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Abstract. Results of Smale (1957) and Dugundji (1969) allow to compare
the homotopy groups of two topological spaces X and Y whenever a map
f : X → Y with strong connectivity conditions on the fibers is given. We
can apply similar techniques to compare the homotopy of spaces living in dif-
ferent categories, for instance an abelian variety over an algebraically closed
field, and a real torus. More generally, working in o-minimal expansions of
fields, we compare the o-minimal homotopy of a definable set X with the ho-
motopy of some of its bounded hyperdefinable quotients X/E. Under suitable
assumption, we show that πdef

n (X) ∼= πn(X/E) and dim(X) = dimR(X/E).
As a special case, given a definably compact group, we obtain a new proof of
Pillay’s group conjecture “dim(G) = dimR(G/G00)” largely independent of the
group structure of G. We also obtain different proofs of various comparison
results between classical and o-minimal homotopy.
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1. Introduction

Let M be a sufficiently saturated o-minimal expansion of a field. We follow
the usual convention in model theory [TZ12] to work in a sufficiently saturated
structure, so we assume that M is κ-saturated and κ-strongly homogeneous for κ
a sufficiently big uncountable cardinal (this can always be achieved going to an
elementary extension). A set X ⊆ Mk is definable if it first-order definable with
parameters from M , and it is type-definable if it is the intersection of a small
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family of definable sets, where “small” means “of cardinality < κ”. The dual notion
of

∨
-definable set is obtained by considering unions instead of intersections. The

hypothesis that M has field operations ensures that every definable set can be
definably triangulated [vdD98].

We recall that, given a definable group G, there is a normal type-definable
subgroup G00, called infinitesimal subgroup, such that G/G00, with the logic
topology [Pil04], is a real Lie group [BOPP05]. If in addition G is definably
compact [PS99], we have dim(G) = dimR(G/G00) [HPP08], namely the o-minimal
dimension of G equals the dimension of G/G00 as a real Lie group. These results
were conjectured in [Pil04] and are still known as Pillay’s conjectures.

As an illustration, when G is an abelian variety over an algebraically closed field
K, we can view K asM [

√
−1] for some real closed subfieldM ⊆ K and consider G as

a definably compact group overM . In this case, assumingM sufficiently saturated,
G/G00 is Lie isomorphic to a real torus Rn/Zn with n equal the dimension of G
as a variety over M , namely twice its dimension over K. Notice that the subgroup
G00 will in general depend on the choice of M ⊆ K, but G/G00 is in any case a real
torus of dimension n.

It was later proved that if G is definably compact, then G is compactly dom-
inated by G/G00 [HP11]. This means that for every definable subset D of G, the
intersection p(D)∩ p(D{) has Haar measure zero (hence in particular it has empty
interior) where p : G → G/G00 is the projection and D{ is the complement of D.
Special cases were proved in [BO04] and [PP07].

The above results establish strong connections between definable groups and
real Lie groups. The proofs are complex and based on a reduction to the abelian
and semisimple cases, with the abelian case depending in turn on the study of
the fundamental group and on the counting of torsion points [EO04]. A series
of results of P. Simon [Sim15, Sim14, Sim13] provides however a new proof of
compact domination which does not rely on Pillay’s conjectures or the results of
[EO04]. More precisely, [Sim14] shows that fsg groups in o-minimal theories admit a
smooth left-invariant measure, and [Sim15] contains a proof of compact domination
for definable groups admitting a smooth measure (even in a NIP context). The fact
that definably compact groups in o-minimal structures are fsg is proved in [HPP08,
Thm. 8.1].

Our main theorem sheds new light on the connections between compact domina-
tion and Pillay’s conjectures, and concerns the topology of certain hyperdefinable
sets X/E, where E is a bounded type-definable equivalence relation on a definable
set X. Under a suitable contractibility assumption on the fibers of p : X → X/E
(12.1), we obtain a homotopy comparison result between X and X/E, and in par-
ticular an isomorphism of homotopy groups

πdef
n (X) ∼= πn(X/E)

in the respective categories. Similar results apply locally, namely replacing X/E
with an open subset U ⊆ X/E andX with its preimage p−1(U) ⊆ X, thus obtaining

πdef
n (p−1(U)) ∼= πn(U).

For the full result see Theorem 11.8 and Theorem 12.2.
From these local results and a form of “topological compact domination” (13.2)

we shall deduce that
dim(X) = dimR(X/E),

namely the dimension of X in the definable category equals the dimension of X/E
in the topological category (Theorem 13.3). This yields a new proof of “dim(G) =
dimR(G/G00)” for compactly dominated groups which does not depend on the
counting of torsion points (for in fact it does not depend on the group structure!).
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Some comparison results between classical and o-minimal homotopy estabished
in [DK85, BO02, BO09] also follow (see Corollary 12.3). In particular, if X =
X(M) ⊆ Mk is a closed and bounded ∅-semialgebraic set and st : X → X(R) is
the standard part map, we can take E = ker(st) and deduce

πdef
n (X) ∼= πn(X(R)).

This work can be considered as a continuation of the line of research initiated
[BM11]: while in that paper we focused on the fundamental group, here we manage
to encompass the higher homotopy groups and more generally homotopy classes
[X,Y ] of maps f : X → Y in the relevant categories.

We have tried to make this paper as self-contained as possible. The proofs of the
homotopy results are somewhat long but elementary and all the relevant notions
are recalled as needed. The paper is organized as follows.

In Section 2 we recall the notions of definable space and definable manifold, the
main example being a definable group G.

In Section 3 we introduce the logic topology on the quotient X/E of a definable
set X by a bounded type-definable equivalence relation E.

In Section 4 we recall the notion of “normal triangulation” due to Baro [Bar10],
and we show how to produce normal triangulations satisfying some additional prop-
erties.

In sections 5 and 6 we illustrate some of the analogies between the standard part
map and the map G→ G/G00, where G is a definably compact group and G/G00

has the logic topology.
These analogies are further developed in Section 7, where we discuss various

versions of “compact domination”.
In Sections 8,9 we work in the category of classical topological spaces and we

establish a few results for which we could not find a suitable reference. In particular
in Section 8 we show that given an open subset U of a triangulable space, any open
covering of U has a refinement which is a good cover.

In Section 10 we recall the definition of definable homotopy.
Sections 11,12 and 13 contain the main results of the paper, labeled Theorem A

(11.8), Theorem B (12.2), and Theorem C (13.3), respectively, as the titles of the
corresponding sections.

In Theorem A we prove that there is a homomorphism πdef
n (X) → πn(X/E)

from the definable homotopy groups of X and the homotopy groups of X/E, under
a suitable assumption on E. We actually obtain a more general result of which this
is a special case.

In Theorem B we strengthen the assumptions to obtain an isomorphism: πdef
n (X) ∼=

πn(X/E). Since the standard part map can be put in the form p : X → X/E for
a suitable E, some known comparison results between classical and o-minimal ho-
motopy will follow.

Finally, in Theorem C we add the assumption of “topological compact domina-
tion” to obtain dim(X) = dimR(X/E) and we deduce dim(G) = dimR(G/G00) and
some related results.

Acknowledgement. Some of the results of this paper were presented at the 7th
meeting of the Lancashire Yorkshire Model Theory Seminar, held on December
the 5th 2015 in Preston. A.B. wants to thank the organizers of the meeting and
acknowledge support from the Leverhulme Trust (VP2-2013-055) during his visit
to the UK. The results were also presented at the Thematic Program On Model
Theory, International Conference, June 20-24, 2016, University of Notre Dame. We
also wish to thank the anonymous referee for the careful reading and the useful
comments.
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2. Definable spaces

A fundamental result in [Pil88] establishes that every definable group G inM has
a unique group topology, called t-topology, making it into a definable manifold.
This means that G has a finite cover U1, . . . , Um by t-open sets and for each i ≤ m
there is a definable homeomorphism gi : Ui → U ′i where U ′i is an open subset
of some cartesian power Mk with the topology induced by the order of M . The
collection (gi : Ui → Xi)i≤m is called an atlas and gi is called a local chart.

Definable manifolds are special cases of definable spaces [vdD98]. The notion
of definable spaces is defined through local charts gi : Ui → U ′i , like definable man-
ifolds, with the difference that now U ′i is an arbitrary definable subset of Mk, not
necessarily open. In particular every definable subset X of Mk, with the topology
induced by the order, is a definable space (with the trivial atlas consisting of a
single local chart), but not necessarily a definable manifold.

Remark 2.1. It should be stressed that all definable spaces we consider in this paper
are also definable sets (e.g. a definable group), so the notion of definable subset of
a definable space does not depend on the choice of the charts, only the topology
does.

We collect in this section a few results on definable spaces which will be needed
in the sequel. They depend on the saturation assumptions on M . The results are
easy and well known to the experts but the proofs are somewhat dispersed in the
literature.

Lemma 2.2. Let (Ai : i ∈ I) be a small downward directed family of definable
open subsets of a definable space X (where “small” means |I| < κ). Then

⋂
i∈I Ai

is open.

Proof. Let x ∈
⋂
i∈I Ai and fix a definable fundamental family (Bε : ε > 0) of

neighbourhoods of x decreasing with ε (for example take Bε to be the points of X
at distance < ε from x in a local chart). Since Ai is open in X, there is εi > 0 such
that Bεi

⊆ Ai. By saturation, we can find an ε > 0 in M such that ε < εi for each
i ∈ I. It follows that Bε ⊆

⋂
i∈I Ai, so x is in the interior of the intersection. �

Lemma 2.3. Let (Xi : i ∈ I) be a small downward directed family of definable
subsets of a definable space. Then

⋂
i∈I Xi =

⋂
i∈I Xi.

Proof. The inclusion “⊆” is trivial. For the “⊇” direction let x ∈
⋂
iXi and suppose

for a contradiction that x /∈
⋂
i∈I Xi. Then there is an open neighbourhood U of x

disjoint from
⋂
i∈I Xi. By saturation there is i ∈ I such that U is disjoint from Xi,

hence x /∈ Xi, a contradiction. �

Lemma 2.4. Let (Xi : i ∈ I) be a small downward directed family of definable
subsets of the definable space X. Suppose that H :=

⋂
i∈I Xi is clopen. Then for

every i ∈ I there is j ∈ I such that Xj ⊆ int(Xi).

