UNIVERSITI PUTRA MALAYSIA

ANTI-LEUKAEMIC AND CHEMOTHERAPY SUPPORTIVE EFFECTS OF BERBERIS VULGARIS L. FRUIT CRUDE EXTRACT ON IN VITRO AND IN VIVO MODELS

TAYEBEH AZAM SAEDI

IB 2015 15
ANTI-LEUKAEMIC AND CHEMOTHERAPY SUPPORTIVE EFFECTS OF BERBERIS VULGARIS L. FRUIT CRUDE EXTRACT ON IN VITRO AND IN VIVO MODELS

By

TAYEBEH AZAM SAEDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of Requirements for the Degree of Doctor of Philosophy

August 2015
COPYRIGHT

All material contained within the thesis, including without text, loges, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

Specially Dedicated:

To my country,

To my beloved parents for all their endless love, invaluable care, unflagging support, patience, and believe in me; they are the strongest inspiration in my life;

To my lovely brother and his wife, for their love, encouragement and understanding;

To my dear husband, for his endless emotional support throughout the thesis writing

I am so blessed to have you all in my life.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

ANTI-LEUKAEMIC AND CHEMOTHERAPY SUPPORTIVE EFFECTS OF BERBERIS VULGARIS L. FRUIT CRUDE EXTRACT ON IN VITRO AND IN VIVO MODELS

By

TAYEBEH AZAM SAEDI

August 2015

Chairman: Prof. Fauziah Othman, PhD
Faculty: Institute of Bioscience

Cancer is one of the most deadly diseases affecting human, and the second cause of death accounting for about 12.8% worldwide. Among the prominently worldwide cancer-affecting people is leukaemia. The disease is characterized by increasing of immature white blood cells called "blasts", and is estimated to account for about 3% of incident cases for all kind of cancer worldwide. There are different kinds of treatment methods for leukaemia including chemotherapy, which is known to have side effects. However, herbal therapy is considered to have fewer side effects. Hence, the used of Berberis vulgaris crude extract (BVFCE) in treating leukaemia is highlighted. Barberry is an herb derived from Berberidaceae shrub and is known as treat cancer. Total flavonoid and phenolic content (TFC and TPC) and DPPH assay were analyzed by spectrophotometer to determine the antioxidant activity of the Barberry. BVFCE was evaluated for its anti-leukaemic activities against two leukaemic cell lines; Human Promyelocytic (HL-60) and Mouse Myelomonocytic (WEHI-3) versus the normal mouse fibroblast cell (3T3) in both in vitro and in vivo leukaemic model. For the in vitro method, cytotoxic effects of BVFCE were evaluated using MTT assay to determine the IC50 values and compare with non-leukaemic cell line (The 3T3 cell). Observation of the morphological changes in the treated leukaemic cell lines with BVFCE and Doxorubicin (Doxo) was examined using inverted microscope. Moreover, real time PCR was used to amplify mRNA and determine the expression of some specific related genes in leukaemia. Whereas, for the in vivo model, leukaemia was induced in male BALB/c mice using mouse leukaemic cell line (WEHI-3) and treatment was carried out using different concentrations of BVFCE and chemotherapy drug, separately for comparison. After the treatment period (5 weeks), the mice were fasted overnight and sacrificed for biochemical, haematological and histological analyses of their liver, kidney, heart and spleen. All data were analyzed using one-way ANOVA followed by Duncan's multiple post hoc tests. Differences between groups were considered significantly when the p value is less than 0.05. Results showed that BV100 has a higher level of total phenolic and flavonoids contents as well as antioxidant activity as compared with other concentrations (p<0.05). Biochemical assay on alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) showed significantly lower level of these markers in control and treated groups as compared to cancer group (p<0.05). Leukaemic group showed
significantly higher total serum than other groups as well (p<0.05), which indicated the possible beneficial effect of BVFCE treatment on the above named markers.

