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Abstract

Management in ubiquitous systems cannot rely on human intervention or cen-

tralised decision-making functions because systems are complex and devices

are inherently mobile and cannot refer to centralised management applications

for reconfiguration and adaptation directives. Management must be devolved,

based on local decision-making and feedback control-loops embedded in auton-

omous components. Previous work has introduced a Self-Managed Cell (SMC)

as an infrastructure for building ubiquitous applications. An SMC consists

of a set of hardware and software components that implement a policy-driven

feedback control-loop. This allows SMCs to adapt continually to changes in

their environment or in their usage requirements. Typical applications include

body-area networks for healthcare monitoring, and communities of unmanned

autonomous vehicles (UAVs) for surveillance and reconnaissance operations.

Ubiquitous applications are typically formed from multiple interacting auton-

omous components, which establish peer-to-peer collaborations, federate and

compose into larger structures. Components must interact to distribute man-

agement tasks and to enforce communication strategies. This thesis presents

an integrated framework which supports the design and the rapid establish-

ment of policy-based SMC interactions by systematically composing simpler ab-

stractions as building elements of a more complex collaboration. Policy-based

interactions are realised – subject to an extensible set of security functions –

through the exchanges of interfaces, policies and events, and our framework

was designed to support the specification, instantiation and reuse of patterns of

interaction that prescribe the manner in which these exchanges are achieved.

We have defined a library of patterns that provide reusable abstractions for

the structure, task-allocation and communication aspects of an interaction,

which can be individually combined for building larger policy-based systems in

a methodical manner. We have specified a formal model to ensure the rigorous

verification of SMC interactions before policies are deployed in physical devices.

A prototype has been implemented that demonstrates the practical feasibility

of our framework in constrained resources.
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Chapter 1

Introduction

Ubiquitous systems typically comprise numerous portable devices, such as

smartphones, sensors and electronic devices in general, which are inherently

mobile and cannot refer to centralised management applications for their re-

configuration and decision-making functions. In addition, the configuration

and management of these devices is too complex and cumbersome to be left to

general computer users. A typical example is a body-area network for health-

care monitoring, comprising sensors and actuators that must integrate with

external monitoring and diagnostic devices. To manage the intricacies and the

scale of these systems, they must be built from autonomous elements with

devolved management responsibilities. This goes against the tradition of large-

scale network management services, which are functionally integrated in cen-

tralised network operation centres by human administrators.

Work on pervasive and ubiquitous systems [RHC+02, GSSS02] often revolves

around centralised middleware services that offer supporting functionality for

applications, but these studies generally ignore how applications can be built

as dynamic ad-hoc collaborations of smaller and autonomous components. The

management of such systems frequently relies on centralised services for the

coordination of the resources available in the environment, which in turn must

be appropriately configured by the user. In order to mitigate the problems

related to centralised and manual management, autonomic computing investi-
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2

gates how a system can manage itself requiring minimal, if any, human inter-

vention; this was termed self-management. Self-management aims to enable

the system to configure, optimise, protect and heal itself autonomously [KC03].

This kind of devolved management is a promising approach to tackle the com-

plexity of large-scale ubiquitous systems, where autonomous components must

be able to perform local decision-making and automatically negotiate the re-

quired interactions with other components in their surroundings.

Previous work has introduced the Self-Managed Cell (SMC) [LDS+08] as an in-

frastructure for building ubiquitous computing applications. An SMC consists

of a set of hardware and software components that are able to work auton-

omously, based on a policy-driven feedback control-loop. Policies are used to

specify both adaptation rules that determine which management or reconfigu-

ration actions must be performed in response to changes in the context, and

access control rules that determine which actions can or cannot be performed

on the resources that an SMC provides. Policies separate the management

strategy from the implementation of the management actions, and new policies

can be dynamically loaded into an SMC, which permits the modification of the

run-time adaptation strategy without interrupting the SMC’s operation.

Although SMCs are autonomous, applications typically require a large num-

ber of SMCs to collaborate, which must be able to interact with each other in

complex ways, to federate or compose into larger structures. Examples include

body-area networks, which typically consist of various devices such as complex

physiological sensors that may be SMCs in their own right, smartphones, diag-

nostic devices and equipment available locally. Cross-SMC interactions permit

the realisation of pervasive environments in which SMCs can engage in ad-hoc

peer-to-peer collaborations with other SMCs, and can aggregate into larger au-

tonomous structures, scaling SMC management to larger environments. The

Self-Managed Cell defines an architectural pattern for building policy-based

autonomous systems composed of services interacting over an asynchronous

event bus. An SMC can be instantiated to individual devices, as well as scale

up to cater for management in larger ubiquitous systems.
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To support applications that demand the cooperation of a number of elemen-

tary autonomous components it is thus necessary to devise abstractions to

facilitate interactions between SMCs, allowing SMCs to compose and federate

into large-scale policy-based systems which are also SMCs. Policies provide a

method for adapting the SMC’s behaviour according to changes of state in its

local context, and also define how SMCs should behave when they dynamically

encounter new SMCs. In these interactions, SMCs exchange policies to pre-

scribe how a remote SMC must behave; SMCs can forward events which are

required for notifying changes of context and triggering management policies

in another SMC, and SMCs provide interfaces which offer functionality or fa-

cilitate access to the resources that the SMC owns. In this thesis we present

the infrastructure that makes SMC interactions possible. To address the de-

sign and the rapid establishment of complex policy-based SMC interactions we

advocate ways of structuring these collaborations, and the specification, in-

stantiation and reuse of patterns of interaction, which prescribe the algorithms

or protocols through which the exchanges of policies, events and interfaces are

achieved. The use of patterns supports the construction of more complex SMC

interactions in a methodical manner, by reusing simpler abstractions as design

elements of a more complex interaction.

1.1 Example Applications

The application scenarios below will be used throughout this thesis to illus-

trate specific concepts relevant to collaborations of Self-Managed Cells. They

describe how SMCs can be used in applications for healthcare monitoring and in

coalitions of unmanned autonomous vehicles. While the former illustrates ways

of organising and composing simpler SMCs into larger structures, e.g. body-

area networks of sensors and actuators, the latter brings to light issues related

to ad-hoc collaborations of mobile nodes and highlights the security aspects

that must be considered in these interactions.



1.1. Example Applications 4

1.1.1 Healthcare Monitoring

Healthcare applications can be deployed both for automated monitoring in the

hospital and for home monitoring of the elderly or patients with chronic condi-

tions [LDS+08]. A body-area SMC running on a smartphone can interact with

a number of body-sensor SMCs monitoring properties such as temperature,

heart rate, blood pressure, glucose and oxygen saturation. The body-area can

also include actuator SMCs, such as a pacemaker or insulin pump, to perform

actions in response to measurements made by the sensors. Local equipment

available in the home environment, e.g. an ECG diagnostic device, may be used

in conjunction with the body-area SMC to perform more complex data process-

ing and condition assessment. A doctor or healthcare worker loads policy-

based monitoring tasks into the patient, which rely on the devices available in

the body-area SMC as well as on those in the home environment. Management

policies are triggered in response to measurements made by the sensors, and

then enforce actions for reporting abnormal physiological parameters, trigger-

ing a pacemaker or insulin infusion, or even automatically requesting emer-

gency medical service if necessary. Similarly, management policies are used to

reconfigure the SMC functioning in response to changes in its context, e.g. fail-

ures of components or performance degradation. The resources available in

the body-area SMC can only be accessed by certain SMCs, such as the doc-

tor or healthcare worker SMC, and in many cases they must be hidden from

other SMCs nearby both for security and privacy reasons. Interactions would

also be required when the patient SMC encounters an SMC controlling devices

in the General Practitioner’s (GP) clinic, which typically access the patient’s

resources to perform reconfiguration actions, e.g. to change dosage on drug

delivery pumps.

1.1.2 Coalitions of UAVs

Coalitions of unmanned autonomous vehicles (UAVs) can be used in reconnais-

sance or rescue operations that are too dangerous or even impossible for hu-
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mans to undertake [ADK+06, ADL+07]. An SMC running on each device en-

ables local policy enforcement and decision-making in response to conditions

monitored in the field, e.g. obstacles or chemical detection. Policies are used

to govern the management actions taken by each individual vehicle, or to in-

voke actions on other UAVs in order to collaborate on the accomplishment of

a mission. Policies can be directly loaded from a single commander UAV, or

more elaborate task exchange mechanisms can be required, e.g. UAVs bidding

for tasks according to their capabilities. Rescue personnel carry SMCs running

on their portable communication devices, which interact with the UAVs and

retrieve the information collected during the mission. Multiple teams of UAVs

may need to collaborate to accomplish a mission, where some members partic-

ipate in two different teams, e.g. in a UK and US coalition. This requires teams

with relaxed restrictions on their structural organisation, allowing sharing of

resources and equipment among cooperating teams. The nature of the coalition

may demand more complex abstractions, for example a hierarchical organisa-

tion, in which a rescue team has as one of its members a medical team, which

is a coalition itself.

1.2 Requirements Summary

We can draw several requirements from the scenarios described earlier. In

order to form complex policy-based systems a number of autonomous SMCs

must be able to federate with minimum or no user intervention.

The SMCs in a federation must be able to exchange policies among them-

selves, as policies prescribe how an SMC should behave within the context of

an interaction. Policies are triggered in response to events, which can be local

events within the SMC or events generated by remote SMCs. Thus if manage-

ment actions involved in the feedback control-loop are to span the boundaries

of an SMC, federated SMCs must be able to exchange events among them-

selves and notify their partners of local context changes. The structure of

these federations varies depending on the nature of the involved SMCs, where
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SMCs may be required to share and expose some of their constituent resources

to their partners, or at least mediate access to these resources in some cases.

Often a federation of SMCs will be part of a larger, and more complex inter-

action, such as a body-area network interacting with the equipment available

at the GP, or two rescue teams of UAVs cooperating to accomplish a mission.

Expressing large-scale interactions using simple abstractions such as policies,

interfaces and events can be difficult to manage and deploy. Support is needed

for the rapid establishment of complex policy-based SMC interactions, through

the specification, instantiation and reuse of patterns of interaction that pre-

scribe the manner in which these exchanges are achieved. Patterns can then

be used for systematically composing abstractions as building elements of

a more complex collaboration.

Some applications are more susceptible to security threats, e.g. coalitions of

UAVs in a reconnaissance mission. These applications will necessitate stricter

controls on which SMCs are allowed to join the interaction, and which are to

be refused if they do not meet a set of criteria to ascertain their provenance.

Collaborations of SMCs thus require support for secure interaction estab-

lishment and operation with distributed nodes enforcing devolved security

functions.

Typically interactions will involve SMCs originating from different administra-

tive authorities, and their successful operation depends both on the correct

specification of their interactions and on the suitability of the participating

SMCs. Ideally, interactions must be checked prior to implementation and pol-

icy deployment in physical devices. Ensuring the robustness of these interac-

tions demands the verification of the interaction specification, and checking

whether the collaborating SMCs are able to enforce their policies and whether

these policies are correctly deployed among distributed SMCs.

Finally, an infrastructure is needed to enforce these interactions, i.e. an imple-

mentation.
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1.3 Contributions

This thesis makes the following contributions:

• The design of an integrated framework which supports the specification,

instantiation and reuse of policy-based interactions by systematically com-

posing simpler abstractions, using the Self-Managed Cell as the underly-

ing infrastructure.

• The identification of the basic mechanisms required for supporting SMC

interactions, in terms of dynamic loading of policies, the events required

for triggering these policies, and the interfaces that offer the functionality

required for enforcing the management actions prescribed by a policy.

• The definition of a catalogue of reusable patterns for engineering larger

policy-based interactions that distinguishes between the overall organisa-

tion of the interaction (structural aspects), the manner in which policies

are exchanged (task-allocation aspects) and how events are forwarded be-

tween SMCs (communication aspects).

• The definition of the minimum security aspects which must be considered

in collaborations of SMCs, and how the framework can be extended to

address additional requirements.

• The formal specification of the SMC behaviour, and the use of model-

checking techniques to enable the verification of properties and check the

correctness of SMC interactions before deployment.

• The implementation of a prototype and a library of interaction patterns

that demonstrate how the principles and techniques presented in this

thesis can be used for supporting the federation of SMCs.

Although this thesis focuses on the Self-Managed Cell framework as the in-

frastructure for building policy-based autonomous systems, the principles and

techniques that are proposed here have a wider applicability for engineering

pervasive and autonomous systems in general. This will become clear when
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the use of patterns is introduced, as patterns provide more general abstrac-

tions for structuring interactions between autonomous components.

1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 presents related work, both on

the Self-Managed Cell infrastructure and policy-based management in general,

as well as on research areas that will be relevant at different stages of this

thesis.

Chapter 3 investigates the underlying principles of SMC interactions. It de-

scribes the basic mechanisms that support interaction establishment and that

allow an SMC to access the functionality provided by other SMCs. It describes

how a group of policies can be loaded into an SMC to prescribe how it should

behave in the context of an interaction, and how events are used to trigger

these policies. The use of authorisation policies in SMC interactions is also

presented, as policy loading and invocations into a remote SMC are subject to

access control restrictions. This chapter concludes by illustrating how security

management in SMC interactions can be achieved by using policies and roles

to support secure interaction establishment and operation.

Chapter 4 introduces the use of software architecture principles for building

large-scale policy-based interactions, using the notion of architectural styles.

Styles can encode different aspects of an interaction, with respect to structure,

task-allocation and event-forwarding behaviour. This chapter also describes

how architectural styles can be used for composing and federating SMCs to

form complex interactions in a systematic manner.

Chapter 5 presents the formalisation of SMC behaviour using the Alloy [Jac02]

modelling language, which allows us to specify the functioning of SMC inter-

actions declaratively. The specification can then be used for model checking

specific SMC interactions and for verifying whether the SMCs in a collabora-

tion are able to enforce their policies.
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Chapter 6 provides details on the prototype implemented for supporting SMC

interactions, and on the library of reusable patterns for composing SMCs. The

chapter also presents the evaluation of the implementation, including memory

consumption and performance results in resource-constrained devices.

Chapter 7 outlines a case-study presenting how SMCs can be used for build-

ing a policy-based application for diabetes monitoring and treatment. It shows

how various SMCs can be composed in a body-area network, and the interac-

tions which occur with a doctor or healthcare worker. The interactions between

the body-area and a home monitoring SMC, involving a set of equipment and

diagnostic devices, are also described.

Chapter 8 presents a more general discussion and critical evaluation of the

framework proposed in this thesis, in terms of its usability, scalability and ex-

tensibility. The limitations and deficiencies of the framework are also discussed

in this chapter.

Chapter 9 presents a short summary of this thesis, and how future work can

make progress in some aspects that were not addressed yet. Finally, the closing

remarks are presented.



Chapter 2

Background and Related Work

The Self-Managed Cell was proposed as a platform for the construction of

policy-based autonomous systems. It is based on a policy-driven feedback

control-loop that determines which management or reconfiguration actions

must be performed in response to changes in the SMC context, e.g. failures

of components or performance degradation. Individual SMCs are autonomous

and charged with enforcing local decision rules that govern their own behaviour.

However, applications will typically require elementary SMCs to negotiate the

necessary interactions with other components in their surroundings and form

larger systems based on the same principles of self-management.

This chapter presents the related work in a top-down approach: Section 2.1

is a general discussion of pervasive environments, their characteristics, and

how autonomic computing aims to address the management aspects of these

systems. Section 2.2 then describes policy-based management within this con-

text, and Section 2.3 presents the background on Self-Managed Cells, which

relies on policies to provide an infrastructure for autonomous management in

pervasive and ubiquitous systems. Finally, Section 2.4 and Section 2.5 con-

centrate on specific techniques advocated for structuring the development of

software, component-based systems and multi-agent systems. We identify how

these research areas can benefit the systematic construction of policy-based

SMC interactions. They provide the background for the engineering principles

10



2.1. Pervasive and Autonomous Systems 11

for composing SMCs in patterns of interactions, which are described in greater

detail in Chapter 4.

2.1 Pervasive and Autonomous Systems

The work on Self-Managed Cells lies at the intersection of two broad research

areas: pervasive computing, which seeks to provide smart environments sat-

urated with technological capabilities, and autonomic computing, which inves-

tigates how to achieve the autonomous management of computing infrastruc-

tures, with minimal human intervention. This section presents a brief overview

of these two research areas.

2.1.1 Pervasive Computing

Pervasive (or ubiquitous) computing concerns environments saturated with

technological capabilities that are so integrated that they seem to “disappear”

[Sat01]. A “smart space” is a well-defined area where the computational in-

frastructure is embedded in the building infrastructure, allowing the computa-

tional and the real world to influence the behaviour of each other. One of the

main characteristics of a pervasive environment is its proactivity, as the system

is expected to anticipate the user’s needs rather than simply react to inputs.

Pervasive systems are expected to make adequate decisions on behalf of the

users, relying on contextual information and on the computational devices

available in the surroundings. Wearable (or implantable) devices form one type

of interface between users and the pervasive environment. A wearable device

can be a smartphone or a special vest with embedded sensors for health mon-

itoring of a person. They must be aware of the user’s context, and adapt their

behaviour to the state of the user. Several aspects must be considered, such

as types of I/O interaction and the restricted capabilities of these devices. A

detailed discussion on wearable devices is presented in [SS03].
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Several studies have been devoted to the design of infrastructures for perva-

sive spaces. Gaia [RHC+02] seeks to extend the traditional operating system

concept to the control of the devices available in a pervasive environment, as

though these were the resources available on a single computer, e.g. disk, mem-

ory, audio, thus providing a view of a meta-operating system. A fundamental

concept in Gaia is the active space which is an extension of a physical space

which contains physical objects, including electronic/computational devices.

An active space introduces a context-based coordination that caters for a trans-

parent interaction between its components, detecting and adapting them in an

autonomous way. Typically, active spaces are room-sized, and need to provide

central servers for running the middleware services, e.g. event and context ser-

vices. An active space follows a component-based infrastructure which extends

the Model-View-Controller (MVC) pattern to reflect the wealth of input, output

and processing devices. Gaia recognises the importance of federating Gaia

spaces, but this is not part of the core view of its meta-operating system for

smart spaces. Support for the interactions between standalone active spaces

was later proposed in [AMCRC04] through the notion of super spaces. This

focuses on how the middleware services of independent spaces are integrated

in collections of peer-to-peer and hierarchical active spaces.

ISAM [A+02] addresses resource management and application adaptation in

large-scale environments. The ISAM architecture provides a pervasive environ-

ment which has a cellular organisation. Cells can be interpreted as institutional

boundaries in a multi-institutional environment similar to virtual organisations

in grid computing [FKT01], thus considering a coarser-grain notion of space

compared to Gaia. An execution cell knows a set of other cells, which form its

neighbourhood. However, ISAM relies on an administrator to inform the neigh-

bours of each cell, which remain static for most of the time. ISAM also relies

on a centralised server to host the services of an entire execution cell (discov-

ery, scheduling, context service). These assumptions make ISAM unsuitable

for ad-hoc environments.

One.world [Gri04, Gri02] focuses on an infrastructure that enables applica-

tions to follow users as they move through pervasive environments. One.world
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concentrates on three requirements of pervasive applications: (1) the system

needs to adapt its behaviour explicitly to contextual changes instead of hiding

it from applications; (2) the system needs to discover new resources dynam-

ically instead of assuming a static environment; and (3) the system needs to

facilitate sharing of information between applications and devices. One.world

mainly relies on discovery, event and migration services. The devices visible on

the local broadcast network are responsible for electing a centralised discov-

ery server. An asynchronous event service provides the basic communication

means, for both local and remote communication. The migration service is

used to move or copy applications to different devices (the application’s entire

state is moved, including execution state and persistent data). One.world relies

on environments, which are abstractions for structuring running applications,

much like processes in an operating system in that both environments and

processes represent an application being executed. Additionally, environments

can be composed in a hierarchical way, providing a mechanism for extending

applications where the outer environment has complete control over the in-

ner environments. An outer environment can intercept and modify events sent

by nested environments, providing an abstraction similar to nested processes

in operating systems. Its implementation is based on nested Java Classload-

ers. There are a few similarities between environments and the composition

of self-managed cells (as the outer environment having control over the inner,

and the integration of event-based infrastructures). However, the scalability

of One.world is limited, especially in relation to service discovery, making it

suitable for small pervasive environments, with only a few dozen people and

devices [Gri02].

iROS [JFW02, PJKF03] focuses on pervasive environments for meeting spaces.

It emphasises the ability to integrate legacy applications, where they can be

modified to be accessible in a standard way and customised to support differ-

ent input/output interactions, for example, using speech input and multiple

display output. In iROS the system is not expected to react to the user or con-

text, and whilst the users must take responsibility for their actions, the system

infrastructure is only responsible for providing a means of executing such ac-
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tions instead of trying to adapt the environment automatically to changes in

the context. iROS provides a message-passing infrastructure, which is cen-

tralised and broadcast-based and is limited to room-sized environments, which

are termed interactive workspaces. iROS deliberately assumes a standalone

pervasive space and does not provide support for the federation of multiple

interactive workspaces.

Oxygen [SPP+03, Oxy06] is a human-centred computing environment which

is mainly concerned with the human-computer interaction aspects of perva-

sive environments, where the user should not be required to type or click but

instead the system should be able to understand more natural forms of interac-

tion, e.g. human speech, gesture or even lip movements. Oxygen presents the

concept of collaborative regions, which are defined as self-organising collections

of computers and/or devices that share some degree of trust. Such collabora-

tive regions can be local-, building- or campus-wide, and they support multiple

communication protocols for low-power local or wide area communication as in

the SMC. Collaborative regions are formed to support the execution of specific

tasks automatically, for example, recording and archiving speech and video

fragments during a meeting (using a policy or script-based pre-configuration).

These high-level user goals are satisfied by assembling generic standalone com-

ponents that implement high-level functions (a voice recognition component,

for example). These components are composed according to their interfaces.

They are constantly monitored and if required, macro-level adaptation can be

performed, substituting entire components. In essence, applications are rep-

resented as a graph of connected modules. Although Oxygen recognises the

importance of establishing collaborative regions for executing specific tasks it

is not clear whether collaborative regions interact with each other and how they

can be federated.

These research studies address different aspects of pervasive computing, and

it is rather difficult to directly compare their functionality and assumptions.

However, they tend to share two limitations: they typically fail to provide a

systematic way of composing and federating independent pervasive spaces into

larger and more complex interactions, and they often focus on pervasive spaces
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of a relatively fixed size, e.g. a room, relying on a particular kind of infrastruc-

ture which does not permit the system to scale down to smaller spaces and

scale up to form larger interactions. In contrast, the SMC is intended as an

architectural pattern applicable at different scales, ranging from small body-

area networks, to large virtual organisations. SMCs are expected to discover

other SMCs dynamically, and support means of systematically specifying and

establishing peer-to-peer collaborations, federations and compositions of larger

structures.

2.1.2 Autonomic Computing

The other aspect of our work is autonomic computing, which advocates that the

management of hardware and software systems cannot be reliant on human

intervention, which is too expensive, error-prone and will not be able to cope

with the scale of emerging pervasive systems. Instead, the system must be

autonomous and capable of managing itself. The term “autonomic computing”

was coined by IBM, and is an analogy to the autonomic nervous system of the

human body which frees our conscious brain from the burden of controlling

the body’s vital functions and internal organs [Hor01, GC03].

The need for managing computing systems is not new, however the scale and

complexity of pervasive and ubiquitous systems makes manual management or

central coordination unworkable. Self-management thus enables the system to

configure (add new components and functions dynamically), optimise (adjust

system parameters), heal (detect, diagnose and repair failures) and protect (de-

fend against attacks) itself in an autonomous1 manner [KC03].

The industry work on autonomic computing, led primarily by IBM [KC03] but

also addressed by Motorola [SAL06] and HP [HP03], focuses on network man-

agement of large clusters and web servers. The IBM autonomic manager has

some similarity to the SMC approach in that it autonomously manages a set

of resources, while exposing a management interface to other autonomic man-

agers, as though it is a managed resource itself [BBC+03]. However, there is
1In this thesis the terms “autonomic” and “autonomous” are used interchangeably.
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no prescribed mode of operation for the specification or instantiation of inter-

actions between autonomic managers. In addition to monitoring events and

executing actions, the control-loop enforced by the autonomic manager is also

responsible for analysing what is monitored and planning which actions should

be taken. This control-loop relies on a knowledge base, which can grow dy-

namically as the autonomic manager learns about the system (Figure 2.1). The

autonomic manager describes the functional aspects of behaviour present in

the control-loop, but not a common architectural view or infrastructure that

defines how these components should be realised.

Figure 2.1: IBM autonomic manager’s control-loop

Several research studies also advocate the use of planning techniques to ad-

dress self-management in autonomous systems [SHMK08, KM07, GCH+04,

AHW04, OGT+99]. The Self-Managed Cell does not rely on planning services

or on the use of a knowledge base, although the SMC functionality can be

extended to include these additional services as required. Instead, the adap-

tation strategy used in SMCs is based primarily on policy-driven control-loops.

Planning does not scale as well as policies, since its generation is computation-

ally expensive, and plans require increased specification effort for defining the

domain model. Instead, writing policies is less cumbersome and they can be

rapidly loaded to change (parts of) the adaptation strategy without interrupting

the SMC’s functioning. This is a fundamental characteristic in permitting the

SMC to scale down to small resources as well as to scale up into more complex
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systems.

2.2 Policy Management

We advocate the use of policies for realising autonomous behaviour. Policy-

based management relies on the use of rules to specify the management as-

pects of a system. Damianou and colleagues [D+01] define a policy as “a rule

that defines a choice in the behaviour of a system”. Policies separate the man-

agement strategy from the implementation of the management actions, which

permits the modication of the run-time adaptation strategy without interrupt-

ing the operation of the system.

Policies can be applied in a number of areas, from adaptation of mobile de-

vices into limited modes of operation, to management of resources in large-

scale environments. According to Ganek and Corbi [GC03], policies will be

used by autonomous systems not only to define management and authori-

sation functions, but also for quality of service, storage backup and general

system configuration. Research on policies has been active for several years,

especially policies for network and systems management. Examples include

PCIM [MESW01], PDL [LBN99] and PMAC [ACG+05]. Frequently policy-based

management frameworks rely on infrastructured organisation models, e.g. us-

ing LDAP servers for implementing policy repositories [HCP07, HMP06]. Al-

though they use policies that are similar to the ones we advocate for encoding

adaptation, these approaches are targeted for the management of large-scale

and networked systems, and do not scale down for managing small devices.

2.2.1 Types of Policies

Policies typically either require activities to be performed (obligations) or give

authority to carry on a given activity (authorisations). For the purposes of this

discussion, obligations and authorisations are defined as follows.

Obligation policies are event-condition-action rules of the form:
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on 〈event〉 do
if 〈conditions〉 then

〈target〉 〈action〉

Obligations cater for the adaptive behaviour of the system and specify which

actions must be performed in response to events, provided conditions are sat-

isfied. The event is a term of the form e(a1,...,an), where e is the name of the

event and a1,...,an are the names of its attributes. The condition is a boolean

expression that checks local properties of the system enforcing the policy and

the attributes of the event. The policy designates a target upon which the ac-

tion will be invoked. The action is a term of the form a(a1,...,am), where a is

the name of the action and a1,...,am are the names of its attributes. The target

must support an operation that implements this action. The attributes of an

event can be used for evaluating the condition, or as arguments to the action.

Implicitly an obligation has a subject, which is the entity in charge of enforc-

ing the policy. The target may be the same as the subject, i.e. actions can be

performed locally.

Authorisation policies are access control rules of the form:

auth[+/-] 〈subject〉 −→ if 〈condition〉 then
〈target〉 〈action〉

Authorisations specify which actions a subject is permitted (positive authorisa-

tion) or forbidden (negative authorisation) to invoke on a target, provided con-

ditions are satisfied. The action and conditions have a similar format to those

defined in obligations. The system in charge of enforcing an authorisation is

typically the target of that policy, as it is usually assumed that targets normally

wish to protect themselves from unauthorised actions. However, policies could

be devolved to authorisation decision points if required.

2.2.2 Policy Conflicts

When policies originating from different systems are combined conflicts may oc-

cur if two or more policies apply to the same object. Policy conflict analysis pro-
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cesses are critical and have to be scalable and cope with the dynamism, hetero-

geneity and size of autonomic management infrastructures [DJS08]. Lupu and

Sloman [LS99] present two main classes of policy conflicts: modality conflicts

and application-specific conflicts. Modality conflicts arise when two or more

policies with different modalities (positive and negative) refer to the same sub-

ject, action and target. For example, a subject may be at the same time autho-

rised and forbidden (by both a positive and a negative authorisation) to perform

an action on a target, or a subject may be required (by an obligation) but for-

bidden (by a negative authorisation) to perform an action on a target. Typically,

modality conflicts can be identified through syntactic analysis of the policies,

and precedence schemes are often used for automatically solving such con-

flicts. Several research studies address policy conflicts from the perspective of

detecting overlapping subjects, targets and actions [UBJ+03, RDD07, KFJ03].

Conflict detection based on situations where the condition part of multiple poli-

cies may be simultaneously true, i.e. two policies become applicable and may

specify two incompatible actions, has been studied in [AGLL05].

Application-specific conflicts occur if what is contained in a policy is inconsis-

tent with specific concepts and semantics related to the application domain.

These involve separation of duty conflicts [CW87] (where the same manager

performs two or more tasks that are supposed to be performed by different

managers) and conflict of interests (where the same manager manages two or

more objects that are supposed to be managed by distinct managers), for ex-

ample. Application-specific conflicts cannot be automatically identified through

syntactic analysis, and they typically require the use of meta-policies to specify

constraints that provide additional information for conflict resolution. Frame-

works for policy analysis and detection of application-specific conflicts are pre-

sented in [BLR03, CFP+06, CLM+09].

2.2.3 Policy Refinement

User goals are typically expressed as high-level policies that are not directly im-

plementable. Policy refinement provides support for translating abstract goals
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into concrete, implementable policies that can be enforced by the system. The

main objectives of policy refinement are: (a) determine the resources which are

required for fulfilling the policy requirements, (b) translate the high-level poli-

cies into concrete policies that the system can enforce, (c) verify that the lower

level policies still meet the high-level goals [Ban05]. This ensures that the im-

plementable policies achieve the same functionality intended by the high-level

ones.

