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1
Introduction

Sections 1.3.1, 1.4.1–1.4.3 and 1.5 have been partially published by the author of this Thesis

on Wikipedia (date: August 2, 2013)

https://en.wikipedia.org/wiki/Capacitive_deionization


12 Introduction

1.1 Capacitive Deionization

Capacitive deionization (CDI) is an electrochemical technology to adsorb ions

from solution by alternately charging and discharging two electrodes [1–10]. Dur-

ing the charging step, a charging voltage is applied between two electrodes. Con-

sequently, ions are adsorbed into the electrodes, see Fig. 1.1. As a result, feed wa-

ter is desalinated and fresh water is produced. After the electrodes are saturated

with salt, they are discharged and ions are released, resulting in a concentrated

effluent stream, often referred to as brine. Also, during discharge, part of the

energy consumed during charging can be recovered.

Electrode

e-
+

-

+ -

-+

Electrode

Feed 
water
(brackish)

+

-

- -

+ +

Electrode

Electrode

e-

+

-

+

--

+

-

+

Brine
+
-

-
+

Charging or adsorption step

Discharging or desorption step

Desalinated 
water 

Feed 
water
(brackish)

Fig. 1.1: Operation of a Capacitive Deionization cell for water desalination. During

the charging or adsorption step, feed water flows into the cell and ions are adsorbed

into the electrodes, resulting in a desalinated effluent stream. During the discharge

or desorption step, ions are desorbed from the electrodes, resulting in a concentrated

effluent stream (brine).

A CDI cell consists of two porous electrodes with a flow (or spacer) channel

in between. Electrodes are often made of activated carbon (AC) particles. AC

is porous and has a surface area between 1000 and 2000 m2/g where ions can

be adsorbed [11]. The material is made from natural resources, amongst others

from coconut shell, with a raw material cost of 0.50-1.50 euro/kg [12].
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Broader context: fresh water, a scarce resource

Fresh water is a scarce resource. Four billion people, two-third of the global

population, live, for at least one month per year, in severe water scarcity

conditions [13]. The World Economic Forum listed in 2015, water crises as

the global risk with the highest impact [14].

One route to combat water scarcity is the development and application of

technologies to treat wastewater for re-use, and to produce fresh water from

saline water sources. As 97.5% of water present in reservoirs is saline, water

desalination can contribute to solving scarcity problems [15–17].

Desalination technologies separate saline feed water into two streams: a

desalinated (fresh) and a concentrated (brine) stream. Existing technologies

can be divided into two categories: thermal and membrane-based processes

[18]. Thermal desalination is a process based on the evaporation of water:

saline water is heated to the boiling point, water evaporates and is condensed

as fresh water [19]. Membrane-based processes can be sub-divided based on

the driving force used for desalination, which can be pressure or electrical

current. Currently, reverse osmosis (RO), a process using pressure as driving

force, dominates the desalination market [16, 17, 20]. In RO, membranes

are used that only allow the transport of water and block salt and other

dissolved matter. By exerting a high pressure on the saline water, water

permeates through the membranes, and a fresh water stream is obtained

[18, 19, 21, 22].

Desalination is a capital- and energy-intensive process [16, 20, 23]. The

energy costs of RO are in the range of 1-4 kWh/m3 [23, 24], and of thermal

desalination in the range of 15-25 kWh/m3 [25]. Furthermore, membrane-

based processes require the use of chemicals to prevent growth of micro-

organisms on the membranes and to prevent scaling. Residuals of these

chemicals are discharged, with the brine, and especially antiscalants can

harm the marine environment [17, 24, 26]. The high capital and operational

costs of incumbent desalination technologies drive the development of new

technologies, as well as the optimization of currently used technologies.

Currently, there is a growing scientific and commercial interest in CDI, an

emerging desalination technology. CDI is an electrically driven process: by

applying an electrical field between two porous electrodes, salts are adsorbed

into the micropores in the electrodes. Zhao et al. [27] found that the energy

consumption of desalination by CDI can be lower than RO when the salt

concentration of the feed water is below 30 mM (2 g/L). Although energy
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consumption is not the only criterion to select a desalination technology for,

this finding is an important driver for technology providers and scientists to

further develop the technology.

From an application point of view, several aspects are important in the

choice of a desalination technology: low energy consumption, stable long-

term operation with a minimum of maintenance, and low costs. Further-

more, there is an increasing interest to apply desalination methods to remove

specific charged compounds from aqueous streams, for instance, the removal

of NO –
3 , a harmful compound, when present in high concentrations in e.g.

drinking water [28]. In this Thesis, we will, after introducing CDI technol-

ogy in the following sections, address several of these aspects to investigate

the suitability of CDI as a method of desalination.

In carbon electrodes, ions are adsorbed into electrical double layers (EDLs),

see Fig. 1.2, which are formed in the micropores inside the carbon particles [29–

32]. These EDLs contain three types of charge: electronic, chemical and ionic.

Electronic charge is stored in the solid phase of the material, the chemical charge

is stored in the form of chemical groups present at the surface of the material,

while the ionic charge is present in the form of ions stored in the diffuse layers of

the carbon [33]. The sum of these three types of charge is by definition equal to

zero, which means that the overall EDL is charge neutral.

-

-
+

-

+
+

+

+

+

C
O
O
-

-

C
O
O
-

-

Fig. 1.2: Schematic overview of an electrical double layer. Electronic charge, stored in

the electrode, is charge compensated by chemical charge at the surface of the electrode,

and by ionic charge, which is stored in the diffuse layer.

So, how does adsorption of ions in EDLs occur? Upon applying a charging volt-

age over two electrodes, electrical current (electrons) runs from one electrode to

the other. The electrons transferred into the electrodes are stored in EDLs, and
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in order to keep EDLs electroneutral, the electronic charge needs to be compen-

sated by chemical or ionic charge. Let us, for now, assume charge compensation

takes place by a change in ionic charge (i.e., the amount of chemical charge does

not change during operation). This means that for each extra electron stored in

the electrode, either a counterion (which is a cation for the cathode and an anion

for the anode) is adsorbed, or a co-ion (which is an anion for the cathode and a

cation for the anode) is expelled. Whereas adsorption of counterions is desired,

desorption of co-ions is unwanted, and results in a charge efficiency of the entire

cell, which is the ratio of salt adsorbed over electrons transported, below unity

(the theoretical maximum value of charge efficiency is unity).

1.2 Membrane Capacitive Deionization

To avoid desorption of co-ions from the electrodes into the flow channel, a cation

exchange membrane (CEM) can be placed in front of the cathode, and an anion

exchange membrane (AEM) in front of the anode, see Fig. 1.3 [34–38]. These ion

exchange membranes (IEMs) allow the passage of counterions, while they block

the transport of co-ions. Consequently, membranes increase charge efficiency of

CDI to a value close to unity. The CDI technology including membranes in the

cell configuration, is referred to as Membrane Capacitive Deionization (MCDI).

Electrode

e-

Anion exchange membrane

Cation exchange membrane

+

-

+ -

-+

Electrode

Desalinated 
water

Feed
water
(brackish)

+

-

- -

+ +

Electrode

Electrode

e-

Anion exchange membrane

Cation exchange membrane

+

-

+

--

+

-

+

Brackish
water

Brine
+

-

-
+

Adsorption step

Desorption stepFig. 1.3: Schematic of a Membrane Capacitive Deionization cell.

The extent to which IEMs block the passage of co-ions, is dependent on the

thickness of the membranes, see Fig. 1.4. Clearly, we observe an increase of the

thickness from approximately 0.05 to 30 µm goes with an increase of charge effi-

ciency and salt adsorption, due to an increase of the selectivity of the membranes.

Consequently, the energy consumption (with and without energy recovery during

discharge) decreases, and is at minimum if the membrane thickness is between
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Fig. 1.4: Increasing the membrane thickness in MCDI results in a higher salt adsorp-

tion and charge efficiency, and lower energy consumption (with and without considering

energy recovery during discharge), and is, in the presented case, at minimum if the thick-

ness is between 15 and 30 µm. Constant current calculations are performed according to

theory presented in Chapter 3. Parameter values are the same as used for calculations

discussed in Section 3.5.

15 and 30 µm. Increasing the thickness further results in an increase of energy

consumption, due to an increase of ionic resistances across the membrane, which

we will further discuss in Chapter 3.

1.3 Theory

To describe CDI theoretically, we distinguish the following processes in the porous

carbon electrodes: ion adsorption and ion transport. We consider that these

processes occur in two different types of pores in the carbon electrode, see Fig. 1.5:

• macropores: interparticle pores that serve as transport highways for ions;

• micropores: intraparticle pores where EDLs are formed and ions are stored.

Besides macro- and micropores, in Chapters 2 and 3 we include mesopores in the

theory, which we will discuss in Section 1.3.1 and in more detail in Section 2.3.3.
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Macropores Micropores

COO
-

Ion
adsorption

e-

Na+

Ion transport

Electrode
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Cation exchange membrane

Electrode
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H+

OH- Cl-

Na+

Cl-

Na+

H+

OH-

Na+

Cl-Cl-

Na+

Na+

Desalinated 
water

Fig. 1.5: Schematic overview of ion adsorption coupled with ion transport theory in a

CDI electrode.

Please note that, in our theoretical work, macro-, meso-, and micropores are

defined according to their functional performance, see Refs. [39–41], which is

different from the definitions introduced in Section 1.4.3 [42].

To model ion adsorption, we use EDL theory. EDL theory relates the concen-

tration of ions in the micropores to the concentration in bulk solution, or to the

concentration in the macropores. To model the dynamics of ion adsorption, we

also consider transport of ions from the spacer channel, across the membranes

(in MCDI), into the electrodes, towards the micropores. We will discuss both ion

adsorption and ion transport theory in the following sections.

1.3.1 Ion adsorption

To describe ion adsorption in EDLs, the Gouy-Chapman-Stern theory is often

used [43–47]. This theory dates back to 1924 and considers three layers, see

Fig. 1.6: the carbon surface, Stern layer and diffuse layer. Electronic charge

is stored in the carbon. Ionic charge is stored in the diffuse layer, diffusively

distributed close to the surface (carbon). The ion concentration is the highest

close to the surface and decreases with distance. The Stern layer is a layer

between the diffuse layer and the carbon, and does not contain charge. This

layer is often considered to be due to the fact that charged ionic species carry a

hydration shell, and therefore the charged ion cannot come infinitely close to the

surface.

Although the Gouy-Chapman-Stern theory is often used to calculate ion ad-

sorption in EDLs, it does not predict ion adsorption in CDI accurately [48]. Let

us explain this by a simple calculation. The Debye length, λD, which is a measure

of the thickness of the diffuse layer, which is for a monovalent salt given by

λD =

√
εr · ε0 ·R · T
2 · F 2 · c∞

(1.1)

where εr is the dielectric constant, ε0 the permittivity of free space, R the gas

constant, T temperature, F the Faraday constant, and c∞ the salt concentration
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Fig. 1.6: Schematic overview of ion adsorption in EDLs according to the Gouy-

Chapman-Stern theory

of the electrolyte. As salt concentrations in CDI are typically low, the Debye

length is high. E.g., for an electrolyte with c∞=10 mM at T=293 K, the Debye

length is 3.1 nm. As we can consider the diffuse layer to end after 2 or 3 times

the Debye length, and as the pore size of the micropores is not more than 2

nm, EDLs are strongly overlapping, a situation which is not described by the

Gouy-Chapman-Stern theory.

To describe ion adsorption in strongly overlapping EDLs, we can use the Don-

nan model, which assumes a constant electrical potential in the micropores [49].

To use the Donnan model for CDI, we make two modifications, which are [42]:

• between the carbon surface and the electrolyte, we include a Stern layer,

similar as in the GCS-model;

• we include an attraction term, µatt, which we use as a fitting parameter

to describe ion adsorption in the micropores in the absence of electronic

charge, which has been experimentally observed [42, 50].

The Donnan model including these two modifications was introduced as the

modified Donnan (mD) model in Ref. [47]. In 2014, another modification was

introduced, namely that µatt is dependent on the total ion concentration in the

micropores, and the model was called the “improved modified Donnan” (i-mD)

model [49]. In this Thesis, we describe and use the i-mD model in Chapters 2–5.

An important point to note is that the micropore volume, vmi, that we find

by fitting the parameters in the i-mD model with experimental data for salt

adsorption, is less than the micropore volume measured by gas sorption analysis,

vGSA.
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In Chapter 2 we suggest to call this difference mesoporosity, vmeso. In the

mesopores, like in the nearby macropores, we assume equal concentrations of

cations and anions (for a 1:1 salt), at the same concentration as in the nearby

macropores. The only difference with the macropores is that the ions in the

mesopores do not contribute to ion transport across the electrode.

Furthermore, we note that, with both the mD and i-mD models, the presence

of chemical surface charge, as indicated in Fig. 1.2, has not been considered.

This changed with the introduction of the amphoteric Donnan (amph-D) model

in 2015, which includes two modifications compared to the i-mD model [51].

The first modification is the introduction of chemical surface charge. Thus, the

amphoteric Donnan model considers three types of charge: electronic, chemical

and ionic. Secondly, because of the introduction of chemical surface charge,

which predicts the adsorption of ions in micropores under conditions of zero

electronic charge, we do not have to consider µatt anymore, which was a fitting

term to start with. As shown in Fig. 1.7, the amph-D model considers two types

of groups contributing to chemical surface charge, namely groups with positive

charge, basic groups, which are often depicted in the form of H+, and groups

with negative charge, acidic groups, depicted in the form of COO– .

An important improvement of the amph-D model compared to the i-mD model

is that the value for vmi, that we find by fitting the amph-D model to experimental

data for salt adsorption, is now much closer to the micropore volume measured

by gas sorption analysis, vGSA. Therefore, we no longer consider mesopores in

the amph-D model, which we only introduced in the i-mD model to attribute the

difference between vGSA and vmi to a parameter.

In this Thesis, we describe and use the amph-D model in Chapters 6 and 7.

1.3.2 Ion transport

To describe CDI dynamically, we couple ion adsorption with ion transport theory.

The first papers published on this topic date back to 1963 and describe trans-

mission line theory [52–54], which assumes a constant salt concentration in the

macropores of the electrodes. To model CDI, this assumption was relaxed and

the theory was extended by a description of ion transport across the electrode

[55, 56].

To include a more realistic EDL model than included in the transmission line

theory, porous electrode theory was derived in Refs. [39–41], which couples the

(i-)mD model to ion transport theory. In this Thesis, we use and describe porous

electrode theory in Chapters 2–5.

Besides modeling ion transport in porous electrodes, we also model ion trans-

port in the spacer channel and through ion exchange membranes in Chapters 3
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Fig. 1.7: Schematic overview of ion adsorption in EDLs according to the amphoteric

Donnan model.

and 7. Furthermore, in Chapter 7 we derive a model combining ion transport

with water self-ionization, H2O −−→←−− H+ + OH– .

1.3.3 Faradaic reactions

Until now, we discussed ion adsorption in CDI as a capacitive process. A capac-

itive process, on the one hand, does not involve the transfer of charge across the

electrode-solution interface [57]. On the other hand we have faradaic reactions,

see Fig. 1.8A, which form the basis of many electrochemical technologies, such

as batteries, fuel cells and electrolysis cells. These faradaic reactions do involve

charge transfer across the electrode-solution interface, which result in a chemi-

cal change of the compounds in solution or the electrode material. Perhaps the

most well-known faradaic reaction is water splitting (or water electrolysis), see

Fig. 1.8B, where we have:

• the oxidation of water at the anode (2 H2O −−→←−− 4 H+ + O2 + 4 e– ), and

thus the faradaic transfer of electrons from solution (H2O) into the electrode

(anode);

• the transfer of electrons from anode to cathode;

• the reduction of water at the cathode (4 H2O+4 e– −−→←−− 2 H2(g)+4 OH– ),

and thus the faradaic transfer of electrons from the electrode (cathode) into

solution (H2O).
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A) capacitive vs faradaic B) example of a faradaic process
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Fig. 1.8: Capacitive and faradaic processes. Whereas a capacitive process results in

storage of electronic charge in the solid phase, and consequently, adsorption of ions in

the diffuse layer, a faradaic process involves the transfer of an electron from the solid

phase to the electrolyte.

Although CDI is based on a capacitive process, faradaic reactions may also

occur [58–65]. These faradaic reactions can be unfavorable in CDI, as they

• reduce charge and energy efficiency of the process (electrons involved in

faradaic reactions do not contribute to ion adsorption in EDLs);

• can result in unwanted pH changes of the effluent solution, as some reactions

involve the production or consumption of protons or hydroxyl ions, which

can result in precipitation of salt on membranes or into electrodes, and

thereby affect the long-term stability of the cell [64, 66–68];

• can result in oxidation of carbon – often the main electrode material in

CDI – and thereby also affect the stability of the CDI desalination process

[63–65].

In Chapter 7 we describe the Frumkin-Butler-Volmer theory [40, 69, 70], which

we use to model combined capacitive-faradaic processes to understand the cause

of pH fluctuations in MCDI.

Table 1.1 summarizes which theory is used in each Chapter of this Thesis.

1.4 Process design

In this section, we discuss several considerations for the design of a CDI process:

operational mode (constant current vs. constant voltage), cell designs, electrode

materials, and process performance metrics.
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1.4.1 Operational mode: constant current vs. constant voltage

In Section 1.1 we described that, upon applying a voltage over two electrodes,

an electrical current runs between anode and cathode, resulting in an electroni-

cally positively charged anode, and a negatively charged cathode. Implicitly, we

suggested that the cell is operated by controlling the voltage at constant value.

However, one can also control the current at constant value. We describe the

main differences between both operational modes.

Constant voltage

During the adsorption step in (M)CDI operated in constant voltage mode, the

effluent salt concentration rapidly decreases, and thereafter, the effluent salt con-

centration increases again. This can be explained by the fact that EDLs are

uncharged at the beginning of an adsorption step, which results in a high volt-

age over the two electrodes, and consequently in a high driving force for ions

to adsorb into the EDLs. When more ions are adsorbed in the EDLs, the EDL

potential increases and the remaining potential difference between the electrodes,

which drives the ion transport, decreases. Because of the decreasing ion removal

rate, the effluent concentration increases again [71].

Constant current

As the applied electrical current is equal to the ionic current in a (M)CDI cell,

constant current mode allows a better control, compared to constant voltage, on

the ion transport from spacer into electrodes, and thus on the effluent salt con-

centration. However, for a stable effluent salt concentration membranes should

be incorporated in the cell design (MCDI), as the electric current does not only

induce counterion adsorption, but co-ion desorption as well [71].

Although one cannot control current and voltage at the same time, combina-

tions of both operational modes are possible during a desalination cycle, e.g., one

can charge the cell at constant current, and discharge at constant voltage.

1.4.2 Cell designs

Many different cell designs have been reported in literature [2], of which we

discuss the most distinct designs.

Flow-by

Electrodes are placed in a stack with a thin spacer layer in between, through

which the water flows, see Figs. 1.1 and 1.3. This is by far the most commonly

used design, which we used for all work in this Thesis.
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Fig. 1.9: Schematic overview of flow-through and flow-electrode CDI designs.

Flow-through

In this mode, feed water flows straight through the electrodes, i.e. the water

flows directly through the interparticle pores of the porous carbon electrodes, see

Fig. 1.9.

Flow-electrode

This design is comparable to flow-by mode with membranes in front of both

electrodes, but instead of having solid electrodes, a carbon suspension (slurry)

flows between membranes and current collector, see Fig. 1.9. A voltage is applied

between both channels of flowing carbon slurries, and ions are adsorbed from the

water into the carbon slurries. Since the slurries flow, electrodes do not saturate

and therefore this cell design can be used for the desalination of water with high

salt concentrations (e.g. sea water, with salt concentrations of approximately

30 g/L). A discharge step is not necessary; the carbon slurries are, after leaving

the cell, mixed together and ions desorb. Thereafter, the carbon slurry can be

separated from the concentrated salt water, and the slurry can be reused [5, 7, 72–

79].

Wires

Fresh water can be produced continuously in a modified CDI configuration where

rod-shaped anode and cathode electrode pairs are not fixed in space, but move

cyclically from one stream, in which the voltage is applied and salt is adsorbed,

to another stream, where the voltage is reduced and salt is released [80, 81].
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1.4.3 Electrode materials

In this work, we study electrodes made of carbon material. Regarding the struc-

ture of the material, there are several considerations. As a high salt electrosorp-

tion capacity is important, the specific surface area of the carbon accessible for

ions should be large. Furthermore, the material should be stable and no chem-

ical degradation of the electrodes should occur in the voltage window applied

for CDI. The ions should be able to move fast through the pore network of the

carbon and the electronic conductivity of the carbon should be high [42].

To classify pore sizes, definitions of the International Union of Pure and Ap-

plied Chemistry (IUPAC) can be used [42, 82, 83]. IUPAC defines the pores

according to size as follows:

• Macropores: larger than 50 nm;

• Mesopores: between 2 and 50 nm;

• Micropores: smaller than 2 nm.

Nowadays, activated carbon (AC) is the commonly used material, as it is the

most cost efficient option and it has a high specific surface area. It can be made

from natural or synthetic sources. Other carbon materials used in CDI research

are, for example, ordered mesoporous carbon, carbon aerogels, carbide-derived

carbons, carbon nanotubes, graphene, and carbon black [42].

1.4.4 Process performance metrics

To evaluate the performance of CDI cells, various metrics are used:

• Salt adsorption capacity (SAC): salt adsorption per amount of electrode

material, to indicate salt adsorption performance of the electrodes [84].

The value is not only dependent on the electrode material under study, but

also on the charging voltage and the electrolyte (type of salt and respective

concentration).

• Charge efficiency (Λ): ratio of salt adsorbed over electrons transferred be-

tween the electrodes [48]. The value is dependent on the Stern layer capac-

itance of the electrode material, the charging voltage, and the electrolyte.

• Water recovery (WR): ratio of volume of desalinated water produced over

the total amount of water fed into the system. For example, a system with

WR = 0.5 and a total feed water stream of 4 m3/h produces 2 m3/h desali-

nated water and 2 m3/h brine. We define the volume of desalinated water

as that when the salt concentration in the desalinated water, cdesalinated, is

lower than the feed water, cfeed.
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• Average salt adsorption rate (ASAR): salt adsorption per cycle divided by

the cycle time, which is the total duration of an adsorption and desorption

step [35].

• Desalination (∆c): average salt concentration difference between feed water

and desalinated water, ∆c = 1
tch

∫
(cfeed − cdesalinated) dt, where tch is the

duration of a charging step. Desalination relates to ASAR according to

ASAR = ∆c · Φv ·WR · Mw,salt

Melec
under the assumption that Φv,desalinated =

Φv,conc = Φv,feed, where Φv,i is the flow rate of flow i (m3/s). Parameter

Mw,salt refers to the molar mass of the salt, and Melec to the total mass of

the electrodes used in the cell.

• Energy consumption: energy consumed during desalination, which is often

expressed per mol of salt removed from feed water or per volume of de-

salinated water produced. As (M)CDI allows energy recovery during the

discharge step, the energy consumption can be expressed with or without

accounting for energy that can (potentially) be recovered.

For (industrial) system design, the metrics that come into play are ASAR, WR,

and energy consumption (with and/or without recovery). Designing a system re-

quires a trade-off between these metrics: increasing ASAR (and thereby decreas-

ing the amount of materials required to build the system for a given production

objective) and/or increasing WR result in an increase of energy consumption.

1.5 Energy consumption

The energy consumption in CDI depends on many factors and is mainly depen-

dent on system design choices, which we discuss in Chapter 3. The thermody-

namic minimum energy consumption of a desalination process can be calculated

easily. This minimum energy consumption is due to the fact that desalination

involves demixing of ions, which decreases the entropy of the system and there-

fore requires energy input. This energy input, the Gibbs free energy, ∆G, can be

calculated using

∆G = Gdesalinated +Gconc −Gfeed (1.2)

with Gf the Gibbs energy of flow f , where f can be replaced by “desalinated”

for the desalinated water flow, “conc” for the concentrated flow (or “brine”) and

“feed” for the feed flow to the cell. For ideal solutions Gf is given by

Gf = R · T · Φv,f

∑
i

cf,i · ln (cf,i) (1.3)

where i runs over all ions present in solution, and where cf,i is the concentration

of ion i in flow f , R is the gas constant (8.314 J mol-1 K-1), T temperature (K),

and Φv,i the flow rate of flow f (m3/s).
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Fig. 1.10: Thermodynamic minimum energy consumption, ∆G, as function of desali-

nation, ∆c, and water recovery, WR. The salt concentration in the feed flow, cfeed, is

100 mM. Clearly, increasing ∆c or WR results in higher ∆G.

Fig. 1.10 shows ∆G as function of ∆c for cfeed = 100 mM. We observe that,

with increasing ∆c (or ASAR) or WR, the minimum energy consumption for de-

salination increases. Although the real energy consumption is significantly higher

than ∆G, we see in Chapter 4 that the relation between energy consumption,

∆c, and WR is similar.

1.6 Recent scientific and commercial interest in

Capacitive Deionization

The first study on CDI was published in the early 1960s, titled “electrochemical

demineralization of water” authored by G.W. Murphy and co-workers [85–87].

During the decades thereafter, the scientific interest in CDI was relatively small,

but around 2010 the topic received a major boost. Nowadays, in 2017, about

100 papers are yearly published, see Fig. 1.11. Recent scientific developments

are on electrode materials [11, 33, 51, 88–93], novel cell designs, ranging from

desalination with wires [80] to flow electrodes [5, 72, 73], or on new operational

modes or ion-selective removal [28, 47, 94–96]. Also, studies are conducted to

quantify resistances and energy losses in the CDI cell [4, 97, 98], or to identify

parasitic reactions that may result in pH changes [8, 99–101].

The interest in CDI is not limited to the scientific community; there is also

commercial interest. Nowadays, Voltea (Fig. 1.12), EST Water Ltd, Idropan,

Atlantis, SionTech, and several other companies, develop (M)CDI technology.
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Fig. 1.11: Cumulative number of publications and citations on CDI since the early

1960s. Data is obtained from Web of Knowledge.

Besides desalination of brackish water, as discussed in Section 1.1, there are

various other applications of (M)CDI, for instance:

• Water remediation for cooling towers: in industrial processes, cooling tow-

ers are used to dissipate heat by evaporation of water. If ions are present in

water, the ions can precipitate and result in scaling. To reduce scaling, an-

tiscalents can be used in the recirculation water, which is commonly done,

or the water can be desalinated, for example by (M)CDI [34, 102].

• Water softening: to avoid scaling problems in washing machines, dishwash-

ers, boilers, heat exchangers and many other devices, removal of hardness

ions, such as Ca2+ and Mg2+, from feed water is necessary. To that end,

several desalination methods can be applied, for instance (M)CDI [103].

From an application point of view, several aspects are important. Firstly, sta-

ble long-term operation has to be guaranteed. Also, the water recovery, salt

adsorption capacity and rate should be high, and the energy costs and capital

costs should be low. Furthermore, there is an increasing interest to apply desali-

nation methods to remove specific charged compounds from aqueous streams. In

this Thesis, we will address several of these aspects to investigate the suitability

of CDI as a method of desalination.



28 Introduction

Fig. 1.12: Commercial MCDI system manufactured by Voltea.

1.7 Outline of this Thesis

In this Thesis we study the mechanisms of ion transport and adsorption in CDI

technology, and we address three topics: I) energy consumption, and resistance

identification, II) ion-selective adsorption, and III) long-term operation and pH

changes.

In Chapter 2, we first describe salt adsorption in CDI using the i-mD model.

We show that we can increase salt adsorption and energy efficiency by increasing

the voltage during discharge, compared to the conventional discharge voltage of

0 V.

In Chapter 3, we combine this i-mD model with transport theory to model

the dynamics of ion adsorption in CDI. We verify theory with experimental data

and thereafter use the theory to calculate the contribution of different elements

of the cell (electrodes, spacer, membranes) to the total cell resistance and energy

consumption.

In Chapter 4, we use the theory derived in Chapter 3 to compare the en-

ergy consumption of two modes of operation which are frequently used in CDI,

constant current and constant voltage. We study energy consumption (with and

without energy recovery during discharge) as function of desalination and WR.

Thereafter, we extend the theory to study the dynamics of adsorption of mix-

tures of salts. Thus, instead of modeling ion transport and adsorption in an

electrolyte that contains one monovalent salt, such as NaCl or KCl, we study
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mixtures, in this case of NaCl and KCl. We compare theory with experimental

data and present the results in Chapter 5.

In Chapter 6 we apply a new Donnan model, the amph-D model. With this

amph-D model, we study the decrease in salt adsorption performance of CDI cells

treating water that contains dissolved oxygen. We also explain why (M)CDI cells

show a stable performance.

Finally, in Chapter 7, we combine the amph-D model with transport theory.

Here, we extend this transport theory to include acid-base equilibrium reactions,

in this case water self-ionization (H++OH– −−→←−− H2O). Furthermore, we include

Frumkin-Butler-Volmer theory to model faradaic reactions. We use this combined

theory to obtain mechanistic insight in pH changes in MCDI.

Table 1.1 summarizes which theory is used in each Chapter of this Thesis.
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Abstract

Capacitive deionization (CDI) is an electrochemical method to adsorb ions from

solution by alternately charging and discharging two electrodes in contact with

aqueous electrolyte. A key parameter in CDI is the charge efficiency, Λ, which is

the ratio of salt adsorption over charge in a CDI cycle. Values for Λ in CDI are

typically in the range of 0.5-0.8, significantly less than the theoretical maximum

of unity, due to the fact that not only counterions are adsorbed into the pores

of the carbon electrodes, but at the same time co-ions are released. To enhance

Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ

can be close to unity because the membranes only allow passage for the counte-

rions. Enhancing the value of Λ is advantageous as this implies a lower electrical

current and (at a fixed charging voltage) a reduced energy use. We demonstrate

how, without the need to include IEMs, the charge efficiency can be increased

to values close to the theoretical maximum of unity, by increasing the voltage

during discharge, with only a small loss of salt adsorption capacity per cycle. In

separate constant-current CDI experiments, where after some time the effluent

salt concentration reaches a stable value, this value is reached earlier with in-

creased discharge voltage. We compare the experimental results with predictions

of porous electrode theory which includes an equilibrium Donnan electrical dou-

ble layer model for salt adsorption in carbon micropores. Our results highlight

the potential of modified operational schemes in CDI to increase charge efficiency

and reduce energy use of water desalination.
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2.1 Introduction

Capacitive deionization (CDI) is an electrochemical method to adsorb ions from

solution by alternately charging and discharging two electrodes in contact with

aqueous electrolyte [11, 96, 104–110]. In this process, ions migrate to the elec-

trodes following charge transfer through the external circuit that connects the

two electrodes. Within the electrode, ions are stored in the electrical double lay-

ers (EDL) which form in the micropores inside the porous carbon particles that

compose the electrode [111]. As a consequence, the water flowing through the cell

becomes partially desalinated. Generally, the two electrode films are placed par-

allel to the direction of water flow which runs in between the electrodes through

a spacer layer, see Fig. 2.1A. Alternative designs use carbon electrode wires [80],

flowable electrode slurries [7, 72–74, 76] or flow-through electrodes [112]. In

addition, electrodes can be chemically modified [88, 113], nanoparticles can be

incorporated [114–116], ion-selective coatings can be applied [117, 118], or ion-

exchange membranes can be placed in front of the electrodes in a modification

called Membrane Capacitive Deionization, or MCDI [27, 28, 35, 71, 102, 119–121].

In most of these designs, CDI comprises a repeated cycle of charging (salt

adsorption) and discharge (salt release). Discharge of the cell is generally done

by short-circuiting the two electrodes (i.e., a discharge voltage of Vdisch=0 V is

applied), where ions are released from the electrodes and a concentrated saline

stream is temporarily produced. The two steps of salt adsorption (charging)

and desorption (discharge) constitute one full CDI cycle. Charge efficiency Λ

describes the ratio of salt adsorption (desorption) over the charge transfer [107,

109, 116, 122–124]. The charge efficiency differs between materials and depends

on the voltage applied during charging, Vch, and salt concentration [49]. For a

typical charging voltage of Vch=1.2 V and for salt concentrations in the range 5-50

mM, values for Λ ranging from 0.5 to 0.8 have been experimentally found. Charge

efficiency Λ increased with Vch, and decreased with salt concentration [36]. Values

for Λ close to, or beyond, unity have never been reported for CDI. Indeed, a value

of Λ of unity is considered the theoretical maximum, and would be achieved when

one full NaCl salt molecule is removed for an equivalent electron transfer between

the electrodes. The lower values of Λ obtained in practice, are disadvantageous

as it implies more charge transfer and electrical energy input than is necessary for

a given objective of salt removal. However, such sub-optimal values of Λ clearly

below unity seem to be inherently connected to CDI as a consequence of the

structure of the electrical double layer (EDL) in microporous carbons, where the

electrical charge is partially compensated by counterion adsorption, and partially

by co-ion repulsion (ejection of co-ions from the EDL) [49]. The repulsion of

the co-ions results in sub-optimal values of the charge efficiency, i.e. a charge
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Fig. 2.1: (a) Schematic diagram of a CDI cell as used in this study. (b) Operational

cycles where discharge voltage is varied (Vdisch = 0 V and 0.3 V) as a function of time.

efficiency below unity. For salt concentrations below 30 mM, implementation

of ion-exchange membranes increases the charge efficiency Λ (see Fig. 5D in

Ref. [71]) to values close to one, because co-ions are blocked from leaving the

electrode region, and only counterions are transported from spacer to electrode

to compensate the electronic charge. The disadvantage of membrane-CDI is

the more expensive cell design. Though not well supported by experimental

data, theoretical calculations suggest that another route to reach a higher charge

efficiency, is to increase the charging voltage to values beyond 1.2 V [49]. However,

because of water splitting, voltages beyond 1.23 V lead to an increase in leakage

currents, that is, a current which results in electrochemical reactions, which is

not used to charge the porous carbon electrodes. Therefore, voltages beyond

1.23 V may result in a higher energy consumption. Also the use of (chemically

modified) asymmetric electrodes, and reference electrodes, has been suggested as

methods to increase Λ [88].