Proof. Fix i ∈ I. SinceH is open, H ⊆ int(Xi). Using the fact thatH is also closed,
we have H = H =

⋂
i∈I Xi =

⋂
i∈I Xi (by Lemma 2.3). The latter intersection is

included in int(Xi), hence by saturation there is j ∈ I such that Xj ⊆ int(Xi). �

3. Logic topology

Let X be a definable set and consider a type-definable equivalence relation E ⊆
X × X of bounded index (namely of index < κ) and let p : X → X/E be the
natural map. We put on X/E the logic topology: a subset O ⊆ X/E is open if
and only if its preimage in X is

∨
-definable, or equivalently C ⊆ X/E is closed if
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and only if its preimage in X is type-definable. This makes X/E into a compact
Hausdorff space [Pil04]. We collect here a few basic results, including some results
from [Pil04, BOPP05], which will be needed later.

Proposition 3.1. For every definable set C ⊆ X, p(C) is closed in X/E.

Proof. By definition of logic topology, we need to show that p−1(p(C)) is type-
definable. By definition, x belongs to p−1(p(C)) if and only if ∃y ∈ C : xEy. Since
E is type-definable, xEy is equivalent to a possibly infinite conjunction

∧
i∈I ϕi(x, y)

of formulas over some small index set I, and we can assume that every finite con-
junction of the formulas ϕi is implied by a single ϕi. By saturation it follows that we
can exchange ∃ and

∧
i, hence p−1(p(C)) = {x :

∧
i ∃yϕi(x, y)}, a type-definable

set. �

Proposition 3.2. Let C ⊆ U ⊆ X/E with U open and C closed. Then there is a
definable set D ⊆ X such that p−1(C) ⊆ D ⊆ p−1(U).

Proof. This is an immediate consequence of the fact that if a type-definable set is
contained in a

∨
-definable set, there is a definable set between them. �

Proposition 3.3. Let y ∈ X/E and let D ⊆ X be a definable set containing p−1(y).
Then y is in the interior of p(D). Moreover, there is an open neighbourhood U of
y such that p−1(U) ⊆ D.

Proof. By Proposition 3.1, Z = p(X \ D) is a closed set in X/E which does not
contain y. Hence the complement O of Z is an open neighbourhood of y contained
in p(D). We have thus proved the first part. For the second part note that, since
X/E is compact Hausdorff, it is in particular a normal topological space. We
can thus find a fundamental system of open neighbourhoods Ui of y such that
{y} =

⋂
i Ui =

⋂
i U i. Each p−1(U i) is type-definable, and their intersections is

contained in the definable set D, so there is some i ∈ N such that p−1(U i) ⊆ D. �

For our last set of propositions we assume that X is a definable space, possibly
with a topology different from the one inherited from its inclusion in Mk.

Proposition 3.4. Assume that X is a definable space and each fiber of p : X →
X/E is a downward directed intersection of definable open subsets of X. Then
p : X → X/E is continuous.

Proof. By Lemma 2.2 the preimage of any point is open, hence the preimage of
every set is open. �

Proposition 3.5. Assume p : X → X/E is continuous and let C be a definable
subset of X. Then p(C) = p(C).

Proof. It suffices to observe that p(C) ⊆ p(C) ⊆ p(C) where the first inclusion
holds because p is continuous and the second by Proposition 3.1. �

4. Triangulation theorems

The triangulation theorem [vdD98] is a powerful tool in the study of o-minimal
structures expanding a field. In this section we review some of the relevant results
and we prove a specific variation of the normal triangulation theorem of [Bar10] for
simplexes with real algebraic vertices.

Simplicial complexes are defined as in [vdD98]. They differ from the classical
notion because simplexes are open, in the sense that they do not include their faces.
As in [vdD98], the vertices of a simplicial complex are concrete points, namely they
have coordinates in the given o-minimal structure M (expanding a field). More



6 ALESSANDRO ACHILLE AND ALESSANDRO BERARDUCCI

precisely, given n + 1 affinely independent points a0, . . . , an ∈ Mk, the (open) n-
simplex σM = (a0, . . . , an) ⊆ Mk determined by a0, . . . , an is the set of all linear
combinations

∑n
i=0 λiai with λ0 + . . . + λn = 1 and 0 < λi < 1 (with λi ∈ M).

If we go to a bigger model N � M , we write σN for the set defined by the same
formulas but with λi ranging in N . We omit the subscript if there is no risk of
ambiguity. A closed simplex is defined similarly but with the weak inequalities
0 ≤ λi ≤ 1. In other words a closed simplex is the closure σ̄ = cl(σ) of a simplex
σ, namely the union of a simplex and all its faces.

A simplicial complex is a finite collection P of (open) simplexes, with the
property that for all σ, θ ∈ P , σ ∩ θ is either empty or the closure of some δ ∈ P
(a common face of the two simplexes). We shall say that P is a closed simplicial
complex if whenever it contains a simplex it contains all its faces. In this case we
write P for the collection of all closures σ̄ of simplexes σ of P and we call σ̄ a closed
simplex of P .

The geometrical realization |P | of a simplicial complex P is the union of its
simplexes.

We shall often assume that P is defined over Ralg, namely its vertices have real
algebraic coordinates, so that we can realize P either in M or in R. In this case,
we write |P |M or |P |R for the geometric realization of P in M or R respectively.
Notice that a simplicial complex is closed if and only if its geometrical realization
is closed in the topology induced by the order of M .

If L ⊆ P is a subcomplex of P , and σ ∈ P , we define |σ|L|R = σ ∩ |L|R and
|σ|L|M = σ ∩ |L|M . To keep the notation uncluttered, we simply write σ|L when
the model is clear from the context.

Definition 4.1. A triangulation of a definable set X ⊆ Mm is a pair (P, φ) con-
sisting of a simplicial complex P defined over M and a definable homeomorphism
φ : |P |M → X. We say that the triangulation φ is compatible with a subset S of
X if S is the union of the images of some of the simplexes of P .

Fact 4.2 (o-minimal triangulation theorem [vdD98]). Every definable set X ⊆Mm

can be triangulated. Moreover, if S1, . . . , Sl are finitely many definable subsets of
X, there is a triangulation φ : |P |M → X compatible with S1, . . . , Sl.

Now, suppose that we have a triangulation φ : |P |M → X and we consider
finitely many definable subsets S1, . . . , Sl of X. The triangulation theorem tells us
that there is another triangulation ψ : |P ′|M → X compatible with S1, . . . , Sl, but
it does not say that we can choose P ′ to be a subdivision of P , thus in general
|P ′|M will be different from |P |M . This is going to be a problem if we want to
preserve certain properties. For instance suppose that φ is a definable homotopy
(namely its domain |P |M has the form Z × I where I = [0, 1]). The triangulation
theorem does not ensure that ψ can be taken to be a definable homotopy as well.

The “normal triangulation theorem” of Baro [Bar10] is a partial remedy to this
defect: it ensures that we can indeed take P ′ to be a subdivision of P , hence in
particular |P ′|M = |P |M , although ψ will not in general be equal to φ. The precise
statement is given below. It suffices to consider the special case when X = |P | and
φ is the identity.

Definition 4.3. Let P be an (open) simplicial complex inMm and let S1, . . . , Sl be
definable subsets of |P |. A normal triangulation of P is a triangulation (P ′, ψ)
of |P | satisfying the following conditions:

(1) P ′ is a subdivision of P ;
(2) (P ′, ψ) is compatible with the simplexes of P ;
(3) for every τ ∈ P ′ and σ ∈ P , if τ ⊆ σ then ψ(τ) ⊆ σ.
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From (3) it follows that the restriction of ψ to a simplex σ ∈ P is a homeomor-
phism onto σ and ψ is definably homotopic to the identity on |P | [Bar10]. The
definable homotopy is the obvious one given by ψt(x) = (1− t)x+ tψ(x) (using the
convexity of the simplexes).
Fact 4.4 (Normal triangulation theorem [Bar10]). If S1, . . . , Sl are finitely many
definable subsets of |P |, there exists a normal triangulation of P compatible with
S1, . . . , Sl .

Since we are particularly interested in triangulations where the vertices of the
simplicial complex have real algebraic coordinates, we prove the following proposi-
tion, which guarantees that the normal triangulation of a real algebraic simplicial
complex can be also chosen to be real algebraic.
Proposition 4.5. Let P be a simplicial complex in Mk defined over Ralg and let
L be a subdivision of P . Then there is a subdivision L′ of P such that:

(1) L′ is defined over Ralg;
(2) there is a simplicial homeomorphism ψ : |L| → |L′| which fixes all the

vertices of L with real algebraic coordinates.
Proof. Since L is a subdivision of P , we have an inclusion of the zero-skeleta |P 0| ⊆
|L0| ⊆ Mk. For each v ∈ |L0|, let v1, . . . , vk ∈ M be the coordinates of v. The
idea is that the combinatorial properties of the pair (P,L) (namely the properties
invariant by isomorphisms of pairs of abstract complexes) can be described, in the
language of ordered fields, by a first order condition ϕL,P (x̄) on the coordinates x̄
of the vertices. We then use the model completeness of the theory of real closed
fields to show that ϕL,P (x̄) can be satisfied in the real algebraic numbers.

