0.96) and 24 h (p= 0.15, r=−0.92), respectively. C) Tyrosol
(T) : 3 h (p= 0.63, r=−0.98), 6 h (p= 0.49, r=−0.99) and 24 h
(p=0.43, r=−0.87), respectively. D) Berberine (B) : 3 h (p= 0.36,
r=−0.97), 6 h (p= 0.56, r=−0.98) and 24 h (p= 0.84,
r=−0.81), respectively. E) Catechin (C) : 3 h (p=0.86, r=−0.39),
6h (p=0.94, r=−0.91) and 24 h (p=0.90, r=−0.79), respec-
tively. F) Curcumin (Cu) : 3 h (p= 0.93, r=−0.86), 6 h (p= 0.88,
r=−0.80) and 24 h (p= 0.17, r=−0.75), respectively.
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against peroxyl radicals (8,76 ± 0,8 units) than the other compounds
(0.05 > p < 0.001), and its activity was 99% higher than Trolox
(4,4 ± 0,6 units, ***p < 0.001) the reference antioxidant against
peroxyl radicals [40]. Catechins (5,41 ± 0,4 units) and curcumin
(5,9 ± 0,18 units) exhibited an anti-peroxyl activity higher than
Trolox (***p < 0.001) of 22,9% and 34,09 respectively, while ferulic
acid (3,88 ± 011 units), tyrosol (4,2 ± 0,32 units) and berberine
(3,47 ± 0,23 units) showed a lower anti-peroxyl activity than Trolox
(***p < 0.001) of 11,8%, 4,55% and 21,13% respectively.

Curcumin exhibited the higher antioxidant activity
(99,5 ± 0,5 units) against hydroxyl radicals than the other compounds
and its activity was 4728,091% higher than uric acid
(0,21 ± 004 units; p < 0.001) the reference antioxidant against hy-
droxyl radicals [40]. Compared to uric acid, quercetin
(76,92 ± 1,61 units), catechins (1,62 ± 0,21 units), ferulic acid
(5,56 ± 0,76 units), tyrosol (0,75 ± 0,02 units), and berberine
(87,01 ± 152) showed and anti-hydroxyl activity higher of
3,652,857% (****p < 0.0001), 67,142% (***p < 0.001), 254,761%
(****p < 0.0001), 25,714% (***p < 0.001) and 41333,34%
(****p < 0.0001), respectively.

Quercetin presents the best antioxidant activity even against

peroxynitrite derivates (22,16 ± 1,81 units). Indeed, compared to uric
acid (4,7 ± 0,9 units), the reference anti-peroxynitrite derivates [40]
its activity was 371,49% (***p < 0.001) higher. ferulic acid
(17,52 ± 1,76 units), catechins (2,78 ± 0,21 units), tyrosol
(19,49 ± 1,91 units), berberine (20,01 ± 212) and curcumin
(20,04 ± 214) exhibited an antioxidant activity against peroxynitrite
derivates higher than uric acid of 272,76%(***p < 0.001), 40,85%
(**p < 0.01), 314,68% (***p < 0.001), 325,74%(***p < 0.001) and
326,38% (***p < 0.001) respectively.

3.3. The expression of SIRT1 and the activation of AMPK were significantly
increased in all experimental groups compared with the control group

Quercetin, ferulic acid, tyrosol, berberine, catechin and curcumin
were tested at three different concentrations (1, 5, and 10 μM) and at
three different time of incubation (3, 6 and 24 h). The Western Blot
analysis of the lysates of the cells incubated with these compounds
showed that the expression of SIRT1 was significantly increased in all
experimental groups compared with the control group (Fig. 5A–D). In
detail, quercetin and berberine showed a statistically significant in-
crease of SIRT1 expression, compared to the control, both at 3 h (1 and