To increase charge efficiency, another route is the use of an increased discharge

voltage and, as a consequence, a smaller voltage window for CDI as has been

suggested and tested before [125]. This is the route we will reanalyze and extend

in the present Chapter by using a fixed value of the voltage during charging,

Vch=1.2 V, just below the water-splitting voltage, and increase the discharge

voltage, Vdisch, to values above zero, see Fig. 2.1B. As we will demonstrate, both

experimentally and theoretically, increasing Vdisch only moderately, to around
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Vdisch=0.3 V, leads to increased values of Λ, while at the same time the salt

adsorption capacity and salt adsorption rate are not affected much (order of 5%).

Because of the reduced voltage window used in our study, the total charge transfer

in one cycle decreases significantly, and thus the overall energy consumption is

lower. For instance, in our setup, and for csalt=20 mM and Vch=1.2 V, the energy

requirement per ion removed reduces from ∼30 kT per ion when Vdisch=0 V, to

∼26 kT per ion when Vdisch=0.3 V. The results presented in this Chapter go

beyond the pioneering work reported in Ref.[125] where the charging voltage was

Vch=0.6 V and therefore charge efficiency Λ still stayed far below unity, increasing

from Λ=0.4 to Λ=0.7 upon increasing the discharge voltage from Vdisch=0 V to

0.4 V. Another difference is that in Refs.[125, 126] it was argued that increasing

Vdisch is disadvantageous because of a significant decrease in salt removal per

cycle. However, as we will show, when Vch is the value that we use, Vch=1.2 V,

then in the relevant range of values of Vdisch (up to 0.3 V), this decrease is minor.

In addition, we demonstrate that theoretical equilibrium calculations using

a recently proposed improved modified Donnan (i-mD) model [49] closely fit

the data for charge transfer and salt adsorption, across a range of values of cell

voltage and salt concentration, while a porous electrode transport theory for CDI

well illustrates dynamic data, i.e., ion transport rates in CDI. We also present

experimental and theoretical results for constant-current charging in CDI [127],

demonstrating that with an increased discharge voltage the transition period

required to reach a stable effluent salinity can be drastically reduced. In summary,

our results demonstrate the possibility to increase the charge efficiency in a CDI

cycle to values close to unity, leading to a lowered energy consumption, and

unchanged salt adsorption, by raising the discharge voltage in CDI to values

higher than zero.

2.2 Theory

2.2.1 Equilibrium EDL model

To rationalize the origin of improved charge efficiency in a CDI cycle, we make

use of an electrical double layer (EDL) model for ion adsorption in microporous

carbons [124]. Here we will use the improved modified Donnan (i-mD) model

[49] which is an EDL-model that assumes full overlap of the diffuse layers in the

small micropores [11, 49]. The i-mD model does not consider ion size effects,

but does include a Stern layer capacitance and a non-classical “att”-term that

describes how uncharged carbon micropores also adsorb salt. The EDL model

describes the ion concentrations inside the intraparticle pore space, or micropores,

(“mi”), where we model the formation of the EDL and the adsorption of salt,
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coefficients (as must formally also be considered for NaCl) are
described in Refs. [43,44].

In the CDI porous electrode transport model, two coupled one-
dimensional partial differential equations must be solved along
with additional algebraic equations to evaluate the transport and
adsorption of salt across the porous carbon electrodes. The model
describes, as a function of the depth in the electrode x, and time
t, four coupled variables: (1) the salt concentration in the macrop-
ores, cmA; (2) the electrostatic potential there, /mA; (3) the charge
density in the micropores, rmi; and (4) the total ion concentration
in the micropores, cions,mi.

The spacer channel between the two electrodes is described as a
series of continuously stirred sub-cells with a salt concentration csp

that is only a function of time, described by the salt mass balance

pspV sub-cell
@csp

@t
¼ �JionsAþ /vðcsp;in � cspÞ ð13Þ

where Vsub-cell (in m3) is the geometrical volume of the sub-cell, psp

is the open porosity of the spacer channel, A the exchange area of
one sub-cell with one electrode (in m2), and /v the water volumet-
ric flow rate running through the cell, i.e., along the electrodes (in
m3/s). We assume the two electrodes to behave symmetrically
and as a consequence the ion flux into one electrode, Jions, is equal
to the salt flux into both electrodes.

Based on the Nernst–Planck equation [50], transport within the
porous electrode is described by two coupled partial differential
equations. First, a differential salt mass balance can be set up, given
by

@

@t
ððpmA þ pmesoÞcmA þ

1
2

pmicions;miÞ ¼ pmAD
@2cmA

@x2 ð14Þ

with the electrode position x between 0 < x < Lelec, where Lelec is the
electrode thickness, and where D is the average ion diffusion coef-
ficient in the macropores, and where pmA, pmeso, and pmi are the
macro-, meso-, and microporosity in the electrode, respectively.
As Eq. (14) shows, we consider all fluxes to be in only one direction,
namely the direction into the electrode, i.e., at cross-angles with the
general flow direction of the solution through the channel, see Fig. 2
in Porada et al. [46].

The second partial differential equation describes the charge in
the micropores and is given by

pmi
@rmi

@t
¼ 2pmAD

@

@x
cmA

@/mA

@x

� �
: ð15Þ

At each position in the electrodes, the macropore potential /mA

is related to the potential /1 in the carbon matrix according to

/1 � /mA ¼ D/d þ D/St ð16Þ

with expressions for D/d and D/St given by Eqs. 3–6. At each posi-
tion the micropore ions concentration cions,mi is related to charge
rmi according to

c2
ions;mi ¼ r2

mi þ ð2 � cmA � expðlattÞÞ
2
: ð17Þ

With the potential in the carbon matrix set to zero (/1 = 0), the
cell voltage is given by

Vcell ¼ 2 � VT � ð/mAjx¼0 þ D/spÞ ð18Þ

where ‘‘x = 0’’ refers to the front side of the electrode (in contact
with the spacer channel), and where D/sp is the voltage drop across
half the spacer channel, obtained from

J ¼ �4csppspD � L�1
sp � D/sp ð19Þ

where J is the current density (in mol/m2/s). The ion flux, Jions, out of
the spacer channel required in Eq. (13) is equal to the ion flux direc-
ted into the electrode

Jions ¼ �2pmAD
@cmA

@x

����
x¼0

ð20Þ

and a similar relation holds for the current density,

J ¼ �2pmAD cmA
@/
@x

� �����
x¼0
: ð21Þ

For an overview of the required initial and boundary conditions
in cmA, /mA, rmi and cions,mi in each sub-cell, see Suppl. Inf. in Pora-
da et al. [46]. In the full model for the CDI-cell, M of the sub-cells as
described above, are placed sequentially in the direction of flow. In
this direction salt is transported through the spacer channel down-
stream, as described by Eq. (13) with csp the concentration in sub-
cell i and csp,in the concentration in the up-stream sub-cell i � 1.
The concentration in the last sub-cell (i = M) is equal to the effluent
concentration. The sub-cell volume is equal to the total spacer
channel volume (height times electrode area) divided by the num-
ber of sub-cells, M. In the present work we do not include a ‘‘dead
volume’’ after the stack as in Refs. [42,46]. The current density per
cell, I (in A/m2) is calculated from I = F/M � RiJi, where Ri is a sum-
mation over all sub-cells. This current density, I, can be integrated
over time and multiplied by the cell cross-sectional area to obtain
the total stored charge. The charge stored in an electrode can also
be calculated by averaging the local charge density rmi (Eq. (15))
and multiplying by Faraday’s number, the microporosity pmi, and
the volume of the electrode. Dividing by electrode mass (anode
and cathode together) gives us the charge RF (C/g) as plotted in
Figs. 2–4.

3. Experimental

3.1. Electrode preparation

Carbon composite electrode was fabricated using YP-50F (Kura-
ray, Japan), carbon black (Vulcan XC72R, Cabot Corp., Boston, MA),
and a binder (85:5:10 in weight ratio). In order to prepare the binder
solution (3 wt%), polyvinylidene fluoride (PVDF, Kynar HSV 900,
Arkema Inc., Philadelphia, PA) was dissolved in N-methyl-2-pyrrol-
idone (NMP) and vigorously stirred for 24 h to secure homogeneity.
After YP-50F and carbon black were mixed with the prepared binder
solution, it was intensively blended in a ball-milling machine for
40 min (500 rpm) and the resulting carbon slurry was used for cast-
ing. The electrode casting was carried out on a glass plate with a doc-
tor blade (thickness 500 lm). Afterwards, the electrode was directly
transferred into deionized water together with the glass plate to

0

5

10

15

16

20

24

28

32

0 500 1000 1500 2000 2500 3000

Ch
ar

ge
 (C

 g
-1

)

c effl
ue

nt
 (m

M
)

Time (s)

Fig. 2. Experimental data of CDI cycles for effluent salt concentration and
accumulated charge, versus time (Vch = 1.2 V, Vdisch = 0.3 V, c1 = 20 mM, half-cycle
time 1200 s, only first 500 s shown).
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Fig. 2.2: Experimental data of CDI cycles for effluent salt concentration and charge,

versus time (Vch=1.2 V, Vdisch=0.3 V, c∞=20 mM, cycle time 2400 s, only first 500 s

of each charging and discharge step are shown)

as function of the concentration outside the carbon particles (interparticle pore

space, or macropores, “mA”) [31], which we model as transport pathways for

ions to move from the external solution outside the electrode to the micropores.

At equilibrium, there is no transport across the electrode, and this macropore

concentration is equal to that of the external solution outside the electrode, which

we will describe using the subscript “∞”.

For a 1:1 salt such as NaCl, in the i-mD model the micropore ion concentration

relates to that outside the pores according to a modified Boltzmann equilibrium,

cmi,i = c∞ · exp (−zi ·∆φD + µatt) (2.1)

where c∞ is the outside salt concentration, zi is the valency of the ion, and ∆φD

the Donnan potential, i.e., the potential increase when going from outside to

inside the carbon particle. This is a dimensionless number and can be multiplied

by the thermal voltage VT = RT/F (∼25.7 mV) to obtain the Donnan voltage

with dimension V. The non-Boltzmann energy term µatt is dimensionless and can

be multiplied by RT to obtain a molar energy with dimension J/mol. We will

assume equal values of µatt for anion and cation [49]. Inside the carbon microp-

ores, the micropore ionic charge density (per unit micropore volume, dimension

mol/m3=mM) is given by

σmi =
∑
i

zi · cmi,i. (2.2)
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This ionic charge σmi is compensated by the electronic charge in the carbon

matrix: σmi + σelec = 0. When using this simple equation we exclude chemical

surface charge effects, but such effects can be included [41, 128]. Next, the ionic

charge density relates to the Stern potential, ∆φS, according to

σmi = −CS ·∆φS · VT/F (2.3)

where CS is the Stern layer capacitance in F/m3. For CS we use the expression

CS = CS,0 + α · σ2
mi. (2.4)

From this point onward we assume symmetry and only describe an experiment

with two equal electrodes (equal mass and composition) [129]. We describe in this

section salt adsorption and charge in a CDI-cycle operating at two discrete values

of the cell voltage Vcell, namely Vch and Vdisch (for “charge” and “discharge”),

where at both levels equilibrium is established.

Combination of Eqs. (2.1) and (2.2) leads to

σmi = ccation,mi − canion,mi = −2 · c∞ · exp (µatt) · sinh (∆φD) (2.5)

and

cions,mi = ccation,mi + canion,mi = 2 · c∞ · exp (µatt) · cosh (∆φD) . (2.6)

The above equations must be supplemented with

Vcell/VT = 2 · |∆φD + ∆φS| (2.7)

where Vcell is either Vch or Vdisch. In the i-mD model [49], in contrast to the

previous mD-model [11, 11, 35, 40, 41, 47, 80, 128, 130], the energy term µatt is

not taken as a constant, but is given by the ratio of an energy density E divided

by the total micropore ions concentration, cions,mi,

µatt = E/cions,mi. (2.8)

This modification, used in the i-mD model, has a significant effect in improving

the precision of the mD-model, especially to describe the influence of salinity (see

Fig. 4 in Ref. [49]) without introducing an extra “fit” parameter. As Ref. [49]

demonstrated, the use of Eq. (2.8) gives an excellent description of equilibrium

data in CDI, both for salt adsorption and charge, as function of both external

salt concentration and of cell voltage.

To calculate the charge ΣF that is transferred from one electrode to the other

during charging (denoted by superscript “ch”), and back during discharge (“disch”),

we multiply the micropore charge density σmi in one electrode, by the volume of
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micropores per gram of electrode, vmi, and by Faraday’s number F , do this for

charging and discharge, and take the magnitude of the difference

ΣF =
1

2
· F · vmi ·

∣∣σch
mi − σdisch

mi

∣∣ (2.9)

where ΣF has dimension C/g. For the salt adsorption of a cell pair we have

Γm,salt =
1

2
·Mw,NaCl · vmi ·

(
cchions,mi − cdisch

ions,mi

)
(2.10)

which has dimension g/g (Mw,NaCl = 58.44 g/mol). In Eqs. (2.9) and (2.10) the

factor 1
2 stems from the convention in CDI to define salt adsorption and charge

by the mass of anode and cathode together.

The charge efficiency Λ is the ratio of salt adsorption over charge transfer in a

CDI cycle, and is given by

Λ =
F

Mw,NaCl
· Γm,salt

ΣF
. (2.11)

In case cch∞ = cdisch
∞ (the external salt concentration is the same before and

after charging, as in the Single Pass-method where the inflow salt concentration

is always the same), and we discharge at zero voltage, which in our model implies

σdisch
mi = 0 and thus ∆φdisch

D = 0, Eq. (2.11), with the substitution of Eqs. (2.5),

(2.6), (2.9) and (2.10), results in [11, 47, 49, 128]

Λ =
cchions,mi − cdisch

ions,mi∣∣σch
mi

∣∣ =
cosh

(
∆φch

D

)
− exp

(
µdisch

att − µch
att

)
sinh

(∣∣∆φch
D

∣∣) (2.12)

which clearly shows the general feature that the theoretically predicted value

for the charge efficiency directly depends on the diffuse layer (Donnan) voltage

during charging, ∆φch
D , and not on parameters related to the Stern layer. Note

that in the i-mD model, where µatt depends on cions,mi (which in turn depends

on ∆φch
D ), charge efficiency is no longer given by Λ = tanh

(∣∣∆φch
D

∣∣ /2) as it is in

the mD-model which uses a fixed value of µatt [40, 42].

2.2.2 CDI porous electrode transport theory

To describe the dynamics of salt electrosorption and charge in porous carbon

film electrodes forming a CDI cell, we jointly consider ion transport through the

space between the carbon particles, that is, through the large transport pathways

across the electrode (interparticle pore volume), which we call the macropores

(subscript: mA), and the electrosorption of ions inside carbon particles (intra-

particle pore volume) which we call the micropores (subscript: mi) [41, 131, 132].

This classical model considers a perfect bimodal pore size distribution, of one type
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of macropore and one type of micropore, and neglects mesopores [56, 133]. In

the present work these mesopores are introduced in Eq. (2.14). This mesoporos-

ity describes a charge-neutral volume inside carbon particles, having the same

salt concentration as the nearby macropores, but without sustaining ion trans-

port. The CDI porous electrode transport theory describes ion electromigration

through the spacer and electrode macropores, and the subsequent storage of ions

and electronic charge in the EDLs in the micropores [42]. The geometry con-

sidered is based on two porous electrodes placed parallel, with a flat planar slit,

called the transport channel or spacer, placed in between. In the direction of

flow, this transport channel is mathematically divided into M sequential sub-

cells, see Fig. 2 in Ref. [35] and Fig. 2 in Ref. [42]. In the following section,

we first describe a single sub-cell and the ion transport into the electrode. Next

we describe how all sub-cells can be combined in a unified model for the full

CDI system. We focus on a monovalent salt solution, assuming that the two ion

diffusion coefficients are equal (as for KCl). We neglect tortuosity effects.

In the CDI porous electrode transport model, two coupled one-dimensional

partial differential equations must be solved along with additional algebraic equa-

tions to evaluate the transport and adsorption of salt across the porous carbon

electrodes. The model describes, as a function of the depth in the electrode x,

and time t, four coupled variables: (1) the salt concentration in the macropores,

cmA; (2) the electrostatic potential there, φmA; (3) the charge density in the

micropores, σmi; and (4) the ions concentration in the micropores, cions,mi.

The spacer channel between the two electrodes is described as a series of sub-

cells with a salt concentration csp that is only a function of time, described by

the salt mass balance

psp Vsub-cell
∂csp
∂t

= −Jions A+ Φv (csp,in − csp) (2.13)

where Vsub-cell (in m3) is the geometrical volume of the sub-cell, psp is the open

porosity of the spacer channel, A the exchange area of one sub-cell with one

electrode (in m2), and Φv the volumetric flow rate of water running through the

cell, i.e., along the electrodes (in m3/s). We assume the two electrodes to behave

symmetrically and as a consequence the ion flux into one electrode, Jions, is equal

to the salt flux into both electrodes.

Based on the Nernst-Planck equation [134], transport within the porous elec-

trode is described by two coupled partial differential equations. First, a differen-

tial salt mass balance can be set up, given by

∂

∂t

(
(pmA + pmeso) cmA + 1

2 pmi cions,mi

)
= pmA D

∂2cmA

∂x2
(2.14)

with the electrode position x between 0 < x < Lelec, where Lelec is the electrode

thickness, and where D is the average ion diffusion coefficient in the macropores,
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and where pmA, pmeso, and pmi are the macro-, meso-, and microporosity in the

electrode.

As Eq. (2.14) shows, we consider all fluxes to be in only one direction, namely

the direction into the electrode, i.e., at cross-angles with the general flow direction

of the solution through the channel, see Fig. 2 in Ref. [42].

The second partial differential equation describes the charge in the micropores

and is given by

pmi
∂σmi

∂t
= 2 pmA D

∂

∂x

(
cmA

∂φmA

∂x

)
. (2.15)

At each position in the electrodes, the macropore potential φmA is related to

the potential φ1 in the carbon matrix according to

φ1 − φmA = ∆φD + ∆φS (2.16)

with expressions for ∆φD and ∆φS given by Eqs. (2.3)–(2.6). Please note that, in

this Thesis, we assume that there is no electronic resistance across the electrode,

which is supported by experimental work presented in Chapter 3, Box 3.1. At

each position the micropore ions concentration cions,mi is related to charge σmi

according to

c2ions,mi = σ2
mi + (2 · cmA · exp (µatt))

2
. (2.17)

With the potential in the carbon matrix set to zero (φ1=0), the cell voltage is

given by

Vcell = 2 VT (φmA|x=0 + ∆φsp) (2.18)

where “x=0” refers to the front side of the electrode (in contact with the spacer

channel), and where ∆φsp is the voltage drop across half the spacer channel,

obtained from

J = −4 csp psp D L−1
sp ∆φsp (2.19)

where J is the current density (in mol/m2/s). The ions flux, Jions, out of the

spacer channel required in Eq. (2.13) is equal to the ions flux directed into the

electrode

Jions = −2 pmA D
∂cmA

∂x

∣∣∣∣
x=0

(2.20)

and a similar relation holds for the current density,

J = −2 pmA D

(
cmA

∂φmA

∂x

)∣∣∣∣
x=0

. (2.21)

For an overview of the required initial and boundary conditions in cmA, φmA,

σmi and cions,mi in each sub-cell, see Suppl. Inf. in Ref. [42]. In the full model for

the CDI-cell, M of the sub-cells as described above, are placed sequentially in the

direction of flow. In this direction salt is transported through the spacer channel
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downstream, as described by Eq. (2.13) with csp the concentration in sub-cell i

and csp,in the concentration in the up-stream sub-cell i − 1. The concentration

in the last sub-cell (i = M) is equal to the effluent concentration. The sub-cell

volume is equal to the total spacer channel volume (height times electrode area)

divided by the number of sub-cells, M . In the present work we do not include a

“dead volume” after the stack as in Refs. [42,46]. The current density per cell,

I (in A/m2) is calculated from I = F/M ·
∑
i Ji, where i is a summation over all

sub-cells. This current density, I, can be integrated over time and multiplied by

the cell cross-sectional area to obtain the total stored charge. The charge stored

in an electrode can also be calculated by averaging the local charge density σmi

(Eq. (2.15)) and multiplying by Faraday’s number, the microporosity pmi, and

the volume of the electrode. Dividing by electrode mass (anode and cathode

together) gives us the charge ΣF (C/g) as plotted in Figs. 2.2–2.4.

2.3 Materials and methods

2.3.1 Electrode preparation

Carbon composite electrode was fabricated using YP-50F (Kuraray, Japan), car-

bon black (Vulcan XC72R, Cabot Corp., Boston, MA), and a binder (85:5:10 in

weight ratio). In order to prepare the binder solution (3 wt%), polyvinylidene

fluoride (PVDF, Kynar HSV 900, Arkema Inc., Philadelphia, PA) was dissolved

in N-methyl-2-pyrrolidone (NMP) and vigorously stirred for 24 h to secure ho-

mogeneity. After YP-50F and carbon black were mixed with the prepared binder

solution, it was intensively blended in a ball-milling machine for 40 min (500

rpm) and the resulting carbon slurry was used for casting. The electrode casting

was carried out on a glass plate with a doctor blade (thickness 500 µm). After-

wards, the electrode was directly transferred into deionized water together with

the glass plate to solidify the binder. The resulting carbon electrode (∼260 µm)

was cut into square pieces (6×6 cm2) with a small square (1.5×1.5 cm2) located

at the center.

2.3.2 CDI experiments

Fig. 2.1A shows a schematic diagram of the CDI system used in this study. Each

cell consists of a pair of graphite current collectors, a pair of carbon electrodes,

and a spacer (AP20, Glass Fiber Filter, Millipore, MA, uncompressed thickness

∼380 µm). A stack was constructed of Ns = 4 of such cells and installed in a

rectangular Teflon housing which was sealed off. As depicted in Fig. 2.1A, water

is pumped from outside to inside through the spacer using a peristaltic pump
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(flow rate 30 mL/min for the stack of 4 cells), and the outlet conductivity and

pH were continuously monitored. The experiments were conducted in NaCl so-

lutions of different concentration (c∞ =5, 20, 80 mM) prepared in a vessel (10

L) with N2 purging. While the solution flows through the CDI stack, the system

was controlled by a power supply (IviumStat, Ivium Technologies, the Nether-

lands). The following voltage differences across each cell were imposed: a voltage

Vch during charging (deionization, salt adsorption) and Vdisch during discharge

(regeneration, desorption). For the equilibrium experiments (Figs. 2.3 and 2.4),

the duration of each cycle, including the charging and discharge step, which we

define as cycle time, CT, was 40 min while CT was lower in the experiments of

Fig. 2.5 (for each experiment, the discharge time was equal to the charging time).

Each experiment was carried out at a distinct value of Vdisch, ranging from 0 to

0.9 V, while the charging voltage Vch was always set to 1.2 V as described in

Fig. 2.1B (except for experiments reported in Figs. 2.2 and 2.6).

From the measured electrical current, the charge transferred (back and forth)

in one cycle is calculated, while from the measured conductivity (corrected via the

measured pH for the partial conductivity of protons and hydroxyl ions) and from

the water flow rate, the salt adsorption is calculated. Note that salt adsorption

in mg/g of NaCl is based on the mass of all electrodes in the system (both anode

and cathode). The charge was obtained from the charging step (from integrating

the current vs. time-plot), after subtracting a small leakage current, which is the

current which still flows when equilibrium is reached after 20 min. Note that

when the leakage current would not be accounted for, the calculated charge is a

few percent higher, and thus values of the charge efficiency are a few percent less

than reported. None of the reported results are from the first or second cycle

after a new experiment, as the dynamic equilibrium is not yet established: salt

adsorption and charge during charging are not the same as the values during

discharge. This condition of salt balance and charge balance is well achieved in

subsequent cycles.

To calculate the salt adsorption per cycle, as required in Fig. 2.5, we use the

data analysis approach discussed in Ref. [27], where the salt adsorption is based

on the entire time period that the effluent salt concentration is below the inflow

concentration (period from A to B in Fig. 3 in Ref. [27]), a period which is slightly

delayed relative to the period of cell charging. Instead, in prior work discussing

short cycle times [35, 71, 130] salt adsorption (desorption) was calculated based

on the period of cell charging (discharging).
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Table 2.1: System and electrode dimensions, operational parameters, and settings for

theoretical calculations.

Experimental parameters

Ns Number of cells in the CDI stack 4

ρel Electrode mass density 0.40 g/mL

Acell Electrode geometric surface area 33.8 cm2

Lsp Spacer channel thickness (when compressed) 250 µm

psp Spacer channel porosity (when compressed) 0.50

Φv Flowrate through the CDI stack 30 mL/min

T Temperature 298 K

c∞ Inlet NaCl salt concentration 5, 20, 80 mM

Values for use in EDL and transport theory

vmi Micropore volume 0.40 mL/g

pmi Microporosity 0.160

pmeso Mesoporosity 0.068

pmA Macroporosity 0.566

D Average diffusion coefficient of Na+ 1.68 10-9 m2/s

and Cl– (in free solution)

CS,0 Stern capacitance in the 170 F/mL

zero-charge limit

α Charge dependence of Stern capacitance 20 F m3 mol-2

E Micropore ion-correlation energy 220 kT mol m-3

M Number of mathematical sub-cells 1

2.3.3 Data analysis to derive EDL-properties

To fit the i-mD model (EDL theory) to the data, four parameters must be ad-

justed as summarized in Table 2.1: vmi, E, CS,0 and α. The analysis is based on

the following procedures. First of all, we note that predictions of the theory for

Λ, or Γm,salt, as function of ΣF (and vice-versa) depend on the micropore volume

vmi and on the energy E, but are independent of the Stern layer parameters CS,0

and α. Thus, we first plot data for Γm,salt versus ΣF (not shown, but similar

to Fig. 3G in Ref. [49]) and compare with the i-mD model to find appropriate

values for E and vmi. A second comparison considers the interesting fact that

the Donnan potential, ∆φD, uniquely relates cions,mi and σmi to one another, see

Eqs. (2.5) and (2.6) (with the energy E as parameter), all independent of the

value of vmi. Thus, together with the direct comparisons of Γm,salt and ΣF vs

Vcell, we have various parallel methods for reliable data fitting. Figs. 2.3 and 2.4

demonstrate that, across a large dataset (varying c∞, Vch and Vdisch), we can

very satisfactorily fit all data of Γm,salt and ΣF using the i-mD model. The EDL
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parameters we obtain are close to those previously derived in Refs. [35, 49] where

a commercial activated carbon-based electrode was considered.

An important point to note is that the micropore volume of vmi=0.400 mL/g

(per gram electrode) that we use in the theory is less than the total pore volume

measured by gas sorption analysis, vGSA, which for Kuraray YP-50 is about 0.67

mL per gram of activated carbon (0.57 mL/g electrode), see Refs. [42, 76]. To

get an optimum fit of the i-mD model to the data, vmi is best used as a fitting

parameter, not necessarily the same as the total pore volume inside the carbon

particles. Thus, we must consider that the fitted value of vmi is different from

vGSA, and we suggest to call this difference (0.57-0.40 mL/g in the present case)

mesoporosity, vmeso.

In the mesopores, like in the nearby macropores, we assume equal concentra-

tions of cations and anions (for a 1:1 salt), at the same concentration as in the

nearby macropores. The only difference with the macropores is that the ions

in the mesopores do not contribute to ion transport across the electrode. The

macropore volume, pmA, represents the space located in between the carbon par-

ticles and follows from the relation pmi + pmeso + psk + pmA = 1, where pmi is

given by pmi = vmi · ρelec and pmeso by pmeso = vmeso · ρelec. Parameter psk is the

volume fraction of “skeleton” in the electrode, which in turn can be calculated

by dividing ρelec by ρsk, the mass density of the skeleton material. The density

ρsk = 1.93 g/mL is obtained from ρsk = mc · ρc + (1 −mc) · ρb where mc is the

weight fraction of two carbon constituents together (activated carbon and carbon

black), mc=0.9, ρc the mass density of the carbon, ρc=1.95 g/mL, and ρb the

density of the binder, ρb=1.78 g/mL [42].

2.4 Results and discussion

To illustrate the response of a CDI cell to the cell voltage signal as depicted

in Fig. 2.1B, we show in Fig. 2.2 the typical CDI behavior of the effluent salt

concentration profile over time, and the accumulated charge (current integrated

over time), ΣF. As can be observed, the effluent concentration drops as the

charging starts and in time recovers to the initial value, where the area under

the base line (dashed line representing the inlet salt concentration) relates to the

amount of salt adsorption, Γm,salt. Incorporating the factor F/Mw,NaCl, the ratio

of Γm,salt over ΣF is the charge efficiency, Λ, see Eq. (2.11). Experimental data for

ΣF, Γm,salt and Λ are further analyzed in Figs. 2.3–2.6. An important operational

parameter is the cycle time, CT, which is the total duration of the charging and

discharge step. Note that the charging time is equal to the discharge time. The

value of CT in the experiments reported in Figs. 2.2–2.4 is 40 min, while it is

reduced to values as low as 2 min in Fig. 2.5. Because of the long CT, the data
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reported in Figs. 2.3 and 2.4 can be described by the equilibrium EDL model

explained in Section 2.2.1, without considering porous electrode ion transport

theory which is used in Figs. 2.5 and 2.6. Note that in a series of experimental

CDI cycles as reported in Fig. 2.2, the apparent accumulated charge slowly shifts

upward because of a leakage current (see Experimental section). In Fig. 2.2 this

shift is removed in data-processing, and each subsequent charging cycle shifted

back to zero charge.

From equilibrium cycles such as reported in Fig. 2.2, data on salt adsorption

Γm,salt and charge ΣF can be extracted which are reported in Figs. 2.3 and 2.4.

Fig. 2.3 shows experimental results (points) and theory (lines) of salt adsorption,

charge and charge efficiency as function of the salt concentration and the charging

voltage, Vch. Fig. 2.3 follows the classical operational method of CDI where

always Vdisch=0 V, as for instance in Refs. [35, 42, 47, 71, 80, 112, 128]. Note

that here in Fig. 2.3 we present data as function of charging voltage, for a larger

range of salinities than before [49], from c∞=5 to 80 mM. Fig. 2.3A-C show data

and theory for salt adsorption in mg/g (left y-axis) and charge in C/g (right

y-axis), in such a way that for Λ=1, the two lines (data sets) should overlap. As

clearly they do not overlap, the charge efficiency is less than unity, Λ<1. Fig. 2.3A

shows that at the lowest salt concentration of c∞=5 mM the two lines (data sets)

are closest, and Λ is the closest to unity. Fig. 2.3A-C show that as function of

Vch, both ΣF and Γm,salt increase, but the latter increases faster (relatively) and

thus their ratio, which is Λ, increases with Vch. As function of c∞ (for a given

Vch), ΣF increases while Γm,salt is constant (in the range of c∞ studied). Thus Λ

increases with Vch and decreases with c∞, as shown in more detail in Fig. 2.3D.

In the present data range, Γm,salt does not vary with c∞, in line with data in

Ref. [49] which showed that for lower and higher c∞, Γm,salt decreases again.

This non-monotonic trend cannot be explained by a simple adsorption isotherm

that describes the adsorption of an uncharged solute, which would always predict

Γm,salt to increase with c∞. Instead, the observed dependence of Γm,salt on c∞ (to

first increase, and then to decrease again) is the consequence of the salt storage

mechanism in CDI, where salt is stored as individual ions in the electrical double

layers of two oppositely charged porous electrodes.

