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A B S T R A C T

After encountering two women with serum thyrotropin (TSH) levels greater in periovulatory phase than in other
days of the menstrual cycle, we hypothesized that TSH levels could be sensitive to changes in circulating es-
trogens in women.

The objective of this study was to evaluate whether serum TSH increases after an induced acute increase of
serum estradiol, and compare serum TSH increase with that of prolactin (PRL) which is a classic estradiol-
upregulated pituitary hormone.

In this retrospective study, we resorted to stored frozen sera from 55 women who had undergone the GnRH
agonist (buserelin)-acute stimulation test of ovarian steroidogenesis. This test, that is preceded by dex-
amethasone administration to suppress adrenal steroidogenesis, had been performed to show an increased bu-
serelin-stimulated response of 17-hydroxyprogesterone, a response that is frequent in polycystic ovary syn-
drome. Fifty-five women had enough serum volume at pertinent times (first observation early in the follicular
phase and all times of the test) to permit assay of serum estradiol, TSH and PRL.

Before dexamethasone administration, estradiol averaged 26.4 ± 15.5 pg/ml (reference range 23–139, fol-
licular phase), TSH 1.78 ± 0.86mU/L (reference range 0.3–4.2) and PRL 409.4 ± 356mU/L (reference range
70.8–556) (mean ± SD).

Serum estradiol, TSH and PRL averaged 47.2 ± 27 pg/ml, 0.77 ± 0.48mU/L and 246.4 ± 206.8mU/L just
prior to the buserelin injection, but they peaked at 253.4 ± 113.5 pg/ml (nv 83–495, midcycle),
3.30 ± 1.65mU/L and 540.3 ± 695.2mU/L after injection. The responses to buserelin of estradiol, TSH and
PRL were of wide magnitude. There was a significant correlation between TSH peak and serum estradiol peak,
betweeen AUC0-24 h-TSH and AUC0-24 h-estradiol, or between PRL peak and estradiol peak and AUC0-24 h
-PRL and AUC0-24 h-estradiol in only a subgroup of women.

Therefore, women with estradiol-dependent increase in serum TSH do exist. Reference bands of serum TSH
dependent on the phases of the menstrual cycle should be available.

Introduction

When evaluated in the premenstrual phase of the cycle, the response
of thyrotropin (TSH) to TSH-releasing hormone (TRH) in women is
greater than in men [1]. Indeed, the TSH response to TRH is enhanced
by estrogens, both in women on oral contraceptives and in men being
treated with estrogens [1]. In contrast, the TSH response to TRH is

reduced by thyroid hormones, corticosteroids, levodopa, dopamine,
propranolol, and it falls with age [1]. As reviewed by Vuong et al. [2],
TSH regulation by opioids is complex. Indeed, opioids suppress TSH
secretion in rodents, but stimulate it in humans. In humans, the effects
of the opioids and endogenous opioid peptides are more significant
during the physiological nocturnal TSH surge [2]. In patients with
opioid-dependence, serum TSH was lower in the acute abstinence
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period and after 30 days of abstinence compared with age- and sex-
matched controls [3].

As described in more detail under Discussion, we have recently
encountered two regularly menstruating women whose serum TSH
fluctuated during their menstrual cycle [4]. Particularly, the highest
TSH levels were observed when blood had been drawn at mid-cycle,
coinciding with peak levels of serum estradiol (E2). Because TSH
threshold is crucial for the diagnosis and differentiation of degree of
thyroid failure (viz. subclinical or initial hypothyroidism vs overt hy-
pothyroidism), and because TSH is also the biochemical index for
gauging thyroid hormone replacement therapy, there would be clini-
cally important consequences for the correct interpretation of serum
TSH in women across their reproductive age. In the United States, 5% of
the population aged 12 years or more (that is, approximately 15 mil-
lion) have either subclinical or overt hypothyroidism [5]. A similar rate
resulted from a meta-analysis of seven studies on the European popu-
lation aged 18 years or more (viz, approximately 40million) [6]. This
translates into hundreds of millions TSH assays performed in the US or
Europe for the diagnosis and periodic follow-up of hypothyroidism.

In brief, we tested the hypothesis that those two women [4] were
the classic tip of the iceberg, namely we hypothesized that a number of
women exist whose increase in circulating estrogens is accompanied by
an increase in circulating TSH.