Fig. 4. Comparison between specific antioxidant activity of the analyzed natural compounds and the relative antioxidant reference. Quercetin, ferulic acid, tyrosol, berberine, catechin
and curcumin were tested at 1 μM to evaluate their Total Oxyradical Scavenging Capacity. Quercetin has the higher antioxidant activity towards peroxyl radicals and peroxynitrate
derivates than Trolox (***p < 0.001) and uric acid (***p < 0.001) rispectively. Curcumin has the higher antioxidant activity than Uric acid (****p < 0.0001). A) Analyzed natural
compounds versus ROO. compared to TROLOX, the relative antioxidant reference ; B) Analyzed natural compounds versus HO. compared to uric acid, the relative antioxidant reference ;
C) Analyzed natural compounds versus ONOO. compared to uric acid, the relative antioxidant reference.
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Fig. 5. Western blot analysis of the expression of SIRT1.The expression of SIRT1 was significantly increased in all experimental groups compared with the control group. A) 3 h; B) 6 h; C)
24 h. D) Representative Western blots. The expression of SIRT1 and the activation of AMPK was significantly increased in all experimental groups, at all the concentrations and all the
experimental times. ***p < 0.001, **p < 0.01, * p < 0.05 vs control.
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5 μM: **p < 0.01, 10 μM: ***p < 0.001; Fig. 5A), that at 6 h (1 μM:
**p < 0.01, 5 and 10 μM: ***p < 0.001; Fig. 5B) and 24 h
(***p < 0.001; Fig. 5C,) respectively. Ferulic acid and tyrosol also
showed a statistically significant increase of SIRT1 expression, com-
pared to the control, both at 3 h (1 μM: **p < 0.01, 5 and 10 μM:
***p < 0.001; Fig. 5A), that at 6 h (1 μM: **p < 0.01, 5 and 10 μM:

***p < 0.001; Fig. 5B) and 24 h (***p < 0.001; Fig. 5C), respectively.
Finally, catechin and curcumin showed a statistically significant in-
crease of SIRT1 expression, compared to the control, both at 3 h
(*p < 0.05; Fig. 5A), that at 6 h (1 and 5 μM: *p < 0.05, 10 μM:
**p < 0.01; Fig. 5B) and 24 h (1 and 5 μM: *p < 0.05, 10 μM:
**p < 0.01; Fig. 5C), respectively. It was subsequently verified if the

Fig. 6. Western blot analysis of the activation of AMPK. The activation of AMPK was significantly increased in all experimental groups compared with the control group. A) 3 h; B) 6 h; C)
24 h. ***p < 0.001, **p < 0.01, * p < 0.05 vs control.
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compounds, proven to be SIRT1 activators, were also able to modulate
and interact with the AMPK pathway, leading to a statistically sig-
nificant increase of AMPK. Data analysis showed that the activation of
AMPK is significantly increased in all experimental groups compared
with the control group, at all the concentrations and all the experi-
mental times (Figs. 6A–C).

3.4. GSH, GSSG and GSH/GSSG ratio levels were significantly modulates in
all experimental groups compared with the control group

GSH is an important cellular antioxidant that protects cells against

ROS-induced injury [43] damage by removing hydrogen peroxide
(H2O2) and inhibiting lipid peroxidation [44]. The efficient transfor-
mation of GSH to GSSG has been suggested to be a marker of redox
capacity to explain the cellular redox environment [45], while the
GSH/GSSG ratio is considered to be a sensitive indicator of oxidative
stress [46]. Thus, to evaluate the impact of the tested polyphenols on
oxidative stress, the levels of GSH, GSSG and GSH/GSSG ratio were
determined. As shown in Figs. 7–9 polyphenols and berberine treatment
induced a statistically significant increase of total GSH and GSH/GSSG
ratio levels, while a significant decrease of GSSG levels in all experi-
mental groups compared with the control group (*p < 0.05;

Fig. 7. GSH, GSSG, GSH/GSSG ratio levels, incubation time 3 h. Quercetin, ferulic acid, tyrosol, berberine, catechin and curcumin treatment induced a statistically significant increase of
total GSH and GSH/GSSG ratio levels and a significant decrease of GSSG levels in all experimental groups compared with the control group. CT= control. A) GSH levels; B) GSSG levels;
C) GSH/GSSG ratio levels. ***p < 0.001, **p < 0.01, * p < 0.05 vs CT.
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**p < 0.01; ***p < 0.001). In detail, quercetin and curcumin showed
the best antioxidant activity at all the concentrations and the experi-
mental times (3, 6 and 24 h) followed by ferulic acid and tyrosol. Also
berberine and catechin showed an antioxidant activity, even if lower
than the others compounds.