From the haematological finding, the total white blood cell (WBC) count in the cancer group was high. In contrast, the amount of WBC decreased dramatically in mice treated with BVFCE, and doxorubicin compared to the mice group without treatment, which showed a high number of leukaemic cells. Liver, kidney, heart and spleen were stained with haematoxylin and eosin (H&E) and viewed under a light microscope. Spleen and liver weights were significantly low (p< 0.05) in the mice treated groups compared to the untreated group, indicating a significant splenomegaly and hepatomegaly. From the results above, it can be seen that the BVFCE has high anti-leukaemic activity, which might be due to its antioxidant. In conclusion, daily intake of this fruit by groups suffering from leukaemia could suppress or decrease cancer development with no or fewer side effect than the normal chemotherapeutic drug.
Anti-leukemia dan Kesan-Kesan Sokongan Kemoterapi dalam Ekstrak Mentah Berberis Vulgaris ke Atas Model In Vitro dan In Vivo

Oleh

TAYEBEH AZAM SAEDI

Ogos 2015

Pengerusi: Prof. Fauziah Othman, PhD
Fakulti: Institut Biosains

Berry merupakan herba yang berasal dari pokok renek Berberidaceae dan dikenali sebagai rawatan kanser (Leukemia). Jumlah kandungan flavonoid dan fenolik (TFC dan TPC) dan ujian DPPH telah dijalankan menggunakan spektrofotometer untuk menentukan aktiviti antioksidan Berry. BVFCE, telah dinilai untuk aktiviti anti-leukemia menggunakan dua cell lines leukemia; Promyelocytic Manusia (HL-60) dan Myelomonocytic mencit (WEHI-3) berbanding sel normal fibroblast tikus (3T3) dalam model in vitro dan in vivo leukemia. Bagi kaedah in vitro, kesan sitotoksik BVFCE ditentukan menggunakan ujian MTT untuk menentukan nilai IC50 dan membandingkannya dengan sel normal (Sel 3T3). Pemerhatian perubahan morfologi dalam sel terawat leukemia dengan BVFCE dan Doxorubicin (Doxo) diperiksa menggunakan mikroskop terbalik. Selain itu, masa nyata PCR digunakan untuk menggandakan mRNA dan menentukan ekspresi beberapa gen berkaitan apoptotik khusus dalam leukemia. Manakala, bagi model in vivo, leukemia dirangsang dalam tikus BALB/c jantan menggunakan sel leukemia mencit (WEHI-3) dan rawatan dijalankan dengan menggunakan kepekatan BVFCE yang berbeza dan ubat kemoterapi secara berasingan bagi perbandingan. Selepas 5 minggu rawatan, tikus dipuasakan semalaman dan dibunuh untuk analisis biokimia, hematologi dan histologi hati, buah pinggang, hati dan limpa. Semua data dianalisis menggunakan ANOVA satu hala diikuti dengan ujian pelbagai post hoc Duncan. Perbezaan antara kumpulan dianggap signifikan apabila nilai p kurang daripada 0.05. Keputusan menunjukkan BV100 mempunyai kandungan jumlah fenolik dan flavonoid serta aktiviti antioksidan lebih tinggi berbanding kepekatan lain (p <0.05). Ujian biokimia ke atas alkaline
phosphatase (ALP), amiontransferase aspartate (AST), dan alanina amio transferase (ALT) menunjukkan kadar lebih rendah signifikan dalam kumpulan kawalan dan terawat berbanding kumpulan kanser (p <0.05). Kumpulan leukemia menunjukkan jumlah serum lebih tinggi daripada kumpulan yang lain (p <0.05), yang menunjukkan kebarangkalian kesan baik pada rawatan BVFCE di penanda dinamakan di atas. Dari hasil kajian hematologi, jumlah sel darah putih (WBC) dalam kumpulan kanser adalah tinggi. Sebaliknya, jumlah WBC menurun mendadak pada tikus yang dirawat dengan BVFCE, dan doxorubicin berbanding dengan kumpulan tikus tanpa rawatan, yang menunjukkan jumlah sel-sel leukemia yang tinggi. Hati, buah pinggang, jantung dan limpa diwarnakan dengan haematoxylin dan eosin (H&E) dan dilihat di bawah mikroskop cahaya. Berat limpa dan hati lebih rendah (p <0.05) di kumpulan tikus yang dirawat berbanding kumpulan yang tidak dirawat, menunjukkan signifikan splenomegaly dan hepatomegaly. Dari keputusan di atas, dapat diihat bahawa BVFCE mempunyai aktiviti anti-leukemia yang tinggi, mungkin disebabkan oleh antioksidan. Oleh itu, disimpulkan bahawa, pengambilan harian buah ini oleh golongan yang menderita leukemia dapat menyekat atau mengurangkan perkembangan kanser tanpa atau kurang kesan sampingan berbanding ubat kemoterapi yang biasa.
ACKNOWLEDGEMENTS

