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Highlights 

 

 Despite advance in understanding the immunopathogenesis of sepsis we still do 

not have any direct therapeutic target to manage sepsis 

 Beside affecting physiological metabolism, sepsis also affects metabolism of 

immune cells, here it is called immunometabolism 

 T cells are an important component of adaptive immunity and are severely 

affected by sepsis as early as within three hours of onset of sepsis 

 Regulatory T cells (Tregs) are responsible for the generation of a stage of 

immunosuppression in the later stage of sepsis 

 Studying and targeting T cell and Treg immunometabolism at different stages 

of sepsis will provide novel therapeutic approaches against it 
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Abstract 

Sepsis has always been considered as a big challenge for pharmaceutical companies in terms 

of discovering and designing new therapeutics. The pathogenesis of sepsis involves aberrant 

activation of innate immune cells (i.e. macrophages, neutrophils etc.) at early stages. However, 

a stage of immunosuppression is also observed during sepsis even in the patients who have 

recovered from it. This stage of immunosuppression is observed due to the loss of conventional 

(i.e. CD4+, CD8+) T cells, Th17 cells and an upregulation of regulatory T cells (Tregs). This 

process also impacts metabolic processes controlling immune cell metabolism called 

immunometabolism. The present review is focused on the T cell-mediated immune response, 

their immunometabolism and targeting T cell immunometabolism during sepsis as future 

therapeutic approach. The first part of the manuscripts describes an impact of sepsis on 

conventional T cells, Th17 cells and Tregs along with their impact on sepsis. The subsequent 

section further describes the immunometabolism of these cells (CD4+, CD8+, Th17, and Tregs) 

under normal conditions and during sepsis-induced immunosuppression. The article ends with 

the therapeutic targeting of T cell immunometabolism (both conventional T cells and Tregs) 

during sepsis as a future immunomodulatory approach for its management.  

Key Words: Sepsis; Immunosuppression; Immunometabolism; T cells; Tregs 
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1. Introduction 

Sepsis is known since at least 1,000 BC- under one or another condition, for example Ibna Sina 

(also known as Avicenna), an Islamic philosopher described sepsis as putrefaction of blood 

and tissues with fever (Majno, 1991). Thereafter, the term sepsis was used by Greek Physician 

called Hippocrates in 430 BC to describe the decomposition of organic matter or human body 

(Geroulanos and Douka, 2006; Jensen and Bouadma, 2016). The word sepsis is originally 

derived from a Greek word [σηψις] pronounced as sipsis = make rotten that was further derived 

from sepo [σηπω] that means “I rot” (Botero and Pérez, 2012; Funk et al., 2009; Geroulanos 

and Douka, 2006). Thus, sepsis was known to ancient physicians thousands of years before. 

However, its pathogenesis and cause was not clear to them. After the discoveries made by 

pioneer researchers including Ignaz Semmelweis (an early pioneer of antiseptic techniques), 

Louis Pasteur (inventor of a techniques called pasteurization and vaccination) and Joseph Lister 

(inventor of antiseptic surgery) a modern view of sepsis evolved (Marshall, 2004). However, 

the most modern definition of sepsis that is defined as an invasion of microorganisms and/or 

their toxins into the bloodstream, along with the organism's reaction against this invasion was 

given by US-American intensive care unit (ICU) specialist Roger C. Bone (1941-1997) that 

remained unchanged for more than two decades. However, currently according to sepsis-3 

guidelines “sepsis is defined as a life-threatening organ dysfunction caused by dysregulated 

immune response during infection” (Singer et al., 2016).  

        Currently, we are in the most advanced stage of 21st Century medicine and it is further 

getting advanced every year but when it comes to sepsis, we are still lacking target based 

therapy to counter sepsis effectively. For example, an annual incidence of sepsis is 31.5 million 

that causes the death of 5.3 million peoples in the high-income countries throughout the world 

(Fleischmann et al., 2016). In addition to its high mortality, it also costs more than $14 billion 

dollars annually for managing sepsis patients admitted to ICUs in the United States alone 

(Healthcare and Utilization, 2008). Despite the advancements in the field of drug discovery 

and medicine, the increasing incidence of sepsis has made it a major public health problem 

(Finfer and Machado, 2016; Fleischmann et al., 2016; Healthcare and Utilization, 2008). For 

example, Drotrecogin alfa (activated), a recombinant activated protein C developed by Eli Lilly 

and Company, and marketed as Xigris, was the only FDA (USA) approved drug for the 

effective management of sepsis patients at advanced stage of the disease that has also been 

taken off the market in 2011 (Hosac, 2002; Ranieri  et al., 2012). Thus, sepsis management is 
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still a critical medical condition to physicians working in intensive care units (ICUs). With the 

advancement in sepsis research we gained scientific knowledge regarding 

immunopathogenesis of sepsis and associated inflammatory immune response as reviewed 

extensively in references mentioned (Bosmann and Ward, 2013; Delano and Ward, 2016a, b; 

Hotchkiss et al., 2016; Hotchkiss et al., 2013; Kumar and Sharma, 2008; Lai et al., 2014; Venet 

and Monneret, 2017; Weber and Swirski, 2014). 

    Sepsis is a disease of hyperactivated immune response against the pathogen (Hotchkiss et 

al., 2016). But, a stage of immunosuppression also occurs simultaneously during the phase of 

hyperactivated innate immunity (Hotchkiss et al., 2016). This is because a loss of both B cells 

and T cells via apoptosis is observed during early phase of sepsis (Hotchkiss et al., 2001; 

Monserrat et al., 2013; Unsinger et al., 2006). This immunosuppression is characterized by 

lymphopenia and loss of immune function (Boomer et al., 2011; Weber and Swirski, 2014). 

The patients who survive the episode of sepsis often develop long-lasting stage of 

immunosuppression making them susceptible to develop certain secondary nosocomial 

infections along with various viral infections (Hotchkiss et al., 2009; Otto et al., 2011; Ward, 

2012). An altered stage of metabolism is observed in immune cells (i.e. macrophages, and T 

cells etc.) during their activation that governs their further action (Ganeshan and Chawla, 2014; 

MacIver et al., 2013; Van den Bossche et al., 2017). A broad spectrum defect in metabolic 

stages of leukocytes during sepsis is mainly responsible for immunosuppression observed 

during a later stage of sepsis (Cheng et al., 2016). Thus, it becomes essential to study the 

immunometabolism of lymphocytes for targeting sepsis. 

One of the major immune cell population that shows a profound decline during sepsis-

associated immunosuppression/immunoparalysis comprises of T cells. The population of T 

cells decreases in various compartments of the body including lymph nodes, spleen, gut, lungs 

and in other vital organs (Boomer et al., 2011). Thus, present review is aimed to describe the 

role of T cells in the pathogenesis of sepsis, changes in their immunometabolic stage and 

targeting T cell immunometabolism in sepsis. 

2. T cell-mediated immune response and the pathogenesis of sepsis 

T cells are cellular component of adaptive immunity that provide support to proper functioning 

of other arms of immune system thus, acting as coordinators (for example, helper T (Th) cells 

provide support to all major components of innate and adaptive immunity via secreting various 

immunoregulatory molecules including cytokines and chemokines) and effector cells of 

adaptive immunity (i.e. cytotoxic T cells directly attack on tumours and virus-infected cells 

(Juno et al., 2017; Martinez-Lostao et al., 2015; Phetsouphanh et al., 2017; Rabb, 2002; Shinkai 
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et al., 2002). Additionally, T cells also regulate antibody production and associated antibody-

mediated immune response (Figueiredo et al., 2017; Sage et al., 2016). Thus, T cells are a very 

important component of the mammalian immune system and their deficiency, 

dysregulation/abnormal function is associated with various immunodeficiency and 

autoimmune diseases (Bluestone et al., 2015; Dornmair et al., 2003; Liston et al., 2008).  

