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organism. The failure of liver functions in hepatic cirrho-
sis or for other reasons may thus result in an uncontrolled 
increase in levels of ammonia in the circulating blood. 
Ammonia at high concentrations penetrates from the blood 
into practically all organs. Although the brain is partially 
protected by the blood–brain barrier from toxic agents such 
as ammonia, excessive amounts of ammonia can pass into 
the brain, constituting a principal factor in the syndrome of 
hepatic encephalopathy. In patients, hepatic encephalopathy 
may result from acute liver failure or portal-systemic bypass 
with no intrinsic hepatocellular disease, or may be associ-
ated with cirrhosis and portal hypertension [2], all involving 
enormous costs to society. Ammonia concentrations can be 
experimentally elevated in a variety of ways, e.g., by admin-
istration of hepatotoxins as Professor Jan Albrecht has done 
in his many studies on ammonia toxicity, by peripheral 
administration of massive doses of ammonium chloride, 
or by directing the blood flow from the alimentary canal 
by end-to-side portacaval anastomosis, thus by-passing the 
liver. In addition to this, inborn errors in the urea cycle may 
lead to congenital hyperammonemia.

The brain is much more susceptible to the deleterious 
effects of ammonium during development than in adult-
hood. The concentration of ammonia in the blood is higher 
in newborns than in adults [3]. In the brain the normal 
ammonia content also diminishes during maturation [4]. 
Depending on the extent of hyperammonemia and its dura-
tion, more or less serious irreversible damage is caused to the 
brain, leading to mental retardation [5]. Hyperammonemia 
can provoke irreversible damage to the developing central 
nervous system, which leads to cortical atrophy, ventricular 
enlargement and demyelination, responsible for cognitive 
impairment, seizures and cerebral palsy [6]. An increased 
exposure to ammonia during the prenatal and lactation peri-
ods has been shown to cause long-lasting impairment of 
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Background

Ammonia is produced in the body by intermediary amino 
acid metabolism or arises from the actions of intestinal bac-
teria. In human adults approximately 1000 mmol (17 g) of 
ammonia is produced daily [1]. A part of this is reutilized in 
biosynthesis, while the remainder is waste and neurotoxic. 
Its normal concentration in the portal blood varies from 300 
to 600 μM, but in the blood leaving the liver the concen-
tration is reduced to 20–60 μM. The liver thus occupies a 
central position in the regulation of ammonia levels in the 
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may impair the mitochondrial function in astrocytes second-
arily to its excessive accumulation in them. Glutamine has 
been shown to increase mitochondrial permeability [27]. 
Ammonia itself does not induce mitochondrial swelling, 
even though it increases glutamate uptake in mitochondria 
[18].

It has been demonstrated that activation of the neu-
ronal NKCC1 (Na+− K+ 2Cl−-cotransporter, encoded by 
the SLC12A2 gene) is involved in the astrocyte swelling 
induced by ammonia and in brain edema [28]. Preclinical 
results in non-anesthetized mouse model of childhood epi-
lepsy (ornithine transcarbamylase-deficient mice), which 
are contradictory to earlier conceptions as to the critical role 
of astrocyte swelling, have recently been published. Accord-
ing to them an acute increase in extracellular ammonia does 
not lead primarily to astrocyte swelling but rather to unbal-
anced astrocyte buffering of potassium ions, with increases 
extracellular potassium overactivating the NKCC1, which 
in turn compromises inhibitory neurotransmission in the 
cerebral cortex and depolarizes the neuronal GABA reversal 
potential (EGABA) [29]. Consequently, intracellular chloride 
is increased in neurons and the main fast-acting inhibitory 
system, GABAA receptor-mediated inhibition, is blunted, 
leading to a myoclonic seizure phenotype in this mouse 
model. This abnormal GABAergic excitation might be exac-
erbated by the known increase in extracellular GABA due to 
ammonia-induced inhibition of GABA uptake and enhance-
ment of GABA release [17], and by increased synthesis of 
GABA by glutamate decarboxylase due to increased glu-
tamate levels [30]. The potassium uptake mechanisms by 
Na+/K+-ATPase are then saturated by increased ammonium 
ion levels. According to these studies increased ammonia 
would thus seem not to lead to astrocyte swelling but rather 
to transient astrocyte shrinking. Astrocyte swelling or brain 
edema only occurs in the terminal stages of ammonia toxic-
ity [31]. Importantly, the clinically used diuretic inhibitor 
of NKCC1, bumetanide, has been seen to block the effects 
of acute ammonia on GABAergic neurotransmission and 
prevent seizures in the mouse model [29]. It remains to be 
established whether these acute mechanisms show adapta-
tion during more modest and prolonged hyperammonemia.