Fig. 2.4 presents results where we fix Vch at 1.2 V and vary Vdisch for differ-

ent values of the salt concentration and again plot salt adsorption, charge and

charge efficiency. As can be seen, theory again properly describes the data (pa-

rameter settings given in Table 2.1). Experimentally we observe that charge

efficiency increases with increasing Vdisch, see Fig. 2.4D, which is also in align-

ment with theoretical predictions. Charge efficiency increases to values close to

unity, especially for Vdisch beyond 0.3 V. In Fig. 2.4A-C, salt adsorption and

charge are separately displayed, where the ratio of these two parameters refers
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solidify the binder. The resulting carbon electrode (�260 lm) was
cut into square pieces (6 � 6 cm2) with a small square
(1.5 � 1.5 cm2) located at the center.

3.2. CDI experiments

Fig. 1a shows a schematic diagram of the CDI system used in
this study. Each cell consists of a pair of graphite current collectors,
a pair of carbon electrodes, and a spacer (AP20, Glass Fiber Filter,
Millipore, MA, uncompressed thickness �380 lm). A stack was
constructed of Ns = 4 of such cells and installed in a rectangular
Teflon housing which was sealed off. As depicted in Fig. 1a, water
is pumped from outside to inside through the spacer using a peri-
staltic pump (flow rate 30 mL/min for the stack of 4 cells), and the
outlet conductivity and pH were continuously monitored. The
experiments were conducted in NaCl solutions of different concen-
tration (c1 = 5, 20, 80 mM) prepared in a vessel (10 L) with N2

purging. While the solution flows through the CDI stack, the sys-
tem was controlled by a power supply (IviumStat, Ivium Technol-
ogies, the Netherlands). The following voltage differences across
each cell were imposed: a voltage Vch during charging (deioniza-
tion, salt adsorption) and Vdisch during discharge (regeneration,
desorption). For the equilibrium experiments (Figs. 3 and 4) the
duration of each step (half-cycle time, or HCT) was 20 min while
HCT was lower (but again the same for charging and discharging)

in the experiments of Fig. 5. Each experiment was carried out at
a distinct value of Vdisch, ranging from 0 to 0.9 V, while the charging
voltage Vch was always set to 1.2 V as described in Fig. 1b (except
for experiments reported in Figs. 2 and 6). From the measured elec-
trical current, the charge transferred (back and forth) in one cycle
is calculated, while from the measured conductivity (corrected via
the measured pH for the partial conductivity of protons and hydro-
xyl ions) and from the water flow rate, the salt adsorption is calcu-
lated. Note that salt adsorption in mg/g of NaCl is based on the
mass of all electrodes in the system (both anode and cathode).
The charge was obtained from the charging step (from integrating
the current vs. time-plot), after subtracting a small leakage current,
which is the current which still flows when equilibrium is reached
after 20 min. Note that when the leakage current would not be
accounted for, the calculated charge is a few percent higher, and
thus values of the charge efficiency are a few percent less than
reported. The charge transfer during discharge is generally a few
percent lower than charge transfer in the charging step, i.e., the
Coulombic efficiency is below 100%. Charge efficiency, K, is the salt
adsorption divided by charge, see Eq. (11). None of the reported
results are from the first or second cycle after a new experiment,
as then dynamic equilibrium is not yet established and the charg-
ing salt adsorption and charge are not yet the same as the values
during discharge. This condition of salt balance and charge balance
is well achieved in subsequent cycles.
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Fig. 3. Equilibrium salt adsorption, charge, and charge efficiency as function of salt concentration and Vch, which is the cell voltage during charging (Vdisch = 0 V). Solid lines
obtained according to the i-mD model (parameters in Table 1).
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Fig. 2.3: Equilibrium salt adsorption, charge, and charge efficiency as function of salt

concentration and Vch, which is the cell voltage during charging (Vdisch=0 V). Solid

lines obtained according to the i-mD model (parameters in Table 2.1).
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to charge efficiency. As confirmed in Fig. 2.4D, we observe that these two pa-

rameters (charge and salt adsorption) get closer as Vdisch increases. As expected,

the charge decreases quite linearly when Vdisch increases (note that the increase

in Vdisch leads to a decrease in the difference Vch-Vdisch), indicating the typical

capacitive behaviour of carbon electrodes. On the other hand, the dependence of

salt adsorption on Vdisch is different from that of the charge. In contrast to the

dependence of charge on Vdisch, salt adsorption in a cycle remains quite invariant

with Vdisch, as long as Vdisch does not go beyond 0.3 V. This result confirms that

charge efficiency can be increased by increasing Vdisch to values up and including

Vdisch=0.3 V with only a marginal loss of the salt adsorption per cycle. At c∞=20

mM, upon increasing Vdisch from 0 to 0.3 V, charge decreases by 20% while salt

adsorption goes down by only 7%. This implies that charge efficiency goes up by

14%, and thus energy consumption per ion removed goes down by that number

of 14%, as will be explained below.

An explanation for the positive effect of increasing Vdisch is as follows. When

the cell is charged at Vch=1.2 V followed by a discharge at Vdisch=0 V (following

the conventional method), the adsorption of counterions is accompanied by the

expulsion of co-ions, so that charge efficiency drops to values below unity [125].

This undesirable behaviour of co-ions can be minimized by increasing the dis-

charge voltage [125, 126]. Now, with values of Vdisch higher than 0 V, a certain

amount of co-ions remains expelled during discharge (is not re-adsorbed). In a

next cycle, therefore, the expulsion of co-ions is small when charging starts from a

value of Vdisch higher than 0 V, and thus most of the electronic charge transferred

between the two electrodes is utilized solely for the adsorption of counterions.

The increased value of charge efficiency directly implies a reduction in the

required energy per ion removed. This can be understood as follows. Because

adsorption operates at constant charging voltage, the energy input is directly pro-

portional to the quantity of charge transfer, and thus is inversely proportional

to charge efficiency Λ. For example, for the data at c∞=20 mM, the energy

costs per ion removed is ∼30 kT at Vdisch=0 V, and decreases to ∼26 kT for

Vdisch=0.3 V, a reduction by 14%. In this calculation we have not included pos-

sible energy recovery during discharge, which is possible when Vdisch>0 V [135].

Indeed, for this situation of Vdisch=0.3 V, assuming perfect energy recovery dur-

ing discharge, the energy per ion removed is reduced to ∼20 kT, a reduction of

about 30% compared to the original value at Vdisch=0 V. Note that for the sep-

aration that was achieved, the thermodynamic minimum energy input (decrease

in mixing entropy) is only about 0.2 kT per removed ion, a factor 100 below the

actual energy input.

Figs. 2.3 and 2.4 discussed equilibrium EDL-properties. The next task is to

analyze the kinetics of the CDI process. To this end we first analyze CDI cycles



48 Enhanced charge efficiency by increasing the discharge voltage in CDI

To calculate the salt adsorption per cycle, as required in Fig. 5a
and b, we use the ‘‘new data analysis approach’’ discussed in Ref.
[28], where the salt adsorption is based on the entire time period
that the effluent salt concentration is below the inflow concentra-
tion (period from A to B in Fig. 3 in Ref. [28]), a period which is
slightly delayed relative to the period of cell charging. Instead, in
prior work discussing short cycle times [25,27,45] salt adsorption
(desorption) was calculated based on the period of cell charging
(discharging).

3.3. Data analysis to derive EDL-properties

To fit the i-mD model (EDL theory) to the data, four parameters
must be adjusted as summarized in Table 1: tmi, E, CSt,vol,0 and a.
The analysis is based on the following procedures. First of all, we
note that predictions of the theory for K, or Cm,salt, as function of
rF (and vice versa) depend on the micropore volume tmi and on
the energy E, but are independent of the Stern layer parameters
CSt,vol,0 and a. Thus, we first plot data for Cm,salt versus rF (not
shown, but similar to Fig. 3g in Ref. [36]) and compare with the
i-mD model to find appropriate values for E and tmi. A second com-
parison considers the interesting fact that the Donnan potential,
D/d which uniquely determines K, also uniquely relates both
cions,mi and rmi to one another, see Eqs. (5) and (6) (with the energy
E as parameter) and therefore describes the cell voltage Vcell

(including in the fit CSt,vol,0 and a), all independent of the value of
tmi. This is also the case for non-zero values of Vdisch. So fitting the-
ory for K(Vch,Vdisch) to data does not require information of tmi, see
Figs. 3d and 4d. Together with the direct comparisons of Cm,salt and
rF vs Vcell, we therefore have various parallel methods for reliable
data fitting, and as Figs. 3 and 4 demonstrate, across a large dataset
(varying c1, Vch and Vdisch), we can very satisfactorily fit all data of
Cm,salt and rF using the i-mD model. The EDL parameters we obtain
are close to those previously derived in Refs. [27,36] where a com-
mercial activated carbon-based electrode was considered.

An important point to note is that the micropore volume of
tmi = 0.400 mL/g (per gram electrode) that we use in the theory
is less than the total pore volume measured by gas sorption anal-
ysis which for Kuraray YP-50 is about 0.67 mL per gram of acti-
vated carbon (0.57 mL/g electrode), see Refs. [13,46]. Thus, to get
an optimum fit of the i-mD model to the data, tmi is best used as
a fitting parameter, not necessarily the same as the total pore vol-
ume inside the carbon particles. This is different from our approach
in Ref. [46] where the pore volume measured by gas adsorption up
to pore sizes of 30 nm was included as micropore volume in EDL-
modeling and porous electrode (transport) theory. Instead, in the
approach as we present here, with tmi a further fitting parameter,
we must consider that the fitted value of tmi is different from the
pore volume from gas adsorption analysis, and we suggest to call
this difference (0.57–0.40 mL/g in the present case) mesoporosity.
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Fig. 4. Salt adsorption, charge, and charge efficiency (K) as function of salt concentration and discharge voltage, Vdisch (Vch = 1.2 V). Solid lines obtained according to the i-mD
model (parameters in Table 1).
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Fig. 2.4: Salt adsorption, charge, and charge efficiency (Λ) as function of salt concen-

tration and discharge voltage, Vdisch (Vch=1.2 V). Solid lines obtained according to the

i-mD model (parameters in Table 2.1).
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In the mesopores, like in the nearby macropores, we assume equal
concentrations of cations and anions (for a 1:1 salt), at the same
concentration as in the nearby macropores. The only difference
with the macropores is that the ions in the mesopores do not con-
tribute to ion transport across the electrode. The macropore vol-
ume, pmA, represents the space located in between the carbon
particles and follows from geometrical sizes of the electrodes, the
total pore volume from gas sorption analysis, and the skeleton den-
sity of the mixture of carbon, carbon black, and binder (for which
we use qsk = 1.93 g/mL). This value is in our case pmA = 0.566. Note
that the three porosities pmA, pmeso, and pmi taken together sum up
to a number less than unity (0.794 in the present case), because of
the volume taken up by the carbon skeleton itself, by binder and by
other solid additives.

4. Results and discussion

To illustrate the response of a CDI cell to the applied cell voltage
signal as depicted in Fig. 1b, we show in Fig. 2 the typical CDI
behaviour of the effluent salt concentration profile over time, and
the accumulated charge (current integrated over time), rF. As can
be observed, the effluent concentration drops as the charging starts
and in time recovers to the initial value, where the area under the
base line (dashed line representing the inlet salt concentration)

indicates the amount of salt adsorption, Cm,salt. Incorporating the
factor F/Mw,NaCl, the ratio of Cm,salt over rF is the charge efficiency,
K, see Eq. (11). Experimental data for rF, Cm,salt and K are further
analyzed in Figs. 3–6. An important operational parameter is the
half-cycle time (HCT) which in all experiments is the same for
charging and discharging (except for the constant-current experi-
ments of Fig. 6). The value of HCT in the experiments reported in
Figs. 2–4 is 20 min, while it is reduced to values as low as 1 min
in Fig. 5. Because of the long HCT, the data reported in Figs. 3
and 4 can be described by the equilibrium EDL model explained
in the first half of the Theory-section, without considering porous
electrode ion transport theory which is used in Figs. 5 and 6. Note
that in a series of experimental CDI-cycles as reported in Fig. 2, the
apparent accumulated charge slowly shifts upward because of a
leakage current (see Experimental section). In Fig. 2 this shift is
removed in data-processing, and each subsequent charging cycle
shifted back to zero charge.

From equilibrium cycles such as reported in Fig. 2, data on salt
adsorption Cm,salt and charge rF can be extracted which are
reported in Figs. 3 and 4. Fig. 3 shows experimental results (points)
and theory (lines) of salt adsorption, charge and charge efficiency
as function of the salt concentration and the charging voltage,
Vch. Fig. 3 follows the classical operational method of CDI where
always Vdisch = 0 V, as for instance in Refs. [11,17,25,27,28,

Table 1
System and electrode dimensions, operational parameters, and settings for theoretical calculations.

Experimental parameters
Ns Number of cells in the CDI stack 4
qel Electrode mass density 0.41 g mL�1

Acell Electrode geometric surface area 33.75 cm2

Lsp Spacer channel thickness (when compressed) 250 lm
psp Spacer channel porosity (when compressed) 0.50
/v Flowrate through the CDI stack 30 mL min�1

T Temperature 298 K
c1 Inlet NaCl salt concentration 5, 20, 80 mM

Values for use in EDL and transport theory
tmi Micropore volume 0.40 mL g�1

pmi, pmeso, pmA Micro-, meso- and macroporosity 0.160, 0.068, 0.566
D Average diffusion coefficient of Na+ and Cl� (in free solution) 1.68 ⁄ 10�9 m2 s�1

CSt,vol,0 Volumetric Stern layer capacitance in the zero-charge limit 0.17 GF m�3

a Parameter for non-constant contribution to Stern capacitance 20 F m3 mol�2

E Micropore ion-correlation energy 220 kT mol m�3

M Number of mathematical subcells in the model 1
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Fig. 2.5: CDI at short cycle times. (a). Average salt adsorption rate as function of

cycle time (CT) and as function of Vdisch. (b). Dynamic charge efficiency Λ∗ as function

of CT (Vch=1.2 V, c∞=20 mM, electrode thickness 235 µm).

at constant voltage (CV), at increasingly short cycle times (CT), see Fig. 2.5.

In Fig. 2.5A we plot the average salt adsorption rate, “ASAR” which is the salt

adsorption per cycle, divided by CT.

Fig. 2.5A clearly demonstrates, both theoretically and experimentally, that

ASAR increases with lowering CT (as also reported in Ref. [35]), and in addition

that there is hardly an effect of Vdisch. Admittedly, we had hoped that at an

increased Vdisch, ASAR will be higher, but this is not the case, and ASAR is

actually somewhat less. This prior assumption was based on the idea that with

Vdisch=0 V at the start of each charging or discharge step, co-ions and counterions

go in opposite direction through the electrode and into the micropores. This

opposite movement would lead to ion-ion friction and thus a retardation in the

motion of both types of ions. Increasing Vdisch would then lead to a situation

where only counterions move in and out of the electrode, undisturbed by other

ions moving in the opposite direction. However, results in Fig. 2.5A do not

support the hypothesis of a frictional force between ions moving in opposite

direction, and apparently this suggested retardation effect is not there, or at

least is not strong. The transport model does not include such an effect either,

and describes data very well.

Analyzing both the charge transfer ΣF and salt adsorption Γm,salt per cycle,

Fig. 2.5B shows results of the ratio of the two, the “dynamic” charge efficiency,

Λ∗. Here we add the prefix “dynamic” because in contrast to the results of

Figs. 2.3 and 2.4, here the charge efficiency is based on a CDI cycle that is not

yet at equilibrium. Consequently, theory lines for Λ∗ in Fig. 2.5B are not based

on an equilibrium EDL model but are based on the transport model. Both in
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theory and data, Fig. 2.5B shows that shorter cycles result in a lower Λ∗ (vs. the

values at longer CT) indicating an increase in energy costs per ion removed. This

is the case because the required energy per amount of salt removed is inversely

proportional to Λ∗ for a fixed charging voltage. As in Fig. 2.4, we observe that

operation at Vdisch=0.3 V gives a higher charge efficiency, and thus the same

energetic advantage of operation at increased values of Vdisch remains, of about

14% without energy recovery and 30% with energy recovery.

Finally, we show results for constant-current (CC) operation during charging in

Fig. 2.6. Constant-current operation is advantageous over constant-voltage (CV)

because it leads to a constant effluent salt concentration, ceff,level, that can be

easily tuned by adjusting the current [71]. However, up to now it was argued that

this operational mode is only feasible with ion-exchange membranes incorporated

in CDI (membrane-CDI), because without membranes (i.e., in normal CDI) it

takes a longer time before ceff,level is reached after switching the current direction,

see Fig. 8 in Ref. [11]. In Fig. 2.6 we show our results aiming at reducing the

time for ceff,level to be reached. In these experiments with CC operation during

charging (with a constant current of 0.41 A applied to the stack of Ns=4 cells,

thus at a current density of 30.6 A/m2, until a cell voltage of Vcell=1.4 V is

reached), the discharge step is always defined by CV operation at certain values

of Vdisch, always for a duration of 250 s. Fig. 2.6A demonstrates that a more

rapid drop of salt concentration to ceff,level is found with increasing Vdisch, both

in the experimental data (points) and in the theoretical calculations (lines). This

is due to the fact that at Vdisch=0 V, at the start of a new charging step, co-ions

and counterions replace one another, a phenomenon called “ion swapping” in Ref.

[136] without resulting desalination. Instead, with increasing Vdisch we reach the

situation that right after start of a new cycle only counterions are adsorbed (with

co-ions remaining outside the micropores at all times).

Fig. 2.6A also shows a theory line for the case that for a short duration of about

20 s after start of the charging step, we use a twice-higher value of the current.

The current vs. time-curve is I(t) = Ifinal ∗ (2α ∗ (1− tanh (α ∗ (t− β))) + 1),

α = 1
4 , β = 22. This modification (in combination with Vdisch=0.3 V) results in

reaching the value ceff,level even more rapidly. Note that the theoretical calcula-

tions for Fig. 2.6 are based on Φ=27.5 mL/min (for the stack of 4 cells), instead

of Φ=30 mL/min, to make the theory-lines fit the data somewhat better. Thus

these calculations must not be considered as exact, but as illustrative. Fig. 2.6B

shows that considering only the first 100 s of charging, the dynamic charge effi-

ciency Λ∗ increases significantly with discharge voltage. As the total charge input

is constant (41 C), this implies that the desalination also increased in the same

way. In this case, however, the energy consumption is not inversely proportional

to Λ∗ as it is in Fig. 2.5, because the cell voltage is no longer constant. Instead,
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42,44,46]. Note that here in Fig. 3 we present data as function of
charging voltage, for a larger range of salinities than before [36],
from c1 = 5 to 80 mM. Fig. 3a–c shows data and theory for salt
adsorption in mg/g (left y-axis) and charge in C/g (right y-axis),
in such a way that for K = 1, the two lines (data sets) should over-
lap. As clearly they do not overlap, the charge efficiency is less than
unity, K < 1. Fig. 3a shows that at the lowest salt concentration of
c1 = 5 mM the two lines (data sets) are closest, and K is the closest
to unity. Fig. 3a–c shows that as function of Vch, both rF and Cm,salt

increase, but the latter increases faster (relatively) and thus their
ratio, which is K, increases with Vch. As function of c1 (for a given
Vch), rF increases while Cm,salt is constant (in the range of c1 stud-
ied). Thus K increases with Vch and decreases with c1, as shown in
more detail in Fig. 3d. In the present data range, Cm,salt does not
vary with c1, in line with data in Ref. [36] which showed that for
even lower and higher c1, Cm,salt decreases again. This non-mono-
tonic trend cannot be explained by a simple adsorption isotherm
that describes the adsorption of an uncharged solute, which would
always predict Cm,salt to increase with c1. Instead, the observed
dependence of Cm,salt on c1 (to first increase, and then to decrease
again) is the consequence of the salt storage mechanism in CDI,
where salt is stored as individual ions in the electrical double
layers of two mutually charged porous electrodes.

Fig. 4 presents results where we fix Vch at 1.2 V and vary Vdisch

for different values of the salt concentration and again plot salt
adsorption, charge and charge efficiency. As can be seen, theory
again properly describes the data (parameter settings given in
Table 1). Experimentally we observe that the charge efficiency
increases with increasing Vdisch, see Fig. 4d, which is also in align-
ment with the theoretical predictions. The charge efficiency
increases to values close to unity, especially for Vdisch beyond
0.3 V. In Fig. 4a–c, the salt adsorption and the charge transfer are
separately displayed, where the ratio of these two parameters
refers to the charge efficiency. As confirmed in Fig. 4d, we observe
that these two parameters (charge and salt adsorption) get closer
as Vdisch increases. As expected, the charge decreases quite linearly
when Vdisch increases (note that the increase in Vdisch leads to a
decrease in the difference Vch � Vdisch), indicating the typical capac-
itive behaviour of carbon electrodes. On the other hand, the behav-
iour of the salt adsorption as a function of Vdisch is different from
that of the charge. In contrast to the dependence of charge on Vdis-

ch, the salt adsorption in a cycle remains quite invariant with Vdisch,
as long as Vdisch does not go beyond 0.3 V. This result confirms that
charge efficiency can be increased by increasing Vdisch to values up
and including Vdisch = 0.3 V with only a marginal loss of the salt

adsorption per cycle. At c1 = 20 mM, upon increasing Vdisch from
0 to 0.3 V, the charge decreases by 20% while the salt adsorption
goes down by only 7%. This implies that the charge efficiency goes
up by 14%, and thus the energy consumption per ion removed goes
down by that number of 14%, as will be explained below.

An explanation for the positive effect of increasing Vdisch is as
follows. When the cell is charged at Vch = 1.2 V followed by a dis-
charge at Vdisch = 0 V (following the conventional method), the
adsorption of counterions is accompanied by the expulsion of
coions, so that the charge efficiency drops to values below unity
[37]. This undesirable behaviour of coions can be minimized by
increasing the discharge voltage [37,38]. Now, with values of Vdis-

ch higher than 0 V, a certain amount of coions remains expelled
during discharging (is not re-adsorbed). In a next cycle, therefore,
the expulsion of coions is small when the charging starts from a
value of Vdisch higher than 0 V, and thus most of the electrical
charge transferred between the two electrodes is utilized solely
for the adsorption of counterions.

The increased value of charge efficiency directly implies a
reduction in the required energy per ion removed. This can be
understood as follows. Because the adsorption operates at constant
charging voltage, the energy input is directly proportional to the
quantity of charge transfer, and thus is inversely proportional to
the charge efficiency K. For example, for the data at c1 = 20 mM,
the energy costs per ion removed is �30 kT at Vdisch = 0 V, and
decreases to �26 kT for Vdisch = 0.3 V, a reduction by 14%. In this
calculation we have not included possible energy recovery during
discharge, which is possible when Vdisch > 0 V [51]. Indeed, for this
situation of Vdisch = 0.3 V, assuming perfect energy recovery during
discharge, the energy per ion removed is reduced to �20 kT, a
reduction of about 30% compared to the original value at Vdisch =
0 V. Note that for the separation that was achieved, the thermody-
namic minimum energy input (decrease in mixing entropy) is only
about 0.2 kT per removed ion, a factor 100 below the actual energy
input.

Figs. 3 and 4 discussed equilibrium EDL-properties. The next
task is to analyze the kinetics of the CDI process. To this end we
first analyze CDI cycles at constant voltage (CV), at increasingly
short half-cycle times (HCT), see Fig. 5. In Fig. 5a we plot the aver-
age salt adsorption rate, ‘‘ASAR’’ which is the salt adsorption per
cycle, divided by the total cycle time, which is twice the HCT.

Fig. 5a clearly demonstrates, both theoretically and experimen-
tally, that ASAR increases with lowering HCT (as also reported in
Ref. [27]), and in addition that there is hardly an effect of
Vdisch. Admittedly, we had hoped that at an increased Vdisch, ASAR
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Fig. 2.6: Constant-current CDI operation. a) Effluent salt concentration as function

of Vdisch (data represented by dots; theory calculations by lines). b) Dynamic charge

efficiency Λ∗ vs. Vdisch. c) Electrical energy input per ion removed (kT) vs. Vdisch.

(Ich=30.6 A/m2, c∞=20 mM, electrode thickness 320 µm).

Fig. 2.6C shows how for CC operation the energy consumption (without energy

recovery) is rather invariant with Vdisch. Interestingly, both theory and data pre-

dict a shallow minimum in energy consumption, though at a different value of

Vdisch.

2.5 Conclusions

In this Chapter, we have demonstrated that the charge efficiency of a CDI cycle

can be improved by increasing the discharge voltage Vdisch. In constant voltage

(CV) operation, Vdisch up to 0.3 V was promising since charge efficiency was

significantly enhanced while salt adsorption only minutely decreased. Another

important finding was kinetics in constant-current (CC) operation: the constant

level in effluent salt concentration, which is the key advantage of CC operation,

was more rapidly reached when Vdisch was increased to a value higher than zero.

For CV operation, the required energy input per ion removed went down signif-

icantly when we increased the discharge voltage, for our standard experimental

settings by about 14% without energy recovery during discharge, and by 30%

with perfect energy recovery.

The improved modified (i-mD) Donnan model described the full experimen-
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tal data set of equilibrium salt adsorption and charge to an excellent degree.

Including the i-mD model in a porous electrode transport theory resulted in a

dynamic theory that well illustrates several of the observed dynamic features of

ion transfer and charge storage, both for constant-voltage and constant-current

operation. In conclusion, our work showed that to increase system performance

of CDI, there are many more options open besides developing new electrode ma-

terials, or the development of improved membranes. We demonstrate that by

carefully adjusting voltage and current levels in a CDI cycle, salt adsorption per

unit charge transferred can be significantly increased, as well as the time by which

(in CC operation) a constant salt effluent level is reached.



3
Resistance identification and rational process

design in MCDI
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Abstract

Capacitive Deionization (CDI) is an electrochemical method for water desalina-

tion employing porous electrodes. To enhance the performance of this technology,

identification of electronic and ionic resistances in the CDI cell is important. In

present Chapter, we outline a method to identify these resistances. We illus-

trate our method by calculating the resistances in a CDI cell with membranes

(MCDI) and by using this knowledge to improve the cell design. To identify

the resistances, we derive a full-scale MCDI model. This model is successfully

validated against experimental data and used to calculate the ionic resistances

across the MCDI cell. We present a novel way to measure the electronic resis-

tances in a CDI cell, as well as the spacer channel thickness and porosity after

assembly of the MCDI cell. We identify that for inflow salt concentrations of

20 mM the resistance is mainly located in the spacer channel and the external

electrical circuit, not in the electrodes. Based on these findings, we show that

the electrode thickness can be increased without significantly increasing the en-

ergy consumption, which has the advantage that the desalination time can be

lengthened significantly.
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3.1 Introduction

Capacitive Deionization (CDI) is an electrochemical desalination technology which

employs porous electrodes to adsorb ions from water [27, 104–106, 110, 120, 122,

137]. Upon applying a voltage difference between two electrodes, cations are ad-

sorbed from the water into the electrically negatively charged electrode (cathode),

while anions are adsorbed into the positively charged electrode (anode). During

this adsorption step, or charging step, feed water flows through the cell and is

desalinated. After the electrodes are saturated, the electrodes are short-circuited

and ions are released. This is the desorption or discharge step.

For electrodes based on carbon, as will be considered in this Chapter, during

the adsorption step, ions are stored in electrical double layers (EDLs) formed

in the electrodes [29, 30]. For every electron transported from one electrode to

the other, in both electrodes a counterion can adsorb in these EDLs, or a co-ion

can desorb, see Chapter 2. Whereas the adsorption of counterions is desired and

leads to salt adsorption, the desorption of the co-ions is undesired. In order to

increase the salt adsorption, a cation exchange membrane (CEM) can be placed

in front of the cathode, and an anion exchange membrane (AEM) in front of the

anode [34, 36, 37, 71, 102]. These membranes allow the passage of counterions

and block co-ions, and therefore, enhance the desalination performance. The

CDI technology including membranes in the cell configuration, is referred to as

Membrane Capacitive Deionization (MCDI).

CDI cells with various electrode configurations have been proposed, such as

flow-through electrodes [112, 138], flowable carbon slurries [2, 72], or wire-shaped

electrodes [80]. In the present Chapter we focus on a cell configuration using

static film electrodes, where the water flows between the two planar electrodes.

In this flow-by configuration, the ion exchange membranes are placed between

the spacer channel and the electrodes, as shown in Fig. 3.1. On the other side of

the electrode, current collectors are connecting the electrodes with the external

electrical circuit.

To improve the performance of the CDI technology, it is important to identify

where are the resistances in the cell [139–141]. To this end, we have to quantify

the contribution of the different elements of the cell to the total resistance, and

thus, to energy losses. In the present Chapter, we will separate the resistances in

two types: I) electronic resistances, which are related to the transport of electrons

and thus located in the cables, current collectors, and in the carbon matrix in the

electrodes, and II) the ionic resistances, which are related to the ion transport

and thus are located in the pores of the electrodes, in the membranes and in

the spacer channel. These electronic and ionic resistances result in voltage drops

over the different elements of the cell, see Fig. 3.1.
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In the present Chapter, we will address the following issues: I) to present a

methodology to identify and quantify the electronic and ionic resistances in the

different elements in a CDI cell, and II) to show how such knowledge can be

used to rationally make improvements in CDI architecture and operation. As

an example, we illustrate our method by calculating resistances in a laboratory

scale MCDI cell, i.e. a CDI cell including membranes.

The ionic resistances are mainly dependent on the local salt concentration,

i.e., higher salt concentrations result in lower resistances. Therefore, we have to

calculate the salt concentration profiles across the spacer channel, the membranes

and the electrodes during operation of the MCDI cell, in order to determine

the ionic resistances over these elements. The transmission line (TL) theory

proposed by de Levie [52] was used by Posey and Morozumi [54] to describe

charge transport in a porous electrode, and extended by Johnson and Newman

[56] to the case of desalination. However, TL theory is derived for electrodes

for which a constant salt concentration can be assumed. Since CDI is typically

operated at changing salt concentrations, TL theory is not suitable for CDI and

must be extended [49, 142]. In this extension of TL theory, we combine an

accurate model for the structure of the EDL in the micropores of the carbon

electrode [49] with a model for the transport of ions across the entire porous

carbon electrode. This electrode model is combined with a dynamic transport

model for ions across the spacer channel and membranes.

In order to use this model to calculate the ionic resistances in the cell, several

input parameters should be determined. In the present Chapter, we will present

an experimental procedure to do so, including a novel approach to determine the

thickness and the porosity of the compressed spacer channel inside the MCDI cell.

Our next step is to verify the model by comparing simulation results with con-

stant current charging/discharge experiments. Thereafter, the validated model

is used to predict the resistances across the MCDI cell, and the information ob-

tained from these simulations can be used to come with recommendations for

an improved cell design. These recommendations will be experimentally verified.

In particular, for the tested cell geometry, one recommendation is that one can

double or triple the thickness of the electrodes, and thus have longer periods of

desalination, while the energy costs of desalination stay the same.

3.2 Theory

In the present Chapter, we combine two models, the improved modified Donnan

(i-mD) model, and a transport model. The i-mD model describes the EDLs

formed in the carbon micropores and relates the charge density, salt adsorption

and potential to one another. The transport model calculates the transport of
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Fig. 3.1: Qualitative overview of the potential profiles across a Membrane Capacitive

Deionization cell with carbon electrodes.

ions from the spacer channel, through the membranes, into the porous carbon

electrodes; thus the transport is described in the direction perpendicular to the

flow channel. In the electrode, we model two different phenomena: I) transport of

salt across the electrode through the macropores and, II) simultaneous adsorption

of ions into the micropores, where EDLs are formed. The i-mD model is discussed

in Section 2.2.1. The transport model is described next.

To derive the transport model, we will make three simplifications. I) We model

a symmetric MCDI cell, which means that the anode has the same characteristics,

regarding geometrical dimensions and porosity, as the cathode, except for the

sign of charge. The same holds for the membranes, i.e. the AEM has the same

properties, regarding its dimensions, porosity and membrane charge, as the CEM,

except for the sign of the membrane charge. II) We only model the adsorption

and transport of KCl, for which we assume the cation and the anion to have the

same diffusion coefficient in all elements of the cell. III) We assume that only

capacitive processes occur in the electrodes, and no electrochemical reactions

take place [60, 99]. These simplifications allow us to model only half of the cell,

so we only consider half of a spacer channel, that is from the spacer midplane to

the spacer-membrane boundary, one membrane and one electrode.
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3.2.1 Porous carbon electrodes

In the electrodes, we distinguish three different types of pores. Firstly, we con-

sider the micropores, where EDLs are formed and ions are stored. Secondly, we

describe the macropores, which are used as transport pathways for ions to go

from the membrane-electrode boundary to the micropores. Thirdly, we include

mesopores in the model, where neither ions are stored in EDLs nor ions are

transported through, but which contain charge-neutral electrolyte, at the same

concentration as in the macropores (at the same position in the electrode).

