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ABSTRACT

Cardiovascular diseases are still the primary cause of mortality worldwide, with high blood pressure and type 2 diabetes as major promoters. Over

the past 3 decades, almost in parallel with the rise in cardiovascular disease incidence, the consumption of sugar-sweetened beverages (SSBs) has

increased. In this context, SSBs are potential contributors to weight gain and increase the risk for elevations in blood pressure, type 2 diabetes,

coronary heart disease, and stroke. Nevertheless, the mechanisms underlying the cardiovascular and metabolic responses to SSBs, in particular

on blood pressure, are poorly understood. We discuss and propose potential mechanisms underlying differential effects of sugars on postprandial

blood pressure regulation; provide evidence for additionalmolecular contributors, i.e., fibroblast growth factor 21, towards sugar-induced cardiovas-

cular responses; and discuss potential cardiovascular neutral sugars. Furthermore, we explore whether pre-existing glucose intolerance in humans

exacerbates the cardiovascular responses to SSBs, thus potentially aggravating the cardiovascular risk in already-susceptible individuals. Adv Nutr
2018;9:70–77.
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Introduction
Cardiovascular diseases (CVDs) are the number-one cause of

mortality worldwide (1). A number of fundamental health is-

sues (high bloodpressure, cholesterol, and glucose levels) and

health behaviors (overweight and obesity, smoking, physi-

cal inactivity, and poor diet) contribute to increased CVD

risk (2). Although obesity is a potentially modifiable risk fac-

tor, the cause of obesity is multifactorial, and it is now well

recognized that dietary excess, particularly in combination

with a sedentary lifestyle, contributes significantly towards its

development (3).

Perspectives articles allow authors to take a position on a topic of current major importance or

controversy in the field of nutrition. As such, these articles could include statements based on

author opinions or points of view. Opinions expressed in Perspectives articles are those of the

author and are not attributable to the funder(s) or the sponsor(s) or the publisher, Editor, or

Editorial Board of Advances in Nutrition. Individuals with different positions on the topic of a

Perspective are invited to submit their comments in the form of a Perspectives article or in a

Letter to the Editor.
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Over the past 3 decades, there has been a surge towards

increased consumption of sugar-sweetened beverages (SSBs),

especially among young US adults (aged 19–39 y) (4), which

have been identified as the major source of added sugars in

the US diet (5, 6). Globally, regions with the highest intake of

SSBs includeNorthAmerica, LatinAmerica, Australasia, and

Western Europe (7), where Chile was identified as the region

with the greatest increase in SSB consumption (7). The aver-

age daily calorie intake fromSSBs in theUS in 2011–2014was

179 kcal for men and 113 kcal for women (8), with younger

adults showing a greater intake of SSBs than older adults (8).

Moreover, differences in the intake of SSBs have been found

for US residents according to ethnicity, income, and behav-

ioral characteristics (9, 10). However, it has been reported

that in the US SSB intake in the form of soda consumption

has declined, whereas intake of heavy sports and/or energy

drinks has increased (11), thereby indicating a shift in con-

sumer preferences.

SSBs are nonalcoholic drinks, which typically consist of

water and sugar in the form of high-fructose corn syrup

or sucrose with the addition of a flavor enhancer, and of-

ten caffeine. SSB consumption has been linked to elevations
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in blood pressure (12–14), weight gain (15), elevated blood