4. Discussion

There has been growing evidence that dietary antioxidants act as
free radical scavengers to counteract RONS [6–8]. The molecules
mainly involved in the reduction of RONS induced damage are

polyphenols [47–51] and berberine [52–60]. The beneficial effects of
these natural compounds in human health and diseases seem to be re-
lated to their “direct” and “indirect” antioxidant activity [61–63]. The
direct activity is related to in vitro metal chelation, inhibition of lipid
peroxidation, RONS scavenging, reduction of hydroperoxide formation
and quenching of electronically excited compounds [64–68]. On the
other hand, the “indirect” effects are mainly related to the modulation
of cell signalling pathways and gene expression, to the regulation of
defence enzymes and changes in nuclear histone acetylation [68–72].

In support of this view, our results provide evidence that all the
analysed molecules expressed a real and specific antioxidant activity.

Fig. 8. GSH, GSSG, GSH/GSSG ratio levels, incubation time 6 h. Quercetin, ferulic acid, tyrosol, berberine, catechin and curcumin treatment induced a statistically significant increase of
total GSH and GSH/GSSG ratio levels and a significant decrease of GSSG levels in all experimental groups compared with the control group. CT= control. A) GSH levels; B) GSSG levels;
C) GSH/GSSG ratio levels. ***p < 0.001, **p < 0.01, * p < 0.05 vs CT.
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However, most interesting results were observed when the specific
antioxidant capabilities were compared to each other.

Briefly, quercetin expressed the best antioxidant activity against
peroxyl radicals and peroxynitrite derivates, while curcumin against
hydroxyl radicals. In detail, against peroxyl radicals and peroxynitrite
derivates quercetin showed a higher antioxidant activity, not only
compared to the other molecules, but especially to Trolox and uric acid,
the respective reference antioxidants. Even catechin and curcumin ex-
hibited an antioxidant activity higher than Trolox and uric acid.
Contrariwise, ferulic acid, tyrosol and berberine showed a lower anti-
oxidant capability compared to Trolox and a higher antioxidant activity

compared to uric acid. Thus, the antioxidant activity of quercetin is
remarkable against peroxyl radicals and peroxynitrite derivates, but not
against hydroxyl radicals. Several studies have showed the important
role of quercetin in many physiopathological conditions, suggesting
how its ability to scavenge highly reactive species, such as peroxynitrite
and the peroxyl radicals, could be involved in its possible beneficial
health effects [73,74]. Already in 1994, Hanasaki et al. [75], suggested
that quercetin was the most potent scavenger of ROS, then confirmed
by Cushnie et al. [76] and Saw et al. [77]. They indeed proved that
quercetin at concentrations of 5–50 μM could directly scavenge ROS in
vitro. Quercetin has been shown to be an excellent in vitro antioxidant,

Fig. 9. GSH, GSSG, GSH/GSSG ratio levels, incubation time 24 h. Quercetin, ferulic acid, tyrosol, berberine, catechin and curcumin treatment induced a statistically significant increase of
total GSH and GSH/GSSG ratio levels and a statistically significant decrease of GSSG levels in all experimental groups compared with the control group. CT= control. A) GSH levels; B)
GSSG levels; C) GSH/GSSG ratio levels. ***p < 0.001, **p < 0.01, * p < 0.05 vs CT.
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able to counteract radical species, and this property seems to be related
to the presence and location of the hydroxyl (OH) substitutions [78]. In
this respect, Heijnen et al. [79] have demonstrated the antioxidative
capacities of quercetin, attributing them to the presence of two anti-
oxidant pharmacophores within the molecule that have the optimal
configuration for free radical scavenging, i.e. the catechol group in the
B ring and the OH group at position 3 of the AC ring. Moreover, Arts
et al. [80] suggested that quercetin empower the endogenous anti-
oxidant shield due to its contribution to the total plasma antioxidant
capacity, which is 6.24 times higher than the reference antioxidant
Trolox, whereas, for example, the contribution of both vitamin C and
uric acid virtually equals that of Trolox. In human metabolism, quer-
cetin seems to inhibit glucose-, ribose-, and MGO-mediated AGE for-
mation, with trapping reactive oxygen species [81,82].