In the name of Allah, all praise is to Allah the Almighty. Thanks Allah for precious experience of the completing my PhD study.

This thesis is the result of three years of my laboratory work whereby I have been accompanied and support by many people. It is a pleasant aspect and I have the opportunity to express my gratitude for all of them.

It has been my great honor and privilege to be under the supervision of Prof. Dr. Fauziah Othman. Her scientific vision and foresight are an inspiration for all. I would like to extend my gratitude to my co-supervisors; Prof. Dr. Patimah Ismail and Dr. Sabariah Md Noor, for their professional guidance and helpfulness throughout my research.

I would also thank all my lab mates and staffs in Anatomy and Histology Lab, Faculty of Medicine and Health Sciences in UPM. Thank you for all your help and making the lab such a wonderful place to be in.

I wish to extend my appreciation to everyone, although not individually named here, who had contributed directly or indirectly to my project and thesis.

Last but not least, I wish to give my heartiest gratitude to my family, especially my beloved parents, my dear brother. They gave me unwavering love and support. There are not enough words to express my gratitude to my loved ones.
I certify that a Thesis Examination Committee has met on 3 August 2015 to conduct the final examination of Tayebeh Azam Saedi on her thesis entitled "Anti-Leukaemic and Chemotherapy Supportive Effects of Berberis vulgaris L. Fruit Crude Extract on In Vitro and In Vivo Models" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Asmah binti Rahmat, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Hassan bin Hj Mohd Daud, PhD
Associate Professor
Fakulti Perubatan Veterinar
Universiti Putra Malaysia
(Internal Examiner)

Ranjana Prasad Bird, PhD
Professor
University of Northern British
Canada
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Patimah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Sabariah Md Noor, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
(Date)
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice – chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ________________________ Date: ________________________

Name and Matric No: Tayebeh Azam Saedi GS31722
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