2.3 Self-Managed Cell Framework

The Self-Managed Cell (SMC) [LDS+08, SBD+05, DLS+05, DHL+05, S+06] frame-

work provides an infrastructure for building autonomous ubiquitous systems.

It relies on the use of policies as the principal mechanism for achieving autono-

mous behaviour and has evolved from previous work on policy-based manage-

ment developed at Imperial College [Slo94b, D+01, LSDD00, DLSD01, SL02].

An SMC consists of a set of hardware and software components that are able

to work autonomously, based on a policy-driven feedback control-loop that de-

termines which management or reconfiguration actions must be performed in

response to changes in the SMC context.

Figure 2.2: Body-area SMC

A typical SMC used for health monitoring (Figure 2.2) comprises a smartphone
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or a Gumstix2 device hosting SMC management services that control several

sensors such as heart rate, temperature, acceleration, blood pressure and

oxygen saturation hosted on body-sensor nodes3 (BSN) which may be SMCs

themselves. Actuators such as a pacemaker or an insulin pump SMC are acti-

vated according to conditions monitored by the sensors, or alarms are set de-

pending on the measurements made by these sensors. Smartphones or other

Gumstix devices are also used to host application services, e.g. a diagnostic

service hosted in a remote device. An SMC running on a doctor’s or nurse’s

smartphone can be used to interact with the patient’s body-area network, ei-

ther prescribing how monitoring must be conducted, or collecting its results.

Communication with BSN nodes typically occurs through IEEE 802.15.4 ra-

dio links while communication between Gumstix devices or with smartphones

occurs through Bluetooth or Wi-Fi.

Figure 2.3: Self-managed cell architecture

We regard the SMC as an architectural pattern, where the SMC can be instan-

tiated to individual devices, as well as scale up to cater for the management

of larger ubiquitous systems. The SMC framework relies on a dynamic set of

management services (Figure 2.3): an event bus that is used to carry events

between the various components and services within the SMC, a policy service

that enforces adaptive and access control rules, and a discovery service that

can discover new components which are able to join the SMC. Typically dif-

2http://www.gumstix.com
3http://vip.doc.ic.ac.uk/bsn/
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ferent implementations of these services would be used on small-scale devices

and on large-scale environments. The architecture is extensible and additional

services, e.g. for retrieving a specific type of contextual information, can be

added to extend the SMC architecture as required [LDS+08].

The Self-Managed Cell resembles a sentient object [GBCC02, VCC+02, BC04]

in that both are intended to model a set of hardware and software components

that interact with each other, and provide an infrastructure to support large-

scale distributed systems composed of mobile autonomous components. Both

rely on adapters to abstract low-level communication protocols, and use an

event-based infrastructure to support event dissemination among collaborat-

ing components. A sentient object accepts input via its sensors, and reacts by

acting upon the environment using actuators. Actuation decisions are defined

in a CLIPS (C Language Integrated Production System) rule-based inference en-

gine. However, the sentient object model differs from SMCs in three important

aspects:

1. SMCs can discover each other and load new policies (as a mission) to de-

fine how remote SMCs must interact. Sentient objects do not exchange

policies, and each sentient object has a static set of production rules de-

fined in CLIPS which are used to infer other rules or generate events.

2. Their aims are different: sentient objects are intended for collaborative

inference of actuation decisions. In contrast, SMCs are used to enforce the

management actions and to distribute management policies dynamically

among remote SMCs.

3. Collaborating sentient objects follow a WAN-of-CANs [VCC+02] structure

(wide-area network of smaller, local controller-area networks). However,

this model does not support the dynamic assembly of sentient objects

using more general and reusable patterns of interaction, such as the ones

presented in this thesis.

The SMC management services are discussed in detail in the next sections.
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2.3.1 Event Bus

A publish/subscribe event bus is used to provide the underlying communica-

tion infrastructure within an SMC, although it is not required that all commu-

nications happen through events. This has the advantage of de-coupling the

services and resources that are part of an SMC, as an event publisher does not

need to have prior knowledge of the recipients when sending a message. This

also permits adding new services to the SMC without disrupting existing ones.

The event bus can be used for both management and application communica-

tion, such as alarms indicating that thresholds have been exceeded.

Figure 2.4: SMC event bus

The event bus implements a content-based delivery service, where event match-

ing can be performed over any field of the event message. Messages are routed

by the event bus using filters, which match the subscriptions with the content

of the events published (Figure 2.4). While the subscribers of an event must

specify their needs by explicitly registering themselves with the event bus, the

same does not apply to event publishers. This reduces the coupling of the

system and requires less information to be stored in the event bus service.

In [SB08, SVBM08], a publish/subscribe system tailored to the healthcare do-

main is presented, where personal data is highly sensitive and fine-grained

control for data transmission is needed, which may involve for example the

patient consent and context information, e.g. emergency situation. This uses

transformation policies to regulate information flow on a need-to-know basis,

and is built into a PostgreSQL database management system. Our event bus is
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less sophisticated as the SMC is intended to run both on resource-constrained

devices as well as on larger systems, but new services can be added to the SMC

to extend its functionality, e.g. a context service or event correlators.

2.3.2 Policy Service

Our main SMC implementation relies on a policy service which is based on the

Ponder2 policy framework4 (but we also provide a lightweight implementation

that can run on BSNs and other constrained devices [K+07]). It implements a

policy execution framework that supports the enforcement of both obligation

(event-condition-action) and authorisation (access control) policies. Policies can

be dynamically loaded, enabled, disabled and unloaded to change the behavior

of the SMC without interrupting its functioning.

Ponder2 comprises a general-purpose object management system. The policy

service maintains managed objects for each of the components on which man-

agement actions can be performed. This includes sensors and local resources

that the SMC owns, services within those devices, and adapters for remote

SMCs. Managed objects representing remote SMCs adapt invocations received

to platform-specific actions, thus providing a uniform interface for accessing

SMC services. Managed objects are kept in a domain structure [TS88] that im-

plements a hierarchical namespace within the SMC, similar to a file system. A

domain provides a way of grouping objects for the purposes of policy specifi-

cation, as the specification of policies in terms of a large number of individual

subjects and targets is impractical [Slo94a]. Grouping of objects can be based

on their type, management functionality, or simply convenience.

Policies are written in terms of managed objects. Domains and policies are

managed objects in their own right on which actions can be performed; for ex-

ample, adding or removing an object from a domain, or enabling or disabling

other policies. Thus, events can trigger obligation policies that enable or disable

other policies, allowing the SMC to modify its own adaptation strategy during

4http://www.ponder2.net
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Figure 2.5: SMC domain and managed objects

run-time. Policies specified in terms of a specific domain will apply to all ob-

jects inside that domain. The set of policies an SMC enforces will prescribe

how its managed objects should behave during SMC functioning. Thus, events

generated by managed objects within the SMC trigger obligation policies, which

specify what management actions must be invoked in other objects, provided

these actions are allowed by corresponding authorisation policies (Figure 2.5).

Management actions are invoked in remote SMCs via the adapters stored in the

local domain.

The policy service has been designed with particular focus on flexibility, in that

all the code needed can be loaded on demand. This is done via factory objects,

which are managed objects themselves and permit the creation of new objects

in the domain. Factories can be loaded dynamically and used for creating new

policies, for creating domain objects to form a hierarchy, for creating adapters

to communicate with external SMCs, and for creating event templates to com-

municate with the event bus. In particular, the latter enables the policy service

to subscribe to specific event notifications, which are used by the policies to

trigger adaptive actions on other managed objects.
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2.3.3 Discovery Service

Resource discovery provides a means for automatically locating devices and

services in a network [FDC01]. The SMC discovery service is used to detect

new devices capable of joining an SMC, e.g. sensors or other SMCs in the vicin-

ity. The discovery service interrogates newly discovered devices to establish a

profile describing the capabilities they offer, and then stores a managed ob-

ject as a reference to the discovered resource in the domain structure of the

discoverer SMC. This managed object works as an adapter that abstracts the

communication protocol, e.g. sockets, RMI, HTTP, between the discoverer and

discovered SMCs. All the policies applying to the specific domain where the

managed object was stored will then apply automatically to the discovered re-

source itself. An event describing the addition of a new device is generated, so

other components within the SMC can use the new resource as appropriate.

The discovery service broadcasts its identity message (id;type[;extra]) at fre-

quency R. This enables the SMC to advertise itself to both devices and other

SMCs, and enables current SMC members to determine whether they are still

within reach of the SMC. The discovery service is also capable of detecting when

one of the SMC’s resources has left, distinguishing transient failures, which are

common in wireless communications, from permanent departures, e.g. device

out of range, switched off, or failure. Each member device unicasts its identity

message at frequency D, and if the discovery service misses nD successive mes-

sages from a particular device, it concludes that the device has left the SMC

permanently. An event describing the departure of one of its current compo-

nents is then generated within the SMC, allowing other components to adapt

their behaviour accordingly.

2.3.4 Feedback Control-Loop

The SMC’s event bus, policy and discovery services implement a control-loop

which enables the execution of adaptive management actions in response to

changes in the SMC’s context. The control-loop operates as follows: managed
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resources within the SMC signal the occurrence of a particular event. Obli-

gation policies, in the form of event-condition-action rules, are used to specify

what actions are to be executed when a given event occurs (provided the pol-

icy’s condition is satisfied). The action prescribed by the policy is then executed

to adapt the operation of the SMC’s resources with respect to the event initially

detected, e.g. to adjust the monitoring frequency in a patient SMC in response

to an event indicating a high heart rate measurement (action enforcement is

itself dependent on the existence of authorisation policies). This in turn may

cause the managed resources to generate new events, which will trigger new

policies (Figure 2.6). Components in an SMC can change dynamically, e.g. a

sensor may be added, or a device may fail, and these circumstances also re-

quire adaptive or reconfiguration actions to be performed.

Figure 2.6: Policy-driven feedback control-loop

Although individual SMCs are autonomous and enforce their own feedback

control-loop, applications typically involve a large number of interacting SMCs

which must be composed and federated in complex ways. Thus support is

required for facilitating the specification, instantiation and reuse of SMC inter-

actions.

To realise the systematic construction of policy-based SMC interactions we

adapted and incorporated concepts from different research areas. In the follow-

ing we discuss techniques advocated for structuring the development of soft-

ware, component-based systems and multi-agent systems, and identify how
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these can benefit the engineering of policy-based interactions between SMCs.

2.4 Component-Based Systems and Design Patterns

Collaborations between SMCs will likely involve the combination of a number

of smaller interactions for realising more complex applications. As will be dis-

cussed in Chapter 3, interactions between SMCs are based on very specific

abstractions for defining how the interaction is organised, how roles are as-

signed and policies are exchanged, and how events for triggering these policies

are shared among the SMCs. The specification of SMC interactions can benefit

from component-based systems and software architectures, which have pro-

vided various means of organising software development. Moreover, the notion

of design patterns advocates the identification of reusable design solutions for

recurring problems in software development. This is of particular importance to

SMC interactions, as we seek means of systematically composing and reusing

simpler abstractions for building more complex policy-based interactions. This

section presents a brief literature review on these research areas.

2.4.1 Components and Software Architectures

Software architecture can be seen as a set of principal design decisions made

during the conceptualisation and development of a system [TMD09]. The soft-

ware engineering community has long investigated software architecture-based

approaches, which typically separate computation (components) from interac-

tions (connectors). Components and connectors are defined as follows [TMD09]:

• Component: architectural element that encapsulates functionality and

data. It provides access to these via an interface, and has explicit de-

pendencies on its required execution context.

• Connector: architectural element responsible for regulating the interac-

tions among a set of components.
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A component thus represents the computation and state of a system. It pro-

vides functionality to other components but also requires functionality provided

by other components in its context. A connector facilitates the interaction be-

tween a set of components. While components usually support functionality

that is specific to an application, software connectors are often application-

independent and thus can be used across applications repeatedly (yet, they

are not always considered a first-class entity in many examples of software

architectures) [TMD09]. The benefits brought by the distinction between com-

ponents and connectors have been widely recognised in the software commu-

nity as a means of structuring software development [GS93, SDK+95, SDZ96,

MMP00, MT00]. The separation of computation from interactions itself dates

back to the research on programming-in-the-large versus programming-in-the-

small [DK75]. Although components and connectors do not cater for the adap-

tive behaviour of SMCs as expressed in roles and policies, similar principles

can be applied for structuring and reusing SMC interactions to form larger

collaborations.

Software architectures often use architectural styles, and patterns, to design

and specify the overall structure of a system. The distinction between styles

and patterns is traditionally fuzzy and it is not always possible to define a clear

boundary between them [TMD09]:

• Architectural style: high-level architectural decisions that are applicable

in a given context, constraining the architecture of a particular system

while highlighting the benefits achieved by those decisions.

• Architectural pattern: more specific design decisions (usually from the re-

finement of a style) in order to be applied to a particular system. These

can be thought of as architectural styles that are instantiated with the

components and connectors that are pertinent to a given application.

Common examples of architectural styles are client-server, blackboard and pipe

and filter. Figure 2.7 shows an example of the pipe and filter architectural

style, where a filter component receives data from an input pipe, transforms
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this data and sends data to the next component via an output pipe. The main

characteristic of this style is that filters are independent from each other, and

do not have knowledge of other filters that come before or after them. Moreover,

the correctness of the output of the network of pipes and filters should not be

influenced by the order of the filters in the pipeline [GS93].

Figure 2.7: Pipe and filter architectural style

Systematic specification of SMC interactions can benefit from architectural de-

scription languages (ADLs), module interconnection languages (MILs) and coor-

dination schemas in general, such as Wright [AG94], UniCon [SDK+95], Conic

[Kra90], Darwin [MDEK95], Rapide [LKA+95] and Mobile UNITY [RP03]. How-

ever, although traditional architectural description languages and coordination

schemas can bind software components through connections, the semantics

of these connections (such as “sends data to”, “controls” or “is part of”) is not

always clear, failing to represent higher-level relationships between these com-

ponents [Cle96]. An exception to this is the notion of user-defined connectors

[ASCN03] and higher-order connectors [LWF01], which support the incremental

building of more complex connectors from simpler ones.

Darwin configurations, for example, use bindings to link the provided func-

tionality of one component’s interface to the required functionality of another

component’s interface, but these bindings usually do not have any higher-

level semantics associated with them, as connectors are not treated by Darwin

as a first-class concept. Figure 2.8 shows an example Darwin configuration

[MDEK95] between a client and server components (white circles represent re-

quired interfaces, black circles represent provided interfaces). In this example,

a system is defined by instantiating a client component and a server compo-

nent, and binding the required interface “r” of the client to the provided inter-
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face “p” of the server.

component Server { component System {
provide p; inst

} A: Client;
B: Server;

component Client { bind
require r; A.r −− B.p

} }

Figure 2.8: Darwin configuration

Self-Managed Cells are similar to components and SMC interactions can be

designed in a manner akin to software connectors that exhibit well-defined

properties for binding SMCs. In contrast to architectural description languages

however we are not interested in general-purpose component interactions, but

instead aim for a model that addresses the structuring of policy-based collabo-

rations using the SMC infrastructure.

2.4.2 Design Patterns

Design patterns are reusable solutions for recurring problems in software de-

sign [GHJV95]. Object-oriented design patterns, for example, address the limi-

tations of pure object-oriented design techniques, which are not well suited for

describing complex interactions between groups of objects or classes [MKMG97].

The design patterns presented in [GHJV95] are divided into three categories:

creational patterns, which provide mechanisms for object creation, e.g. Fac-

tory, Prototype, Singleton; structural patterns, which support different ways of

realising relationships between entities, e.g. Bridge, Decorator, Composite; and

behavioural patterns, which provide patterns that increase the flexibility in car-

rying out the communication between objects, e.g. Command, Observer, Media-

tor. These design patterns provide general templates on how to solve a problem

in different situations, without specifying the actual classes or objects that will
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be involved in the final application. The use of design patterns promotes a

better understanding of the software itself, and the reuse of well-understood

abstractions.

Multiple design patterns can be applied simultaneously to the design of the

same application. Each design pattern can thus define a different aspect of

the interaction between a group of classes. The composition of design pat-

terns [Don02, Don03, Don04], where the same class plays different roles in the

context of different design patterns, is analogous to an SMC playing different

roles in distinct interactions.

Software architectures and design patterns are complementary to each other.

Garlan and colleagues [GCK02] investigated the possibility of using object-

oriented notations for the specification of architectural descriptions, and map-

ping ADLs into UML notation. However, it is claimed that there is no single

best way of encoding one into another because of semantic mismatches be-

tween the two. Moreover, Monroe and colleagues [MKMG97] also observe that

architectural patterns and object-oriented design patterns can be seen as com-

plementary techniques for system design, where the former is concerned with

the coarse-grained composition of components and their interactions whereas

the latter can be used to refine the internal implementation of a more sophisti-

cated component or connector.

Finally, specific design patterns for pervasive systems are starting to emerge

[LB03, CHL+04], but these so far have focused on high-level HCI aspects of

these interactions, addressing patterns of user/computer interaction within

pervasive environments. An example of such a pattern is the context sensitive

I/O pattern, where the mobile phone detects that the owner is driving or in a

meeting and accordingly either rings or vibrates. Instead, our work on SMCs

concentrates on the management aspects of the system.
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2.5 Multi-Agent Systems

The work on multi-agent systems has investigated means of organising auton-

omous collaborating entities into more complex aggregates, whose principles

and techniques can also be applicable for constructing cross-SMC interactions.

In its most general sense an agent denotes a hardware or software system that

presents the following properties: autonomy (operate without human interven-

tion), social ability (agents interact with each other), reactivity (perception of

the environment and subsequent response to it) and pro-activeness (not only

react but also perform goal-directed behaviour) [WJ95]. This is considered a

weak notion of agency, usually adopted in agent-based software engineering.

Under this perspective, UNIX processes or software components that exhibit

the aforementioned properties can be seen as agents.

A stronger notion of agent is the one where an agent exhibits, in addition to the

above properties, an anthropomorphic behaviour relying on concepts and at-

tributes that are more usually applied to humans (for example, beliefs, desires,

intentions [RG95]). In the artificial intelligence community, this corresponds to

an intelligent agent which is usually also associated with the ability to reason

and learn, and how these techniques can be used by the agent to interpret and

use the knowledge it has access to. Intelligence varies from marginal intelli-

gence (e.g. expressed as preferences) to advanced intelligence (e.g. derive new

knowledge via learning techniques) [CH97]. The Self-Managed Cell concept is

based on a feedback control-loop that relies on policies to govern its adaptive

behaviour and interactions with other SMCs, which does not involve learning

or reasoning (although these techniques could be used to extend the SMC’s

functionality) and is therefore closer to the notion of weak agency.

A multi-agent system (MAS) [Woo02] is composed of multiple interacting agents

that need to cooperate, coordinate and negotiate, in order to solve problems

that could not be solved by individual agents alone. Agent-oriented software

engineering has recognised the need for organisational structures for design-

ing multi-agent societies. In general, multi-agent systems focus on a role

model for agents, however more than a simple collection of roles, complex
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systems require further organisational abstractions for assisting their design

and analysis [ZJW03]. Expressing organisational structures explicitly enables

the construction of a system in a robust and repeatable fashion. Holonic mod-

els [HKR08, RHK03, UG02] often support hierarchical structures, but not more

sophisticated organisations. A few multi-agent systems have attempted to iden-

tify a comprehensive catalogue of generic and reusable patterns for interactions

between agents, which express pre-defined and common organisational struc-

tures that could be reused across different systems [ZJW01, ZJW03, HCY99,

TOH99, KKPS98]. In addition to the organisational structure of SMC interac-

tions, there is also a need to define how SMCs interact with each other in such

aggregated groups to distribute management responsibility, application tasks

or to implement communication patterns.

Deugo and colleagues [DOKvO99] present patterns for mobile and intelligent

agents, and patterns to manage the communication between agents, e.g. creat-

ing a proxy in its home location when the agent moves away to hide its change

in position, or a session pattern for managing complex conversations between

multiple agents over a period of time. These patterns highlight the impor-

tance of engineering complex multi-agent systems and a methodology for pat-

tern choice, which specifies the context where a pattern should be applied and

the forces that influence or constrain the choice of a specific pattern. Aridor

and Lange [AL98] propose specific patterns for mobile agent applications con-

centrating on issues related to the agent’s ability to move from one machine

to another. These include travelling patterns used for managing the movement

of mobile agents, e.g. patterns for specification of an agent’s itinerary involving

multiple destination hosts or patterns for moving groups of agents that must

travel together, as well as patterns for coordinating the meeting with other

agents when arriving at a specific destination. Examples of mobility patterns

proposed in [TOH99] are illustrated in Figure 2.9. These are called itinerary,

where an agent iterates around several destination hosts performing tasks in

each one, star-shaped, where agents move back and forth between the nec-

essary hosts, and branching, where an agent generates copies according to

the number of hosts it needs to visit. Kolp and colleagues [KGM02] propose



2.6. Discussion 35

a macro-level catalogue for interactions between agents for business process

by using real world business organisations as an analogy, e.g. structure-in-5,

pyramid, bidding, joint-venture (agreement between partners), etc.

Figure 2.9: Agent mobility patterns

However, most of the work in multi-agent systems focus on a subset of prob-

lems known as distributed problem solving [Smi88]. This corresponds to the co-

operative solution of problems by a decentralised collection of agents that pos-

sess different knowledge sources, and need to delegate tasks to other agents

that might be more suitable for solving the problem or parts of it. None of

these efforts focuses on patterns for engineering autonomous policy-based sys-

tems. It is thus needed to adapt these general principles to the requirements of

the SMC architecture, as we are interested in patterns for systematically com-

posing and federating SMCs in complex collaborations but concentrate on the

policy-based aspects of these interactions.

2.6 Discussion

This chapter started by presenting the more general related work on perva-

sive and ubiquitous systems, and how devolved management is a promising

approach to tackle the complexity of large-scale ubiquitous systems, where

autonomous components endowed with self-adapting capacity are able to ef-

fect local decision-making behaviour. We then presented the background work

on policy-based management and on the Self-Managed Cell framework, which

advocates the use of policies as the principal mechanism for achieving auton-
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omous behaviour. The SMC relies on a policy-based feedback control-loop to

perform adaptive actions in response to changes in its context, or changes in

the context of its managed resources. Using its discovery service an SMC is able

to discover other resources that are capable of joining the SMC. Discovered re-

sources are stored in a specific domain within the SMC, and policies written for

that domain will then automatically apply to resources assigned to it. The ser-

vices and resources within the SMC communicate via an asynchronous event

bus, which facilitates event exchanges among these components.

The SMC serves as an infrastructure for building ubiquitous computing appli-

cations. Although the SMC concept provides a suitable abstraction for repre-

senting autonomous components, applications will typically consist of ad-hoc

collaborations of devices and resources and therefore require a large number

of elementary SMCs to negotiate the necessary interactions with other compo-

nents in their surroundings and be assembled into larger and more complex

structures based on the same principles of self-management. We incorporate

ideas from multi-agent systems, software engineering and software architecture

principles, and apply these to describe policy-based collaborations of SMCs, in

particular, techniques for structuring the software organisation, its reuse and

the identification of recurring patterns or catalogues for composing software

components and agents. Our overall goal is to use the SMC as an architec-

tural pattern for building policy-based autonomous systems, where individual

SMCs can be assembled systematically into larger and more complex struc-

tures. Unlike general purpose component models we need to adapt, design and

implement the general principles to the specifics of the SMC architecture and

its policy-based operational model.

Basic SMCs, such as the one representing a personal device or body-sensor,

can be part of more complex SMCs, such as a body-area network or a home

monitoring system, which form a collection of smaller, yet autonomous, SMCs.

In the next chapter we describe the concepts that provide the underpinnings

for facilitating SMC interactions. These will serve as the basis for building an

infrastructure for the collaboration of policy-based autonomous systems.



Chapter 3

Basic SMC Interactions

This chapter discusses the elementary issues related to interactions between

self-managed cells. We focus on the underlying principles that facilitate the es-

tablishment of interactions and describe how SMCs can provide functionality to

other SMCs and how they can exchange policies that prescribe SMC behaviour

within the context of an interaction.

3.1 Motivation and Requirements

Although SMCs are autonomous, applications typically require a large number

of SMCs to collaborate, and SMCs must be able to interact with each other

in complex ways, to federate or compose into larger structures. This chap-

ter discusses basic interactions for collaborating SMCs in either peer-to-peer

or compositional settings. We can draw several requirements from the exam-

ple applications for healthcare monitoring and coalitions of autonomous UAVs

presented in Section 1.1.

Firstly, SMCs must detect the presence of remote SMCs and decide autono-

mously whether to establish an interaction. Interfaces specify the operations

one SMC provides to another, the events an SMC is able to receive from other

SMCs and the selected internal events that an SMC can use to notify oth-

37
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ers. More complex interactions may require exchanges of policies between the

SMCs, e.g. when an SMC can request another to behave in a specific way. Sec-

ondly, the interface exposed to a remote SMC may include only a subset of the

available functionality depending on the kind of SMC and the role, e.g. doctor

or nurse, it can play in the interaction. Finally, an SMC may wish to provide

access to its internal resources to other SMCs and to mediate the access to

those resources.

Whilst peer-to-peer interactions occur frequently as SMCs interact with neigh-

bouring autonomous components, composition interactions enable grouping

SMCs into larger autonomous structures and scaling SMC management to

larger environments. Composition encapsulates an SMC with its own resources,

as a managed resource within the containing SMC. This implies that the SMC

can be programmed by the containing SMC in terms of policies that it must

enforce. Moreover, the device exposes to its containing SMC a management

interface for re-configuration. For example a diagnostic device may be part of a

body-area network that will load new decision algorithms and new policies into

it. Similarly, larger sensors may be autonomous components and thus SMCs

in their own right.

Composition also implies that the contained SMC behaves as a managed re-

source within the outer SMC and ceases to advertise itself independently. In-

teractions between the contained SMC and external SMCs are subject to the

authorisation and possibly mediation from the outer SMC which may require

preventing external access. An SMC cannot be contained by more than one

containing SMC, although it may interact with other SMCs for application pur-

poses subject to authorisation from its managing SMC. Although a contained

SMC is a managed resource, it must retain control of the interfaces it exposes

and the policies it accepts from its managing SMC. This is for reasons of in-

tegrity rather than security as it is important to ensure that an autonomous

device cannot be compromised i.e., devices preserve their autonomy.

Thus a composition differs from a peer-to-peer interaction in the degree of ac-

cess permitted, i.e. which methods and events are exposed and which policies
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are accepted from the containing SMC, and in the fact that interactions between

the contained SMC with external resources must be mediated by the contain-

ing SMC. However, compositions and peer-to-peer interactions have similar

requirements in terms of the mechanisms required for supporting these inter-

actions:

• Firstly, an SMC must expose functionality to interacting SMCs and fa-

cilitate access to its services or own internal resources, e.g. sensors in a

body-area SMC. Thus an SMC must be able to offer an interface that

specifies the SMC’s functionality and which can be exchanged among re-

mote SMCs in a collaboration.

• Secondly, an SMC must be aware of the state or context of their collabora-

tors, as this may influence its own behaviour. Thus an SMC must be able

both to receive events from other SMCs and also to notify remote SMCs

of selected internal events occurring within itself.

• Finally, more complex interactions require an SMC to load new tasks dy-

namically into a remote SMC. This can be achieved through exchanges of

policies between the SMCs, where an SMC can request another to behave

in a specific way within the context of the interaction.

The exchanges of interfaces, events and policies provide the basic mechanisms

for supporting SMC interactions. These will be discussed in detail in the follow-

ing sections. In Chapter 4 we will describe how more complex interactions can

be engineered in terms of patterns of interaction, which are based on the use of

specific algorithms or protocols for realising these exchange mechanisms.

3.2 Interfaces

An SMC specifies the functionality it provides to other SMCs through an inter-

face. This must support both the core management functions of the SMC and

also the management of application-specific behaviour (customised interfaces).
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An interface specification defines the operations supported by the SMC, as well

as the events that can be sent and received to/from remote SMCs (Figure 3.1).

Formally, an interface description i is defined as:

Interfacei = 〈O,E, N〉

Where:

• O is a set of operations, which are methods the interface provides to re-

mote SMCs;

• E is a set of events, which can be published externally by the SMC (i.e. to

which external SMCs can subscribe); and

• N is a set of notifications, which are external events of which the SMC can

be notified (i.e. that external entities publish within the SMC).

Figure 3.1: SMC interface

3.2.1 Core Interface

The SMC’s core interface is application-independent and defines the function-

ality required for supporting the basic exchanges of events and policies, and for

retrieving the interfaces that define the application-specific functionality which

an SMC supports. The core interface is therefore required for enabling the es-

tablishment of SMC interactions in terms of the basic exchange mechanisms.

The operations supplied by the SMC’s core interface are:
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• “notify”: sends an event notification to a remote SMC;

• “load”: loads a group of policies into a remote SMC;

• “unload”: unloads a group of policies from a remote SMC;

• “getInterface”: retrieves a specific customised interface for a remote SMC.

Additionally, the events and notifications specified by the core interface define

application-independent phenomena in the establishment of SMC interactions,

namely the discovery/departure of SMCs, and the loading/unloading of poli-

cies:

• “foundSMC”: a new SMC has been discovered;

• “leftSMC”: an SMC has departed from the interaction;

• “loaded”: a group of policies has been loaded into the SMC;

• “unloaded”: a group of policies has been unloaded from the SMC.

3.2.2 Customised Interface

The management of an SMC’s application-specific behaviour is defined through

its customised interface. For example, in applications for healthcare monitor-

ing, a patient SMC may provide an interface which allows the doctor to read

sensor measurements or set new alarm thresholds. An SMC can support mul-

tiple customised interfaces, which allow different partner SMCs to have a dif-

ferent view of the functionality the SMC exports. Although it would be possible

to expose all the functions on a single application interface and use autho-

risation policies to restrict access from external entities, this would make all

operations to services and resources visible externally even if they are not ac-

cessible. Exposing the same functionality to all partners could thus have se-

curity implications in military applications or unwanted privacy implications

for example in medical applications, as any patient SMC would be able to find

out what other patients are up to. Typically, the customised interfaces an SMC
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exposes depend on the kind of SMC it is interacting with, e.g. a doctor and or-

dinary hospital staff will have different “views” of the functionality provided by

a patient SMC, and may also depend on the specific instance SMC, e.g. the GP

treating that patient will have access to more functions compared to any other

GP. Thus, an external SMC should see only those functions that an SMC wants

to expose in a customised interface generated specifically for that interaction.