2.1. CD4+, CD8+ and CD4+CD8+ T cells in sepsis 

The direct role of T cells in the immunopathogenesis of sepsis seems to be very complex. For 

example, gram-negative bacterial peritonitis (i.e. Escherichia coli, Klebsiella pneumoniae, 

Pseudomonas aeruginosa) causing sepsis in mice induces a profound decrease in thymocytes 

as soon as 3-hours post sepsis and within 3 days maximum damage to thymus and T cells is 

reported (Wang et al., 1994). The most prominently decreased population of T cells comprises 

of CD4+CD8+ T cells (Wang et al., 1994). An early induction of T cell apoptosis in mouse 

model of sepsis indicates that these cells are crucial to providing protection against sepsis 

(Hotchkiss et al., 1999a). This is because mice deficient in T cells die early due to sepsis 

(Hotchkiss et al., 1999b). The overexpression of anti-apoptotic Bcl-2 gene specifically in T 

cells prevented apoptotic loss of T cells upon induction of sepsis and increased the survival 

(Hotchkiss et al., 1999b). This is further strengthened by the observation that adoptive transfer 

of T cells to T-cell deficient mice provides protection against sepsis (Shelley et al., 2003). CD4+ 

T cells provide protection to host against sepsis as CD4 KO succumb to sepsis earlier than their 

wild-type (WT) counterparts (Martignoni et al., 2008). Sepsis-induced loss of mitochondrial 

membrane potential in T cells has also been observed (Hotchkiss et al., 1999b).  

    The loss of immunocompetent CD4+CD8+ T cells is also reported in patient with severe 

sepsis (Boomer et al., 2011; Inoue et al., 2013). A highly exhausted immunophenotype of T 

cells is observed in the spleen of patients surviving sepsis (Boomer et al., 2011; Inoue et al., 

2013). The loss of CD4+ T cells in humans during sepsis occurs due to the profound activation 

of caspase 3 and 9 (indicators of apoptotic cells death) (Hotchkiss et al., 1999a; Hotchkiss et 

al., 2001).  Sepsis-associated apoptosis of both CD4+ and CD8+ T cells is responsible for the 

development of lymphopenia and immunosuppression in patients at later stages of sepsis 

(Cabrera-Perez et al., 2014; Condotta et al., 2013; Rimmele et al., 2016). Sepsis also impairs 

their functional ability to proliferate in response to antigen-mediated stimulation and their 

effector functions (Danahy et al., 2016). Thus, sepsis-induced defect in CD4+ and CD8+ T cells 

both quantitatively and qualitatively increases susceptibility to developing secondary 

infections in sepsis patients along with its survivors (Danahy et al., 2016). Further research in 

this direction has shown that the full activation of CD4+ T cells during sepsis requires their 
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stimulation with specific antigen (Schmoeckel et al., 2015). Thus, an incomplete/partial 

stimulation of CD4+ T and CD8+ T cells during sepsis in a T-cell receptor (TCR)-independent 

manner may cause their increased apoptosis (Esser et al., 2001). Whereas their full stimulation 

and proliferation in the presence of a specific antigen can alter apoptotic cell death, 

lymphopenia and a stage immunosuppression during sepsis. This needs to be studied 

effectively and may prove helpful to design T cell-based immunomodulatory therapeutics to 

target sepsis. 

Furthermore, the onset of sepsis and septic shock in humans is associated with decreased 

expression of T-bet, GATA3, and ROR-γt—transcription factors that regulate the Th1, Th2, 

and Th17 effector CD4+ T cell phenotypes (Pachot et al., 2005). CD4+CD62L+ T cells isolated 

from mice with sepsis showed reduced proliferative capacity, altered gene expression and 

repressive histone methylation (i.e. (i.e. increased methylation of H3K27) (Carson et al., 2010). 

Thus, sepsis has a potential to affect both genes controlling epigenetic switch via chromatin 

remodeling and an induction of transcription factor that can potentially modify the phenotype 

and function of CD4+ T cells observed during sepsis (Carson et al., 2010; Jensen et al., 2018). 

2.2. Th17 cells in sepsis 

Th17 cells are different type of CD4+T cells that express lineage-specific transcription factor, 

RORγt and secrete IL-17A and IL-17F cytokines (Brucklacher-Waldert et al., 2009; Maddur 

et al., 2012). Human Th17 cells also express T-bet transcription factor along with retinoic-acid-

receptor-related orphan nuclear receptor gamma t (RORγt) and can produce IFN-γ in the 

presence of IL-12 (Romagnani et al., 2009). Th17 cells can be differentiated form naïve CD4+ 

T cells in mice in the presence of transforming growth factor (TGF)-β and the cytokine, IL-6 

in mice (Binger et al., 2017). The involvement of transforming growth factor (TGF)-β in the 

differentiation of Th17 cells depicts a close relationship between the cells of Th17 lineage and 

CD4+CD25+Foxp3+ regulatory T cells (Tregs) (Korn et al., 2009). Th17 cells are primarily 

associated with several autoimmune diseases including psoriasis, rheumatoid arthritis (RA), 

inflammatory bowel disease (IBD) and multiple sclerosis (MS) (Yang et al., 2014). However, 

Th17 cells also provide defence against extracellular pathogens including fungi (i.e. candida 

albicans) and bacteria (i.e. Klebsiella pneumoniae, Bordetella pertussis, or Streptococcus 

pneumoniae etc.) colonizing mucosal surfaces (Maddur et al., 2012; Peck and Mellins, 2010). 

Thus their deficiency can prove detrimental to the host during defence against infectious 

diseases. For example diminished Th17 immune response during severe sepsis is associated 

with an increased mortality (Wu et al., 2013). However, blood samples taken on admission 

(Day 0) showed higher number of Th17 cells but their number decreased by day 7 (Brunialti et 
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al., 2012). Thus, this decrease in Th17 cells proves detrimental to septic patients via promoting 

immunoparalysis/immunosuppression (Rendon and Choudhry, 2012). An association between 

imbalanced Th17 and regulatory T cells (Tregs) cell population during multi-organ dysfunction 

syndrome (MODS) including acute respiratory distress syndrome (ARDS) is also observed 

during sepsis (Guo et al., 2017; Yu et al., 2015a). The decreased Th17 immune response during 

sepsis increases the chance to developing fungal infections including Candida albicans (van 

de Veerdonk et al., 2012). The exact role of Th17 cells during sepsis remains to be established.          

2.3. Regulatory T (Tregs) cells in sepsis  

Tregs like other T cells also develop and get matured in thymus and survive in the periphery 

including peripheral blood circulation and various target organs (Belkaid and Rouse, 2005).. 

Tregs continuously express a unique transcription factor called FOXP3 (Forkhead box P3) or 

scurfin that is required for their generation (Fontenot and Rudensky, 2005). Tregs are 

CD25+CD4+FOXP3+ T cells continuously expressing CTLA-4 (cytotoxic-T-lymphocyte-

associated protein-4) or CD152 and glucocorticoid-inducible tumor necrosis factor receptor 

(GITR) (Belkaid and Rouse, 2005; Fontenot and Rudensky, 2005; Piccirillo and Shevach, 

2004). The importance of Tregs in humans can be exemplified by the occurrence of IPEX 

(Immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome that occurs due 

to the FOXP3 gene (located on chromosome Xp11.23) mutation and in scurfy strain mice 

(Bacchetta et al., 2006; Bennett et al., 2001; Newton et al., 2016; Smyk-Pearson et al., 2003). 

However, in addition to these natural Tregs that can be further classified into thymus-derived 

Tregs (tTregs) and peripherally induced Tregs (pTregs), a distinct population of Tregs can be 

induced by various microbial antigens and foreign antigens in the periphery and are called 

induced Tregs or in vitro generated Tregs (iTregs) (Mills and McGuirk, 2004). tTregs are most 

natural form of Tregs as they express FoxP3 constitutively, while pTRegs are generated upon 

encounter with antigens in peripheral tissue or circulation environment (Newton et al., 2016). 

Due to these differences all these Tregs (i.e. tTregs, pTregs and iTregs) may not exhibit a 

similar immunometabolism at their naïve or activated stage (Newton et al., 2016). Tregs are 

major immunoregulatory cells with a potential to suppress exaggerated pro-inflammatory 

action of effector T cells or Teffs that are type of activated T cells (i.e. activated Th1, Th2, 

Th3, Th9, Th17, cytotoxic T cells etc.) getting activated via different mechanisms described 

elsewhere (Arce-Sillas et al., 2016; Pandiyan et al., 2011; Schmidt et al., 2012). 