The details are as follows. For each v ∈ |L0| we introduce free variables xv1, . . . , xvk
and let x̄v be the k-tuple xv1, . . . , xvk. Finally let x̄ be the tuple consisting of all these
variables xvi as v varies. We can express in a first order way the following conditions
on x̄:

(1) If σ = (v0, . . . , vn) ∈ L, then σ(x̄) := (x̄v0 , . . . , x̄vn) is n-simplex, namely
x̄v0 , . . . , x̄vn are affinely independent;

(2) If σ1 and σ2 are open simplexes of L with common face τ , then cl(σ1(x̄))∩
cl(σ2(x̄)) = cl(τ(x̄));

(3) If σ1 and σ2 are open simplexes of L with no face in common, then cl(σ1(x̄))∩
cl(σ2(x̄)) = ∅;

(4) If σ ⊆ τ with σ ∈ L and τ ∈ P , then σ(x) ⊆ τ(x).
These clauses express the fact that the collection σ(x̄) as σ varies in L is a simplicial
complex L(x̄) (depending on the value of x̄) isomorphic to L. Similarly we can define
P (x̄) and express the fact that L(x̄) is a subcomplex of P (x̄). Our desired formula
φP,L(x̄) is the conjunction of these clauses together with the conditions xvi = vi
whenever vi is real algebraic. By definition φP,L(x̄) holds in M if we evaluate each
variable xvi as the i-th coordinate of the vector v. By the model completeness of
the theory of real closed fields, the formula can be satisfied by a tuple ā of real
algebraic numbers. The map sending each v to āv induces the desired isomorphism
ψ : L→ L′ = L(ā). �

Later we shall need the following.
Proposition 4.6. Let P be a simplicial complex, let X be a definable space and
let f : |P |M → X be a definable function. Let V = {Vi : i ∈ I} be a small family
of

∨
-definable sets Vi ⊆ X whose union covers the image of f . Then there is a

subdivision P ′ of P and a normal triangulation (P ′, φ) of P such that for every
σ ∈ P ′, (f ◦ φ)(σM ) is contained in some Vi. Moreover, if P is defined over Ralg,
we can take P ′ defined over Ralg.
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Proof. By saturation of M there is a finite set J ⊆ I such that Im(f) ⊆
⋃
i∈J Vi.

Again by saturation there are definable subsets Ui ⊆ Vi for i ∈ J such that Im(f) ⊆⋃
i∈J Ui. By Fact 4.4 there is a subdivision P ′ of P and a normal triangulation

(P ′, φ) of P compatible with the definable sets f−1(Ui), for i ∈ J . Thus for σ ∈ P ′,
there is i ∈ J such that φ(σM ) ⊆ f−1(Ui), namely (f ◦ φ)(σM ) ⊆ Ui.

The “moreover” part follows from Proposition 4.5. Indeed, if P is over Ralg, we
first obtain (P ′, φ) as above. If P ′ is over Ralg we are done. Otherwise, we take
a subdivision P ′′ of P over Ralg and a simplicial isomorphism ψ : P ′′ → P ′, and
replace (P ′, φ) with (P ′′, φ ◦ ψ). �

5. Standard part map

Let X = X(M) ⊆M be a definable set and suppose X ⊆ [−n, n] for some n ∈ N.
Then there is a map st : X → R, called standard part, which sends a ∈ X to the
unique r ∈ R satisfying the same inequalities p < x < q with p, q ∈ Q.

More generally, let X be a definable subset of Mk and assume X ⊆ [−n, n]k
for some n ∈ N. We can then define st : X → Rk component-wise, namely
st((a1, . . . , ak)) := (st(a1), . . . , st(ak)).

Now let
E := ker(st) ⊆ X ×X

be the type-definable equivalence relation induced by st, namely aEb if and only if
st(a) = st(b). There is a natural bijection st(X) ∼= X/E sending st(a) to the class
of a modulo E, so in particular E has bounded index. The next two propositions
are probably well known but we include the proof for the reader’s convenience.

Proposition 5.1. The natural bijection st(a) 7→ a/E is homeomorphism

st(X) ∼= X/E

where X/E has the logic topology and st(X) ⊆ Rk has the euclidean topology.

Proof. Every closed subset C of Rk can be written as the intersection
⋂
i Ci of

a countable collection of closed ∅-semialgebraic sets Ci (where “∅-semialgebraic”
means “semialgebraic without parameters”). We then have st(a) ∈ C if and only
a ∈

⋂
Ci(M). This shows that the closed sets C ⊆ st(X) ⊆ Rk in the euclidean

topology correspond to the sets whose preimage in X is type-definable, and the
proposition follows. �

Thanks to the above result we can identify st : X → st(X) and p : X → X/E
where E = ker(st). The next proposition shows that these maps are continuous.

Proposition 5.2. The preimage of any point of y ∈ st(X) under st : X → st(X)
is open in X ⊆ Mk. In particular, the standard part map is continuous (as the
preimage of every subset is open).

Proof. Let a ∈ X and let r := st(a) ∈ Rk. Then st−1(r) =
⋂
n∈N{b ∈ X : |b− r| <

1/n}. This is a small intersection of relatively open subsets of X, so it is open in
X by Lemma 2.2. �

Remark 5.3. If X = X(M) ⊆Mk is ∅-semialgebraic, we may interpret the definin-
ing formula of X in R and consider the set X(R) ⊆ Rk of real points of X. If we
further assume that X is closed and bounded, then X ⊆ [−n, n]k for some n ∈ N,
so we can consider the standard part map st : X → Rk. It is easy to see that in
this case st(X) coincides with X(R), so we can write X(R) = st(X) ∼= X/E.

Our next goal is to study the fibers of st : X → X(R). We need the following.
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Definition 5.4. Given a simplicial complex P and a point x ∈ |P | (not necessarily
a vertex), the open star of x with respect to P , denoted St(x, P ), is the union
of all the simplexes of P whose closure contains x. Note that St(x, P ) is an open
neighbourhood of x in |P |.

The next result will be needed later (in the proof of Proposition 8.4).

Proposition 5.5. Given x, y ∈ |P |, if St(x, P )∩ St(y, P ) is non-empty, then there
is z ∈ |P | such that St(x, P ) ∩ St(y, P ) = St(z, P ).

Proof. Let σ ∈ P be a simplex of minimal dimension included in St(x, P )∩St(y, P )
and let z ∈ σ. We claim that z is as desired. To this aim it suffices to show that,
given θ ∈ P , we have θ ⊆ St(x, P ) ∩ St(y, P ) if and only if θ ⊆ St(z, P ).

For one direction assume θ ⊆ St(x, P ) ∩ St(y, P ). Then θ̄ ∩ σ̄ is non-empty, as
the intersection contains both x and y. It follows that there is a simplex δ ∈ P
such that θ̄∩ σ̄ = δ̄. Notice that δ is included in St(x, P )∩St(y, P ) since its closure
contains x and y. Since σ was of minimal dimension contained in this intersection,
it follows that δ = σ. But then z ∈ σ ⊆ θ̄, hence θ ⊆ St(z, P ).

For the other direction, assume θ ⊆ St(z, P ), namely z ∈ θ̄. Since z ∈ σ, it
follows that σ ⊆ θ̄ and thefore σ̄ ⊆ θ̄. But x, y are contained in σ̄, so they are
contained in θ̄, witnessing the fact that θ ⊆ St(x, P ) ∩ St(y, P ). �

The following result depends on the local conic structure of definable sets.

Proposition 5.6. Let X be closed and bounded ∅-semialgebraic set and let st :
X(M) → st(X) = X(R) be the standard part map. Then for every y ∈ X(R), the
preimage st−1(y) is an intersection of a countable decreasing sequence S0 ⊇ S1 ⊇
S2 ⊇ . . . of definably contractible open subsets of X.

Proof. By the triangulation theorem (Fact 4.2), there is a simplicial complex P
over Ralg and a ∅-definable homeomorphism f : X → |P |M . In this situation,
fR : X(R) → P (R) is a homeomorphism and st(f(x)) = fR(st(x)). Thus we can
replace X with P and assume that X is the realization of a simplicial complex.
Therefore, we now have a closed simplicial complex X(R) over the reals, which is
thus locally contractible. More precisely, given y ∈ X(R) we can write {y} as an
intersection

⋂
i∈N Si where Si is the open star of y with respect to the i-th iterated

barycentric subdivision of P . The preimage st−1(y) can then be written as the
corresponding intersection

⋂
i∈N Si(M) interpreted in M , and it now suffices to

observe that each Si(M) is an open star, hence it is definably contractible (to any
of its points). �

Our next goal is to show that, much of what we said about the standard part
map, has a direct analogue in the context of definable groups, with p : G→ G/G00

in the role of the standard part.

6. Definable groups

Let G be a definable group in M and let H < G be a type-definable subgroup of
bounded index. We may put on the coset space G/H the logic topology, thus ob-
taining a compact topological space. In this context we have a direct generalization
of Proposition 5.2.

Fact 6.1 ([Pil04, Lemma 3.2]). Every type-definable subgroup H < G of bounded
index is clopen in the t-topology of G. In particular, the natural map p : G→ G/H
is continuous, where G has the t-topology and the coset space G/H has the logic
topology.
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If we further assume that H is normal, then G/H is a group and we may ask
whether the logic topology makes it into a topological group. This is indeed the
case [Pil04]. Some additional work shows that in fact G/H is a compact real Lie
group [BOPP05]. In the same paper the authors show that G admits a smallest
type-definable subgroup H < G of bounded index (see [She08] for a different proof),
which is denoted G00 and called the infinitesimal subgroup. When G is defin-
ably compact in the sense of [PS99], the natural map p : G→ G/G00 shares many
of the properties of the standard part map.

Definition 6.2. Let us recall that a definable set B ⊆ X is called a definable
open ball of dimension n if B is definably homeomorphic to {x ∈Mn : |x| < 1};
a definable closed ball is defined similarly, using the weak inequality ≤; we shall
say that B is a definable proper ball if there is a definable homeomorphism f
from B to a definable closed ball taking ∂B to the definable sphere Sn−1.

In analogy with Proposition 5.6, the following holds.

Fact 6.3. [Ber09, Theorem 2.2]Let G be a definably compact group of dimension
n and put on G the t-topology of [Pil88]. Then there is a decreasing sequence
S0 ⊇ S1 ⊇ S2 ⊇ . . . of definably contractible subsets of G such that G00 =

⋂
i∈N Si.

The proof in [Ber09, Theorem 2.2] depends on compact domination and the sets
Sn are taken to be “cells” in the o-minimal sense. For later purposes we need the
following strengthening of the above fact, which does not present difficulties, but
requires a small argument.

Corollary 6.4. In Fact 6.3 we can arrange so that, for each i ∈ N Si+1 ⊆ Si and
Si is a definable proper ball of dimension n = dim(G).