<table>
<thead>
<tr>
<th>Signature:</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Chairman of Supervisory Committee:</td>
<td>Name of Member of Supervisory Committee:</td>
</tr>
<tr>
<td>____________________________</td>
<td>____________________________</td>
</tr>
<tr>
<td>Fauziah Othman, PhD</td>
<td>Patimah Ismail, PhD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Member of Supervisory Committee:</td>
</tr>
<tr>
<td>____________________________</td>
</tr>
<tr>
<td>Sabariah Md Noor, PhD</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Hypothesis</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>General Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Specific Objectives</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Cancer</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>General Classification of Cancer</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Pathogenesis of Cancer in General</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>Cell death</td>
<td>5</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Apoptosis</td>
<td>5</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Necrosis</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>Apoptosis Detection Techniques</td>
<td>7</td>
</tr>
<tr>
<td>2.5.1</td>
<td>TUNEL Assay</td>
<td>7</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Mitochondrial Membrane Potential Disruption Assay</td>
<td>7</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Immunohistochemistry</td>
<td>8</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Transmission Electron Microscopy</td>
<td>8</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Scanning Electron Microscopy</td>
<td>8</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Microculture Tetrazolium (MTT) Assay</td>
<td>8</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Propidium Iodide and Acridine Orange Staining Methods</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Gene Expression Associated with Apoptosis</td>
<td>9</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Bcl2 Family</td>
<td>9</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Tumor Suppressor Genes</td>
<td>11</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Cyclooxygenases Family</td>
<td>13</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Mitogen-Activated Protein Kinase Pathway</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Leukaemia</td>
<td>15</td>
</tr>
<tr>
<td>2.7.1</td>
<td>History and Incidence of Leukaemia</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>General Classification of Leukaemia</td>
<td>16</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Acute Myeloid Leukaemia</td>
<td>16</td>
</tr>
<tr>
<td>2.8.1.1</td>
<td>AML Classification</td>
<td>16</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Chronic Myelogenous Leukaemia</td>
<td>18</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Acute Lymphoblastic Leukaemia</td>
<td>19</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Chronic Lymphocytic Leukaemia</td>
<td>19</td>
</tr>
</tbody>
</table>
2.9 Risk Factors for Leukaemia
2.10 Diagnosis of Leukaemia
2.11 Signs and Symptoms of Acute & Chronic Leukaemia
2.12 Diagnostic Methods for Leukaemia
2.12.1 Full Blood Counting
2.12.2 Peripheral Blood Film
2.12.3 Bone Marrow Aspiration / Trephine Biopsy
2.12.4 Flowcytometry
2.12.5 Molecular Techniques
2.12.6 Histological Examination and Light Microscopy
2.13 Treatment Phases for Leukaemia
2.13.1 Getting Rid of the AML (Induction Therapy)
2.13.2 Consolidation (Post Remission Therapy)
2.13.2.1 Chemotherapy
2.13.2.2 Bone Marrow Transplants Therapy
2.14 Animal Model in Cancer Study
2.14.1 Mice as a Typical Model in Cancer Research
2.15 Cytotoxicity
2.15.1 Cytotoxic Drug
2.15.2 Cytotoxic Drug for Acute Promyelocytic Leukaemia
2.15.2.1 Doxorubicin
2.15.2.2 Doxorubicin Side Effects
2.15.2.3 Cytarabine
2.15.2.4 Ara-C Side Effects
2.16 Cell Lines
2.16.1 Human Promyelocytic Leukaemia cell (HL-60)
2.16.2 Murine Leukaemia Cell (WEHI-3)
2.16.3 Mouse Normal Mammary Cell Line (3T3)
2.17 Biochemical Factors and Cancer
2.17.1 Alkaline Phosphatase
2.17.2 Alanine Aminotransferase
2.17.3 Aspartate Aminotransferase
2.17.4 AST/ALT Ratio
2.18 History of Herbal Products
2.19 Standardization of Herbs
2.20 Background of Herbal Medicine in Malaysia
2.21 Plants Derived Anticancer Agents
2.21.1 Berberis vulgaris (B.v)
2.21.2 Medicinal and Useful Activites of