Molecular Mechanisms Involved

At present, several factors and pathways have been surmised 
to be associated in ammonia toxicity [32]. To date, these 
include oxidative and nitrosative stress [9, 33], adverse 
alterations in the glutamate-glutamine cycle, changes in 
mitochondrial permeability transition (MPT) [34], effects 
on neural transmission, activation of mitogen-activated 
protein kinases (MAPKs) and effects on the transcription 
factor nuclear factor-kappa B (NF-κB) [35]. Such effects 

N-methyl-d-aspartate (NMDA) receptor functions [7]. The 
disruption of energy metabolism by ammonia and distur-
bances in axonal growth during development could also be 
factors contributing to mental retardation [8].

Increased accumulation of ammonia in the brain due to 
liver dysfunction is a major factor in the pathogenesis of 
hepatic encephalopathy [9]. Hyperammonemia apparently 
affects brain functions by several mechanisms. It blocks 
chloride efflux from postsynaptic neurons [10], causes 
depression of synaptic transmission [11], inhibits neuron-
astrocyte trafficking of glutamate and affects postsynap-
tic glutamate receptors [12]. The firing of glutamatergic 
neurons in the CA1 region of the hippocampus evoked by 
applied glutamate is then abolished by ammonia. On the 
other hand, glutamate exocytosis is evoked by ammonia 
in cultured rat astrocytes [13]. Ammonia also affects other 
neurotransmitter systems in addition to the glutamatergic. 
The synthesis of histamine, serotonin, dopamine and nor-
adrenaline in the brain is altered by hyperammonemia [14]. 
For example, ammonium chloride directly administered to 
the rat striatum via reversed microdialysis evokes a prompt 
accumulation of dopamine in the microdialysates [15]. 
Furthermore, ammonia influences the passage of different 
molecules across the blood–brain barrier. It modulates the 
transcellular passage of low- to medium-size molecules by 
affecting their carriers located at this barrier [16]. Ammonia 
also inhibits GABA uptake and enhances its release [17]. 
On the other hand, ammonia has been shown to stimulate 
glutamine uptake into non-synaptic mitochondria isolated 
from rat cerebral hemispheres [18]. We here briefly review 
these proposed mechanisms.

Astrocyte Swelling and Shrinking

Ammonia induces astrocytic swelling [19]. Astrocyte swell-
ing is believed to be a key component in the cytotoxic 
brain edema [20] associated with acute liver failure and the 
increase in intracranial pressure and eventually brain her-
niation which is often the cause of death in patients with 
hepatic encephalopathy [21]. Elevated ammonia has also 
been shown to produce astrocytic swelling, tissue swelling 
and neuronal toxicity in organotypic slice cultures of cere-
bral tissue [22]. Astrocyte swelling has thus been generally 
assumed to be the key factor in the generation of ammonia 
toxicity and the increase in intracranial pressure leading to 
brain herniation and death [19, 23].

Glutamine has been thought to be the principal factor in 
ammonia detoxification. More recently, however, glutamine 
has been considered to mediate ammonia toxicity when in 
excess [24, 25]. In keeping with this assumption the cerebral 
glutamine content has been shown to correlate positively 
with the grade of hepatic encephalopathy [26]. Glutamine 
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bioenergetics and oxidative stress appear to be critical fac-
tors in this pathogenesis [52]. MPT seems thus to represent 
an important component in the pathogenesis of hepatic 
encephalopathy and other hyperammonemic states [53]. In 
line with these speculations, direct application of glutamine 
to cultured astrocytes increases free radical production and 
induces MPT [54]. Only astrocytes, but not neurons, gener-
ate free radicals following glutamine exposure [55].

Brain glucose consumption is diminished in portacaval 
shunt-induced [56] and thioacetamide-induced [57] hyper-
ammonemic states. Hyperammonemia can induce cere-
bral energy failure by several mechanisms [58, 59]. The 
high concentration of ammonia interferes with oxidative 
metabolism in the brain through an inhibitory effect on the 
tricarboxylic acid cycle [60]. Ammonia also induces ATP 
depletion due to activation of Na+/K+-ATPase, which, in 
turn, is a consequence of decreased phosphorylation by pro-
tein kinase C (PKC) [61]. Ammonium chloride also affects 
energy metabolism by increasing the neuronal tricarboxylic 
acid cycle activity and switching it in astrocytes towards 
glutamine synthesis [62]. At variance with this assumption 
the excess ammonia has been reported to interfere with brain 
energy metabolism by inhibiting the tricarboxylic acid cycle 
and this inhibition may result in depletion of ATP in the 
brain cells [63]. Moreover, there are also other controversial 
findings on this topic. It has been consistently reported that 
hepatic encephalopathy and concomitant hyperammonemia 
lead to reduced cerebral oxygen consumption. However, 
this may not be directly linked to an effect of ammonia but 
related to the fact that hepatic encephalopathy is always 
associated with reduced brain activity [64]. The whole-brain 
oxidative metabolism in patients with hepatic encephalop-
athy may not be due to malfunction of oxidative metabo-
lism in astrocytes. The observed decline of brain oxidative 
metabolism may result from changes in neurons and their 
energy turnover [65].