Complex SMCs typically comprise internal resources and smaller SMCs. In

this case, the functionality provided by the patient SMC’s customised interface

will rely on the functionality of its resources. This can be achieved by map-

ping the functions exposed in the interface of the containing SMC to operations

supported by its internal resources, e.g., the patient interface may support a

“readTemperature” operation, which is mapped to a specific operation in a sen-

sor object that is part of the SMC’s internal structure. Additionally, this per-

mits controlling which methods are exposed by a specific customised interface

by dynamically adding or removing the mappings.

1 <interface>
2 <event name="monitoringReady" localEvent="ready"/>
3 <notification name="startMonitoring" localEvent="start"/>
4 <notification name="stopMonitoring" localEvent="stop"/>
5 <operation name="readECG" localOp="/local/hearBeatSensor.read"/>
6 <operation name="scheduleTask" localOp="/local/jTimer.createTask"/>
7 </interface>

Figure 3.2: Customised interface of a patient (Ponder2 XML notation)

Figure 3.2 illustrates the customised interface of a patient SMC: it defines the

events, notifications and operations supported by that interface. This interface

in particular is able to generate the event “monitoringReady”, and be notified of

the events “startMonitoring” and “stopMonitoring”. The interface supports the

operations “readECG” and “scheduleTask”, which are mapped to the function-

ality provided by local resources within the SMC. Events and notifications have

an external name, but these are mapped to specific local events defined within

the context of that SMC.



3.3. Interaction Establishment 43

3.3 Interaction Establishment

The establishment of a new interaction between SMCs is a three-step process:

(1) a remote SMC that is capable of joining an interaction is dynamically discov-

ered; (2) information about the discovered SMC is used to classify and deter-

mine how the interaction will occur; and (3) a policy-based interaction between

the SMCs is set up. The first two steps of the process are detailed below, and

the third step is discussed in Section 3.4.

3.3.1 SMC Discovery

Interaction establishment is initiated as a result of the discovery service of an

SMC (Section 2.3) detecting the presence of another SMC. An SMC’s discovery

service broadcasts its identity message (id;type[;extra]) at frequency R, where:

• id: the address of the SMC, e.g. rmi://gumstix4.doc.ic.ac.uk/smc;

• type: the type of the SMC, e.g. doctor, patient;

• extra: additional information about the SMC, such as capabilities sup-

ported by the SMC, e.g. heart rate monitoring, and credentials that the

SMC possesses, e.g. public-key digital certificate.

When a remote SMC is detected, the discoverer SMC generates the event found-

SMC within its local event bus [LDS+08]. The event contains the information

broadcast by the discovered SMC, and allows the components and services

within the discoverer SMC to handle it as appropriate. In particular, the ad-

dress of the remote SMC is used to obtain that SMC’s core interface.

The patient provides one interface to a doctor, via the core interface, which is

possibly different from the interface provided to a nurse (Figure 3.3). When an

SMC provides an interface to other interacting SMCs, this is pre-determined

by the type information of both discoverer and discovered SMCs. In our imple-

mentation, local policies running in each SMC define which interfaces should
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be provided to other SMCs based on their types. This may in turn cause the

discovered SMC to obtain a customised interface for the discoverer. An SMC

may need to authenticate its partner using the extra information supplied in

the identity message before handling a specific customised interface to the re-

mote SMC, e.g. a malicious SMC could pretend to be a doctor in order to acquire

an interface for the patient SMC.

Figure 3.3: SMC interface exchange

3.3.2 Role Assignment

The use of roles for structuring responsibility in the context of distributed sys-

tems management has been thoroughly discussed in [Lup98, LMR98, Lin01,

San96, SCFY96, SBM99, HBM98, HYBM00]. We use roles as placeholders for

remote SMCs that are discovered at run-time, and these placeholders are kept

within the local domain structure of each SMC. Each role is associated with a

specific behaviour that can be performed by a single SMC within the context of

an interaction.

When an SMC is discovered and a customised interface for the interaction is

obtained, the role this SMC will be playing within the context of the interaction

is determined based on the type and/or capabilities of the discovered SMC,

i.e. doctor SMC will be assigned to a role for doctors, whereas a patient SMC

will be assigned to a role for patients (Figure 3.4). A role specifies an expected
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interface, in terms of operations, events and notifications, that a remote SMC

needs to satisfy in order to be assigned to that role.

Formally, let Interfacec = 〈Oc, Ec, Nc〉 be the customised interface provided

by a discovered SMC, let r be a role defined within the discoverer SMC, and

let Interfacer = 〈Or, Er, Nr〉 be the expected interface for that role, then the

assignment of the SMC which provides Interfacec to role r is subject to the

following condition being satisfied:

assign(Interfacec, r)→ (Or ⊆ Oc) ∧ (Er ⊆ Ec) ∧ (Nr ⊆ Nc)

The role’s expected interface serves as a “scope” for the specification of policies

associated with that role. Policies can be written in terms of the functionality

specified by the role’s expected interfaces because any SMC assigned to the re-

spective role must support at least that minimum functionality. This ensures

that SMCs complying with a role’s expected interface will be capable of execut-

ing the policies previously written for that role. This is discussed in Section 3.4.

Figure 3.4: SMC assignment

Complex interactions can be encoded in terms of a group of policies that are

dynamically loaded and enforced by one or more SMCs within the context of an

interaction, as discussed in the next section.
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3.4 Missions: Behaviour of SMC Interactions

Complex SMC interactions can be achieved by the exchange of policies in con-

junction with the events required for triggering these policies. Policies can be

used to prescribe how an SMC should behave in the context of an interac-

tion, i.e. how it should react to both internal events and external notifications

by invoking management actions locally or on remote SMCs. Thus the ability

of loading policies provides a mechanism for altering the behaviour of remote

SMCs at run-time. We rely on the concept of a mission to support policy ex-

changes between SMCs. A mission provides a mechanism for grouping the

duties (in terms of the obligation policies) that an SMC must perform, and is

specified in terms of two or more collaborating roles.

Missions are normally pre-specified by an application “programmer”. We rely

on the notion of expected interfaces (Section 3.3.2) to define a scope for spec-

ifying the policies contained in a mission. When a new SMC is discovered,

missions defined within the discoverer SMC can be loaded and instantiated on

the discovered SMC. Mission loading and instantiation are dependent on the

existence of authorisation policies allowing one SMC to perform these actions

on another (these are discussed in Section 3.5).

Figure 3.5: SMC mission exchange

Figure 3.5 illustrates a mission exchange between a doctor and a patient SMCs.
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When a doctor SMC discovers a patient’s body-area network SMC, a mission is

loaded and instantiated on the patient device if permitted, e.g. for ECG mon-

itoring relying on the sensors and devices available within the patient SMC.

Similarly, the patient may also load and instantiate a mission at the doctor,

defining the policies it expects the doctor to fulfill in the interaction, e.g. for

re-calibration of the patient’s sensors.

3.4.1 Mission Specification

A mission specification is defined in terms of expected interfaces of a number

of roles and consists of a set of obligation policies that must be loaded and

instantiated in a remote SMC performing role r. Formally, let R be a set of roles,

O a set of obligation policies and M a set of missions. A mission specification

m ∈M is defined as:

Missionm = 〈Rm, Om〉

Where:

• Om ⊆ O is a set of obligation policies with the subject role r, i.e. Om defines

the duties of the SMC that will be performing role r; and

• Rm ⊆ R is the union of the target roles in Om and the role r itself, i.e. Rm

are the roles needed for enforcing the obligations contained in the mission.

The mission specification may also specify an array of application-specific ar-

guments, e.g. thresholds, measurement rates, etc. At mission loading, values

for these arguments must be provided, which will be used when the policies

defined within the mission are instantiated in the target SMC, e.g. raise the

alarm if the patient’s heart rate is “rate ≥ v”, where v is the value provided at

mission loading.

Figure 3.6 shows an example of a mission for ECG monitoring, which is typi-

cally downloaded from a nurse into a patient SMC. In addition to the “nurse”
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1 <mission>
2 <arg name="nurse" type="interface/nurse"/>
3 <arg name="patient" type="interface/patient"/>
4 <arg name="time" type="integer"/>
5 <arg name="freq" type="integer"/>
6 <policy name="ECGMon" event="!nurse;.startMonitoring">
7 <action>
8 <use name="!patient;">
9 <scheduleTask freq="!freq;" time="!time;">

10 <use name="!patient;">
11 <readECG />
12 </use>
13 </scheduleTask>
14 <scheduleTask delay="!time;">
15 <use name="!nurse;">
16 <notify event="!patient;.monitoringReady"/>
17 </use>
18 </scheduleTask>
19 </use>
20 </action>
21 </policy>
22 </mission>

Figure 3.6: Patient monitoring mission (Ponder2 XML notation)

and “patient” roles, the mission takes two additional application-specific argu-

ments (“time” and “frequency”), whose values are specified when the mission is

instantiated. This mission defines the obligations that patients must enforce

in order to enable a nurse to perform an ECG. The specific nurse and patient

SMCs that are expected to participate in this interaction are also given upon in-

stantiation. Policies are specified in terms of the roles and application-specific

arguments (“!rolename;” and “!argumentname;”, respectively).

The mission in Figure 3.6 comprises an obligation policy named “ECGMon”

which is triggered by a “startMonitoring” event received from the nurse. The

policy action causes the patient to schedule two tasks: one reads the patient’s

ECG for a specified time and at a specific frequency, and the other notifies the

nurse when the monitoring has finished. This mission relies on the methods

“scheduleTask” and “readECG” that are expected to be present in the patient’s

customised interface, and on events that must be either generated or received

by the SMCs. The operation “notify” is part of the nurse’s core interface. The

argument of this method must be one of the notifications defined in the nurse’s

interface. The operation “load”, not shown in the example, is used to load a
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mission and is also part of the core interface of all SMCs.

In essence, missions are a constrained form of programming a remote SMC. Be-

fore instantiating the mission and its policies, the receiving SMC must validate

the mission to prevent it from compromising the integrity of the SMC.

3.4.2 Security Concerns in Mobile Code

When considering the ability of dynamically loading executable or interpretable

code into remote resources, security concerns must be taken into account. In

this section we briefly review the most frequent techniques for ensuring the

integrity of the target resource when running remote code: Proof-Carrying Code

(PCC) and the Java Sandbox model. We then elaborate the security require-

ments that have to be considered when missions are exchanged between SMCs

and describe how we address these issues in sections 3.4.3, 3.4.4 and 3.4.5.

Proof-Carrying Code

Proof-Carrying Code (PCC) [NL98] can be used to determine whether the pro-

gram code provided by a source system is safe to install and execute in a target

system, without requiring interpretation or any run-time checking. The notion

behind PCC is that the source system attaches to the code a proof that this

code does not violate a safety policy specified by the target system. This policy,

which is specified in first-order logic, defines the safety rules that the target

system desires to enforce for the untrusted code, e.g. memory safety, time lim-

its on execution and resource usage bounds. The proof is checked by the target

system using an automatic proof-checking process. The main advantage of the

PCC approach is that, after the proof has been validated, there is no need for

the target system to perform any run-time safety checks.

PCC comprises two main stages: proof generation and proof checking. In the

first stage, the code consumer receives the untrusted code and extracts from it

a safety predicate. The code must be inspected in search of instructions whose
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execution violates the safety policy defined by the target system. For each

instruction, a predicate is produced, which expresses the conditions where the

execution of the instruction is safe. The combination of these predicates forms

a safety predicate, which can be proved true only if the execution of the code

does not violate the target’s safety policy. This predicate is then sent to a proof

producer (either the source system or any other proof producer system), which

must prove the safety predicate using the axioms and inference rules defined

in the target’s safety policy. In the second stage, the target system receives

the proof from the proof producer, and checks the validity of the proof using a

simple and fast automatic proof checker, which is parameterised with the proof

and the safety predicate, and using the safety policy it determines whether the

proof proves the safety predicate or not. The code is considered safe to execute

if the safety predicate is correctly proved.

The safety predicate must be relatively easy to prove without extra knowledge

about the program to perform proof generation automatically. However, auto-

matic decision procedures do not exist (or are not effective) when generating

proofs for more complex safety predicates. In these cases, a semi-interactive

theorem prover is required, involving a person with a deeper understanding of

the code [NL98].

The Java Sandbox Model

Java supports the ability to load, on demand, programs into a remote resource.

The Java Sandbox provides the security model for applets and any other Java

applications, which restricts the actions performed by a remote program within

certain boundaries. This is also required for SMC missions, whose actions that

are executed must be confined to those determined by the target SMC.

In this section, Java is used to illustrate the verification steps that must be

performed when remote code is loaded into a device. Loading missions should

not be mistaken for loading Java bytecodes, which are a much more general

form of programming and whose verification is also more complex. Instead,

we use the Java model only as an analogy for identifying the various stages
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involved when remote SMCs load missions into each other.

The enforcement of the Java language rules occurs in three stages [Oak01]:

• Compiler enforcement: during development time, compiling the Java source

code;

• Bytecode verification: at the time the code is loaded into the remote host

(before its execution); and

• Run-time enforcement: is performed continuously during the execution of

a Java program.

The compiler performs various syntactic checks to ensure that the Java pro-

gram complies with the rules defined in the language. These checks include

verifying the access level of attributes, methods and classes (private, default,

protected, public), that variables are not used before they are initialised, etc.

Bytecode verification is needed because a remote malicious compiler may have

by-passed the language rules that were supposed to be checked during the

compiler enforcement stage. The main checks include verifying that the classes

are in the correct format, that final methods are not overridden, that there is

no illegal data conversion of objects, etc. A special case of bytecode verification

is called delayed verification, which delays some of the checks, provided these

are still performed before the code is executed. Finally, run-time enforcement

performs checks during program execution, such as array bound checking and

object casts.

In particular, one error that may be raised during run-time by the Java Virtual

Machine is of interest: java.lang.NoSuchMethodError. This occurs if an appli-

cation tries to call a specific method of a class, but the class no longer has the

definition of that method. Normally, the compiler would detected this condi-

tion, and this error can only occur if the class definition has changed during

run-time. Similarly, the interfaces that a mission depends on might be modi-

fied during its execution, e.g. one of the sensors provided by the patient may

fail, and an SMC must be prepared to handle this situation.
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SMC Remote Policy Mode

Proof-Carrying Code and the Java Sandbox model present two distinct ways

for ensuring that the code loaded from a source system will not compromise

the integrity of the target system. While PCC relies on the validation of a proof

that the code does not violate the safety policies in the target system, the Java

model confines the execution of the program within certain bounds in the target

system, and relies on three different steps where the security rules can be

enforced.

We chose to use an approach which is based on the Java model for defining

the security aspects of mission exchanges, as the more complex proofs in PCC

require a person with deep understanding of the code to define the proof. Ad-

ditionally, the proof in PCC may be several times longer than the actual code,

thus this approach is not suitable for resource-constrained devices. Finally,

PCC also requires the translation of the original code (that can be written in any

language) to a stream of instructions in a generic intermediate language [NL98],

which will abstract most of the constructs in the original language that are not

relevant to the safety policy.

Similar to the Java security model, an SMC mission must be checked in three

stages:

• Mission specification: must ensure that the source SMC has written a

mission that is syntactically correct and is equivalent to the compiler ver-

ification;

• Mission loading: allows the target SMC to perform verifications before ex-

ecuting the remote code. Similar to bytecode verification the target SMC

must check the code it receives from remote SMCs to prevent malicious or

accidental compromise of the target’s integrity;

• Mission execution: run-time verification that checks whether any inter-

face, that affects the behaviour of the mission, has changed during the

execution of the mission.
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The next sections will elaborate each of these stages.

3.4.3 Specifying a Mission

When a mission is specified, an initial verification is performed to ensure that it

complies with the expected interfaces of the roles involved. The mission is con-

sidered valid if all the operations, events and notifications used by the policies

within the mission are also defined in the expected interface of the respective

roles.

Formally, let Missionm = 〈Rm, Om〉 be a mission, and for all r ∈ Rm, let Ir,m be

the expected interface of r, then Missionm complies with the expected interface

of its roles if:

∀ obl ∈ Om | (r.operation “appears in” obl→ r ∈ Rm ∧ operation ∈ OIr,m
)

∧ (r.event “appears in” obl→ r ∈ Rm ∧ event ∈ EIr,m)

∧ (r.notification “appears in” obl→ r ∈ Rm ∧ notification ∈ NIr,m
)

Where 〈a〉.〈b〉 “appears in” 〈c〉 means that the operation, event or notification

“b” of role “a” is used in the specification of policy “c”. This verification is

equivalent to a syntactic checking of the mission.

3.4.4 Loading a Mission

When the source SMC loads a mission specification into the target SMC, the

source must specify the parameter values to be used upon mission instantia-

tion on the target side. The source defines the SMC instances needed for the

mission. The target must then instantiate the obligation policies contained in

the mission using the parameter values provided by the source. The target

must ensure that the mission passes through a series of checks, when loading

the mission and before instantiating its policies, in order to protect the SMC’s

integrity. These verifications must guarantee that the mission is well-formed,

that the mission parameters were provided correctly and that all mission depen-

dencies can be satisfied within the target’s local environment. These checks
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are discussed in the following.

Step 1: Check that the Mission is Well-Formed

The source SMC may maliciously or accidentally embed additional code in the

mission and attempt to load it in the target SMC. The first step in validating

the mission is thus to check that it is well-formed; namely, that it contains

only arguments and obligation policies and that it is syntactically correct. This

includes inspecting the policies in the mission and verifying that they solely use

operations, events and notifications pertaining to the roles given as arguments.

A policy attempting to invoke operations on other objects will generate an error

and abort the instantiation of the mission. This ensures that the mission is self-

contained and prevents malicious SMCs from “guessing” operations or other

resources available in the target SMC.

Step 2: Check Mission Parameters

When a mission provided by a source SMC A for a target SMC B interacts

with a third party SMC C, it is necessary to check that B is using the correct

relevant interfaces for C. The source SMC A cannot disclose to B the customised

interfaces that it has acquired for interacting with remote SMC C, i.e. the

argument values for the roles involved in the mission cannot be the customised

interfaces for the corresponding SMCs. Instead, the values must specify the

address of those SMCs, and it is the target’s responsibility to acquire specific

customised interfaces for executing the mission.

For example, consider a doctor loading a mission on a patient SMC, which

involves three roles: doctor and patient (as these are respectively the source

and target of the mission), and an additional nurse role (assuming the mission

involves invocations on a nurse interface, e.g. for setting an alarm off). In this

case, the doctor SMC cannot simply give an interface for the nurse SMC to

the patient, as it is likely that doctors and patients will have access to different

customised interfaces provided by nurses. Instead, the doctor must provide the
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address of the specific nurse SMC, leaving it up to the patient SMC to acquire

a suitable customised interface for that interaction (through the nurse’s core

interface).

Figure 3.7: Target SMC possesses more restrictive interfaces than source SMC

In Figure 3.7, the dashed lines represent interface exchanges (D is for doctor,

P is for patient and N is for nurse) and the solid line represents mission load-

ing. In this case, the nurse SMC exposes different interfaces to the doctor and

patient SMCs (N and N’, respectively). When receiving a mission, the patient

SMC must contact the nurse directly to obtain N’, which possibly defines a

much stricter set of functionality than N. This requires an additional check to

be performed by the target SMC, which is described in the following.

Step 3: Check Mission Dependencies

When receiving a mission, the target SMC must check the policy dependencies,

i.e. events, notifications and operations used by the mission’s policies, against

the interfaces of the SMCs which the target has access to. This can be achieved

by checking the policies within the mission against either: (a) the expected in-

terfaces the target knows for those SMCs or (b) the customised interfaces the

target has obtained from the remote SMCs once it has established an interac-
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tion with them. The former is sufficient because an interaction is established

with an SMC only if the customised interface received from that SMC supports

a superset of the events, notifications and operations defined in the expected

interface for the respective role. This enables delaying the binding to the remote

SMC until it is actually required, but is more restrictive since the customised

interface may offer additional operations that are not present in the expected

interface. The second approach is more permissive as it allows the mission to

contain policies that use operations not present in the expected interface but

requires establishing an interaction with the remote SMCs when the mission is

loaded.

Formally, the verification against the expected interfaces is identical to the one

described in Section 3.4.3. The verification in the second case uses the cus-

tomised interfaces obtained from the SMCs assigned to the roles, rather than

the expected interface associated with that role.

3.4.5 Executing a Mission

If all the verifications performed during mission loading are successful, the tar-

get SMC is ready to instantiate the obligation policies contained in the mission.

These are template policies, which were written in terms of the roles partic-

ipating in the mission and in terms of other application-specific arguments,

e.g. thresholds, measurement rates, etc. Role references are resolved using the

customised interfaces acquired by the target for the respective SMCs. Other

arguments are directly substituted for the values provided by the source SMC.

The policies contained in the mission are then instantiated in the target SMC.

Complex policy-based collaborations can be realised if multiple missions are

exchanged between the SMCs, e.g. the doctor can load a monitoring mission on

the patient, and both the patient and the nurse SMCs can load missions into

each other in a similar fashion. The policies loaded in a mission can trigger

internal actions within the target SMC based on events occurring in either of

the involved SMCs, or trigger remote invocations on the other SMCs as well.
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During mission execution, the interface of the involved SMCs may change, for

example, if an SMC acquires new resources or loses current ones, causing the

functionality that its interface provides to change accordingly. This can affect

mission execution, as the functionality that the mission expects (checked on

mission loading) may not be available any more.

When the interface of an SMC is modified because a resource has left, this

SMC automatically notifies its interacting partners using the event leftSMC,

which triggers partner SMCs running the mission to re-check the mission de-

pendencies with respect to that specific interface. This process is akin to the

check performed in step 3 of the mission loading verification. If the SMC deter-

mines that the modified interface no longer satisfies the mission dependencies,

the mission is stopped and the source of the mission, which originally loaded

it into the target SMC, is notified that the mission execution was interrupted.

3.5 Access Control for SMC Interactions

An SMC must be authorised in order to perform operations on a remote SMC.

Access control in SMC interactions is defined in terms of authorisation policies1

relating to operations in both core and customised interfaces.

Permissions are required for invoking application-specific operations on a cus-

tomised interface, either directly or as the action prescribed by an obligation

policy. There is a one-to-one correspondence between what is exposed in a

customised interface and the authorisations required for invoking application-

specific operations on that interface. For example, if a doctor SMC is willing

to expose a given functionality to a patient SMC through a customised inter-

face, the doctor must set the corresponding authorisations to allow the patient

SMC to invoke the operations on that interface. At the moment, we require

customised interfaces and the corresponding authorisations to be generated

manually. In particular, authorisations are finer-grained since the access to

a given operation may be conditional on the context of the SMC enforcing the
1The access control framework for the SMC and details on how authorisation policies are imple-

mented in Ponder2 are described in [RDD07].
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policy, e.g. a medication prescription can be requested only between 9am and

5pm. Intuitively the operations in a customised interface could be automati-

cally generated from the set of authorisations defined for an SMC, but further

work is needed to investigate this.

Permissions are also required for invoking operations on a core interface, e.g.

loading and unloading missions. In this case, the definition of which SMC is

supposed to send and which SMC is supposed to receive missions often de-

pends on the nature of the interaction, e.g. doctors will typically be allowed to

load missions into a patient. In Chapter 4 we will discuss the use of patterns of

interactions. Patterns assist in the specification of manager/managed relation-

ships between SMCs, and in deploying the required authorisations for mission

loading in the context of an interaction.

3.6 Case-Study: Illustrating Security Management

Collaborations between SMCs are created for a specific purpose: for exam-

ple, for defining the interactions between doctor, nurse and patient SMCs, or

for assembling a monitoring set-up involving the equipment and various re-

sources available at the home setting of a patient; another example is a set of

unmanned autonomous vehicles (UAVs) or robots assembled in a team for the

reconnaissance of hazardous areas or to realise rescue operations after floods

or earthquakes, carrying out tasks that are too dangerous for humans to per-

form.

These cross-SMC interactions concern both the management of the application-

specific aspects, e.g. healthcare monitoring, as well as the management aspects

of how SMC interactions themselves are established. In this section we concen-

trate on the latter and present a case-study illustrating how security manage-

ment of SMC interactions can be achieved through the use of roles, missions

and policies. These interactions can become compromised if malicious SMCs

are allowed to join, so there is an interest in the mechanisms which are re-

quired for the secure establishment and operation of these collaborations.
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The purpose of this section is not to introduce new algorithms or protocols for

security management, but instead to illustrate how SMC interactions can be

extended easily to include new security management mechanisms as required.

3.6.1 Management Requirements

The mechanisms considered essential for the construction of SMC interactions

include authentication, membership management and access control. These are

necessary because they guarantee that new members are authenticated before

being allowed to join the interactions, that failures of current participants can

be promptly detected, and that access control is applied to the services provided

by the participants of an interaction. Additionally, support for bootstrapping

and task-allocation within an interaction is required via a set of coordination

mechanisms. This is essential for enforcing maintenance actions and guaran-

teeing the integrity of the interactions.

We describe in this section how these management requirements can be ex-

pressed as roles, which are assigned to different SMCs within an interaction.

Distributed SMCs assigned to different roles then cater for the security man-

agement of an interaction, by enforcing the policies contained in a mission

specified for that role.

• Coordination role: is responsible for bootstrapping an interaction and as-

signing discovered nodes to roles. Assignment of SMCs to roles is flexibly

defined by policies which take into account the discovered SMC’s type

and its capabilities, obtained from the identity message sent by the re-

mote SMC when discovered. For example, in an SMC interaction for

reconnaissance operations, SMCs providing “video” capability are more

suitable for a “surveillance” role, whereas SMCs providing “storage” ca-

pability are more suitable for an “aggregation” role. However, this is still

subject to the SMC providing an interface which supports the functional-

ity required for that role’s expected interface. The SMC in charge of the

coordinator role loads the missions into the respective SMCs according to
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their roles. The coordinator also loads missions for the SMCs assigned to

the management roles. These missions contain policies for authentication

of other members and for membership management, for example. The

implementation of these policies is described in Chapter 6.

• Authentication role: is needed to validate the identity of SMCs that want

to join an interaction. It relies on the exchange of public-key digital cer-

tificates. The SMC assigned to the authenticator role is initially loaded

with the public-keys of the certification authorities (CAs) that are rele-

vant within the context of an interaction, e.g. British Medical Association

(BMA) certificates in an application for healthcare monitoring. Nodes that

wish to join the interaction must present certificates signed by these au-

thorities to the authenticator. However, this simple mechanism does not

cater for key revocations, and the use of non-PKI based authentication

[KZ03, SBS+02, SA00] would need to be investigated.

• Membership management role: builds upon the functionality provided by

the SMC’s discovery service to monitor the presence of member SMCs.

This is required because nodes may move out of communication range,

run out of battery power or disconnect. Participants are required to renew

their membership periodically with the SMC assigned to the membership

manager role. Membership renewal does not require digital certificates to

be revalidated, and renewals consist of simple events sent to inform that

a given SMC is still active in the context of the interaction. The mem-

bership manager keeps track of membership renewals that are received

from other members. Each time a renewal from a given SMC is received,

the membership manager extends the validity of that member’s entry for

a limited amount of time. Whenever the membership manager detects

that a member’s entry has expired because the member failed to renew its

membership within a given time frame, that SMC is considered to have

left and an event is propagated to the other participants of the interaction.

• Access control: is necessary for protecting the resources and services pro-

vided by each participant from unauthorised access. Its enforcement is
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distributed amongst all roles, in the form of authorisation policies, as typ-

ically each SMC is interested in protecting its own resources and permit

access to specific members within the interaction. However, if an SMC is

not capable of enforcing its own access control policies, it may outsource

these control decisions to another SMC or to its own trusted agent.

Specific SMC interactions can be extended with additional management roles

if necessary. The SMC infrastructure is not specific to a particular security

model. For example, threshold cryptography [ZH99] for preventing a compro-

mised authenticator from accepting rogue members in the interaction and in-

trusion detection [Sun96, Lun93] for monitoring potential risks and attacks are

examples of the mechanisms that can be added to a given interaction. Role al-

location strategies such as the one in OASIS [BMY02, YMB01, HYBM00] could

be encoded as a pattern for role assignment and mission loading. OASIS uses a

formal logic to specify precise conditions for entering a role, which are based on

the node’s credentials. The node is then issued with a role membership certifi-

cate (RMC) that can be used subsequently as one of the node’s own capabilities

to satisfy the conditions for entering a further role (a proof tree is built which

corresponds to the dependencies between these certificates). The much simpler

role assignment based on capabilities, as described earlier, was used to illus-

trate the management aspects of SMC interactions. Our objective however is

not in developing such mechanisms but rather to illustrate how security and

management procedures can be enforced amongst distributed participants of

an interaction according to their roles.

3.6.2 Management of SMC Interactions

Initially, the SMC which is assigned to the coordinator role may be also as-

signed to other management roles (e.g. authenticator role), since it alone ini-

tiates the interaction. However, as new SMCs are discovered, these functions

can be devolved to them by assigning new SMCs to the roles and loading the

respective missions. Figure 3.8 succinctly describes the overall operation of an



3.6. Case-Study: Illustrating Security Management 62

SMC interaction. The SMC assigned to the coordinator role bootstraps the in-

teraction and periodically broadcasts its identity message, which also includes

in this example the address of the authenticator (1). An SMC that is interested

in joining the interaction contacts the authenticator and sends its credentials.

This in turn triggers a policy within the authenticator, which causes the cre-

dentials of the discovered SMC to be verified using the public-keys previously

loaded in the authenticator (2). Our implementation uses authentication based

on X.509 digital certificates, but other strategies could be loaded into the au-

thenticator in the form of policies.