3 MATERIALS AND METHODS
3.1 Experimental Design in Mice Groups
3.2 In vitro Anticancer Properties of Berberis vulgaris Crude Extract
3.2.1 Extraction Procedure
3.2.2 Extract Preparation for In Vitro and In Vivo Experiments
3.3 Extraction Preparations
3.3.1 Total Phenolic Content 37
3.3.2 Total Flavonoid Content 37
3.3.3 DPPH Radical Scavenging Activity 37
3.4 Protocol for Standardization of Herb 38
3.5 Screening of Cancer Cells 38
3.5.1 Cell Lines 38
3.5.2 Media Preparation 39
3.5.3 PBS Preparation 39
3.5.4 Trypsin / EDTA Solution 39
3.5.5 Cells Preparation 39
3.5.6 Culture Media Maintenance 40
3.5.6.1 Changing Media in Adherent Cells 40
3.5.6.2 Changing Media in Suspension Cell 40
3.5.7 Subculture of Cells 40
3.5.7.1 Subculture of Adherent Cell 40
3.5.7.2 Subculture of Suspension Cell 40
3.5.8 Cell Counts Using Trypan Blue 40
3.5.9 Cryopreservation 41
3.5.10 Cytotoxicity Assay 41
3.5.10.1 Cell Seeding 41
3.5.10.2 WEHI-3, HL-60 and 3T3 Treatment with Extract 41
3.6 MTT Cell Proliferation Assay 42
3.7 Morphological Studies of the Cells 42
3.7.1 Cell Seeding 42
3.7.2 Treatment 42
3.7.3 Morphological Studies Using Phase Contrast Inverted Microscope 42
3.8 Molecular Techniques 43
3.8.1 RNA Quantification 43
3.8.2 SCRIPT cDNA Synthesize 43
3.8.3 Design the Primer 43
3.8.3.1 Primer Preparation 44
3.8.4 DNA Extraction of S. aureus RN422 45
3.8.4.1 Evaluation of DNA Quality 46
3.9 Real-Time Quantitative PCR 46
3.9.1 RT-qPCR Normalization and Standard Curve 47
3.9.2 Prevention of RT-qPCR Contamination 49
3.10 In vivo Anti-leukaemic Properties of Berberis vulgaris Crude Extract 49
3.10.1 Acute Toxicity Study 49
3.10.2 Anti-Leukaemic Model in BALB/c Mice and Drug Treatment 49
3.11 Haematological Analysis 50
3.11.1 Complete Blood Counting (CBC) in Treated and Untreated Mice 50
3.11.2 Blood Films Preparation of the Slide 50
3.11.3 Procedure for Collection of Bone Marrow 50
3.12 Biochemical Analysis 51
3.12.1 Liver Function Tests (LFTs) 51
3.12.1.1 Alkaline Phosphatase (ALP) 51
3.12.1.2 Alanine Aminotransferase (ALT/SGPT) 51
3.12.1.3 Aspartate Aminotransferase (AST/SGOT) 51
3.12.2 Kidney Function Tests 52
3.12.2.1 UreaTest 52
3.12.2.2 Creatinine Clearance Test (CRT) 52
3.13 Organ Samples 52
3.13.1 H&E Staining for Histopathological Studies 52
3.13.2 Numerical Scoring System for Assessing Histological Activity 52
3.14 Statistical Analysis 53