Materials and methods

Patients

To test our hypothesis with an unfunded study, we made the fol-
lowing reasoning. In lieu of enrolling a large cohort of women and
measuring both serum E2 and TSH repeatedly throughout their men-
strual cycle, in order to quickly and conveniently maximize finding of
those women we resorted to stored frozen sera from women in whom
ovarian steroidogenesis had been stimulated. These young adult
women, who were free of past and current history of alcohol/illicit drug
abuse, had undergone the gonadotropin-releasing hormone (GnRH)
agonist (buserelin)-acute stimulation test of ovarian steroidogenesis for
the purpose of showing an increased buserelin-stimulated response of
17-hydroxyprogesterone (17-OHPg). This increased response of 17-
OHPg is frequent in polycystic ovary syndrome (PCOS). This test [7],
that had some diffusion in the ‘90s, needs to be performed in the fol-
licular phase under treatment with dexamethasone for suppressing
adrenal steroidogenesis which, otherwise, would confound interpreta-
tion. However, dexamethasone also inhibits TSH secretion [8], a fact
that decreases the chances of our hypothesis being correct.

GnRH agonist stimulation test of ovarian steroidogenesis

Dexamethasone was given orally in a dose of 0.5 mg four times daily
for five consecutive days, the first day of dexamethasone administration
coinciding with the second or third day of the menstrual cycle. On the
morning of the 5th day, starting between 8:00 and 8:30, two blood
samples were drawn 30min apart. These two samples, which are re-
ferred to as times −30 and 0 h of the buserelin test, serve for measuring
baseline hormone levels. Immediately after this second sample, 0.5mg
of the GnRH agonist buserelin, (Superfact®; Hoechst Marion Roussel
SpA, Milano, Italy) were injected subcutaneously. Blood samples for
measurement of gonadotropins and steroid hormones were taken at 1,
4, 20 and 24 h post-injection. In line with the cut-off point for normality
(17-OHPg peak<250 ng/dl) established in the original study on 13
normal women [7], our cut-off point established on 20 normal women
was also< 250 ng/dl.

As said above, for the purposes of this particular study, we resorted
to serum samples of women who had been subjected to the buserelin
test and that had been stored at −20 °C. The women selected for the
present study were those with enough volume of all relevant serum

samples (first observation early in the follicular phase, and all six
samples of the buserelin test [−30, 0, 1, 4, 20 and 24 h]) to permit the
assay, in duplicate, of E2, PRL, TSH, triiodothyronine (T3) and free T3
(FT3). Assay of both T3 and FT3 was necessary to prove that the in-
crease in serum TSH consisted in the pituitary release of biologically
active TSH. In normal subjects, serum T3 concentrations increase from
30% to 100% above baseline at 120–180min after the intravenous in-
jection of 200 µg TRH, with the peak of serum TSH occurring between
15 and 30min after TRH injection [9]. Because the GnRH-agonist test
has to be performed under suppression of the adrenal steroidogenesis
by dexamethasone [7] and because glucocorticoids inhibit both TSH
secretion and conversion of thyroxine (T4) to T3 [8], we preferred to
rely on measurement of both serum T3 and FT3, instead of measure-
ment of either T3 or FT3, as evidence of TSH bioactivity.

Hormone assays

All hormones were measured using the corresponding chemilumi-
nescent assays by Beckman Coulter. The local intra-assay and inter-
assay coefficients of variations are 5.5 and 9.3% (E2), 1.5 and 4.2%
(PRL), 2.5 and 3.8% (TSH), 2.8 and 4.1% (total T3), 2.6 and 5.1%
(FT3).

Statistics

Data are reported as mean ± SD, median and range. The overall
response of given hormones to the GnRH stimulation test is summarized
by the area under the curve (AUC0–24h), which was calculated by the
classic trapezoidal method. Because of the nongaussian distribution,
differences between continuous variables were evaluated by the
Wilcoxon signed rank test. Differences between categorical variables
were evaluated by the Fisher’s exact test or chi-square (χ2) test, as
appropriate. Simple correlation analysis was performed to relate a
given hormone index (baseline, peak, AUC) with a given E2 index
(baseline, peak, AUC). In all statistical comparisons, a P value of< 0.05
was considered statistically significant, while a P value between 0.10
and 0.05 was considered borderline significant.