lipid and blood glucose concentrations (13), increased risk of

type 2 diabetes (T2DM) (16, 17), coronary heart disease (18),

and stroke (particularly cerebral infarction) (19). Sucrose,

the most common sweetener used in beverages in Europe,

comprises the monosaccharides fructose and glucose, with

the fructose component often being regarded as the more

harmfulmoiety (20, 21). Indeed, there is compelling evidence

in animals, and increasingly in humans, that chronically

high consumption of fructose can lead to a more adverse

lipid profile and greater risks for central obesity, diabetes, and

CVD than high glucose consumption (21–24). For example,

although sustained consumption of glucose-sweetened bev-

erages for 10 wk led to similar weight gains in a cohort of

overweight and obese adults as in those consuming bever-

ages sweetened with fructose, dietary fructose specifically in-

creased visceral adiposity and dyslipidemia and decreased in-

sulin sensitivity (24). Furthermore, fructose, but not glucose,

has been reported to increase postprandial systolic and di-

astolic blood pressure in healthy young adults (25, 26), find-

ings which are in support of the notion that diets that include

repeated fructose loads might over time contribute to an in-

creased risk of CVD. However, the underlying mechanisms

for this impact on bloodpressure are still elusive, andwhether

the blood pressure–elevating effects of fructose would be ex-

acerbated (and indeed those of sucrose unmasked) under

conditions of glucose intolerance, which is often encountered

in overweight or obese individuals, is unknown.

SSBs and their Impact on the Cardiovascular
System
It was not until 2014 that the first systematic review on the

impact of chronic SSB consumption on blood pressure was

published (27). Malik and colleagues (27) included in their

review 6 cross-sectional and 6 prospective cohort studies en-

compassing a total of 409,707 participants, and observed in

10 out of 12 studies a statistically significant, positive associa-

tion between SSB consumption and blood pressure, whereas

the other 2 presented a positive trend. More specifically, in

response to SSB intake, 5 studies found an increase in sys-

tolic blood pressure (28–32), whereas 7 (14, 33–38) showed

elevated OR values for incidence of hypertension in response

to increasing SSB consumption (27). With the exception of

2 studies in which the sweetener used was not mentioned

(32, 35), all other studies (14, 28–31, 33, 34, 36–38) inves-

tigated the impact of high-fructose corn syrup or a mix-

ture of high-fructose corn syrup, glucose, and sucrose. In-

terestingly, the impact of SSB intake on blood pressure was

reduced in younger subjects when compared with studies

performed in older individuals, which could be because of

differing endothelial and smooth muscle responses (27). As

noted by Malik and colleagues (27), a caveat of the studies

included in the review is the use of FFQs to assess SSB con-

sumption. Although FFQs may provide valuable informa-

tion, this dietary assessment method relies on accurate sub-

ject recall and is therefore prone to bias, which reduces the

reliability of the collected data (39). Moreover, quantification

of absolute intake of SSBs is not possible using FFQs (39).

In contrast to cross-sectional studies, randomized

crossover trials offer advantages based on an evaluation

within the same subject. This eliminates between-subject

variability and provides insights into the mechanistic pro-

cesses (40). In this context, a recent randomized crossover

study investigated the cardiovascular responses of young

and healthy adults to ingestion of various sugary drinks and

concluded that the sucrose moiety does not seem to have

an impact on blood pressure, whereas isoenergetic amounts

of fructose raised the blood pressure substantially (26).

Moreover, although sucrose comprises equivalent amounts

of glucose and fructose, the cardiovascular responses were

related more to the glucose than to the fructose (26). These

findings led the study’s authors to the conclusion that the

blood pressure–elevating effects of fructose are attenuated

in the presence of glucose through glucose-induced actions

on vascular resistance (26). However, the underlying mech-

anisms by which sugary drinks affect the cardiovascular

system, in particular blood pressure, remain elusive.

Potential Mechanisms Underlying Differential
Effects of Sugars on Postprandial Blood
Pressure
Differential insulin release and impact on blood
pressure regulation in normal glucose tolerance
In response to glucose ingestion, the blood glucose concen-

tration rises and induces a rapid increase in plasma insulin;

this increase in plasma insulin is markedly lower in response

to fructose ingestion (41–46), as fructose is converted to glu-

cose slowly in the liver and is only partly released as glu-

cose in the circulation (47). Glucose-induced insulin release

is known to dose-dependently increase cardiac output (by in-

creasing stroke volume and heart rate) and to reduce sys-

temic vascular resistance (48) (Figure 1). This assertion is

supported by previous findings that show increased heart

rate, stroke volume, and cardiac output in response to glucose

ingestion, but decreased total peripheral resistance (25, 26).