Proof. By Lemma 2.4 we can assume that Si+1 ⊆ Si for every i ∈ N. Since M
has field operations, a cell is definably homeomorphic to a definable open ball (first
show that it is definably homeomorphic to a product of intervals). In general it is
not true that a cell is a definable proper ball, even assuming that the cell is bounded
[BF09]. However by shrinking concentrically Si via the homeomorphism, we can
find a definable proper n-ball Ci with Si+1 ⊆ Ci ⊆ Si. To conclude, it suffices to
replace Si with the interior of Ci. �

7. Compact domination

A deeper analogy between the standard part map and the projection p : G →
G/G00 is provided by Fact 7.1 and Fact 7.2 below.

Fact 7.1 ([BO04, Cor. 4.4]). Let X be a closed and bounded ∅-semialgebraic subset
ofMk and let D be a definable subset of X. Then st(D)∩st(D{) ⊆ Rk has Lebesgue
measure zero.

The above fact was used in [BO04] to introduce a finitely additive measure
on definable subsets of [−n, n]k ⊆ Mk (n ∈ N) by lifting the Lebesgue measure
on Rk through the standard part map. In the same paper it was conjectured that,
reasoning along similar lines, one could try to introduce a finitely additive invariant
measure on definably compact groups (the case of the torus being already handled
thanks to the above result). When [BO04] was written, Pillay’s conjectures from
[Pil04] were still open, and it was hoped that the measure approach could lead to
a solution. A first confirmation to the existence of invariant measures came from
[PP07], but only for a limited class of definable group. A deeper analysis lead to
the existence of invariant measures in every definable compact group [HPP08] and
to the solution of Pillay’s conjectures, as discussed in the introduction. Finally,
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the following far reaching result was obtained, which can be considered as a direct
analogue to Fact 7.1.
Fact 7.2 ([HP11]). Let G be a definably compact group and consider the projection
p : G → G/G00. Then for every definable set D ⊆ G, p(D) ∩ p(D{) has Haar
measure zero.

In the terminology introduced in [HPP08] the above result can be described by
saying thatG is compactly dominated byG/G00. Perhaps surprisingly, when the
above result was obtained, Pillay’s conjectures had already been solved, so compact
domination did not actually play a role in its solution. In hindsight however, as we
show in the last part of this paper (Section 13), compact domination can in fact be
used to prove “dim(G) = dimR(G/G00)”, as predicted by Pillay’s conjectures (the
content of Pillay’s conjectures also includes the statement that G/G00 is a real Lie
group).

To prepare the ground, we introduce the following definition. In the rest of the
section E is a type-definable equivalence relation of bounded index on a definable
set X.
Definition 7.3. We say that X is topologically compactly dominated by
X/E if for every definable set D ⊆ X, p(D) ∩ p(D{) has empty interior, where
p : X → X/E is the projection.

Since “measure zero” implies “empty interior”, topological compact domination
holds both for the standard part map (taking E = ker(st)) and for definably com-
pact groups.

Notice that Definition 7.3 can be given for definable sets in arbitrary theories,
not necessarily o-minimal, so it is not necessary that X carries a topology. However
in the o-minimal case a simpler formulation can be given, as in Corollary 7.5 below.

We first recall some definitions. Let X be a definable space. We say that a type-
definable set Z ⊆ X is definably connected if it cannot be written as the union
of two non-empty open subsets which are relatively definable, where a relatively
definable subset of Z is the intersection of Z with a definable set.

Following [vdD98], we distinguish between the frontier and the boundary of a
definable set, and we write ∂D := D \D for the frontier, and δD := D \D◦ for
the boundary, where D◦ is the interior.

A basic result in o-minimal topology is that the dimension of the frontier of D
is less than the dimension of D. Here we shall however be concerned with the
boundary, rather than the frontier.
Proposition 7.4. Let X be a definable space. Assume that p is continuous and
each fiber of p : X → X/E is definably connected. Then for every definable set
D ⊆ X, p(D) ∩ p(D{) = p(δD).

Proof. We prove p(D) ∩ p(D{) ⊆ p(δD). So let y ∈ p(D) ∩ p(D{). If for a contra-
diction p−1(y)∩ δD = ∅, then p−1(y)∩D◦ and p−1(y)∩ (D{)◦ are both non-empty.
Since they are relatively definable in p−1(y) and open, we contradict the hypothesis
that p−1(y) is definably connected. The opposite inclusion is easy, using the fact
that p(A) = p(A) (Proposition 3.5). �

In the light of the above proposition, topological compact domination takes the
following form.
Corollary 7.5. Assume that X is a definable space, p : X → X/E is continuous,
and each fiber of p is definably connected. Then X is topologically compactly domi-
nated by X/E if and only if the image p(Z) of any definable set Z ⊆ X with empty
interior, has empty interior.
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Proof. Suppose that the image of every definable set with empty interior has empty
interior. Given a definable setD ⊆ X, we want to show that p(D)∩p(D{) has empty
interior. This follows from the inclusion p(D) ∩ p(D{) ⊆ p(δD) (Proposition 7.4)
and the fact that δD has empty interior.

Conversely, assume topological compact domination and let Z be a definable
subset of X with empty interior. By Proposition 3.5, p(δZ) ⊆ p(Z) ∩ p(Z{) =
p(Z) ∩ p(Z{), so p(δZ) has empty interior. �

8. Good covers

By a triangulable space we mean a compact topological space which is homeo-
morphic to a polyhedron, namely to the realization |P |R of a closed finite simplicial
complex over R.

Definition 8.1. Let U be an open cover of a topological space Y . We say that U is
a good cover if every finite intersection U1 ∩ . . .∩Un of open sets U1, . . . , Un ∈ U
is contractible.

Our aim is to show that open subsets of a triangulable spaces have enough good
covers. We are going to use barycentric subdivions holding a subcomplex fixed, as
defined in [Mun84, p. 90]. We need the following observation.

Remark 8.2. Let P be a closed (finite) simplicial complex and let L be a closed
subcomplex. Let Pi be the i-th barycentric subdivision of P holding L fixed. Then
for every real number ε > 0 there is i ∈ N such that for every closed simplex σ̄ of
Pi, either σ̄ has diameter < ε or σ̄ lies inside the ε-neighbourhood of some simplex
of L.

Definition 8.3. Let U be an open cover of a topological space Y . Given A ⊆ Y
we recall that the star of A with respect to U , denoted StU (A), is the union of all
U ∈ U such that U ∩ A 6= ∅. We say that U star refines another cover V if for
each U ∈ U there is a V ∈ V such that StU (U) ⊆ V . We define St(U) to be the
cover consisting of the sets StU (U) as U ranges in U .

Proposition 8.4. Let O be an open subset of a triangulable space Y (not necessarily
a manifold). Then every open cover V of O has a locally finite refinement U which
is a good cover.

Proof. We can assume that Y is the geometric realization |P | (over R) of a finite
simplicial complex P .

Since Y is a metric space, so is O ⊆ Y . In particular O is paracompact, and
therefore V has a locally finite star-refinement W ≺ V. We plan to show that O is
the realization of an infinite simplicial complex L with the property that each closed
simplex of L is contained in some element of W. Granted this, by Proposition 5.5
we can take U to be the open cover consisting of the sets St(x, L) for x ∈ O.

To begin with, note that we can write O as the union O =
⋃
n∈N Cn of an

increasing sequence of compact sets in such a way that every compact subset of
O belongs to Cn for some n (it suffices to define Cn as the set of points of O at
distance ≥ 1/2n from the frontier of O).

Since C0 is compact, by the Lebesgue number lemma there is some ε0 > 0 such
that every subset of C0 of diameter < ε0 is contained in some element of W. Now
let P0 be an iterated barycentric sudivision of P with simplexes of diameter < ε0
and let L0 be the largest closed subcomplex of P0 with |L0| ⊆ C0. Notice that
every closed simplex of L0 is contained in some element of W.

Starting with P0, L0, ε0 we shall define by induction on i ∈ N a subdivision Pi
of P0, a subcomplex Li of P0 and a positive element εi ∈M . At stage i we assume
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that Pi, Li, εi have already been defined, Li is the biggest closed subcomplex of Pi
with |Li| ⊆ Ci, and every closed simplex of Li is contained in some element of W.
We continue as follows. The complex Pi+1 will be of the form Pi[n], where Pi[n]
is the n-th iterated barycentric subdivision of Pi holding the subcomplex Li fixed.
We next show how to choose the value of n. By the Lebesgue number lemma there
is some ε > 0 with ε < εi/2 such that every closed subset of Ci of diameter < ε is
contained in some element of W. By taking a smaller value for ε if necessary, we
can also assume, that the closed ε-neighbourhood of any closed simplex σ̄ of Li is
contained in some element of W. Let εi+1 be such an ε. By Remark 8.2 there is
some n0 such that for every n ≥ n0 and for every closed simplex σ̄ of Pi[n] either
σ̄ is contained in the εi+1-neighbourhood of some λ ∈ Li, or the diameter of σ̄ is
less then εi+1. In both cases, if σ̄ is included in Ci, then it is contained in some
element of W. We now define Pi+1 = Pi[n0] and we let Li+1 be the biggest closed
subcomplex of Pi+1 with |Li+1| ⊆ Ci+1.

Having finished the construction, notice that Li is a subcomplex of Li+1, because
both are subcomplexes of Pi+1 and |Li| ⊆ |Li+1|. We can thus consider the infinite
simplicial complex L :=

⋃
i∈N Li. By construction each closed simplex of L is

contained in some W ∈ W, so in particular |L| ⊆ O. To finish the proof it suffices
to show that |L| = O. The strategy is to show that the sets |Li| are not too small.
More precisely, we claim that if x ∈ O is such that its closed εi+1-neighbourhood
is contained in Ci+1, then x ∈ |Li+1|. Since εi → 0, this will immediately imply⋃
i |Li| = O, as desired. To prove the claim, consider the unique (open) simplex

σ ∈ Pi+1 containing x. By definition of Pi+1, either σ̄ has diameter < εi+1 or it
is included in the εi+1-neighbourood of |Li|. In both cases σ̄ is included in |Li+1|,
concluding the argument. �

9. Homotopy

Recall that two continuous maps f0, f1 : Z → Y between topological spaces
are homotopic if there is a continuous function H : Z × [0, 1] → Y such that
H(z, 0) = f0(z) and H(z, 1) = f1(z) for every z ∈ Z.