            An association of Tregs with sepsis-associated immunoparalysis is also reported 

(Monneret et al., 2003). These patients showed 56% mortality at 28 days post-admission into 

ICU (Monneret et al., 2003). Thus, an increase in immunosuppressive Tregs in patients with 
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sepsis is associated with immunoparalysis. This immunosuppression or immunoparalysis can 

act as one of the contributing factor for sepsis-associated mortality. The number of Tregs in 

peripheral circulation of septic patients increases within three days of the development of septic 

shock (Hein et al., 2010). A profound increase in CD4+CD25+FOXP3+ regulatory T cells in the 

spleen during sepsis is also observed (Hein et al., 2010; Scumpia et al., 2006). The use of 

DEREG (DEpletion of REGulatory T cells) mice further showed an increase in Foxp3+ Treg 

cells during murine sepsis (Tatura et al., 2015). In addition, both the populations of nTregs [i.e. 

natural Tregs (Nrp1+ Foxp3+) and iTregs (Nrp1− Foxp3+)] are stable with unmethylated form 

of foxp3-TSDR and act as immunosuppressive T cells during sepsis (Tatura et al., 2015). 

DEREG mice showed phenotype of severe sepsis with higher circulating IL-6 levels and higher 

mortality rate in comparison to non-depleted DEREG mice during early phase of sepsis (Tatura 

et al., 2015). Thus, Foxp3+ Treg cells limit the hyper-inflammatory response and accelerate 

recovery during early phase of sepsis (Tatura et al., 2015).  

       An increase in CD4+CD25+CD127− cells among sepsis patients (3–7 days after onset of 

the septic shock) is found to be correlated with a decrease in the number of CD4+ T cells due 

to the selective depletion of CD4+CD25− T cells (Monneret et al., 2003; Venet et al., 2009; 

Venet et al., 2004). Additionally, an increased number of Tregs in septic patients can also be 

observed due to an increase in transcription-permissive histone modification of the Foxp3 that 

might skew T cell differentiation towards Treg cell lineage development during sepsis 

(Cavassani et al., 2010). IL-33 is also reported to increase the number of Tregs during sepsis 

and long-term immunosuppression (Nascimento et al., 2017). This is because a higher levels 

of Tregs, IL-33, and IL-10 are observed in peripheral circulation of patients surviving sepsis 

(Nascimento et al., 2017). In humans Treg mediated immunosuppression proves detrimental to 

septic patients (Cao et al., 2015; Kessel et al., 2009). Tregs with a previous experience of a pro-

inflammatory environment reversed several activation-induced changes and lost their enhanced 

immunosuppressive function with time (van der Veeken et al., 2016). This phenotype of Tregs 

in sepsis needs to be studied carefully as this can provide a direction in designing future 

therapeutic approaches. 

3. Immunometabolism among different T cell subsets and sepsis  

Immunometabolism is relatively a new branch of immunology although metabolic changes in 

neutrophils and macrophages were observed more than 50 years back in 1964 during the 

process of phagocytosis (Rossi et al., 1972; Rossi and Zatti, 1964). Furthermore, the metabolic 

shift form oxidative phosphorylation (OXPHOS) to glycolysis was described in peritoneal 

macrophages and neutrophils subjected to phagocytosis as early as in 1963 (Oren et al., 1963). 
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Thus, the shift from OXPHOS to glycolysis during conditions of high energy demand including 

cancers, severe infections or sepsis called is called Warburg effect (Ferreira, 2010; Hsu and 

Sabatini, 2008). The Warburg effect was first described in cancer cells that utilize glucose via 

glycolysis as a major source of energy for their survival and growth (Ferreira, 2010; Hsu and 

Sabatini, 2008; Koppenol et al., 2011). Pro-inflammatory T cell populations that include Th1, 

Th2, and Th17 cells exhibit increased glycolysis but less OXPHOS than in vitro-induced iTregs 

that utilize lipid peroxidation (LPO) or fatty acid oxidation (FAO) and OXPHOS mainly for 

their energy requirement (Michalek et al., 2011; Shi et al., 2011). 

        The activation, growth, division, proliferation and the involvement of immune cells into 

their effector function and then returning back to their homeostatic condition is tightly 

regulated by their metabolic status (Buck et al., 2017). The shift towards a particular pathway 

controlling the immunometabolism of T cells is determined by several factors including 

nutrient availability, energy status and requirement along with the cell’s own internal metabolic 

status including hypoxia or internal generation of reactive oxygen species (ROS) and balance 

between internal metabolites (Buck et al., 2017). Naïve T cells ((Tn) maintain a balance 

between oxidizing by-products including ROS and reducing agents including cellular 

antioxidants (i.e. glutathione (GSH), superoxide dismutase (SOD) etc.) (Franchina et al., 2018; 

Kamiński et al., 2012; Mak et al., 2017; Terrazzano et al., 2014). Thus, it is the level of 

intracellular ROS that guides and diversifies the outcome of ROS-associated intracellular 

signalling events responsible for T cell immunometabolism and its reprogramming (Franchina 

et al., 2018) Tn keep check in production of excessive ROS via constant production of 

antioxidant molecules to prevent ROS-mediated cell death (Gorrini et al., 2013; Panieri and 

Santoro, 2016). ROS generated in T cell mitochondria (mROS) is shown to play an important 

role in the activation of mTOR and Myc pathways involved in T cell immunometabolism 

(Franchina et al., 2018). For example, blockade of ROS inhibited CD4+T cell immune response 

via inhibiting mTOR signalling and reduced transition to aerobic glycolysis due to deceased 

Myc and glucose transporter 1 (GLUT1) upregulation, decreased glucose uptake and decreased 

production of lactate (Previte et al., 2017; Previte and Piganelli, 2017)    

 The factors controlling immunometabolism among different T cell subsets can also impact 

immune phenotype for example, hypoxia-inducible factor (HIF)-1α regulates the balance 

among Tregs and Th17 cells (Dang et al., 2011). This is because HIF-1α directly increases the 

development of Th17 cells via activating and forming a complex with RORγt and recruiting 

p300 to the IL-17 promoter region that further regulates activation of Th17 signature genes 

(Dang et al., 2011). While, it inhibits the development of Tregs by binding to Foxp3 and 
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degrading it by ubiquitin-proteasome system under both normoxia and hypoxic conditions 

(Dang et al., 2011). This is because mice deficient in HIF-1α are resistant to the induction of 

Th17 mediated inflammatory disease including experimental autoimmune encephalitis (EAE) 

due to diminished Th17 cells and increased levels of Tregs (Dang et al., 2011). Thus, 

immunometabolism determines the cellular fate of T cells and their immunological function 

under various pathological conditions including cancers, infections and autoimmune diseases 

(Clever et al., 2016; Doedens et al., 2013; Sun et al., 2017; Weyand and Goronzy, 2017; 

Weyand et al., 2017; Yang et al., 2015). Following sections are designed to describe the 

immunometabolic changes among different populations of T cells and their targeting to manage 

sepsis and sepsis-associated immunosuppression.     

3.1. Immunometabolic shift in CD4+, CD8+ and CD4+CD8+T cells during sepsis 

The immunometabolic stages and requirements of all the stages and types of T cells is discussed 

somewhere else in detail (Coe et al., 2014; Johnson et al., 2016; MacIver et al., 2013). The 

quiescent or naïve T cells are dependent on oxidative phosphorylation (OXPHOS) for their 

energy demand (Chapman et al., 2017). The pyruvic acid/pyruvate required for OXPHOS is 

obtained from glucose (i.e. glycolysis), fatty acid oxidation (FAO) or amino acid metabolism 

(i.e. glutaminolysis) (Chapman et al., 2017; MacIver et al., 2013) (Fig.1). This glucose 

requirement is controlled by its uptake regulated by tonic TCR signaling that is defined as a 

low-level TCR signaling in response to self-peptide/MHC molecules and IL-7/IL-7receptor 

signaling required for the survival of naïve T cells (Chapman et al., 2017). Therefore absence 

of tonic TCR signaling may cause decreased GLUT1 (also known as SLC2A1) expression and 

decreased glucose uptake that may lead to the death of naïve T cells and their atrophy (Rathmell 

et al., 2000). For example, if T cells are removed from their normal microinches, they 

internalize and degrade GLUT1 along with other nutrient transporters to prevent 

required/sufficient nutrient uptake for the maintenance of their viability (MacIver et al., 2013).  