These combined effects are accompanied by either no change

(25) or a slight increase in blood pressure (26). However, de-

spite this lack of significant overall change in blood pressure

in response to glucose ingestion, a recent study observed a

large inter-subject variability in overall (i.e., averaged over

120min with baseline values subtracted) and peak (i.e., max-

imum response averaged over 10 min with baseline values

subtracted) blood pressure changes (49). In this context, the

study’s authors suggested that the focus for future research

should be on individual responses rather than on mean re-

sults in order not to neglect potential ‘treatment responders’

(49).

Potential impact of glucose intolerance on blood
pressure and cardiovascular responses to glucose
Impaired glucose tolerance, which usually precedes T2DM,

substantially increases the risk for CVD (50), which raises
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FIGURE 1 Schematic depiction of the proposed mechanisms by which blood pressure is influenced in response to glucose, sucrose, and

fructose ingestion in subjects with normal glucose tolerance. The main difference between sucrose—whose cardiovascular actions are

more related to glucose than to fructose (26)—and fructose can best be explained by the actions of insulin, which, in response to sucrose,

will dose-dependently increase CO by increasing stroke volume and heart rate owing to attenuated systemic vascular resistance (48),

whereas the impact of fructose on the release of insulin is marginal (47). Therefore, sucrose- or glucose-induced reductions in TPR are

largely offset by increases in CO, and consequently will not change the blood pressure. In contrast, acute fructose ingestion has only little

overall effect on plasma insulin but increases plasma FGF-21, which increases SNA. This, in turn, leads to augmented CO, which, in

combination with an unchanged or only slightly increased TPR, increases the overall BP. BP, blood pressure; CO, cardiac output; FGF-21,

plasma fibroblast growth factor 21; SNA, sympathetic nerve activity; TPR, total peripheral resistance; ↓, decrease; ↑, increase; ↓↓,
pronounced decrease; ↑↑, pronounced increase; —, inhibition; +, augmentation; =, unchanged.

the possibility that even early-stage alterations in glucose

metabolism may affect the cardiovascular system. Impaired

glucose tolerance comprises elevated concentrations of in-

sulin and sympathetic neural activity at rest (51). Hence, it is

probable that further stimulation of insulin secretion could

cause additional increases in sympathetic nerve activity with

a subsequent potential impact on total peripheral resistance

(52). Indeed, Ferrannini and colleagues (52) surmised that

insulin resistance could impact on blood pressure because of

diminished vasodilation. Moreover, aside from the effects of

elevated concentrations of insulin, it is plausible that im-

paired glucose tolerance concurrently affects the frequency

and contraction force of the heart owing to higher levels of

sympathetic nerve activity, which could override or substan-

tially attenuate potential vasodilatory effects. Therefore, in

such a scenario, impaired glucose tolerancewould raise blood

pressure owing to its impact on cardiac cells rather than pe-

ripheral effects on blood vessels (Figure 2).
Despite an abundance of information on the fate of glu-

cose and insulin in response to the oral glucose tolerance test

(OGTT), which is supposedly the gold standard for diagnos-

ing impaired glucose tolerance, little is known about con-

comitant changes in cardiovascular parameters. One study

(53) has highlighted differences in blood pressure according

to waist circumference in response to an OGTT: systolic and

diastolic blood pressure were found to decrease (–6.3% and

–9.4%, respectively) in response to anOGTT in subjects with

a waist circumference <85 cm, whereas in those with a waist

circumference >85 cm, systolic and diastolic blood pressure

increased (+2% and +0.9%, respectively). Tabara and col-

leagues (54) measured brachial and central blood pressure

responses to an OGTT in 1034 subjects and observed in-

sulin sensitivity and insulin resistance as independent de-

terminants of differences between peripheral and central

(aortic) blood pressure. Central (aortic) blood pressure pro-

vides an indication of the true load imposed on target organs

and thus is proposed to better predict cardiovascular events

than peripheral (brachial) blood pressure (55).