4 RESULTS
4.1 Extract Characteristics 54
4.1.1 Total Phenolic Content Analysis 54
4.1.2 Total Flavonoids Content Analysis 54
4.1.3 DPPH Radical Scavenging Activity 55
4.1.4 HPLC Study 55
4.2 Elemental Analysis via Scanning Electron Microscopy 56
4.3 In vitro Anticancer Finding 58
4.3.1 Cytotoxicity of Berberis vulgaris on Leukaemia and Normal 3T3 Cell Lines 58
4.3.2 Morphological Changes of WEHI-3, HL-60 and 3T3 Cell Lines 58
4.3.3 Result on Analysis of Gene Expression by Real-time PCR Assay 65
4.4 In vivo Anticancer Study 71
4.4.1 Effect of Berberis vulgaris Crude Extract on the Body Weight of Treated and Untreated Male BALB/c Mice 71
4.4.2 Severe Side Effects of Doxorubicin on Leukaemic Mice 71
4.4.3 Weight of Organs 73
4.4.3.1 Effect of Force Feeding of Berberis Vulgaris Fruit Crude Extract on the Weight of the Liver and Morphology of a Male BALB/c Mice 73
4.4.3.2 Effect of Berberis vulgaris Fruit Extract on the Weight of Spleen and Morphology of a Male BALB/c Mice 75
4.5 Histopathological Examination 76
4.5.1 Light Microscopy Result on Histology of Liver 76
4.5.2 Light Microscopy Result on Histology of Spleen 79
4.5.3 Light Microscopy Result on Histology of Heart 82
4.5.4 Light Microscopy Result on Histology of Kidney 85
4.5.5 Mean Lesion Scoring 88
4.6 Haematological Results 92
4.6.1 Complete Blood Counting (CBC) Test 92
4.6.2 Total Count of Blast Cells in Peripheral Blood 95
4.6.3 Blood Film and Bone Marrow Examination 96
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7 Biochemical Experiment</td>
<td>98</td>
</tr>
<tr>
<td>4.7.1 Liver Functional Test Results</td>
<td>98</td>
</tr>
<tr>
<td>4.7.2 Kidney Functional Test</td>
<td>99</td>
</tr>
<tr>
<td>5 DISCUSSION</td>
<td>101</td>
</tr>
<tr>
<td>6 CONCLUSION & RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>119</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>121</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>151</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>199</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>200</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Biochemical and Morphological Differences between Necrosis and Apoptosis</td>
</tr>
<tr>
<td>2.2</td>
<td>French-American-British (FAB) Classification of AML</td>
</tr>
<tr>
<td>2.3</td>
<td>The WHO Category to Classify AML</td>
</tr>
<tr>
<td>3.1</td>
<td>Materials for Preparing Complete Media</td>
</tr>
<tr>
<td>3.2</td>
<td>Human Cell Line (HL-60) Primers Sequence in RT-qPCR</td>
</tr>
<tr>
<td>3.3</td>
<td>Mice Cell Line (WEHI-3) Primers Sequence in RT-qPCR</td>
</tr>
<tr>
<td>3.4</td>
<td>The Amount of Component Used in qRT-PCR</td>
</tr>
<tr>
<td>3.5</td>
<td>Histological grade in Liver, Kidney, Spleen and Heart</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between the Total Phenolic Content (TPC), and Total Flavonoids Content (TFC) with Different Concentrations of Extract</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparing the DPPH Scavenging Activity of Different Concentration of B.v With Standards</td>
</tr>
<tr>
<td>4.3</td>
<td>Quantitative Elemental Analysis of Berberis vulgaris using EDX-VPSEM</td>
</tr>
<tr>
<td>4.4</td>
<td>Determination of Side Effects in Studied Groups</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean Lesion Score of Liver in Leukaemic BALB/c Mice Treated with Various concentrations of Berberis vulgaris Fruit Crude Extract</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean Lesion Score of Spleen in Leukaemic BALB/c Mice Treated with Various concentrations of Berberis vulgaris Fruit Crude Extract</td>
</tr>
<tr>
<td>4.7</td>
<td>Mean Lesion Score of Heart in Leukaemic BALB/c Mice Treated with Various concentrations of Berberis vulgaris Fruit Crude Extract</td>
</tr>
<tr>
<td>4.8</td>
<td>Mean Lesion Score of Kidney in Leukaemic BALB/c Mice Treated with Various concentrations of Berberis vulgaris Fruit Crude Extract</td>
</tr>
<tr>
<td>4.9</td>
<td>Number of Blast Cells in the Peripheral Blood of BALB/c Mice Induced with WEHI-3 Leukaemic Cell</td>
</tr>
<tr>
<td>4.10</td>
<td>The Effects of Berberis vulgaris and Doxo on the Liver Function Enzyme of BALB/c Mice</td>
</tr>
</tbody>
</table>
4.11 The Effects of *Berberis vulgaris* and Doxo on the Kidney Function Enzyme of BALB/c Mice