Results

Data are summarized in Tables 1–3, and graphically displayed in
Figs. 1 and 2.

At first observation, early in the follicular phase, serum TSH aver-
aged 1.78 ± 0.86mU/L. On day 7–9 of the menstrual cycle, at the end
of the short-term administration of dexamethasone (that is, time 0 of
the acute stimulation test of ovarian steroidogenesis), serum TSH fell to
0.77 ± 0.48mU/L (P= 1.2× 10−11) (Table 1). However, between
the 20th and 24th hour after the GnRH analog injection, serum TSH
increased 4-fold to 3.30 ± 1.65mU/L (P= 1.1× 10−10 vs time 0, and
P= 3.9× 10−7 vs first observation) (Table 1). GnRH-stimulated levels
of TSH above 4.0 mU/L were recorded in 17/55 women (30.9%), sig-
nificantly more frequently than at first observation (1/55= 1.8%;
P < 0.0001, OR=24.2 [95%CI24.2to189]). This single value of
serum TSH > 4.0mU/L was 5.1 mU/L. In contrast, 8 women had peak
TSH levels above 5.0mU/L (14.5%, P= 0.032 vs 1/55) and 3 women
had TSH peak levels in the range of 6.0–7.6mU/L (5.4%. P=0.24 vs 0/
55). In those 8 women, serum TSH at first observation ranged
1.3–5.1mU/L, this last value belonging to the woman with the highest
TSH peak (7.6 mU/L). It should be noted that peak TSH levels would
have been significantly greater if the test were performed in the absence
of the TSH-suppressive dexamethasone administration.

Serum PRL increased by 2-fold (Table 1). The increase of serum PRL
and TSH coincided with an increase of the luteinizing hormone (LH)-
driven increase in serum E2 (Fig. 1). Unlike E2, the post-injection levels
of both TSH and PRL (and corresponding AUCs) were greater in the
high 17-OHPg response group compared to the normal 17-OHPg
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response group, but differences were statistically insignificant
(Table 2).

That the TSH released after the GnRH injection is biologically active
was proven by the increase in both serum T3 [+44%, not shown] and
FT3 (+31%) (Fig. 1).

Correlation between the GnRH agonist-stimulated responses of E2 and TSH
or PRL

The individual pairs (TSH and E2, or PRL and E2) of various indices
are summarized in Table 3, and presented graphically in Fig. 2.

It is evident how responses were widely scattered (Fig. 2). However,
some women (n=17 for the relationship concerning E2 and TSH, and

Table 1
Serum levels of estradiol (E2), thyrotropin (TSH) and prolactin (PRL) at first evaluation and during the test of acute stimulation of the LH-driven ovarian steroidogenesis by the
subcutaneous injection of buserelin, a GnRH agonist.*

E2, pg/ml TSH, mU/L PRL, mU/L

Baseline (first observation) 26.4 ± 15.1 [24] 1.78 ± 0.86 [1.50] 409.4 ± 356 [289]
12.4–87 (n= 51) 0.45–5.1 (n= 45) 36.3–1869 (n= 49)

Buserelin test
0 h levels (pre-injection) 47.2 ± 27.0 [41.0] 0.77 ± 0.48 [0.68] 246.4 ± 206.8 [198]

11.3–140 (n= 55) 0.04–2.7 (n= 55) 32.6–1215 (n= 55)
vs first observation
P=5.2×10−7

vs first observation
P= 1.2 × 10−11

vs first observation
P= 0.0003

Peak levels 253.4 ± 113.5 [232] 3.30 ± 1.65 [2.9] 540.3 ± 695.2 [400]
54–561 (n=55) 0.3–7.6 (n=55) 50.8–5050 (n= 55)
vs first observation
P= 9.6 × 10−19

vs first observation
P= 3.9 × 10−7

vs first observation
P= 0.025

vs 0 h
P= 1.1 × 10−10

vs 0 h
P= 1.12 × 10−10

vs 0 h
P= 1.2 × 10−10

% change (peak over baseline) 526.8 ± 368.7 [397.4] 397.9 ± 316.3 [337.3] 142.3 ± 156.6 [93.8]
12.1–1612 26.3–1543 (1.3–1003)

AUC 0–24 h 3516 ± 1533 (n= 56) 232 ± 977 (n=56) 8904 ± 9505 (n= 56)

Peak for E2 and TSH was always detected at 20 or 24 h after injection of the GnRH agonist. Peak for PRL was detected at 4, 20 or 24 h.
* Data are reported as m ± SD [median] and range. Blood sampling at first observation occurred in the follicular phase. The buserelin test was performed in the menstrual cycle

immediately following the menstrual cycle of the first observation. The buserelin test must be performed under dexamethasone administration to suppress any adrenal contribution to
steroidogenesis (see Patients and Methods). AUC= area under the curve.