An important outcome of a previous study (49) was

the description and quantification of interindividual blood

pressure responses: the peak systolic blood pressure of

63% of subjects was increased by >4 mm Hg following an

OGTT. It would be of interest to know whether these blood

pressure responses, in particular in so-called “responders,”

who are defined by an increase of >4 mm Hg, could be

repeated in the same individual. In this context, potential

reproducible systolic blood pressure changes in response

to oral glucose loads could be of importance for the devel-

opment of a screening tool where susceptible individuals

are followed over a longer period in order to verify the
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FIGURE 2 Schematic depiction of the proposed mechanisms by which blood pressure is hypothesized to affect glucose, sucrose, and

fructose responses in subjects with impaired glucose tolerance. It is suggested that in a state of impaired glucose tolerance, which is

characterized by elevated resting insulin and sympathetic nerve activity, an additional surge in insulin in response to the ingestion of

sucrose will further raise SNA and therefore impact on TPR. This potentially raises blood pressure because of an attenuated vasodilatory

effect of insulin on the vasculature owing to concurrently elevated SNA. Furthermore, in response to fructose ingestion, FGF-21 impacts

centrally and raises SNA, and could therefore lead to further increases in CO and TPR. This, in turn, elevates the blood pressure to an even

higher level than in glucose-tolerant subjects. BP, blood pressure; CO, cardiac output; FGF-21: plasma fibroblast growth factor 21; SNA:

sympathetic nerve activity; TPR: total peripheral resistance; ↓, decrease; ↑, increase; ↓↓, pronounced decrease; ↑↑, pronounced increase;

—, inhibition; +, augmentation; =, unchanged.

potential for later emergence of hypertension. Indeed, blood

pressure intra-variability [i.e., variations in blood pressure

over time within a single person (56, 57)] has been observed

as an independent predictor for cardiovascular events (57).

However, we are not aware of any study in adults in which

reproducibility of intra-individual blood pressure changes

was prospectively investigated in response to a standardized

glucose drink.

Proposedmechanisms underlying the blood pressure
response to sucrose and fructose in subjects
with normal and impaired glucose tolerance
All of the above-mentioned studies investigated the effect

of glucose only, but individuals generally prefer a bever-

age sweetened with sucrose or high-fructose corn syrup,

i.e., combined glucose and fructose in equivalent or simi-

lar amounts. The main difference between sucrose and fruc-

tose can best be explained by the actions of insulin, which,

in response to sucrose, will dose-dependently increase car-

diac output by increasing the stroke volume and heart rate,

and decreasing systemic vascular resistance (48); in con-

trast, the impact of fructose on the release of insulin is

marginal (47). Therefore, sucrose-induced decreases in to-

tal peripheral resistance are largely offset by subsequent in-

creases in cardiac output; consequently, they do not change

the blood pressure. On the other hand, fructose ingestion

elevates the heart rate to a greater extent than does glucose

(25, 26) but causes little change in the total peripheral resis-

tance (25, 26) and thus leads to elevations in blood pressure

(Figure 1).

In contrast to the effect of sucrose in subjects with nor-

mal glucose tolerance (Figure 1), it is suggested that in sub-

jects with impaired glucose tolerance, which is characterized

by elevated resting insulin and sympathetic nerve activity,

an additional surge in insulin will further raise sympathetic

nerve activity and cardiac output. Thus, blood pressure will

rise owing to the attenuated vasodilatory effect of insulin on

the vasculature because of the increased sympathetic drive to

resistance vessels and cardiac cells (Figure 2). Furthermore,

in response to fructose ingestion, it has been observed that in

individuals with the metabolic syndrome, fibroblast growth

factor 21 (FGF-21) increased substantiallymore than in those

without the metabolic syndrome (58). In this context, FGF-

21 has been found to impact centrally and raises sympathetic

nerve activity (59), and therefore, in a metabolic-syndrome

scenario, may lead to further increases in cardiac output and

total peripheral resistance. These, in turn, could elevate blood

pressure to a higher level than in healthy individuals. To

date, however, insulin and FGF-21 kinetics and their asso-

ciation with differential blood pressure and hemodynamic
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responses to sucrose, glucose, and fructose have not been

investigated.

Circulating FGF-21: a potential link between fructose
metabolism and sympathetic overactivity
Landsberg and Young (60), in reviewing the relation between

dietary intake and sympathetic nervous system activity, con-

cluded that insulin was able to enhance sympathetic activity.