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mechanism of Bcl-2 Antagonists in Cellular Stress Response</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of Tumor Suppressor Genes</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical Structure of Doxorubicin</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical Structure of Ara-C</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>View of Berberis vulgaris Fruit</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental Design of Study</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Real-Time RT-PCR Program</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>UV Chromatogram of Berberine</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Berberis vulgaris Crude Extract Scanning Electron Microscope Micrograph</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>with Three Selected Spectrum</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>EDX-VPSEM Result of Heavy Elements Analysis of BVFCE</td>
<td>58</td>
</tr>
<tr>
<td>4.4</td>
<td>Cell Microscope Observations of 3T3</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Cell Microscope Observations of HL-60</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Cell Microscope Observations of WEHI-3</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of BVFCE and Doxorubicin on Expression of p53 WEHI-3 and 3T3 during 24 hours</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of BVFCE and Doxorubicin on Expression of p53 WEHI-3 and 3T3 during 48 hours</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of BVFCE and Doxorubicin on Expression of Bcl-2 HL-60 during 24 hours</td>
<td>66</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of BVFCE and Doxorubicin on Expression of Bcl-2 HL-60 during 48 hours</td>
<td>67</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of BVFCE and Doxorubicin on Expression of Bcl-2 WEHI-3 during 24 hours</td>
<td>67</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of BVFCE and Doxorubicin on Expression of Bcl-2 WEHI-3 during 48 hours</td>
<td>68</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of BVFCE and Doxorubicin on Expression of MAPK-1 HL-60 during 24 hours</td>
<td>68</td>
</tr>
</tbody>
</table>
4.14 Effect of BVFCE and Doxorubicin on Expression of MAPK-1 HL-60 during 48 hours 69
4.15 Effect of BVFCE and Doxorubicin on MAPK-1 WEHI-3 during 24 hours 69
4.16 Effect of BVFCE and Doxorubicin on MAPK-1 WEHI-3 during 48 hours 70
4.17 Effect of BVFCE and Doxorubicin on Cox2 HL-60 during 24 and 48 hours 70
4.18 The Body Weight Changes Trend of BALB/c Mice Induced with WEHI-3 Cell Line in Different Groups by Treatment of Berberis vulgaris Crude Extract 71
4.19 Photographs Show Obvious Symptoms of Chemotherapy in Leukaemic BALB/c Mice 72
4.20 Morphology and Size of the Liver 74
4.21 A Graph Showing the Changes of Liver Weight 74
4.22 Morphology and Size of the BALB/c Mice Spleen 75
4.23 A Graph Showing the Changes of Spleen Weight 76
4.24 Light Micrograph Shows the Histology Examination of Liver Tissue in Normal Group 77
4.25 Light Micrograph Shows the Histology Examination of Liver Tissue in Cancerous Group 77
4.26 Light Micrograph Shows the Histology Examination of Liver Tissue in BVFCE Treated Group 78
4.27 Light Micrograph Shows the Histology Examination of Liver Tissue in Doxo Group 78
4.28 Light Micrograph Shows the Histology Examination of Liver Tissue in Doxo Treated with BVFCE 79
4.29 Light Micrograph Shows the Histology Examination of Spleen Tissue in Normal Group 80
4.30 Light Micrograph Shows the Histology Examination of Spleen Tissue in Cancerous Group 80
4.31 Light Micrograph Shows the Histology Examination of Spleen Tissue in BVFCE Treated Group 81
4.32 Light Micrograph Shows the Histology Examination of Spleen Tissue in Doxo Group 81
4.33 Light Micrograph Shows the Histology Examination of Spleen Tissue in Doxo Treated with BVFCE
4.34 Light Micrograph Shows the Histology Examination of Heart Tissue in Normal Group
4.35 Light Micrograph Shows the Histology Examination of Heart Tissue in Cancerous Group
4.36 Light Micrograph Shows the Histology Examination of Heart Tissue in BVFCE Treated Group
4.37 Light Micrograph Shows the Histology Examination of Heart Tissue in Doxo Group
4.38 Light Micrograph Shows the Histology Examination of Heart Tissue Doxo Treated with BVFCE