Figure 3.8: Management and simplified policy-based interaction

If the credentials of the discovered SMC are successfully validated (and if needed,

the authenticator’s credentials are also successfully validated by the new SMC),

the authenticator sends an event to the coordinator, informing it that the dis-

covered SMC is allowed to join the interaction and what the SMC’s capabili-

ties are (3). Policies in the coordinator specify the preferable role assignment

strategy matching the role requirements and the SMC’s capabilities. The role

assignment process includes transferring the missions and authorisation poli-

cies that are meant to be enforced by that specific role to the new SMC (4). A
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mission specification m = 〈R,O〉 groups the obligations O that correspond to

the duties of the SMC and defines the set of roles R which are needed for the

enforcement of the policies. The SMC also receives the identity of the members

assigned to each role, and then directly contacts them to acquire the respective

customised interfaces for each one of these SMCs (as described in Section 3.4).

Membership management is also policy-based. Policies require each partici-

pant to send an event periodically renewing its membership with the member-

ship manager (5). In turn, the membership manager monitors the presence of

other members. The renewal event received from a member triggers a policy

in the membership manager which extends that member’s entry for a given

amount of time. When an entry expires because it has not been validated, an

event is raised locally in the membership manager, informing that the SMC

has left the interaction. This causes the membership manager to notify all

other participants so they can check whether they are still capable of enforc-

ing their missions (6). There is an obvious trade-off between how often SMCs

should revalidate their entry and how accurate the membership lists should be

kept. For this reason, these actions were defined as policies which can be easily

changed to adapt updating rates (and thus accuracy) to different requirements.

3.7 Discussion

This chapter identified basic mechanisms for supporting SMC interactions.

Through its interface, an SMC specifies which operations it provides for remote

SMCs, and which events the SMC is able to send or to receive from remote

SMCs. Whilst the functionality provided by the core interface is application-

independent and common to all SMCs, the customised interfaces of an SMC

specify different sets of application functionality that are offered to their inter-

acting partners. When a remote SMC is discovered, it is assigned in the discov-

erer’s domain structure, in a role that is compatible with that SMC’s interface.

Operations can be invoked and events can be exchanged, but more complex in-

teractions will typically involve policy exchanges, allowing an SMC to load a set
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of obligations into a partner SMC, in the form of a mission. Missions will only

be accepted by a target SMC if it can verify the mission’s integrity, as missions

are equivalent to a constrained form of programming remote SMCs. Invocation

of operations and mission loading are subject to authorisation policies allowing

one SMC to perform these actions on a remote SMC.

Cross-SMC interactions concern both the management of the application-specific

aspects, e.g. healthcare monitoring, as well as the management aspects of

how SMC interactions themselves are established. In this chapter we pre-

sented a case-study illustrating how security management of SMC interactions

is achieved through the use of the basic SMC elements, such as policies, events,

interfaces and roles. The purpose of this case-study was not to introduce new

algorithms or protocols for security management, but to illustrate how the same

principles apply to the management of the interactions themselves.

Interactions between SMCs are encoded in terms of policies and events, ac-

cording to the role each member performs. However, to apply this policy-based

infrastructure to the management of large-scale systems, it is necessary to be

able to structure complex SMC interactions, involving specific task-allocation

and event-forwarding strategies that can be rapidly instantiated among groups

of SMCs. For example, SMC interactions may be hierarchically composed of

smaller interactions, such as a large rescue team which has a medical team as

one of its members, that is itself a complex interaction. In this case, smaller

interactions should encapsulate their management details in order to allow the

system to scale up. Similarly, cross-SMC interactions can be established be-

tween a patient body-area SMC involving several other devices and the equip-

ment provided in the GP surgery, as well as between these and the devices

available in a home monitoring set-up for example.

The next chapter will introduce the use of software patterns as a means of engi-

neering larger policy-based interactions, or interactions formed by smaller SMC

collaborations. Interactions based on patterns rely on the principles presented

in this chapter and allow the systematic specification and instantiation of parts

of a collaboration by reusing and composing building block abstractions.



Chapter 4

Patterns for Building SMC

Interactions

Frequently a collaboration of SMCs may be part of a larger, and more complex

interaction. Building elaborate applications using solely elementary abstrac-

tions such as policies, roles and events can be difficult to manage and deploy.

This chapter describes the use of software patterns for engineering and struc-

turing complex policy-based interactions between SMCs. The use of patterns

provides a much more general model for the specification and instantiation of

SMC interactions and can accommodate a potentially unbounded spectrum of

interactions. Patterns allow the specification of SMC interactions through ab-

stractions for their structure, management and communication aspects. Pat-

terns can be reused and applied recursively for composing and federating SMCs

in a systematic manner, thus providing support for the construction of large

policy-based SMC collaborations.

4.1 Architectural Principles and Motivation

Christopher Alexander’s work, The Timeless Way of Building [Ale79], has influ-

enced the development of software engineering, in particular through software

65
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patterns and in the use of architectural styles for organising and structuring

software systems. His work was aimed at the use of patterns for urban plan-

ning and building architectural elements in the physical world, and how these

can be composed to address complex architectural needs and constraints, but

the same principles can be similarly applied for defining the architecture of

software elements.

Software architectures and architectural styles as discussed in Chapter 2 typi-

cally orchestrate the use of components and connectors as a means of structur-

ing software development [GS93, SDK+95, SDZ96, MMP00, MT00, TMD09]. Al-

though these do not cater for the adaptive behaviour of SMCs, similar principles

can be applied for structuring and reusing SMC interactions to form larger col-

laborations. In this chapter we describe the use of architectural styles to assist

in the design of policy-based SMC interactions. An architectural style enforces

important architectural decisions with respect to the organisation of SMCs, and

implements specific algorithms or protocols that constrain how SMCs achieve

the required exchanges of policies, events and interfaces. Building SMC inter-

actions solely in terms of these simple exchanges is challenging, and laborious

to manage and deploy. In contrast, architectural styles provide a more sys-

tematic manner for engineering large policy-based interactions, and support

to reason about how SMCs are composed and verify the correctness and the

properties achieved by a specific interaction. Architectural styles can express

designs and capture solutions in a manner that promotes their reuse across

applications. Although the identification and specification of these styles does

require human involvement, this is unavoidable because frequently best design

practices tend to be domain-specific and dependent on experience. Architec-

tural styles are similar in intent to software design patterns [GHJV95] in the

sense that they provide a set of standard solutions for recurring problems.

The consistent exchange of policies, events and interfaces can be seen as dis-

tinct perspectives of a policy-based SMC interaction. These perspectives are

complementary, as the exchange of policies must be accompanied by adequate

exchanges of events (required for triggering the policies) and interfaces (re-

quired for validating remote invocations prescribed by a policy). These multiple



4.1. Architectural Principles and Motivation 67

perspectives can then be used to emphasise and better understand indepen-

dent aspects of a policy-based SMC interaction, similar to the way that the

design aspects of a building can be considered independently (electrical wiring,

plumbing and heating, for example) [PW92]. This allows particular aspects of

an architecture to be highlighted whilst omitting others [TMD09]. We are inter-

ested in abstractions that concern three main aspects of SMC interactions:

• Management: defines how policies are exchanged between SMCs and un-

der which conditions these exchanges happen. Management (or task-

allocation) is achieved through the loading of policies which are grouped

into missions (see Section 3.4). However, policy exchanges may rely on

very specific abstractions. Some collaborations for example are reliant on

a single manager and multiple managed SMCs, while others allow multi-

ple managers to load tasks into a single SMC (which requires checking for

and resolving conflicts between the loaded policies [LS99]). Task loading

can be uni-directional or bi-directional (in the latter, each SMC is both

a manager and a managed node). Alternatively, tasks could be loaded

according to a bidding strategy where SMCs express their willingness to

receive tasks from an issuer. Finally, task-loading can be conditional to a

set of criteria, for example based on the capabilities provided by an SMC,

its profile or the credentials that the SMC possesses.

• Communication: defines flows of information typically through asynchro-

nous events between SMCs, as events are required for triggering policies,

although we do not require that all interactions between SMCs be event

driven. This varies from a simple diffusion of events from a source to a

target SMC to a more elaborate shared-bus between a set of SMCs that

works as a blackboard [EHRLR80] for shared events. Additional aggrega-

tion functions such as correlation of events provide flexibility in defining

event patterns for triggering higher-level events. Alternatively, store-and-

forward primitives are useful in ad-hoc settings where SMCs do not have a

permanent connection to their partners, and where events must be locally

stored for subsequent delivery.
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• Structural: structural aspects reflect how SMCs are organised with respect

to interface access, visibility and encapsulation, as interfaces define the

actions used in the policies. For example, peer-to-peer interactions typ-

ically rely only on a simple exchange of interfaces whereas compositions

also need to implement encapsulation and mediate access to internal re-

sources. Composed interactions allow one SMC to restrict the visibility of

its inner resources to external SMCs, creating an encapsulated structure.

Additional abstractions such as filtering of operations provide more flexi-

bility with respect to interface exchanges, allowing one SMC some degree

of control on the access to another SMC’s interface. A particular combi-

nation of structural abstractions provides very specific properties for the

interface exchange aspects of a collaboration.

The investigation of a number of application scenarios of collaborating SMCs

led to the identification of a catalogue of architectural styles for SMC interac-

tions, which is presented in the next section. A model for composing and fed-

erating SMCs by methodically combining individual architectural styles is then

described, which facilitates the building of complex interactions by reusing

styles as building block abstractions.

4.2 Catalogue of Architectural Styles for SMC Inter-

actions

A catalogue of architectural styles provides several useful abstractions for defin-

ing management relationships across self-managed cells. Our intention is to

provide a better understanding of these relationships and promote the reuse of

common abstractions for systematically building large-scale policy-based col-

laborations. Although a large number of different interactions can be defined,

typically applications tend to use small subsets of these interactions.

Table 4.1 presents a brief overview of a catalogue of architectural styles for

SMC interactions. As in all such catalogues we cannot aim to be exhaustive
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Table 4.1: Catalogue of architectural styles for SMC interactions

Category Architectural
Style

Description

Structural Peer-to-Peer Ordinary, symmetrical mode of interac-
tion between SMCs that exchange in-
terfaces

Composition One SMC encapsulates another’s in-
terface and determines its visibility
through mediation

Aggregation Inner SMC becomes resource of outer
but without imposing encapsulation
(allows sharing)

Fusion Combines the interfaces, policies, and
managed objects of two constituent
SMCs into a new SMC

Management Hierarchical
Control

One top-level SMC controls the execu-
tion of a set of leaf SMCs

Cooperative
Control

One leaf SMC is controlled by a set of
cooperating manager top-level SMCs

Auction Task allocation employing a negotia-
tion approach (issuers and bidders)

Distributed
Control

Fully decentralised interaction where
SMCs can both load and receive tasks
from their partners

Communication Diffusion Provides a way of directly forwarding
events to interacting SMCs

Shared-Bus Provides a blackboard for decoupled
event-based communication among
SMCs

Correlation Individual events are combined for gen-
erating a higher-level event

Store-and-
Forward

Useful in ad-hoc settings where SMCs
do not have a permanent connection to
their partners

but focus solely on the frequently occurring styles that facilitate the design and

composition of SMCs by structuring the devolution of management responsi-

bilities and corresponding interactions. Each architectural style relies on dif-

ferent abstractions for interface, policy or event exchanges, and correspond

to the structural, management and communication aspects of an interaction

respectively. These categories can be seen as complementary perspectives for

defining policy-based interactions between autonomous SMCs. They are com-

plementary because a given exchange of policies must be accompanied by the

adequate exchanges of events and interfaces required for validating remote in-

vocations prescribed by a policy.
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In the following we outline individually each one of these architectural styles

and Section 4.3 describes how complex collaborations between SMCs can be

specified and instantiated by combining architectural styles as design elements

of an interaction. To simplify the presentation, the diagrams illustrate inter-

actions between simple SMCs. However, each one of these SMCs may be a

complex SMC itself which might have an internal structure comprising several

other SMCs.

4.2.1 Structural Styles

Structural styles define how SMCs are organised with respect to the access of

their interfaces. These involve abstractions such as encapsulation, or filtering

and mapping of interfaces, and also combining two or more constituent SMCs

to form a new SMC.

Peer-to-Peer (Figure 4.1) defines a relationship between “equal” peer SMCs,

which provide or request services to or from each other, while each peer re-

tains its autonomy and is free to establish additional P2P interactions with

other SMCs. No specific semantics of ownership, hierarchical organisation or

encapsulation is applicable. Invocations are subject to authorisation policies

allowing the partner to perform the actions but no predefined management or

control relationships are implied. A peer-to-peer interaction can be established

between a set of UAVs in the same rescue mission which collaborate and of-

fer services to each other: e.g. one UAV can request updates about hazardous

chemicals detected by a surveyor UAV, while the latter can also use the stor-

age service provided by a third UAV to back-up this information during field

operation.

Figure 4.1: Peer-to-peer architectural style

Composition (Figure 4.2) specifies an interaction between SMCs in which an
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outer SMC encapsulates one or more inner SMCs. The inner SMCs then be-

come managed resources of the outer SMC and the inners’ visibility outside the

composed structure is subject to and mediated by the outer SMC. The outer

may expose parts of the inner interfaces within its own interface. An inner

SMC is not allowed to be contained by other SMCs or to directly interact with

other SMCs outside the composition. Typically a patient body-area network

SMC, running on a Gumstix or smartphone, forms a composition with a set of

BSN sensors for health and environmental monitoring which are encapsulated

in the body-area SMC.

Figure 4.2: Composition architectural style (encapsulation)

Aggregation (Figure 4.3) specifies a relationship in which SMCs form a hierar-

chical structure and one of the SMCs (inner) becomes part of another (outer),

and may be mediated by the outer’s interface. This can be used to form hier-

archies of SMCs where lower-level SMCs provide services to higher-level ones,

without imposing strict encapsulation among SMCs. Thus in an aggregation

the inner SMC can also interact directly with other SMCs outside the aggrega-

tion if necessary (as a shared resource). For example, a specific UAV which is

part of a team of UAVs can be loaned to cooperating teams if required, which

then can directly access the shared UAV.

Figure 4.3: Aggregation architectural style (no encapsulation)
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Fusion (Figure 4.4) combines two or more constituent SMCs into a new SMC,

and the forming SMCs cease to exist. The resulting SMC provides an interface

combining the functionality previously provided by each constituent interface,

and enforces the set of policies previously enforced by each constituent SMC.

Finally, this new SMC must take over the collection of managed resources pos-

sessed by each constituent SMC. Fusion is more natural among complex SMCs

that represent logical collections of elementary SMCs. As an example, a fusion

may occur between two SMCs representing teams of UAVs on related missions,

which are combined to form a single larger team with a single commander for

all the UAVs.

Figure 4.4: Fusion architectural style

4.2.2 Management Styles

Management styles capture task-allocation strategies and control aspects. The

tasks exchanged between SMCs are specified in the form of missions, as dis-

cussed in Section 3.4. Missions are groups of policies that can be dynamically

loaded to change the behaviour of interacting SMCs at run-time. While mis-

sions define what tasks are being exchanged, management styles specify how

these exchanges occur. Management styles also assist in the specification of

manager/managed relationships between SMCs, facilitating the deployment of

the authorisation policies which are required for mission loading. Management

styles are complementary to the structure of an interaction, and architectural

styles of both categories can be combined. For example, a group of SMCs es-

tablish a peer-to-peer structural interaction (with no encapsulation or mapping

in the access of SMC’s interfaces) and use a distribution of tasks based on an

auction style. In other cases the same auction style can be used to define the

task-allocation, while relying on a composition for the structural organisation
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of SMCs.

Hierarchical Control (Figure 4.5) consists of a top-level SMC which controls

the execution of a set of leaf SMCs by delegating policies to them. This implies

that the top-level SMC has rights of programmability over the leaf SMCs, i.e.

the top-level SMC is authorised to load tasks and policies into the leaf SMCs.

It is a unidirectional interaction in that only the top-level SMC loads tasks

into the leaf SMCs. For example, in a search-and-rescue team a commander

UAV may have rights to manage the task-allocation of the various subordinate

UAVs. This does not imply that access to leaf-SMCs is mediated by the top-level

SMC, as the hierarchical control style is only concerned with task-allocation.

Hierarchies can obviously be multi-level.

Figure 4.5: Hierarchical control architectural style

Cooperative Control (Figure 4.6) defines a set of cooperating top-level SMCs

that control the execution of a leaf SMC by delegating policies to it. This im-

plies that the top-level SMCs have rights of programmability over the leaf SMC.

Similar to the hierarchical control style, this is a unidirectional interaction in

that only the top-level SMCs load tasks into leaf SMCs. These multiple man-

agers may cause conflicting policies to be loaded into the leaf, and this style

must address mechanisms to solve such conflicts, e.g. prioritisation of policies

or use of application-specific meta-policies [LS99]. For example, a shared UAV

subject to policies loaded from two cooperating coalitions, e.g. a US and a UK

coalition, relies on the cooperative control style to address the policy conflict

issues that may arise from this interaction.
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Figure 4.6: Cooperative control architectural style

Auction (Figure 4.7) provides a task-allocation model based on the contract net

approach used in multi-agent systems [Smi88]. It facilitates task distribution

using negotiation, where tasks are announced and SMCs decide whether to bid

for their execution. The top-level SMC (issuer) evaluates the bids and assigns

the task to the most appropriate leaf SMCs (bidders). The issuer SMC decides

what tasks to offer and bidders decide which tasks to bid for, possibly after a

policy defined negotiation. The decision of which bids to accept is made by the

issuer, who cannot directly impose task execution on a bidder. Thus, the auc-

tion style does not imply that the top-level SMC has rights over the leaf SMCs

and authorisations are only granted when the negotiation is successfully com-

pleted. The negotiation process is application-dependent, but typically involves

attributes related to the leaf nodes, e.g. knowledge bases available, capabili-

ties, current workload, etc. It is a unidirectional interaction in that only the

Figure 4.7: Auction architectural style
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top-level SMC is able to load tasks into the leaf SMCs. Task-allocation based

on capabilities available in autonomous robots [CKC04, INPS03] could be used

to encode bidding protocols for SMCs.

Distributed Control (Figure 4.8) represents a fully decentralised task-allocation

interaction among a set of SMCs. The nature of such an interaction is application-

dependent, where both SMCs act as managers and managed resources si-

multaneously and have rights of programmability, i.e. authorisations, over

each other. Policies associated with this style address general authorisations

amongst the SMCs, and general conflict resolution rules similar to those pro-

vided by the cooperative management style. For example, a doctor SMC may

load health-monitoring tasks into a patient SMC. Similarly, a patient SMC may

also need to load policies onto the doctor SMC to trigger re-calibration of the

patient’s sensors if needed, as this avoids the requirement for the doctor de-

vice to store calibration procedures for all possible patients. In this interaction

both SMCs have the authorisations required to load tasks into the respective

partner.

Figure 4.8: Distributed control architectural style

4.2.3 Communication Styles

Communication between SMCs typically occurs through asynchronous event

exchanges indicating context changes within an SMC, as events are required

for triggering policies running on remote SMCs. This category of architectural

styles defines patterns that specify how events are exchanged and how the
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event buses of various SMCs are interconnected. The intent of these styles is

not to restrict the ways SMCs can communicate, but instead to provide com-

mon means of event-forwarding patterns that will facilitate the implementation

of specific interactions.

Diffusion (Figure 4.9) defines the forwarding of events from a source to a tar-

get SMC. Diffusion has been widely used in computer network protocols and

data dissemination algorithms [Tan96]. This style can be expressed in different

topologies: Figure 4.9(a) shows the general case of branching diffusion, while

Figure 4.9(b) shows an example of a sub-case known as linear diffusion or

pipeline. This style specifies rules regarding the forwarding strategy and rout-

ing protocols to be employed. Ad-hoc sensors monitoring environmental data

in the field are likely to use the diffusion style to propagate monitored data

towards processing and logging “sinks”.

Figure 4.9: Diffusion architectural style: branching diffusion (a), which is the
general case, and linear diffusion (b), which is similar to a pipeline

Shared Bus (Figure 4.10) allows SMCs to interconnect their event buses to a

central SMC, which then relays published events to all connected SMCs. SMCs

can use the shared event bus as a blackboard for decoupled interactions, be-
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Figure 4.10: Shared bus architectural style

cause the publisher SMC does not require prior knowledge of the recipient

SMCs when publishing an event. Only selected types of events may be pub-

lished in the shared event bus, and an SMC has the choice of publishing certain

events only locally in its own event bus. This style can be used for communica-

tion among surveyor UAVs which collect layout information of a specific area,

where data about new obstacles found by a UAV is published in the shared bus

which permits all surveyors to keep a consistent view of the environment.

Correlation (Figure 4.11) addresses event correlation between SMCs. It can

be used for collecting events from different sources and generating higher-level

events or for collecting patterns of events over a period of time and generating

Figure 4.11: Correlation architectural style
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another event containing synthesised information, rather than just forwarding

raw events. For example, the information collected from various physiological

sensors in a body-area network can be correlated in a coarser-grained event,

such as a periodical report on the patient’s health condition.

Store-and-Forward (Figure 4.12) addresses issues on how to transfer events

between SMCs using the principles of delay-tolerant networking [Fal03]. It is

useful in ad-hoc settings where an SMC does not have a permanent connec-

tion to all other SMCs it wishes to interact with. The store-and-forward style

enables SMCs to communicate via multi-hop interactions, where SMCs act as

carriers of events targeted to other SMCs. This style specifies how to store and

transfer events to neighbour SMCs according to their availability, ensuring that

undelivered events are retained in the SMC for later delivery.

Figure 4.12: Store-and-forward architectural style

4.3 Composing and Federating SMCs

Based on the catalogue of architectural styles we present in this section a

methodology for engineering policy-based SMC interactions, which relies on

the combination of architectural styles as design elements of a collaboration

between SMCs. Under this perspective, each architectural style is used for

describing a specific abstraction for either:

(a) the exchange of policies; or

(b) the exchange of events required for triggering policies; or

(c) the exchange of interfaces for validating the actions prescribed by policies.
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As described in Chapter 3, SMC interactions rely on the notion of roles as

placeholders for remote SMCs discovered at run-time. Roles are kept in the

domain structure that implements a hierarchical namespace within each SMC.

A remote SMC is assigned to a role in another SMC if the former fulfills the

requirements for that role, e.g. credentials, capabilities. When an SMC is as-

signed to a role, policies specified for that role will automatically apply and the

respective missions will be loaded into the SMC.

In order to support the systematic specification and instantiation of complex

SMC interactions, we present a model which permits entire architectural styles

to be associated with (bound to) a group of roles. Each architectural style de-

fines a particular algorithm or protocol governing how the SMCs that will be

assigned to these roles should behave with respect to interface, event or policy

exchanges. When SMCs are assigned to roles, the architectural styles associ-

ated with their roles are instantiated1 and SMCs will establish an interaction

which is dictated by these styles.

The use of architectural styles provides a better understanding of the relation-

ships between SMCs and promotes reuse of common abstractions. The next

chapter will describe how the use of styles also facilitates the analysis and

verification of SMC interactions.

4.3.1 Bindings and Interaction Specification

We distinguish between specification and instantiation of an interaction. The

specification consists of a number of architectural styles which are associated

with specific roles in the local domain of an SMC, e.g. doctor, patient, sensor.

This defines how SMCs that will be eventually assigned to these roles are ex-

pected to behave towards each other. When actual SMCs are assigned to roles,

the styles which were previously bound to these roles will be instantiated, and

interactions will occur in the form of exchanges of policies, events and inter-

faces as prescribed by the styles.

1For the purposes of this discussion, the terms instantiation and deployment of an architectural
style are used as synonyms.
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Each architectural style defines its own set of style-specific roles, which refer

to the abstraction being enforced. For example, a composition style defines the

roles outer and inner, whereas a hierarchical control defines the roles manager

and managed and a diffusion style defines the roles source and target.

Roles in the local domain of an SMC are bound to the style-specific roles of a

particular architectural style. These bindings specify how remote SMCs that

will be assigned to those roles should behave within the context of an interac-

tion, e.g. as an inner w.r.t. a composition, as a source w.r.t. a diffusion.

Figure 4.13: Architectural styles and bindings

Figure 4.13 illustrates how roles in the domain within an SMC, architectural

styles and style-specific roles interrelate with each other: a given architectural

style, e.g. composition, is chosen and style-specific roles of this style, e.g. outer

and inner, are bound to roles, e.g. doctor, patient, sensor, defined within an

SMC’s domain. This corresponds to the specification of an interaction between

a group of roles. When remote SMCs are discovered and assigned to these

roles, such a style will be instantiated, thereby effecting a behaviour among the

respective SMCs. This behaviour is dependent on the semantics of the style

itself, as it refers to how interfaces, policies and events are exchanged.

An architectural style also specifies a set of requirements that roles have to

fulfill (or rather the SMCs assigned to these roles have to fulfill). For example, a

style that specifies the forwarding of the event highHR from one SMC to another

will typically require this event to be supported by the source’s interface. Thus
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a requirement is a function which associates a style-specific role with a number

of operations, events or notifications which must be supported by the SMC who

will be performing that specific role:

requirement : StyleRoles→ (Operations ∪ Events ∪Notifications)

Roles in the local domain of an SMC combine both the behaviours and require-

ments of all architectural styles which were bound to them. For example, a

given role can participate in an interaction with other SMCs simultaneously

as an inner (through a composition structural style) and as a source (through

a diffusion communication style). In this case, the role in question will thus

accumulate the behaviours and requirements defined by the two styles.

An architectural style is thus defined as a set of style-specific roles, an associ-

ated behaviour and a set of requirements:

style = 〈StyleRoles,Behaviour, Requirements〉

where style is an architectural style, StyleRoles is the set of roles defined by this

style, Behaviour is the implementation-specific behaviour defined by the style,

and Requirements is the set of requirements (in terms of operations, events and

notifications) that must be satisfied by each participant in order to accomplish

the behaviour prescribed by the style.

Each architectural style can be additionally parameterised according to the

abstraction it supports. This customisation involves either:

• what interface operations need to be filtered, mapped, etc (for a structural

style); or

• what tasks and policies need to be loaded and in what conditions (for a

management style); or

• what events need to be forwarded or subscribed to (for a communication

style).
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An interaction specification that is enforced by an SMC is defined by a number

of architectural styles (and their respective style-specific roles), and how they

are bound to roles defined within the SMC’s local domain:

specification = 〈Roles, Styles, Bindings〉

where specification corresponds to the interaction specification that an SMC

must enforce, Roles is the set of roles defined in the local domain of this SMC,

Style is the set of architectural styles bound to these roles through the set of

bindings Bindings.

A binding of a style with respect to an interaction specification associates each

style-specific role defined in the architectural style with a role within the SMC’s

domain. Hence:

binding(style, specification) ⇐⇒

∀ x ∈ StyleRolesstyle,∃ y ∈ Rolesspecification : y := y ⊕ x

where the operator ⊕ applied to a style-specific role and a domain role adds

to the latter the behaviour and requirements associated with the style-specific

role. Associating an additional set of requirements with a domain role corre-

sponds to adding new restrictions to the expected interface of that role, which

will have to be satisfied by the SMC assigned to it, as discussed in Section 3.3.2.

When remote SMCs are discovered at run-time, they will be assigned to roles in

the domain of another SMC if they satisfy the requirements for these roles, and

the architectural styles which were previously bound will be instantiated. These

will dictate how these SMCs should interact with each other (Figure 4.14).

Hence, an assignment of an SMC to a domain role within a specification will

cause the deployment of all styles bound to this role:
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assignment(SMC, rolespecification) ⇐⇒

∀ st ∈ Stylesspecification : ∀ x ∈ StyleRolesst : x⊕−1 rolespecification →

deployment(SMC, st, x)

where the operator ⊕−1 evaluates to true if an style-specific role and a domain

role were previously bound to each other. This causes the deployment of the

respective architectural style. The deployment of an architectural style is de-

fined by the behaviour associated with the style, in terms of how the exchange

of interfaces, policies or events is achieved. The deployment operation takes as

arguments an SMC, the architectural style to be deployed and the specific role

within the style that this SMC will be playing.

Figure 4.14: Composition model: (1) architectural styles are bound to roles in
the local domain; (2) remote SMCs are assigned to these roles; (3) styles are
deployed and the behaviour associated with each style is enforced in the SMCs

This composition model allows us to define layers of management for policy-

based SMC interactions independently, where the structural, communication

and management aspects can be specified by reusing common abstractions

expressed as architectural styles. There are dependencies among the archi-

tectural styles: structural styles must be deployed first, as they enable the
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exchange of customised interfaces, e.g. doctor interface, patient interface; com-

munication styles are then deployed to define patterns in terms of the events

provided by these interfaces; management styles must be the last, as the poli-

cies loaded depend both on the operations provided by the application interface,

as well as on the events forwarded by a communication style. The consistent

use of architectural styles is discussed in Section 4.3.3.

4.3.2 Complex Styles and Distributed Enforcement

Certain combinations of architectural styles arranged in a particular manner

will occur more often in specific application scenarios, e.g. for care manage-

ment and physiological monitoring for a set of patients. For example, a body-

area network is typically structured as a composition encapsulating the sensors

and mediating (and filtering) access to its internal components. It normally re-

lies on a diffusion event-forwarding scheme, where sensors forward events to

the smartphone representing the patient SMC, which will possibly run other

tasks that make use of the information monitored. In the following we present

the notion of complex styles, and how different parts of an interaction can be

instantiated by collaborating SMCs in a distributed manner.

Complex Styles

We define a pattern of interaction as a combination of architectural styles ar-

ranged for a particular purpose. In essence, a pattern is a complex style realised

in terms of more primitive ones. A pre-defined pattern for a body-area network,

for example, can then be instantiated multiple times to enforce the interactions

among the sensors and devices available for each patient.

Figure 4.15 illustrates a succinct pseudo syntax for the textual description

of patterns (in the current implementation patterns are written in PonderTalk

which is more verbose − examples of patterns specified in the PonderTalk lan-

guage can be found in Chapter 6). In PonderTalk each architectural style is

also parameterised with the methods to be mapped or filtered, events to be for-
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warded or subscribed to, and missions to be loaded, however these details are

not shown in Figure 4.15.

1 //Collaboration specification
2 type pattern 〈PatternName0〉(...) {

4 import /factory/structural/composition;
5 import /factory/taskallocation/hierarchical;
6 import /factory/communication/diffusion;

8 type pattern 〈PatternName1〉(role R1, [mandatory] role R2, role R3) {

10 bind style composition(outer R1,inner R2,inner R3);
11 [on 〈event〉] bind style hierarchical(manager R1,managed R2,

managed R3);
12 [on 〈event〉] bind style diffusion(target R1,source R2,source R3);
13 }
14 inst pattern p1 = 〈PatternName1〉(SMCa, SMCb, SMCc) at SMC1;

16 . . .