The molar flux of ions through the macropores, subject to diffusional and

migrational forces, is given by the Nernst-Planck equation

Ji = −Di ·
(
∂cmA,i

∂x
+ zi · cmA,i ·

∂φmA

∂x

)
(3.1)

where subscript i refers to ion type i, and where Ji is the molar ion flux in

mol/m2/s, Di the ion diffusion coefficient in m2/s, cmA,i the ion concentration in

the macropores in mol/m3, φmA the dimensionless potential in the macropores,

and x the coordinate running from the membrane-electrode boundary to the

electrode-current collector boundary. We neglect tortuosity effects.

At each point in the electrode, we evaluate the ion mass balance

∂

∂t
((pmA + pmeso) · cmA,i + pmi · cmi,i) = −pmA ·

∂Ji
∂x

(3.2)

where pmA, pmeso, and pmi are the macro-, meso- and microporosity of the elec-

trode, and cmi,i is the ion concentration in the micropores.

Furthermore, we need the electroneutrality condition for the macro- and meso-

pores ∑
i

zi · cmA,i = 0 (3.3)

where Σi describes a summation over all ions in the system, i.e. K+ and Cl– ,

just as in Eqs. (3.4), (3.16) and (3.17).

The micropore charge density, σmi, and micropore ions concentration, cions,mi

are defined as
σmi =

∑
i

zi · cmi,i

cions,mi =
∑
i

cmi,i.
(3.4)

Based on Eqs. (3.1)–(3.4), we derive two balance equations describing the evo-

lution of σmi and cmA as function of time. First, we set up the micropore charge

balance evaluating σmi over time by combining Eqs. (3.1)–(3.4), which results in

pmi ·
∂σmi

∂t
= 2 · pmA ·D ·

∂

∂x

(
cmA ·

∂φmA

∂x

)
(3.5)
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where cmA is the salt concentration in the macro- and mesopores, which is equal

to the ion concentration of K+ and that of Cl– there. Parameter D is the diffusion

coefficient of K+ and Cl– , which are assumed to be equal to one another.

Second, Eqs. (3.1) and (3.3) are substituted in Eq. (3.2), and summed over

the cat- and the anion, resulting in the salt mass balance

∂

∂t
(2 · (pmA + pmeso) · cmA + pmi · cions,mi) = 2 · pmA ·D ·

∂2cmA

∂x2
. (3.6)

Across the electrode, at each position, φmA is related to the potential in the

carbon matrix, φ1, the Donnan potential, ∆φD, and the Stern potential, ∆φS.

These potentials follow from the i-mD model (see Section 2.2.1). The potentials

φmA and φ1 are related to ∆φD and ∆φS by

φ1 − φmA = ∆φD + ∆φS. (3.7)

In this Thesis, we assume that there is no electronic resistance across the

electrode, see Box 3.1. Consequently, the measured electronic resistance can only

be located in the external circuit. The external circuit includes the cables, current

collectors, and the interface between the current collectors and electrodes. From

now on, we call the sum of these resistances the external electronic resistance,

EER, with dimension Ω m2. The assumption that there is no electronic resistance

in the electrodes leads to a position-invariant value of φ1, and allows us to relate

φ1 to the cell voltage (see Fig. 3.1), Vcell, by

Vcell = 2 · φ1 · VT + I · EER (3.8)

where I is the current density (A/m2). The thermal voltage, VT, is given by

VT = R · T/F , where R is the gas constant (8.314 J/(mol·K)), T temperature

(K) and F Faraday’s constant (96485 C/mol). Note that Eq. (3.8) requires the

assumption of symmetry, which allows us to model only half of the cell with the

potential at the spacer midplane set to zero.

At the E/C interface, we apply the boundary conditions

∂cmA

∂x

∣∣∣∣
E/C

= 0,
∂φmA

∂x

∣∣∣∣
E/C

= 0 (3.9)

while those at the M/E interface will be described in Section 3.2.3.

3.2.2 Spacer channel

Our model for the spacer channel is as follows. In the flow direction, we describe

the development of concentration profiles between the in- and outflow of the cell.

To that end, we divide the spacer channel in M sequential mathematical sub-cells,
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see Fig. 2 in Ref. [35]. In this approach, the electrolyte flows downstream from

sub-cell i into sub-cell i + 1; therefore, the inflow salt concentration in sub-cell

i+1 equals the effluent concentration of sub-cell i. The effluent salt concentration

of the MCDI cell is equal to the concentration in sub-cell M . For every sub-cell,

we calculate the transport of salt and charge into the electrodes, and the salt

concentration in the spacer channel, using Eqs. (3.5) and (3.6).

Also, in the spacer channel concentration profiles develop between the spacer

midplane and the membrane, thus in the direction perpendicular to the flow

direction. To model these concentration profiles, we set up the following salt

mass balance to be solved in each sub-cell of the spacer channel

psp ·
∂csp
∂t

= psp ·D ·
∂2csp
∂x2

+ Γsp (3.10)

where csp and psp are the salt concentration and porosity of the spacer channel,

and where the coordinate x runs from the spacer midplane to the edge with the

membrane. Dependent on the experiment, Γsp is one of the following:

• In case we model experiments without flow through the spacer channel

(Section 3.4), Γsp describes a diffusive transport of salt into the spacer

channels from a volume outside (the cells), Vout. In this case Γsp is given

by

Γsp = γ (cout − csp) (3.11)

where γ describes the rate of ion diffusion, and cout is the concentration in

Vout, which is constant, equal to the initial value of csp.

• In case we model experiments with flow through the spacer channel (Sec-

tions 3.5 and 3.6), Γsp is given by

Γsp =
Φv ·M
Acell · Lsp

(cinflow − csp) (3.12)

where Φv is the water flowrate through the cell and Acell the surface area

of one electrode. For sub-cell i = 1, the salt concentration cinflow is equal to

the inflow concentration of the MCDI cell, while for i > 1, cinflow is equal to

the the value for csp of sub-cell i−1. Note that we assume an equal flowrate

(water velocity), at any point in the spacer channel, i.e., independent of x.

At the spacer midplane (S∗), we apply the boundary condition

∂csp
∂x

∣∣∣∣
S∗

= 0. (3.13)

For the spacer - membrane interface, boundary conditions are described in Sec-

tion 3.2.3.
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The current density, I, is related to the ionic resistance over the spacer channel,

Rsp, with dimension Ω m2, by

Rsp · I = 2 ·∆φsp · VT (3.14)

where ∆φsp is the potential difference over half the spacer channel. Rsp is given

by

Rsp =
Lsp · VT

2 · psp ·D · F · <csp>
(3.15)

where <csp> is the average salt concentration in the spacer channel.

3.2.3 Membranes

Across the membranes, we evaluate the total ion concentration, cT,m, which is

the summation of the concentration of counterions and co-ions defined per open

volume [143–145]. For the membranes, we can set up the salt mass balance

pm ·
∂cT,m
∂t

= −pm ·
∑
i

(
∂Ji,m
∂x

)
(3.16)

where pm is the porosity of the membrane, and x the location in the membrane,

running from the spacer-membrane boundary, S/M , to the membrane-electrode

boundary, M/E. Flux Ji,m is given by Eq. (3.1) (with subscript ”mA” replaced

by ”m”) and diffusion coefficient D in Eq. (3.1) is replaced by dr,m · D. This

factor dr,m reduces the diffusion coefficient in the membrane relative to the value

in free solution, D. In the membranes, electroneutrality is assumed, given by∑
i

(zi · cm,i) + ωX = 0 (3.17)

where X is the membrane charge density in mol/m3, defined per unit aqueous

solution in the membrane, and where ω is the sign of the membrane charge

density, which is positive for an AEM and negative for a CEM. Substituting Eq.

(3.1) into Eq. (3.16), and assuming electroneutrality, results in

pm ·
∂cT,m
∂t

= pm · dr,m ·D ·
(
∂2cT,m
∂x2

− ωX · ∂
2φm

∂x2

)
. (3.18)

At the S/M and M/E boundaries, we have continuity of the salt flux,

−2 · psp ·
∂csp
∂x

∣∣∣∣
S/M

= −dr,m · pm ·
(
∂cT,m
∂x

− ωX ∂φm

∂x

)∣∣∣∣
S/M

−2 · pmA ·
∂cmA

∂x

∣∣∣∣
M/E

= −dr,m · pm ·
(
∂cT,m
∂x

− ωX · ∂φm

∂x

)∣∣∣∣
M/E

.

(3.19)
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Current density, I, equals F times the molar flux of ionic charge, which is the

sum of the molar ion fluxes times the ion valency. For instance, evaluating I in

the membrane, at the M/E boundary, we obtain

I = −dr,m ·D · F · cT,m ·
∂φm

∂x

∣∣∣∣
M/E

. (3.20)

On the outer surface of the two membranes, the following two conditions ap-

ply. I) The concentration cT,m relates to the salt concentration just outside the

membrane, according to

c2T,m
∣∣
S/M

= X2 + 4 · c2sp
∣∣
S/M

c2T,m
∣∣
M/E

= X2 + 4 · c2mA

∣∣
M/E

.
(3.21)

In addition, II) a Donnan potential develops at the membrane interfaces, given

by

ωX = 2 · csp|S/M · sinh
(
∆φD,S/M

)
ωX = 2 · cmA|M/E · sinh

(
∆φD,M/E

)
.

(3.22)

The ionic resistance summed over the two membranes in an MCDI cell, together

Rm, with dimension Ω m2, is given by

Rm · I = 2 ·∆φm · VT (3.23)

where ∆φm is defined as ∆φm = φm

∣∣
M/E − φm

∣∣
S/M .

Lastly, we relate the potential in the macropores at theM/E boundary, φmA

∣∣
M/E ,

to the potential over the spacer channel, the Donnan potentials on both sides of

the membrane, and the potential drop over the membranes according to

∆φsp + ∆φD,S/M + ∆φm −∆φD,M/E = φmA

∣∣
M/E . (3.24)

3.3 Characterization: electrode salt adsorption,

electronic resistances and spacer properties

3.3.1 Electrode salt adsorption

Our methodology to identify the resistances in the MCDI cell makes uses of the

transport model including the i-mD model, to calculate the values for the ionic

resistances in the different elements of the MCDI cell. To run this model, we have

to determine values of the parameters required in the i-mD model, which are E,

vmi, CS,0 and α. Therefore, we conduct constant voltage experiments according

to the procedure described in Section 2.3.2, with three modifications: I) we use
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Table 3.1: System and electrode dimensions, operational parameters, and parame-

ters used for theoretical calculations. Parameters obtained from *1) equilibrium model

fitting, as discussed in Section 3.3.1; *2) external electrical resistances and spacer prop-

erties characterization, as discussed in Section 3.3.1; *3) Ref. [42]; *4) Ref. [144]; *5)

transport model calculations, as discussed in Section 3.4.

Experimental parameters

Lelec Electrode thickness 257 µm

Lm Membrane thickness 160 µm

Acell Electrode geometric surface area 33.8 cm2

Φv Flowrate through each cell 7.5 mL/min

Ns Number of cells in the MCDI stack 4

T Temperature 295 K

ρelec Electrode mass density 0.569 g/mL

Values for use in the i-mD model

E Micropore ion-correlation energy 100 kT mol m-3 *1

vmi Micropore volume 0.40 mL/g *1

CS,0 Stern capacitance in zero-charge limit 160 F/mL *1

α Charge dependence of Stern capacitance 20 F m3 mol-2 *1

Electronic resistance and spacer channel properties

EER External electronic resistance 7.0 Ω cm2 *2

Lsp Thickness spacer, after assembly 316 µm *2

psp Porosity spacer, after assembly 0.708 *2

Lsp,uncompr Thickness spacer, before assembly 335 µm

psp,uncompr Porosity spacer, before assembly 0.724

Values for use in the transport model

D Diffusion coefficient of K+, and of Cl– 2.03 *10-9 m2/s

in free solution

pmA Macroporosity 0.43 *1

pmeso Mesoporosity 0.05 *1

pmi Microporosity 0.23 *1

psk Fraction skeleton material electrode 0.29 *3

pm Membrane porosity 0.3 *4

dr,m Diffusion coefficient in the membrane 0.05 *4

relative to the value in free solution

X Fixed membrane charge density 5 M *4

γ Transport coefficient of salt from the 0.26 mmol/s *5

outer volume into the spacer channel

M Number of mathematical sub-cells 1
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KCl instead of NaCl to prepare the solution, II) the inflow salt concentrations

are 20 and 100 mM, and III) experiments are conducted with different, distinct,

values of Vch of 0.2, 0.4, 0.6, 0.8, 1 and 1.2 V, while the discharge voltage is

always set to 0 V. After conducting the experiments, we fit the i-mD model to

the equilibrium data for salt adsorption, charge density and charge efficiency, see

Fig. 3.2.

Fig. 3.2 shows that we find a good fit of the theory to the data using values

for vmi, E, CS,0 and α as listed in Table 3.1. For the transport model, we also

need values for the micro-, meso- and macroporosity, as listed in Table 3.1. To

calculate these porosities, we follow the procedure described in Section 2.3.3,

where we use values for vmi and ρelec as listed in Table 3.1. For the mass density

of the “skeleton” material, ρsk, we use the value given in Section 2.3.3, and for

the micropore volume determined by gas sorption analysis, vGSA, we use 0.48

mL/g. 1

3.3.2 Electronic resistances and spacer properties

Before we run the transport model to calculate the ionic resistances across the

MCDI cell, we will first determine the external electronic resistance, EER, which

is located in the cables, current collectors and current collector-electrode inter-

faces (discussed in Section 3.2, we assume that there is no electronic resistance

in the electrodes, see results in Box 3.1 which underpin this assumption.)

As the thickness, Lsp, and porosity, psp, of the spacer channel are of influence to

the ionic resistance in the spacer channel, Rsp, according to Eqs. (3.14) and (3.15),

these parameters should be accurately determined as well. Since the (M)CDI

stack (assembly of Ns cells), including the spacer channels, is slightly compressed

by exerting a pressure of ∼0.30 bar, the thickness and porosity of the spacer

channels after assembly are different from the values in uncompressed condition.

In this section, we present a method to determine simultaneously EER as well

as Rsp. In addition, we show how psp and Lsp after assembly can be calculated

from Rsp.

We measure the resistance over a CDI stack, consisting of Ns cells and thus Ns

spacer channels, using a Milliohmmeter, see Box 3.1. This device does not mea-

sure an ionic distributed resistance in the electrodes as the electronic electrode

resistance is very low, see Box 3.1. Thus, the measured resistance over the CDI

stack is a sum of the linear resistances EER and Rsp. How can we distinguish

1Please note: in Section 2.3.3 we found a value for the micropore volume determined by gas

sorption analysis, vGSA, of 0.67 mL/g of activated carbon, which recalculates to 0.57 mL/g

electrode. In present Chapter, however, we did not perform gas sorption analysis on the

activated carbon material, but on the electrodes, and we found a value of 0.48 mL/g of

electrode.
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Fig. 3.2: Equilibrium data and theory of the salt adsorption and charge density as

function of the cell voltage for a KCl solution at a concentration of a) 20 mM, b) 100

mM. c) Charge efficiency Λ. Salt adsorption in mg/g based on molar mass of KCl.
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Fig. 3.3: Measured resistance in a CDI cell as function of the electrolyte concentration.

between EER and Rsp, and then, based on Rsp, calculate Lsp and psp? First we

multiply the measured resistance by Ns and Acell to obtain R∗, which is the sum

of Rsp and EER. Because only Rsp depends on the electrolyte concentration, c∞,

we can distinguish between Rsp and EER from the dependence of R∗ on c∞, see

Fig. 3.3. Resistance EER is not dependent on c∞, and follows as the intercept

of the curve in Fig. 3.3 (EER = 7.0 Ω cm2).

The thickness and porosity Lsp and psp after assembly can be obtained from

Fig. 3.3 as follows. First of all, Rsp is a function of Lsp and psp (after assembly)

according to

Rsp =
VT · Lsp

2 · F · psp · c∞ ·D
. (3.25)

Secondly, psp and Lsp are related to the uncompressed thickness and porosity

of the spacer channel, Lsp,uncompr and psp,uncompr, as listed in Table 3.1, according

to

(1− psp) · Lsp = (1− psp,uncompr) · Lsp,uncompr. (3.26)

Finally, the slope of the curve in Fig. 3.3, β, relates to Rsp, by

β = Rsp · c∞. (3.27)

Substituting Eq. (3.26) into Eq. (3.25) and solving the resulting equation with

Eq. (3.27), results in Lsp = 316 µm and psp = 0.708, see Table 3.1.

Box 3.1: Electronic resistance in porous electrodes

One of the underlying assumptions of the transport model is that, within

the porous carbon electrodes, the electronic resistance (resistance for flow
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of electronic charge through carbon matrix) is zero. To verify whether this

assumption is valid, we measured the electronic resistance over different num-

bers of electrodes, which are connected via current collectors and cables to an

Agilent Milliohmmeter 4338B. This device measures the resistance by apply-

ing a sinusoidal potential excitation with a frequency of 1 kHz and measuring

the current. In this experiment, a number of wet electrodes is placed on top

of each other, without spacer layers, between two current collectors and is

slightly compressed by exerting a pressure of 0.29 bar. The results of the

measured resistance, multiplied by the electrode surface area of Acell = 33.8

cm2, are shown in Fig. 3.4A.

RN-dependent

RN-independent
Electronic

B) Comparison electronic and
ionic resistances electrodes

A) Electronic resistance as function
of the number of electrodes  

Fig. 3.4: A) Electronic resistance over different numbers of electrodes, and B)

Comparison between the electronic and ionic resistance in the electrodes as function

of the salt concentration c∞.

As Fig. 3.4A shows, the resistance has a term independent of the number,

N , of electrodes, given by the intercept, and a term linearly dependent on

N , given by the slope. The first resistance is in the communal cables and

connectors. The second term, which is N -dependent, must relate to an elec-

tronic resistance in the electrodes themselves, or to an electrode-electrode

contact resistance. Therefore, the slope of Fig. 3.4A is equal to the elec-

tronic resistance per electrode, RN−dependent, which is 0.67 Ω cm2/electrode.

Dividing RN−dependent by the thickness of one electrode (L = 254 µm), re-

sults in an electronic resistance of 0.26 Ω m, as shown in Fig. 3.4B. We can

compare this value with the ionic resistance in the electrodes, Rionic,electrodes,
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as given by

Rionic,electrodes =
VT

2 · pmA · c∞ ·D · F
(3.28)

where VT, pmA, D and F refer to parameters as used in section 3.2 and listed

in Table 3.1.

In Fig. 3.4B we compare the electronic and ionic resistance in the electrodes,

as function of c∞. We observe that, for c∞ = 20 mM, which is the inflow

concentration in the experiments presented in Sections 3.5 and 3.6, the ionic

resistance in the electrode is a factor 30 higher than the electronic resistance.

This ratio drops with increasing c∞ but even at 100 mM, the ratio is still

a factor of 10. Consequently, we consider the assumption of zero electronic

resistance in the porous carbon electrodes to be valid.

3.4 Verification: charging and discharge dynamics

In the previous section, we determined the values of parameters required to de-

scribe the salt adsorption in the EDLs of the porous carbon electrodes, as well

as the external electronic resistance of the CDI cell and the compressed thick-

ness and porosity of the spacer channel, as listed in Table 3.1. These parameters

serve as input for the transport model, which calculates the concentration profiles

across the spacer channel, the membranes, and the electrodes, and moreover, the

ionic resistances in these different elements. However, before we run the model,

we have to verify whether the transport model fits with experimental data.

To that end, we conduct constant current charging/discharge (CCCD) exper-

iments for CDI and MCDI, with and without flowing an electrolyte through

the cell (F-CCCD and NF-CCCD respectively), see Fig. 3.5. The experimental

scheme is as follows. Before we start the experiment, we flush a salt solution with

a concentration of 500, 100 or 20 mM KCl through the cell and we short-circuit

the cell. For the NF-CCCD experiments (Fig. 3.6 A-E), we stop the pump after

about 10 min, while for the F-CCCD experiments we leave the pump running

with a flowrate of 7.5 mL/min per cell. Thereafter, we apply a constant current

to charge the cell until a cell voltage of 1.4 V is reached, and then, we apply the

reversed current to discharge the cell until we reach a cell voltage of 0 V. This

cycle, of charging and discharging the cell, is repeated 4 times to reach the dy-

namic equilibrium, which means that the cell voltage signal as function of time

of the last cycle is equal to that of the previous cycle. Experiments were run

at system currents of 0.25, 0.5, 0.75 and 1 A during the charging step and the

reversed current during the discharge step. With the cell area of Acell = 33.8
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Fig. 3.5: Current density and cell voltage signal of constant current charging and

discharge cycles in a CDI cell without flow (NF-CCCD), and with c∞,ini = 500 mM.

The current was 19 A/m2 during the charging step and -19 A/m2 during the discharge

step.

cm2 and Ns = 4 cells, this recalculates to current densities of I = 19, 37, 56 and

74 A/m2.

The experimental limit cycles in an (M)CDI cell for different electrolyte con-

centrations are compared with the theoretical limit cycles, as calculated with the

transport model, in Fig. 3.6. The x-axes of the graphs in Fig. 3.6 include breaks,

dividing the x-axes in two parts with different timescales. For the NF-CCCD ex-

periments, in order to fit the theoretical curves to the data, we had to include

a diffusion term, Γ, in the spacer channel mass balance, Eq. (3.10), to describe

some diffusion of salt from Vout into the spacer channel. We found the best fit

of the theory with γ, the transport coefficient, at a value of γ = 0.26 mmol/s.

Fig. 3.6 shows that for these NF-CCCD experiments, the transport model fits

the experimental data well, both for CDI and MCDI, especially at the higher

initial salt concentrations (c∞,ini) of 100 and 500 mM KCl. However, as observed

in Fig. 3.6E, for CDI with the initial salt concentration of 20 mM the fit is not

as good: though the cycle time is well predicted, the cell voltage in the plateau

region of the charging step is underestimated.
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25

A) CDI 500 mM KCl B) MCDI 500 mM KCl

C) CDI 100 mM KCl D) MCDI 100 mM KCl

E) CDI 20 mM KCl F) MCDI 20 mM KCl

Fig. 3.6: Charge/discharge cycles for CDI and MCDI with initial salt concentrations

of 500, 100 and 20 mM KCl (A-E, NF-CCCD), and with an inflow salt concentration

of cinflow = 20 mM (F, F-CCCD). Dashed lines: experimental data. Solid lines: theory.

I) 19 A/m2, II) 37 A/m2, III) 56 A/m2 and IV) 74 A/m2.
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As NF-CCCD MCDI experiments with an initial salt concentration of 20 mM

KCl could not be fitted successfully, we report data and theory of F-CCCD

experiments 2, for which cinflow = 20 mM KCl. The discrepancy between data

and theory for MCDI NF-CCCD at 20 mM can be ascribed to the fact that

the overlimiting current was reached, a phenomenon not included in our theory

[146]. As shown in Fig. 3.6F, the model describes the data accurately for 20 mM

F-CCCD experiments.

3.5 Prediction: resistances across the MCDI cell

After presenting the methodology to obtain values for the parameters required

in the transport model (Section 3.3), and verifying the transport model with

experimental data of CCCD experiments (Section 3.4), now we can use the theory

to predict the resistances across the MCDI cell during desalination of brackish

water. Therefore, we will simulate the limit cycle of an MCDI experiment, with

the same operational scheme as shown in Fig. 3.5, the parameters as listed

in Table 3.1, a flow of 7.5 mL/min/cell, and an inflow salt concentration of

cinflow = 20 mM.

Fig. 3.7 shows the salt concentration profiles across the spacer channel and the

electrodes, as well as the free salt concentration across the membranes (which is

the counterion concentration minus the fixed membrane charge density, equal to

the co-ion concentration), at different moments during the adsorption and des-

orption step. During the adsorption step, the salt concentration in the electrode

(macropores) increases, while the salt concentration in the spacer channel goes

down at the same time. The reverse is observed during the desorption step.

Fig. 3.7D shows the ionic resistances in the spacer channel, the membranes,

and in the electrodes, as well as the EER, all at the start of a desorption step.

To approximate the ionic resistance across the two electrodes in an MCDI cell,

RmA, with dimension Ω m2, we use

RmA · I = 2 ·∆φmA · VT (3.29)

where ∆φmA is φmA

∣∣
E/C , the macropore potential at the electrode - current col-

lector boundary (E/C), minus φmA

∣∣
M/E , the potential at the membrane-electrode

boundary (M/E). Clearly, Fig. 3.7D shows that the ionic resistance across the

spacer is the highest of all resistances, while the ionic resistance in the electrodes

2Compared to the NF-CCCD experiments as shown in Fig. 3.6, for the F-CCCD experiments,

the electrodes were thicker (Lelec=266 µm instead of Lelec=257 µm) and the mass density

was lower (ρelec=0.395 g/mL instead of ρelec=0.569 g/mL). Therefore, pmA, pmeso and pmi

have different values from the ones listed in Table 3.1, respectively 0.61, 0.031 and 0.16.

These values are also used in the calculations in Figs. 3.8 and 3.9.
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Spacer

Electrodes

(ionic)

Membranes

EER

B) MembraneA) Spacer channel

C) Macropores
in electrodes

D) Resistance over the MCDI cell
at the end of an adsorption step

Fig. 3.7: Theoretical prediction of the salt concentration across, and the resistance in,

the MCDI cell from the start of the adsorption step (1) until the end of a desorption

step (8) (cinflow = 20 mM, I=19 A/m2).
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is negligible 3. The calculated resistance across the membranes (5.6 Ω cm2) is

similar to values reported in Refs. [147, 148]. Note that the calculations show

that the electronic and ionic resistances do not significantly change during the

the cycle. However, values for the resistances shown in Fig. 3.7D can be com-

pletely different in other situations, for instance when the salt concentration in

the macropores of the electrodes decreases to values close to zero, such as in CDI

without membranes.

3.6 Improved system design: increased electrode

thickness

After identifying that the resistances are mainly located in the spacer channel,

the membranes and the external electrical circuit, and not in the electrodes, we

can use this information to improve the (M)CDI cell design or operation. Options

include the study of the EER, with the aim to reduce it, or the spacer channel re-

sistance (e.g., by using ion-conducting spacers [149] or profiled membranes [150]).

Here, as an example, we will focus instead on the electrode. Fig. 3.7D suggests

that it should be possible to increase the electrode thickness and consequently

the cell capacity (thus requiring less switches between adsorption and desorp-

tion), while keeping the energy consumption the same. To test this hypothesis,

we performed experiments where we doubled and tripled the electrode thickness

in MCDI and we measure the energy requirements.

To this end, we conducted F-CCCD experiments with the same operational

scheme and electrodes as those described for the F-CCCD experiments in Sec-

tion 3.4 (I = 19 A/m2). The results for the effluent concentration as function of

time are shown in Fig. 3.8. As Fig. 3.8 shows, increasing the electrode thickness

indeed results in longer cycles. This finding can be explained by the fact that,

for the same current density, but with increased thickness, more time is required

to reach a cell voltage of 1.4 V, which we set as the maximum voltage before

discharge. Comparing the data with the theory, the model closely predicts the

desalination degree, but underpredicts the cycle time quite significantly.

For the experiments shown in Fig. 3.8, we calculated the energy consumption

by integrating the electrical power (current multiplied by cell voltage) over time,

and dividing the resulting value by the salt adsorption in a cycle (in mol).

3The ionic resistance is calculated according to the aforementioned equation; we will re-analyze

this case in Chapter 8 and come to a different conclusion
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Fig. 3.8: Effluent salt concentration as function of time for MCDI with single, double

and triple electrodes (cinflow=20 mM, I=19 A/m2). Dashed lines: experimental data.

Solid lines: theory.
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Fig. 3.9: Desalination time and energy consumption for single, double and triple elec-

trodes (cinflow=20 mM, I=19 A/m2). Solid lines: theory.

The resulting values are plotted in Fig. 3.9 4. Note that in this Chapter, we

report the energy consumption in dimension kJ/mol salt, while in Chapter 2 the

dimension kT/ion was used. One can recalculate values in kT/ion to values in

kJ/mol salt by multiplication with a factor 2·R·T
1000

∼5.

Interestingly, the energy consumption of MCDI due to resistances over the dif-

ferent elements of the cell, as presented in Fig. 3.7D, is only 6.1 kJ/mol salt. The

additional energy requirements are due to the Donnan potentials at the mem-

brane interfaces, and the Donnan and Stern potentials in the electrodes, see also

Chapter 8 for further analysis. These energies all relate to the thermodynamics

of ion removal and storage, not to transport resistances. Both data and theory

presented in Fig. 3.9 indicate that increasing the electrode thickness results in

longer periods of desalination, i.e., we have the same desalination rate for a longer

period of time with only a very slight increase of the energy consumption.

4Note that experiments with double and triple electrodes were performed with 2 respectively

1 cell(s) assembled in a stack, instead of the 4 cells in the single electrode experiments.

This leads to a different value for the EER. To evaluate energy consumption in Fig. 3.9,

we corrected the data to 4 cells using results of a technical study that EER depends on Ns

according to EER = α
Ns

+ β with α = 17.1 Ω cm2 and β = 2.7 Ω cm2.
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3.7 Conclusions

In the present Chapter, we outlined a methodology to identify the ionic and

electronic resistances in Membrane Capacitive Deionization (MCDI). To calculate

the ionic resistances, we set up a transport model for the MCDI cell, with a fully

discretized spacer channel, membrane and porous carbon electrode, coupled to

the improved modified Donnan model. We show that the resulting model can

be fitted to experimental data, and that we can use this theory to calculate the

ionic resistances across the different elements in the MCDI cell. Furthermore,

we presented a novel approach to measure the external electronic resistances, as

well as the spacer properties in the MCDI cell.

For the MCDI cell studied, the resistances are mainly located in the spacer

channel and in the external electrical circuit, while the resistance in the macro-

pores of the electrodes is significantly lower. This finding predicts, and is also

validated by our experimental work, that one can double or triple the electrode

thickness without significantly increasing the electrical energy input. There-

fore, one can operate the cell with longer periods of desalination, switching less

frequently between adsorption and desorption steps, without an extra energy

penalty. Furthermore, our results show that, if we want to reduce the resistances

in the MCDI cell, we have to focus, in order of priority, on the spacer channel,

the external electrical circuit and then on the membranes.
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Abstract

In the field of Capacitive Deionization (CDI) it has become a common notion that

constant current (CC) operation consumes significantly less energy than constant

voltage operation (CV). Arguments in support of this claim are that in CC op-

eration the endpoint voltage is reached only at the end of the charging step, and

thus the average cell voltage during charging is lower than the endpoint voltage,

and that in CC operation we can recover part of the invested energy during dis-

charge. Though these arguments are correct, in the present Chapter based on

experiment and theory, we conclude that in operation of a well-defined CDI cycle,

this does not lead to the general conclusion that CC operation is more energy

efficient. Instead, we find that without energy recovery there is no difference in

energy consumption between CC and CV operation. Including 50% energy re-

covery, we find that indeed CC is somewhat more energy efficient but also in CV

much energy can be recovered. Important in the analysis is to precisely define

the desalination objective function, such as that per unit total operational time

–including both the charge and discharge steps– a certain desalination quantity

and water recovery must be achieved. Another point is that also in CV operation

energy recovery is possible by discharge at non-zero voltage. To aid the analysis

we present a new method of data representation where energy consumption is

plotted against desalination. In addition, we propose that one must analyze the

full range of combinations of cycle times, voltages and currents, and only com-

pare the best cycles, to be able to conclude which operational mode is optimal for

a given desalination objective. We discuss three methods to make this analysis

in a rigorous way, two experimental and one combining experiments and theory.

We use the last method and present results of this analysis.
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4.1 Introduction

Capacitive Deionization (CDI) is a cyclic method of water desalination using

porous electrodes, where salt ions are removed during the charging step, tem-

porarily held inside the electrodes, and released again during discharge [1]. Dur-

ing charging, there is an input of electrical energy, which can partially be re-

covered during discharge [140]. Many CDI architectures are possible including

the use of flowing electrodes [5, 77, 79], chemically modified electrodes [151],

redox-active materials [91, 152], and the addition of ion-exchange membranes

[37, 38, 71]. The most commonly used CDI architecture is the flow-by cell, which

employs film electrodes with a spacer channel placed in between, through which

the solution flows along the electrodes [2].

For CDI with film electrodes, an important choice that must be made is

whether operation will be at constant voltage (CV) or constant current (CC).

There can be various criteria to base this choice on, such as the aim for a constant

effluent concentration (CC in Membrane CDI), or a low energy consumption of

the process. Note that this choice does not need to be made for steady state op-

eration of CDI with flowing electrodes, but is only necessary for cyclic processes.