Table 2
Serum levels of estradiol (E2), thyrotropin (TSH) and prolactin (PRL) at first evaluation
and during the test of acute stimulation of the LH-driven ovarian steroidogenesis by the
subcutaneous injection of buserelin. The 55 women were stratified dychotomically based
on the high response (HR) or normal response (NR) of serum 17-hydroxyprogesterone
(17-OHPg) to buserelin.*

HR 17-OHPg (n= 26) NR 17-OHPg (n= 29) Statistics, P
value

Baseline
E2, pg/ml 24.35 ± 16.1 [20.6] 28.4 ± 14.1 [25.1] 0.17
TSH, mU/L 1.83 ± 0.91 [1.70] 1.73 ± 0.73 [1.4] 0.45
PRL, pg/ml 404.5 ± 268.2 [3 4 5 ] 414.0 ± 430 [2 8 3 ] 0.31

Buserelin test
E2, 0 h 42.0 ± 21.4 [4 0 ] 51.8 ± 30.8 [41.1] 0.36
TSH, 0 h 0.80 ± 0.53 [0.63] 0.76 ± 0.46 [0.61] 0.83
PRL, 0 h 254.2 ± 191.3 [198 ] 239.4 ± 222.0 [198 ] 0.58

E2 peak 303.2 140.9 ± [280 ] 206 ± 75.8 [204 ] 0.0015
TSH peak 3.62 ± 1.87 [3.35] 3.12 ± 1.66 [2.6] 0.36
PRL peak 506.2 ± 362.8 [414] 570.9 ± 901.3 [341] 0.17

E2, %
change

711.2 ± 361.3 [732.7] 361.3 ± 292.8 [263] 4.0 × 10−5

TSH, %
change

472.4 ± 408.8 [374.7] 328.7 ± 176. 8 [316.7] 0.36

PRL, %
change

158.2 ± 194.3 [105.3] 128.2 ± 114.7 [93.6] 0.61

E2, AUC
0–24 h

4227 ± 1615 [3854] 3128 ± 1138 [2761] 0.005

TSH, AUC
0–24 h

48.5 ± 22.7 [46.1] 43.3 ± 20.8 [38.1] 0.48

PRL, AUC
0–24 h

9523 ± 6826 [7766] 9319 ± 11608 [6807] 0.15

* Data are reported as m ± SD [median].

Table 3
Summary of the correlation between the specified indices for serum E2 and TSH or PRL,
as measured before (time 0) or after the subcutaneous injection of buserelin, in the whole
cohort or in subgroups of women with a high degree of relationship between variables
based upon simple visual inspection of data.

Variable X (TSH), variable
Y (E2)

Variable X (PRL), variable
Y (E2)

X (0), Y (0) r=−0.019 (P= 0.891) r= 0.053 (P= 0.70)
N=17 N=10
r= 0.06 [−0.43 to 0.53],
P=0.81

r=0.320 [−0.39 to
0.79], P= 0.37

X (0), Y (peak) r=−0.093 (P= 0.500) r= 0.006 (P= 0.96)
N=17 N=10
r= 0.390 [−0.11 to
0,73], P= 0.12

r=0.864 [0.51–0.97],
P=0.0013

X (peak), Y (peak) r=−0.149 (P= 0.277) r= 0.009 (P= 0.95)
N=17 N=10
r= 0.79 [0.50–0.92],
P=0.00016

r= 0.902 [0.63–0.98],
P=0.00036

X (% change), Y (%
change)*

r=−0.113 (P= 0.41) r= 0.024 (P= 0.86)
N=17 N=10
r=−0.10 [−0.55 to
0.40], P= 0.70

r=0.12 [−0.55 to 0.70],
P= 0.74

X (AUC 0–24 h), Y
(AUC 0–24 h)§

r=−0.196 (P= 0.152) r= 0.058 (P= 0.68)
N=17 N=10
r= 0.851 [0.62–0.94],
P=1.5 × 10−5

r= 0.866 [0.52–0.97],
P=0.0012

In the 55 women, E2 peak was significantly correlated to E2 time 0 (r= 0.394 [95% CI
0.144 to 0.597], P=0.0029). TSH peak was also significantly correlated to TSH time 0
(r= 0.537 [95% CI= 0.32 to 0.70], P=2.3× 10−5). PRL peak was significanltly cor-
related to PRL time 0 (r= 0.842 [95% CI= 0.74 to 0.90], P= 2×10−16).