Moreover, in response to increasing insulin concentrations,

obese men have been found to have comparable elevations

in sympathetic activity to lean and insulin-sensitive subjects

(61). Since fructose ingestion leads to only a marginal in-

crease in circulating insulin concentrations (47), sympathetic

neural responses to fructose are likely to be less dependent

on the involvement of insulin than those to glucose (62). In-

terestingly, as pointed out by Young and colleagues (62), of

all of the early human and animal studies examining sympa-

thetic responses to fructose (63–69), the only reports demon-

strating fructose-induced sympathetic activation were those

in which fructose was given orally, and clearly not those (66–

69) inwhich fructosewas administered parentally. Young and

colleagues (62) went on to propose that the afferent signal for

sympathetic stimulation by fructose is likely to originate from

peripheral chemoreceptors, possibly those located in the gas-

trointestinal tract and/or liver.

Recently, evidence has emerged that FGF-21 released by

the liver could be linked to hepatic metabolism of fructose

(58). In response to oral ingestion of 75 g fructose, FGF-21

was significantly increased above the baseline concen-

trations, with the peak response occurring at ∼120 min

postprandially (58). These increases in circulating FGF-21 in

response to fructose were more pronounced in patients with

metabolic syndrome (58), which may be related to their high

risk for glucose intolerance and insulin resistance. The time

course for circulating FGF-21 seems similar to the blood

pressure effects of a comparable amount of fructose (25),

which raises the possibility that circulating FGF-21 could

provide a link between hepatic fructose metabolism and the

activation of sympathetic activity (Figures 1 and 2). In this

context, studies inmice have shown that FGF-21 acts directly

on the brain to stimulate sympathetic nerve activity (59). In

addition to fructose, increases in plasma FGF-21 concentra-

tions in mice have also been shown to occur in response to

ingestion of 10% glucose or 10% sucrose, but not saccharin

or water (70). In humans, excess dietary carbohydrate intake

(80% of energy, with a glucose:fructose ratio of 1:1) for 3

d resulted in an 8-fold increase in FGF-21 concentrations

compared with a control diet (71), whereas ingestion of 75 g

sucrose doubled FGF-21 concentrations in healthy subjects,

with peak responses occurring 120 min after ingestion (72).

In contrast, glucose only, provided as part of an OGTT,

resulted in no overall change in FGF-21 concentrations (73,

74). It is therefore possible that increasing concentrations

of FGF-21 are triggered by fructose or a combination of

glucose and fructose, and may be involved in blood pressure

elevation. Moreover, higher FGF-21 blood concentrations

in patients with metabolic syndrome (58) could be spec-

ulated to exacerbate fructose-induced elevations in blood

pressure.

Potential Cardiovascular Neutral Sugars
Galactose
Lactose is a disaccharide comprising of the monosaccharides

glucose and galactose, at which galactose has received much

attention as a low–glycemic index sugar, with only small

increases in plasma glucose and insulin in response to its

ingestion (46, 75, 76). Recently, the cardiovascular effects

of galactose have also been explored (77). In this context,

acute cardiovascular responses to the ingestion of 60 g galac-

tose were investigated and compared with the same quan-

tity of fructose or glucose with the use of a randomized

crossover study design (77). This study observed that glucose

and galactose had minor effects on blood pressure, which

contrasted to the blood-pressure-elevating effect of fructose.

Moreover, galactose affected cardiac workload to a signifi-

cantly lesser extent than glucose. Therefore, the benefits of

galactose appear to be 2-fold: 1) it is a low–glycemic index

sugar and 2) it appears to inducemilder cardiovascular effects

than either fructose or glucose. Future studies are needed

to investigate the cardiovascular effect of chronic galactose

consumption alone and in combination with other sugars in

healthy individuals, as well as in those with impaired glucose

tolerance.

Artificial sweeteners
The increasing consumption of added sugars, i.e., dietary car-

bohydrates that are artificially added to edible food items

during processing or preparation, particularly in the form of

liquid sugars, is deemed to be an important contributor to

weight gain (38, 78–80). These findings have been strength-

ened by a randomized controlled trial in which changes in

body weight associated with sucrose intake seemed to be at-

tributable to changes in energy intake rather than energy ex-

penditure (81). As a result, the American Heart Association

recommends limiting added sugar intake to no more than

100 kcal (∼25 g)/d for women and 150 kcal (∼38 g)/d for

men (82).