For carbon electrodes (which we consider from this point onward), in literature

it is reported that CC operation leads to a lower energy consumption than CV

operation [36, 97, 153–156]. Kang et al. [153] show that CC-CDI consumes ap-

proximately 30% less energy than CV-CDI for identical electronic charge storage

or identical ion removal, without considering energy recovery. Similar differences

in energy consumption between CC and CV modes without considering energy

recovery were reported by Choi [36] and by Han et al. [154]. A much higher

advantage of CC over CV implied Ref. [155] where on theoretical grounds CC

was considered to have a twice lower energy use than CV operation. In another

study, Qu et al. [97] show that in CC operation with complete energy recovery,

the energy consumption can be as low as 28% of CV operation, i.e., about a fac-

tor of three less, and Ref. [156] concludes that energy recovery in CC operation

is much more favorable than in CV operation.

Arguments brought forward to explain the lower energy use in CC operation

are as follows. First, it is argued that during CC charging the charging voltage is

only reached at the end of a charging step, thus on average the cell voltage during

charging is lower in CC operation, and thus the electrical energy consumption is

lower. In the ideal case, and with the same (endpoint) voltage, this difference

amounts to a factor of two. The other argument is that in CC operation it

is possible to recover energy which –it is implied– is not possible during CV

operation. This is indeed true when CV is operated at zero discharge voltage,

as has been the classical approach in CV-CDI. However, also in CV operation,
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it is possible to discharge at a non-zero voltage, and thus energy recovery is

possible [157].

To compare CC and CV operation, one must precisely define the desalination

objective, such that per unit total operational time a certain desalination quan-

tity and water recovery must be achieved. Water recovery, WR, is the ratio of the

volume (flow) of desalinated water (diluate), over the volume of feed water. For

this objective function we must find conditions of operation with lowest energy

consumption, which can thereafter be compared for different modes of operation.

This is not as straightforward as it may seem: though it is often attempted to

compare CC and CV for identical conditions of operation, it is not sufficiently

checked whether these conditions result in the same desalination quantity and

WR. Choi [36] compares data for CC and CV operation for identical charging

voltages, that is, data are compared where the charging voltage applied in CV op-

eration is the same as the endpoint charging voltage in CC operation. However,

for this comparison between any two data points at the same voltage, various

other operational properties are different, such as WR, cycle time and salt re-

moval. Kang et al. [153] compare CV and CC operation as function of the salt

adsorption capacity of a cycle. Data points are compared at the same value of

salt adsorption capacity, and WR of 50%. However, for each data point used in

the comparison, the cycle time (the duration of the full charge/discharge cycle)

is different. Thus, in Ref. [153] the performance of a single cycle is compared,

but not the performance per time period of system operation, and therefore the

cycle-averaged salt adsorption rates are not equal. Whereas these papers con-

sider flow-by CDI, Qu et al. [97] perform experiments with flow-through CDI

and compare data as function of charge transferred. They show (inset picture

Fig. 4 in Ref. [97]) that in their case the amount of charge is close to propor-

tional to salt removal. Furthermore, data were obtained at the same duration

of the charging (either CV or CC) and discharge step (CC in all cases). This

approach is in line with the proposal of the present Chapter, which is that one

must compare data with the same salt removal rate (when averaged over the

full cycle). They show that without energy recovery CC has ∼ 35% less energy

consumption, and including energy recovery CC has up to a factor of three lower

energy consumption. Different to our protocol, Qu et al. [97] only analyze a first

cycle, and not the “dynamic steady state”, but for the longer cycles this should

not matter much. Energy consumption was analyzed for flow-by CDI by Zhao et

al. in 2012 [71] and compared for CC vs CV operation, CDI vs membrane-CDI,

and for different salt concentrations. Conclusions in that paper, however, were

based on comparing data with different average salt adsorption rates and thus

the conclusions do not rigorously follow.

In order to compare CC and CV operation in a fair manner, one has to make
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Fix objective 
1. Water to be treated
2. Device
3. Performance

• Desalination (Δc)
• Water recovery (WR)

Choose method
1. Experimental 3D (energy vs WR and Δc)
2. Experimental 2D (incl. control loop)
3. Theoretical 2D

Theoretical 2D method
1. Validate computer model for CDI
2. Run model for many conditions
3. Fix either Δc or WR to preset values
4. Calculations for dynamic steady state
5. Conclusion dependent on energy recovery 

Conclusion

Step 1

Step 2

Step 3

CV or CC?

Fig. 4.1: Schematic overview of our methodology to analyze the suitability of a certain

operational mode for water desalination by capacitive deionization (CDI), in terms of

energy consumption.

sure that the desalination objective of the cycles subject to comparison is the

same. The objective is always defined by two parameters:

• water recovery, as define above, and

• a measure of the amount of salt removed. This can be expressed as the

average salt adsorption rate, ASAR, which is based on the molar quantity of

salt removed from the diluate stream per unit operational time [2]. A second

metric that can be used is the difference in salt concentration between the

diluate and feed streams, averaged over the duration of the salt adsorption

step. We call this difference “desalination,” ∆c. In this Chapter we will

use ∆c, not ASAR, as our measure for the amount of salt transferred in a

CDI cycle.

For each operational mode (CV or CC) an infinite number of charging/discharge

schemes is possible, which are all defined by different operational parameters.

Each scheme results in a desalination cycle with a certain desalination objective

and energy consumption. Thus, to reach a certain objective, several operational

schemes are possible, and for each scheme the energy consumption can be dif-

ferent. In order to conclude whether CC or CV operation performs better for a

certain desalination objective, one has to compare for each operational mode the

scheme resulting in the desired objective with the lowest energy consumption.

This means that one has to conduct, in principle, an infinite number of experi-

ments. Because the desalination objective, defined by WR and ∆c, reached by a

certain scheme can only be determined after running the CDI cycle, many exper-

iments must be discarded if we are only interested in one value of WR and ∆c
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to compare CC and CV operation. Instead, we propose that it is better to use

all data that are obtained, and thus to compare CC to CV operation for a range

of values of WR and ∆c. This method would result in a 3D representation of

energy use versus WR and ∆c. This method, which we refer to as “Experimental

3D”, see Fig. 4.1, allows for a fair comparison between the operational modes.

Another method, which we refer to as “Experimental 2D”, is based on fixing

one of the parameters defining the desalination objective, e.g. WR, at a constant

value, and to compare the energy consumption of both operational modes as

function of ∆c. This means that experiments should be conducted using an

operational scheme that results in a pre-defined value of WR, which is not easy,

because water recovery is not a parameter that can be imposed directly in an

experiment; i.e., it is not an input, but an output of an experiment. Indeed, as we

will show, WR can be markedly different from what would be expected based on a

calculation involving charging and discharge times. Therefore, experiments have

to be designed making use of a control loop: a desalination cycle is conducted

with several parameters defining a cycle, then the output of a cycle is analyzed

and WR calculated, thereafter the parameters are adapted, and this loop is run

through until WR reaches the pre-defined value. Also in this case a very large

number of experiments are required to find conditions of minimum energy in a

plot of energy consumption versus ∆c.

Instead of these two experimental methods, we make use of a method which

combines experiment and theory, see Fig. 4.1. This method consists of performing

a limited number of experiments to validate a dynamic CDI model [158–160].

This model is then used to generate a very large number of calculated outputs of

energy use, all at a constant pre-defined value of WR (achieved by a numerical

search routine) and these “computer data” are compared in a plot for energy

consumption versus desalination, ∆c, at fixed values of WR. We refer to this

method as “Theoretical 2D”.

Thus, to test if CC is energetically preferable to CV operation, according to our

method we make use of a validated computer model of a CDI cell, and run a very

large number of calculations with varying values of cycle times, current, voltages,

etc., all for the same input and device. In this way, we find for each operational

mode (CV or CC) the optimum cycle characteristics and we can control WR

exactly, without requiring experiments using a control loop. Optimum values

are read off as the lower boundary in a plot of energy versus desalination, ∆c

(at fixed values of WR). These optimum values (i.e. the lower boundaries) can

then be compared to derive information on the merit of CC versus CV operation

with respect to energy use, for conditions where the overall performance of the

process is the same. The comparison is made without and with considering energy

recovery during discharge.
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4.2 Theoretical framework

Theoretical calculations are made using a dynamic CDI model of a single cell,

which describes ion electromigration across a spacer channel and through a

porous electrode, combined with a suitable EDL-model. For the theoretical equa-

tions, we refer the reader to Chapter 3. In the flow direction, only a single “sub-

cell” is assumed. To describe the EDL, for mathematical simplicity, the improved

modified Donnan model is used in the calculations, which was compared with the

amphoteric Donnan model [51, 159] and was shown to give similar predictions for

salt adsorption, charge and charge efficiency, in the relevant range of salinities of

this study, see Box 4.1.

Box 4.1: comparing improved modified-Donnan and

amphoteric Donnan model

Theoretical data points reported in this Chapter were calculated using a dy-

namic CDI model coupled with an EDL model. Whereas the amphoteric

Donnan (amph-D) model gives a more accurate description of the EDL, we

used the improved modified-Donnan (i-mD) model, because of its mathemat-

ical simplicity. To find values for parameters used in the i-mD, we compared

results with the amph-D model using parameter settings reported in Ref.

[161]), see Fig. 4.2.
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Fig. 4.2: Comparing results of improved modified-Donnan model with the am-

photeric Donnan model using parameter settings reported in Ref. [161]). Based on

this comparison for NaCl concentrations of 10, 20 and 30 mM, parameter values

were found for the improved modified-Donnan model as reported in Table 4.1.

We use a diffusion coefficient of the ions (in the open volume of spacer and

electrode) of 1.67 · 10−9 m2/s, both for anions and cations, and we neglect tor-

tuosity effects. We assume a plug flow velocity profile in the channel, along the

electrodes (fluid velocity is zero in the electrode), and based on this calculate the
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effluent salinity. Values for relevant parameters in this dynamic CDI model are

reported in Table 4.1.

Calculations are always made for the “dynamic steady state” (DSS) by per-

forming at least three cycles, and taking results from the third cycle. Salt adsorp-

tion is calculated as the amount of salt released during the period that the effluent

salt concentration is higher than that of the inflow (based on the difference in

inflow and effluent salt concentration), which is also equal to the adsorption of

salt during the other period. Energy input is calculated as the integral of cur-

rent and cell voltage during the charging step. This is the energy plotted in the

graphs labeled “without energy recovery”. Subtracting from energy input the

energy during discharge, again calculated from the product of current and cell

voltage, and including a factor of 50 %, we obtain the input for energy plotted

in graphs labeled “with 50% energy recovery.”

4.3 Energy consumption as function of desalination -

comparison of operational modes

We conducted experiments according to the procedures described in Section 4.A.

The aim of these experiments was to validate the dynamic CDI model, which we

discussed in Section 4.2.

Experimental results are presented in Fig. 4.3 as function of desalination, ∆c,

which is the decrease in salt concentration of the diluate compared to the feed

stream, averaged over the duration of the desalination step (the time period that

the device produces diluate, i.e., that the water has a lower salinity than the feed).

For CV operation, ∆c increases when we reduce the discharge voltage (at the very

right V disch=0 in Fig. 4.3A,B), while for CC operation moving to the right, data

points correspond to higher and higher current density. As discussed, we do not

use these data to directly come to a conclusion about energy in optimized CC or

CV cycles, but use these data to validate the dynamic CDI model.

Fig. 4.3 shows the results of the model validation. For the purpose of this

Chapter, which is to outline a method to compare various operational modes

for CDI, we found a good qualitative fit between the model and data. We note

that to fit the model to the data unrealistic values had to be used for certain

parameters in the model, see Table 4.1.

For the data shown in Fig. 4.3, one would perhaps expect that in all cases

the water recovery, WR, is 50%, as the charging time was equal to the discharge

time, both for CC and CV operation. Indeed, Fig. 4.4 shows that for most

CV data this is the case, but it also shows that for some CV and all CC data,

WR < 50%. Thus, we find that, although the charging time is equal to the
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Table 4.1: Parameters and their values used in theory.

Operational & general physical parameters and system dimensions

Φv Flowrate through each cell 7.5 mL/min

T Temperature 295 K

D Average diffusion coefficient of Na+ and Cl– 1.67 *10-9 m2/s

in free solution

Mw,salt Molar mass of NaCl 58.4 g/mol

M Number of mathematical sub-cells 1

EER External electronic resistance (4 cells)

value used for Figs. 4.3 and 4.4 1 40.5 Ω cm2

value used for Figs. 4.5–4.7 2 7.0 Ω cm2

Electrode dimensions and porosities

Acell Electrode geometric surface area 33.8 cm2

Lelec Electrode thickness 200 µm

pmA Macroporosity 0.5

pmeso Mesoporosity 0

pmi Microporosity 3 0.3

M elec Total mass of two electrodes in cell 1.1 g

Spacer thickness and porosity

Lsp Thickness spacer, after assembly 2 316 µm

psp Porosity spacer, after assembly 2 0.708

EDL parameters

E Micropore ion-correlation energy 4 320 kT mol m-3

CS,0 Stern capacitance in zero-charge limit 4 145 F/mL

α Charge dependence of Stern capacitance 4 20 F m3 mol-2

1 Follows from fitting experimental data, collected in this Chapter, with theory.
2 Reported in Chapter 3.
3 Follows from fitting experimental data, collected in this Chapter, with theory.

Thus, pmi does not relate to the micropore volume, vmi, as calculated in

Section 3 by matching the i-mD model (used in our theory) with the amph-D

model (which was fitted with experimental data in Ref. [161]).
4 Follows from matching the i-mD model (used in our theory) with the amph-D

model (which was fitted with experimental data in Ref. [161]). See Box 4.1

for matching results.
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Fig. 4.3: Energy consumption per mole of salt removed as function of desalination,

∆c. Experimental results based on data (CV: triangles, CC: stars) (as presented in

Fig. 4.A.2) and results of theoretical calculations using the dynamic CDI model (solid

and dashed lines). A) without energy recovery, and B) with energy recovery. The

duration of a full cycle, CT, is either 2 or 4 min.

discharge time, especially for the CC experiments, the adsorption time, which is

the period with an effluent salt concentration that is lower than that in the feed

water, is considerably shorter than the desorption time, which is the period with

a higher effluent concentration than that of the feed water. This difference in

adsorption and desorption time results, with constant flow rate, in WR < 50%.

Thus we cannot simply compare a set of CC and CV experiments, for the reasons

outlined before: first, that for a certain operational setting we cannot be sure

that we are at the lowest energy for a given desalination objective, and second, in

most cases the desalination objective is different (both ∆c and WR differ between

the CC and CV data points).

4.4 Optimizing desalination performance as function

of desalination and WR - comparing constant

voltage and constant current

In Section 4.3 we validated our dynamic model with experimental data and dis-

cussed that we use this model to compare the energy consumption, EC, of CV

and CC operational modes. In the present section we outline our methodology

for comparison, and the results thereof.
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Fig. 4.4: Water recovery as function of desalination, ∆c. Experimental (points) and

theoretical results (solid and dashed lines) based on data for which energy consumption

is reported in Fig. 4.3. The duration of a full cycle, CT, is either 2 or 4 min.

To find optimum performance, three types of constraints must be considered:

the flow rate and composition of the inflowing water, the cell itself (mass of elec-

trodes, dimensions), and the desalination objective. With all of these constraints

fixed, we can analyze whether one mode of operation has a higher energy use

than another mode. For a different input, cell, or objective, the conclusion can

be quite different. Calculations are based on the same input water and cell design

as in the experimental and theoretical program discussed above. The quantity of

salt removal can be defined in various ways, such as the decrease in salt concen-

tration of the diluate (averaged over the adsorption step), ∆c, which is the metric

we will use in this section. Energy consumption, EC, can be presented in many

different ways, such as energy per volume of diluate produced, or energy per unit

time. Alternatively, an inverse measure can be used, such as “energy-normalized

adsorbed salt” [98]. In this Chapter, we use the metric of energy per amount of

salt removed, with unit kJ/mol.

The calculations are limited to the following conditions: one level of inflow

salinity (single salt solution, NaCl), either CC during charge and discharge, or

only CV, thus no mixed modes, and pump rate constant (no variation in pump

flow rate such as in “stop flow”-mode [99]). For the parameter describing the elec-

tronic resistance in cables and current collectors, EER, we use in the calculations

a value different from the fit value found for Fig. 4.3, because that value was large

compared to work reported in Ref. [162]. Therefore in the present calculations,

we set EER to a lower value, in-line with Ref. [162], of EER=7.0 Ω·cm2.

For CV operation, four parameters can be used to define a cycle: charging volt-
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age, V ch, discharge voltage, V dch, charging time, tch, and discharge time, tdch.

For CC operation, again four parameters define a cycle: endpoint voltage during

charging, V up, charging current, Ich, endpoint voltage during discharge, V down,

and discharge current, Idch. For both CV and CC we discussed in Section 4.3

that, with equal charging and discharge times, water recovery, WR, is not nec-

essarily 50%, and can be different for each calculation. In order to compare CC

and CV, one should control the desalination objective, and thus fix WR at a

constant value. We make calculations using these four parameters according to

the calculation procedure described in Box 4.2.

Box 4.2: calculation procedure

1. We sweep the first three parameters (for CV: V ch, V dch, and tch; for

CC: Ich, V up, and V down) in a large window of suitable values. In

Table 4.2 we list for each parameter which domain is scanned, and the

interval between each value.

2. Based on the desired WR, we calculate a guess value for the fourth

parameter (for CV: tdch; for CC: Idch). For CV, we use tdch =

tch

(
1

WRdesired
− 1
)

, and for CC, we use Idch = WRdesired·Ich
1−WRdesired

, where

WRdesired is the WR we want to obtain.

3. We run for each parameter combination the dynamic model and we

make calculations of three desalination cycles (charging and discharge)

consequently. Based on the output (current, effluent concentration)

of the last cycle, for which we reached a dynamic steady state, we

calculate WR, energy consumption (for ER 0% and ER 50%) and ∆c.

4. Using a numerical routine, we repeat step 3 with tdch (CV) or

Idch (CC) as variables to minimize the error given by error =

(WRdesired −WRrealized)
2
, where WRrealized is the WR calculated by

the model.

5. If the error function approaches zero, thus WRrealized ≈WRdesired, the

calculation was considered successful. For CV, this means that, for

given V ch, V dch, and tch, we have found a value for tdch that char-

acterizes a desalination cycle with WRdesired; and for CC, this means

that, for given Ich, V up, and V down, we found a value for Idch. For this

desalination cycle, we plot values for energy consumption (for ER 0%

and ER 50%) as function of ∆c in Fig. 4.5.
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6. We repeat this procedure for all combinations of parameters listed in

Table 4.2. We note that, for some combinations of parameters, the

dynamic model could not sufficiently minimize the error calculated in

step 4, and therefore could not find a solution. In those cases, no

datapoints were plotted in Fig. 4.5.

Table 4.2: Domains for parameters under study in the calculation procedure. For CC,

the parameters are: charging voltage, V ch, discharge voltage, V dch, charging time, tch,

and discharge time, tdch; and for CC: endpoint voltage during charging, V up, charging

current, Ich, endpoint voltage during discharge, V down, and discharge current, Idch.

For each parameter, a lower boundary (LB), step size (:) and upper boundary (UB)

are listed. For some parameters, we use two domains with different step sizes, or we

use different domains for each value of WR.

Constant voltage Constant current

Parameter Domain Parameter Domain

LB : UB LB : UB

V ch (V) 0.2 0.2 1.2 V up (V) 0.4 0.2 0.8

V dch (V) 0.3 0.05 0.5 0.9 0.1 1.4

and values 0 and 0.2 V Ich 5 2.5 22.5 (WR 0.4)

27.5 (WR 0.5)

22.5 (WR 0.6)

12.5 (WR 0.7)

tch (s) 60 30 180 V down (V) 0 0.1 0.2

0.3 0.05 0.5

tdch (s) calculated to control WR Idch (A) calculated to control WR

Constraint V ch >V dch

1 step 4 of procedure Box 4.2

Fig. 4.5 shows the calculation results for CV and CC for ER 0% (panel A) and

ER 50% (panel B), where the latter means that 50% of the energy released during

discharge can be reused. The results are shown for WR 50%. As expected, for

any value of ∆c, it is possible to run a cycle in a very wasteful manner, thus at

high energy use. However, we are most interested in the lowest values of energy

for any given ∆c, i.e., we care about the lower boundary of the calculation results.

We explicitly present the lower boundary in Fig. 4.6. We performed calcula-

tions not only for WR 50%, but also for WR 40, 60 and 70%, and for each set of

calculations we plot the lower boundary. To select the datapoints that mark the

boundary, a well-defined procedure is required, which we describe in Box 4.3.
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Box 4.3: selecting datapoints at the lower boundary in an

EC-∆c plot

1. We select the datapoint with lowest EC, which will be the starting

point marking the lower boundary, with coordinates (xstart,ystart).

2. Now, the procedure selects the next point – positioned to the right of

the starting point – that marks the lower boundary. Therefore, for each

datapoint i with xi > xstart the slope is calculated using ai = xi−xstart

yi−ystart .

3. The datapoint with the lowest slope is selected as the next point mark-

ing the lower boundary.

4. We check whether the point is at the boundary of the calculation do-

main defined in Table 4.2, or whether it is at one if the inner points.

If the latter is the case, we are sure the datapoint is an optimum,

which we refer to as an OptLB point. Else, the point is only an opti-

mum considering the boundaries we set for the parameter values. In

other words, if the boundaries would have been set differently, prob-

ably a datapoint with lower energy consumption would have marked

the lower boundary. We refer to this point as a LB point.

5. We repeat this procedure from step 2 onwards, and replace subscript

“start” by “prev” with values for coordinates (xprev,yprev) being (xi, yi)

found in step 3. The procedure is terminated when there is no longer

a datapoint for which xi > xprev.

An important assumption behind this procedure is that the starting point

has, of all datapoints, the lowest value of y, and that the lower boundary

one would intuitively draw, increases concavely upward with x.

Now, with lower boundaries plotted for different values of WR, with and with-

out 50% energy recovery, see Fig. 4.6, one can compare CC and CV operational

modes. Also, one can select, for a certain value of WR and ∆c, the operational

mode and parameter combination that define the cycle with best performance.

Comparing CC and CV, Fig. 4.6 shows that, without energy recovery, our proce-

dure predicts not much difference in energy consumption between the two modes.

However, with 50% energy recovery, CC shows a somewhat lower energy con-

sumption than CV.

One may wonder how Fig. 4.6C and D would be with 100% energy recovery. In

fact, calculations with 100% recovery were made, but resulted in many LB points
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Fig. 4.5: Energy consumption per mol of salt removed as function of desalination, ∆c,

A) without and B) with 50% energy recovery, based on a large sweep of calculated

conditions to find the lower boundary for either CC or CV operation (water recovery

50%).

and only a very limited number of OptLB points. With 100% recovery the model

predicted that it would be most optimum to increase the upper voltage (CC) or

the charging and discharge voltages (CV) to high values, in fact to the maximum

values we set, as all the input energy could be fully recovered anyway.

Now, we will analyze why, without energy recovery, our procedure predicts

not much difference in energy consumption between the two modes, and why,

with 50% energy recovery, CC shows a lower energy consumption than CV. To

that end, we split the total energy consumption of two desalination cycles into

parts, one for CV and one for CC, for which ∆c and WR are the same, and

for which we calculated that the energy consumption is at the lower boundary.

Conveniently, both for CC and CV, we found an OptLB point for ∆c = 2.4 mM

and WR=0.5, which we select for our analysis. For both operations, we study

the energy consumption by charging EDLs (Donnan and Stern potential), ionic

resistances in spacer and macropores, and electronic resistances in cables and

current collectors. For this energy breakdown analysis, we need an additional set

of equations, see Box 4.4.
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Fig. 4.6: Minimum energy consumption per mol of salt removed as function of desali-

nation, ∆c, and water recovery, WR. Closed datapoints, connected by solid lines, are

OptLB points, which indicate optimum values, whereas open datapoints, connected by

dashed lines, are LB points, points of lowest energy consumption located at the bound-

aries of our tested parameter domain. Panel A and C show results for constant voltage

calculations, Panel B and D for constant current, without (A and B) and with (C and

D) 50% energy recovery.
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Box 4.4: theory for energy breakdown analysis

Donnan and Stern potential electrodes

To calculate the energy consumption due to Donnan and Stern potentials in

the electrodes, one should consider that values for these potentials and for

the ionic current from macropores to micropores (mi) are dependent on time

and position in the electrode (in direction from membrane towards current

collector). This means that, to calculate the energy consumption, we should

multiply the ionic current from mA to mi with the potential and integrate

over x, where x runs from 0, the membrane-electrode boundary, to Lelec, the

electrode-current collector boundary, and thereafter over time, t. We use

Ep = 2 · pmi · F · V T ·Acell ·
∫ t

0

∫ Lelec

0

(
∂σ(x, t)

∂t
·∆φp(x, t)

)
dx dt (4.1)

where subscript “p” can be replaced by “S” to calculate energy consumption

because of the Stern, or by “D”, for the Donnan potential. Parameter pmi is

the microporosity, F Faraday’s constant (96,485 C/mol), Acell the electrode

geometric surface area (m2), σ the charge density in the micropores (mol/m3)

and V T the thermal voltage, which is given by VT = R · T/F , where R is

the gas constant (8.314 J/(mol·K)), and T temperature (K). A factor 2 is

included to calculate Ep for both electrodes together, which we also include

in Eqs. (4.3) and (4.4).

Ionic resistance electrodes

To calculate energy consumption due to an ionic resistance in the electrode,

we calculate the ionic current in the macropores, which varies across the

electrode. Assuming a symmetric cell and an electrolyte with cations and

anions that have an equal diffusion coefficient, D, the ionic current, ImA, is

given by

ImA(x, t) = −2 · pmA · F ·D · cmA(x, t)
∂φmA(x, t)

∂x
(4.2)

where p
mA

is the macroporosity, cmA the concentration of salt in the macrop-

ores and φmA the potential in the macropores. The energy consumption due

to ionic resistances in the macropores, EmA, can be calculated according to

EmA = 2 ·Acell · V T

∫ t

0

∫ Lelec

0

ImA(x, t) · ∂φmA(x, t)

∂x
dx dt. (4.3)

Please note that this approach to calculate EmA is different from the one

used in Chapter 3, where we used EmA = I2 · RmA · t, with I the current
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in the system, and RmA the resistance, for which we calculated a value at

the start of a discharge step using Eq. (3.29). Thus, in Chapter 3, EmA was

calculated assuming a constant current and resistance across the macropores,

independent of position and time, which is physically not realistic. Using

Eq. (4.3), we relax this assumption.

Ionic resistance spacer

The energy consumption due to ionic resistances in the spacer channel is

given by

Esp = 2 ·Acell · V T

∫ t

0

∆φsp(t) · IA(t) dt (4.4)

where IA(t) is the current density (A/m2), and ∆φsp the potential drop over

half the spacer, which is calculated using Eq. (3.14).

Electronic resistance cables and current collectors

The energy consumption due to electronic resistances in the external electri-

cal circuit (cables, current collectors) is given by

EEER = EER ·Acell

∫ t

0

IA(t)2 dt (4.5)

where EER is the external electronic resistance in unit Ω m2.

The energy consumption due to Donnan and Stern potentials in the electrodes,

or in other words, the energy consumption by EDL charging, has a positive value

during charging and a negative value during discharge, see Fig. 4.7. Clearly, we

observe that all energy stored in the Stern layer is released during discharge.

For Donnan, however, not all energy stored can be recovered during discharge,

which can be explained as follows. During charging, the Donnan layer is charged

from low salinity in the macropores, resulting in a high Donnan potential be-

tween macropores and micropores, while during discharge, the Donnan layer is

discharged with high salt concentration in the macropores, resulting in a lower

Donnan potential. Consequently, the energy released from the Donnan layer

during discharge is less than the energy required to charge the layer.

Fig. 4.7 also shows that, both during charging and discharge, energy is dissi-

pated due to the ionic resistances in the spacer and electrodes (mA), and due to

electronic resistances in cables and current collectors (EER). Comparing CV and

CC, we observe that the energy dissipation due to resistances is higher in CV than

in CC, both during charging and discharge, which can probably be explained by
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Fig. 4.7: Energy consumption at the end of charging and at the end of discharge of

a CDI cell, constant voltage (A) and constant current (B) operation (for both pan-

els: desalination 2.4 mM, water recovery 50%). Energy consumed by charging EDLs

(Donnan and Stern) increases during charging and can (partly) be recovered during

discharge. Energy consumed by ionic resistances in spacer and electrodes (mA), and by

electronic resistances in cables and current collectors (EER) increases during charging

and discharge. The total energy consumption at the end of the charging step for CV is

89.2 and for CC 93.4 kJ/mol, and at the end of discharge for CV 42.1 and for CC 19.3

kJ/mol.



96 Energy consumption in CDI – comparison of operational modes

the high currents directly at the start of a CV charging step and, consequently,

by the low salt concentrations in the spacer and electrodes, resulting in a high

resistance.

Although the energy dissipation due to resistances in CV mode is much higher

than in CC mode, we find that the total energy consumption at the end of a

charging step is slightly lower for CV compared to CC (89.2 vs. 93.4 kJ/mol).

This brings us to the conclusion that, for CV, the EDL can be charged less to

reach given ∆c and WR.

4.5 Conclusions

In this Chapter, we presented a methodology to compare two operational modes

in CDI: constant voltage (CV) and constant current (CC). In this methodology,

we used the dynamic CDI model that we outlined in previous work. We defined

several constraints and parameters describing desalination cycles for both CC

and CV, and we calculated for a sweep of parameter combinations the energy

consumption (with and without 50% energy recovery during discharge), water

recovery, WR, and the decrease in salt concentration of the diluate (averaged

over the charging step), ∆c. Thereafter, we plotted the lowest values of energy

as function of ∆c and WR.

This robust methodology showed that, in our example calculation, without

energy recovery, the lowest values of energy consumption of CV and CC operation

are approximately the same. If 50% of the energy released during discharge can

be recovered and reused in CDI, CC has a somewhat lower energy consumption

than CV.

We analyzed for which parameter combinations we find the lowest energy con-

sumption for desalination, given ∆c and WR, both for CC and CV. For future

work, one could analyze mixed modes of operation (e.g. CC charging and CV dis-

charge, or vice-versa), and operation with a lower flow rate during discharge than

during charging, an operational mode that can be used to increase WR. Further-

more, one could use our methodology to find parameter combinations that result

in optimum desalination performance for membrane-CDI systems, and other cell

designs.
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4.A Experimental design for model validation

Our experimental program is based on the CDI stack described in detail in Chap-

ter 2, consisting of four cells, each cell containing two porous carbon electrodes

of ∼33.8 cm2 area (dry mass of 0.552 g per electrode) and a thickness of ∼250

µm. These electrodes (Materials & Methods, PACMMTM 203, Irvine, CA, USA)

are characterized in Ref. [71]. A spacer (Glass fibre prefilter, Millipore) of 316

µm thickness keeps the electrodes apart and allows for fluid flow (compressed

thickness, see Ref. [162]). The water flow rate per cell is 7.5 mL/min and the

inflow salt concentration (NaCl) is 20 mM. The salt solution is pumped from a

vessel with a volume of 10 L, through the cell, thereafter passes a conductivity

sensor that records a value each second, and recirculates back to the vessel. The

solution in the vessel is purged with N2 gas to minimize the concentration of

dissolved oxygen in solution.

Typical results of the experiments are presented in Fig. 4.A.1 for the salt efflu-

ent concentration, current (in CV mode) and cell voltage (in CC mode) for three

consecutive cycles in each case. From these data we calculate the salt removal

per cycle (in mg NaCl per gram of both electrodes) and the charge transferred

in a cycle (in C/g), see Fig. 4.A.2. For CC operation, we do not present data for

charge (as they are simply equal to current multiplied by the half cycle time),

but present results in Fig. 4.A.2D of the average voltage during charging and dis-

charge. With all these data at hand, we can calculate the electric energy input

during charging by integrating the product of cell voltage and current over the

duration of the charging step. This is the energy input without energy recovery.