IL-7R signaling via STAT5 causes delayed but sustained activation of Akt-signaling that 

promotes glucose uptake through the upregulation of surface expression of GLUT1 and 

prevents apoptotic cell death (Wofford et al., 2008) (Fig. 1). Deletion of Glut1 gene selectively 

limits CD4+, but not CD8+ T cell glycolytic reprogramming and their proliferation (Cao et al., 

2014; Macintyre et al., 2014). This indicates an important role of other GLUT family members 

in controlling glucose uptake in CD8+ T cells (Cao et al., 2014; Macintyre et al., 2014). For 

example, an elevation of GLUT3 and GLUT6 is observed in GLUT1-deficient murine CD8+ T 

cells but their role in the regulation of CD8+ T cell immunometabolism and differentiation 

remains to be confirmed (Macintyre et al., 2014; Zhang and Romero, 2018).  
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     Glutamine is the most abundant amino acid (AA) in circulation and an increased uptake of 

glutamine via glutamine receptors occurs in activated T cells in a MYC-dependent manner 

(Bantug et al., 2018; Wang et al., 2011). c-Myc is one of the most upregulated transcription 

factors (TFs) that gets activated upon T cell activation and also controls an expression of CD98 

or large neutral amino acid transporter 1 (LAT1) (Wang et al., 2011). This is because an 

impaired expression of CD98 is observed in c-myc KO murine T cells (Wang et al., 2011). 

Thus, in activated conventional T cells MYC-signalling is a major regulator of glutaminolysis 

and its association with polyamine biosynthetic pathway (Wang et al., 2011). The deletion of 

MYC in activated T cells is associated with reduced ornithine and putrescine abundance 

causing a decreased T cell proliferation (Bantug et al., 2018). However, c-Myc activation does 

not stays continuously for longer duration after the activation of T cells (Best et al., 2013; Nie 

et al., 2012). c-Myc activation stimulates another transcription factor called activating 

enhancer-binding protein 4 (AP-4) that maintains aerobic glycolysis initiated by c-Myc to 

further support T cells population expansion (Chou et al., 2014; Karmaus and Chi, 2014). Mice 

lacking specifically AP4 in CD8 T cells are more susceptible to viral infections caused by West 

Nile virus (Chou et al., 2014). Additionally, AP-4 transcription factor in B cells is also 

associated with resolution of viral infections by amplifying the germinal centre (GC) B cell 

responses including sustained proliferation of B cells in GC and subsequent production of a 

diverse and protective antibody repertoire (Chou et al., 2016). However, the role of AP-4 in T 

cells during sepsis remains to be studied.    

        An increased uptake of leucine by effector CD8+ T cells during Listeria monocytogenes 

infection is observed due to an upregulation of SLC7A5, a L (leucine-preferring system) 

transporter essential for leucine or large neutral amino acids (LNAAs) (Sinclair et al., 2013). 

The loss of leucine transporter SLC7A5 causes a decrease in T cell activation and effector 

maturation that depends on mTORC1 activity (Sinclair et al., 2013). This is because mTOR 

activity is also regulated by leucine through leucine sensor sestrin 2 (SESN2) (Wolfson et al., 

2016). SESN2 acts as a GATOR2-interacting protein that binds to GATOR2 and SESN2-

GATOR2 complex inhibits mTORC1 signaling under leucine deficit conditions (Saxton et al., 

2016; Wolfson et al., 2016). A decreased basal protein synthesis is observed during sepsis in 

skeletal muscles (Laufenberg et al., 2014). Even oral leucine supplementation after 1 hour of 

sepsis fails to increase protein synthesis (Laufenberg et al., 2014). Furthermore it does not 

increase the process of protein synthesis and full activation of mTOR signaling pathway 

(Laufenberg et al., 2014). This impairment of leucine uptake and mTORC1 signaling during 

sepsis is also observed by another group (Kazi et al., 2011). These studies give us the basis to 
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study the impact of leucine on T cells isolated from septic patients undergone a stage of 

immunosuppression due to the loss of activated T cells where leucine controls mTORC1 

signaling required for their activation and effector function (Sinclair et al., 2013).  

        mTOR is an atypical serine/threonine kinase that belongs to the phosphoinositide 3-kinase 

(PI3-K)-related kinase family and forms two different complexes called mTORC1 and 

mTORC2 by interacting with several proteins (Laplante and Sabatini, 2012). Both mTORC1 

and mTORC2 integrate various external and internal signals associated with nutrient 

concentration, energy requirement, and various stressful condition including infections to 

regulate cellular metabolic requirements as per their immunological status (Laplante and 

Sabatini, 2012). The mTORC1 has its six known protein components, while mTORC2 has 

seven components (Laplante and Sabatini, 2012). The proper balance between mTORC1 and 

mTORC2 signaling is also involved in immunometabolism of naïve T cells (Chapman et al., 

2017; Chi, 2012; Yang and Chi, 2012). For example, lack of tuberous sclerosis complex 1 or 

TSC1 (a repressor of mTOR) causes an increased activity of mTORC1 signaling causing a 

metabolic dysfunction among naïve T cells  and their apoptotic death (Chi, 2012; O'Brien et 

al., 2011; Wu et al., 2011). Furthermore, this TSC1 activation is controlled by AMPK 

(5’Adenosine monophosphate-activated protein kinase) under different stimulatory conditions 

including metabolic stressors (metformin) and nutrient limitations (Blagih et al., 2015; Pearce 

et al., 2009; Rolf et al., 2013). Thus, AMPK via TSC1 acts as a negative regulator of mTORC1 

and inhibits lipid synthesis but enhances FAO (Fatty acid oxidation) through phosphorylation 

and inactivation of Acetyl-CoA carboxylase (ACC) 1 and 2 (Davies et al., 1990; Faubert et al., 

2013; Ma et al., 2017; Pearce et al., 2009). AMPK also inhibits HIF-1α induced glycolysis 

(Faubert et al., 2013). Thus, under healthy conditions, T cells are dependent on OXPHOS for 

their energy demand. However, as mentioned previously an increase in the apoptosis of T cells 

is observed in both humans and animal models of sepsis at the very early stages of sepsis. Until 

now it was not cleared what population of T cells gets affected during sepsis but a recent study 

has shown that sepsis and systemic inflammation cause loss of naïve T cells via increased 

apoptosis (Markwart et al., 2014). And, prevention of T cells apoptosis proved beneficial to 

host suffering from sepsis as mentioned previously. 

Sepsis patients exhibit lowest levels of IL-7 in their serum (Andreu-Ballester et al., 2014). Also, 

transcriptomic analysis of peripheral blood lymphocytes isolated from blood taken from sepsis 

patients showed significantly decreased expression of IL-7R on T lymphocytes (Bauer et al., 

2016). Thus, a defective IL-7/IL-7R signaling is an invited event during sepsis. IL-7 signaling 

via IL-7R on naive T cells is required to maintain their healthy immunometabolic stage via 
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upregulating glucose uptake through upregulation of expression GLUT1 (Wofford et al., 2008). 

Hence, IL-7 signaling is required to maintain normal immunometabolic stage of T cells. Thus 

a profound decrease in serum levels of IL-7 in sepsis patient may inhibit this signaling causing 

their apoptotic cell death. For example, T cells isolated from septic patients exhibited a 

significant decrease in basal levels of ATP molecules along with a decrease in OXPHOS and 

glycolysis pathways (Venet et al., 2017). Even T cells isolated from septic patient upon 

stimulation failed to induce glycolysis, OXPHOS, ATP production, GLUT1 expression (Venet 

et al., 2017). These T cells also showed impaired glucose uptake required for their survival, 

growth, and proliferation in comparison to control T cells due to defective mTOR signaling 

and AMPKα1 phosphorylation (Venet et al., 2017). However, no alteration in HIF-1α and Akt 

signaling was observed (Venet et al., 2017).  