Given base points z0 ∈ Z and y0 ∈ Y and a function f : Z → Y , we write
f : (Z, z0)→ (Y, y0) if f sends z0 to y0. Given an homotopy H between two maps
f0, f1 : (Z, z0)→ (Y, y0) we say that H is a homotopy relative to z0 if H(z0, t) = y0
for all t ∈ I, where I = [0, 1].

Definition 9.1. If Z and Y are topological spaces, we let [Z, Y ] denote the set
of all homotopy classes of continuous functions from Z to Y . Given base points
z0 ∈ Z and y0 ∈ Y , we let [(Z, z0), (Y, y0)], or simply [Z, Y ]0, denote the set of all
homotopy classes of continuous functions f : (Z, z0) → (Y, y0) relative to z0. The
n-th homotopy group is defined as

πn(Y ) := [Sn, Y ]0
where Sn is the n-th sphere and we put on πn(Y ) the usual group operation if
n > 0 (see [Hat02] for the details).

In the rest of this section we work in the classical category of topological spaces
and we give a sufficient condition for two maps to be homotopic. Later we shall need
to adapt the proofs to the definable category, but with additional complications.

Definition 9.2. Given a collection U of subsets of a set O and two functions
f, g : Z → O, we say that f and g are U-close if for any z ∈ Z there is U ∈ U such
that both f(z) and g(z) are in U .

The following definition is adapted from [Dug69, Note 4].
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Definition 9.3. Let f : Z → Y be a function between two sets Z and Y . Let P
be a collection of sets whose union

⋃
P includes Z, and let U be a collection of

subsets of Y . We say that f is (U , P )-small if for every σ ∈ P the image f(σ ∩Z)
is contained in some U ∈ U .

Lemma 9.4. Let U be a locally finite good cover of a topological space Y and let L
be a closed subcomplex of a closed simplicial complex P defined over R. Let P (0) be
the 0-skeleton of P and let f : |L ∪ P (0)|R → Y be a (U , P )-small continuous map
(recall that P is the collection of all closures of simplexes of P ). Then f can be
extended to a (U , P )-small continuous map f ′ : |P |R → Y with the property that, for
all U ∈ U and for every closed simplex σ̄ of P , if f(σ̄|L∪P (0)) ⊆ U , then f ′(σ̄) ⊆ U .

Proof. Reasoning by induction we can assume that f ′ is already defined on |L ∪
P (k)|, where P (k) is the k-skeleton of P , and we only need to extend it to |L∪P (k+1)|.
Let σ ∈ P (k+1). We can identify σ̄ with the cone over its boundary ∂σ, so that every
point of σ̄ is determined by a pair (t, x) with t ∈ [0, 1] and x ∈ ∂σ. Let U1, . . . , Un
be the elements of U containing f ′(σ̄|L∪P (k)) (notice that n > 0 by the inductive
hypothesis), let V be their intersection, and let φ : [0, 1] × V → V be a retraction
of V to a point. We extend f ′ to σ̄ sending (t, x) ∈ σ̄ to φ(t, f ′(x)) ∈ V . Note
that if f ′(σ̄|L∪P (k)) ⊆ U ∈ U , then U is one of the Ui, and since by construction
f ′(σ̄) ⊆ V =

⋂
i Ui, we get f ′(σ̄) ⊆ U . �

Proposition 9.5. Let U be a locally finite good cover of a topological space Y , let
P be a closed simplicial complex and let f, g : |P |R → Y be two continuous maps.
Assume that f and g are U-close. Then, f and g are homotopic.

Proof. Since f and g are U-close, the family V = {f−1(U) ∩ g−1(U) : U ∈ U} is an
open cover of |P |R. By the Lebesgue number lemma (since we work over R) there
is an iterated barycentric subdivision P ′ of P such that every closed simplex of P ′
is contained in some element of V. Then, by construction, for every σ ∈ P ′ there
is U ∈ U such that f(σ̄) and g(σ̄) are contained in U .

Let now I = [0, 1] and consider the simplicial complex P ′ × I with the standard
triangulation (as in [Hat02, p. 112, Proof of 2.10]). Consider the subcomplex P ′ ×
{0, 1} of P ′ × I and note that it contains the 0-skeleton of P ′ × I. Define f t g :
|P × {0, 1}|R = |P ′ × {0, 1}|R → Y as the function which sends (x, 0) to f(x) and
(x, 1) to g(x). Note that f t g is (U , P ′ × I)-small. Since U is a good cover, by
Lemma 9.4 we can extend it to a (U , P ′ × I)-small function H : |P ×I|R → Y . This
map is a homotopy between f and g. �

10. Definable homotopies

Given a definable set Z and a
∨
-definable set Y , we say that a map f : Z → Y

is definable if it takes values in a definable subset Y0 of Y and is definable as a
function from Z to Y0. We can adapt Definition 9.1 to the definable category as
follows.

Definition 10.1. If Z is a definable space and Y is a
∨
-definable set, we let

[Z, Y ]def denote the set of all equivalence classes of definable continuous maps f
from Z to Y modulo definable homotopies. Similarly we write [Z, Y ]def

0 when we
work with pointed spaces and homotopies relative to the base point z0 ∈ Z. The
n-th o-minimal homotopy group is defined as

πdef
n (Y ) := [Sn, Y ]def

0

where Sn is the n-th sphere in M . If n > 0 we put on πdef
n (Y ) a group operation

in analogy with the classical case.
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In [BO02] it is proved that if Y is a ∅-semialgebraic set, πdef
1 (Y ) ∼= π1(Y (R)), so

in particular πdef
1 (Y ) is finitely generated. This has been generalized to the higher

homotopy groups in [BO10]. We shall later give a self-contained proof of both
results. By the same arguments we obtain the following result of [BMO10]: given a
definably compact group G there is a natural isomorphism πdef

n (G) ∼= πn(G/G00).
The new proofs yield a stronger result: if p : G→ G/G00 is the projection, for every
open subset O of G/G00, there is an isomorphism πdef

n (p−1(O)) ∼= πn(O). This was
so far known for n = 1 [BM11]. Notice that p−1(O) is

∨
-definable, whence the

decision to consider
∨
-definable sets in Definition 10.1. With the new approach we

obtain additional functoriality properties and generalizations, as it will be explained
in the rest of the paper.

11. Theorem A

As above, let X = X(M) be a definable space, and let E ⊆ X×X be a definable
equivalence relation of bounded index. In this section we work under the following
assumption.

Assumption 11.1 (Assumption A). X/E is a triangulable topological space and
the natural map p : X → X/E is continuous.

The fact that X/E is triangulable allows us to apply the results of Section 8
regarding the existence of good covers. Note that the continuity of p is not a
vacuous assumption because X/E has the logic topology, not the the quotient
topology. By the results in Section 5 and Section 6 the assumption is satisfied in
the special case X/E = G/G00 (where G is a definably compact group) and also
when X is a closed and bounded ∅-semialgebraic set and E = ker(st).

We shall prove that there is a natural homomorphism
πdef
n (X)→ πn(X/E).

This will be obtained as a consequence of a more general result concerning homo-
topy classes. The following definition plays a crucial role in the definition of the
homomorphism, and exploits the analogies between the projection p : X → X/E
and the standard part map.

Definition 11.2. Let O ⊆ X/E be an open subset. Let U be an open cover of
O ⊆ X/E, and let P be a closed simplicial complex defined over Ralg. Consider
a definable continuous map f : |P |M → p−1(O) and let st : |P |M → |P |R be
the standard part map. We say that a continuous map f∗ : |P |R → O is an U-
approximation of f if p◦f and f∗ ◦ st are U-close, namely the two paths from the
upper-left to the lower-right corner of the following diagram represent maps which
are U-close.

|P |M
st //

f

��

|P |R

f∗

��
p−1(O) p

// O

We say that f is U-approximable if it has a U-approximation.

In general, given f and U , we cannot hope to find f∗ which is a U-approximation
of f . However we shall prove that, given U , every definable continous function f is
definably homotopic to a U-approximable map.

Definition 11.3. Given a collection U of open subsets of X/E let p−1(U) be the
collection of consisting of the

∨
-definable open sets p−1(U) ⊆ X as U varies in U .
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Notice that f : |P |M → X is (p−1(U), P )-small (Definition 9.3) if and only
if (p ◦ f) : |P |M → X/E is (U , P )-small. The next lemma shows that in this
situation we can ignore the difference between closed and open simplexes. Recall
that P = {σ̄ : σ ∈ P}. We have:

Lemma 11.4. Let U be a collection of open subsets of X/E and let f : |P |M → X
be a definable continuous map. Then f is (p−1(U), P )-small if and only if it is
(p−1(U), P )-small.

Proof. Let σ ∈ P . Since f is continous, f(σ̄) ⊆ f(σ) and by Proposition 3.5 we have
p(f(σ)) = p(f(σ)), so if f is (p−1(U), P )-small, it is also (p−1(U), P )-small. �

The following lemma shows that small maps are approximable.

Lemma 11.5. Let V be a locally finite good open cover of O and let f : |P |M →
p−1(O) be a (p−1(V), P )-small map. Then there exists a V-approximation f∗ :
|P |R → O of f .

Proof. Define f∗ on the zero-skeleton of P by f∗(0)(st(v)) = p(f(v)) for any vertex
v of |P |M (since v has coordinates in Ralg we can identify st(v) ∈ |P |R with v).
Since f is (p−1(V), P )-small, f∗(0) is (V, P )-small and therefore, by Lemma 9.4 (and
Lemma 11.4), we can extend f∗(0) to a (V, P )-small map f∗ : |P |R → O. We claim
that f∗ is a V-approximation of f . Indeed, fix a point z ∈ |P |M and let σ = σM ∈ P
be a simplex containing z. Since f is (p−1(V), P )-small, there is a V ∈ V such that
p◦f(σ) ⊂ V , so in particular p◦f(σ(0)

M ) = f∗(0)(σ(0)
R ) ⊆ V . By Lemma 9.4, we also

have f∗(σR) ⊆ V . Since st(σ̄M ) = σ̄R, both p ◦ f(z) and f∗(st(z)) are in V . �

The next lemma shows that every map f is homotopic to a small (hence approx-
imable) map f ′.