One of the primary roles of astrocytes is to protect neu-
rons against excitotoxicity by taking up excess ammonia 
and glutamate and converting them into glutamine via glu-
tamine synthetase, which is located almost exclusively in 
astrocytes [66, 67]. Changes in the expression of this enzyme 
reflect changes in astroglial functions, hence also affecting 
neuronal functions [68]. Newly synthesized glutamine is 
transferred to neurons and hydrolyzed by glutaminase to 
glutamate [30]. In hepatic encephalopathy the expression of 
glutamate transporter (EEAT-2) is decreased, which impairs 
the cycling of glutamate-glutamine between astrocytes and 
neurons. Consequently, extracellular level of the main fast-
acting excitatory neurotransmitter glutamate is increased, 
the NMDA receptor-mediated signaling activated, includ-
ing RNS production, and tyrosine residues are nitrated. This 
sequence of events has been considered a cornerstone in the 
pathogenesis of hepatic encephalopathy [69].

strongly suggest the involvement of phosphorylation of 
MAPKs in the mechanism of ammonia-induced astrocyte 
dysfunction associated with ammonia neurotoxicity [36]. 
Blockade of the MPT, MAPKs and NF-κB has been shown 
to reduce the extent of astrocyte swelling [35]. The cyto-
plasmic level of tumor suppressor phosphoprotein p53 is 
also increased in acute toxicity with large ammonium doses 
[37, 38]. These above effectors generate additional reactive 
oxygen–nitrogen species, phosphorylate various proteins 
and transcription factors, and cause mitochondrial dysfunc-
tion. Astrocytes exposed to ammonia also exhibit a reduc-
tion in intra- and extracellular levels of thrombospondin-1, 
an astrocytic factor involved in the maintenance of synap-
tic integrity. A defective release of thrombospondin-1 may 
impair synaptic integrity in chronic hepatic encephalopathy 
[39].

Ammonia markedly enhances the generation of reactive 
oxygen and nitrogen species (ROS and RNS), including the 
highly toxic peroxynitrite, in astrocytes [40, 41]. The pro-
duction of hydroxyl radicals is also increased in vivo in the 
rat striatum upon microdialysis of ammonium chloride [42]. 
The generation of reactive oxygen and nitrogen species, in 
turn, induces protein tyrosine nitration [43], lipid peroxida-
tion [44], S-nitrosylation of cysteine residues in proteins, 
and nucleic acid oxidation [45]. Glutathione is the major 
antioxidant in the brain and could counteract the harmful 
effects of reactive oxygen and nitrogen species. The synthe-
sis of glutathione in cultured astrocytes [46] and the uptake 
of its precursor cysteine [47] are fomented by ammonia. 
In line with these observations, the glutathione content is 
increased in the brain extracellular spaces after administra-
tion of ammonium chloride [48].

Elevated concentrations of ammonia induce the forma-
tion of free radicals in astrocytes, which is associated with 
the synthesis of glutamine [40]. When the glutamine trans-
port into cultured astrocytes is prevented, the generation of 
ammonia-induced reactive oxygen species production, cell 
swelling, MPT, and loss of ATP are completely blocked or 
significantly attenuated [49]. These findings clearly impli-
cate mitochondrial glutamine transport in the mechanism 
of ammonia neurotoxicity. It has been proposed that the 
glutamine-derived ammonia within mitochondria interferes 
with mitochondrial functions, giving rise to excessive pro-
duction of free radicals and induction of MPT, two phenom-
ena which bring about astrocyte dysfunction, including cell 
swelling [50]. Glutamine thus induces oxidative stress and 
MPT, being critical in the development of astrocyte swell-
ing in hyperammonemia [23].