Knowledge of the potential detrimental health effects as-

sociated with SSB consumption has driven an increase in

the consumption of low-calorie sweeteners (LCSs) (83, 84),

often consumed in the form of reduced-calorie beverages

(i.e., beverages containing calories and which are sweetened

with LCS) (83). LCSs are food additives containing practi-

cally no calories, which are associated with an intense sweet-

ness and are mostly used to artificially sweeten food and bev-

erages (85). The most popular and commonly used artificial

sweeteners include aspartame, acesulphame-K, saccharin,

sucralose, and cyclamate. The effect of artificial sweeteners

on body weight and metabolic risk markers has been re-

viewed and, when compared with sucrose-sweetened drinks,

LCSs were found to have beneficial effects on body weight,

glycemia, and insulinemia (86). Maersk and colleagues (87)

observed that ingestion of 1 L/d of a sucrose-sweetened soft
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drink (regular cola) over a 6-mo period resulted in aug-

mented liver-, skeletal-, and visceral fat, and increased plasma

triglycerides and total cholesterol, which were not seen when

drinking the same amount of an aspartame-sweetened soft

drink (diet cola) or water (87). Similarly, a 10-wk parallel in-

tervention study found significant increases in body weight

and fat mass, as well as systolic and diastolic blood pressure,

among overweight subjects consuming sucrose, but not in

those consuming artificial sweeteners (88).

Additional interesting LCSs include stevioside, approved

by the European Food Safety Authority (89), and erythritol, a

commonly used polyol sweetener, both of which are used as

alternatives to aspartame, acesulfame-K, sucralose, and sac-

charin. However, clinical data on stevia (derived from the

leaves of Stevia rebaudiana) and its potential cardiovascu-

lar effects are scarce and inconclusive. Stevia has been shown

to reduce blood glucose concentrations by 18% in individu-

als with T2DM compared with a cornstarch meal (90), but

chronic use of stevia (1000 mg rebaudioside A or placebo

over 16 wk) did not alter glucose homeostasis or blood pres-

sure in patients with T2DM (91). With respect to erythritol,

one study investigated the effect of acute (24 g) and chronic

(36 g/d× 4 wk) erythritol supplementation in beverage form

and found improved endothelial function in patients with

T2DM (92). In a post hoc analysis, Flint and colleagues (92)

observed that in patients with brachial systolic blood pres-

sure >130 mm Hg, chronic treatment with erythritol low-

ered the central pulse pressure (i.e., aortic systolic blood pres-

sure minus aortic diastolic blood pressure), which suggests

a central (aortic) antihypertensive effect (92). Unfortunately,

this study lacked a control group and raises concerns about

multiple testing. Future cardiovascular research should focus

on potential interaction effects of LCSs with sucrose and/or

caffeine because of the widespread use of such beverages

(i.e., diet beverages sweetened with sucrose and LCS, with or

without caffeine).

Conclusion
High consumption of SSBs has been implicated in the de-

velopment of hypertension, hyperlipidemia and obesity, all

of which are involved in the pathogenesis of CVD. This

review provides an important mechanistic understanding of

how sweetened beverages affect cardiovascular responses,

with particular reference to the regulation of blood pressure,

which is a key contributor to increased CVD risk. Over-

weight and obesity, particularly abdominal fat accumulation,

negatively impact insulin sensitivity, and in this context it

is hypothesized that impaired glucose tolerance resulting

from altered insulin action is contributing to altered blood

pressure regulation. Another potential mechanism whereby

SSBsmay increase CVD risk is sympathetic activation, which

is potentially driven by FGF-21 in response to orally ingested

fructose. In contrast to fructose and glucose, galactose ap-

pears to induce milder cardiovascular effects, while artificial

sweeteners either have no effect on cardiovascular param-

eters or are beneficial. Finally, we have identified a need

for further research to elucidate whether (and how) pre-

existing glucose intolerance in individuals may exacerbate

the postprandial cardiovascular responses to sugary drinks,

thus aggravating cardiovascular risk in already susceptible

individuals.
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