We also calculate the energy released during discharge (again from integrating
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the product of current and cell voltage) and subtract this full amount from the

input energy. This gives us the data for overall energy consumption assuming

100% recovery. Energy is given per mole of salt removed in kJ/mol. A numeri-

cal value expressed in kJ/mol, can be divided by five to obtain an approximate

value for energy consumption in the unit of “kT per ion”. Thus a value of 100

kJ per mol salt removal corresponds to 20 kT energy use per ion removed. To

calculate desalination, ∆c, we average the difference between inflow and effluent

concentration of the CDI stack over the duration of an adsorption step.
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Fig. 4.A.1: Experimental results for CDI cycles operated in CV or CC mode with

equal duration of charging and discharge. Effluent salt concentration is shown for A)

CV and C) CC. For CV, B) shows current density (given by current per cell in A,

divided by 33.8 cm2 electrode surface area), and for CC, D) shows discharge voltage,

V dch = 1.0 V. In CV mode the charging voltage is V ch = 1.0 V (duration of full cycle,

CT, is 2 min in all cases).
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Fig. 4.A.2: Experimental results for CDI cycles operated in CV or CC mode. For CV,

A) salt adsorption and B) charge are reported as function of the discharge voltage. For

CC, C) salt adsorption and average cell voltage during charging (CH) and discharge

(DCH) are reported as function of current density. The duration of a full cycle, CT, is

either 2 min or 4 min.
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Abstract

Capacitive Deionization (CDI) is a water desalination technology that adsorbs

ions into two electrically oppositely charged porous electrodes. Here, we intro-

duce a novel method to analyze the effluent concentration of a salt solution with

multiple ionic species by directing the outflow of a CDI cell to an inductively cou-

pled plasma optical emission spectroscopy (ICP-OES) instrument. Compared to

previous methods based on manual sampling, the on-line use of ICP-OES allows

collecting more accurate time-dependent ion adsorption data, and therefore, ion

dynamics can be studied even at very short cycle times. We use this method to

study ion adsorption from a mixed solution containing two monovalent cations

with similar radius, namely K+ and Na+. We find that K+ ions are preferen-

tially adsorbed over sodium ions, due to their higher mobility. Furthermore, we

compare our experimental findings with a novel multicomponent electromigra-

tion model that calculates dynamic adsorption of ions from solutions of multiple

salts. Whereas we find good agreement between data and theory at short cycle

times, we observe a considerable discrepancy for longer cycles.
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5.1 Introduction

Capacitive Deionization(CDI) is a desalination technology employing porous elec-

trodes [2]. By applying a voltage between two electrodes, cations are adsorbed

into the cathode, while anions are adsorbed into the anode. The ions are stored

in the micropores of the porous carbon electrodes, and water flowing through the

spacer channel is desalinated (adsorption or charging step). After the electrodes

are saturated, the ions are released by short circuiting the electrodes, resulting

in a concentrated effluent stream (desorption or discharge step).

Recent research interests in the field of CDI include synthesis of new electrode

materials and their chemical modification [11, 33, 51, 88–90], application of ion

exchange membranes [27, 34, 162], and the design of novel CDI cells with, for

example, wire-shaped electrodes [80] or flow electrodes [5, 72, 73].

Another research interest is the application of CDI for ion selective removal,

i.e., removing only certain ions, but keeping other ions in solution. Recently,

it has been shown that time-dependent ion selective removal can be achieved

in CDI [47]. In this study it was found that, after applying a sufficiently high

charging voltage, first monovalent Na+ ions are preferentially adsorbed into the

electrical double layers (EDLs). After some time, however, divalent Ca2+ ions

gradually replace Na+ ions in the EDLs. Another study investigated selective

adsorption of Ca2+ with a composite electrode of carbon nanotubes and Ca-

selective zeolite [94]. Other studies have shown selective adsorption of NO –
3 ions

using ion selective exchange resins [95], or non-specific ion exchange membranes

[28]. Lastly, Hou et al. [96] investigated selective adsorption of ions with activated

carbon electrodes in CDI, and showed selective removal due to differences in

radius and charge of ionic species.

In present Chapter, we study time-dependent adsorption of K+ and Na+ ions

from a solution of NaCl and KCl in CDI. This study is of particular interest,

because K+ and Na+ are both monovalent ions, and are fully dissociated at suffi-

ciently low concentration. Therefore, at equilibrium, one ion is not preferentially

adsorbed over the other, according to classical Donnan theory, see Chapter 2.

To study time-dependent ion adsorption, we use an inductively coupled plasma

optical emission spectroscopy (ICP-OES) instrument, which is directly, thus on-

line, connected to the outflow of the CDI cell, see Fig. 5.1. Hence, we can

measure the effluent concentration of different cations with a sampling inter-

val time varying from 2 to 4 s. Compared with methods described in previous

work [47, 163–166], which required manual sampling of the effluent, this interval

time is very short, and we can collect more accurate time-dependent salt adsorp-

tion data. Also, we can neglect concentration-averaging effects that occur when

collecting samples manually (which requires a non-negligible sampling volume).
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Capacitive Deionization (CDI) is a water desalination technology that adsorbs ions into two oppositely polarized
porous carbon electrodes, under the action of an applied voltage. Here, we introduce a novel method to analyze
the effluent concentration of multiple ionic species in mixtures of salt solutions by directing the outflow of a CDI
cell to an inductively coupled plasma optical emission spectroscopy (ICP-OES) instrument. Compared to previous
methods based onmanual sampling, the on-line use of ICP-OES allows collectingmore accurate time-dependent
ion adsorption data, and therefore, ion dynamics can be studied even at very short half-cycle times. We use this
method to study ion adsorption from a mixed solution containing two monovalent cations with similar radius,
namely potassium and sodium. We find that potassium ions are preferentially adsorbed over sodium ions, due
to their higher mobility. Furthermore, we compare our experimental findings with a novel multicomponent
electromigration model that calculates dynamic adsorption of ions from solutions of multiple salts. Whereas
we find good agreement between data and theory at low half cycle times, we observe a considerable discrepancy
at higher values.
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1. Introduction

CapacitiveDeionization (CDI) is a desalination technology employing
porous carbon electrodes [1]. By applying a charging voltage between
two electrodes, one electrode is negatively polarized, while the other
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Fig. 5.1: Schematic view of the method used to study time-dependent ion adsorption

in Capacitive Deionization. The outflow of the CDI cell is directly connected to the on-

line ICP-OES instrument in order tomeasure the concentration of each ion as function

of time.

Therefore, with on-line ICP-OES, time-dependent ion adsorption can be studied,

even for very short adsorption and desorption steps. Thus, on-line ICP-OES is

a very advantageous method, which has, to the best of our knowledge, not been

introduced in CDI research before.

We show that, although K+ and Na+ ions have the same valence, and a very

similar hydrated radius (3.31 and 3.58 Å respectively [167], selective removal

of potassium over sodium is possible, due to their different diffusion coefficients

(1.90·10−9 and 1.33·10−9 m2/s respectively). Furthermore, we present theoretical

results calculated using a novel multicomponent dynamic model, which calculates

electromigration of ions in porous carbon electrodes combined with ion adsorption

in EDLs. Compared with Chapters 2 and 3, this model is extended to include

multiple monovalent ionic species with different diffusion coefficients.

5.2 Theory

In our dynamic model, which calculates ion adsorption in porous carbon elec-

trodes, we distinguish two types of pores in the electrodes: micropores and

macropores. In the micropores, EDLs are formed, and consequently, ions are

adsorbed. In the macropores, ions are transported from the spacer channel to

the micropores. Please note that we make a simplification compared to the theory

presented in Chapters 2 and 3: we do not consider mesopores in our model. We

make this simplification as we do not aim to fit model parameters to experimen-
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tal data; we will only use the model to describe observed trends in experimental

data.

To model dynamic adsorption of ions in CDI, we couple two different models.

Firstly, we use the improved modified Donnan model (i-mD model), which is an

equilibrium model to relate voltage, charge density and ion adsorption to one

another, see Chapter 2. Secondly, we use a dynamic transport model, which

describes ion transport in the macropores. In this Chapter, we will only present

the equations used in the transport model. For a detailed description of the i-mD

model, see Chapter 2.

The transport model describes transport of ions in both electrodes, and consid-

ers that each ionic species has a different diffusion coefficient. The model assumes

that all ions are monovalent, and only considers capacitive processes, i.e., we ex-

clude possible Faradaic (redox) reactions. We neglect tortuosity effects.

The molar flux of ions through the macropores in the electrodes is described

by the Nernst-Planck equation,

Ji = −Di

(
∂cmA,i

∂x
+ zi · cmA,i ·

∂φmA

∂x

)
(5.1)

where subscript i refers to ion species i, and where Ji is the molar ion flux in

mol/m2/s, Di the ion diffusion coefficient in m2/s, cmA,i the ion concentration

in the macropores in mol/m3, zi the ion valency, φmA the dimensionless poten-

tial in the macropores, and x the coordinate running from the spacer-electrode

boundary to the electrode-current collector boundary.

At each position in the electrode, we evaluate for each ionic species the mass

balance
∂

∂t
(pmA · cmA,i + pmi · cmi,i) = −pmA ·

∂Ji
∂x

(5.2)

where pmA and pmi are the macro-, and microporosity of the electrode, and where

cmi,i is the ion concentration in the micropores.

Furthermore, we need the electroneutrality condition for the macropores∑
i

zi · cmA,i = 0 (5.3)

where i runs over all ions in the system, i.e. Na+, K+, and Cl– .

The micropore charge density, σmi, and total micropore ion concentration,

cions,mi are defined as

σmi =
∑
i

zi · cmi,i

cions,mi =
∑
i

cmi,i.
(5.4)

Based on Eqs. (5.1)–(5.4), we set up a system of three balance equations,

describing the evolution of σmi, cmA,T, which is the total concentration of cations
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or anions in the macropores, and the concentration of one of the cations, either

Na+ or K+.

The first balance equation evaluates σmi over time and is given by

pmi ·
∂σmi

∂t
= −pmA

∑
i

zi
∂Ji
∂x

. (5.5)

The second balance equation evaluates cmA,T over time and is given by

∂

∂t
(2 · pmA · cmA,T + pmi · cions,mi) = −pmA

∑
i

∂Ji
∂x

. (5.6)

Thirdly, we include Eq. (5.2) for one of the cations, either for Na+ or K+.

Note that the choice between Na+ or K+ is arbitrary, and the same output is

obtained, irrespective of the choice. In general, in case we model a system with

an electrolyte consisting of multiple monovalent ionic species, Eq. (5.2) has to be

included for Nc − 1 cationic species, and for Na − 1 anionic species, where Nc is

the number of cationic species and Na the number of anionic species.

Across the electrode, at each position, φmA is related to the potential in the

carbon matrix, φe, where subscript “e” can be replaced by “c” for the cathode,

or “a” for the anode, and is related to the Donnan potential, ∆φD, and the Stern

potential, ∆φS. These potentials follow from the i-mD model, see Chapter 2.

In this Chapter, we assume there is no electronic resistance across the electrode,

which is supported by experimental work presented in Box 3.1, and to simplify

our model even further, we assume there is no electronic resistance in cables

and current collectors, which connect the electrodes with the power source. To

that end, we can relate the cell voltage, Vcell, to a position invariant value of the

electrode potential, φc for the cathode, or φa for the anode, given by

Vcell = VT · (φc − φa) . (5.7)

The thermal voltage, VT, is given by VT = RT/F , where R is the gas constant

(8.314 J/(mol K)), T the temperature (K) and F Faraday’s constant (96,485

C/mol).

To evaluate the ion concentrations in the spacer channel, we set up a spacer

mass balance equation for each ionic species, except for one, which can be ar-

bitrary chosen. Thus, for Nc + Na − 1 ions, we set up a mass balance equation

according to

psp
∂csp,i
∂t

= −pmA

Lsp

∑
e=A,C

Je,i +
Φv

Lsp ·Acell
(cinflow,i − csp,i) (5.8)

where csp,i is the ion concentration in the spacer channel, Φv the flow rate through

the cell, Lsp the thickness of the spacer channel, Acell the electrode geometric
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surface area and cinflow,i the inflow ion concentration in the spacer channel, i.e.,

the ion concentration in the feed water. The molar flux of ions from the spacer

channel into the anode or cathode, Je,i, where subscript e can be “a” for the

anode or “c” for the cathode, is given by Eq. (5.1). Note that Eq. (5.8) is

different from the spacer balance equation, Eq. (11), in Chapter 3, as we do not

model concentration gradients in the direction perpendicular to the flow, neither

we describe the development of concentration profiles between the out- and inflow

of the cell. Furthermore, in the spacer channel, the electroneutrality condition

holds, Eq. (5.3), where subscript “mA” is replaced by “sp”.

The potential drop over the spacer channel, ∆φsp, is evaluated as follows

∆φsp = Lsp
IA

F
∑
i z

2
i ·Di · ci

(5.9)

where Lsp is the thickness of the spacer channel and IA is the current density in

A/m2. The potential drop over the spacer, ∆φsp, is related to the carbon matrix

potential difference between the anode (φa) and cathode (φc), according to

∆φsp = φa − φc. (5.10)

On the spacer-electrode boundary, the concentration csp,i of each ion is equal to

the concentration in the macropores at the boundary.

The current density is evaluated on the spacer-electrode boundary as follows

IA = F ·
∑
i

zi · Je,i. (5.11)

On the electrode-current collector boundaries (i.e., the “backside” of the elec-

trode), we apply the boundary conditions

∂cmA,i

∂x

∣∣∣∣
E/C

= 0,
∂φmA

∂x

∣∣∣∣
E/C

= 0 (5.12)

where the first equation holds for each ion.

5.3 Materials and methods

All experiments were performed using a CDI stack which contained two parallel

cells. Each cell consisted of two porous carbon electrodes (Materials & Meth-

ods, PACMMTM 203, Irvine, CA, δe ∼250 µm, mtot = 2.2 g total mass per

stack),which were connected with graphite current collectors (thickness δ ∼250

µm) to the electrical circuit. A polymer spacer (Glass fibre prefilter, Millipore,

compressed thickness of δsp ∼250 µm) was placed between the electrodes. An

aqueous solution with an inflow composition of 5 mM NaCl and 5 mM KCl flowed
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through the spacers at a constant flow rate of 7.5 mL/min/cell. The charging

voltage was applied with a potentiostat that also measured the current between

cathode and anode. The current was integrated over time, for the duration of the

adsorption step, resulting in the total charge, which was equal (after correcting

for a small leakage charge) to the charge released again in the desorption step.

This total charge with dimension Coulomb was divided by the total electrode

mass, mtot, and by Faraday’s number, to obtain the charge expressed in mol/g.

To measure the effluent ion concentrations, the outflow of the CDI cell was con-

nected to the peristaltic pump of the ICP-OES instrument (Optima 5300 DV,

Perkin Elmer) using a T-piece and polyethylene tubing with an internal diam-

eter of 1.0 mm, which was positioned ∼5 cm behind the outflow of the stack.

The peristaltic pump was operated at a constant flow rate of 0.8 mL/min. Just

before entering the nebulizer, the liquid flow from the CDI stack was mixed

with a solution of 5 ppm Y in 2% nitric acid. This setup could continuously

correct variations in the liquid flow entering the nebulizer that may be caused

by the peristaltic pump (temperature, wear). A quartz cyclonic spray chamber

and a perfluoroalkoxy (PFA) MicroFlow nebulizer (Elemental Scientific, Perkin

Elmer) were used to inject the liquid flow into the ICP-OES instrument, with

Ar (99.9990% mole, Linde Gas) as nebulizing gas. The ICP-OES instrument was

operated in radial viewing mode to simultaneously detect Ar, Y, K and Na at a

wavelength of 420.069 nm, 371.029 nm, 766.490 nm and 589.592 nm, respectively.

Instrument gas flow settings were 15 mL/min for the plasma, 0.2 mL/ min for the

auxiliary and 0.65 mL/min for the nebulizer. The power of the radio frequency

generator was set to 1400 W. Plasma read times were varied between 2 and 4 s to

obtain the optimal number of data points in each experiment. Seven calibration

standards were prepared in ultrapure water. Concentrations of the standards

were 0, 1, 2, 4, 6, 8 and 10 mM of sodium and potassium, respectively. The

calibration curve was recorded prior to each experiment, using three consecutive

replicates for all standards. A least-squares regression line was used to describe

the linear relationship between the concentration of the standards and the inten-

sity of the measured signals at both wavelengths. The ion effluent concentration

was integrated over time, for the duration of the adsorption step, resulting in

the total ion adsorption, which was equal (within measurements errors) to the

amount of ions released in the desorption step. This total ion adsorption was

divided by the total electrode mass, mtot, and multiplied by the molar mass of

the ion (see Table 5.1), Mw, to obtain the ion adsorption expressed in mg/g.
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Table 5.1: System and electrode dimensions, operational parameters, and settings for

theoretical calculations.

Experimental parameters

Lelec Electrode thickness 316 µm

Acell Electrode geometric surface area 33.8 cm2

Φv Flow rate through the cell 7.5 mL/min

Ns Number of cells in the CDI stack 2

T Temperature 298 K

ρelec Electrode mass density 0.55 g/mL

Molar mass of ionic species

Mw,Na+ Molar mass of Na+ 22.9 g/mol

Mw,K+ Molar mass of K+ 39.1 g/mol

Mw,Cl− Molar mass of Cl– 35.5 g/mol

Values used in the i-mD model

E Micropore ion-correlation energy 300 kT mol m-3

CS Stern capacitance in the zero-charge limit 100 F/mL

α Charge dependence of Stern capacitance 30 F m3 mol-2

Spacer channel properties

Lsp Spacer channel thickness (when compressed) 316 µm

psp Spacer channel porosity (when compressed) 0.708

Values used in the transport model

DNa+ Diffusion coefficient of Na+ 1.33 ·10−9 m2/s

DK+ Diffusion coefficient of K+ 1.90 ·10−9 m2/s

DCl− Diffusion coefficient of Cl– 2.02 ·10−9 m2/s

pmA Macroporosity 0.416

pmi Microporosity 0.3

psk Fraction skeleton material of electrode 0.29

5.4 Results and discussion

We conducted CDI experiments at different cycle times (CTs), i.e., at different

durations the desalination cycle, comprising both adsorption and desorption step.

Note that, in present Chapter, the duration of the adsorption step is always equal

to the desorption step. During the adsorption step, when we apply a charging

voltage, Vch, of 1.0 V, we observe that the effluent concentration of K+ decreases

faster and to lower values than the concentration of Na+, both for the experiments

with a short CT (4 min., Fig. 5.2A) and for a long CT (6 h, Fig. 5.2B). During the

desorption phase, when the electrodes are short-circuited, we see that K+ ions

are released faster and the K+ effluent concentration reaches higher values than

Na+. The data presented in Fig. 5.2 shows that the described on-line method
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Fig. 5.2: Effluent ion concentration as function of time for experiments with a cycle time

of 4 min (A) and of 6 h (B), during adsorption and desorption (Vch=1.0 V, cin,NaCl=5

mM and cin,KCl=5mM).

can determine the effluent concentration of multiple ions very accurately, using

a sampling interval time from 2 to 4 s.

In Fig. 5.3A we present adsorption of K+ and Na+ ions as a function of CT

and see that already at short CTs, the removal of K+ ions from the feed water

is higher than of Na+, while the concentration of both ions in the feed water is

equal. Fig. 5.3B shows that our theory predicts the experimentally observed ion

adsorption data very closely at short CTs, although data shows a faster increase

in ion adsorption compared to theory (see Table 5.1 for parameter values used in

our model).

The data shows that we reach the highest ratio of K+ over Na+ adsorbed with

a CT of 7.5 min. Whereas the data shows that a longer CT does not significantly

change this ratio, our theory predicts that this ratio decreases to unity. This

decrease can be explained by Eq. (2.1), which defines that, at equilibrium, the

concentration of an ion in the micropores is a function of the concentration in

bulk solution, the valence of an ion, and the Donnan potential. As the bulk

concentrations of K+ and Na+ are equal, and the different ions experience the

same Donnan potential, K+ and Na+ adsorption should be equal at equilibrium.

Since data shows a different adsorption for K+ and Na+, we performed additional

experiments with another batch of electrodes at an CT of 120 min. The data of

these experiments is shown in Fig. 5.3A (open stars), and again, we find a ratio

of K+ over Na+ higher than the ratio predicted by theory.

According to our theory, at equilibrium, selective ion adsorption can only be

achieved if the ions have a different charge. To account for the discrepancy be-
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Fig. 5.3: (A) Experimental data for ion adsorption (blue circles for K+ and green

squares for Na+) and their ratio (black stars) plotted as function of cycle time. (B)

Theoretical predictions of ion adsorption (blue line for K+ and green line for Na+) and

their ratio (black line), calculated based on the dynamic CDI model. In panel (A),

open stars show ratio of K+ over Na+ for experiments with another batch of the same

electrode material.

tween data and theory, one may include the effect of different chemical attractions

of the carbon surface towards different ions.

To conclude, Fig. 5.3 shows that higher adsorption of one ion over another

is possible, even though both ions have equal charge and very similar hydrated

radius. This selective adsorption was achieved without modifying the electrode

material or adding additional components to the system design, such as ion-

exchange membranes.

In Fig. 5.4 we show data and theory for charge and charge efficiency, which is

the ratio of the total anion (or cation) adsorption over total charge, as function

of the cycle time. Clearly, a longer cycle time gives rise to charge and charge

efficiency. Whereas we find good agreement between theory and data of charge

efficiency, the model underestimates charge.

5.5 Conclusions

We presented an on-line method to study dynamic ion adsorption from solutions

of multiple salts in Capacitive Deionization (CDI), which has, to the best of

our knowledge, not been introduced in CDI research before. With the presented

method ion concentrations in the effluent of a CDI cell can be accurately mea-

sured with a sampling time of 2-4 s. We show that selective removal of K+ over

Na+ is possible without modifying the electrode material or adding additional

components to the system design. Finally, we validate our experimental data
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Fig. 5.4: Experimental data and theory of accumulated charge (data: blue triangles,

theory: blue line), and charge efficiency, Λ, (data: green diamonds, theory: green line)

as function of cycle time. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

with a dynamic CDI model and find a good correlation between data and theory

at low cycle times. We also point out that theory and data show a significant

difference for longer cycle times.
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Abstract

Capacitive Deionization (CDI) is an electrochemical desalination technology. In

a CDI cell, water flows through a spacer channel which is placed between two

electrodes, and by applying a voltage over the electrodes, ions are adsorbed. To

enhance salt adsorption, membranes can be placed in front of the electrodes, a

modification called Membrane Capacitive Deionization (MCDI). In a MCDI cell,

ion exchange membranes are placed between electrodes and spacer channel. In

this Chapter, CDI and MCDI cells treating water with and without dissolved

oxygen are compared. Results show that the desalination performance of CDI

(thus, without membranes) decreases over time, most rapidly when a cell treats

feed water with dissolved oxygen. We describe experimental data with the am-

photeric Donnan model and find that the model describes experimental data best

with an increase in time of negative chemical surface charge in the anode and of

positive charge in the cathode. Similar experiments for MCDI (thus, with mem-

branes) show that, although dissolved oxygen affects the surface chemistry of the

electrode material, the desalination performance does not decrease over time,

which we explain by the fact that charge efficiency and desalination performance

in MCDI are mainly determined by the selectivity of the membranes.
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6.1 Introduction

Capacitive Deionization (CDI) is an electrochemical desalination technology us-

ing electrodes that are alternately charged and discharged [2, 4–8, 168, 169]. A

CDI cell consists of two porous carbon electrodes with a spacer channel in be-

tween. Feed water flows through the channel and by applying a charging voltage

over the electrodes, anions are adsorbed into the electrically positively charged

electrode, the anode, and cations into the negatively charged electrode, the cath-

ode. Consequently, water is desalinated. After the electrodes are saturated with

salt, they can be short-circuited for regeneration, which results in concentrated

effluent stream.

In CDI with porous carbon electrodes, ions are adsorbed into electrical double

layers (EDLs) that are formed in the micropores of the electrodes [29–32]. For

each electron transported from one electrode to the other, either a counterion

can be adsorbed into the EDL (desired), or a co-ion can be desorbed (undesired).

To avoid the desorption of co-ions from the electrodes into the spacer channel,

Membrane Capacitive Deionization (MCDI) was introduced [34–37]. In MCDI,

a cation exchange membrane is placed in front of the cathode, and an anion

exchange membrane in front of the anode, which block the transport of co-ions

from electrodes into the spacer channel.

For CDI and MCDI, it is important to guarantee stable long-term desalination.

Whereas MCDI has shown stable long-term performance [102], CDI shows a

declining desalination performance over time, especially if dissolved oxygen is

present in the feed water [3, 64, 100, 120, 170, 171]. This decrease in desalination

performance has been mainly attributed to faradaic reactions involving carbon

oxidation [63–65].

In literature, several carbon oxidation reactions are described [60, 172–175]

C + H2O −−→ C−OH + H+ + e− (6.1)

C + H2O −−→ C−−O + 2 H+ + 2 e− (6.2)

C + 2 H2O −−→ O−−C−OH + 3 H+ + 3 e− (6.3)

C + 2 H2O −−→ CO2 + 4 H+ + 4 e−. (6.4)

Eq. (6.3) is the production reaction of carboxylic (-COOH) groups, which can

dissociate into carboxylate (−COO– ) groups [84, 176, 177]. These carboxylate

groups have a negative charge and result in the formation of negative chemical

surface charge. The presence of these groups can affect the adsorption of ionic

charge in EDLs, and can affect the salt adsorption performance. These oxidation

reactions can only occur for a longer period of time if a reduction reaction also
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takes place, such as [60, 173]

C + H2O + e− −−→ C−H + OH− (6.5)

O2 + 2 H2O + 4 e− −−→ 4 OH−. (6.6)

In (M)CDI, other electrochemical reactions can occur as well, such as the pro-

duction of Cl2 by [58–62]

2 Cl− −−→ Cl2(aq) + 2 e− (6.7)

In present Chapter, we will not elaborate on these reactions.

In present Chapter, we study desalination in CDI and MCDI cells treating feed

water with and without dissolved oxygen for at least 80 hours. Experimental re-

sults are compared with the amphoteric Donnan model. This model describes

salt adsorption as function of cell voltage and considers chemical surface charge

and other EDL parameters. We employ this model to study the change of chemi-

cal surface charge over time during desalination, and thus, to investigate whether

we can describe the decreasing desalination performance during CDI experiments

with a change in chemical surface charge, see Fig. 6.1.

As already introduced, desalination in MCDI shows, contrary to CDI, a stable

long-term performance, also if dissolved oxygen is present in the feed water [102].

Although several researchers explain the stable performance by the fact that ion

exchange membranes (IEMs) act as a barrier for oxygen to reach the electrode

surface [120, 171], we hypothesize that oxygen passes the IEMs [178] and affects

the surface chemistry of the carbon electrodes. However, contrary to CDI, the

desalination performance does not decrease so rapidly in MCDI compared to

CDI, as the IEMs act as a barrier for co-ions to leave the electrode region. In

the present Chapter, we will test this hypothesis, and we will show that, also in

MCDI, the surface chemistry of the electrodes is affected by oxygen.

6.2 Theory

The amphoteric Donnan model is used to describe desalination performance dur-

ing long-term CDI experiments. This model calculates salt adsorption, charge

density and charge efficiency, and relates these variables to cell voltage and elec-

trical double layer (EDL) properties, which are micropore volume, Stern layer

capacitance and chemical surface charge [33, 51].

Each long-term desalination experiment consists of a large number of desali-

nation cycles, with each cycle consisting of an adsorption and a desorption step.

Values for desalination performance as function of chemical surface charge are

calculated at the end of each charging step, when equilibrium is reached. Thus,
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although the change of desalination performance and surface charge is modelled

over time, values of these variables are only calculated in equilibrium, and an

equilibrium model suffices.

6.2.1 Amphoteric Donnan model

We model a CDI cell with two electrodes that are electrically oppositely charged.

The micropores in each electrode are divided into two regions: the acidic and

basic region (Fig. 6.1) [51]. The acidic region has a negative chemical surface

charge, which is due to the presence of acidic groups, such as carboxylate struc-

tures. The basic region has a positive chemical surface charge, which caused

by basic groups. So, in total 4 micropore regions (two electrodes with each two

regions) are modelled.

We assume that the electrolyte only contains a monovalent salt. In other words,

we assume that the concentrations of carbonic acid species (H2CO3, HCO –
3 and

CO 2–
3 ), and of protons (H+) and hydroxyl ions (OH– ) are very low and therefore

their contribution to salt adsorption in the micropores is negligible1.

In each micropore region, three types of charge in the EDL are considered:

electronic, ionic and chemical [33]. The electronic charge, σelec, is due to electrons

stored in the carbon matrix, whereas the ionic charge, σionic, is due to ions in

the diffuse layer. The chemical charge, σchem, is due to acidic or basic groups at

the carbon surface. For each micropore region, the sum of the different types of

charge is equal to zero, thus

σelec + σionic + σchem = 0. (6.8)

The ionic charge is evaluated according to

σionic = −2 · c∞ · sinh (∆φD) (6.9)

where ∆φD is the Donnan potential between macro- and micropores, and where

c∞ is the salt concentration in the bulk solution, which is, in equilibrium, equal

to the concentration in the macropores of the electrodes. We relate the electronic

charge to the Stern potential and Stern layer capacitance [33, 51]

σelec = ∆φS · VT · CS/F (6.10)

where ∆φS is the Stern potential and CS the Stern layer capacitance. The thermal

voltage, VT, is given by VT = R·T
F , where R is the gas constant (8.314 J/(mol

1In Section 6.3 we describe that the concentration of carbonic acid species in solution is

negligible compared to the concentration of NaCl.
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K)), T the temperature and F Faraday’s constant (96,485 C/mol). We calculate

the total concentration of ions in the micropore region, cions,mi, using

cions,mi = 2 · c∞ · cosh (∆φD) . (6.11)

The EDL potential, ∆φEDL, is the summation of the Donnan and Stern po-

tential. This potential is considered equal for acidic and basic regions, and is

evaluated for both anode and cathode using [51, 159]

∆φEDL = (∆φD + ∆φS)A = (∆φD + ∆φS)B (6.12)

where subscript “A” refers to the acidic, and “B” to the basic region.

The cell voltage, Vcell, is related to ∆φEDL in the anode (indicated with sub-

script “an”) and cathode (“cat”)

Vcell = VT · (∆φEDL,an −∆φEDL,cat) . (6.13)

For each electrode the average electronic charge over the acidic and basic re-

gion, and the average ion concentration in the micropores are given by

σelec,avg = 1
2 (σelec,A + σelec,B) (6.14)

cions,mi,avg = 1
2 (cions,mi,A + cions,mi,B) . (6.15)

Assuming that the acidic and basic micropore regions have equal volume in

both electrodes, the average electronic charge in the anode and cathode sum up

to zero,

σelec,avg,an + σelec,avg,cat = 0. (6.16)

Theoretical values for salt adsorption, Γsalt, charge density, ΣF, and charge

efficiency, Λ, are given by

Γsalt =
1

4
·Mw,salt · vmi· (6.17)((

cch,end
ions,mi,avg − c

dch,end
ions,mi,avg

)∣∣∣
ca

+
(
cch,end
ions,mi,avg − c

dch,end
ions,mi,avg

)∣∣∣
an

)
(6.18)

ΣF =
1

2
· F · vmi

(
σch,end

elec,avg − σ
dch,end
elec,avg

)
(6.19)

Λ =
F

Mw,salt
· Γsalt

ΣF
(6.20)

where cch,end
ions,mi,avg (cdch,end

ions,mi,avg) is cions,mi,avg at the end of a charging (discharge)

step, and where Mw,salt is the molar mass of the salt (for NaCl Mw,salt = 58.44

g/mol). Please note that ΣF can be calculated using values for σelec,avg in anode

or cathode.
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6.2.2 Change of chemical surface charge

To model the development of σchem, we assume that groups are formed in both

regions, and that the formation rates are the same. Furthermore, we assume that

the formation rate can be described using an exponential relationship. For each

electrode, we use the relations

σchem,A = γA +
(
σstart

chem,A − γA

)
· exp (−k · t) (6.21)

σchem,B − σstart
chem,B = σchem,A − σstart

chem,A (6.22)

where γ describes the maximum value of σchem, or, in other words, the asymptote

of the function, and k describes the rate of formation. Both γ and k are fitting

parameters. Parameter σstart
chem is the value of σchem of pristine electrodes, which

are electrodes that have not been charged before. Variable t is the time to reach

the end of a desalination cycle. To calculate the evolution of variables σchem,A

and σchem,B during an experiment, we compute values for these variables at the

end of each desalination cycle. Thus, t runs from tcycle to tend in discrete steps of

tcycle, where tcycle is the duration of a desalination cycle, and tend the total time

of the experiment.

6.3 Materials and methods

6.3.1 CDI experiments

CDI experiments were conducted using a stack containing 4 CDI cells, which was

placed in a polymethylmethacrylate (PMMA) housing. Each CDI cell consisted

of two home-made porous carbon electrodes (geometric surface area 33.75 cm2),

and a spacer material (AP20, Glass Fiber Filter, Millipore, MA, thickness 300

µm) positioned between the electrodes. The electrodes were fabricated according

to the procedure described in Chapter 2. The cells were connected with the

electrical circuit by placing the electrodes between graphite current collectors.

We pumped a NaCl solution (temperature 295 K) from a recirculation vessel

of 10 L through the CDI cell, and back to the recirculation vessel with a flow

rate of 7.5 mL/min/cell. At the outflow of the cell, we placed a conductivity

and pH sensor, which measured at a sampling time of 1 s. The salt solution was

prepared with a concentration of 20 mM, and the pH was controlled, during CDI

experiments, at a value between 6.8 and 7.2.2

We conducted experiments under deaerated and aerated conditions. For the

deaerated experiments, we purged the inflow solution with nitrogen to strip dis-

solved oxygen, while for the aerated experiments, we purged the inflow solution

2For the MCDI experiments, we did not control the pH of the inflow solution.
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with air. We note that, although carbonic acid species are present in the inflow of

aerated experiments, the total concentration is low (0.06 mM at pH 7) compared

to the NaCl concentration, and therefore, these species are not considered for the

calculation of salt adsorption.