Instead, as for the hydroxyl radicals, we found that curcumin ex-
hibited the best anti-hydroxyl activity compared to the other com-
pounds and its ability was higher than that of uric acid, the reference
antioxidant. In this case, also the others tested compounds showed an
antioxidant capability higher than uric acid. Curcumin has traditionally
been regarded as an antioxidant for thousands of years. Shortly, the
protective effects of curcumin against oxidative stress can be summar-
ized as follows: upregulating endogenous antioxidant pathways, in-
cluding SOD, glutathione (GSH), catalase; inhibiting ROS production
and eliminating it; preserving mitochondrial function [83–85]. Cur-
cumin seems to act as a superoxide radical scavenger and as a singlet
oxygen quencher. Already in 1994, Reddy et al. described this natural
compound as a potent scavenger of a variety of reactive oxygen species,
especially hydroxyl radicals [86]. Ahsan et al. reported that curcumin,
Bisdemethoxycurcumin and Demethoxycurcumin (derivates of cur-
cumin) are able to degrade DNA in the presence of Cu(II), inhibiting
damage to super coiled plasmid DNA by hydroxyl radicals [87]. Ak
et al. confirmed all the previous studies demonstrating that curcumin is
an effective antioxidant in different in vitro assays, including reducing
power, DPPH, ABTS+, O2− and DMPD+ radical scavenging, hy-
drogen peroxide scavenging and metal chelating activities, when
compared to standard antioxidant compounds, such as BHA, BHT, α-
tocopherol, a natural antioxidant, and Trolox [88]. Finally, Borra et al.
[89], based on various in vitro and ex vivo assays, hypothesized that
strong antioxidant activity exhibited by curcumin could be related with
the presence of phenolic components [89,90]. However, many studies
have instead focused on the ability of polyphenols and berberine to
modulate the GSH profiles, thus confirming their protective effect
against oxidative stress [91–95]. Gordillo et al. observed a protective
action of curcumin against acute liver damage by inhibiting oxidative
stress in rats, in which acute hepatotoxicity was induced by oral ad-
ministration of CCL4 (Carbon Tetrachloride) [96]. In detail, they de-
monstrated that the GSH significantly decrease in CCl4-treated rats
could be prevented by curcumin administration. Indeed, the group re-
ceiving both curcumin and CCl4 showed significantly higher levels of
GSH than control. Moreover, the GSH/GSSG ratio decreased following
CCl4 administration, while curcumin preserved it at normal levels [96].
Total glutathione (GSH+GSSG) decreased significantly in CCl4-
treated rats, but increased significantly in the group that received both
curcumin and CCl4, and in rats administered with curcumin alone [96].
In 2009, Lavoie et al. proved curcumin and quercetin modulation of
glutathione levels in astrocytes and neurons [97]. These data was also
confirmed by Li et al. in human aortic endothelial cells [98] and by Lee
et al. in CCl4-induced acute hepatic stress rats [99]. According with
these studies, also our data showed a statistically significant increase of
total GSH and GSH/GSSG ratio levels, while a significant decrease of
GSSG levels in all experimental groups compared with the control
group. These results confirm what has already been observed by the
TOSC assay or rather, the best antioxidant activity is that obtained by
treating the cells with quercetin and curcumin. Ferulic acid and tyrosol
showed an intermediate antioxidant activity compared to all the other
compounds, while berberine and catechin showed the lower

antioxidant activity
The fundamental mechanism of action underlying polyphenols’ and

berberine’s impact on human health is probably their action on SIRT1
and AMPK. Consistent with this hypothesis, we proved that all the
tested substances stimulated both SIRT1 and AMPK.