18 type pattern 〈PatternNamen〉(...) {
19 . . .
20 }
21 inst pattern pn = 〈PatternNamen〉(...) at SMCn;
22 }

24 //Collaboration instantiation
25 inst pattern p0 = 〈PatternName0〉(...) at SMC0;

Figure 4.15: Pseudo syntax for the textual representation of a pattern of inter-
action

The specification of a pattern is defined by a set of domain roles (amongst

which some may be mandatory and others optional), a specific set of architec-

tural styles expressing the abstractions required by this pattern, and how the

domain roles are bound to style-specific roles. Bindings can be event triggered,

meaning that they are only established in certain circumstances. When a pat-

tern is instantiated, actual SMCs are passed as parameters and assigned to the

respective roles. Mandatory roles must have been assigned when the pattern

is instantiated, whereas optional roles can be discovered whilst the pattern is

already running, e.g. in a body-area pattern, the patient and heart rate sensor

roles are mandatory, whereas an oxygen saturation role may not be required

for pattern instantiation and the respective SMC may be discovered later on.

Multiple patterns can be combined, possibly containing other nested patterns.
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Each pattern is instantiated “at” an SMC, which is then responsible for in-

stantiating the architectural styles defined within the pattern and establishing

the respective interactions. This caters for the distributed enforcement of the

whole interaction, where different SMCs are responsible for realising different

parts of an interaction and each pattern can be independently specified and

instantiated. This is discussed in more detail in the following.

Distributed Enforcement

In large applications, architectural styles and patterns will be established be-

tween different groups of SMCs. While a patient’s smartphone will normally be

responsible for enforcing a body-area pattern among its sensors, a doctor SMC

will be for example interested in patterns for distributed monitoring of a set

of patients. Similarly, a pattern running at the patient’s home server will en-

force an interaction between the local devices and appliances to define a home

monitoring set-up SMC.

The interaction model based on architectural styles and patterns caters for the

systematic specification and instantiation of SMC interactions in that: (a) it

permits the establishment of different parts of an interaction (represented as

sub-patterns) by different SMCs within a large collaboration; and (b) the in-

ternal specification of each pattern relies on a combination of abstractions for

structure, management and communication that cater for the general organi-

sation of SMCs inside that pattern.

Each pattern defines an interaction between a subset of SMCs and can use

management and security strategies that differ from the ones used in another

part of the interaction. For example, role assignment based on capabilities

and authentication using public-key certificates (as illustrated in Section 3.6)

can be used for managing parts of a larger interaction whereas the pattern

enforced by another group of SMCs may rely on alternative role assignment

and authentication strategies.

The SMC in charge of instantiating (part of) the interaction specification will be
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responsible for establishing the interactions with other participant SMCs. This

consists of:

1. Determining who are the other participant SMCs. These can be:

(a) SMCs which are discovered at run-time;

(b) Pre-determined SMCs that parameterise the interaction specification;

2. Assign the SMCs to the roles defined in the interaction specification and

verify whether these can be fulfilled by the SMCs, according to the role’s

expected interface;

3. Each participant will receive a subset of these roles, according to who it is

interacting with (a role r1 is interacting with a role r2 if both r1 and r2 are

bound to style-specific roles within the same architectural style), and the

address of the SMCs assigned to these roles;

4. Each architectural style defined in the interaction specification is instan-

tiated by the SMC in charge of enforcing the specification. This consists

of:

(a) Instantiating structural styles for interface exchange;

(b) Instantiating communication styles for event exchange;

(c) Instantiating management styles for policy exchange;

5. Repeat the whole process for any sub-pattern defined within the interac-

tion specification.

Figure 4.16 illustrates the establishment of interactions based on patterns. In

this example, SMC0 is responsible for instantiating the interaction specification

defined in Pattern0. This pattern contains two individual architectural styles to

be instantiated by SMC0 between the participants SMC1 and SMC2, and also

two other nested patterns. SMC0 sends Pattern1, which consists of a composi-

tion and a hierarchical control style, to SMC1. Two nearby SMCs are discovered

by SMC1, and will be assigned to roles within the pattern if their interfaces ful-

fill the respective role’s expected interfaces. SMC1 will then instantiate the ar-

chitectural styles within Pattern1 between these SMCs. Similarly, SMC0 sends
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Pattern2 to SMC2. Each SMC which is responsible for enforcing a pattern is

in charge of instantiating the styles within the pattern and establishing the

respective interactions with other participating SMCs.

Figure 4.16: Distributed enforcement of architectural styles and patterns

When an architectural style is instantiated by an SMC, this will distribute dif-

ferent parts of the algorithm or protocol implemented within the style to the

other participant SMCs, according to their roles. By executing their fragments

of the algorithm or protocol, the collection of interacting SMCs will collabora-

tively enforce the semantics of the respective architectural style. In Chapter 6

we will give details on the runtime model that supports the instantiation of

patterns and the establishment of interactions between distributed SMCs, and

how these were implemented within the framework.

The use of styles and patterns provides a much richer model for the specifica-

tion, instantiation and reuse of SMC interactions. However, because different

parts of a large interaction will be enforced by different SMCs, these collab-

orations are more susceptible to inconsistencies that will prevent SMCs from
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operating as originally expected. The correct specification and deployment of

SMC interactions are discussed in the next section.

4.3.3 Correct Specification and Deployment

Interactions between SMCs can be subject to a number of inconsistencies, both

during the interaction specification and during the interaction instantiation.

These inconsistencies are typically related to bindings, assignments and policies

within the context of an interaction.

Bindings

The way an architectural style is bound to a set of application roles defines how

the SMCs assigned to these roles will be expected to interact. If these bindings

do not respect the semantics of each style, the resulting specification may be

flawed. For example, with respect to the structure of an interaction, an SMC

encapsulated in a composition style should not be visible or accessible by SMCs

outside the composition.

Figure 4.17: Incorrect binding of roles
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Figure 4.17 illustrates an example of an incorrect specification in terms of bind-

ings. In this case, the Patient role is expected to establish a composition with

the Pacemaker role, which is thus bound to an inner style-specific role. How-

ever, the same Pacemaker role is also bound to a peer role in a peer-to-peer

interaction with an external diagnosis device. This violates the semantics of

encapsulation (where an inner SMC can only be accessed by its outer SMC,

and all invocations or event notifications come via the outer’s interface) defined

by the composition architectural style.

Inconsistent bindings also happen across styles from different categories: for

example, an event-forwarding style can only be bound if a style that first ex-

changes the interfaces required for supporting these events is already bound.

Assignments

Even if an interaction is correctly specified in terms of bindings, the assignment

of SMCs that do not provide suitable interfaces will impede the deployment of

the interaction. Thus the SMCs assigned to each role must satisfy the require-

ments defined by all the styles bound to that role in terms of operations, events

or notifications.

In addition, SMC assignments may also violate style semantics, even if the

bindings were correctly specified. Figure 4.18 illustrates an example of incon-

sistent SMC assignment, where both a composition and a peer-to-peer architec-

tural styles are bound to a set of domain roles. Although the bindings between

roles do not violate the semantics of encapsulation defined by the composition

style, SMC3 is assigned both to the Pacemaker role (which is bound to the inner

style-specific role of the composition) and to the Actuator role (which is bound

to a peer style-specific role of the peer-to-peer style). Even though the bindings

were specified correctly, this set of assignments caused the same SMC to par-

ticipate in a composition (as an inner) and in a peer-to-peer interaction with

another SMC, thus violating the semantics of encapsulation.

The verification of SMC assignments can be seen as run-time checks that must
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Figure 4.18: Incorrect assignment of SMCs

be performed when actual SMCs are discovered, whereas the verification of the

bindings can be seen as static checks of the interaction specification.

Policies

Finally, after all architectural styles are bound and deployed across a set of

SMCs, a policy-based collaboration must be effectively achieved. However, if

patterns are specified for loading policies into a specific SMC but this SMC

does not have access to the events required for triggering the policies (or these

events are never forwarded to the SMC), then the policies will never be triggered.

Similarly, an SMC may not have access to the interfaces required for validating

the actions prescribed by a policy.

Thus, additional checks must guarantee that the exchanged policies were ac-

companied by the adequate exchanges of events and interfaces required by

these policies. In the next chapter, we will describe how model-checking tech-

niques were applied to analyse and verify the consistency of policy-based SMC

interactions automatically.



4.4. Discussion 92

4.4 Discussion

Engineering large-scale policy-based systems using simple abstractions such

as policies, roles, interfaces and events can be difficult to manage and deploy.

The use of architectural styles and patterns to specify, instantiate and reuse

SMC interactions is a promising approach which incorporated ideas from soft-

ware architecture-based approaches [GS93, SDK+95, SDZ96, MMP00, MT00,

TMD09]. We proposed a catalogue of architectural styles that promotes the

reuse of common abstractions for the structure, management and communi-

cation aspects for SMC interactions. Collaborations of SMCs can interact with

other collaborations, and re-apply architectural styles recursively. This facili-

tates defining large-scale composable systems by reusing and combining com-

mon abstractions. Chapter 6 will present details on how these architectural

styles are implemented and Chapter 7 will describe a case-study illustrating

the use of SMCs and architectural styles in the design of a healthcare monitor-

ing application.

The different categories of architectural styles can be seen as complementary

perspectives for modeling policy-based SMC interactions. The proposal of a cat-

alogue of styles brings to light common types of interaction that are useful for

building collaborations between SMCs. However, this chapter does not present

an exhaustive catalogue and only focuses on the frequently occurring patterns

identified in a few application scenarios. Investigation of additional scenarios

and applications may uncover new patterns.

Our overall goal is to be able to dynamically form collaborations, compositions

and federations of SMCs suitable to particular application scenarios, e.g. care

management for a set of patients, by instantiating combinations of pre-defined

patterns. These application-specific patterns rely on the primitive architectural

styles and can be parameterised and instantiated for each patient SMC, using

the resources and devices available in a body-area network or in a home moni-

toring set-up, for example.

Although architectural styles proved a helpful abstraction for designing large-
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scale SMC interactions, the successful operation of these collaborations de-

pends both on their correct specification and on the suitability of the partici-

pating SMCs. The next chapter will present a formal specification of SMC be-

haviour and interactions, and how model-checking techniques can be applied

for verifying correct interaction specification and deployment.



Chapter 5

Formal Specification and

Model-Checking

This chapter presents a formal specification of the overall SMC behaviour and

its analysis in collaborations across SMCs. In these collaborations, consistent

policy deployment is crucial as often SMCs form autonomous administrative

domains and, when these SMCs are composed or federated, inconsistencies,

conflicting policies or unsuitability of the resources available will prevent them

from operating as originally expected. The definition of a formal model assists

in the design of SMC collaborations and allows the verification of the correct-

ness of anticipated interactions before these are implemented or policies are

deployed in physical devices, e.g. smartphones, sensors.

We chose the Alloy Analyzer [Jac02, Jac06] as the platform for the formal spec-

ification of the SMC behaviour. Alloy is a declarative modelling language based

on first-order logic and used for expressing complex structural constraints and

behaviour in a software system. It differs from pi-calculus [MPW92], ambient

calculus [CG98] and channel ambient calculus [Phi06] which model the com-

putation operationally. We found Alloy more natural and concise for describing

SMC interactions and the integrity constraints related to SMC management.

Models written in Alloy can be automatically checked for correctness using its
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analyser. Alloy performs a finite scope check, i.e. analysis is performed over

restricted scopes on the number of objects (instances) to be used, which is de-

fined by the user (the user-specified scope makes the problem finite and thus

reducible to a boolean formula). This is based on the small scope hypothe-

sis [Jac06], that for any flawed design a counter-example should be found by

an exhaustive search within a comparatively small, bounded scope.

The formal model presented in this chapter complements our framework for the

specification and establishment of SMC interactions. The tool support provided

by the Alloy Analyzer allows:

(a) formally capturing the static and dynamic aspects of the structure (through

signatures) and behaviour (through predicates) of a model for SMC inter-

actions;

(b) automatic verification of the consistency of specific collaborations between

SMCs by using its analyser;

(c) simulation of SMC behaviour in complex interactions involving pre-deter-

mined sequences of operations.

The model specification formally defines SMCs and interrelated concepts, e.g.

roles, interfaces, etc, and the SMC’s behaviour with respect to establishing

policy-based interactions with other SMCs, e.g. discovery, assignment, etc. The

model also logically defines properties that can be verified for SMC interactions,

e.g. an SMC satisfies the requirements for a role. We can then check whether

a specific set of SMCs and their policies (given as input) satisfy these logical

properties. The boolean evaluation of these properties is not affected by the size

of the interactions, rather it depends on whether these interactions conform to

a number of logical statements.

The formal model and the tool support are used to design and to check whether

SMC interactions can be established before implementing them and deploying

the policies in actual devices. A set of SMCs and their interfaces is given as

input to the model, which checks whether they are capable of establishing the
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Figure 5.1: Alloy analysis tool screenshot

interactions and enforcing their policies. These a priori checks cannot guar-

antee the correct enforcement of the interaction during run-time in which, for

example, a sensor may fail and the interaction may have to be re-checked.

Even though it would be possible to use Alloy to re-check such an interaction

dynamically, currently we only use the tool for performing design-time checks.

The tool can also be used to simulate SMC behaviour in complex interactions.

For example, given a particular configuration of doctor and patient SMCs, we

can simulate the discovery of a new sensor by the patient, then the loading of

a policy into the patient and the subsequent failure of another sensor. We can

add further steps in specific guided simulations [HR04] and verify properties in

different stages of this interaction.

Figure 5.1 illustrates a screenshot of the Alloy Analyzer: on the left hand side

the editor allows the specification of the model itself and the logical properties
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we want to verify. Predicates can be defined that specify a particular instance

of SMC interaction and whether this interaction satisfies a number of logical

properties. The results of the analyses are presented in the panel on the right

hand side. The toolset also provides a visualisation tool which can be used

to display examples or counter-examples graphically. This has helped us in

understanding the solutions found by the analyser. The figures in this chap-

ter were generated by this visualiser, with small hand edits of names to aid

comprehension.

The next sections will first describe the formal specification of SMCs and their

interactions, and then how analyses and verification of properties can be per-

formed using this formal model.

5.1 Modelling Structure and Behaviour

This section presents the specification of the formal model for SMCs. We con-

centrate on the specification of the structure and behaviour of the model. The

structure is determined by a set of signatures, which define the concepts rele-

vant to the model and their relation to other concepts, e.g. SMC, role, interface.

Signatures refer to the structure of the model specification, which is similar

to a class structure in the OO paradigm. This should not be mistaken for the

structural aspects of an interaction as defined by the structural architectural

styles in Chapter 4. The dynamic behaviour of the model is determined by a

set of predicates, which specify the effect of operations executed in the model,

e.g. SMC discovery, role assignment. The formal specification also consists of

a number of sanity constraints specified in Alloy in the form of facts. Facts

define properties that always hold in the model, for example, an interface is

always provided by one SMC so interfaces do not just occur unattached to any

SMC. These facts however are almost always trivial constraints and therefore

are omitted from this section, which instead focuses on the specification of the

structure and behaviour of the model alone.

In order to facilitate its understanding, the specification of the formal model is
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divided into two parts:

• Firstly, the basic SMC model defines the elementary concepts such as

SMC, Role, Interface, policies and the basic predicates for discovery of a

new SMC, departure of an SMC, role assignment and role de-assignment,

as well as the use of obligation and authorisation policies in collaborations

of SMCs;

• Secondly, the architectural model formalises the architectural aspects

of an interaction, such as architectural styles, bindings, etc, and shows

how architectural styles can be composed to form larger interactions.

5.1.1 Basic SMC Model

This model defines the elementary principles for policy-based interactions be-

tween SMCs, without yet considering the use of architectural styles for com-

posing these interactions. This forms the basis of a complete specification for

modelling SMC behaviour and interactions.

Structure

The most important component in the model is the SMC, which is modelled in

the signature SelfManagedCell (Figure 5.2). In the declaration of a signature

body, a number of relations are defined, which can be thought of as fields of

an object in the OO paradigm. The SelfManagedCell signature specifies four

unary relations1. The first two, provides and requires, define respectively which

interfaces an SMC is able to offer to remote SMCs and which roles an SMC

requires to be fulfilled. The other two relations, obligations and authorisations,

define the policies that an SMC is enforcing. SelfManagedCell is an abstract

signature, meaning it can be extended to define a specialised component in the

1In Alloy, a relation is defined as a set of ordered tuples, and the arity of the relation is the
number of elements in each tuple. Each tuple thus indicates that its elements are related in a
certain way, e.g. the arity-2 relation “assignment: Interface→ Role”, which will be discussed later,
associates interfaces with roles.
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model, e.g. DoctorSMC, PatientSMC, SensorSMC all extend the abstract signa-

ture SelfManagedCell.

1 abstract sig SelfManagedCell
2 {
3 provides: some Interface,
4 requires: some Role,
5 obligations: set Obligation,
6 authorisations: set Authorisation
7 }

Figure 5.2: Self-Managed Cell signature

An SMC provides one or more interfaces, which can then be assigned to a role

in a remote SMC. The signature Interface (Figure 5.3) defines the operations

(methods that can be invoked), the events (which can be published externally)

and the notifications (which are external events of which the SMC can be no-

tified) supported by an interface. In turn, these are defined in the Operation,

Event and Notification signatures (not shown here).

1 abstract sig Interface
2 {
3 operations: set Operation,
4 events: set Event,
5 notifications: set Notification
6 }

Figure 5.3: Interface signature

A Role (Figure 5.4) functions as a placeholder for remote SMCs. The relation

“assignment: Interface → Role” (which will be discussed shortly) is used to

define the assignment of an SMC’s interface to a role. The role’s expected

interface (requirements that must be fulfilled by interfaces assigned to the role)

is determined by the set of architectural styles which are bound to that role

(this will be discussed in Section 5.1.2).

1 abstract sig Role
2 { }

Figure 5.4: Role signature
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An SMC enforces two types of policies: the ConcreteObligation signature (Fig-

ure 5.5) defines the subject and target roles that the policy refers to, the event

that triggers the policy and the action to be invoked in response.

1 sig ConcreteObligation extends Obligation
2 {
3 subject: one Role,
4 event: one Event,
5 action: one Operation,
6 target: one Role
7 }

Figure 5.5: Concrete obligation signature

Similarly, the ConcreteAuthorisation signature (Figure 5.6) defines a subject

role, a target role, an action and the modality of the policy (which can be either

positive or negative). In both types of policies, the subjects and the targets are

roles within the context of the SMC in which the policy is enforced.

1 sig ConcreteAuthorisation extends Authorisation
2 {
3 modality: one Modality,
4 subject: one Role,
5 action: one Operation,
6 target: one Role
7 }

Figure 5.6: Concrete authorisation signature

Behaviour

Dynamic behaviour is modelled in Alloy through a number of predicates. A

common technique [HR04, Tut09] to represent dynamic behaviour is to define

declaratively how the occurrence of an operation affects the state of the system

being modelled. It is necessary to represent explicitly the state of the system

being modelled in Alloy, so we can show what properties hold before and what

properties hold after an operation is executed.

Typically an additional signature is used to represent the state of the system,

which in our case corresponds to an interaction between a set of SMCs. Then,
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for each operation we define a predicate that takes as arguments an instance

S and an instance S’ of this signature (to represent the “state” of the interac-

tion before and after the execution of the operation), and shows how S differs

from S’ in this predicate. This is equivalent to showing which properties hold

before and which properties hold after the execution of the operation. This

notion of “state” of an interaction was encoded in the signature Configuration

(Figure 5.7).

1 sig Configuration
2 {
3 participants: some SelfManagedCell,
4 assignment: Interface lone → Role,
5 loading: SelfManagedCell →
6 (ConcreteObligation + ConcreteAuthorisation),
7 active: set (ConcreteObligation + ConcreteAuthorisation)
8 } {
9 active in (participants.obligations

10 + participants.authorisations
11 + participants.loading)
12 }

Figure 5.7: Configuration signature

An instance of this signature thus represents a policy interaction between a set

of SMCs at a given time point. The signature specifies four relations: (a) the

set of participants in the interaction, (b) the assignments of participants (repre-

sented by their provided interfaces) to roles, (c) the policies that are exchanged

(loading) between these SMCs, and (d) the policies that are currently active in

each of the participating SMCs. An appended fact in this signature ensures

that the active policies within a configuration are either the policies already

inside one of the participants or the policies being loaded.

We specified the various operations required for modelling SMC behaviour as

predicates, that show which properties hold before and which properties hold

after the execution of the operation. Using this principle it was possible to show

the changes that happen when an SMC is discovered, when an SMC departs,

when an SMC is assigned to a role, when architectural styles are bound to

roles and when these styles are deployed. The basic SMC model caters for the

specification of:
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• Discovery of an SMC;

• Departure of an SMC;

• Assignment of an SMC to a role;

• De-assignment of an SMC from a role;

• Loading and activation of a policy;

• Unloading and de-activation of a policy.

Figure 5.8 illustrates the operation of assignment of interface itf of an SMC

smc1 to a role rol of another SMC smc2. It defines the assign operation where

conf and conf’ denote the interaction before and after the operation is executed,

respectively. It states that both smc1 and smc2 must already be participants

in conf (line 5), and that smc1 must provide itf whereas smc2 must require

rol in conf (lines 6-7). The operation causes the set of assignments in the new

configuration conf’ to be the same as the one before the operation plus the new

assignment itf → rol (line 11). Section 5.1.2 will discuss how the requirements

associated with a role are checked against the interface assigned to it.

1 pred assign [disj conf, conf’: Configuration,
2 smc1: SelfManagedCell, itf: Interface,
3 smc2: SelfManagedCell, rol: Role]
4 {
5 (smc1 + smc2) in conf.participants
6 itf in smc1.provides
7 rol in smc2.requires
8 conf.participants = conf’.participants
9 conf’.loading = conf.loading

10 conf’.active = conf.active
11 conf’.assignment = conf.assignment + (itf → rol)
12 }

Figure 5.8: Assign predicate

The assign operation does not affect the participants, loading and active prop-

erties of the interaction (lines 8-10); rather, these properties are modified by

separate predicates, which were specified in a similar manner. These individ-

ual predicates can then be combined to simulate SMC behaviour, for example,
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to represent the assignment of an SMC to a role followed by policy loading. This

can be done by defining a new predicate which combines assign to show how

the interaction initially passes from conf to conf’, and load to show how this

interaction then passes from conf’ to conf”. The final configuration conf” will

thus represent the resulting “state” of the interaction after the two operations

are executed.

Figure 5.9 shows an example of a valid SMC interaction which can be obtained

from the Alloy specification. In this example, PatientSMC requires the roles

Sensor and Doctor, and provides interface IPatient (which defines the opera-

tion startECG). Similarly, DoctorSMC requires the role Patient, and provides

interface IDoctor (which defines the operation load, the event loaded and the

notification stopped). In the example, interface IPatient, which is provided by

PatientSMC, is assigned to the role Patient, which is required by DoctorSMC.

Figure 5.9: Alloy graphical representation of a role assignment

Another example, this time describing a policy interaction across SMCs is

shown in Figure 5.10. DoctorSMC has an obligation policy Obl, which states

that the subject role (Doctor) must invoke on the target role (Patient) the action

startECG in response to the event highHR. Interface IDoctor provided by the

DoctorSMC is locally assigned to the subject role, and interface IPatient pro-

vided by the remote PatientSMC is assigned to the target role in the DoctorSMC.
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PatientSMC enforces the positive authorisation Aut (labelled “modality: Posi-

tive”), which states that the subject role (Doctor) is allowed to invoke the action

startECG on the target role (Patient). The remote interface IDoctor provided by

the DoctorSMC is this time assigned to the Doctor role in PatientSMC. In this

example the same interface the doctor uses is exported to be seen by the pa-

tient. In PatientSMC, the local interface IPatient is assigned to the local Patient

role, which is also the target role of the policy being enforced by this SMC. Both

Obl and Aut policies are active in this interaction.

Figure 5.10: Alloy graphical representation of a policy deployment between
SMCs

Examples of the types of analysis we are able to perform using this formal

specification will be discussed in Section 5.2. Before that, we describe the

formalisation of the architectural aspects of an interaction.

5.1.2 Architectural Model

We defined the architectural aspects of SMC interactions, in particular styles

and bindings between style-specific and domain roles, in a separate model.

This distinction between the fundamental concepts and the architectural as-

pects of SMC interactions permits independent modelling and analysis of either

simple interactions or more complex interactions based on the use of styles.

The architectural model extends the basic SMC model with the signatures and

predicates necessary for the specification of these additional concepts. It sup-



5.1. Modelling Structure and Behaviour 105

ports reasoning about SMC interactions based on the composition of architec-

tural styles, thereby allowing the verification of properties related to consistent

bindings and deployment of styles.

Structure

Architectural styles were modelled in Alloy using a three-level hierarchy, which

distinguishes between (a) the concerns that are common to all architectural

styles, (b) the concerns that are related to a specific category of architectural

styles, and (c) the concerns that are specific to a particular abstraction enforced

by an architectural style:

• The top-level signature ArchitecturalStyle is common to all styles, inde-

pendent of their category or the specific abstraction they support.

• Three other intermediate signatures, StructuralStyle, CommunicationStyle

and TaskAllocationStyle, are used to represent the mapping of interfaces,

forwarding of events and loading of policies respectively.

• Each style-specific signature then defines further constraints on how this

is achieved, i.e. how mappings should be performed, how events should

be forwarded and how policies should be loaded.

The signature ArchitecturalStyle (Figure 5.11) is the base signature of any ar-

chitectural style. It defines two relations: roles which specifies a set of style-

specific roles (defined by the signature ArchitecturalStyleRole, not shown here),

and expects which associates a style-specific role with a set of requirements (in

terms of operations, events or notifications).

1 abstract sig ArchitecturalStyle
2 {
3 roles: some ArchitecturalStyleRole,
4 expects: roles → (Operation + Event + Notification)
5 }

Figure 5.11: Base architectural style signature
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The exchanges of interfaces, events and policies were abstracted in three ad-

ditional signatures that extend ArchitecturalStyle, namely StructuralStyle, Com-

municationStyle and TaskAllocationStyle, referred to as intermediate signatures.

Figure 5.12 shows the three signatures, and how we modelled2 the exchanges

of interfaces, events and policies in terms of (1) the mapping of operations of an

interface, (2) the forwarding of events generated by an SMC to notifications re-

ceived by another SMC, and (3) the loading of policies3 into an SMC performing

a given style-specific role.

1 abstract sig StructuralStyle extends ArchitecturalStyle
2 {
3 mapping: Operation → Operation
4 }

6 abstract sig CommunicationStyle extends ArchitecturalStyle
7 {
8 forwarding: Event → Notification
9 }

11 abstract sig TaskAllocationStyle extends ArchitecturalStyle
12 {
13 loading: ArchitecturalStyleRole → Obligation
14 }

Figure 5.12: Intermediate structural, communication and task-allocation style
signatures

Finally, each individual architectural style extends one of the three intermedi-

ate signatures to define specific constraints on how this behaviour is achieved.

The definition of each architectural style is accompanied by the specification

of additional signatures that represent the style-specific roles (not shown here)

which are pertinent for a given style, e.g. Inner and Outer are empty signatures

that extend ArchitecturalStyleRole, and are used specifically in the context of a

composition. Figure 5.13 illustrates how the signature Composition, which ex-

tends StructuralStyle, was defined. Rather than explaining in detail the syntax

we present in Table 5.1 an intuitive description of the most common operators

2The Alloy specification abstracts some of the details when modelling the architectural styles;
for example, a structural styles is more generally modelled as a mapping of operations, which
corresponds to a mapping from the Outer to the Inner (in Composition), or an empty mapping
(in Peer-to-Peer) for example. Other forms of behaviour, such as the filtering of operations were
deliberately omitted to make the model simpler to understand.

3In our model, the set of policies loaded by a task-allocation style corresponds to the mission
specification which is sent to an SMC.
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1 sig Composition extends StructuralStyle
2 { }
3 {
4 roles in (Outer + Inner)
5 #(roles & (Outer)) == 1
6 #(roles & (Inner)) >= 1
7 all conf: ArchitecturalConfiguration |
8 (this in conf.bound)
9 ⇒ no (((roles & Outer).(conf.binding)

10 & (roles & Inner).(conf.binding)))

12 all conf: ArchitecturalConfiguration |
13 (this in conf.deployed)
14 ⇒ no (((roles & Outer).(conf.binding).∼(conf.assignment)
15 & (roles & Inner).(conf.binding).∼(conf.assignment)))

17 // requirements
18 expects in ((roles & (Inner)) → Operation)

20 // behaviour
21 all conf: ArchitecturalConfiguration | (this in conf.deployed)
22 ⇒ mapping in
23 (((roles & (Outer)).(conf.binding)).∼(conf.assignment).operations)
24 → (((roles & (Inner)).(conf.binding)).∼(conf.assignment).operations)
25 }

Figure 5.13: Composition signature

used in this example for those not familiar with Alloy. The style specification

does not define new relations in its body, but instead simply adds further con-

straints through a number of appended facts, just after the signature body. The

definition of this style relies on an ArchitecturalConfiguration, which represents

an instance of an interaction at a given time point, similar to a Configuration

(Figure 5.7). In particular, “binding” is a relation “ArchitecturalStyleRole→ Role”

(defined in Figure 5.15) that associates a given style-specific role with one of the

roles required by an SMC. The relations “bound” and “deployed” define which

architectural styles were bound in this interaction, and among those, which

ones are already instantiated/deployed in the participant SMCs. Firstly, the

specification restricts the style-specific roles for a composition: style-specific

roles can be either Outer or Inner, with exactly one instance of the former and

one or more instances of the latter (lines 4-6). Then two further constraints are

added which state that the bindings (resp. assignments) of the Outer role must

be disjoint from the bindings (resp. assignments) of the Inner roles, i.e. an
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Table 5.1: Common Alloy operators

Operator Description
Intersection (“&”) Defines the intersection between two sets, thus

“(roles & (Inner))” in line 6 of Figure 5.13 returns
the set of all style-specific roles which belong to
that style and which are of the type Inner.