The electrical circuit of the CDI stack was connected with a potentiostat (Ivi-

umStat, Ivium Technologies, The Netherlands) to control cell voltage and mea-

sure current. We alternately charged and discharged the cell. Charging was done

at a constant voltage of 1.2 V for 400 s; discharge was done at 0 V for 250 s.

6.3.2 MCDI and MCDI-I experiments

The MCDI experiments were conducted following the procedure described in

Section 6.3.1, with a stack containing 4 MCDI cells. Each MCDI cell was built

just as a CDI cell, but a cation exchange membrane (Neosepta CMX, thickness

190 µm) was placed between spacer and cathode, and an anion exchange mem-

brane (Neosepta AMX, thickness 130 µm) between spacer and anode. The MCDI

experiments were performed under aerated conditions.

To determine the effect of dissolved oxygen on electrodes placed in an MCDI

cell, we temporarily paused the MCDI experiment and removed the membranes

from the stack. Then, we conducted intermediate CDI experiments, referred to

as MCDI-I, to test the desalination performance of the electrodes. These MCDI-I

experiments were performed under deaerated conditions to avoid the presence of

dissolved oxygen and thus to minimize the occurrence of faradaic reactions. The

cell was alternately charged and discharged as described in Section 6.3.1 for 3

cycles (total duration 1950 s). Finally, membranes were re-inserted into the stack

and the MCDI experiment was continued. An overview of the experimental design

of these MCDI with MCDI-I experiments conducted intermediately is shown in

Table 6.1.

6.3.3 Desalination performance

The desalination performance is expressed in terms of salt adsorption, charge

density and charge efficiency. The salt adsorption of each (M)CDI cycle was

calculated by integrating the difference between effluent and inflow salt concen-

tration over time during an adsorption step, and multiplying the resulting value

with the flow rate through the (M)CDI stack and the molar mass of the salt.

In this Chapter, we distinguish two types of charge: capacitive and faradaic.

The capacitive charge, ΣF,c, is stored in EDLs, and the faradaic charge, ΣF,f , is

used to drive faradaic reactions, such as Eqs. (6.1)–(6.6). During the charging

step (charging voltage 1.2 V) these reactions could occur, which means that the

charge at the end of a charging step is the sum of capacitive and faradaic charge,
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Table 6.1: Experimental design of MCDI-Aerated experiments with intermediate CDI

experiments (referred to as MCDI-I). The MCDI-Aerated experiments were performed

with an inflow solution containing dissolved oxygen (aerated), whereas MCDI-I exper-

iments were performed with an inflow solution stripped from dissolved oxygen (deaer-

ated). The aim of the MCDI-I experiments of was to determine the desalination per-

formance of the electrodes without the inclusion of IEMs in the cell, and thereby study

the effect of dissolved oxygen on electrodes in MCDI.

Duration Cell design Inflow solution Aim

MCDI - I 1950 s CDI Deaerated Characterization

MCDI - Aerated 2 d MCDI Aerated Operation

MCDI - I 1950 s CDI Deaerated Characterization

MCDI - Aerated 2 d MCDI Aerated Operation

MCDI - I 1950 s CDI Deaerated Characterization

which we call total charge, ΣF,t. During the discharge, we assume that these

reactions did not occur, which means that we only measured capacitive charge.

The total, capacitive, and faradaic charge can be calculated using

ΣF,t = ΣF,c + ΣF,f

ΣF,t =
1

Melec

∫ tch

0

I(t)dt (6.23)

ΣF,c =
1

Melec

∫ tdch

0

I(t)dt

where Melec is the total mass of all electrodes, tch is the duration of the charg-

ing step, and tdch of the discharge step. To calculate charge efficiency, we use

Eq. (6.20), where we insert ΣF,c for ΣF.

6.4 Results and discussion

6.4.1 CDI

The desalination performance expressed in terms of salt adsorption, charge ef-

ficiency and capacitive charge of a desalination cycle is shown in Fig. 6.2. Ex-

periments were conducted with aerated and deaerated feed water. Clearly, a

decrease of desalination performance is observed over time, which is for the aer-

ated case stronger than for the deaerated case, and is in agreement with other

studies [3, 64, 100, 120, 170, 171]. After 45 hours of desalination, for the aerated

case, salt adsorption becomes negative, which means that salt is adsorbed dur-

ing discharge (charging voltage 0 V), and desorbed during charging (discharge
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Table 6.1: Parameters used for amphoteric Donnan model

General electrode parameters

vmi Micropore volume 0.45 mL/g

CS Stern capacitance 160 F/mL

σstart
chem,A Chemical surface charge acidic region -239 mM

at start (both anode and cathode)

σstart
chem,B Chemical surface charge basic region 274 mM

at start (both anode and cathode)

αmi,A = αmi,B Volume ratio acidic and basic 1:1

regions micropores

T Temperature 298 K

Formation chemical surface charge at electrode surface

Aerated case Deaerated case

Anode

γA -992 mM -387 mM

k 0.046 s-1 0.046 s-1

Cathode

γA 1000 mM 156 mM

k 0.011 s-1 0.004 s-1

voltage 1.2 V). Theory is in good agreement with data for salt adsorption and

charge efficiency, but not for capacitive charge after 40 h of desalination.

We described decreasing desalination performance by a change of chemical

surface charge in acidic and basic regions, both for the aerated and deaerated

case. Therefore, desalination data was fitted with theory to find values for γA

and k for each electrode, which are reported in Table 6.1. As Fig. 6.2 shows,

in both cases, chemical surface charge decreases in the anode, and increases in

the cathode, but the changes are much stronger for the aerated case than for the

deaerated case. Note that the difference in surface charge between acidic and

basic groups is constant, which we assumed and defined by Eq. (6.22).

The calculated decrease of chemical surface charge in the anode is most likely

caused by carbon oxidation, see Eq. (6.3), which results in the formation of

carboxylate surface groups with negative charge. However, the increase of surface

charge at the cathode is difficult to explain; we have not yet identified the groups

that can be formed at the cathode and have a positive chemical surface charge.

The data for effluent pH over time of different desalination cycles show that,

at the start of an experiment (Fig. 6.3A, 0.5 h.), there is a strong increase of

effluent pH during charging. Later, after 96 h., pH fluctuations are very limited.
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desalination cycles in CDI.3

These fluctuations can be caused by faradaic reactions, see Eqs. (6.1)–(6.7), if the

combination of oxidation and reduction reactions results (temporarily) in the nett

formation of H+ or OH– . Furthermore, these fluctuations can be due to different

mobilities of ions in solution (Na+, Cl– , H+ and OH– ), which results in different

ion adsorption rates. For MCDI, however, this fact explains pH fluctuations only

to a small extent, as well will discuss in Chapter 7.

We also studied dynamics of salt adsorption, see Fig. 6.3B. The first cycles

of a CDI aerated experiment show salt adsorption during charging, and salt

desorption during discharge. However, in less than 21 h we observe inversion

behavior: before salt adsorption, there is a desorption peak [64, 100]. Later,

after 96 h, during charging, there is only desorption of salt, and salt is adsorbed

during the discharge step.

3The results show the dynamics of experiments for which equilibrium data is presented in

Fig. 6.2 (dataset indicated with ‘�’).
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6.4.2 MCDI

After studying the effect of aerated feed water on the desalination performance

in CDI, we also studied the effect in MCDI. The results are shown in Fig. 6.4.

Column I shows that salt adsorption (A) and charge efficiency (C) of MCDI

aerated experiments decrease only slightly over time compared to CDI aereated.

We hypothesize that, although the desalination performance does not decrease

in MCDI, the surface chemistry of the electrodes is still affected by dissolved oxy-

gen. To test this hypothesis, MCDI-I experiments were conducted after two days

of MCDI desalination. To that end, the MCDI experiment was paused, mem-

branes were removed from the stack and we tested the desalination performance

of the electrodes as described in Section 6.3.2. As Fig. 6.4 shows, we observe a

decrease in desalination performance during the experiment compared to the CDI

deaerated case. This finding indicates that, although membranes were present,

the electrodes were affected by dissolved oxygen, and that dissolved oxygen passes

through the IEMs, which is also supported by Refs. [178–180]. Because of the

presence of IEMs, however, the desalination performance is not affected, as co-

ions desorbed from the EDLs are trapped in the electrodes, they cannot flow

from the electrodes into the spacer channel and the charge efficiency is not con-

siderably affected by the change in surface chemistry at the electrodes. The most

important parameter describing the charge efficiency in MCDI is the selectivity

of the membranes, which indicates how many co-ions can pass the membranes

and leave the electrode region. Thus, the charge efficiency of MCDI experiments

is mainly determined by the selectivity of the membranes, not by the surface

chemistry of the electrodes.

6.5 Conclusions

We showed that the desalination performance, expressed in terms of salt adsorp-

tion, charge density and charge efficiency, decreases over time in CDI. This de-

crease is much stronger in cells treating water containing dissolved oxygen, than

in cells treating water without dissolved oxygen. Data of desalination experi-

ments were described by the amphoteric Donnan model, and this model explains

that the decrease in desalination performance is due to I) an increase of negative

chemical surface charge in the anode, and II) an increase of positive chemical

surface charge in the cathode. The first finding can be explained by the forma-

tion of COO– -groups in the anode, we do not know which groups are responsible

for the second finding.

4CDI aerated dataset indicated with ‘�’ in Fig. 6.2.
5CDI deaerated dataset indicated with ‘�’ in Fig. 6.2.
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We also studied the effect of dissolved oxygen in MCDI and made the ob-

servation that, although the desalination performance does not decrease, the

surface chemistry of the electrodes is affected by dissolved oxygen, which should

in principle result in a lower charge desalination performance. However, as the

ion exchange membranes acts as a barrier for ions to leave the electrode region,

the selectivity of the membranes determines the charge efficiency of the process,

rather than the surface chemistry of the electrodes.
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Abstract

In electrochemical water desalination, a large difference in pH can develop be-

tween feed and effluent water. These pH changes can affect the long-term stability

of membranes and electrodes. Often faradaic reactions are implicated to explain

these pH changes. However, quantitative theory has not been developed yet to

underpin this idea. We develop a theory for electrochemical water desalination

which includes not only faradaic reactions but also the fact that all ions in the wa-

ter, including H+ and OH– , have different mobilities (diffusion coefficients). We

quantify the latter effect by microscopic physics-based modeling of pH changes

in Membrane Capacitive Deionization (MCDI), a water desalination technology

employing porous electrodes and ion-exchange membranes. We derive a dynamic

model and include the following phenomena: I) different mobilities of various

ions, combined with acid-base equilibrium reactions; II) chemical surface charge

groups in the micropores of the porous carbon electrodes, where electrical double

layers are formed; and III) faradaic reactions in the micropores. The theory pre-

dicts small pH changes during desalination cycles in MCDI if we only consider

phenomena I) and II), but predicts that these pH changes can be much stronger

if we consider phenomenon III) as well, which is in line with earlier statements in

the literature on the relevance of faradaic reactions to explain pH fluctuations.
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7.1 Introduction

During water desalination by methods such as electrodialysis and capacitive

deionization, often large changes in pH develop between feed and effluent wa-

ter. These pH changes can result in precipitation and scaling of membranes and

electrodes, and can affect long-term stability of membrane and electrode ma-

terials [64, 66–68]. Also, these pH changes can lead to a product that has an

undesired pH.

In literature, different explanations can be found for these pH changes. Some

studies describe how faradaic reactions result in production or consumption of

protons or hydroxyl ions [8, 99–101], such as the reduction of water, the oxidation

of carbon, the reduction of oxygen, or the oxidation of chloride ions. In our view

another effect should be considered as well, which is the fact that all ions in the

water have different mobilities (diffusion coefficients), which results in different

ion adsorption rates, and thus in pH changes. We like to quantify these effects

of different ion mobilities and faradaic reactions by microscopic physics-based

modeling of a relevant electrochemical water desalination method.

To elucidate this effect, we choose to study pH changes in Membrane Capac-

itive Deionization (MCDI), a water desalination technology employing porous

electrodes and ion-exchange membranes (IEMs) [2, 4–7, 72, 89, 168, 169]. As

electrode material, we will focus on carbon electrodes. In MCDI, during the

charging step, or adsorption step, a voltage is applied between electrodes, result-

ing in cation adsorption into the cathode, and anion adsorption into the anode.

Consequently, feed water flowing through the cell is desalinated. Ions are ad-

sorbed in the micropores of the electrodes, where electrical double layers (EDLs)

are formed [29–31]. After the electrodes are saturated with salt, they are dis-

charged and ions desorb. In MCDI, strong pH changes are often observed and

feed water and effluent may have large differences in pH, changing over time

[60, 99, 100]. The IEMs are placed between the spacer channel and electrodes,

see Fig. 7.1, and enhance salt adsorption [34, 35, 181].

To study pH changes in MCDI, we extend existing models, as described in

Chapters 2, 3 and 5, and include besides Na+ and Cl– ions (or any other pair

of salt ions) also protons and hydroxyl ions. We model the transport of these

ions across the spacer channel and membranes, into the electrodes. Further-

more, we consider the self-ionization reaction of water, H2O −−→←−− H+ + OH– . In

the electrodes, we distinguish two types of pores: macropores and micropores.

Macropores are large pores serving as transport pathways across the electrode

[56, 142, 182]. Micropores are small pores where ions adsorb and faradaic reac-

tions occur. To model ion adsorption, we consider the effect of chemical surface

charge [33, 51]. Chemical surface charge is present in the form of acidic groups,
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Fig. 7.1: Overview of membrane capacitive deionization. During charging, ions, includ-

ing protons and hydroxyl ions, are transported through the membranes and macropores,

and are adsorbed in the micropores. Each ion has a different transport rate, resulting

in large differences in pH between feed water and effluent of the cell. Carboxylic and

protonated structures are present in the micropores with a chemical surface charge.

Faradaic reactions occur in the micropores at the carbon-solution interface.
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because of carboxylic structures [9, 90], or basic groups, because of protonated

structures bound to carbon particles [183, 184].

We show that theory including the effect of different ion mobilities and the

effect of acidic and basic groups in micropores, predicts differences in pH between

feed water and effluent, which change over time. Furthermore, we show that these

differences in pH can be much stronger if we also consider faradaic reactions.

7.2 Theory

To model pH in the MCDI cell as function of position (in membrane, spacer chan-

nel, and electrode) and time, we present a mathematical framework to calculate

transport, adsorption and faradaic reactions of ions. This framework consists of

three elements:

I) Transport of ions from the spacer channel, through the membranes, into the

porous carbon electrodes, which is modelled based on the Nernst-Planck equation.

In the present Chapter, we include acid-base equilibrium reactions between ions,

such as the self-ionization reaction of water to protons and hydroxyl ions (and

back). Acid-base equilibria can be included in several ways. In previous work

we argued that for various reasons it is advantageous to assume that all acid-

base reactions are locally at equilibrium [143, 145]. In this approach, kinetic rate

constants are not necessary and we only need to know pK-values of the respective

chemical equilibria [185–187]. In the present Chapter, we follow this approach.

II) Adsorption of ions in the micropores of porous carbon electrodes, where

EDLs are formed, which is modelled using the amphoteric Donnan model [33,

188]. This model relates salt adsorption, charge density and potential to one

another, and includes the effect of chemical surface charge in the electrodes.

III) Faradaic reactions of ions in the micropores are modelled using the Frumkin-

Butler-Volmer (FBV) equation [40, 69, 70]. This model relates kinetics of faradaic

reactions self-consistently to local ion concentrations and electronic charge, with-

out requiring knowledge of reference states.

Next, we present a theory including these three elements, i.e., the transport

model including acid-base equilibria, the amphoteric Donnan model and the FBV

equation. We consider the asymmetry between anode and cathode that can

develop because of unequal ion diffusion coefficients, and because of different

faradaic reaction kinetics. Therefore, we solve the equations presented in this

section for each electrode (and membrane) separately.
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7.2.1 Spacer channel

In the spacer channel, transport of ions is evaluated in two directions: first, in the

flow direction (y-direction), thus, from entrance to exit of the cell, and second,

in the direction perpendicular to flow (x-direction), thus, across the width of the

spacer channel. To describe changes in the y-direction mathematically, we divide

the spacer channel into M sub-cells, and we model that the electrolyte flows

downstream from sub-cell m into sub-cell m+1 [35, 189]. The concentration and

pH of the electrolyte that leaves a certain sub-cell m is equal to the concentration

and pH in that particular sub-cell, and equal to the inflow concentration of sub-

cell m+ 1, cinflow,i. The effluent concentration of the cell is equal to the effluent

concentration of sub-cell M . Note that the sub-cells are not mixed in the x-

direction, but all concentrations and other properties remain x-dependent; thus,

parallel streamlines are assumed. For each of these mathematical sub-cells, we

dynamically evaluate all equations presented in this section. In this Chapter, we

assume that the spacer channel is 100% open.

To describe concentration profiles in the direction perpendicular to the flow

direction, thus in x-direction, we evaluate the molar flux of ions across the spacer

channel, as given by the Nernst-Planck equation

Jsp,i = −Deff,i

(
∂csp,i
∂x

+ zi · csp,i ·
∂φsp

∂x

)
(7.1)

where csp,i is the concentration of ion i in the spacer channel, and zi is the

valence of an ion. Parameter Deff,i is the effective diffusion coefficient, which

in an open spacer channel is equal to Di, which is the diffusion coefficient in

free solution. We neglect tortuosity effects in spacer and electrodes. Variable

φsp is the dimensionless potential in the spacer channel, and x runs from the

spacer channel-membrane boundary on the anode-side, CH/Man, to the spacer

channel-membrane boundary on the cathode-side, S/Mcat.

In the spacer channel, we assume a plug-flow profile for the fluid velocity of

the water in y-direction, i.e., the flow velocity is invariant across the width of

the channel, and for Na+ and Cl– we set up a mass balance for each sub-cell

(numbered 1..M), which is for an open channel given by

∂csp,i
∂t

= −∂Jsp,i

∂x
+

1

τsc
· (cinflow,i − csp,i) (7.2)

where cinflow,i the inflow concentration of ion i in the sub-cell (equal to the

concentration in the previous sub-cell, at that particular x-position), and τsc
is the retention time in a sub-cell. This retention time is given by

Acell·Lsp

Φv·M , where

Acell is the electrode geometric surface area, Lsp the thickness of the spacer

channel, Φv the flowrate through the cell, and M the number of mathematical
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sub-cells. Note that concentrations and fluxes, csp,i and Jsp,i, in Eq. (7.2), are all

x-dependent. Boundary conditions for Eq. (7.2) will be discussed in Section 7.2.2

(Eqs. (7.11) and (7.12)).

At each position in the spacer channel, we assume that the electroneutrality

condition

ρsp =
∑
i

zi · csp,i = 0 (7.3)

holds, where ρsp is the local charge density and i runs over all ions, including H+

and OH– . Furthermore, we consider the charge balance

∂ρsp

∂t
= − ∂

∂x

∑
i

zi · Jsp,i = 0 (7.4)

in which we insert the Nernst-Planck equation, Eq. (7.1).

To evaluate the x-directional ionic current density, Jcharge (which is indepen-

dent of x-position in a given sub-cell, but changes from sub-cell to sub-cell), we

apply

Jcharge =
∑
i

zi · Jaux
sp,i (7.5)

where again, as throughout this Chapter, the summation includes Na+, Cl– , H+

and OH– , and where Jaux
sp,i is given by

Jaux
sp,i = −Deff,i

Lsp
·

(
csp,i|CH/Mcat

− csp,i|CH/Man
+ zi

∫ φsp|CH/Mcat

φsp|CH/Man

csp,i dφsp

)
. (7.6)

Note that Jaux
sp,i has no direct physical meaning and is only an auxiliary parameter.

For a detailed derivation of Eq. (7.6), see 7.A.

Because we assume that all acid-base reactions are locally at equilibrium, we

replace [OH– ] in Eqs. (7.3)–(7.6) with [H+] using the acid-base equilibrium con-

stant of the self-ionization reaction of water (H2O −−→←−− H+ + OH– ), Kw

Kw = [H+] · [OH−] (7.7)

where [..] denote concentrations (used interchangeably with symbol “c”).

We relate the sub-cell-dependent ionic current density to the overall average

cell electric current, I (A/m2), according to

I =
F

M

M∑
M=1

Jcharge,M (7.8)

where F is the Faraday constant (96,485 C/mol) and where the summation runs

over all M sub-cells.
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7.2.2 Membranes

The molar flux of ions across the membranes is again given by the Nernst-Planck

equation, Eq. (7.1), where subscript “sp” is replaced by “m”, and where cm,i is

the concentration of ion i in the membrane, φm is the potential in the membrane,

and x runs from the CH/M interface to the membrane-electrode interface, M/E.

Parameter Deff,i is the effective diffusion coefficient of ion i in the membrane

pores, which is given by Deff,i = dr,m · Di, where dr,m is a factor to reduce the

diffusion coefficient in the membrane relative to the value in free solution, D. To

evaluate ion concentrations, we set up a mass balance

∂cm,i
∂t

= −∂Jm,i

∂x
(7.9)

which we solve for Na+ and Cl– . To simplify, we model steady-state ion transport

across the membranes. Therefore, we can set the left-hand side of Eq. (7.9) to

zero.

At each position in the membranes, we apply the electroneutrality condition

ωX +
∑
i

zi · cm,i = 0 (7.10)

where i runs over all ions, including H+ and OH– , and where X is the fixed

membrane charge density defined per unit pore volume, and ω is the sign thereof,

which is -1 for a CEM and +1 for an AEM. Furthermore, we consider the charge

balance at each position in the membranes as well, given by Eq. (7.4), replacing

subscript “sp” by “m”.

On the spacer channel-membrane interface, and on the membrane-electrode

interface, we apply

cm,i|CH/M = csp|CH/M · exp
(
−zi ·∆φDCH/M

)
cm,i|M/E = csp|M/E · exp

(
−zi ·∆φDM/E

) (7.11)

for every ion, where ∆φD is the Donnan potential, that is the potential just inside

the membranes, relative to that just outside the membrane, in solution.

Furthermore, at the CH/M boundary, we have continuity of ionic fluxes, which

is for Na+ and Cl– given by

− Jsp,i|CH/M + Jaux
m,i = 0 (7.12)

where molar flux Jaux
m is given by Eq. (7.6) with subscript “sp” replaced by

“m”, “CH/Mcat” by “M/E” and “CH/Man” by “CH/M”. For the ionic current we

evaluate

Jcharge =
∑
i

zi · Jaux
m,i (7.13)
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where i runs over all ions. Note that for Na+ and Cl– Jaux
m,i is the molar flux

through the membrane.

In Eqs. (7.10)–(7.13) we replace [OH– ] with Kw

[H+]
, using Eq. (7.7).

7.2.3 Porous carbon electrodes

We model two different types of pores in the electrodes: macropores and mi-

cropores. The macropores serve as transport pathways for ions from the M/E

boundary to the micropores, where ions are adsorbed. We distinguish two mi-

cropore regions in the model, one with a negative chemical surface charge due to

the presence of acidic groups, and one with a positive surface charge due to basic

groups on the carbon surface.

As transport of ions from the spacer channel, through the membranes, into the

electrodes, has been found to be rate-limited by the membranes, see Chapter 3,

we can assume that strong concentration gradients will not develop across the

electrodes and we can consider averaged micro- and macropore concentrations

(within a given sub-cell, independent of x-position in electrode). To model ad-

sorption of Na+ and Cl– ions in the electrodes, we evaluate the mass balance

∂

∂t

(
pmA · cmA,i + pmi

∑
R

αmi,R · cmi,i,R

)
− 1

Lel
· Jaux

m,i = 0 (7.14)

with pmi and pmA the micro- and macroporosity, cmA,i the concentration of

ion i in the macropores, and Lel the thickness of the electrode. Concentration

cmi,i,R is the concentration of an ion in micropore region R, where R is either

A or B, A for the region with acidic groups, and B for the region with basic

groups. The fraction of all micropore volume occupied by region R is αmi,R,

thus
∑
R=A,B αmi,R = 1. In this Chapter, we set αmi,A = αmi,B = 0.5, for both

anode and cathode. For Na+ and Cl– , the molar flux Jaux
m,i is equal at the M/E

boundary to the molar flux at the CH/M boundary, as ion transport in steady

state is assumed across the membranes.

For the macropores, we apply the electroneutrality condition∑
i

zi · cmA,i = 0. (7.15)

The concentration of ions in each of the micropore regions, cmi,i,R, is given by

cmi,i,R = cmA,i · exp (−zi ·∆φD,R) (7.16)

where ∆φD,R is the Donnan potential, which is different for acidic and basic

regions, and also different between the electrodes.



138 Theory of pH changes in water desalination by MCDI

In the micropores, for both regions separately, we evaluate the Stern potential

∆φS,R =
σelec,R · F
VT · CS

(7.17)

where CS is the Stern capacitance in F/m3, σelec,R the electronic charge in

mol/m3, and VT the thermal voltage given by VT = R·T
F , where R is the gas

constant (8.314 J/(mol K)) and T temperature. Both for the acidic and basic

regions, the summation of ionic σionic,R, chemical σchem,R, and electronic charge

equals zero,

σionic,R + σchem,R + σelec,R = 0 (7.18)

where

σionic,R =
∑
i

zi · cmi,i,R. (7.19)

The potential over the EDL, ∆φEDL, that is the summation of the Donnan and

Stern potential, is equal for acidic and basic regions, in a given sub-cell, in a

given electrode

∆φEDL = (∆φD + ∆φS)B = (∆φD + ∆φS)A . (7.20)

To calculate the faradaic current, or reaction rate, of a faradaic reaction that

takes place in the micropores, JF,r, we employ the FBV equation, which is for a

one-electron reaction in general form given by

JF,r = kR · cO · exp (−1/2 ·∆φS)− kO · cR · exp (+1/2 ·∆φS) (7.21)

where kR is the kinetic rate constant for the reduction reaction, and kO for the

oxidation reaction; cO is the concentration of a certain species in oxidized form,

and cR is the concentration of the reduced form, both to be evaluated at the

Stern plane, which according to the Donnan model is equal to the concentration

in the micropores.

In literature several faradaic reactions are reported that can occur in MCDI,

such as:

• the reduction of oxygen (O2 + 4 H+ + 4 e– −−→←−− 2 H2O);

• the reduction of water (2 H2O + 2 e– −−→←−− H2(g) + 2 OH– );

• the oxidation of carbon (C + H2O −−→←−− CO2(g) + 4 H+ + 4 e– ).

These reactions can be included in our model using the FBV equation, but each

reaction requires values for kR and kO, which have to be found in literature,

or have to be measured. In the present Chapter, however, we aim to show

the effect of faradaic reactions on pH fluctuations in general, and therefore we

only consider the reduction of water, 2 H2O + 2 e– −−→←−− H2(g) + 2 OH– , or in
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different form 1 H+ + 1 e– −−→←−− 1/2 H2(g) (note that these reaction equations are

mathematically identical in our model, because we assume that the water self-

ionization reaction is locally at equilibrium). We assume that the produced

hydrogen gas immediately disappears from the system, i.e. the concentration of

hydrogen in solution is zero (so the value of cR is zero). Furthermore, we consider

that this reaction occurs in both acidic and basic micropore regions, and thus

Eq. (7.21) becomes

JF = kR

∑
R

αmi,R

(
cmi,H+,R · exp (−1/2 ·∆φS,R)

)
. (7.22)

Furthermore, we evaluate the electronic charge in both electrodes as function

of the ionic current density, Jcharge, and the faradaic rate, JF, according to

pmi ·
∂

∂t

∑
R

(αmi,R · σelec,R) =
1

Lel
(zE · Jcharge + JF) (7.23)

where σelec for anode and cathode have opposite sign, i.e., zE = +1 for the anode,

and zE = −1 for the cathode.

Now, we insert the equilibrium condition of water self-ionization, see Eq. (7.7),

into Eqs. (7.15), (7.19) and (7.22) to arrive at an equation that does not explicitly

include the concentration of OH– ions.

We relate Donnan and Stern potentials in the electrodes, the potential drop

over the membranes, ∆φm, the Donnan potentials at the membrane interfaces,

and the potential drop over the spacer channel, ∆φsp, to the cell voltage, Vcell,

according to

Vcell

VT
=
∑
E

zE

(
∆φEDL + ∆φm + ∆φD|CH/M − ∆φD|M/E

)
−∆φsp (7.24)

where E runs over both electrodes. Please note that ∆φD|M/E and ∆φD|CH/M

have opposite sign, as the Donnan potential is defined as a difference between

the potential in the smaller pores and in the bigger pores (or open space), so in

this case between the membrane and spacer channel, and between the membrane

and macropores.

7.3 Results and discussion

To illustrate pH differences between feed water and effluent for MCDI predicted

by theory, we first present results of equilibrium calculations under no-flow con-

ditions, for which the water flow rate through the cell, Φv, is 0. Thereafter, we

present dynamic calculations with flow.
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Fig. 7.2: Equilibrium calculations (no-flow) of pH and Na+-concentration as function

of cell voltage, Vcell, in a CDI cell. pH in the spacer channel and in acidic (mi-Acidic)

and basic (mi-Basic) micropore regions are shown, for anode and cathode.
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7.3.1 Equilibrium calculations

For no-flow conditions, we calculated the equilibrium pH and salt concentration

in the CDI cell as function of the cell voltage, see Fig. 7.2 1. We excluded

faradaic reactions from these calculations, thus we used kR = 0 in Eq. (7.22).

The initial pH of the solution in the spacer channel was pH 7, and the initial salt

concentration was 20 mM.

Fig. 7.2A shows that pH in the spacer channel is, in equilibrium, equal to

the initial pH. Furthermore, Fig. 7.2A shows, as function of the cell voltage, an

increase of pH in both micropore regions in the anode and a decrease in the

cathode. pH and Na+-concentration (see Fig. 7.2B) in the macropores of the

electrodes is equal to pH in the spacer channel, and is not plotted.

7.3.2 Dynamic calculations

For flow conditions, we performed calculations for an MCDI cell, which we

charged with a constant current of 20 A/m2 until we reached a cell voltage of

1.2 V, and thereafter discharged with the reversed current until a voltage of 0 V.

The initial pH of the solution in the spacer channel was pH 7, and the initial salt

concentration was 20 mM. We calculated two cases: “Only Capacitive” (OC) and

“Capacitive and Faradaic” (CF). For the OC-case we excluded faradaic reactions

from the calculations (kR = 0).

For the OC-case, Fig. 7.3 column I) shows that pH in the spacer channel,

which is equal to the effluent pH, increases during charging and decreases during

discharge, but that these pH changes are very small compared to the pH changes

in anode and cathode. In the anode, the model predicts an increase of pH during

charging and a decrease during discharge, in both macro- and micropores. In the

cathode, however, the model predicts a decrease during charging and an increase

during discharge. The pH profile across the spacer channel, in the spacer between

AEM and CEM, is shown in Fig. 7.4.

For the CF-case, Fig. 7.3 column II) shows that changes in effluent pH as

function of time are much stronger than for the OC-case. Clearly, including the

water reduction reaction, 2 H2O + 2 e– −−→ H2(g) + 2 OH– , results in an effluent

pH which is higher, during charging and discharge, than the inflow pH. These

calculation results are similar to results of lab-scale experiments, which are shown

in Fig. 7.5 2. The results shown in Fig. 7.3 column II) are strongly dependent

1The CDI equilibrium state was calculated with a simplified version of the theory described

in Section 7.2; we excluded the membranes and set all terms with a derivative to time to

zero.
2The materials and methods of the experiments shown in Fig. 7.5 are described in Appendix

7.B
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Fig. 7.3: Dynamic calculations (with flow) of pH and Na+-concentration as function

of time in an MCDI cell, for cases “Only Capacitive” (column I) and “Capacitive and

Faradaic” (column II). The cell was charged with a constant current of 20 A/m2 until

a cell voltage of 1.2 V was reached, and thereafter discharged with a reversed current

until a voltage of 0 V. pH in the spacer channel, equal to effluent pH, is shown (A and
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both for anode (C and D) and cathode (E and F). Na+-concentrations in anode and

cathode are equal to each other, with a value very close to the Cl– -concentrations (G

and H).
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Fig. 7.5: Experimental data of effluent pH as function of time of an MCDI experiment

conducted under conditions comparable to model conditions described for Fig. 7.3. For

a detailed description of experimental conditions, see Appendix 7.B.
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Fig. 7.6: Cell voltage and faradaic current at anode and cathode as function of time

for the case “Capacitive and Faradaic” shown in Fig. 7.3.

on the value of kR, which we chose arbitrarily and is not based on the results of

experimental work.