Lemma 11.6. Let O ⊆ X/E be an open subset of X/E. Given a definable map
f : |P |M → p−1(O) and an open cover U of O, we can find a subdivision P ′ of P
and a normal triangulation (P ′, φ) of |P | such that f ′ = f ◦φ is (p−1(U), P ′)-small.
Moreover if P is defined over Ralg, we can take P ′ defined over Ralg. Notice that
f ′ is homotopic to f (as φ is homotopic to the identity).

Proof. By Proposition 4.6. �

Lemma 11.7. Let U be a star-refinement of a good cover of O. Any two U-
approximations of f : |P |M → p−1(O) are homotopic.

Proof. Let f∗1 and f∗2 be two U-approximations of f . Then f∗1 and f∗2 are St(U)-close
and since U star-refines a good cover they are homotopic by Proposition 9.5. �

We are now ready to state the main result of this section.

Theorem 11.8 (Theorem A). Assume 11.1. Let P be a closed simplicial complex
defined over Ralg.

(1) For each open set O ⊆ X/E, there is a map

pPO : [|P |M , p−1(O)]def → [|P |R, O].

(2) The maps pPO are natural with respect to inclusions of open sets. More
precisely, let U ⊆ V be open sets in X/E. Then, we have the following
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commutative diagram:

[|P |M , p−1(U)]def pP
U //

ip−1(U)

��

[|P |R, U ]

iU

��
[|P |M , p−1(V )]def

pP
V

// [|P |R, V ]

where the vertical arrows are induced by the inclusions.
(3) By the triangulation theorem, the same statements continue to hold if we

replace everywhere |P | by a ∅-semialgebraic set.
(4) The results remain valid replacing all the homotopy classes with their pointed

versions as in Definition 9.1 and Definition 10.1.
(5) In particular, for all O ⊆ X/E there is a natural map pSn

O : πdef
n (p−1(O))→

πn(O) which is a group homomorphisms when n > 0. When O = X/E we
obtain a homomorphism πdef

n (X)→ πn(X/E).

In the rest of the section we fix a closed simplicial complex P in M defined over
Ralg and we prove Theorem 11.8. We shall define a map pPO : [|P |M , p−1(O)]def →
[|P |R, O] determined by the following property: if U is a star-refinement of a good
cover of O, f is (p−1(U), P )-small and f∗ is a U-approximation of f , then pPO([f ]) =
[f∗]. A word of caution is in order: we are not claiming that if f is U-approximable
and f∗ is an approximation of f , then pPO([f ]) = [f∗]. We are only claiming that this
will be the case if f is (p−1(U), P )-small, which is a stronger property than being
U-approximable. The reason for the introduction of this stronger property, is that
we are not able to show that if two definably homotopic maps are U-approximable,
then their approximations are homotopic. We can do this only if the maps are
(p−1(U), P )-small. The formal definition is the following.

Definition 11.9 (Definition of the map pPO). Let O ⊆ X/E be an open set. Let U
be an open cover of O which is a star-refinement of a good cover and let f : |P |M →
p−1(O) be a definable map. By Lemma 11.6 there is a subdivision P ′ of P and a
normal triangulation (P ′, φ) of |P | such that f ′ = f ◦ φ is (p−1(U), P ′)-small. By
Lemma 11.5 f ′ has a U-approximation f ′∗. We shall see (Lemma 11.11 below) that
the homotopy class [f ′∗] does not depend on the choice of P ′, φ and f ′∗, so we can
define pPO([f ]) = [f ′∗].

To prove that the definition is sound we need the following.

Lemma 11.10. Let f0,f1 : |P |M → X be definable maps and let f∗0 and f∗1 be
U-approximations of f0, f1 respectively. If f0, f1 are p−1(U)-close, then f∗0 and f∗1
are St(U)-close.

Proof. Let y ∈ |P |R and let x ∈ |P |M be such that st(x) = y. By definition
of approximation f∗0 (y) is U-close to p(f0(x)), which by hypothesis is U-close to
p(f1(x)), which in turn is U-close to f∗1 (y). We deduce that f∗0 (y) is St(U)-close to
f∗1 (y). �

We can now finish the proof that Definition 11.9 is sound.

Lemma 11.11. Let U be a star-refinement of a good cover of O. Let f0, f1 :
|P |M → p−1(O) be definably homotopic definable continous maps and let (P0, φ0)
and (P1, φ1) be two normal triangulations of P such that f0 ◦ φ0 is (p−1(U), P0)-
small and f1 ◦ φ1 is (p−1(U), P1)-small. Now let (f0 ◦ φ0)∗ and (f1 ◦ φ1)∗ be U-
approximations of f0 ◦ φ0 and f1 ◦ φ1 respectively. Then (f0 ◦ φ0)∗ and (f1 ◦ φ1)∗
are homotopic.
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Proof. First note that f0 ◦φ0 and f1 ◦φ1 are definably homotopic, because so are f0
and f1 and φ0, φ1 are both definably homotopic to the identity. Let H : |P×I|M →
p−1(O) be a definable homotopy between f0 ◦ φ0 = H0 and f1 ◦ φ1 = H1. Let P ′
be a common refinement of P0 and P1 (for the existence see for instance [Muk15,
Cor. 9.5.8]).

Now let (T, ψ) be a normal triangulation of P ′×I such that H ◦ψ is (p−1(U), T )-
small. Notice that T induces two subdivisions P ′0 and P ′1 of P ′ such that (P ′0× 0)∪
(P ′1×1) is a subcomplex of T . Notice that both f0 ◦φ0 and f1 ◦φ1 are (p−1(U), P ′)-
small, because the smallness property is preserved by refinining the triangulations.
Moreover, the restriction of ψ to the subcomplex (P ′0 × 0) ∪ (P ′1 × 1) induces two
normal triangulations (P ′0, ψ0) and (P ′1, ψ1) of P ′, namely ψ0(x) = y if and only if
ψ(x, 0) = (y, 0), and similarly for ψ1. By the properties of normal triangulations,
for each σ ∈ P ′, we have ψ0(σ) = σ = ψ1(σ), so f0 ◦ φ0 ◦ ψ0 and f1 ◦ φ1 ◦ ψ1 are
also (p−1(U), P ′)-small.

Now let (H ◦ψ)∗ : |P × I|R → O be a U-approximation of H ◦ψ. Then (H ◦ψ)∗
is a homotopy between two maps, which are easily seen to be U-approximations of
f0 ◦ φ0 ◦ ψ0 and f1 ◦ φ1 ◦ ψ1 (the two maps induced by H ◦ ψ by restriction), so
we may call them (f0 ◦ φ0 ◦ ψ0)∗ and (f1 ◦ φ1 ◦ ψ1)∗ respectively. Since ψ0 fixes
the simplexes of P ′ and f0 ◦ φ0 is (p−1(U), P ′)-small, we have that f0 ◦ φ0 ◦ ψ0 is
U-close to f0 ◦ φ0 (because any point of |P |M belongs to some σ ∈ P ′ which is
mapped into some element of p−1(U) by both maps). By Lemma 11.10 it follows
that (f0 ◦ φ0 ◦ ψ0)∗ is St(U)-close to (f0 ◦ φ0)∗ hence homotopic to it. Similarly
(f1 ◦ φ1 ◦ ψ1)∗ is homotopic to (f1 ◦ φ1)∗ and composing the homotopies we obtain
the desired result. �

Lemma 11.12. Points (1) and (2) of Theorem 11.8 hold.

Proof. We have already proved that pPO is well defined and we need to establish the
naturality with respect to inclusions of open sets U ⊆ V ⊆ X/E. Let f : |P |M →
p−1(U) ⊆ p−1(V ) be a continuos definable map and notice that C = p◦f(|P |M ) is a
closed set. By Theorem 11.8(1), there are open covers U of U and V of V which star-
refine a good cover of U and V respectively. We can further assume that V refines
U ∪ {C{}. By Lemma 11.6 there is a definable homeomorphism ψ : |P |M → |P |M
definably homotopic to the identity such that f ′ := f ◦ ψ is V-approximable (and
clearly definably homotopic to f). Since ψ(|P |M ) = |P |M , we have p◦f ′(|P |M ) = C.
Let f ′∗ : |P |R → V be a V-approximation of f ′. Then by definition pPV ([f ]) = [f ′∗].
Now fix some x ∈ |P |M , and using the definition of V-approximation find V ′ ∈ V
such that both (f ′∗ ◦ st)(x) ∈ V ′ and (p◦f ′)(x) ∈ V ′. Notice that the latter implies
that V ′ cannot be contained in C{, hence it is contained in some element of U .
This shows that f ′∗ has image contained in U and is a U-approximation of f ′. It
follows that iU ◦ pPU ([f ]) = pPV ◦ ip−1(U)([f ]) = [f ′∗]. �

Lemma 11.13. Theorem 11.8(3) holds, namely we can work with ∅-semialgebraic
sets instead of simplicial complexes.

Proof. If Z is a ∅-semialgebraic set, there is a ∅-definable homeomorphism f :
|P | → Z where P is a simplicial complex P with real algebraic vertices. We have
induced bijections f∗M : [Z(M), p−1(U)]def ' [|P |M , p−1(U)]def and f∗R : [|Z|R, U ] '
[|P |R, U ]. The results now follows from the previous points of the theorem. �

Lemma 11.14. Theorem 11.8(4) holds, namely we can fix a base point and work
with relative homology.

Proof. It suffices to notice that all the constructions in the proofs can equivalently
be carried out for spaces with base points. �
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Lemma 11.15. Theorem 11.8(5) holds, namely for any open set O ⊆ X/E there
is a well defined map

pPO : πdef
n (p−1(O))→ πn(O)

which is a group homomorphism for n > 0.