      Akt is involved in the regulation of nutrient transporter expression, phosphorylation of the 

glycolytic enzyme hexokinase II (HKII) that promotes its localization to the mitochondria and 

enhances its enzymatic activity required for aerobic glycolysis (John et al., 2011; Roberts and 

Miyamoto, 2015; Roberts et al., 2013). A treatment with IL-7 improves the mTOR activation, 

GLUT1 surface expression, and glucose uptake by T cells isolated from septic patients (Venet 

et al., 2017). As inhibition of mTOR signaling with rapamycin treatment inhibited the effect of 

recombinant IL-7 treatment it can be an inference that IL-7 mediated protective effect on T 

cells is centrally mediated by mTOR signaling. Both mTOR and Akt promote aerobic 

glycolysis among T cells to support their growth, differentiation, and function (Delgoffe et al., 

2011; Pollizzi et al., 2015). Thus, alteration of mTOR signaling may be responsible for an 

increased apoptosis of T cells during sepsis. Even treatment with recombinant human IL-7 

(rhIL-7) has shown an increase in survival of animals subjected to CLP-induced sepsis and 

fungal sepsis (Patil et al., 2016; Shindo et al., 2017). In addition, rhIL-7 mediated 

immunotherapy has also increased the survival of animals subjected to two-hit model of 

Pseudomonas aeruginosa pneumonia (sublethal CLP-sepsis + Pseudomonas aeruginosa 

pneumonia) (Shindo et al., 2017). rhIL-7 treatment increased the population of innate lymphoid 

cells (ILCs) and CD8+ T cells in lungs that secrete IL-17, IFN-γ, and TNF-α along with IFN-γ- 

and TNF-α-producing T cells and ILCs in spleen (Shindo et al., 2017). Thus, IL-7 has a 

potential to target altered immunometabolic stage of T cells during sepsis. The next step in this 

direction has been taken and rhIL-7 based immunomodulatory action in sepsis is currently 

ended with phase 2 clinical trial in USA and France (Venet and Monneret, 2017; Venet et al., 

2018). The results of this phase 2 clinical trials are expected to get published in 2018 (Venet 

and Monneret, 2017; Venet et al., 2018).  
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Glutathione (GSH) plays an important role in priming T cell function during inflammatory 

conditions like sepsis or severe sepsis (Mak et al., 2017). Murine T cells deficient in GSH 

initially showed normal activation response but could not stayed for longer due to defective 

supply of energy and biosynthetic requirements (Mak et al., 2017). GSH-deficient T cells 

showed defective mTORC1 signaling, activation of c-Myc and nuclear factor of activated T 

cell (NFAT) that further damped the immunometabolic reprogramming required for increased 

energy demand during infection or inflammatory conditions (Mak et al., 2017). A decreased 

level of GSH in circulation, liver, and muscles of patients with sepsis and septic shock is 

observed (Fläring and Wernerman, 2008; Flaring et al., 2005; Flaring et al., 2003; Keller et al., 

1985). Furthermore, GSH treatment has shown protection during lethal sepsis via enhancing 

innate immune response (Villa et al., 2002). Thus the levels of GSH in T cells during sepsis 

remains to be established as an increased apoptosis of these T cells is observed during sepsis. 

And if GSH deficiency stays for longer period of time it can lead decreased energy in these T 

cells that will ultimately end up with their apoptotic cell death (Mak et al., 2017).   

3.2. Th17 cell immunometabolism during homeostasis and sepsis  

Interest in Th17 cell immunology, regulation and function particularly arose within 

immunologist’s community due to their particular role in various autoimmune inflammatory 

conditions including psoriasis, IBD, MS and RA etc. and in cancer (Asadzadeh et al., 2017; 

Bailey et al., 2014; Guery and Hugues, 2015; Ye et al., 2013). However, the ratio of Th17 cells 

and Tregs impacts the outcome of inflammatory conditions associated with these immune cells 

including infections (Diller et al., 2016; Ma et al., 2015; Sehrawat and Rouse, 2017). For 

example, as described in previous section that Th17/Treg ratio during sepsis plays an important 

role in MODS observed during sepsis (Guo et al., 2017; Yu et al., 2015a). Immunometabolic 

pathways control the balance between Th17 and Tregs (Sun et al., 2017).     

The immunometabolic pathway involved in the generation of Th17 cells is governed by PI3K-

Akt-mTORC1-S6K1 axis that suppresses Gfi1, a zinc finger protein that acts as a 

transcriptional repressor protein (Kurebayashi et al., 2012). This induction of Th17 cell 

differentiation also involves S6K1 that binds to the RORγt and carries it to the nucleus and thus 

inducing the genes responsible for the functional phenotype of Th17 cells (Kurebayashi et al., 

2012). Experimental studies in mice have indicated that lack of mTORC1 signaling in naive 

CD4+ T cells prevents the differentiation of these cells into the Th1 and Th17 cell lineages 

both in vitro and in vivo without affecting their ability to differentiate into Th2 cells (Delgoffe 

et al., 2011; Sasaki et al., 2016). Thus induction of HIF-1α, activation of mTORC1 signalling 

pathway via increased glycolysis, glutaminolysis in CD4+T cells may provide an environment 
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for the generation of Th17 cells during sepsis as loss of CD4+ T cells and an increase in Th17 

cells during early stages of sepsis is observed in clinical setting (Brunialti et al., 2012; 

Hotchkiss et al., 1999a; Hotchkiss et al., 2001; Nakaya et al., 2014; Poffenberger and Jones, 

2014). This needs to be further studied in animal model of the disease. 

         HIF-1α is demonstrated to be a critical regulator of Th17 cell development as compared 

to induced-Tregs (iTregs) (Wang and Solt, 2016). Both Human and mice Th17 cells highly 

express HIF-1α and need it along with mTORC1 to synthesize and release IL-17 (Dang et al., 

2011; Kastirr et al., 2015; Palazon et al., 2014; Shi et al., 2011). Loss of HIF-1α in T cells 

impacts glycolysis via affecting several genes controlling enzymes and proteins [i.e. GLUT1, 

Hexokinase II (HKII), Pyruvate kinase muscle (PKM), and Lactate dehydrogenase (LDH)], 

involved in glycolysis (Shi et al., 2011). An increase in HIF-1α is observed in the sepsis and 

septic shock patients (Textoris et al., 2012). Furthermore, a recent clinical study has shown the 

upregulation of HIF-1α in the blood of sepsis patients within 24 hours of first diagnosis of the 

disease (ClinicalTrials.gov (NCT number: NCT02163473). Furthermore animal models of 

sepsis have also shown an increase in HIF-1α during early stages of sepsis and its deletion 

proved beneficial to the host (Peyssonnaux et al., 2007; Werth et al., 2010). This is a stage 

where CD4+, CD8+ T cells undergo apoptosis but Th17 cells are seen to be upregulated and 

mounting an inflammatory response. This needs to be studied extensively to target 

immunometabolism very specifically and precisely to regulate T cell based immune response 

during sepsis. 

AMPK acts as a negative regulator of mTORC1 signaling, thus may inhibit the generation of 

Th17 cells and associated inflammatory immune response. This is shown in a study where 

AMPKα1-/- T cells exhibited decreased Th17 response against bacterial and viral pathogens in 

animal models (Blagih et al., 2015). However, the exact role of AMPK in Th17 

immunometabolism remains to be studied for understanding its role in during sepsis and other 

inflammatory conditions. Th17 cells specifically depend on acetyl-coA carboxylase 1 (ACC1) 

for fatty acid synthesis (FAS) required for their activation and growth (Lochner et al., 2015). 

Th17 cells are mainly dependent on de novo FAS and do not depend on exogenously supplied 

glucose-derived carbon source generated through glycolysis or TCA cycle for their growth, 

division, and proliferation (Berod et al., 2014). An inhibition of FASN activity via Soraphen A 

(an ACC-specific inhibitor) or ACC-1-/- T cells showed defective differentiation towards Th17 

cells (Berod et al., 2014). Studies are needed in this direction to explore the reluctance of Th17 

cells to utilize external carbon source for their FAS under in vivo conditions. Thus under 

inflammatory conditions Th17 cells require increased glucose uptake that is met by increased 

ACCEPTED M
ANUSCRIP

T



17 
 

aerobic glycolysis (Binger et al., 2017) but Tregs enhance their lipid or fatty acid uptake to 

utilized energy-efficient pathways including FAO and OXPHOS (Almeida et al., 2016; 

MacIver et al., 2013; Park and Pan, 2015; Wang and Solt, 2016) 

3.3. Immunometabolic control of Tregs function during sepsis 

Naturally occurring regulatory T cells (Tregs) have a unique metabolic signature that 

distinguishes them from conventional Teff cells under in vitro conditions (Coe et al., 2014). 