Fig. 7.6 shows that the faradaic current, and consequently hydroxyl ion pro-

duction, occurs mainly in the cathode, and that this reaction does not occur in

the anode. Obviously, pH in the cathode is higher for the CF-case than for the

OC-case, during the complete cycle, see Fig. 7.3F. We note that using Eq. (7.22)

the water reduction reaction cannot run for infinite time in our calculation, as

we do not consider an oxidation reaction. This leads, in our calculations, to an

ongoing drain of electrons from the system, which is physically not possible. Our

calculation results, however, are not for a limit cycle, but for the first cycle.

We showed that the OC-case does not predict the strong pH changes observed

experimentally, but that the CF-case does. A quantitative comparison between

data and theory is not possible yet, as more faradaic reactions should then be

considered in the model, and values for the rate constants of these reactions have

to be determined.
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Table 7.1: System and electrode dimensions, operational parameters, and parameters

used for theoretical calculations. Parameters obtained from *1) Chapter 3; *2) Ref.

[143]; *3) Ref. [190]

General parameters

Acell Electrode geometric surface area 33.8 cm2

Φv Water flowrate through one cell 7.5 mL/min

T Temperature 295 K

Lsp Thickness spacer channel 300 µm

pHinflow Inflow pH 7

M Number of mathematical sub-cells 1

Electrode parameters

Lel Electrode thickness 260 µm

vmi Micropore volume *1 0.40 mL/g

CS Stern capacitance *1 160 F/mL

kR Kinetic rate constant reduction reaction 0.02 m/s

σchem,A Chemical surface charge acidic region -240 mM

(both anode and cathode)

σchem,B Chemical surface charge basic region 240 mM

(both anode and cathode)

αmi,A = αmi,B Volume ratio acidic and basic 1:1

regions micropores

pmA Macroporosity *1 0.48

pmi Microporosity *1 0.23

psk Fraction “skeleton” material electrode *1 0.29

Membrane parameters

Lm,AEM AEM thickness 130 µm

Lm,CEM CEM thickness 190 µm

dr,m Diffusion coefficient in membrane pores 0.05

relative to value in free solution

ωAEM Sign of the fixed charge AEM +1

ωCEM Sign of the fixed charge CEM -1

XAEM Fixed charge density AEM 5 M

XCEM Fixed charge density CEM 5 M

Diffusion coefficients and inflow concentrations

i cinflow,i Di
*3

Na+ Sodium 20.0 mM 1.33 · 10-9 m2/s

Cl– Chloride 20.0 mM 2.02 · 10-9 m2/s

H+ Proton 10-4 mM 9.13 · 10-9 m2/s

OH– Hydroxyl ion 10-4 mM 5.16 · 10-9 m2/s

Listed inflow concentrations are calculated considering conditions

given by Eqs. (7.3) and (7.7), and pHinflow = 3− log10(cinflow,H+).

Equilibrium constant of water self-ionization

pKw H2O −−→←−− H+ + OH– , Kw = [H+][OH−] *3 14.00

pKw relates to Kw using log10(Kw) = 6− pKw
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7.4 Conclusions

We presented theory to calculate pH changes in electrochemical systems for water

desalination, which we used to predict pH changes and differences in pH between

feed water and effluent observed in Membrane Capacitive Deionization. In our

theory, we included three phenomena that occur in MCDI that may explain the

observed pH changes: I) different mobilities of various ions; II) chemical surface

charge groups in the micropores of the porous carbon electrodes; and III) faradaic

reactions in the micropores.

Our theory predicts small pH changes during desalination cycles in MCDI if we

only consider phenomena I) and II). If we also consider phenomenon III) by in-

cluding the water reduction reaction 2 H2O+2 e– −−→ H2(g)+2 OH– , pH changes

are stronger. We see that theory predicts an increase of pH during charging and

a decrease during discharge, which is also observed in our experiments.



Appendix

7.A Derivation of auxiliary flux Jaux
j,i

In the main text, the theory for spacer channel and membranes makes use of the

“auxiliary” flux Jaux
j,i , a flux-like expression which only in a few instances has

a physical meaning. The expression for Jaux
j,i is given for the spacer channel by

Eq. (7.6) in the main text (j = sp). For the two membranes (j = m), subscripts

“sp” must be replaced by “m” in Eq. (7.6). The integration boundaries are then

the two outer boundaries of the membrane.

For the spacer channel, Eq. (7.6) is also used to calculate the current density,

Jcharge, while for each membrane, Eq. (7.6) is used to calculate the flux of Na+

and Cl– . All these fluxes (currents) are invariant with coordinate x.

Here we derive Eq. (7.6) on the basis of transport across the membrane. The

membrane is described in steady state, thus all time-dependencies vanish. For

each ion, the molar flux through the membrane, Jm,i, is given by the Nernst-

Planck equation

Jm,i = −Deff,i

(
∂cm,i
∂x

+ zi · cm,i ·
∂φm

∂x

)
(7.25)

where cm,i is the concentration of ion i in the membrane, defined per unit open

volume (per volume of pore), zi is the valence of an ion, and Deff,i is the ef-

fective diffusion coefficient. Variable φm is the dimensionless potential in the

membrane, and x runs from the spacer channel-membrane boundary, CH/M, to

the membrane-electrode boundary, M/E.
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For Na+ and Cl– , which are unreactive, and because we model steady state,

ion transport Jm,i is constant across the membranes, i.e., Jm,i is independent of

x. Therefore, we can integrate Eq. (7.25) to

∫ Lm

0

Jm,i dx = −Deff,i

(∫ cm,i|M/E

cm,i|CH/M

dcm,i +

∫ φm|M/E

φm|CH/M

zi cm,i dφm

)
(7.26)

where Lm is the thickness of the membrane. As lhs(Eq. (7.26))= Jm,i Lm, we

arrive at

Jaux
m,i = −Deff,i

Lm

(
cm,i|M/E − cm,i|CH/M + zi

∫ φm|M/E

φm|CH/M

cm,i dφm

)
(7.27)

where superscript “aux” is introduced to denote the mathematical notation of Eq.

(7.27). Besides using Eq. (7.27) for the flux of Na+ and Cl– , we know that, in

steady state, current Jcharge is invariant across the membrane, and thus Eq. (7.13)

of the main text can be used based on Eq. (7.27) above for Jaux
m,i . Furthermore,

we use Eq. (7.27) to calculate the ionic current in the spacer channel. Although

flow in the spacer channel is not modelled in steady state, current is independent

of position x across the channel, and therefore Eq. (7.5) applies.

7.B Experimental data - Materials and Methods

To conduct MCDI experiments, we constructed a stack with four MCDI cells.

Every cell consisted of a pair of electrodes coated on graphite current collectors,

which connected the electrodes with the electric circuit. The electrodes were com-

mercial electrodes provided by Voltea (Sassenheim, The Netherlands). A CEM

(Neosepta CMX) was placed on the cathode, while an AEM (Neosepta AMX)

was placed on the anode. The water flowed through a spacer (commercial mesh-

woven spacer) positioned between the CEM and AEM. The stack of MCDI cells

was placed in a polymethylmethacrylate (PMMA) housing. For geometric and

material properties of electrodes, membranes, and spacer we refer to Table 7.1.

A recirculation vessel with 10 L 20 mM NaCl solution was constantly kept

at pH 7±0.05 and purged with nitrogen, to avoid the presence of oxygen in

the electrolyte. From the recirculation vessel, the solution was pumped through

the MCDI cells, and thereafter the solution passed a pH and a conductivity

sensor, which measured at a sampling time of 1 s. The effluent conductivity was

recalculated to salt concentration using a calibration table.

Of each experiment, the cell voltage or current was controlled with a potentio-

stat (IviumStat, Ivium Technologies, The Netherlands). For our constant current

experiments, we charged the cell with a current of 20 A/m2 until we reached a
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cell voltage of 1.2 V, and thereafter, we discharged the cell with a reversed cur-

rent until a cell voltage of 0 V. Experimental data presented in this Chapter are

shown for the first constant current experiments conducted with new electrode

materials.





8
General discussion and conclusions
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8.1 Introduction

In this Chapter we present the findings of our work and we discuss how the work

contributes to the development of Capacitive Deionization (CDI) and specifically

Membrane Capacitive Deionization (MCDI).

We started this Thesis by introducing both CDI and MCDI, and explained

the main advantages of MCDI compared to CDI, which we briefly summarize:

whereas CDI shows that, during the adsorption step, not only counterions are

adsorbed into the electrodes, but also co-ions are desorbed, which is an unwanted

process, MCDI has membranes placed in front of the electrodes, that block the

transport of co-ions from the electrodes into the spacer channel. Therefore, the

charge efficiency, that is, the ratio of salt adsorbed over charge transferred, is

higher for MCDI than for classical CDI [34–38].

In this Thesis, we reported both on classical CDI and MCDI. Nowadays, as

technology providers are focused on the development of MCDI, this process is of

technological interest. From a scientific point of view, also CDI is interesting, as

it allows us to study ion adsorption phenomena in porous electrodes without the

effect of ion exchange membranes placed in front. Findings of studies on CDI

can then also contribute to the development of MCDI.

The research can be divided in three topics: I) energy consumption and resis-

tance identification, II) ion selective adsorption, and III) long-term operation and

pH changes. We cover these topics in the next sections. Thereafter we present

an outlook on technology development.

8.2 Energy consumption and resistance identification

In Section 1.5 we discussed the theoretical minimum energy consumption as func-

tion of desalination, ∆c, which is the average concentration difference between

produced fresh water and feed water, and as function of water recovery, WR,

which is the amount of produced desalinated water per unit of feed water, see

Fig. 1.10. In Chapter 3 we showed that the energy consumption of desalination

by CDI and MCDI is much higher than the theoretical minimum energy con-

sumption. Furthermore, we found, for the particular cycle analyzed (cycle of an

MCDI cell operated in constant current mode), a total energy consumption of 85

kJ/mol (defined per mol of salt removed), of which only 6 kJ/mol was attributed

to ionic resistances in the electrodes, membranes and spacer channel, and elec-

tronic resistances in cables and current collectors. We discussed, but without

making a quantitative analysis, that the remaining energy consumption must be

due to Donnan potentials at the membrane interfaces, and due to Donnan and

Stern potentials in the electrodes. Now, we make this analysis and split the total
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Fig. 8.1: Energy consumption during charging and energy release during discharge

of an MCDI cell, calculated for a desalination cycle operated under constant current

conditions presented in Section 3.5, Fig. 3.7 (cinflow = 20 mM). Energy consumed by

charging EDLs (Donnan and Stern) can be partially recovered during discharge. Energy

consumed by ionic resistances in spacer, membranes and electrodes, and by electronic

resistances in cables and current collectors (EER) increases during charging and dis-

charge. Also, energy consumed by Donnan potentials at the spacer-membrane and

membrane-electrode interfaces is indicated (Donnan membranes).

energy consumption in parts. Therefore, we need an additional set of equations,

see Box 8.1, to post-calculate theoretical data obtained in Chapter 3.

Box 8.1: theory for energy analysis

To split the total energy consumption in parts, we need an additional set

of equations to post-calculate theoretical data presented in Chapter 3. To

that end, we use the theory presented in Box 4.1 to calculate the energy

consumption by EDL charging, and by dissipation due to ionic resistances

in the electrodes and spacer, and due to electronic resistances in the cables

and current collectors. Furthermore, we calculate the energy consumption

due to dissipation by the membranes and due to the Donnan potentials at

the membrane interfaces, for which we present theory below.
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Ionic resistance membranes

The energy consumption due to ionic resistances in the membrane is given

by

Emem = 2 ·Acell · V T

∫ t

0

(
∆φmem|M/E (t)− φmem|S/M (t)

)
· IA(t) dt (8.1)

where Acell is the electrode geometric surface area (m2), IA(t) the cur-

rent density (A/m2), and V T the thermal voltage, which is given by

VT = R · T/F , where R is the gas constant (8.314 J/(mol·K)), and T tem-

perature (K). Variable φmem is the membrane potential at the membrane-

electrode interface, M/E, or at the spacer-membrane interface, S/M . A factor

2 is included to calculate Emem for both membranes together, which we also

include in Eq. (8.2). Please note that Emem does not include the energy con-

sumption term due to Donnan potentials at the membrane interfaces. This

term will be calculated separately.

Donnan potentials membrane interfaces

At the spacer-membrane and membrane-electrode interfaces, Donnan poten-

tials are considered, see Fig. 3.1. These Donnan potentials, indicated by

∆φD, result in an additional energy consumption, which is given by

ED,mem = 2 ·Acell · V T

∫ t

0

(
∆φD|S/M (t)− ∆φD|M/E (t)

)
· IA(t) dt. (8.2)

Results of the energy analysis are shown in Fig. 8.1, from which the following

conclusions can be drawn:

• Energy consumption of a desalination cycle without energy recovery during

discharge is 85 kJ/mol, of which only 7 kJ/mol is lost due to electronic and

ionic resistances, and 78 kJ/mol is stored in EDLs (Donnan and Stern),

which is, in theory, recoverable. We note that, in this analysis, we do not

consider energy consumption due to (unwanted) faradaic reactions that

may occur during desalination.

• During discharge all energy stored in EDLs is released. Part of this energy

is lost due to ionic and electronic resistances, and consequently the energy

recovery potential is lower than 78 kJ/mol, namely 85 - 19 = 66 kJ/mol.

Thus, by employing energy recovery technology with an efficiency of 100%,

77% of the energy consumption during charging can be recovered during
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discharge. We note that an energy recovery efficiency of 100% is in reality

too optimistic, but efficiencies in the range of 50-80% are reported in liter-

ature [135, 156, 191]. This finding implies that, in order to reduce energy

costs of desalination, developing efficient energy recovery technology will

have a larger impact than reducing resistances. Only after implementing

energy recovery technology, it will be interesting to focus on the reduction

of resistances.

• As Fig. 8.1 shows, without energy recovery, the contribution of ionic re-

sistances across the membranes to the total energy consumption is small

(1.2%). This implies that an eventual reduction of the membrane resistance

will lower the energy consumption only to limited extent. In contrary,

a reduction of the membrane resistance can even result in higher energy

consumption. As a reduction of the membrane resistance is most likely

achieved by a reduction of the membrane thickness, employing IEMs with

lower resistances can go with a decrease in selectivity, see Fig. 1.4A. Then,

the performance of membranes to block transport of co-ions from the elec-

trodes into the spacer channel decreases, which results in a reduced charge

efficiency, and thereby in increased energy consumption, see Fig. 1.4B.

• Energy consumption due to the Donnan potentials at the membrane inter-

faces was not considered in Chapter 3. This energy term increases during

charging, when ions are concentrated in the electrodes (ion separation), and

decreases during discharge (ion mixing). Admittedly, we expected that the

value found for ED,mem at the end of a discharge step would be very close to

the theoretical minimum energy consumption for desalination, ∆G, which

is, as shown in Fig. 1.10, never more than 0.5 kJ/mol for the cycle we ana-

lyzed. However, ED,mem is more than a factor 15 higher. This unexpected

result deserves more theoretical analysis in order to fully understand the

difference between the theoretical minimum energy consumption and the

real energy consumption.

• To calculate the energy consumption due to ionic resistances in the elec-

trodes, EmA, we introduced Eq. (4.2) in Chapter 4, which is different from

Eq. (3.29) used in Chapter 3 to approximate the ionic resistance across the

two electrodes in an MCDI cell. In present Chapter, we apply Eq. (4.2) to

post-calculate the theoretical data obtained in Chapter 4 for MCDI, and we

find that the energy consumption due to ionic resistances in the electrodes

(1.1 kJ/mol) is much higher than the value following from Fig. 3.7D (0.04

kJ/mol), which was calculated using Eq. (3.29). Clearly, the assumption

behind Eq. (3.29) was not valid. However, the conclusion drawn in Chap-
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ter 3 that the contribution of the ionic resistance in the electrodes to the

total energy consumption is very small, does still hold.

8.3 Ion selective adsorption

In Chapter 5, we extended the theory of Chapter 3 to calculate the transport

and adsorption of one monovalent salt, such as KCl or NaCl, to mixtures of

monovalent salts. We used this extended theory to model the dynamics of ion

adsorption of a solution containing NaCl and KCl, considering different diffusion

coefficients of ions present in solution. We compared theory with experimental

data of ion adsorption as function of the cycle time (CT), which is the total

duration of both the charging and discharge step.

We observed, experimentally, a preferential adsorption of K+ over Na+ ions,

which is in line with theory for short CTs. At longer CTs, however, we observe

experimentally still a preferential adsorption of K+ over Na+, but theory predicts

that the adsorption of both ions becomes equal. This prediction is due to the fact

that our dynamic theory reduces to the equilibrium improved modified Donnan

(i-mD) model for long CTs, a model which, by itself, does not account for a

different repulsion or attraction of one ion over another, unless the ions have

different charge.

The preferential adsorption of K+ over Na+, or more general, of smaller over

bigger ions, also in equilibrium conditions, has been reported in other work as

well, see Refs. [32, 96, 189]. In the EDL models used in this work, the i-mD and

amphoteric Donnan (amph-D) model, it is assumed that ions are volume-less

points, and selectivity based on size is thus not included [32]. Suss describes in

Ref. [32] how the preferential adsorption based on ion-size can be considered,

namely by adding an excess chemical potential difference between micro- and

macropores, ∆µex
i , to Eq. (2.1) for the i-mD or Eq. (7.16) for the amph-D model.

Considering the amph-D model, Eq. (7.16), which relates the ion concentration

in micro- and macropores, becomes

cmi,i = cmA,i · exp (−zi ·∆φD −∆µex
i ) (8.3)

where cmi,i is the concentration of ion i in the micropores, cmA,i the concentration

in the macropores, zi the valence of the ion and ∆φD the Donnan potential.

The Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation can be

used to calculate ∆µex
i for an electrolyte with multiple counterions [29, 32, 192].

The BMCSL equation, which we will not discuss in full detail in this work,

describes ∆µex
i as function of the hard-sphere diameter of ion i, which is used

as a fitting parameter, and a factor that represents the volume fraction occupied

by all finite sized ions [32]. Suss showed that, in equilibrium, theory including
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Eq. (8.3) and the BMCSL equation predicts a preferential adsorption of K+ over

Na+ of 1.22-1.3, and we measured a ratio close to 1.27.

To conclude, we showed that we can measure ion selective adsorption and

that the dynamic porous electrode theory as used in this work describes selective

ion adsorption for short CTs well. However, for longer CTs, when we reach

equilibrium conditions, the standard theory fails and predicts an equal adsorption

of Na+ and K+ ions, while this is not observed. Suss showed that, extending

equilibrium theory with the BMCSL equation will overcome this limitation.

8.4 Long-term operation and pH changes

In Chapter 6 we compared long-term term stability of classical CDI and MCDI

cells treating water containing dissolved oxygen. We found that, both in classical

CDI and MCDI, the presence of dissolved oxygen in the feed water results in

the formation of chemical charged groups at the porous carbon material during

operation of the CDI cell. In classical CDI, these groups result in a decrease

of desalination performance, whereas in MCDI performance does not decrease.

The stable performance of MCDI cells can be explained by the presence of IEMs.

Because of the IEMs, co-ions desorbed from EDLs are trapped in the electrodes;

they cannot flow from the electrodes into the spacer channel. Therefore, the

charge efficiency of MCDI experiments is mainly determined by the selectivity of

the membranes, not by the surface chemistry of the electrodes.

A process that can affect the long-term stability of MCDI cells, is that the pH

in the cell can strongly change during operation. High values of pH can result

in precipitation of salt on the membranes, and consequently affect the long-term

stability of the system. Therefore, it is important to understand the cause of

these changes, and, if possible, change the mode of operation of the cell such

that precipitation of salt can be avoided.

In literature, these changes are often attributed to faradaic reactions that occur

during operation. However, non-faradaic processes, such as the fact that ions have

different diffusion coefficients, and thus different rates of adsorption, can result in

pH changes as well. As we know that these non-faradaic processes occur during

operation anyway, and that faradaic reactions may occur, we decided to study the

effect of non-faradaic processes at first. To that end, we built a model including

ion transport and adsorption of Na+, Cl– , H+ and OH– ions and we included

the water dissociation equilibrium reaction, H2O −−→←−− H+ + OH– . The model

predicted that these non-faradaic processes only explain pH changes to limited

extend, and that we need to study faradaic reactions to explain pH changes to

its full extent.

For future work, it may be interesting to identify which (combination of)
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faradaic reactions result in pH changes. Theoretically, this identification can

be done by incorporating different reactions in a model and compare theoretical

results with experimental data. However, exact values of kinetic reaction rate

constants are required, but even if these values are known or precisely deter-

mined, it will still be difficult to discriminate the contribution of each reaction

to pH changes. Experimentally, we found that it takes a large number of cycles,

and thus a long time (order of a few days), to reach dynamic steady state for pH,

which is the condition that the pH signal as function of time of a certain cycle is

identical to its previous cycle. This finding implies that the contribution of dif-

ferent faradaic reactions and non-faradaic processes to the observed pH changes

varies over time.

Perhaps, full understanding of the contribution of each faradaic reaction is not

required to reduce pH changes. The model described in Chapter 7, which includes

only one faradaic reaction, can be fitted with experimental data, without con-

sidering each reaction individually. Then, the model can be used to investigate

which operational conditions (CC or CV, both with its own set of operational pa-

rameters) minimize the pH changes. Thereafter, these operational conditions can

be experimentally verified. Thus, without the need to obtain more information

about the reactions occurring, the model can be used for predictive purposes.

For future modeling work, it will be interesting to couple the amph-D theory

with transport theory for fully discretized electrodes. Then, the symmetry as-

sumption of equal salt concentration profiles across the electrodes, an assumption

we included in Chapter 7, can be relaxed. Relaxing this assumption will allow

for more accurate dynamic modeling of salt adsorption in MCDI, but the theory

can then also be applied to classical CDI to model, amongst others, pH changes.

Also, we can extend the amph-D theory to model the binding or dissociation of

protons to negatively charged surface groups, such as COO– , or the binding of

hydroxyl ions to positively charged groups, such as H+. The degree of ioniza-

tion of chemical surface charge groups is then dependent on the pK-value of the

groups and on the Donnan potential, see Refs. [193, 194]. We can couple this

extended amph-D theory to transport theory.

8.5 Perspectives on technology development

Having addressed in previous Sections the topics I) energy consumption and

resistance identification, II) ion-selective adsorption, and III) long-term operation

and pH changes, we are now in a position to evaluate the suitability of classical

CDI and MCDI as methods of desalination.

Firstly, considering energy consumption, Zhao et al. [27] concluded in 2013

that MCDI, in comparison with RO, is a potentially relevant technology for the
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desalination of brackish water, when the salt concentration of the feed water is

below 30 mM (∼2 g/L). However, in their analysis, values for ∆c and WR are not

the same for RO and MCDI. As we discussed in Chapter 4, one can only compare

two modes of operation, or more generally, two methods for desalination, in case

the desalination objective, which includes the parameters ∆c and WR, is the

same. To ascertain that these parameters have the same value for all methods

that are compared, and at the same time that we compare energy consumption

of optimized desalination cycles, we must do many experiments (or run many

model calculations). This implies that comparing desalination technologies in a

fair manner is a challenging task, even when the comparison is only based on

energy consumption.

Though energy consumption is important, in reality it is not the only criterion

used in the selection of a desalination technology. In such a decision process

there are many other criteria used as well which need to be included in a proper

socio-economic evaluation, such as:

• desalination performance as described by ∆c and WR;

• robustness to deal with variations in quantity and quality of the feed water;

• the need for chemicals to clean the membranes;

• potential to apply a technology on a small or large scale;

• environmental impact of a technology including its production, operation

and re-use;

• long-term stability, or life-time.

Regarding long-term stability, in Chapter 6 we showed that, for classical CDI

without membranes, desalination performance decreases very rapidly over time

if dissolved oxygen is present in the feed water. In contrast, for MCDI, we did

not observe a decrease in charge efficiency during operation, but we still found

that the surface chemistry of the electrode materials changed over time, which is

most likely due to oxidation reactions caused by dissolved oxygen. Furthermore,

also in MCDI we observed a decrease over time in electrode charge density and

capacitance. This decrease will, in long-term experiments, result in an increase

of energy consumption, or a reduction in desalination performance. Although we

only found evidence for oxidation reactions that lead to charged surface groups,

also complete oxidation of carbon material to CO2 is possible. If indeed the

carbon itself oxidizes to CO2, performance of MCDI cells will also decrease over

time. These problems related to electrode stability limit applicability of MCDI

as a desalination technology for water containing dissolved oxygen. In order to

improve electrode stability, it is important to find and investigate electrode ma-

terials that are stable, have a high salt adsorption capacity and are electronically

conductive [195]. Not only electrodes, but also membranes may degrade in time

[196].
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In present Section, we discussed how the content of this Thesis relates to water

scarcity problems and the need for desalination technologies. However, the results

obtained in this Thesis also have relevance for other topics in science and technol-

ogy. This is because the principle of CDI has a very general scientific nature, and

has broader applicability, also for other technologies that depend on the storage

and release of electrical charge by porous carbon electrodes, and the adsorption

and release of charged compounds from (aqueous and non-aqueous) electrolytes.

The principle of CDI can be applied in various (industrial) separation processes

to remove harmful compounds, or to concentrate valuable materials.

As an example of the diversity of potential applications, the principle of charge

storage by porous electrodes can also be applied to store electrical energy, for

instance with the aim to buffer a temporal mismatch between supply and demand

of (renewable) electricity. Devices employing porous electrodes for charge storage

are referred to as supercapacitors and are, in terms of design, very similar to CDI

cells. Although the application is completely different, the theoretical framework

to describe supercapacitors is similar to the framework we use. The results

obtained in this Thesis, especially related to the quantification of resistances

and energy losses (Chapter 3), and related to the study of mechanisms of ion

transport and adsorption (Chapters 2, 3 and 5) including the effect of acid-base

and faradaic reactions (Chapter 7), are also of importance for research on energy

storage devices and other related technologies that use capacitive electrodes in

electrochemical engineering.
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Basics of Capacitive Deionization (Chapter 1 & 2)

Capacitive deionization (CDI) is an electrochemical technology to adsorb ions

from solution by alternately charging and discharging two porous electrodes. Dur-

ing charging, a voltage is applied between the electrodes, and ions are adsorbed

into electrical double layers (EDLs) formed in the micropores of the electrode. As

a result, feed water is desalinated. After the electrodes are saturated with salt,

they are discharged and ions are released, resulting in a concentrated effluent

stream. Recently there has been an growing scientific and commercial interest

in CDI technology, and various applications are considered, such as wastewater

remediation for cooling towers, water softening, and desalination of brackish wa-

ter. In this Thesis we study mechanisms of ion transport and adsorption in CDI

technology, and we address three topics: I) energy consumption and resistance

identification, II) ion-selective adsorption, and III) long-term operation and pH

changes.

A key parameter to describe ion adsorption in CDI is charge efficiency, Λ,

which is the ratio of salt adsorption over charge transferred in a desalination

cycle. Values for Λ in CDI are typically in the range of 0.5-0.8, significantly less

than the theoretical maximum of unity, due to the fact that not only counterions

are adsorbed into the pores of the carbon electrodes, but at the same time coions

are released. Enhancing the value of Λ is advantageous as, for the same amount

of salt removed, the total charge transferred decreases, resulting in a lower energy

consumption.

To increase Λ to values close to unity, ion exchange membranes (IEMs) can be

placed in front of the electrodes, which block coions from leaving the electrode

region. We refer to this cell design including membranes as Membrane Capacitive

Deionization (MCDI), which is a sub-class of CDI.

In this Thesis we investigate a route to increase Λ in classical CDI (thus,

without membranes), namely by increasing the cell voltage during discharge,

compared to the conventional discharge voltage of 0 V. We support this finding

by an equilibrium model describing salt adsorption in EDLs. We couple this

model to an ion transport model to analyze energy consumption, resistances,

and ion-selective adsorption.

Energy consumption and resistance identification (Chapter 3, 4

& 8)

In this part of the Thesis, we describe methodology to identify electronic and

ionic resistances in (M)CDI. One element of this methodology is that we derive a

full-scale (M)CDI model that describes ion transport and adsorption. This model

is successfully validated against experimental data and used to calculate the ionic
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resistances across the MCDI cell. We identify that for inflow salt concentrations

of 20 mM the resistance is mainly located in the spacer channel and the external

electrical circuit, not in the electrodes. Based on these findings, we show that

the carbon electrode thickness can be increased without significantly increasing

the energy consumption, which has the advantage that the desalination time can

be lengthened significantly. Furthermore, we analyze the energy consumption of

a desalination cycle in MCDI and we find that only a limited part of the energy

invested during desalination is lost because of ionic and electronic resistances.

Thus, employing energy recovery technology with an efficiency of 100%, would

allow the recovery of ∼75% of the energy that is invested during desalination (of

the particular cycle analyzed in this study).

Furthermore, we study the energy consumption of desalination with two modes

of operation in CDI: constant current (CC) and constant voltage (CV). Important

in the analysis is to precisely define the desalination objective function, such as

that per unit total operational time a certain desalination quantity and water

recovery must be achieved. We propose that one must analyze the full range of

combinations of cycle times, voltages and currents, and only compare the cycles

with lowest energy consumption, to come to a rigorous conclusion about which

operational mode is optimal for a given desalination objective. We find that

without energy recovery for the system we study there is no difference in energy

consumption between CC and CV operation. Including 50% energy recovery, we

find for our system that CC is somewhat more energy efficient but also in CV

much energy can be recovered.

Ion-selective adsorption (Chapter 5 & 8)

In this part of the Thesis, we study ion adsorption in CDI from a mixed solution

containing two monovalent cations with similar radius, namely K+ and Na+. We

introduce a novel method to analyze the effluent concentration of a salt solution

with multiple ionic species by directing the outflow of a CDI cell to an induc-

tively coupled plasma optical emission spectroscopy (ICP-OES) instrument. We

find that K+ ions are preferentially adsorbed over Na+ ions, due to their higher

mobility. Furthermore, we compare our experimental findings with a multicom-

ponent ion transport and adsorption model that calculates dynamic adsorption

of ions from solutions of multiple salts. Whereas we find good agreement between

data and theory at short cycle times, we observe a considerable discrepancy at

higher values.
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Long-term operation and pH changes (Chapter 6, 7 & 8)

In the final part of this Thesis, we compare the desalination performance of CDI

and MCDI cells that treats water with and without dissolved oxygen. We show

that the desalination performance of CDI (thus, without membranes) decreases

over time, most strongly when a cell desalinates water with dissolved oxygen.

We describe experimental data with the amphoteric Donnan model and find that

an increase with time of negative chemical surface charge in the anode and of

positive charge in the cathode explains the decreasing desalination performance.

Similar experiments for MCDI (thus, with membranes) show that, although dis-

solved oxygen affects the surface chemistry of the electrodes, the desalination

performance does not decrease over time. We find that, for MCDI, Λ is mainly

determined by the selectivity of the membranes, and not by the surface chemistry

of the electrodes, even though that is affected by dissolved oxygen. Based on this

finding, we conclude that, with activated carbon electrodes, from an application

point of view, MCDI seems to be the most promising process.

Finally, we study the large differences in pH that can develop between feed

and effluent water of an MCDI cell. These pH changes can affect the long-term

stability of membranes and electrodes. Often, in literature, faradaic reactions

are implicated to explain these pH changes. However, quantitative theory was

not yet developed to underpin this explanation. We develop a theory for electro-

chemical water desalination which includes not only faradaic reactions but also

the fact that all ions in the water, including H+ and OH– , have different diffusion

coefficients. We derive a dynamic model and include the following phenomena:

I) different coefficients of various ions, combined with acid-base equilibrium reac-

tions; II) chemical surface charge groups in the micropores of the porous carbon

electrodes, where EDLs are formed; and III) faradaic reactions in the micropores.

The theory predicts small pH changes during desalination cycles in MCDI if we

only consider phenomena I) and II), but predicts that these pH changes can be

much stronger if we consider phenomenon III) as well, which is in line with earlier

statements in the literature on the relevance of faradaic reactions to explain pH

fluctuations.



Bibliography



166 Bibliography

[1] P. M. Biesheuvel, M. Z. Bazant, R. D. Cusick, T. A. Hatton, K. B. Hatzell, M. C.

Hatzell, P. Liang, S. Lin, S. Porada, J. G. Santiago, K. C. Smith, M. Stadermann,

X. Su, X. Sun, T. D. Waite, A. van der Wal, J. Yoon, R. Zhao, L. Zou, M. Suss,

Capacitive Deionization – defining a class of desalination technologies 1–3.arXiv:

1709.05925v1.

[2] M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser, Water de-

salination via capacitive deionization: what is it and what can we expect from it?,

Energy & Environmental Science 8 (2015) 2296–2319. doi:10.1039/C5EE00519A.
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Mariana, special thanks to you, thanks for all the fun and happiness during our

Wetsus time!

Nu wil ik mijn paranimfen bedanken. Marijke, het was geweldig om samen
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