There is strong evidence to indicate that oxidative stress 
is involved in the induction of MPT by ammonia, and that 
oxidative stress and the subsequent induction of MPT 
contribute to the pathogenesis of hepatic encephalopathy 
and other hyperammonemic disorders [51, 52]. Altered 
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citrulline levels could be regulated by both NMDAR and 
GABAAR activities, and importantly, the neurosteroid sen-
sitivities of both receptor systems were altered depending on 
the increased ammonium levels. Several neurosteroids, for 
example allopregnanolone, tetrahydrodeoxycorticosterone 
and dehydroepiandrosterone sulphate, reduced the pathway, 
whereas pregnenolone sulphate enhanced it. The results 
were taken to indicate that certain neurosteroids might con-
tribute to cognitive symptoms of hyperammonemia while 
others alleviate them [82, 83]. In line, Zorumski et al. [84, 
85] have reported that 100 μM ammonium in vitro inhibits 
the induction of NMDAR-dependent long-term potentiation 
(LTP) via increased neurosteroid synthesis in hippocampal 
slices. The effect of ammonium could be blocked by fin-
asteride, a selective inhibitor of 5α-reductase needed for 
neurosteroid synthesis, and by GABAAR blocker picro-
toxin, as well as by l-carnitine. The key step in the neuros-
teroid synthesis is mediated by the mitochondrial 18 kDa 
translocator protein (TSPO, formerly known as peripheral 
benzodiazepine receptor), which enhances the uptake of the 
precursor cholesterol for the synthesis [86]. The TSPO is 
strongly upregulated in animal models of hyperammonemia 
and in patients with hepatic encephalopathy [87–91], which 
then increases neurosteroid levels [92, 93]. These interest-
ing observations await for translation to clinical trials, par-
ticularly as finasteride has alleviated various symptoms in 
a model of thioacetamide-induced hepatic encephalopathy 
in rats [94].

How to Alleviate Ammonia Toxicity? Preclinical 
vs. Clinical?

The severity of symptoms in ammonia toxicology has 
been the impetus in the search for methods and com-
pounds which could alleviate them, in addition to pos-
sible neurosteroid-related mechanisms (see above). Some 

Involvement of N-methyl-d-aspartate Receptors

Ionotropic NMDA receptors are involved in many functions 
in the central nervous system. The severity of the symptoms 
caused by hyperammonemia is positively correlated with the 
activation of NMDA receptors [70]. The acute neurotoxic 
effects of ammonia may thus be due mainly to overactiva-
tion of NMDA receptors, possibly potentiated by impaired 
control of their function by metabotropic glutamate recep-
tors [71]. The sequence of events consists of increased 
extracellular glutamate stimulating NMDA receptors, which 
leads to increased intracellular Ca2+ and subsequent activa-
tion of NADPH oxidase (superoxide production, ROS) and 
NO synthase (NO production, RNS). Superoxide and NO 
can then promote the formation of peroxynitrite and protein 
tyrosine nitration. On the other hand, long-term exposure to 
ammonia of cultured cerebellar neurons impairs the gluta-
mate-NO pathway in a dose- and time-dependent manner. 
The glutamate-induced formation of cGMP is reduced with-
out effects on NO synthase [72].

The ammonia-induced swelling of rat cerebral corti-
cal slices is significantly attenuated by NMDA receptor 
antagonists, inhibitors of the NO synthase, and taurine [73]. 
Ammonia treatment in vivo reduces synthesis of kynurenic 
acid, which is an endogenous, broad-spectrum antagonist of 
ionotropic glutamate receptors [74]. Inhibition of excitatory 
synaptic transmission by elevated brain ammonia has been 
assumed to underlie the central nervous system depression 
in hepatic encephalopathy [75]. Ammonia may stimulate the 
expression of inducible NO synthase in astrocytes, leading 
to excessive formation of NO, which in turn could trigger 
the formation of peroxynitrite in adjacent neurons, inducing 
their death [76]. The NMDA receptor antagonist dizocilpine 
(MK-801) blocks the ammonia-induced generation of reac-
tive oxygen and nitrogen species in astrocytes [77]. On the 
other hand, administration of ammonium chloride has been 
reported to reduce the expression of two NMDA receptor 
subunits (GluN2A and GluN2B) in the rat hippocampus 
[78]. Ammonium chloride infusion into the rat striatum in 
vivo via a microdialysis probe increases glutamine, NO 
oxidation products and cGMP in the microdialysate [79]. 
Likewise, it activates NMDA receptors and foments the 
generation of hydroxyl radicals [42]. Ammonia also induces 
apoptosis as a result of a complex interplay of at least three 
signalling molecules: NO, PKC and NF-κB. The NF-κB is 
possibly involved in the induction of iNOS and the genera-
tion of toxic levels of NO in C6 glioma cells [80]. Figure 1 
summarizes the main sequelae of ammonia neurotoxicity.

More recently, Cauli et al. [81, see for refs] have used 
cerebellar in vivo microdialysis to assess the mechanisms of 
ammonium-induced impairment of the glutamate-NMDAR-
NO-cGMP pathway. NMDA-triggered citrulline and cGMP 
production was monitored in dialysates. The cGMP and 

Fig. 1 Main factors responsible for hepatic encephalopathy, the most 
severe form of neurotoxicity induced by hyperammonemia
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Concluding Remark

Rapid advances in knowledge of the mechanisms involved 
in hyperammonemia-induced alterations in the brain are the 
basis for an understanding of the neurochemical, cellular, 
functional and structural effects caused by ammonia, hope-
fully leading to the invention of novel strategies in the treat-
ment of hepatic encephalopathy.
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