For example, Tregs do not rely on significant rates of glycolysis (due to low levels of surface 

expression of GLUT1) as used by effector T cell (Teffs) (Coe et al., 2014; Johnson et al., 2016; 

Michalek et al., 2011). Instead, these natural Tregs exhibit high lipid oxidation rates under in 

vitro conditions (Michalek et al., 2011) For example, Teffs use increased glucose and 

glutamine uptake (Johnson et al., 2016). Natural Tregs have higher number of mitochondria 

with greater function/activity as compared to conventional CD4+T cells ex vivo (Beier et al., 

2015). However, Tregs developing in vivo exhibit similar immunometabolic phenotype that is 

glycolysis driven lipid synthesis for their survival and proliferation as shown by Teffs (Newton 

et al., 2016; Zeng et al., 2013).  

       The inhibition of glycolysis and glutaminolysis with 2-deoxyglucose (2-DG) and 6-

diazo-5-oxo-L-norleucine (DON) and an enhancement of FAO with metformin diminishes 

proliferation of Tregs in vivo along with Teffs (Lee et al., 2015a). While iTregs have 

increased mitochondrial function as compared to other helper T cells subsets (i.e. Th1, Th2, 

Th3, Th9, and Th17 etc.) in vitro (Michalek et al., 2011; Zeng et al., 2013). Furthermore, 

CPT1α (Carnitine palmitoyltransferase Iα) inhibitor called etomoxir potentially limits 

differentiation of murine iTregs without affecting the generation of Th17 cell (Michalek et al., 

2011; Xu et al., 2003), while metformin-mediated activation of AMPK causes an increase in 

differentiation of iTregs both in vitro and in vivo (Michalek et al., 2011). Tregs with higher 

CD25 expression exhibit an increased expression of FOXP3 in the presence of etomoxir 

(Chapman et al., 2017). Thus these Tregs exhibit higher immunosuppressive activity than 

iTregs generated in the absence of the drug (Chapman et al., 2017) The homeostatic functions 

of Tregs are independent of AMPKα1 (Rao et al., 2015). Hence, the elevated levels of FAO 

and AMPK activity in Tregs and iTregs under ex vivo conditions are only partially responsible 

for mitochondrial action required for Treg function (Michalek et al., 2011). 

    Kynurenine a metabolic product of tryptophan metabolism is shown to promote the 

generation of iTregs via binding to aryl-hydrocarbon receptor (Ahr) (Buck et al., 2015; Mezrich 

et al., 2010). A higher circulating level of kynurenine is observed in sepsis patients due to the 

overactivation of indoleamine 2,3-dioxygenase (IDO) that exerts several effects including 
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sepsis associated cognitive impairment and hypotension (Changsirivathanathamrong et al., 

2011; Gao et al., 2016). Mice subjected to sepsis-associated encephalopathy (SAE) induced 

cognitive impairment showed protection upon treatment with an IDO inhibitor called 1-methyl-

D, L-tryptophan (Gao et al., 2016). Another study has shown an association between higher 

plasma kynurenine levels and immunosuppression due to loss of CD4+ and CD8+ T cells during 

sepsis (Darcy et al., 2011). An association between increased Tregs, elevated IDO activity, and 

imbalanced kynurenine pathway is observed in interferon-positive primary Sjögren's syndrome 

(PSS) (Maria et al., 2016). Thus it will be interesting to observe the impact of kynurenine levels 

on Tregs in sepsis and impact of IDO inhibition during sepsis. Based on the available 

information one can speculate higher plasma levels of kynurenine during sepsis can promote 

the generation of iTregs that cause immunosuppression/immunoparalysis observed later in 

sepsis.  

       Additionally, human Tregs express an increased number of genes responsible for 

glycolysis than FAO ex vivo (Chapman et al., 2017; Procaccini et al., 2016). Upon activation, 

both Tregs and iTregs upregulate both FAO and glycolysis ex vivo (Procaccini et al., 2016). 

Both glycolysis and FAO are important for the maintenance of effective OXPHOS in both 

natural Tregs and iTregs (De Rosa et al., 2015; Procaccini et al., 2016) (Figure 2). An inhibition 

of glycolysis by 2-DG causes a decreased expression of CD25 on iTregs, while CD25high iTregs 

exhibit lesser immunosuppressive action due to lower expression of FOXP3 and activated 

STAT5 (De Rosa et al., 2017; Galgani et al., 2016; Procaccini et al., 2016). An inhibition of 

glycolysis causes binding of enolase-1 to the CNS2 promoter region of the FOXP3 exon 2 

splice variant (FOXP3-E2) in human iTregs that further suppresses FOXP3-E2 expression 

required for immunosuppressive action of iTregs (De Rosa et al., 2015). Thus, both glucose or 

fatty-acid derived α-ketoglutaric acid (α-KG) has a potential to increase the expression of Treg 

signature via epigenetic regulation. Furthermore an acquisition of the glycolytic program plays 

a critical role in the immunosuppressive action of Tregs. However, deletion of GLUT1 does 

not have any impact on Treg differentiation and function (Macintyre et al., 2014).  

HIF-1α upregulates glycolysis in macrophages and DCs and their pro-inflammatory phenotype 

(Cramer et al., 2003). However it slows down the differentiation of iTregs (Fig. 2) and enhances 

the differentiation of Th17 cells (Shi et al., 2011). HIF-1α also inhibits iTreg differentiation by 

causing the degradation of FOXP3 transcription factor through ubiquitin-proteasome-mediated 

degradation (Dang et al., 2011) (Fig. 2). Thus, glycolytic metabolites or regulators (i.e. HIF-

1α) may impact various downstream signaling pathways required for immunosuppressive 

action of Tregs. In addition to glycolysis and FAO, a low level of mTOR signaling is also 
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required for proliferation and function of Tregs as indicated by higher mTORC1 signaling in 

Tregs (Procaccini et al., 2010; Zeng et al., 2013). But hyperactivation of mTORC1 proves 

detrimental to Tregs via increasing their ability to produce Th17 and Th1 cytokines (Park et 

al., 2013; Wei et al., 2016). Thus, mTORC1 signaling is crucially required for effective 

glycolysis and OXPHOS in Tregs as cholesterol and lipid biosynthesis induced downstream 

signaling of mTORC1 effectively controls Treg function (Chapman et al., 2017) (Fig. 2). This 

action of mTORC1 is induced via mevalonic acid/mevalonate-dependent lipid and cholesterol 

synthesis programs that support the growth and proliferation of Tregs (Chapman et al., 2017; 

Newton et al., 2016; Zeng et al., 2013). Both these pathways are involved in Treg proliferation 

and upregulation of cytotoxic T-lymphocyte associated antigen 4 (CTLA4) or CD152 and 

Inducible T-cell COStimulator (ICOS) or CD278 (Zeng et al., 2013). However mTORC1 

does not directly impact the expression of FoxP3 in Tregs but inhibits mTORC2 and serves 

as major ‘rheostat’ for linking their immunological signals (Zeng et al., 2013).  

 PPAR signaling that drives FA uptake via CD36 and other FAO-related activities plays an 

essential role in adipose tissue-resident Tregs but not for splenic Treg function (Ahmadian et 

al., 2013; Cipolletta et al., 2012). PPAR signaling is shown to play an important role in the 

pathogenesis of sepsis and its outcome (von Knethen et al., 2007; Zingarelli and Cook, 2005). 