* % change is peak over baseline (time 0 of the test). Linear correlation analyzed after
log10 transformation of E2, TSH and PRL, due to their nongaussian distribution.

§ The correlation for the 17 women (TSH) or the 10 women (PRL) is shown in the insets
of Fig. 2.
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10 for the relationship concerning E2 and PRL [Table 3 and Fig. 2,
insets]) had a statistically significant positive correlation between peak
levels of TSH or PRL and peak levels of E2, and between AUC0-24h of
TSH or PRL and AUC0-24h of E2. Other women had a scanty change of
the pituitary hormone in the face of great change of E2, while still
others had the opposite pattern (viz, great change of the pituitary
hormone in the face of a scanty change of E2), suggesting hypersensi-
tivy of TSH or PRL to estrogens. For the purposes of our work, this last
group of women and the 17 with a statistically significant correlation
between E2 and TSH were those that fitted our hypothesis.

Discussion

Taking advantage of the acute stimulation of ovarian steroidogen-
esis (including E2) that is caused by the single injection of a GnRH
agonist, we have provided evidence for the acute estrogen-associated
upregulation of circulating TSH and for its wide individual magnitude.
The overall magnitude of the upregulation could have been even
greater, considering that the GnRH agonist test is performed under
administration of corticosteroids, which are well-known inhibitors of
TSH secretion [8,10–12]. This inhibitory action of glucocorticoids oc-
curs both in the hypothalamus (decreased TRH mRNA levels) and in the
pituitary (decreased release of TSH from the thyrotrophs in a PKC-

dependent manner through the protein annexin).
The direct, positive E2-depedency of TSH cannot be counteracted by

the inverse, negative corticosteroid-dependency. In percent terms, the
increase in serum TSH levels after the increase in serum E2 following
one single s.c. injection of a GnRH agonist is greater than the increase in
serum PRL levels. Similar acute increase in serum E2 levels occurs
naturally every month after the GnRH-driven increase in serum gona-
dotropins and subsequent stimulation of the ovarian steroidogenesis.
The pattern of the GnRH-stimulated increase in serum gonadotropins
that we observed in this study [mean peak LH and follicle-stimulating
hormone (FSH)= 78.6 and 27.7 mU/L] mirrors well the pattern ob-
served naturally during the menstrual cycle. This pattern consists of
serum LH concentrations prevailing over serum FSH concentrations at
mid-cycle. In the follicular, midcycle and luteal phase, serum LH ranges
1.7–15, 21.9–56.6 and 0.6–16.3mU/L, while serum FSH ranges 4–13,
5–22 and 2–13mU/L, respectively [13]. The upper normal limit of
serum LH at midcycle is reported at 76.3 mU/L by others [14]. In our
laboratory, follicular, midcycle and luteal phase serum LH reference
ranges are 2.1–10.9, 19.2–103 and 1.2–12.9 mU/L, while serum FSH
reference ranges are 3.8–8.8, 4.5–22.5 and 1.8–5.1mU/L, respectively.
Also the magnitude of the increase in serum E2 following the GnRH
agonist injection (54–561 pg/ml) is comparable to the 150–750 pg/ml
[13] serum E2 levels measured at ovulation. Other authors report that

Fig. 1. Changes in serum levels of gonadotrotropins [follicle-stimulating hormone (FSH), luteinizing hormone (LH)], estradiol (E2), prolactin (PRL), thyrotropin (TSH) and free triio-
dothyronine (FT3) prior to and up to 24 h after the subcutaneous injection of 0.5mg buserelin, a gonadotropin-releasing hormone agonist. Data are mean ± SD [and median].
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serum E2 levels in the follicular phase and luteal phase range 20–150
and 30–450 pg/ml, respectively [14]. In our laboratory, follicular,
midcycle and luteal phase serum E2 reference ranges are 23–139,
83–495 and 42–338 pg/ml. Thus, our observations are applicable to the
clinical context.