Proof. We have already proved that there is a natural map pSn

O : πdef
n (p−1(O)) →

πn(O). We need to check that this map is a group homomorphism. To this end,
let Sn−1 be the equator of Sn. Recall that, given [f ], [g] ∈ πdef

n (p−1(O)), where
f, g : Sn → p−1(O), the group operation [f ] ∗ [g] is defined as follows. Consider the
natural map φ : Sn → Sn/Sn−1 = Sn ∨ Sn, and let [f ] ∗ [g] = [(f ∨ g) ◦ φ], where
f ∨ g maps the first Sn using f , and the second using g. A similar definition also
works for πn(O). Now, we have to check that pSn

O ([f ] ∗ [g]) = pSn

O ([f ]) ∗ pSn

O ([g]).
By the triangulation theorem we can identify Sn with the realization of a simpli-

cial complex P defined over Ralg and, modulo homotopy and taking a subdivision,
we can assume that f and g are (p−1(U), P )-small where U is an open cover of
O star-refinining a good cover. Let f∗ and g∗ be U-approximations of f and g
respectively, so that pSn

O ([f ]) = [f∗] and pSn

O ([g]) = [g∗] . Now it suffices to observe
that f∗ ∨ g∗ is a U-approximation of f ∨ g. �

The proof of Theorem 11.8 is now complete.

12. Theorem B

In this section we work under the following strengthening of 11.1.

Assumption 12.1. X/E is a triangulable topological space and each fiber of p :
X → X/E is the intersection of a decreasing sequence of definably contractible open
sets.

By Proposition 3.4 the assumption implies in particular that p is continuos, so
we have indeed a strengthening of 11.1. The above contractibility hypothesis was
already exploited in [BM11, Ber09, Ber07] and is satisfied by the main examples
discussed in Section 5 and Section 6.

Theorem 12.2 (Theorem B). Assume that p : X → X/E satisfies 12.1 and let P be
a closed simplicial complex defined over Ralg. Then the map pPO : [|P |M , p−1(O)]def →
[|P |R, O] in Theorem 11.8 is a bijection and similarly for pointed spaces. Thus in
particular

πdef
n (X) ∼= πn(X/E)

and more generally we have a natural isomorphism πdef
n (p−1(O)) ∼= πn(O) for every

open subset O ⊆ X/E and every n > 0.

Recall that if X = X(M) ⊆ Mk is a closed and bounded ∅-semialgebraic and
st : X → X(R) is the standard part map, we can identify p : X → X/E with
st : X → X(R) and deduce the following result of [BO09].

Corollary 12.3. If X = X(M) ⊆Mk is a closed and bounded ∅-semialgebraic and
st : X → X(R) is the standard part map, then

πdef
n (X) ∼= πn(X(R))

and similarly [|P |M , X]def ∼= [|P |R, X(R)] for every closed simplicial complex P
defined over Ralg.

In the rest of the section we prove Theorem 12.2. The main difficulty is the
following. The homotopy properties of a space are essentially captured by the
nerve of a good cover, but unfortunately it is not easy to establish a correspondence
between good covers of X/E in the topological category and good covers of X in the



20 ALESSANDRO ACHILLE AND ALESSANDRO BERARDUCCI

definable category. One can try to take the preimages p−1(U) in X of the open sets
U belonging a good cover of X/E, but these preimages are only

∨
-definable, and if

we approximate them by definable sets, we loose some control on the intersections.
We shall show however, that we can perform these approximations with a controlled
loss of the amount of “goodness” of the covers. Granted all this, the idea is to lift
homotopies from X/E toX, with an approach similar to the one of [Sma57, Dug69],
namely we start with the restriction of the relevant maps to the 0-skeleton, and we
go up in dimension.

In the rest of the section fix an open set O ⊆ X/E. We need the following.

Lemma 12.4. Let V be an open cover of O. Then there is a refinement W of V
such that for every W ∈ W there is V ∈ V and a definably contractible definable
set B ⊆ X such that p−1(W ) ⊆ B ⊆ p−1(V ).

Proof. Let y ∈ O. By our assumption p−1(y) is a decreasing intersection
⋂
i∈NBi(y)

of definably contractible definable sets Bi(y). Now let V (y) ∈ V contain y and note
that p−1(V (y)) is a

∨
-definable set containing p−1(y) =

⋂
i∈NBi(y). By logical

compactness Bn(y) ⊆ p−1(V (y)) for some n = n(y) ∈ N. By Proposition 3.3 we
can find an open neighbourood W (y) of y with p−1(W (y)) ⊆ Bn(y). We can thus
define W as the collection of all the sets W (y) as y varies in O. �

Corollary 12.5. Let V be an open cover of O. Then there is a refinement W of V
with the following property: every definable continous map f : |∂σ|M → p−1(W ) ⊆
p−1(O) whose domain is the boundary of a definable simplex and whose image is
contained in p−1(W ) for some W ∈ W, can be extended to a definable continous
map F : |σ̄|M → p−1(O) on the whole closed simplex |σ̄|M with image contained in
p−1(V ) for some V ∈ V.

Proof. Let V andW be as in Lemma 12.4. By hypothesis, and by the property ofW,
we have that f(|∂σ|M ) ⊆ p−1(W ) ⊆ B ⊆ p−1(V ) for some definably contractible
set B and some V ∈ V. Then, f can be extended to a definable map on |σ̄|M with
image contained in B ⊆ p−1(V ) [vdD98, 8, 3,10]. �

Definition 12.6. IfW and V are as in Corollary 12.5, we say thatW is semi-good
within V.

Lemma 12.7. For any open cover U of O and any n ∈ N, there is a refinement
W of U such that, given a n-dimensional closed simplicial complex P , a closed
subcomplex L, and a (p−1(W), P )-small definable continous map f : |L∪P (0)|M →
p−1(O), there is a (p−1(U), P )-small definable continous map F : |P |M → p−1(O)
extending f .

Proof. Reasoning by induction, it suffices to show that given k < n and an open
cover U of O, there is a refinement W of U such that, given a n-dimensional closed
simplicial complex P and a (p−1(W), P )-small definable map f : |L ∪ P (k)|M →
p−1(O), there is a (p−1(U), P )-small definable map F : |L ∪ P (k+1)|M → p−1(O)
extending f .

To this aim, consider three open covers W ≺ V ≺ U of O such that V is a
star-refinement of U and W ≺ V is semi-good within V. Let σ ∈ P (k+1) be a
(k + 1)-dimensional closed simplex such that σ̄ is not included in the domain of f .
Since |∂σ|M ⊆ |σ ∩ P (k)|M ⊆ dom(f) and f is (p−1(W), P )-small, there is W ∈ W
such that f(|∂σ|M ) ⊆ f(|σ̄ ∩ P (k)|M ) ⊆ p−1(W ). By the choice of W, there is
Vσ ∈ V such that we can extend f|∂σ to a map Fσ : |σ̄|M → p−1(Vσ) and define
F : |L ∪ P (k+1)|M → p−1(O) as the union of f and the various Fσ for σ ∈ P (k+1).
Notice that the union is a well defined continuous function since two distinct Fσ
coincide with f on their common domain.
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It remains to prove that F : |L ∪ P (k+1)|M → p−1(O) is (p−1(U), P )-small. To
this aim let τ ∈ P be any simplex. By our hypothesis there is W ∈ W such that
f(|τ̄ ∩ P (k)|M ) ⊆ p−1(W ). Now let V ∈ V contain W . By construction each face
σ of τ belonging to L ∪ P (k+1) is mapped by F into p−1(Vσ) for some Vσ ∈ V.
Moreover Vσ intersects W , so it is included in StV(W ). The latter depends only on
τ and not on σ and is contained in some U ∈ U . We have thus shown that

⋃
σ Vσ

is contained in some U ∈ U , thus showing that F is (p−1(U), P )-small. �

Definition 12.8. Let U be an open cover of O. If W is as in Lemma 12.7 we say
that W is n-good within U . If the only member of U is O (or if the choice of U is
irrelevant), we simply say that W is n-good.

Lemma 12.9. Let n ∈ N and let W be an n + 1-good cover of O. If P is an n-
dimensional simplicial complex and f, g : |P |M → p−1(O) are definable continous
functions such that for every σ ∈ P there is W ∈ W such that f(σ) and g(σ) are
contained in p−1(W ), then f and g are definably homotopic.

Proof. Let I = [0, 1] and consider the simplicial complex P ×I (of dimension n+1)
with the standard triangulation (as in [Hat02, p. 112, Proof of 2.10]). Consider the
subcomplex P × {0, 1} of P × I and note that it contains the 0-skeleton of P × I.
Define f t g : |P × {0, 1}|M → p−1(O) as the function which sends (x, 0) to f(x)
and (x, 1) to g(x). Note that f t g is (p−1(W), P × I)-small by hypothesis. By
Lemma 12.7 we can extend it to a definable continuos function H : |P × I|M →
p−1(O). This map is a homotopy between f and g. �

Lemma 12.10. Let n ∈ N. Let V be an open covering of O which is a star
refinement of a n+ 1-good cover W. Given an n-dimensional simplicial complex P
and definable continuos maps f, g : |P |M → p−1(O), if there is a map f∗ : |P |R → O
which is a V-approximations of both f and g, then f and g are definably homotopic.

Proof. Let P ′ be an iterated barycentric subdivision of P such that for each σ ∈ P ′
there is V ∈ V such that f∗(σ̄) ⊆ V . We claim that for each σ ∈ P ′, there is a
W ∈ W such that p ◦ f(σ), p ◦ g(σ) (and f∗ ◦ st(σ)) are in W . Given this claim,
we can conclude using Lemma 12.9.

To prove the claim, fix a σ ∈ P ′ and let V ∈ V be such that f∗(σ) ⊆ V . Since
f∗ is V-approximation of f , for each x ∈ σ there is Vx ∈ St(V) such that p ◦ f(x)
and f∗ ◦ st(x) are in Vx, and similarly there is a V ′x such that p ◦ g(x) and f∗ ◦ st(x)
are in V ′x. Since V intersects both Vx and V ′x, StV(V ) contains both p ◦ f(x) and
p ◦ g(x), and since St(V) refines W, there is W ∈ W with the same property. �

Lemma 12.11. Let n ∈ N. There is an open cover W of O such that, given an
n-dimensional simplicial complex P and definable continuous maps f, g : |P |M →
p−1(O), if f∗ and g∗ are W-approximations of f and g respectively, and G : |P ×
I|R → O is a homotopy between f∗ and g∗, then there is a definable homotopy
H : |P × I|M → p−1(O) between f and g.