For example, decreased PPAR-α activity and its expression accounts for an increased mortality 

among mice subjected to sepsis (Standage et al., 2012). Furthermore, PPAR-β/δ signaling 

proves beneficial to mice subjected to LPS-induced endotoxemia or CLP-induced 

polymicrobial sepsis as PPAR-β/δ-/- mice succumbed to sepsis earlier than WT mice (Kapoor 

et al., 2010; Zingarelli et al., 2010). While stimulation of PPAR-β/δ signaling via its agonist 

GW0742 protected septic mice through an increased phosphorylation of Akt and glycogen 

synthase kinase (GSK)-3β (Kapoor et al., 2010). In addition to PPAR-β/δ signaling, a defective 

PPAR-γ signaling is also observed in peripheral blood monocytes (PBMCs) of children 

affected with sepsis (Kaplan et al., 2010). Even PPAR-γ agonists are considered as novel 

therapeutics for pediatric sepsis (Kaplan and Zingarelli, 2011). Thus, PPAR signaling plays an 

important role in the sepsis pathogenesis and its outcome. Expression of PPARs by Tregs and 

its involvement in FAO and glycolysis in Tregs provides an opportunity to study this signaling 

in Tregs in context to sepsis. PPAR signalling-mediated protective action also depends on an 

increased phosphorylation of Akt and GSK-3β, both are required for effective glycolysis and 

pro-inflammatory action in myeloid cells (Kelly and O'Neill, 2015) but their role in Tregs 

during sepsis needs to be investigated potentially.                           
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Leptin is shown to affect both innate and adaptive immune cells and immunological diseases 

including autoimmunity (Fernandez-Riejos et al., 2010; Procaccini et al., 2017; Procaccini et 

al., 2015). Leptin-associated nutritional status of the host with pro-inflammatory Th1 immune 

responses and its decreased plasma levels during food deprivation or other high energy 

demanding conditions like sepsis may cause an impairment in immune response (Procaccini et 

al., 2015). Tregs constitutively express leptin receptor (LEPR, also called OBR) and also 

produce leptin during normal conditions and upon their activation (Chapman et al., 2017). 

Leptin-LEPR signaling increases mTORC1 signaling in Tregs and inhibits their proliferation 

(Chapman et al., 2017). Thus, suppression of leptin-LEPR signaling in Tregs causes an increase 

in their proliferation as observed with the treatment with rapamycin, an mTOR inhibitor 

(Procaccini et al., 2010). Interestingly, an increased serum level of leptin is observed in 

critically ill patients suffering from sepsis as early as the second day of admission in ICU 

(Bracho-Riquelme and Reyes-Romero, 2010; Yousef et al., 2010).    

      An increased serum levels of leptin and soluble leptin receptor (sLR) are well associated 

with increased mortality among animals and patients suffering from sepsis (Shapiro et al., 

2010). Additionally, exogenous leptin in animals with CLP-induced sepsis also increases their 

mortality (Shapiro et al., 2010). However, its level decreases in prolonged cases of sepsis 

(Tzanela et al., 2006). Its serum levels can be used independently to predict the development 

of sepsis and its outcome in patients (Jacobsson et al., 2017). Thus, it will be interesting to 

study the impact of leptin on Tregs isolated from septic patients as higher serum levels of leptin 

are observed in early phase of sepsis. At this stage binding of leptin to LEPR expressed on 

Tregs can cause an increased mTORC1 signaling. This increased mTORC1 signaling may 

cause an inhibition of proliferation and immunosuppressive function of Tregs. Furthermore, 

decreased levels of leptin during later stages of sepsis may impact Tregs as their will not be 

enough circulating leptin to stimulate leptin-LEPR axis on Tregs required for activation of 

mTORC1 signaling to inhibit their proliferation. Thus, this situation causes an increased 

immunosuppression as observed in later cases of sepsis making these patients more susceptible 

to secondary infections and death. This immunoregulatory axis of leptin-LEPR axis on Tregs 

during both at early and late stages of sepsis is urgently needed to be studied.  

4. Targeting T cells/Tregs and their immunometabolism in sepsis  

T cell immunometabolism has been well studied in context to cancer and autoimmunity [i.e. 

systemic lupus erythematosus (SLE)] (Benke et al., 1991; Biswas, 2015; Gergely et al., 2002; 
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Kouidhi et al., 2017; Luo et al., 2017). Despite different origin and pathogenesis cancer and 

sepsis induce similar devastating impact on immune response that certain observations made 

in sepsis can easily be transferred to cancer and vice versa (Dyck and Mills, 2017; Hotchkiss 

and Moldawer, 2014). Hence an emerging role of conventional T cells and Tregs in the 

pathogenesis of sepsis also provides a clue to target these cells and their immunometabolism. 

Thus, strategies to target sepsis should not be based on just targeting innate immune system 

but should also be focused on cells of adaptive immunity (i.e. T cells and their 

immunometabolism). For example acute infections causing sepsis are shown to inhibit FAO 

(Feingold et al., 2009). While FAO and OXPHOS are the major sources of ATP for both 

conventional T cell and Tregs. This impact of acute infection on these cells needed to be 

considered for future sepsis research.  

            Sepsis/tumor environment are so severe conditions that conventional T cells along with 

other innate immune cells (i.e. monocytes/macrophages, neutrophils and DCs) undergo 

apoptotic cell death and cause immunosuppression (Scharping et al., 2016). And this 

immunosuppression is further aggravated by Tregs that act as potent immunosuppressive cells. 

Tregs have a unique property to survive the harsh environment generated by sepsis causing 

immunosuppression that lasts even after recovering from sepsis (Cavassani et al., 2010). This 

is because transcription factor FoxP3 reprograms the metabolic stage (i.e. mTORC1 signaling, 

glucose metabolism and OXPHOS) of these cells in such a way that they maintain their 

immunosuppressive functions in low glucose and high lactate concentration environment 

(Angelin et al., 2017; Gerriets et al., 2016; Howie et al., 2017) (Fig. 2). Thus targeting Treg 

immunometabolism during sepsis will provide novel therapeutic approach. Furthermore, 

strategies used to upregulate the effector function of Tregs at early pro-inflammatory condition 

during sepsis may prove helpful to dampen exaggerated systemic inflammation and organ 

damage. For example, Celastrol, a Chinese herbal compound has shown promising results in 

this direction where an early induction of Tregs in rheumatoid arthritis (RA) prevented 

exaggerated joint inflammation and tissue damage (Astry et al., 2015). In addition, this 

compound also has direct impact on LPS-TLR4 interaction, a major pro-inflammatory 

mechanism responsible gram-negative bacterial sepsis (Lee et al., 2015b). 

     Another approach in this direction may comprise of reprogramming of other pro-

inflammatory cells at early stages of sepsis into Tregs. A step in this direction has been taken 

where inhibition of 2-hydroxyglutarate synthesis by small molecule,(aminooxy)acetic acid 

skewed pro-inflammatory Th17 into Tregs (Xu et al., 2017). This is because accumulation of 
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2-hydroxyglutarate inhibits FoxP3 via hypermethylation of Foxp3 gene. The selective 

inhibition of GOT1 with (aminooxy)acetic acid prevents an increased transamination 

responsible for the generation of 2-hydroxyglutarate through the conversion of glutamate to α-

KG (Xu et al., 2017). Targeting a glutamate-dependent metabolic pathway in inflammatory 

conditions associated with an imbalance between Th17 cell and Tregs may prove a novel 

therapeutic strategy to control an exaggerated inflammation (Sun et al., 2017). Sepsis and 

associated acute respiratory distress syndrome (ARDS) are also considered a situation of 

imbalance between Th17 and Tregs (Guo et al., 2017; Yu et al., 2015b). An injection of a 

Chinese herbal medicine called Xuebijing (XBJ) containing extracts from 5 herbs potentially 

improved the survival of animals subjected to polymicrobial sepsis and septic shock (Chen et 

al., 2018). This protective effects involves the prevention of generation of cytokine storm, 

exaggerated inflammation along with regulating the balance between Tregs and Th17 cells 

(Chen et al., 2018). 

       Additionally an inhibition of glutamine metabolism by using specific antagonist called 6-

Diazo-5-oxoL-norleucine or DON in mouse model of cerebral malaria and viral encephalitis 

increased the survival (Gordon et al., 2015; Manivannan et al., 2016). A combination of DON, 

2-DG (a glycolysis inhibitor) and metformin (an antidiabetic drug that inhibits mitochondrial 

complex I and promotes FAO) significantly inhibited CD4+ and CD8+ T cell effector response 

(Patel and Powell, 2017). This combined therapy reciprocally enhances the generation of 

antigen-specific Tregs due to different immunometabolic demands of these cells (Patel and 

Powell, 2017). In animal models of allograft skin and heart transplantation, this metabolic 

therapy significantly proved beneficial and promoted allograft acceptance (Patel and Powell, 

2017). Future studies in this direction have great potential to provide beneficial therapeutic 

approach to target sepsis. 