Relational inverse (“∼”) Used to reverse a relation, so given for example
the relation “conf.assignment: Interface → Role”,
which can be used to obtain the Role to which a
given Interface was assigned, “∼conf.assignment”
inverts that relation to “Role → Interface”, which
can be used to obtain the Interface assigned to a
given Role.

Relational join (“.”) Used to compose two relations. For example, the
expression defined in line 23 of Figure 5.13 cor-
responds to the set of all “operations” provided
by the interfaces which are assigned to the set
of roles (“∼(conf.assignment).operations”), which
are bound to the Outer style-specific role (“((roles
& (Outer)).(conf.binding)”) in this composition. In
this case, “binding” is a relation “Architectural-
StyleRole → Role” (defined in Figure 5.15) which
can be used to obtain the domain role to which a
given style-specific role was bound.

SMC cannot be outer and inner at the same time in a composition (lines 7-15).

The composition signature also constraints the requirements of the style to a

set of operations that are associated with the Inner style-specific role (line 18).

Finally, the composition defines the behaviour that must be added when the

style is deployed, in the form of mapping of operations from the interface of the

Outer SMC to the interface of the Inner SMC (lines 21-24).

The enforcement of encapsulation in a Composition is carried out during the

binding operation (as part of the model behaviour, which will be discussed

shortly). This checks that the addition of the new bindings to the current

interaction will not result in a set of inconsistent bindings (when the system

changes from a “state” S to a “state” S’). The condition that verifies whether

the encapsulation property is satisfied is illustrated in Figure 5.14. It specifies

that a new structural style “st” can only be bound if the following applies for

any other structural style “otherstyle” which is already bound. Let conf and

conf’ be the representation of the interaction before and after the new binding
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happens respectively:

1. If “st” is a composition (line 3), then there is no intersection between the

resulting bindings of its inner role (line 4) and the existing bindings of any

“otherstyle” (line 5), except if this overlapping happens with an Outer role

of “otherstyle”. In this latter case the intersection would result in a multi-

level composition, which preserves encapsulation and is therefore a valid

structure; and

2. If “otherstyle” is a composition (line 8), then there is no intersection be-

tween the existing bindings of its inner role (line 9) and the bindings of the

new style (line 10), i.e. new bindings are not overlapping with roles that

were already encapsulated.

1 all otherstyle: (conf.bound & StructuralStyle)
2 {
3 (!(no (st & Composition))
4 ⇒ no ((st.roles & Inner).(conf’.binding)
5 & ((otherstyle.roles).(conf’.binding) −
6 ((otherstyle & Composition).roles & Outer).(conf’.binding))))
7 and
8 (!(no (otherstyle & Composition))
9 ⇒ no ((otherstyle.roles & Inner).(conf’.binding)

10 & (st.roles).(conf’.binding)))
11 }

Figure 5.14: Verifying if encapsulation is preserved during binding

Other architectural styles were similarly modelled in Alloy, thus allowing us to

define specific abstractions for interface mappings, event forwarding and policy

loading.

Behaviour

The behavioural aspects of the architectural model concentrate on two distinct

steps related to SMC interactions: (1) interaction specification and (2) interaction

instantiation. Interaction specification is defined by the bindings between style-

specific roles and the roles required by an SMC, and this specifies how SMCs
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assigned to these roles will be expected to behave. Interaction instantiation is

represented by the deployment of styles previously bound to a set of roles,

when actual SMCs are assigned to these roles. The deployment causes a new

dynamic behaviour to be added to the current interaction (when the system

passes from state S to S’), which is defined in terms of forwarding of events,

mapping of interfaces or exchange of policies, depending on the architectural

style being deployed.

The predicates defined in this model cater for the specification of:

• Binding and unbinding of an architectural style;

• Deployment and removal of an architectural style.

To distinguish the state of the system before the execution of an operation

from the state after the operation, we defined an additional signature, named

ArchitecturalConfiguration (Figure 5.15). Similarly to the predicates defined in

the basic SMC model, the various operations for binding and deployment of

architectural styles were modelled by showing how instances of Architectural-

Configuration differ before and after an operation is executed.

1 sig ArchitecturalConfiguration extends Configuration
2 {
3 patterns: some Pattern,
4 bound: set ArchitecturalStyle,
5 deployed: set ArchitecturalStyle,
6 binding: ArchitecturalStyleRole → lone Role,
7 forwarding: Event → Notification,
8 loading: SelfManagedCell → Obligation,
9 mapping: Operation → Operation

10 } {
11 bound in patterns.styles
12 deployed in bound
13 binding in (bound.roles → lone participants.requires)
14 }

Figure 5.15: Architectural configuration signature

An ArchitecturalConfiguration extends Configuration (defined in Figure 5.7) and

includes the architectural aspects of an interaction through a number of addi-

tional relations:
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1. a set of patterns involved in this interaction (the Pattern signature consists

of a set of architectural styles, and was omitted from this discussion);

2. a set of architectural styles currently bound;

3. a set of bindings which bind style-specific roles to SMC roles;

4. a set of architectural styles currently deployed; and

5. a behaviour added by each style, in the form of:

(a) forwarding of events;

(b) loading of policies; or

(c) mapping of operations provided by an interface.

The appended facts (lines 11−13) constrain these relations by specifying that

bound styles can only be the ones defined within the patterns involved in this

interaction, that deployed styles can only be among the ones which were al-

ready bound, and that the bindings must be specified in terms of the roles

belonging to the bound styles and the roles required by the participants of this

interactions only.

Figure 5.16 shows an architectural configuration obtained from the Alloy model.

In this example interaction PatientSMC requires two roles, Patient and Sensor,

and these application roles are bound to a number of style-specific roles. The

Sensor role is bound to Source (through a Diffusion style), Managed (through

a HierarchicalControl style) and Inner (through a Composition style). Similarly,

the Patient role is bound to Target (through a Diffusion style), Manager (through

a HierarchicalControl style) and Outer (through a Composition style). This archi-

tectural configuration means that whichever SMCs are assigned to the Patient

and Sensor roles required by PatientSMC, they will behave according to the re-

spective parts defined by each architectural style bound to their roles. Each

architectural style specifies (a) what it expects from the SMCs that will be even-

tually assigned to the roles, as well as (b) the behaviour to be added to the

interaction after the style is deployed (forwarding, loading or mapping).
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Figure 5.16: Alloy graphical representation of an architectural configuration

This example in particular illustrates the deployment of the Diffusion style (the

style is labelled as “$deploy style”). This style is marked as “expects: Source

→ alert”, which states that, for whichever SMC is performing the Source role,

its interface must provide the alert event. By following the binding of the style-

specific role Source to the domain role Sensor, observing that interface ISensor,

which is provided by SensorSMC is assigned to this role, we can see that this

interface indeed provides the alert event, thus satisfying the requirements of

the style. Similarly, this style is also labelled as “forwarding: alert → highHR”

(this corresponds to the behaviour that must be added to the interaction after

the style is deployed). The deployment of this behaviour can be seen through

the arrow labelled “forwarding” between the alert event (provided by interface

ISensor, which is assigned to the role Sensor, which is in turn bound to the

style-specific role Source) and the highHR notification (provided by IPatient,
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which is assigned to the role Patient, and bound to the style-specific role Tar-

get). The behaviour added by the deployment of other types of architectural

styles can be shown in a similar manner, in the form of mapping of interfaces,

forwarding of events or loading of policies.

This model can then be used to check, for example, whether all the SMCs en-

forcing policies have the required events forwarded to them (as these events are

required for triggering the policies) as well as whether all SMCs have access to

the interfaces required for enforcing the actions prescribed by policies. Alter-

natively, the formal analyses of a specific SMC interaction may determine that

a valid interaction is not achieved for a given set of SMCs and policies, and that

additional abstractions must be added to the interaction, e.g. an event must be

forwarded or additional interfaces must be exchanged. These are discussed in

the next section.

5.2 Model Analysis

Formalising SMC behaviour enables reasoning about interactions, to verify

whether they are correctly specified and deployed and whether they achieve

their intended behaviour. This increases confidence in the robustness of policy-

based SMC interactions, as we are able to analyse them rigorously prior to

instantiation and deployment in actual devices. Based on the types of incon-

sistencies described in Section 4.3.3 (with respect to bindings, assignments

and policy deployments), we discuss here various types of verifications we are

able to perform automatically.

We distinguish between:

• Static checks: properties that must hold for any instance of the model,

and must never produce a counter-example provided the semantics of

the model was specified correctly, e.g. an SMC that is already composed

should never be allowed to participate in any interaction outside that com-

position according to the rule of encapsulation. Such verifications are
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specified in the form of assertions, that can be checked through an ex-

haustive search for a given (finite) number of instances for each one of the

signatures defined in the model, i.e. considering a given number or SMCs,

roles, interfaces, architectural styles, etc; and

• Dynamic checks: verifications that represent properties we want to test

for a specific instance of the model, e.g. after a task loading style is de-

ployed we can verify whether all SMCs enforcing policies have the re-

quired events forwarded to them, or whether further abstractions must

be added. These verifications are usually specified as predicates, which

define a property which must be satisfied by a particular instance of the

interaction, i.e. an instance of Configuration or ArchitecturalConfiguration;

The list below is not exhaustive, but it exemplifies the types of analysis we are

able to perform using the formal model specified in this chapter:

• Check whether the role requirements are satisfied by the SMCs assigned

to these roles;

• Consistent policy deployment where all obligation policies have a corre-

sponding positive authorisation, and no modality conflicts occur;

• Roles bound in a composition have no interactions with other roles outside

that composition.

• Ensure a given SMC is bound to a particular abstraction, e.g. sensor SMCs

should always be encapsulated by a patient SMC;

• An event-forwarding style can only be bound if a structural style is already

bound ensuring the interfaces required for event forwarding were already

exchanged;

• All policies have access to the events required for triggering these policies

(either the SMC enforcing the policy provides the event or it is forwarded

from a remote SMC);
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• All policies have access to the interfaces required for action invocation

(either the target SMC provides the action or it is mapped from another

SMC).

We can further check for application-specific properties of an SMC’s behaviour,

whether in given circumstances authorisations permit the execution of actions

that would threaten the integrity of the SMC or whether failure or departure of

devices leaves the SMC in a state where it is no longer able to fulfill its primary

functions. This is particularly important when developing body-area networks

for health monitoring as the integrity of the sensor configuration influences the

medical interpretation of the physiological parameters collected.

Below, we describe in more detail a number of dynamic verifications that can

be performed using the formal model, namely for checking role assignments,

policy deployment, and consistent combination of architectural styles.

5.2.1 Role Requirement

When architectural styles are bound to the roles required by an SMC, the re-

quirements of each style become automatically associated with these roles.

Thus, the roles required by an SMC will combine the requirements of all styles

bound to them. This requires verifying that whichever SMC is assigned to one

of these roles, its interface satisfies all the requirements associated with that

role.

1 pred verifyRoleRequirements [conf: ArchitecturalConfiguration]
2 {
3 all pat: conf.patterns, sty: conf.deployed, styrol: sty.roles {
4 !(no styrol.(sty.expects)) ⇒ one itf: conf.participants.provides {
5 ((itf → styrol.(conf.binding)) in conf.assignment) and
6 (styrol.(sty.expects) in (itf.operations
7 + itf.events
8 + itf.notifications))
9 }

10 }
11 }

Figure 5.17: Verification of role requirements
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Figure 5.17 illustrates the verifyRoleRequirements predicate used to verify this

condition. It states that for the specific configuration given as argument, for

all styles deployed and for all style-specific roles defined for these styles, the

following must hold: if a style-specific role defines a non-empty set of require-

ments, then there must exist an interface provided by one of the participants

such that this interface is assigned to the role bound to the style-specific role

in question, and all the requirements associated with this style-specific role are

satisfied by the union of such interface’s operations, events and notifications.

This property ensures that the SMCs involved in this interaction are capable of

satisfying the requirements associated with their roles.

5.2.2 Policy Deployment

The formal specification also facilitates the checking for conflicting or incon-

sistent policy deployment across SMCs. Two types of checks are discussed in

the following: the verification of (a) whether all obligations enforced by collab-

orating SMCs have a corresponding authorisation policy, and (b) whether the

policies enforced by a set of SMCs are free from modality conflicts. More tra-

ditional types of policy analysis, such as application-specific conflicts [LS99]

can be defined in a similar manner, e.g. nurses should never be authorised to

administer medication on themselves.

Figure 5.18 illustrates the noUnauthorisedObligation predicate which deter-

mines whether all obligations have a matching positive authorisation. It states

that for any SMC smc1, and for all active obligation policies, if smc1 is en-

forcing this policy, then there must be an active positive authorisation policy,

enforced by an SMC smc2 which specifies the same action as in the obligation,

and which has the same SMCs assigned to the subject and target roles in both

policies.

The SMC interaction previously illustrated in Figure 5.10 shows an example

of a valid policy interaction between SMCs, because each obligation policy has

a corresponding authorisation policy that allows the action specified by the
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1 pred noUnauthorisedObligation [conf: Configuration]
2 {
3 all smc1: conf.participants, obl: (conf.active & ConcreteObligation){
4 (obl in (smc1.obligations + smc1.(conf.loading)))
5 ⇒ some smc2: conf.participants,
6 aut: (conf.active & ConcreteAuthorisation) {
7 (aut in smc2.authorisations)
8 and (aut.modality in Positive)
9 and (obl.action == aut.action)

10 and some smcsubj: conf.participants |
11 (((obl.subject).∼(conf.assignment) in smcsubj.provides)
12 and
13 ((aut.subject).∼(conf.assignment)) in smcsubj.provides)
14 and some smctarg: conf.participants |
15 (((obl.target).∼(conf.assignment) in smctarg.provides)
16 and
17 ((aut.target).∼(conf.assignment)) in smctarg.provides)
18 }
19 }
20 }

Figure 5.18: Verification of whether obligations have a matching authorisation

obligation to be executed in the target SMC. The assignments presented in

Figure 5.10 ensure that the SMCs assigned to subject and target roles in an

obligation are also assigned to subject/target roles in a matching positive au-

thorisation policy.

Another property that can be easily checked for a given interaction is the oc-

currence of modality conflicts. Figure 5.19 illustrates the noModalityConflict

predicate which determines whether an interaction between SMCs is free from

modality conflicts. It states that for the configuration given as parameter, no

two active authorisation policies exist in any SMC such that the subjects, tar-

gets and actions of the policies overlap, but their modalities are opposite.

Figure 5.20 illustrates an example of a modality conflict between SMCs. Doc-

torSMC has an obligation policy Obl, which defines Doctor and Patient as (re-

spectively) the subject and target of the policy, the event highHR as the event

required for triggering the policy, and the action startECG as the action to be

executed when the policy is triggered. Doctor and Patient are roles required by

this SMC. PatientSMC has two authorisation policies, Aut0 and Aut1, which de-

fine Doctor and Patient as (respectively) the subject and target in both policies,
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1 pred noModalityConflict [conf: Configuration]
2 {
3 all smc: conf.participants {
4 no disj aut1, aut2: (conf.active & ConcreteAuthorisation) {
5 (aut1 + aut2) in (smc.authorisations)
6 and (aut1.action == aut2.action)
7 and (aut1.modality != aut2.modality)
8 and some smcsubj: conf.participants |
9 (((aut1.subject).∼(conf.assignment) in smcsubj.provides)

10 and
11 ((aut2.subject).∼(conf.assignment)) in smcsubj.provides)
12 and some smctarg: conf.participants |
13 (((aut1.target).∼(conf.assignment) in smctarg.provides)
14 and
15 ((aut2.target).∼(conf.assignment)) in smctarg.provides)
16 }
17 }
18 }

Figure 5.19: Verification of modality conflicts

with respect to the action startECG. However, while Aut0 is a positive authori-

sation (labelled “modality: Positive”), Aut1 is a negative authorisation (labelled

“modality: Negative”). In terms of assignments, DoctorSMC provides interface

IDoctor, which is assigned to the subject role (Doctor) of its obligation policy,

and the same interface IDoctor is also assigned to the role Doctor required by

the remote PatientSMC (Doctor is the subject role of both authorisation policies

Figure 5.20: Invalid policy configuration between SMCs
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enforced by that SMC). Similarly, PatientSMC provides interface IPatient, which

is assigned to the target role (Patient) of both authorisation policies, and the

same interface IPatient is also assigned to the role Patient required by the re-

mote DoctorSMC (Patient is the target role of the obligation policy enforced by

that SMC).

This is an example of an invalid policy configuration between SMCs because

it contains a modality conflict. This happens because Obl (which is enforced

by DoctorSMC) has two matching authorisation policies (which are enforced

by PatientSMC): one (Aut0) that allows the execution of the action specified

by the obligation policy, and another (Aut1) that denies the execution of the

same action, i.e. the action startECG defined in the obligation policy is both

allowed and forbidden to be executed by the authorisation policies enforced by

PatientSMC.

5.2.3 Style Deployment

The formal specification also facilitates the checking of consistent deployment

of architectural styles among SMCs. For example, we can check whether after

the deployment of a task-loading style all SMCs enforcing policies have the

required events forwarded to them, or whether additional abstractions must

be included to the interaction. Similarly, it is possible to check whether these

policies have access to all the required interfaces, as these are necessary for

validating the remote actions prescribed by the policies.

Figure 5.21 illustrates the verifyNoPolicyWithoutEvent predicate which checks

whether all SMCs enforcing obligation policies have access to the events re-

quired for triggering these policies. It checks, given a configuration, whether

any SMC enforcing any obligation policy loaded by a task-allocation style either

(a) provides the event required for policy triggering through one of its own in-

terfaces or (b) receives the event via an event forwarding style already deployed

in the same configuration.

Figure 5.22 exemplifies part of a configuration which does not satisfy this prop-
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1 pred verifyNoPolicyWithoutEvent [conf: ArchitecturalConfiguration]
2 {
3 all pat: conf.patterns,
4 sty: (pat.styles & conf.deployed & TaskAllocationStyle) {
5 let policySet = sty.roles.(sty.loading) {
6 all pol: policySet {
7 all smc: pol.∼(conf.loading) |
8 (pol.event in (smc.provides.events)) or
9 ((pol.event → smc.provides.notifications) in conf.forwarding)

10 }
11 }
12 }
13 }

Figure 5.21: Predicate for checking whether an SMC either raises or receives
the events required for triggering its obligation policies

erty. In this case, DoctorSMC was loaded with the obligation policy Obl1. The

policy specifies that it is triggered by the event highHR. However, the interface

provided by DoctorSMC does not support event highHR, nor is this event for-

warded to the SMC. This means that because the event will never be raised in

DoctorSMC, the policy will never be triggered.

Figure 5.22: Example of an incorrect policy deployment

Similarly, we can define a predicate that verifies whether an SMC has access
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to the interfaces required for validating the actions prescribed by a policy. Fig-

ure 5.23 illustrates the verifyNoPolicyWithoutAction predicate. It checks, given

a configuration, whether in any SMC enforcing any obligation policy loaded by a

task-allocation style either (a) the policy’s target provides the action required for

policy triggering through one of its own interfaces or (b) this action is mapped

to the policy’s target’s own interface via a structural style already deployed in

the same configuration.

1 pred verifyNoPolicyWithoutAction [conf: ArchitecturalConfiguration]
2 {
3 all pat: conf.patterns,
4 sty: (pat.styles & conf.deployed & TaskAllocationStyle) {
5 let policySet = sty.roles.(sty.loading) {
6 all pol: policySet {
7 all smc: pol.∼(conf.loading) |
8 pol.action in
9 (pol.target & smc.requires).∼(conf.assignment).operations or

10 pol.action.ˆ(conf.mapping) in
11 (pol.target & smc.requires).∼(conf.assignment).operations
12 }
13 }
14 }
15 }

Figure 5.23: Predicate for checking whether an SMC has access to the actions
prescribed by its obligation policies

These checks guarantee that interactions were specified correctly and that the

SMCs involved are capable of enforcing their policies, before these interactions

are implemented in physical devices. Manual implementation demands con-

stant re-verification every time an interaction increases in size, and every time

this happens it is more likely errors or inconsistencies will occur. In contrast,

the predicates defined in the formal model can be used to verify automatically

both smaller as well as more complex interactions, as they logically define what

properties must hold for the interaction to be considered correct.
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5.3 Discussion

Several studies have looked at the (conflict) analysis of policies in various

forms [FKMT05, BLR03, CFP+06, RLSC+05], some of them based on model-

checking techniques. Some of this work continues to date focusing on more

complex policy languages and forms of analysis [JLT+08, CLM+09]. In partic-

ular, [BLR03, CLM+09] use event calculus to represent temporal enforcement

of policies, showing how the fulfillment or violation of obligations affects the

behaviour of the system and of other policies. In contrast to these studies our

focus is not on the ability to detect policy conflicts, but to specify unambigu-

ously the desired behaviour of interacting Self-Managed Cells and then verify if

these SMCs are capable of enforcing their policies. The model specification pre-

sented in this chapter does not cater for the temporal enforcement of policies,

i.e. we do not model a policy being triggered by an event. This type of analysis

is possible but would require the formalisation of each of the managed object’s

behaviour in an SMC. Instead, this model focuses on the correct establishment

of interactions and subsequent policy deployment.

Using this formal specification we can model specific policy-based SMC in-

teractions and verify the correctness of these interactions before their actual

implementation and deployment in physical devices. In this chapter a few ex-

amples of model verifications that can be performed were discussed: we can

type-check role assignment across distributed SMCs ensuring that the SMCs

involved in the interaction support the requirements for their respective roles,

we can detect omissions from the configurations e.g. obligation policies that do

not have a corresponding authorisation policy, and we can analyse consistent

architectural style deployment where the exchange of policies must be accom-

panied by adequate exchanges of events and interfaces. Similarly, it is possible

to check for application-specific properties of an SMC’s behaviour which are vi-

olated due to dynamic changes such as the loading of new policies, the failures

of components or the addition of new ones.

The formal model presented in this chapter is used for design-time analysis of

SMC interactions, in order to verify whether a given set of SMCs are capable
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of establishing specific policy-based collaborations which satisfy a number of

properties. This analysis is typically performed before implementing the inter-

actions and deploying the policies in physical devices. However, during run-

time, resources may fail, SMCs may leave an interaction and other SMCs may

join it. Therefore, support for the dynamic verification of SMC interactions is

also needed. Even though the formal model presented in this chapter could also

be used to perform run-time verifications, this would require re-evaluation of

the predicates defined in Alloy when changes in the available resources within

the SMC occur. This limitation is discussed in more detail in Chapter 8.

The next chapter describes the implementation aspects of SMC interactions

and our prototype, and presents its evaluation.



Chapter 6

Implementation and Evaluation

This chapter discusses the implementation of the framework for specification

and establishment of SMC interactions, and then describes its evaluation. The

evaluation covers three different perspectives, in particular focusing on the

memory footprint and performance of the implementation, and on the functional-

ity it supports for developing real applications. While memory and performance

will be discussed in this chapter, the functional evaluation is presented in the

form of a case-study scenario which will be described in the next chapter. Be-

fore describing the implementation aspects of our prototype and its evaluation,

we present a brief overview of the Ponder2 framework.

6.1 Ponder2 Framework

The implementation of the framework for SMC interactions was done in Java,

relying on the infrastructure provided by the Ponder21 policy framework. Pon-

der2 comprises a general-purpose object management system. It implements

a policy execution framework that supports the enforcement of both obligation

and authorisation policies. Policies are written in terms of managed objects

(MOs), which are stored in a local domain service which implements a hierar-

chical namespace.
1http://www.ponder2.net

124
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Ponder2 provides built-in support for the creation of a set of core managed

objects, e.g. events, policies, etc, however the infrastructure is extensible and

allows the creation of user-defined custom managed objects, e.g. adapters for

interfacing with a temperature sensor. These managed objects are programmed

in Java as well. Managed objects serve as factories for creating object instances

(i.e. for a given application) which are subsequently stored within the local

domain. Managed objects may also be held transparently in a remote Ponder2

system, and different underlying transport protocols are natively supported to

facilitate remote communication, e.g. RMI, HTTP, etc.

A command interpreter provided by Ponder2 supports a high-level configura-

tion and control language called PonderTalk, which allows the invocation of

actions on these managed objects. PonderTalk’s syntax is based on Smalltalk,

in which messages can be sent to objects. A PonderTalk statement is defined

as a reference to a managed object (possibly stored in the domain hierarchy),

followed by zero or more messages to be sent to the object. A message may be

a simple command or it may be parameterised. The example below illustrates

an example PonderTalk statement:

root/myObject print : “Hello World”.

In this example, the message “print:” is sent to the object “myObject” which is

stored in the “root” domain of the local Ponder2 instance. The message receives

as argument the string “Hello World”. This example assumes that “myObject”

accepts the “print:” message, otherwise an exception will be raised.

PonderTalk commands are linked to Java methods defined in the correspond-

ing managed object by using Java annotations (i.e. @Ponder2op()). Thus, a

PonderTalk command such as:

root/myObject addPolicyBehavior : “policy” to : “role”.
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is linked to a Java implementation in the corresponding managed object by

using a Java annotation of the form:

@Ponder2op(“addPolicyBehavior : to : ”)

public void p2 addPolicyBehaviorTo(P2Block policy, String roleName)

{

//Implementation of the method comes here

//...

}

This decouples the Java implementation of the methods from their invocation

for the purposes of configuring and controlling a Ponder2 system. New factory

objects can be loaded in a Ponder2 interpreter and objects can be created from

these factories on demand, permitting commands to be sent to these objects dy-

namically via PonderTalk messages. This mechanism is of central importance

in realising the SMC’s control-loop and its adaptation strategy, as it allows new

management policies to be created as required during run-time and actions to

be invoked automatically in response to context changes that occur within each

SMC. Further details about Ponder2 and PonderTalk’s language syntax can be

found in the Ponder2 website (http://www.ponder2.net).

6.2 Prototype Implementation

A prototype was implemented in order to demonstrate the concepts presented

in this thesis. The presentation of the prototype is divided into two parts: ini-

tially, we describe the implementation of the basic aspects for facilitating SMC

interactions, which support the establishment of SMC collaborations and pro-

motes task exchanges based on the roles to which these SMCs were assigned.

We then discuss the implementation of a library of architectural styles for sys-

tematically building SMC collaborations, which supports a much more general

model based on richer abstractions for the structure, management and com-

munication aspects of an interaction.
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6.2.1 Methodology Overview

Ponder2 supports the specification of the core concepts which are pertinent to

the SMC model, such as events and policies. However, to realise the frame-

work proposed in this thesis, a number of Ponder2 extensions were required.

This section presents an overview of the main steps involved in specifying and

enforcing SMC interactions, the main components in our implementation, and

the runtime support required for our framework.

The specification and establishment of SMC interactions consists of:

1. Defining how a number of roles are expected to interact with each other

via policy, event and interface exchanges, by reusing architectural styles

and pre-defined patterns of interaction;

2. Verifying the consistency of this interaction specification according to a

number of pre-defined logical properties by using the SMC formal model

and the Alloy Analyzer;

3. Deploying the interaction specification in one or more devices running the

SMC runtime. Each device will either:

(a) Instantiate the interaction with other devices; or

(b) Participate in an interaction instantiated by another device;

4. Repeat step 3 for any sub-patterns defined in the interaction specification.

Figure 6.1 presents an overview of the methodology for specifying and estab-

lishing SMC interactions. Initially, an application designer can rely on a num-

ber of abstractions for specifying an SMC collaboration for a given purpose,

e.g. healthcare monitoring. This specification is defined in terms of a number

of roles that define the placeholders for actual SMCs, a repository of manage-

ment policies pertinent to a particular scenario, and a repository of architectural

styles and patterns that provide reusable abstractions to define how policies

are exchanged, and how the necessary exchanges of events and interfaces for

policy enforcement are achieved.
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Figure 6.1: Specification and establishment of SMC interactions

The interaction specification is then given as input to the formal Alloy model

for analysis, which can be used to verify a number of properties with respect

to this specific interaction between SMCs. If the specification is successfully

validated, it is ready for deployment in physical devices. Upon receiving an

interaction specification, a device will instantiate the styles and patterns of

interaction and establish an interaction among a group of SMCs. Sub-patterns

in this specification can be further re-deployed in other SMCs, which will be

responsible for enforcing different parts of a large interaction. It would be

possible to use the formal model to re-check the interaction during runtime,

e.g. if a sensor fails, to ensure the policies can still run, however the use of

model-checking in our implementation has been limited to design-time checks.

The different SMCs responsible for instantiating parts of an interaction or sim-

ply participating in an interaction instantiated by another SMC must run the

SMC runtime. The SMC runtime builds on the Ponder2 interpreter and adds to

it a number of extensions required for facilitating SMC interactions (Figure 6.2).

The standard functionality provided by Ponder2 implements (a) the discovery

service, which permits the SMC to advertise itself to both devices and other
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SMCs, (b) an event bus, which supports the underlying event-based infrastruc-

ture within the SMC, and (c) the policy service itself, which allows the specifi-

cation and enforcement of both obligation and authorisation policies. The im-

plementation of these services is presented in detail in [KDL+07, K+07]. These

enable the basic functionality of the SMC as a feedback control-loop. Ponder2

also provides (d) a command interpreter, which allows PonderTalk commands to

be sent to configure and control the Ponder2 system.

Figure 6.2: SMC runtime (shaded blocks are standard Ponder2 components)

Our framework for SMC interactions adds a number of extensions to this infras-

tructure: a core interface enables the exchanges of policies, events and inter-

faces between SMCs. The implementation of its functionality relies on specific

managed objects that implement XML parsing of missions and their verifica-

tion, and brokers that allow the subscription and forwarding of events between

remote SMCs. A particular SMC can also have a dynamic set of application-

specific managed objects (MOs) that implement non-standard functionality,

e.g. adapters for local sensors, authentication algorithms, etc, and this func-

tionality is made available to remote SMCs via pre-specified customised inter-

faces. Roles are defined as placeholders in the domain structure provided by

Ponder2, and we implemented syntactic verification between a role’s expected

interface and the SMC’s provided interface before assigning SMC’s to roles.

Finally, a library of reusable architectural styles enables the systematic spec-
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ification of how a group of roles must interact. The implementation of these

mechanisms is discussed in more detail in the following.