Proof. Let U be an n + 1-good covering of O, let V be such that St(V) is a star
refinement of U and let W ≺ V be n + 1-good within V. Let T be a barycentric
subdivision of |P × I|R such that G is (W, T )-small. Let H(0) : T (0) → p−1(O) be
such that p◦H(0) = G◦st on the vertices of T . For each simplex σ ∈ T there isW ∈
W such that G(|σ̄|R) ⊆ W , hence H(0)(|σ(0)|M ) ⊆ W . Using Lemma 12.7 we can
extend H(0) to a (p−1(V), T )-small definable continous map H : |T |M → p−1(O).
If x = (x, 0) ∈ |P ×0|M is a vertex of T , then (f∗ ◦ st)(x) = (G◦ st)(x) = (p◦H)(x)
by construction. Since moreover f∗ ◦ st and p ◦H are (V, T )-small, it follows that
f∗ ◦ st and p ◦ H|0 are St(V)-close, hence f∗ is a St(V)-approximation of both f
(by hypothesis) and of H|0. We can then conclude using Lemma 12.10 that f and
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H|0 are homotopic, and, similarly, that H|1 is homotopic to g. Composing the
homotopies, we can finally prove that f is homotopic to g. �

Lemma 12.12. Let U be an open cover of O. Let f∗ : |P |R → O be a con-
tinuous map. Then, we can find a map f : |P |M → p−1(O) such that f∗ is a
U-approximation of f .

Proof. Let n = dim(P ), let V be a star-refinement of U and let W be n-good
within V. Consider an iterated baricentric subdivision P ′ of P such that f∗ is
(W, P ′)-small. Let f (0) : P ′(0) → p−1(O) be such that p ◦ f (0) = f∗ ◦ st on the
vertices of P ′. Then we can apply Lemma 12.7 to extend f (0) to a (V, P ′)-small
map f : |P |M → p−1(O). Now notice that p ◦ f and f∗ ◦ st are St(V)-close (since
they are (V, P ′)-small and they coincide on the vertices), and therefore f∗ is a
St(V)-approximation of f , so also a U-approximation. �

We can now finish the proof of the main result of this section.

Proof of Theorem 12.2. First we prove the injectivity. Suppose that pPO([f ]) =
pPO([g]). Let W be as in Lemma 12.11. Choosing a different representative of
the homotopy classes we can assume without loss of generality that f and g are
(p−1(W), P )-small, pPO([f ]) = [f∗] and pPO([g]) = [g∗], where f∗ and g∗ are W-
approximation of f and g respectively. By definition [f∗] = [g∗], that is f∗ and
g∗ are homotopic. We can now apply Lemma 12.11 to find a definable homotopy
between f and g, and so [f ] = [g].

The surjectivity is immediate from Lemma 12.12. �

13. Theorem C

In this section we work under the following strengthening of 12.1, where we
consider definable proper balls (Definition 6.2) instead of definably contractible
sets.

Assumption 13.1. X/E is a triangulable manifold, X is a definable manifold, and
each fiber of p : X → X/E is the intersection of a decreasing sequence of definable
proper balls.

We also need:

Assumption 13.2 (Topological compact domination). The image under p : X →
X/E of a definable subset of X with empty interior, has empty interior.

Both assumptions are satisfied by p : G → G/G00 for any definably compact
group G (see section 7 and Corollary 6.4).

Theorem 13.3 (Theorem C). Under Assumptions 13.1 and 13.2, dim(X) =
dimR(X/E).

To prove the theorem the idea is to exploit the following link between homotopy
and dimension: given a manifold Y and a punctured open ball U := A \ {y} in Y ,
the dimension of Y is the least integer i such that πi−1(U) 6= 0.

Proposition 13.4. Under Assumption 13.1, dim(X) ≥ dimR(X/E).

Proof. Let n = dim(X) and N = dimR(X/E). Fix x ∈ X and let y = p(x). Let
B0 be an open definable ball containing p−1(y). Since X/E is a manifold, there is
a decreasing sequence of proper balls Ai ⊆ X/E such that y =

⋂
i∈NAi =

⋂
i∈NAi.

Now B0 ⊇ p−1(y) =
⋂
i∈I p−1(Ai) and p−1(Ai) is type-definable (because Ai is

closed), so there is some i ∈ N with p−1(Ai) ⊆ B0. Let A = Ai and observe that
p−1(A) is

∨
-definable and contains the type definable set p−1(y). Since the latter is
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a decreasiong intersection of definable proper balls, there is some definable proper
ball B1 such that

x ∈ p−1(y) ⊆ B1 ⊆ B1 ⊆ p−1(A) ⊆ B0.

Now let f : Sn−1 → ∂B1 = B1\B1 be a definable homeomorphism (whose existence
follows by the hypothesis that the ball is proper). By fixing base points, we can
consider the homotopy class [f ] as a non-zero element of πdef

n−1(B0 \ x) (namely f
is not definably homotopic to a constant in B0 \ x).

A fortiori, 0 6= [f ] ∈ πdef
n−1(p−1(A) \ p−1(y)), because if f is homotopic to a

constant within a smaller space, it remains so in the larger space. Now observe that
p−1(A) \ p−1(y) = p−1(A \ y) and by Theorem 12.2 we have πdef

n−1(p−1(A \ y)) ∼=
πn−1(A \ y).

We conclude that πn−1(A \ y) 6= 0, and since A is an open ball in the manifold
X/E this can happen only if n ≥ N . �

So far we have not used the full strength of the assumption, namely the topolog-
ical compact domination. The proof dim(X) ≤ dimR(X/E) is more subtle, because
spaces of different dimension can have the same homotopy, for instance S1 and
S1 × R. Keeping this in mind, suppose that X/E is a two-dimensional manifold.
How can we exclude the possibility that X is a three dimensional definable man-
ifold? The informal idea is the following. Take an open subset O ⊆ X/E which
looks like a thickened circle, namely an annulus, embedded in the two-dimensional
manifold X/E. Its preimage p−1(O) would then look like a thickened cilinder in the
three-dimensional definable manifold X (although it would only be

∨
-definable).

We can now “kill the homotopy” of p−1(O) gluing to it a two-dimensional definable
disk (as we would do with the ordinary cilinder S1×R) and use Theorem B to show
that the image of the disk in X/E would kill the homotopy of the annulus O. This
can only happen if the image of the disk fills the hole of the annulus, so in particu-
lar it has non-empty interior in X/E. We have thus violated compact domination,
since the disk has empty interior in its three-dimensional ambient space. In the
actual proof we have to do some more work in order to approximate

∨
-definable

sets with definable sets without loosing the homotopy information.

Proposition 13.5. Under Assumptions 13.1 and 13.2, dim(X) ≤ dimR(X/E).

Proof. As before, let n = dim(X) and N = dimR(X/E). Let A0 ⊆ X/E be an
open N -ball, namely a set homeomorphic to {|x| ∈ RN : |x| < 1}. Let A1 ⊆ A0
be the image of {|x| ∈ RN : |x| < 1/2} under the homeomorphism and note that
0 6= πN−1(A0\A1) and A0\A1 is a deformation retract of A0\{y} for every y ∈ A1.

By Theorem 12.2, we have 0 6= πdef
N−1(p−1(A0 \ A1)), so there is a map f :

SN−1 → p−1(A0 \A1) of pointed spaces with 0 6= [f ] ∈ πdef
N−1(p−1(A0 \A1)).

SinceA0 is a ball, we have πN−1(A0) = 0 and, by Theorem 12.2, πdef
N−1(p−1(A0)) =

0 as well. In particular [f ] = 0 when seen as an element of πdef
N−1(p−1(A0)). This

is equivalent to say that f can be extended to a definable map F : D → p−1(A0),
where D = SN−1 × I and F is a definable homotopy (relative to the base point)
between f and a constant map.

Notice that dim(F (D)) ≤ dim(D) = N . Now assume for a contradiction that
N < dim(X). Then dim(F (D)) < dim(X), and therefore F (D) has empty interior
in X. By topological compact domination (p ◦ F )(D) has empty interior in X/E,
so in particular there is some y ∈ A1 such that y /∈ (p ◦ F )(D).

It follows that the image of F is disjoint from p−1(y), namely F takes values
in p−1(A0) \ p−1(y) = p−1(A0 \ y) and witnesses the fact that f is null-homotopic
when seen as a map into p−1(A0 \ y).
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We can now reach a contradiction as follows. Since A0 \ A1 is a deformation
retract of A0\{y}, the inclusion induces an isomorphism πN−1(A0\A1) ∼= πN−1(A0\
y). By the functoriality part in Theorem 12.2, there is an induced isomorphism
πdef
N−1(p−1(A0 \ A1)) ∼= πdef

N−1(p−1(A0 \ y)). Moreover, this isomorphism sends the
homotopy class of f to the homotopy class of f itself, but seen as a map with a
different codomain. This is absurd since f was not null-homotopic as a map to
p−1(A0 \A1), while we have shown that it is null-homotopic as a map to p−1(A0 \
y). �

As a corollary we obtain.

Corollary 13.6 ([EO04]). Let G be an abelian definably compact and definably
connected group of dimension n. Then πdef

1 (G) ∼= Zn and G[k] ∼= (Z/kZ)n, where
G[k] is the k-torsion subgroup.

Proof. By [BOPP05], G/G00 is a compact abelian connected Lie group and by the
previous result its dimension is n. It follows that G/G00 is isomorphic to an n-
dimensional torus, so π1(G/G00) ∼= Zn and, by Theorem 12.2, πdef

1 (G) ∼= Zn as
well.

To determine the k-torsion two approaches are possible. The first is to argue
as in [EO04], namely to observe that G[k] ∼= πdef

1 (G)/kπdef
1 (G) and πdef

1 (G) ∼= Zn.
Alternatively we can use the fact that G00 is divisible [BOPP05] and torsion free
[HPP08], so G and G/G00 have isomorphic torsion subgroups. Since G/G00 is a
torus of dimension n, its torsion is known and we obtain the desired result. �

Notice that in [EO04] both the isomorphism πdef
1 (G) ∼= Zn and the determination

of the k-torsion of G is proved directly without using G/G00, while our argument
is a reduction to the case of the classical tori.
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