Many recent studies have highlighted the importance of SIRT1 and
AMPK in many pathophysiological processes, showing how their acti-
vation could be crucial in this context and potentially protective against
oxidative stress. SIRT1 can influence either directly or indirectly the
redox property of cells and regulates a variety of processes that alter
cell response to genotoxicity, including the detoxification of ROS by up-
regulation of MnSOD. Elliott et al. proved that SIRT1 reduces cellular
oxidative stress indirectly through deacetylation of FOXO3 and it leads
to up-regulation of catalase and MnSOD [100]. Consistent with these
data, Tanno et al. have showed how SIRT1 also regulates aging and
oxidative stress in the cardiomyocytes [101]. Previously, Alcendor et al.
revealed the relationship between the SIRT1 expression and the level of
oxidative stress in mouse cardiac muscle [102]. Using the over-
expression technique, they demonstrated that the moderate over-
expression of SIRT1 could protect against oxidative stress by inducing
the expression of catalase. In contrast, the high level of SIRT1 expres-
sion (12.5-fold increase) clearly increased oxidative stress and evoked
pathological changes in the heart. Furthermore, SIRT1 promotes mi-
tochondrial biogenesis by activating PGC-1α (peroxisome proliferator-
activated receptor co-activator 1-α) and inactivates the p65 subunit of
NF-ĸB through direct deacetylation [103]. Finally, SIRT1 can also in-
hibit some other transcription factors, which are involved in the reg-
ulation of cellular redox balance. Kawai et al. [104] demonstrated that
SIRT1-mediated deacetylation of NRF2 protein terminated the tran-
scription of antioxidant genes e.g., driving the expression of glutathione
peroxidase 2, peroxiredoxin 4 and thioredoxin reductase [104,105].

Recently, other studies have shown that AMPK may be an oxidative
stress sensor and redox regulator in addition to its traditional role as an
energy sensor and regulator [106–109]. Clearly, AMPK is functional as
a redox sensor that can be quickly activated by increased intracellular
ROS/RNS [110–112]. Activated AMPK appears to be essential in
maintaining intracellular redox status by inhibiting oxidant production
by NADPH oxidases, mitochondria or by increasing the expression of
antioxidant enzymes, such as SOD2 [113–115]. In 2004, Alba et al.
showed that activation of AMPK by AICAR suppresses O2− by reducing
the translocation and phosphorylation of p47phox in human neu-
trophils [116]. Similarly, Hwang et al. proved that rosiglitazone re-
duces high-glucose-induced NADPH-oxidase-mediated oxidative stress
in a manner dependent on AMPK activation in HUVECs (human um-
bilical vein endothelial cells) [117]. Moreover, Piwkowska et al. re-
vealed metformin ability to suppress high-glucose-induced oxidative
stress in cultured podocytes by an AMPK-mediated reduction of NADPH
oxidase activity [118]. In addition, emerging evidence suggests that
AMPK also plays an important role in the regulation of cellular anti-
oxidant defenses.

Therefore, activation of SIRT1 and AMPK by polyphenols and ber-
berine seems to be beneficial in the oxidative stress regulation and in
counteracting the chronic imbalance between formation of RONS and
antioxidant systems.

5. Conclusion

Many studies, in recent years suggested a relationship between
dietary antioxidants, such as polyphenols and berberine, SIRT1/AMPK
and the oxidative stress, underlining how their activation could be
crucial in this context and potentially protective against oxidative
stress.

Our results clearly disclose the specific antioxidant activity of these
natural compounds and their ability to increase the expression of SIRT1
and the activation of AMPK. Thus, they may potentially find a pre-
ventive or curative pharmacological application in the pathogenesis
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and development of a variety of chronic and degenerative diseases,
including aging, cancer, cardiovascular disease and neurodegenerative
disorders (Alzheimer’s and Parkinson’s Diseases), in which RONS are a
relevant determinant. Nevertheless, the problems related to their
bioavailability can’t be disregarded. About this, some researches con-
sider their poor bioavaibility in the human body the main drawback to
using polyphenols [119]. However, on the other hand, some studies
confine this poor bioavaibility when used alone, highlighting how an
approach to counteracting this effect may be a combination treatment
with several polyphenols or with polyphenols and other drugs, as
shown in our previous work [120].

In addition, much of the evidence on the beneficial effects of
polyphenols on diseases are derived from in vitro or animal models,
which are often performed with doses/concentrations much higher
than those to which humans are exposed through the diet [121–123]. A
better clarification and understanding of the mechanisms presumably
involved in the protective role of polyphenols against oxidative stress
will help to more precisely define the clinical situations where poly-
phenol consumption will prove to be beneficial.

Therefore, further in vitro and in vivo studies are required to
overcome the mentioned issues limits, to elucidate on the mechanism of
the in vivo effects of polyphenols and to development of specifically
pharmacological SIRT1/AMPK activators, a crucial step in under-
standing their potentially clinical application.
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