Starting at 6–8weeks of gestation, maternal serum E2 increases
progressively until term, with individual values that, at the 36th week,
vary between 6 and 40 ng/ml (6000 and 40,000 pg/ml) [15] and
average approximately 15 ng/ml (15,000 pg/ml) or approximately 50-
fold over maximal prepregnancy levels [16]. Serum PRL parallels such
changes in serum E2, with PRL increase starting from about week 8 to
peak levels of 200–400 ng/ml [4220–8440mU/L], or approximately
10–40 times prepregnancy levels [15]. Serum TSH also increases pro-
gressively during gestation [17–21]. For instance, median (5th-95th
percentiles) in the first, second and third trimester reported by Panesar
et al. [18] are 0.8 (0.03–2.30), 1.10 (0.03–3.10) and 1.30 (0.13–3.50).
The corresponding levels reported by Bocos-Terraz et al. [19] are 0.92
(0.03–2.65), 1.12 (0.12–2.64) and 1.29 (0.23–2.56), while those re-
ported by Rajput et al. [20] are 1.40 (0.44–3.46), 1.74 (0.73–3.03) and
2.22mU/L (0.86–4.38), and those reported as 2.5th-97.5th percentile
by Moon et al. [21] are 1.15 (0.01–4.10), 1.55 (0.01–4.26) and
2.12mU/L (0.15–4.57). Further to gestation in 20 pregnant women,
serum TSH was measured during the menstrual cycle in 10 healthy
women, and it was shown to peak a few days after ovulation [17].

The estrogen-dependency of serum TSH levels can also be appre-
ciated in women on oral contraceptives [22]. Median serum TSH in 108
females on oral contraceptives was 1.56mU/L, but it was 1.29mU/L
(−17.3%) in 66 females not using oral contraceptives [23]. A number

of studies reported higher levels of serum TSH in females compared to
males [24–26]. Particularly, in a well-characterized, disease-free po-
pulation, median (2.5th-95th percentile) serum TSH levels of females
aged 20–39 years were 2.49mU/L (0.75–7.90),> 2.23mU/L
(0.70–6.50) of age-matched males [26]. Finally, a 10-year-old boy with
congenital adrenal hyperplasia and associated hyperplastic testicular
adrenal rests had high serum concentrations of 17-OHPg, E2, testos-
terone, basal and TRH-stimulated TSH and PRL [27]. Serum E2 corre-
lated directly with PRL and TSH [27]. Upon dexamethasone therapy,
steroid hormones, PRL and TSH returned progressively normal [27].

Our data agree with experimental studies in rats demonstrating that
increasing serum estrogen levels within the physiological range in-
crease both basal and TRH-stimulated release of TSH and PRL [28,29].
How can estrogens up-regulate serum levels of TSH, knowing that
thyrotrophs have estrogen receptors, though less abundant than other
adenohypophysis cell types [30]? A robust E2-driven TSH release at
mid-cycle and consequent increment of serum TSH may result from one
or both these possibilities: (i.) a physiologically high surge in circu-
lating E2 with associated robust response of the E2 receptors in the
thyrotrophs, (ii.) hypersensitivity of E2 receptors to less robust circu-
lating E2 levels. However, additional mechanisms may operate, such as
E2-driven inhibition of the negative feedback that thyroid hormones
exert on both basal and TRH-stimulated TSH release [31], E2-induction
of TRH receptors in the pituitary [32] or decreased TRH degradation
[33].

As mentioned in the Introduction, the present work was prompted
by a clinical observation on two young adult women with regular
menses [4]. In one woman on L-T4 replacement therapy, serum TSH