6.2.2 Basic SMC Interactions

As mentioned earlier, although the infrastructure provided by Ponder2 sup-

ports the core concepts which are pertinent to the SMC model, such as events

and policies, several specialised managed objects had to be implemented in

order to extend Ponder2 with the required functionality for supporting basic

SMC interactions, e.g. interfaces, roles, missions. The implementation of these

managed objects was done in Java, and these are used as factories for creating

the specific object instances which are used by an application, e.g. a patient’s

interface, or an ECG monitoring mission. These are discussed in the following.

Roles and Policies

The Role managed object implements a placeholder within the local domain of

the SMC, to which remote SMCs can be assigned. The role object defines an

expected interface which specifies the requirements that remote SMCs must

satisfy in order to be assigned to these roles, in terms of operations, events

and notifications. This matching between the role’s expected interface and an

SMC’s provided interface can be seen as matching the pieces in a jigsaw puzzle,

where required roles must be fulfilled by the correct SMCs in order to form an

entire application (Figure 6.3). In our implementation, the role’s expected in-

terface is syntactically matched against an SMC’s provided interface, although

a more flexible approach could define the use of ontologies for increasing the

expressiveness in interface comparison.

Role extends Ponder2’s Domain, and implements additional checks for verifying

interface compatibility. Policies are then defined in terms of a number of roles,

such as “coordinator”, “authenticator”, “surveyor”, etc. The policies will apply

to the SMCs which are assigned to the respective roles, provided these SMCs’
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Figure 6.3: Roles used as placeholders for constructing SMC applications

interfaces support the requirements for their roles. This process is sketched in

Figure 6.4.

Figure 6.4: Roles, expected interfaces and policies

Figure 6.5 illustrates an obligation policy being associated with the “authentica-

tor” role (subject). The policy itself is defined within a PonderTalk block, which

defines a section of one or more statements (within square brackets) whose ex-

ecution can be delayed until it is decided that the block should be evaluated.



6.2. Prototype Implementation 132

This allows policies to be defined during specification time, delaying their cre-

ation until they are loaded into an SMC. The snippet contained in the block in

the example defines the creation of a policy from an “ecapolicy” factory. The

policy specification is created and stored in the role, however the instantiation

of the actual policy will be delayed until an SMC is assigned to the respective

role during run-time. This policy specification was implemented to define the

authentication of a discovered SMC, as described in the case-study presented

in Section 3.6. The policy is triggered by an event of the type “nodeReplied”,

which must be supported by the authenticator’s interface. This in turn causes

the action “verifyCredentials” to be executed locally on the authenticator2 itself

(target). In our implementation the SMC assigned to the authenticator role sup-

ports the operation “verifyCredentials” and provides an implementation for the

validation of X.509 digital certificates through a custom managed object which

uses the standard java.security package.

1 addPolicyBehavior:
2 ([/policy
3 at: "pol1"
4 put: [obj := /factory/ecapolicy create.
5 obj event: /event/nodeReplied.
6 obj action: [:name :address :cap :credentials |
7 /roles/authenticator
8 verifyCredentials: name
9 from: address

10 capabilities: cap
11 credentials: credentials.].
12 obj active: true.] value.
13 ])
14 to: /roles/authenticator.

Figure 6.5: Authentication policy in PonderTalk

Similarly, Figure 6.6 illustrates an obligation policy associated with the “coor-

dinator” role (subject). This policy specification was implemented to define the

preferences for the assignment of SMCs to roles, as described in Section 3.6.

The policy is triggered by an event of the type “nodeAuthenticated”, which must

2For the purposes of this implementation, mock certification authorities (CAs) were created,
and X.509 digital certificates from these CAs were generated, using the OpenSSL package
(http://www.openssl.org/). Certificates were then loaded into the SMCs that will join an inter-
action, whereas the SMC assigned to the authenticator role was parameterised with the relevant
PKs for these certificates.
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be supported by the coordinator’s interface. The condition for policy triggering

evaluates whether the string “video” is among the list of capabilities “cap” of

the SMC indicated by the event. The list of capabilities supported by the SMC

is obtained from one of the arguments of the event. If the condition is satisfied,

the “assign” action is invoked in the surveyor role (target), which will cause the

assignment of the SMC (whose “name” and “address” were also provided as

parameters of the event) to the respective role.

1 addPolicyBehavior:
2 ([/policy
3 at: "pol2"
4 put: [obj := /factory/ecapolicy create.
5 obj event: /event/nodeAuthenticated.
6 obj condition: [ :cap | "video" in cap].
7 obj action: [ :name :address |
8 /roles/surveyor
9 assign: name

10 from: address].
11 obj active: true.] value.
12 ])
13 to: /roles/coordinator.

Figure 6.6: Role assignment policy in PonderTalk

Core and Customised Interfaces

Interfaces define the functionality supported by SMCs. Each SMC provides

one or more interfaces to remote SMCs. The implementation of interfaces was

divided into two managed objects:

• CoreInterface: defines a set of primitives that are common to all SMCs,

independent of their application purposes and supports operations for

interface exchange and binding, and interface mapping. It also provides

operations for exchange and subscription of events, as well as operations

required for the exchange of missions and installation of policies; and

• CustomisedInterface: extends CoreInterface and adds to it application-

specific functionality, e.g. defines operations for reading sensor data, or

for setting new thresholds.
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The functionality provided by a customised interface depends on the local re-

sources and application-specific services that the SMC implements. For exam-

ple, an SMC whose interface specifies an operation for verification of public-key

credentials must implement the application-specific managed objects that sup-

port this functionality. Similarly, an interface can define functions for reading

measurements of a sensor provided the SMC implements the managed objects

that physically communicate with the sensor device.

Mission Specification and Loading

The Mission managed object is parameterised with a set of roles, and implic-

itly their expected interfaces, and groups a set of obligation policies which can

be loaded into a remote SMC. We implemented the checks discussed in Sec-

tion 3.4, that must be performed at mission specification in the source SMC,

and at mission loading in the target SMC. This is summarised in Figure 6.7.

At mission specification (left hand side of the flowchart), the mission is parsed

and each policy written in terms of the roles defined in the mission is matched

against the expected interfaces of the respective roles. Thus if policy “p” spec-

ifies that action “a” must be invoked on role “r”, the mission will only be val-

idated if action “a” is defined in the expected interface of role “r”. Although

matching is currently only based on syntactical equivalence, a more flexible

approach could take advantage of subsumption and ontological reasoning to

add a fine level of granularity and expressiveness for interface comparison.

The source then specifies the argument values for the mission, both the ad-

dress of actual SMCs for the role arguments as well as any application-specific

argument used by the policies, e.g. thresholds, rates, etc. If the source has the

required authorisations, the mission is sent to the target SMC.

At the target SMC, the mission specification is validated before its policies are

instantiated (right hand side of the flowchart). The first verification checks

the mission structure and whether the specification contains only obligation

policies written in terms of the roles which are part of the mission. Any attempt

to load additional embedded code inside the mission, or invoking operations on
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Figure 6.7: Mission specification and loading flowchart

objects other than mission roles causes the mission loading to be aborted. For

each one of the roles, a customised interface is obtained for interacting with the

respective SMC by contacting the SMC directly using the address provided by

the source. Finally, the mission specification is matched against the interfaces

of the respective roles. This verification can be against either the expected

interface for each of the roles or against the customised interface of the actual

SMCs assigned to these roles. In our implementation, we have chosen the latter

option as it enables the mission to take advantage of operations provided by the

specific SMC that the target will be interacting with, e.g. the nurse in a specific

GP clinic or ward may make available specialised operations in addition to the

standard functionality defined in the nurse’s expected interface.
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6.2.3 Architectural Styles and Patterns

More general interactions can be defined through the use of architectural styles.

Interactions based on architectural styles allow the systematic construction of

SMC collaborations which rely on much richer abstractions for their struc-

ture, task-allocation and communication aspects. A library of architectural

styles was implemented in Ponder2 to show how styles can be rapidly and flex-

ibly instantiated for building SMC interactions. Each style can be arranged

independently in patterns of interactions, as the structure of the interaction

should be defined independently from the way tasks are allocated and events

are forwarded. We implemented managed objects to support the specification

of various of the architectural styles presented in the catalogue in Chapter 4,

and also a library where they can be chosen for constructing SMC interactions.

Style Implementation

The implementation of architectural styles is inspired by a technique for imple-

menting layered object-oriented design known as mixin layers [SB02, SB98].

Mixin layers are used to define templates that specify a collaboration between

a set of classes. A collaboration, in turn, defines a set of related roles. To some

extent, collaborations in the mixin layer model can be seen as architectural

styles in the model for SMC interactions, in that in both cases an independent

aspect of the collaboration is designed as an interaction between a group of

roles. The work on mixin layers is presented from a programming language

standpoint, but an overview of the approach is shown in Figure 6.8, where

three different objects, A, B and C, each supporting multiple roles, are si-

multaneously participating in collaborations c1, c2 and c3. Each collaboration

prescribes certain roles for the objects, and an object does not need to play

a role in all the collaborations. Similarly, in our framework each architectural

style defines a number of roles, and SMCs play different roles in multiple styles.

The use of mixin layers to define distinct layers of functionality to a group of

interacting objects is related to the manner in which aspect-oriented program-

ming is used to change the programmed semantics of a group of collaborating
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Figure 6.8: Mixin layers approach for interaction decomposition: collabora-
tions are horizontal rectangles, object classes are vertical rectangles, and their
intersection are roles within a collaboration

objects by defining a range of crosscutting concerns [KH01, KHH+01].

An architectural style prescribes how a group of interacting roles must perform

the exchanges of interfaces, events or policies. A set of domain roles within

an SMC is said to be interacting if they are bound to style-specific roles within

the same architectural style. Thus, architectural styles are applied on top of

the roles defined in the SMC’s domain and the respective interactions will be

executed when actual SMCs are assigned to these roles, similar to what occurs

when objects are assigned to roles in a collaboration in the mixin layer model.

In our implementation, each architectural style managed object functions as a

factory for creating different parts of a large interaction, which defines a spe-

cific algorithm or protocol for the exchange of interfaces, events or policies.

Figure 6.9 shows how a composition interaction is created from a “Composi-

tion” managed object in PonderTalk. Style-specific roles (“outer” and “inner”,

in this case) defined in this managed object are bound to roles defined in the

SMC’s local domain (“Patient”, “SensorHR” and “SensorTemp”). Each architec-

tural style is also parameterised with style-specific properties: an instance of

the “Composition” managed object in this case is parameterised with mappings

or filterings relevant to that application scenario. In this example, the oper-
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1 comp := /factory/structural/composition create.
2 comp outer: "Patient".
3 comp inner: "SensorHR".
4 comp inner: "SensorTemp".
5 comp map: "SensorHR.read" to: "readHR".
6 comp map: "SensorTemp.read" to: "readTempC".
7 comp map: "SensorTemp.read" to: "readTempF"
8 filter: [ :readTempF | (1.8 * readTempF) + 32 ].

Figure 6.9: Code for the instantiation of a composition style between a patient
and two sensors, written in Ponder2 syntax

ations “SensorHR.read” and “SensorTemp.read” are mapped to the operations

“readHR” and “readTempC” exported by the interface of the SMC assigned to

the “Patient” role. A filter is also applied to the operation “SensorTemp.read”

(which converts the temperature readings from Celsius to Fahrenheit). The fil-

ter operation receives a PonderTalk block which defines the filter itself. Finally,

the encapsulation is enforced in the composition style by stopping the inner

SMCs from being discoverable. This will hide the sensors from external SMCs,

keeping sensors as managed resources of the SMC assigned to the “Patient”

role, but the selected operations will be mapped to the latter’s interface.

The implementation of an architectural style managed object relies on the func-

tionality supported by each participant’s core interface to effect a specific algo-

rithm or protocol that will achieve the exchange of policies, events or interfaces

according to the abstraction defined by the style. The style managed object

specifies what each style-specific role must execute in order to implement the

style’s semantics, and when actual SMCs are assigned to the respective roles

the operations defined in the style are executed using the functionality defined

in the SMCs’s core interfaces. For example, the implementation of the Diffusion

style requires installing an event forwarder at the source SMC, and installing

the respective event templates at the target SMCs. Thus every time a specific

event occurs inside the source SMC’s event bus, this event will be automatically

propagated to the target SMC’s event bus, which will be able to handle such

event because the necessary event templates were in place. This is achieved by

using the operations “p2 installEventForwarder” and “p2 installEvent” available
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in the core interface of each SMC. The implementation of this style is illustrated

in Figure 6.10.

Figure 6.10: Diffusion style implementation

Similarly, the implementation of the SharedBus uses the primitives defined in

the core interface in a slightly more complex way in order to obtain the desired

behaviour between multiple publishers and a centralised blackboard: a pub-

lisher must forward events raised within its event bus to the blackboard, which

in turn must forward these events to all the other publishers. Event templates

must be installed, so other SMCs are able to handle the events raised by a

publisher, and each publisher must install an event forwarder to the black-

board, which in turn also installs an event forwarder to the publishers. The

implementation of the SharedBus style is illustrated in Figure 6.11.

The behaviour of an architectural style (how the exchange is to be achieved) is

defined only once, in the respective style’s managed object, more specifically in

the method “p2 deploy”. Each architectural style managed object defines how

the different participants must behave in order to collaboratively enforce the
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Figure 6.11: Shared bus style implementation

semantics of the style. A given SMC does not need to implement all possible

style managed objects, but only those which are relevant to the interactions in

which the SMC participates. When an SMC is assigned to a domain role which

is bound to an architectural style MO via a style-specific role, the fragment of

Ponder2 code for this role (defined in the style MO) will be executed in the corre-
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sponding SMC. Note that loading additional managed objects or Java code into

the participating SMCs is not a requirement for establishing a new interaction,

as these SMCs may already have the relevant style MO definitions locally and

then only execute the fragments of code defined for their style-specific roles.

The core interfaces of the SMCs participating in the style are used for installing

the different parts of the algorithm or protocol that defines the semantics of

the style (Figure. 6.12). Thus each architectural style managed object can be

seen as a collaboration between a group of interacting roles in the mixin layer

model, which ensures that the semantics specified by a style is enforced in the

involved SMCs.

Figure 6.12: The implementation of each style is based on the mixin layer model
and relies on the functionality provided by the core interface of the participant
SMCs. These operations are executed when actual SMCs are assigned to roles

There are dependencies among architectural styles: structural styles must be

deployed first, as they enable the exchange of application interfaces, e.g. doctor

interface, patient interface; communication styles are then deployed to define

patterns in terms of the events provided by these interfaces; task-allocation

styles must be the last, as the policies loaded depend both on the operations

provided by the application interface, as well as on the events forwarded by a



6.2. Prototype Implementation 142

Figure 6.13: Architectural styles class diagram
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communication style. Figure 6.13 illustrates a UML class diagram of the archi-

tectural style managed objects which were implemented in the core framework,

i.e. the diagram excludes application-specific styles.

Patterns of Interaction

Patterns of interaction enable the specification and instantiation of interactions

based on a specific combination of individual architectural styles. The Pattern

managed object supports the specification of a set of roles and how these roles

are arranged by individually combining architectural styles or sub-patterns.

The interaction is systematically defined by binding architectural styles to these

roles. The actual SMCs which must be used in this interaction will be assigned

to the respective roles at pattern instantiation.

Figure 6.14 illustrates the creation of a bodyarea pattern which specifies the in-

teractions between “Patient”, “SensorHR” and “SensorTemp” roles. The pattern

relies on a composition structural relationship between the “Patient” (outer),

and “SensorHR” and “SensorTemp” (inner) roles. The composition maps the

1 bodyarea := /factory/pattern
2 create: "BodyArea"
3 placeholders: #("Patient" "SensorHR" "SensorTemp").
4 bodyarea bind:
5 [ comp := /factory/style/structural/composition create.
6 comp outer: "Patient".
7 comp inner: "SensorHR".
8 comp inner: "SensorTemp".
9 comp map: "SensorHR.read" to: "readHR".

10 ].
11 bodyarea bind:
12 [ corr := /factory/style/communication/correlation create.
13 corr correlator: "Patient".
14 corr source: "SensorHR".
15 corr source: "SensorTemp".
16 corr subscribe: "SensorHR.HR" as: "HR".
17 corr subscribe: "SensorTemp.temp" as: "temp".
18 corr raise: "Patient.critical"
19 condition: [:temp :HR | ((temp at: "value") > 40) &
20 ((HR at: "value") > 150) ].
21 ].

Figure 6.14: Body-area monitoring pattern in Ponder2 syntax
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operation “read” from “SensorHR” to the patient’s interface (“readHR”). The

pattern in particular uses the correlation style to implement communication

between the “SensorHR” and “SensorTemp” (source), and “Patient” (correlator)

roles. In this example, heart rate and temperature events are used as pa-

rameters of a correlation function which raises the event “critical” in case the

temperature readings are above 40 and heart rate readings are above 150. The

correlation function parameterises the style and is flexibly defined as a Pon-

derTalk block, which permits the specification of logical statements with the

same degree of expressiveness of standard Ponder2 logical expressions.

The framework also supports the creation of more specialised architectural

styles which can be included in the library for subsequent reuse. For example,

a specialised correlator managed object can be created by extending the stan-

dard correlator architectural style managed object. A customised correlation

function can then be defined in the subclass, which builds on top of the more

general mechanism for event correlation provided by the super class. Similar

types of customisation can be achieved by specialising the other styles. The

extensibility of the framework is discussed in more details in Chapter 8.

6.3 Prototype Evaluation

The evaluation presented in this section focuses on two different aspects, namely,

the memory consumption and the performance of the prototype implementation.

These are discussed in the following.

6.3.1 Memory Consumption

This evaluation aims to show that the infrastructure for SMC interactions can

be deployed in resources with limited computational power and memory, which

are likely to be found in wireless ad-hoc networks involving smartphones, as

well as unmanned vehicles and other small computing devices. Our prototype

for supporting SMC interactions was deployed in two classes of lightweight,
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constrained devices: Gumstix3 and Koala robots4 (Figure 6.15). The Gumstix

has a 400 MHz Intel XScale PXA255 processor with 16 MB flash memory and

64 MB SDRAM, running Linux and Wi-Fi enabled. The Koala robot has a Mo-

torola 68331, 22 MHz onboard processor, 1 MB ROM and 1 MB RAM. The robot

is extended with a KoreBot module which has a 400 MHz ARM PXA255 proces-

sor, 64 MB SDRAM and 32 MB flash memory, running Linux and also Wi-Fi

enabled. In addition, the robot has 16 infrared proximity sensors around its

body, and a video camera. Both run the lightweight JamVM5. In the experi-

ments we used JamVM version 1.4.5 and GNU Classpath version 0.91.

Figure 6.15: Gumstix (left) and Koala robots with video surveillance capabilities
(right): each robot has 16 infrared proximity sensors around its body, and a
video camera

The size of the bytecodes required for running the prototype, including Ponder2

and necessary Java libraries, is 710 KB. The size of a typical policy written in

Ponder2 is about 620 bytes (but this certainly depends on the complexity of

the policy). The size of a typical interaction specification containing 5 roles,

each role specifying 5 policies, written in Ponder2 is about 20.4 KB (but this

is also subject to the complexity of the policies, number of policies, and num-

ber of roles in the specification). In terms of memory usage during run-time,

we observed that a Gumstix running in a “Coordinator” role, and keeping the

interaction specification and all the objects loaded in memory, required 15 MB

for the Ponder2 process and 9,224 KB for the rmiregistry process6 (RMI is one

3http://www.gumstix.com
4http://www.k-team.com
5http://jamvm.sourceforge.net
6By comparison, an empty JamVM and rmiregistry uses about 3,200 KB and 5,900 KB respec-
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of the communication protocols supported by Ponder2, and the one used in our

experiments). A Koala robot running an application role (containing 5 policies)

required 8,384 KB for the Ponder2 process and 4,492 KB for the rmiregistry

process. Increasing the number of policies loaded in the robot from 5 to 10

caused a negligible overhead in terms of memory consumption. The small

footprint needed for our role management infrastructure indicates that other

devices with a similar configuration and capacity could also have been used.

6.3.2 Performance

This section describes performance measurements of our prototype. The tests

consisted in measuring the time taken for a Gumstix to assign a discovered

Koala robot to a role, and then to load a variable number of policies. We have

measured both the time taken to transfer and deploy only the policies, as well

as the whole assignment process. The latter involves the transfer of the policies,

the transfer of additional information such as event templates, the creation of

role placeholders in the remote SMC, sending an event informing that a new

SMC has joined the interaction, and the attribution of the discovered SMC to

the role in question.

The graph in Figure 6.16 depicts our results. They show that for roles with a

small number of policies the total cost of assignment is dominated by the cost

of tasks not related to policy transfer, but as we increase the number of policies

per role, this fixed cost tends to become negligible in comparison to the cost

of loading and deploying policies (which increases linearly with the number of

policies). This suggests that the prototype is able to support more complex roles

where the only significant cost is the policy transfer, because the residual com-

ponent of the assignment time remains constant. We also observed that most

of this time (about 97% on average) is spent on RMI serialization and network

delay when transferring data from the Gumstix to the robot, and only a small

part corresponds to the time that is actually spent by the robot to instantiate

tively, and a JamVM running an empty Ponder2 instance and rmiregistry uses about 8,200 KB
and 5,900 KB respectively.
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Figure 6.16: Total assignment time versus policy loading and deployment time

the policies. We expect that Ponder2’s ability of supporting alternative commu-

nication protocols will mitigate this overhead. The evaluation of other aspects

of the strategy, in particular the cost of role replacement when an SMC fails,

remains to be done as future work.

6.4 Discussion

A prototype for SMC interactions was implemented in Java, which relies on the

infrastructure provided by Ponder2. This chapter presented the implementa-

tion of basic SMC interactions, and then the more general use of architectural

styles to enforce strategies of interface, event and policy exchanges. The use

of architectural styles provides a more comprehensive model for specifying, in-

stantiating and reusing interactions between SMCs. Architectural styles allow

the rapid instantiation of different aspects of a collaboration, by supporting

template interactions that enforce a specific algorithm or protocol for interface,

event and policy exchanges. We deployed the prototype on constrained devices,

such as Gumstix and Koala robots, in order to assess the suitability of the

implementation in this class of resources. The memory footprint and perfor-

mance results obtained in our experiments show that real policy-based SMC
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applications can run effectively in these devices.

The functional evaluation of our model consists of a case-study which will be

presented in the next chapter. The case-study describes an application for

the monitoring and treatment of diabetes, which relies on a number of SMCs

and distributed policies to realise the desired collaboration between sensors,

diagnostic devices and other resources. This case-study will better illustrate

how the use of architectural styles facilitates the engineering of larger policy-

based SMC collaborations, as well as interactions across collaborations, and

the benefits of this approach.



Chapter 7

Case-Study: E-Health

Monitoring

This chapter presents the use of the Self-Managed Cell framework in the de-

sign of an application for the monitoring and treatment of diabetes mellitus.

There is an increasing interest in diabetes prevention and control, especially in

the United Kingdom, due to the high percentage of the National Health budget

spent on the treatment of this condition. The management and treatment of

diabetes requires a complex combination of monitoring and drug delivery ac-

tivities, which frequently depend on each other, e.g. extra physical activity will

temporarily decrease insulin dosages. Cholesterol levels and cardiac monitor-

ing also play an important role in the treatment of a patient with this condition.

In this chapter, we characterise the requirements for monitoring this condition

and present how a system for diabetes monitoring and treatment can be de-

signed through the composition and interaction of SMCs in a body-area and

home monitoring set-up. These SMCs rely on policy-based interactions where

adaptive actions are executed in response to measurements performed by on-

body sensors in order to realise diabetes management.

Our focus is on the interactions between the SMCs that realise this scenario,

rather than the detailed care protocol for diabetes management. Complex al-

149
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gorithms for the assessment of the patient’s condition or similar functionality

is assumed to be implemented as part of the application-specific managed ob-

jects. For example, we assume that an algorithm that classifies accelerometer

input into activities is available.

7.1 Diabetes Mellitus

Diabetes mellitus is a syndrome of disordered metabolism often caused by a

combination of hereditary and environmental factors, resulting in abnormally

high blood glucose levels (a condition known as hyperglycemia) [UK09]. Blood

glucose levels are controlled by the hormone insulin, which regulates the up-

take of glucose from the blood into cells. Diabetes mellitus leads to high blood

glucose levels due to defects in either insulin production (diabetes mellitus type

1) or insulin action (diabetes mellitus type 2) in the body (in this case the pa-

tient does not lack insulin but rather has resistance to its action).

Average glucose levels are around 80−120 mg/dl (or 4.4−6.6 mmol/l) before

meals, and below 180 mg/dl (or 10 mmol/l) two hours after meals.1 High glu-

cose levels are considered to be above 288 mg/dl (or 16 mmol/l). Incorrect

treatment of diabetes may lead to hypoglycemia, i.e. abnormally low blood glu-

cose levels, below 72 mg/dl (or 4 mmol/l). Hypoglycemia may be caused by too

much or incorrectly administered insulin; too much, unplanned or incorrectly

timed exercises (physical activities decrease insulin requirements); or insuffi-

cient carbohydrate intake.

Medical conditions often associated with diabetes include high blood pressure

and elevated cholesterol levels. Blood pressure levels for patients with diabetes

should be kept below 130/80 mmHg.2 This is achieved via drug therapy, and

each added drug reduces blood pressure by 5−10 mmHg. This can also require

extra monitoring and diagnosis to detect abnormal heart activity, e.g. by using

an ECG monitoring device. Blood fat levels (total including cholesterol) should

1mg/dl is milligrams per decilitre, and mmol/l is millimoles per litre
2mmHg is millimetres of mercury
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be kept below 72 mg/dl (or 4 mmol/l). Other illnesses and infections can raise

blood glucose levels and require it to be tested more often.

Diabetes management depends on a complex combination of monitoring and

treatment activities. In the next sections we present the requirements and

the design of a policy-based application for the monitoring and treatment of

diabetes using the Self-Managed Cell framework.

7.2 Requirements for Diabetes Monitoring and Treat-

ment Application

We present the design of a body-area and home monitoring set-up that moni-

tors context, patient activity and physiological parameters, and enforces drug

delivery and data forwarding according to an initially pre-defined but adap-

tive collaboration between SMCs. Body sensors are used to keep track of the

health condition of a patient, and to respond rapidly to abnormal values in the

form of either on-body actuation, e.g. drug delivery, pacemaker activation, or

the invocation of external services, e.g. requesting emergency assistance, data

forwarding. We assume the use of implanted insulin delivery pumps that are

activated in response to measurements made by blood glucose sensors. Blood

pressure control can be achieved in a similar manner, relying on drug delivery

pumps that react to monitored blood pressure levels.

An outline of the system’s operation would typically be:

• Blood glucose levels are continuously monitored by glucose sensors, and

these measurements are used for controlling the automatic administra-

tion of insulin via an insulin pump.

• Blood pressure levels are also monitored by sensors, and values are used

for triggering the administration of drugs for hypertension control.

• The amount of daily physical activity the patient has undergone, e.g. run-

ning, walking, sitting, lying, is monitored using accelerometers. This is
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used to adjust insulin delivery dosages, as physical activity decreases ar-

tificial insulin requirements.

• Diabetes is frequently associated with cardiovascular problems. Heart

rate is monitored by sensors attached to the patient, e.g. a chest strap

with embedded sensors, transmitting heart beat signals to a receiver,

e.g. smartphone. Based on the signal transmitted, the smartphone can

determine the current heart rate and proceed with further actions. For

example, temporarily triggering an ECG (electrocardiogram) device avail-

able in the home environment, which can detect the waveform of heart-

beats and record it, thus providing to the doctor relevant data on the heart

condition of the patient, e.g. detecting repetitive patterns of abnormalities.

ECG results typically include: (a) heart rate, (b) heart rhythm and (c) heart

waveform.

• Data from the on-body sensors is collected and correlated on a smart-

phone, and transmitted to a local database in the home environment for

synthesis and subsequent analysis.

• Continuous monitoring must allow data gathering and synthesis in the

home environment, correlating glucose, cholesterol, physical activity and

blood pressure levels for a period of weeks or even months.

• Subsequent delivery of synthesised data on a daily/weekly/fortnightly ba-

sis (depending on the patient risk condition) to an electronic patient record

repository provided by the GP, e.g. via a web-service interface.

• The failure of any body sensor must be immediately reported to the pa-

tient’s GP, requesting device replacement if necessary.

In the next sections we show how our requirements can be addressed by the

design of an autonomous application that relies on policy-based interactions for

performing adaptive actions. We are thus interested in adaptive autonomous

behaviour and how the various devices and services required for realising this

scenario are composed into more complex autonomous structures and interact

with each other. We do not consider security aspects, e.g. privacy of patient
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Table 7.1: Basic SMCs used in the diabetes scenario

Self-Managed Cell Description
Patient Patient’s smartphone managing the body-area

SMC
Surgery Web-service SMC that automatically updates GP

records
Doctor Doctor’s smartphone used for interacting and

managing patient’s devices
Glucose sensor Sensor SMC for glucose monitoring
Blood pressure sensor Sensor SMC for blood pressure monitoring
Accelerometer Sensor SMC for activity monitoring
Cholesterol sensor Sensor SMC for fat levels monitoring
Heart rate sensor Sensor SMC for heart rate monitoring
Drug pump Actuator SMC for drug injection and hypertension

control
Insulin pump Actuator SMC for insulin injection
Server Local database for sensor data collection in the

home environment
ECG device Electrocardiogram diagnosis device
Alarm Display for notifications in the home environment

records or cryptography of exchanged data, at this stage as work on these

issues is ongoing elsewhere [KLS09, ZSLK09, Keo05, KLS04].

7.3 Application Outline

Based on the requirements described in the previous section, Table 7.1 lists

the basic SMCs used in the construction of this scenario. These are divided

into four groups of interacting SMCs:

• A personal SMC controlling a patient’s body-area network for health mon-

itoring typically runs on a smartphone or Gumstix3 device hosting SMC

management services that control several sensors such as glucose, blood

pressure, cholesterol and acceleration hosted on BSNs4 (Body Sensor

Nodes). Actuators, such as an insulin pump or drug pump SMC, are em-

ployed and activated according to conditions monitored by the sensors.

3http://www.gumstix.com
4http://vip.doc.ic.ac.uk/bsn/
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• A doctor or nurse SMC would typically interact with patients, loading

monitoring tasks and collecting results. Monitoring tasks permit contin-

uous observation of the patient’s condition in his own home environment.