The activation of Tregs during several infectious and inflammatory conditions has shown that 

their immunosuppressive action also involves the suppression of pro-inflammatory innate 

immune response (Antunes and Kassiotis, 2010; Kinsey et al., 2009). Thus strategies that can 

be used to target immunometabolism of conventional T cells during early inflammatory stage 

of sepsis can prove helpful to target overwhelming inflammation. For example, rapamycin, an 

inhibitor of mTOR signaling that controls glycolysis, FA synthesis and mitochondrial 

biogenesis is shown to promote Treg generation (Battaglia et al., 2005; Patel and Powell, 2017; 

Waickman and Powell, 2012). Thus this property of rapamycin can be used to investigate its 

effect on Tregs during early stages of sepsis to counteract the exaggerated pro-inflammatory 
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immune response. For example, rapamycin is shown to inhibit LPS-induced acute lung injury 

(ALI) by attenuating the differentiation of Th17 cells producing pro-inflammatory cytokines 

to chemo-attract neutrophils towards the site of inflammation (Yan et al., 2016). This effect of 

rapamycin is mediated by the activation of SOCS3 and Gfi1, which further inhibit RORγt and 

STAT3 function (Yan et al., 2016). Another study has shown the protective action of 

rapamycin in sepsis-induced ALI in mice (Yen et al., 2013). Rapamycin is also shown to 

exert its protective action on sepsis-induced cognitive impairment in mice (Liu et al., 2017). 

However, impact of rapamycin on Tregs in these models of sepsis at different stages requires 

a specific attention in terms of future research to target Tregs.  

           Another enzyme of potential importance controlling pyruvate metabolism is pyruvate 

dehydrogenase (PDH) that converts pyruvate/pyruvic acid into acetyl co-A (Gerriets et al., 

2015; Patel and Powell, 2017). The phosphorylation of PDH by PDH kinase (PDHK) causes 

its inhibition (Patel and Powell, 2017). Inhibition of PDHK provides an opportunity to generate 

the population of Tregs with an increased OXPHOS that can dampen an overwhelming pro-

inflammatory immune response during early stages of sepsis/inflammation (Patel and Powell, 

2017). The target of PDHK1 with dichloroacetate (DCA) in mice have significantly decreased 

the inflammation associated with experimental autoimmune encephalitis (EAE) (Gerriets et al., 

2015).  

             In addition to direct enzymes or proteins controlling Treg function different vitamins 

including vitamins A, D, B3 and B9 also influence their biology and function (Wawman et al., 

2017; Zeng and Chi, 2015). Reports are available and confirming that vitamin D 

supplementation potentially increases percentage of Tregs in healthy individuals (Prietl et al., 

2010). Vitamin D deficiency is well associated with the different autoimmune diseases 

including multiple sclerosis (MS), inflammatory bowel disease (IBD) and cancer (Ardesia et 

al., 2015; Garland et al., 2006; Mocanu et al., 2013). However a recent report has also shown 

a strong association between vitamin D deficiency and an increased susceptibility to sepsis 

(Upala et al., 2015). Further studies have indicated that vitamin D deficiency in critically ill 

patients prior to their hospital admission serves as an important predictor of sepsis (de Haan et 

al., 2014; Moromizato et al., 2014). A more recent study has shown that a vitamin D deficiency 

upon ICU admission does not increases mortality with severe sepsis and septic shock but these 

patients more frequently exhibit diabetes, develop hospital-acquired infections and more 

frequently develop acute kidney injury (AKI) as compared to patients with normal vitamin D 

levels (Ala-Kokko et al., 2016). An increased pro-inflammatory immune response during 
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sepsis and increased bacterial load in circulation and lungs is obeserved in animals deficient in 

vitamin D (Parekh et al., 2017). A randomized controlled trial has shown that calcitriol or 

vitamin D supplementation exerted some immunomodulatory action that are needed to confirm 

by an additional phase II trial (Leaf et al., 2014; Quraishi et al., 2015). Another study has 

indicated the protective effect of vitamins and hydrocortisone supplementation on sepsis and 

septic shock associated organ damage including AKI and mortality (Marik et al., 2017). Thus, 

it would be interesting to observe the effect of vitamin D supplementation on conventional T 

cells and Tregs and their immunometabolism during sepsis as studies have indicated the impact 

of vitamin D supplementation on conventional CD4+ T cells in human (Konijeti et al., 2016).        

5. Conclusion 

Sepsis is a very devastating health care problem with its increased prevalence all over the world 

and proved economic burden. It affects both body’s basal metabolism and energy requirement 

with an impact on immunometabolic pathways of body’s immune cells. T cells are the potential 

cells of the adaptive immune system that gained their importance in sepsis due to their apoptotic 

cell death during early stages of sepsis and marked immunoparalysis/immunosuppression in its 

later stages. A marked alteration in their immunometabolic stage during sepsis is discussed 

extensively here along with various therapeutic approaches to target these cells and their 

immunometabolism during sepsis. Additionally, an increased ROS level is observed in the 

peripheral blood of the patients during early stages of sepsis (Oliveira et al., 2017). Thus, it 

will be interesting to observe the impact of increased systemic ROS levels on the CD4+, CD8+, 

and CD4+CD8+ T cells and their immunometabolism during early sepsis. For example, ROS–

associated molecular signature have been targeted recently as biomarkers to define mortality 

or predict survival among sepsis patients (Bime et al., 2016). Mitochondrial dysfunction and 

oxidative stress are well correlated with sepsis-associated organ damage (Galley, 2011; Rocha 

et al., 2012). Thus, antioxidant therapies targeting mitochondria can be used to target 

specifically different subsets of T cells during different stages of sepsis as a specific cellular 

therapeutic approach. Hence, targeting T cells immunometabolism either at early stage of 

sepsis or during the late stage of sepsis has great therapeutic potential. Additionally, recent 

study has shown the reprogramming of B cells into T cells via a transcription factor called 

Hoxb5 (Zhang et al., 2018). This approach can be utilized to target sepsis-associated 

immunosuppression. Thus the area of T cell immunometabolism associated with sepsis also 

needs greater attention along with other inflammatory conditions including cancer and 
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autoimmunity. Additionally, targeting T cells and their metabolism will provide a new 

direction in the field of precision medicine based on immunomodulation during sepsis.   
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Figure Captions 

 

 

Figure 1. Immunometabolic pathways and their regulation in quiescent conventional T 

cells. The activation of CD28 and TCR controls metabolic reprogramming of T cells via 

AMPK, and Akt pathway. For example, activation of AMPK negatively impacts lipid synthesis 

and mTOR signaling. While it activates FAO. For proper functioning of T cells under normal 

conditions OXPHOS is required that is controlled by aerobic glycolysis, glutaminolysis, and 

FAO. The interaction of IL-7 with IL-7R via activation of STA5 controls glucose uptake and 

glycolysis. Details are mentioned in text. 

Figure 2. Regulatory T cell (Tregs) metabolism during normal and inflammatory 

conditions. Tregs have higher number of mitochondria as compared to other types of T cells. 

Both glycolysis and FAO are required for effective effective OXPHOS in both Tregs and 

iTregs. However, IL-2R and TCR mediated activation of mTORC1 is responsible for lipid and 

cholesterol synthesis that plays role in an increased FAO and OXPHOS required for Tregs 

immunosuppressive function. Induction of HIF-1α in Tregs proves detrimental to them as it 

degrades Foxp3, thus impairs their differentiation. However, during inflammatory 

conditions/environment, Foxp3 suppresses c-Myc expression and thus the glycolysis to further 

promote OXPHOS. Tregs are able to maintain their redox balance under low glucose/high-

lactate concentration due to the generation of NAD+ via TCA cycle. Thus, in low glucose/high-

lactate conditions, increased survival of Tregs causes an increased state of immunosuppression 

as observed in later immunosuppressive stage of sepsis. See text for detail. 
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