Fig. 2. Correlation between the buserelin-induced responses in serum E2 and buserelin-induced responses in serum TSH or PRL. Responses shown in the figure are peak levels or area
under the curve (AUC0-24 h). For the insets in the two right panels, see Table 3.
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ranged between 2.0 and 2.6mU/L within days 2 and 8 of the follicular
phase, but 3.9–4.6mU/L between days 12–16. Serum E2 was about
100 pg/ml on the 4th day, but 306 pg/ml on day 14. Prior to L-T4 re-
placement therapy, serum TSH was 13.2mU/L in the follicular phase,
but 19.7 mU/L at mid-cycle. This woman [4] resembles 3 of the 55
women in the present cohort. Indeed, one of these 3 women had TSH at
observation early in the follicular phase= 2.2mU/L and TSH post-
buserelin TSH peak=4.7mU/L; the second woman had corresponding
TSH levels at 2.4 and 4.6mU/L, and the third at 2.3 and 4.2 mU/L. In
the second patient reported previously [4], TSH levels were 2.6 and
2.8 mU/L on days 5 and 6, but 3.7–5.1mU/L on days 13–16. This
woman [4] is similar to another two of the 55 women, since TSH at
observation early in the follicular phase and post-buserelin was 2.2 and
5.4 mU/L in one woman, and 3.2 and 5.8mU/L in the other.

Based on our data, the following misleading scenarios can occur. In
a reproductive-age woman, a serum TSH that was initially found above
the normal reference range but entirely within the normal reference
range at a subsequent check, might well be interpreted as reversible or
transient subclinical hypothyroidism. However, the real situation is that
this woman was and is fully euthyroid, because she had her initial
serum TSH measured at or close to mid-cycle, while the subsequent
serum TSH was measured far away from mid-cycle. At extreme, where
TSH is higher than normal, the quick interpretation would be pro-
gression to subclinical hypothyroidism. However, this woman might
well be euthyroid, because she had her initial TSH measured early in
the follicular phase or just before menstruation, while her second TSH
was measured at or close to mid-cycle. Furthermore, in a setting where
thyroid function is evaluated by measuring TSH only (rather than by
TSH plus free thyroid hormones), an initial serum TSH < 10mU/L
(e.g., 8 mU/L) and a repeat serum TSH > 10mU/L (e.g., 13.5 mU/L)
along the follow-up of a reproductive age woman with subclinical hy-
pothyroidism would be interpreted as progression to overt hypothyr-
oidism with subsequent unnecessary L-T4 replacement therapy.

When we had run the buserelin test in volunteers to obtain the 17-
OHPg threshold for abnormality, one volunteer woman was on re-
placement therapy with L-T4. We retrieved her frozen serum and
measured E2, TSH and FT3. These levels were 32 pg/ml, 0.71mU/L and
3.3 pg/ml just before buserelin injection, and they peaked at 334 pg/ml
(+944%), 1.3mU/L (+91.5%) and 4.1 pg/ml (+24.2%) after injec-
tion. This observation goes along with the experimental observation
that E2 inhibits the negative feedback exerted by thyroid hormones on
both basal and TRH-stimulated TSH release [31]. Hence, the E2-sti-
mulated secretion of TSH operates even when the thyrotrophes are
under the negative feedback by thyroid hormones. Should the ap-
proximately 90% increase in serum TSH occur at midcycle in a woman
on L-T4 therapy whose follicular phase TSH was 2.8mU/L, the mid-
cycle 5.3mU/L would be interpreted as poor compliance or under-
treated hypothyroidism possibly due to L-T4 malabsorption. Un-
necessary diagnostic work-up would ensue. In approximately 10–15%
of hypothyroid patients on L-T4 therapy, serum TSH is above target,
and no known cause for this elevation can be found [34]. Indeed, at
least in some of such female patients “the problem” could be TSH
sensitivity to endogenous estrogens.

One strength of our study is that the magnitude of increase of go-
nadotropins and E2 during the buserelin test matched the corre-
sponding increase that occurs naturally during the menstrual cycle.
Such increase of gonadotropins and E2 is acutely GnRH-driven both in
the buserelin test and naturally. Furthermore, the increase in serum
TSH during the buserelin test parallels the increase of PRL, a well-know
estrogen-dependent hormone. One limitation is the unavoidable use of
dexamethasone for a few days in preparation of the buserelin test, this
being a transient excess of corticosteroids that does not occur naturally
before mid-cycle. However, this limitation goes against the results we
wished to obtain to test our hypothesis, because glucocorticoids inhibit
TSH secretion. One other limitation, which again is intrinsic in the
buserelin test, is that we did not measure TSH for several days past the

24 h post-buserelin injection in order to see how long would it take for
serum TSH to fall at levels comparable to the preinjection methods.

It appears reasonable to conclude that reference bands of serum TSH
dependent on the phases of the menstrual cycle should be construed
and rendered clinically available.
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