Tasks loaded by the healthcare worker continually run on the patient’s

SMC, relying on information provided by his body sensors. In some cir-

cumstances, e.g. nurse visits or a regular visit to the GP, the patient also

runs tasks for the re-calibration of his sensors, using devices owned by

the healthcare worker.

• A home monitoring system collects data monitored by the patient’s body-

area network, correlating glucose, cholesterol, physical activity and blood

pressure levels for a period of weeks or even months. When risky con-

ditions are detected, e.g. hypoglycemia, alarms can be used to notify the

patient that extra care must be taken, e.g. to take fast-acting carbohydrate

such as glucose tablets − quantities will vary according to the situation,

and instructions should be provided with the alarm. Data is temporarily

stored locally for synthesis and identification of trends in the patient con-

dition. Depending on the severity of the patient’s condition, e.g. propensity

to cardiovascular problems, ECG monitoring can be added to the moni-

toring set-up.

• A link between the patient’s home monitoring system and the GP surgery

is used to deliver periodically synthesised data to an electronic patient

record repository provided by the GP. In an emergency, data is used to re-

quest immediate assistance, e.g. if the glucose levels reach critical thresh-

olds, if the blood pressure is not effectively lowered by the administration

of drugs or if an imminent heart attack is detected.

Figure 7.1 outlines the SMCs involved in this scenario and their interactions.

Interaction (1) refers to the interaction between doctor and patient, for the

purposes of loading monitoring tasks or re-calibrating the patient’s sensors.

This is triggered when the patient visits the clinic, typically over a Bluetooth

connection between the patient and doctor smartphones. Interaction (2) cor-

responds to the body-area network comprising the patient’s smartphone and
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Figure 7.1: Diabetes monitoring scenario: each numbered triangle represents
an interaction that requires a different combination of management abstrac-
tions.

the several sensors and actuators used for diabetes monitoring and treatment.

Communication between these devices and the patient smartphone typically

occurs through IEEE 802.15.4 radio links. Interaction (3) forms the home

monitoring environment, involving devices for data storage, alarms and ex-

ternal diagnostic available at the patient’s home, interacting with the patient’s

own body-area network, often via a Wi-Fi connection between these resources.

Finally, interaction (4) refers to the home environment and GP surgery inter-

action, through which the patient’s records are updated or emergencies are re-

ported. This interaction typically occurs via HTTP, considering the GP provides

a web-service SMC for updating patient’s records. Although the Self-Managed

Cell concept provides a suitable abstraction for representing the autonomous

components involved in this scenario, we still need adequate abstractions for

expressing their interactions.

The next sections will elaborate these interactions using the principles pre-

sented in this thesis.
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7.4 Patterns of Interaction

We can define patterns of interaction to be enforced by different SMCs in this

collaboration. Patterns exhibit very specific management properties with re-

spect to interface, task and event exchanges, which are dictated by the prim-

itive styles that these patterns are composed from. In this section we present

how two of these patterns are realised: a body-area pattern and a home moni-

toring pattern.

7.4.1 Body-Area Pattern

The arrangement of architectural styles presented in Figure 7.2 corresponds

to a possible pattern for the body-area monitoring. It comprises the interac-

tions between the device hosting the patient SMC and the sensors and actu-

ators. This set of interactions (architectural styles) is typically established by

the patient device. In the body-area network, the patient device and the several

Figure 7.2: Body-area network pattern.
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sensor and actuator SMCs are organised in a composition relationship as it re-

quires encapsulation of the constituent devices. This is because we want the

sensors to be visible and controlled solely by the patient device, and avoid sen-

sors which belong to one body-area network to be discovered and interact with

other external SMCs. Although the resources are encapsulated in the body-

area network, operations that need to be accessed by the healthcare worker for

reading sensor measurements or setting new thresholds are typically mapped

and accessible from the patient’s device interface. The body-area interaction

typically relies on a simple event diffusion style from the sensors to the patient

device. Normally, the sensors of a body-area network do not depend on each

other’s events − if that were the case, a shared bus or blackboard would be

more suitable.

The pattern also comprises the interactions between the doctor and patient,

especially for the purpose of the exchange of monitoring and re-calibration

missions. This part of the interaction is typically enforced on the healthcare

worker device, and can for example be triggered when the patient visits the GP

surgery. A peer abstraction is more suitable for the interaction between patient

and doctor, as a patient may interact with multiple doctors, and a doctor may

interact with multiple patients. These interactions do not require mapping,

filtering or encapsulation abstractions.

Based on the functional requirements identified in Section 7.2, the tasks that

are required to be exchanged between the SMCs in this scenario are:

• Diabetes monitoring mission: this is the most important and also the

most complex of the missions. It runs on the patient device and relies on

the information provided by multiple sensors, e.g. glucose, blood pressure,

cholesterol, heart-beat, accelerometer, to assess the patient condition and

possibly to trigger adaptive actions, like the activation of insulin or drug

pumps (some of these policies are illustrated in Figure 7.3).

• Sensor re-calibrating mission: is used by the patient for re-calibrating

his sensors, using devices provided by the doctor or another healthcare

worker. Sensor accuracy often depends on their calibration. Calibration
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1 // insulin infusion policy
2 on glucose(level) do
3 if level > 120 then
4 /resources/insulinPump.dose(level - 120)

6 // potential hypoglycemic condition policy
7 on glucose(level) do
8 if level >= 72 and level < 80 then
9 /events/alert.raise("hypoglycemic condition " + level)

11 // confirmed hypoglycemic condition policy
12 on glucose(level) do
13 if level < 72 then
14 /event/alert.raise("hypoglycemic condition " + level)

16 // confirmed hyperglycemic condition policy
17 on glucose(level) do
18 if level > 300 then
19 /events/alert.raise("hyperglycemic condition " + level)

21 // blood pressure control policy
22 on bp(level) do
23 if level > 130 then
24 /resources/drugPump.dose(level - 130)

26 // physical activity reduces insulin requirements, and other
27 // policies must be activated
28 on context(activity) do
29 if activity == "vigorous" then
30 /policies/normal.disable();
31 /policies/active.enable()

Figure 7.3: Example policies used in the diabetes monitoring mission.

1 // patient visits the GP and doctor re-calibrates the sensors
2 on energy(level) do
3 /resources/patient/accel.set("sedentary", level <= 2);
4 /resources/patient/accel.set("light", 2 < level <= 4);
5 /resources/patient/accel.set("moderate", 4 < level <= 6)
6 /resources/patient/accel.set("vigorous", level > 6)

Figure 7.4: Example policies used in the sensor re-calibration mission.

type and method is obviously dependent on the parameter being moni-

tored by the sensor. For example, accelerometer-based activity monitoring

can be used to measure the duration and frequency of activity undertaken

under different intensity categories, such as sedentary, light, moderate

and vigorous [PAVB02]. Calibration can be based on energy expended

(kcal/min), using specialised equipment available when the patient visits
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the GP (Figure 7.4).

During patient visits to the GP, a distributed control style is typically established

between doctor and patient SMCs which allows them to load missions mutually

into each other. This allows a doctor SMC to load diabetes monitoring tasks

into a patient SMC, but similarly a patient SMC also loads policies onto the

doctor SMC to trigger re-calibration of the patient’s sensors (the latter avoids

the requirement for the doctor SMC to store calibration procedures for each

individual patient).

7.4.2 Home Monitoring Pattern

The arrangement of architectural styles presented in Figure 7.5 corresponds to

a possible pattern for the home environment monitoring. It comprises the inter-

actions between the devices locally available in the home environment, e.g. lo-

cal server, alarms, ECG diagnostic device, and the personal device hosting the

patient SMC. These interactions are typically enforced by the local server, to

Figure 7.5: Home monitoring pattern.
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control the interactions with other devices and appliances. The interaction in

the home monitoring environment has an aggregation structure as it enables

some degree of hierarchical organisation and filtering/mapping in the access

to resources and appliances whilst still permitting the sharing of internal re-

sources, e.g. the patient’s body-area, with external SMCs that exist outside the

aggregation. Event forwarding from the patient device into the home environ-

ment relies on a diffusion style to notify the occurrence of alarms, but also on a

correlator to relay coarser grained information with respect to glucose or blood

pressure monitoring − average levels over an hour, for example. Additionally,

an event diffusion of heart rate events is required between patient and ECG

devices.

This pattern also comprises the interactions between the home environment

and the remote surgery, especially for the purpose of reporting the patient con-

dition, which is also normally enforced by the home server. This interaction

between the home environment and the GP follows a peer structure, similar

to the interaction established between doctor and patient SMCs. For notifying

an emergency, a diffusion of events between home environment and surgery is

often required.

According to the functional requirements identified in Section 7.2, the tasks that

must be exchanged between these SMCs are:

• ECG monitoring mission: in advanced stages of diabetes, the patient has

a higher propensity to cardiovascular problems, and a doctor may recom-

mend intensive monitoring and recording of the electrical activity of the

heart, e.g. to anticipate the occurrence of a heart attack. This is achieved

by a mission running on an ECG monitoring devices locally available in

the home environment. A high heart rate triggers an ECG monitoring

device, which can detect the waveform of heart-beats and provide to the

doctor relevant data on the heart condition of the patient in his daily life.

Such a device can temporarily record heart rate, heart rhythm and heart

waveform, which can then be stored locally or sent to the GP (some of

these policies are illustrated in Figure 7.6).
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1 // activates the ECG monitor for a given period of time
2 on hr(rate) do
3 if rate > 140
4 /resources/ecg.start(30s)

6 // takes appropriate action depending on the results of
7 // an ECG monitoring
8 on ecgStopped(rate, waveform) do
9 if rate > 140 and rate < 160 then

10 /resources/localserver.store(rate, waveform);
11 /events/alarm.raise(rate, waveform)

13 // takes appropriate action depending on the results of
14 // an ECG monitoring
15 on ecgStopped(rate, waveform) do
16 if rate >= 160 then
17 /resources/localserver.store(rate, waveform);
18 /resources/surgery.callEmergency(rate, waveform)

Figure 7.6: Example policies used in the ECG monitoring mission.

• Data collection and synthesis mission: a data collection and synthesis

mission is typically running on the home monitoring environment. It can

be used for storing patient’s data in a data collection hub available at the

patient’s home and for subsequently generating a synthesised summary

of the collected data on a daily/weekly/fortnightly basis (depending on

the patient’s level of risk). This can later be sent to an electronic patient

record repository provided by the GP (some of these policies are illustrated

in Figure 7.7).

1 // handles alert event, e.g.˜displays message on a plasma TV
2 on alert(msg) do
3 /resources/alarm.display(msg)

5 // periodically updates electronic patient record
6 on time(00:00) do
7 if updated == "true" then
8 record = /resources/database.retrieveRecord();
9 /resources/surgery.updateRecord(record)

Figure 7.7: Example policies used in the data synthesis mission.

Data collection and synthesis mission is typically loaded by the patient SMC

into his own home environment via a hierarchical control style. In cases where

the patient is deemed to be in a more severe health condition, ECG monitoring
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may be prescribed by the doctor. In this case, the diabetes monitoring mission

will contain an additional ECG monitoring mission, to be loaded into an ECG

monitoring device available at the home environment (also via a hierarchical

control style).

This scenario requires only relatively simple task-allocation styles, as typically

auction of tasks or tasks loaded by multiple managers are not common in an

e-health monitoring application. However, we identified the use of more com-

plex patterns of task allocation in scenarios for collaborating teams of UAVs in

search-and-rescue missions [SFLS+08b].

7.5 Discussion

The case-study presented in this chapter described an application for the mon-

itoring and treatment of diabetes. We demonstrated how the framework pro-

posed in this thesis facilitates the construction of large policy-based SMC col-

laborations, as well as interactions across collaborations. We showed how

policy-based collaborations are established between a number of SMCs rep-

resenting sensors, diagnostic devices and other resources.

The use of styles promotes the systematic specification of these interactions.

Architectural styles can capture standard solutions for composing SMCs, and

allow others to reuse these solutions to resolve recurring problems encoun-

tered throughout the development of complex applications. The use of styles

also enables the rigorous verification of these interactions and reasoning about

their properties to guarantee the integrity of collaborating SMCs. However, the

benefits of a software engineering approach are clearer if one considers the

use of application patterns for specific domains, e.g. healthcare monitoring pat-

terns. These rely on the general styles of structure, task-allocation and com-

munication, but can be tailored and customised for a given scenario, defining

application-specific functionality. Patterns can thus be reused and instantiated

multiple times, using the sensors and resources available for each patient.
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The formal model for SMC interactions which was specified in Alloy can be

used to analyse the behaviour of SMCs in this scenario. The ability to analyse

SMC interactions is crucial in order to verify whether they are correctly speci-

fied and deployed and whether they achieve the behaviour that is intended for

them. Types of analysis that can be used include: (a) ensure a given SMC is

bound to a particular abstraction, e.g. sensor and insulin pump SMCs should

always be encapsulated and managed by a patient SMC; and (b) whenever an

architectural style is deployed, all the roles bound to that style must be already

assigned, ensuring the application has all the required devices to operate. The

manner in which these properties can be verified using our formal model for

SMC interactions was discussed in greater detail in Chapter 5.



Chapter 8

Discussion and Critical

Evaluation

This chapter presents a more general discussion of the framework proposed in

this thesis, in terms of its usability, scalability and extensibility. The limitations

and deficiencies of the framework are also discussed.

8.1 Usability

Usability includes aspects such as reuse of code and ease in rapidly instanti-

ating different types of interactions. Our experience in developing policy-based

SMC applications shows that the use of architectural styles satisfies these two

issues when deploying SMC interactions. The parameterisation and instanti-

ation of an individual architectural style typically requires about 10 lines or

less of PonderTalk code. For comparison, the same interaction written man-

ually without the aid of styles would require about 30 lines of code. This is

a factor of 3 increase, and for an application containing 100 of such interac-

tions, that is 3,000 instead of 1,000 lines. An interaction for the exchange of

interfaces, events or policies between a set of SMCs can be set up using ar-

chitectural styles, by instantiating a single managed object which encapsulates

164
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the required support.

Manually setting up an interaction, for example an event sharing scheme sim-

ilar to the SharedBus style, using only primitive abstractions not only requires

a considerable amount of code to be written, but it is also error-prone. This

is because the programmer is responsible for using the primitive abstractions

for correctly setting up policies for event forwarding and installing the required

event templates in disparate locations to handle these events. In contrast, the

architectural style automatically defines the algorithm or protocol for the se-

mantics for a given interaction, and distributes fragments of it to distributed

SMCs according to their roles.

8.2 Scalability

The use of architectural styles reduces the complexity and size of the inter-

actions, by structuring and decreasing the number of necessary bindings be-

tween SMCs. For example, the size of an interaction for event sharing between

SMCs can be drastically reduced by using an abstraction such as the Shared-

Bus style, when compared to a straightforward forwarding of events. Table 8.1

shows a comparison between the number of necessary bindings to achieve the

event exchanges in both cases.

Table 8.1: Comparison between the number of bindings using a SharedBus
style and a simple approach for event forwarding

#SMCs #Bindings #Bindings
(Diffusion) (SharedBus)

2 1 1
3 3 = 2 + 1 2
4 6 = 3 + 2 + 1 3
5 10 = 4 + 3 + 2 + 1 4
6 15 = 5 + 4 + 3 + 2 + 1 5
7 21 = 6 + 5 + 4 + 3 + 2 + 1 6
... ... ...
n (n - 1) + (n - 2) + (n - 3) + ... + (n - n) n - 1

A similar comparison can be made between abstractions for structuring an

interaction; between peer-to-peer collaborations and compositions. Indeed, one
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of the motivations for compositions is to hide the complexity of large SMCs that

comprise a set of smaller, yet autonomous, components, e.g. a body-area SMC.

The number of interface exchanges for completely unstructured interactions,

e.g. peer to peer, assuming that full connectivity is applied is given by the

formula

2× ((n− 1) + (n− 2) + (n− 3) + ... + (n− n));

by comparison, partitioning an interaction between two compositions of one

level only reduces the number of interface exchanges in the best case to

2 + 2× ((n− 2) + (n− 4) + (n− 6) + ... + (n− n)).

This is indicated in Figure 8.1 which illustrates the number of interface ex-

changes for interactions involving from 2 to 6 SMCs, arranged either as peer to

peer collaborations or compositions.

This indicates that the use of architectural styles mitigates the problems of

scaling to larger systems, with respect to both programming complexity and

the number of interactions that must be established among components. Engi-

neering SMC interactions through the use of architectural styles and patterns

thus provides a measurable gain over unstructured solutions.

8.3 Extensibility

The categories of architectural styles can be seen as complementary perspec-

tives for modelling the structural, task-allocation and communication aspects

of an interaction. The catalogue presented in this thesis certainly is not com-

plete. Instead we have focused solely on the frequently occurring styles that

facilitate the design and composition of complex SMCs in our application sce-

narios.
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Figure 8.1: Interface exchanges in compositions and peer-to-peer interactions

The framework for SMC interactions can be extended in three different ways:

1. By recombining existing architectural styles into patterns of interactions,

using a specific set of roles and architectural styles and their customisa-

tions, e.g. events to be forwarded, methods to be filtered and missions to

be loaded. These complex interactions are specified solely in PonderTalk,

and can be subsequently reused to form parts of a larger and more com-

plex interaction.

2. By programming additional managed objects defining new architectural

styles which can be added to the library of styles. These new managed

objects must extend adequate classes in our framework and implement

the abstract methods which they define. The definition of a new architec-

tural style requires considerable programming effort, however, once im-

plemented and checked that it conforms with the formal specification of

SMC interactions, it can be reused as necessary.

3. By subclassing existing architectural styles to create more specialised
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ones that can be included in the library for subsequent reuse. Typically,

architectural styles define a generalised protocol or algorithm through

which the exchange of events, interfaces and policies is achieved. Flex-

ibility is obtained in the implementation because styles can be parame-

terised with PonderTalk blocks, which concretely define parts of the pro-

tocol or algorithm defined by the style. This was indicated by the cor-

relation function which parameterises the correlator style, or the filter-

ing function which parameterises the composition style, both discussed in

Section 6.2.3. Based on this a specialised style managed object can pre-

define a concrete built-in function for interface filtering, event correlation,

mission bidding, etc, which builds on top of the more general mechanism

defined in the corresponding super class.

We expect that the investigation of other scenarios could result in the iden-

tification of additional abstractions for SMC interactions as many styles and

patterns of interaction are specific to the application domain. Styles tailored to

particular application scenarios, such as care management for a set of patients,

can thus be defined and included in our library of styles.

8.4 Limitations

The work presented in this thesis is by no means complete, and a number of

limitations and deficiencies were identified throughout its development. These

are discussed in the following.

8.4.1 Security Mechanisms

Section 3.6 briefly discussed the minimum security requirements we identified

for collaborations between SMCs and we illustrated the security management

aspects of SMC interactions using these minimum requirements. However, the

development of security management protocols for SMC interactions is outside

the scope of this thesis. The work on doctrines [Keo05, KLS04] has previously
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investigated the formation of policy-based communities of autonomous nodes,

focusing on the security protocols for realising trust-based authentication, ac-

cess control and membership management. Our framework does not address

privacy issues or cryptographic protection of exchanged data as work on these

within the context of SMCs is being investigated elsewhere [KLS09, ZSLK09].

Instead, we focused on the definition of a framework for specification, instan-

tiation and reuse of SMC interactions, which can accommodate additional se-

curity requirements as needed through the addition of new management roles

which can then be used to address the security needs of a particular appli-

cation, e.g. threshold cryptography [ZH99], intrusion detection [Sun96], DDoS

detection [TSD07].

8.4.2 Dynamic Restructuring

This thesis focused on providing abstractions for systematically designing and

establishing larger policy-based SMC interactions from simpler ones. The frame-

work can accommodate dynamic discovery and departure of SMCs, dynamic re-

assignment of roles to the available SMCs, and dynamic loading and unloading

of policies.

However, changes in the requirements of scenarios and applications may re-

quire a new configuration of architectural styles to replace an old one. This

involves the re-specification and re-checking of an entire new interaction before

it can replace an old interaction. Currently this is not done automatically, as

interaction specification and translation from PonderTalk to Alloy notation for

the purposes of model-checking is performed manually. Collaborating SMCs

may also need to synchronise and achieve a safe state [KM90], e.g. all events

forwarded were already delivered, before their current interaction configuration

can be replaced. This still requires further investigation.
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8.4.3 Model-Checking and PonderTalk to Alloy Translation

The declarative specification style used in Alloy was simple to use and the asso-

ciated tool set offered rapid feedback on the model specification. The analyser

is used both (a) to validate universal assertions with respect to general SMC

interactions, e.g. a composed SMC never establishes interactions outside the

composition, as well as (b) to check logical properties automatically for a spe-

cific instance of SMC interaction. The former requires an exhaustive search

through a user-specified scope on the number of objects to be used, which

makes the problem finite and thus reducible to a boolean formula, and de-

pending on the size of the problem this kind of analysis may take several hours

to complete. However, these are not expected to be performed online, as the

purpose of this kind of analysis is to verify whether the implementation of the

model itself correctly expresses the semantics of SMC interactions and whether

unorthodox configurations of SMCs are ruled out of the model.

In contrast, the verification of logical properties for a specific instance of SMC

collaboration is a much faster and more straightforward analysis. The predi-

cates for the verification of properties receive as input the precise instance we

want to verify, containing all the SMCs, interfaces, policies, etc, to evaluate

the logical property. This requires expressing a specific interaction, e.g. all the

SMCs available, their interfaces, the policies we want to load and the architec-

tural styles that we want to use, in Alloy notation. Currently, the translation

of a PonderTalk specification into Alloy notation to be used as input of these

logical predicates has to be done manually. This is the main reason why we

only use Alloy for verifying interactions prior to deployment in physical devices.

However, if translation between PonderTalk into Alloy can be done automati-

cally, dynamic changes in the SMC could be automatically translated and ver-

ified in Alloy during run-time. However, model checking of specifications still

requires significant computational resources.
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8.4.4 Prototype Implementation

The prototype has demonstrated the feasibility of the concepts presented in

this thesis. However, this prototype can be improved in many ways with added

tool support and a specification editor. The specification of SMC interactions

and definition of patterns are written manually in PonderTalk, with no syntax

validation or guidance in correctly specifying the interactions. Additionally, in

the current implementation an interaction specification written in PonderTalk

needs to be manually loaded into a physical device, e.g. SSH to a Gumstix and

copy the specification file into it, which will then discover and bootstrap the

interactions with other SMCs according to the specification file. We recognise

that improved tool support could aid the specification of these interactions, as

well as their automatic distribution and deployment into remote devices.

Our implementation runs on JamVM version 1.4.5 and GNU Classpath ver-

sion 0.91, which are supported both in Gumstix and in Koala robots. How-

ever, JamVM does not run on BSN sensors which are much more resource-

constrained, and we were not able to run our prototype on these devices. Al-

though previous work has defined a lightweight implementation of the policy

service that can run on BSNs [K+07], our prototype assumes the existence of

more powerful devices (similar to a Gumstix) capable of running the JamVM

and thus the full-blown SMC framework.



Chapter 9

Conclusions

This chapter describes a summary of the work presented in this thesis, and

discusses what has been achieved. The directions for future work resulting

from the evaluation of the framework presented in the previous chapter are

also outlined, and finally the concluding remarks are presented.

9.1 Review and Discussion of Achievements

Management in ubiquitous systems cannot rely on human intervention and

centralised decision-making functions. This is due to their complexity and

because these systems are composed of resources and devices which are in-

herently mobile and cannot refer to centralised management applications for

their reconfiguration. The Self-Managed Cell provides an infrastructure for the

management of autonomous components which is based on a policy-driven

feedback control-loop, where policies provide the means for adapting the func-

tioning of an SMC in response to changes in its own context, e.g. failures of

components or performance degradation. Individual SMCs thus form devolved

administrative domains charged with enforcing local decision rules that govern

their own behaviour. However, applications typically consist of ad-hoc collabo-

rations of devices and resources and therefore require elementary SMCs to ne-
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gotiate the necessary interactions with other components in their surroundings

and be assembled into larger and more complex structures based on the same

principles of self-management. Most of the examples used in this thesis are

derived from requirements in the context of healthcare monitoring applications

comprising autonomous sensors and actuators and in the self-management of

teams of unmanned autonomous vehicles. However, the principles and results

are more generally applicable to other ubiquitous scenarios, such as in the

management of large virtual organisations.

This thesis presented an integrated framework which supports the design and

the rapid establishment of policy-based interactions by systematically compos-

ing simpler abstractions as building elements of a more complex collabora-

tion, using the Self-Managed Cell as the underlying infrastructure. We distin-

guish between the overall organisation of the interaction (structural aspects),

the manner in which policies are exchanged (task-allocation aspects) and how

events are forwarded between SMCs (communication aspects). These can be

seen as complementary perspectives of a policy-based interaction, and for each

of them we propose the use of interaction patterns that can be independently

specified, instantiated and reused to form larger SMC collaborations.

We first identified the underlying principles for supporting SMC interactions.

Through careful analysis of our application scenarios we observed that these

interactions rely on essentially the same three basic exchange mechanisms:

(a) the exchange of policies; (b) the exchange of events required for triggering

policies; and (c) the exchange of interfaces which are required for validating

the actions prescribed by policies. These laid the groundwork for supporting

the composition and federation of SMCs. In particular, the notion of missions

is used to define a group of policies which are loaded into a remote SMC in

order to prescribe how it should behave within the context of an interaction.

A key observation is that a mission is akin to a form of constrained program-

ming, and thus the framework caters for the careful verification of a mission

before its policies are granted permission to execute on a remote SMC. These

observations have been previously described in [SFLD+07, SFL07].
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Basic SMC interactions can be used for the management of the application-

specific aspects of an application, e.g. healthcare monitoring, reconnaissance

and rescue operations, as well as for the management aspects of how SMC

interactions themselves are realised. We illustrated an example of how SMCs

can be used for realising the security management of their own interactions and

this revealed itself to be a key decision. As a result, we identified a number of

management tasks which are needed for supporting secure SMC interactions,

but more importantly, we demonstrated that the infrastructure is flexible and

can accommodate additional security functions according to the requirements

of a particular collaboration. This was presented in detail in [SFLS+08a].

Building elaborate applications using solely these elementary abstractions can

be difficult to manage and deploy and we advocate the use of software engineer-

ing principles, such as patterns and software architectures, for systematically

building policy-based SMC interactions. We defined a catalogue of reusable

patterns and provided a more general infrastructure for specifying, instantiat-

ing and reusing SMC interactions. Patterns support the definition of specific

algorithms and protocols which govern how the exchanges of policies, events

and interfaces must be achieved, and are used to define independently the

task-allocation, communication and structural aspects of an interaction. Pat-

terns can then be composed in a methodical manner thereby facilitating the

engineering of larger policy-based SMC interactions. The use of patterns was

first proposed in [SFLS09].

We implemented a framework which realises SMC interactions and includes

both the specification, establishment and operation of simple SMC interac-

tions, as well as a library of reusable architectural styles for composing and

federating SMCs. Our evaluation demonstrates that the policy-based infras-

tructure scales down and can be used effectively in constrained devices with

limited computational power and memory. This was confirmed by a practical

evaluation of the performance of our framework executing in these devices.

Our evaluation also indicates that the use of patterns for engineering SMC in-

teractions mitigates the problems of scaling to larger systems by reducing both

the programming complexity and the complexity of the interactions established
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between components during run-time. A case-study scenario presenting how

SMCs were used for building a policy-based application for diabetes monitoring

and treatment was presented in order to complement the functional evaluation

of our work, demonstrating how real-world applications can be realised using

our framework.

The successful operation of SMC collaborations, however, depends both on

their correct specification and on the suitability of the participating SMCs. We

modelled in Alloy a formal specification of the SMC behaviour, which makes

possible the rigorous verification of specific SMC interactions. Interactions can

be checked automatically to guarantee that SMCs are able to enforce their

policies before these interactions are deployed in physical devices, e.g. smart-

phones, Gumstix, sensors. Part of this formal specification was presented in

[SFLSE09].

9.2 Future Work

Several limitations have been identified in the discussion presented in the pre-

vious chapter. We now consider directions for future work.

The security aspects for establishing SMC interactions must be adequately ad-

dressed. This thesis briefly discussed the minimum security requirements, but

further work needs to investigate the development of appropriate security man-

agement protocols for SMC interactions. Work on this direction has started to

be addressed elsewhere [KLS09, ZSLK09, Keo05, KLS04].

Our overall goal is to be able to form compositions and federations of SMCs

dynamically, suitable to particular application scenarios, such as care man-

agement for a set of patients, by instantiating combinations of pre-defined pat-

terns. A promising research direction is the identification of application pat-

terns for specific domains, e.g. monitoring patterns, or data analysis patterns.

These will rely on the basic patterns of structure, task-allocation and commu-

nication, and add to them application-specific functionality. A mission, which
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has been hitherto used as a means of packaging a set of policies, could have

its behaviour augmented by supporting the specification and enforcement of

application patterns that are transferred into an SMC.

The framework presented in this thesis provides the mechanisms for specify-

ing and instantiating SMC interactions, however applications still have to be

“built” manually from styles, missions, interfaces, etc. Support for the au-

tomatic generation of SMC interactions and the use of goal refinement and

planning techniques is still a focus of active research. These could be used to

select automatically the abstractions in a specific application scenario. High-

level user requirements, for example ECG monitoring, could then be refined into

concrete federations of SMCs using the required policies and the mechanisms

for realising the corresponding application.

9.3 Closing Remarks

Devolved management is the key for addressing the complexity of large-scale

ubiquitous systems which are formed as collaborations of smaller, yet autono-

mous, components. The work presented in this thesis investigated how policy-

based autonomous components can be federated and composed to form larger

ubiquitous applications. This thesis relied on previous research to address a

new problem: engineering policy-based ubiquitous systems. We adapted and

incorporated techniques from autonomous systems, multi-agents and software

engineering principles, and identified how these studies could benefit the con-

struction of policy-based systems. This is built upon previous work on policy-

based management developed at Imperial College over the past 20 years.

The use of patterns for systematically building policy-based systems is a novel

and promising approach. Although we have concentrated on the Self-Managed

Cell framework, the principles and techniques proposed in this thesis can ben-

efit the engineering process of pervasive and autonomous systems in general.
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