4.39 Light Micrograph Shows the Histology Examination of Kidney Tissue in Normal Group
4.40 Light Micrograph Shows the Histology Examination of Kidney Tissue in Cancerous Group
4.41 Light Micrograph Shows the Histology Examination of Kidney Tissue BVFCE Treated Group
4.42 Light Micrograph Shows the Histology Examination of Kidney Tissue in Doxo Group
4.43 Light Micrograph Shows the Histology Examination of Kidney Tissue in Doxo Treated with BVFCE
4.44 Effect of Different Dosages of *B. vulgaris* Crude Extract on the total WBC (x 10^9/L) of BALB/c Mice as Compared to Control and Doxo Treated Groups
4.45 Effect of Different Dosages of *B. vulgaris* Crude Extract on the PLT Ratio of BALB/c Mice as Compared to Control and Doxo Treated Groups
4.46 Effect of Different Dosages of *B. vulgaris* Crude Extract on the Hb (g/dl) of BALB/c Mice as Compared to Control and Doxo Treated Groups
4.47 The Effect of Doxorubicin and *Berberis vulgaris* Crude Extract on the Level of Blast Cells in the Peripheral Blood of BALB/c Mice Inducted with WEHI-3 Leukaemic Cell
4.48 Light Micrograph Showing the Blood Film Examination of BALB/c Mice
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3T3</td>
<td>Mouse Spleen Lymphocyte</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute Lymphoblastic Leukaemia</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphates</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Aminotransferase</td>
</tr>
<tr>
<td>AML</td>
<td>Acute Myeloblastic Leukaemia</td>
</tr>
<tr>
<td>ATTC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analyze of Variance</td>
</tr>
<tr>
<td>BVFCE</td>
<td>Berberis vulgaris Fruit Crude Extract</td>
</tr>
<tr>
<td>CLL</td>
<td>Chronic Lymphocytic Leukaemia</td>
</tr>
<tr>
<td>CML</td>
<td>Chronic Myelocytic Leukaemia</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxiribonucleic acid</td>
</tr>
<tr>
<td>DPX</td>
<td>Di-N-Butyle Phthalate in Xylene</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion-S-Transferase</td>
</tr>
<tr>
<td>HL-60</td>
<td>Promyelocytic Leukaemia</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cell</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution Per Minute</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>U/L</td>
<td>Units per Liter</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>W</td>
<td>Weight</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood Cells</td>
</tr>
<tr>
<td>WEHI-3</td>
<td>Mouse Myelomonocytic Leukaemia</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>FMHS</td>
<td>Faculty of Medicine and Health Sciences</td>
</tr>
<tr>
<td>BHD</td>
<td>Butylated Hydroxytoluene</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Cancer as a well-known term, is the second cause of death accounting for about 12.8% worldwide (WHO, 2004). The term cancer has been associated with despair, agony, and dreadful death. Cancer can be defined as a broad group of various diseases, all involving unregulated cell growth in which a group of abnormal cells grow uncontrollably by disregarding the normal rules of cell division, which is medically known as a malignant neoplasm (Moscow & Cowan, 2011). In Malaysia, the incidence of various kinds of cancer has been estimated to be around 30,000 annually where the cancer was the fourth leading cause of death (Ezat et al., 2012; Lim, 2002).

Haematological malignancies consist of a group of cancers that arise from malignant transformation of various blood cells derived from peripheral blood, lymphatic system or bone marrow. These diseases include the acute and chronic leukaemias, Hodgkin’s disease also known as (Hodgkin’s lymphoma), non-Hodgkin’s lymphoma, and multiple myeloma. The heterogeneity seen in these cancers collection reflects the complexity of the normal haematopoietic and immune systems.

Individually, these types of cancers are less common than some solid tumors. However, leukaemia, lymphoma, and myeloma accounted for 118,310 new cancer cases in 2006 (9% of cancer cases diagnosed in the United States) and 53,920 cancer deaths.

Leukaemia is estimated to account for about 3% of incident cases of cancer worldwide and, in Malaysia leukaemia is the 4th main cause of death (Lim, 2001). It is characterized by increasing number of immature white blood cells called "blast cells". There are two common types of leukaemia; acute and chronic. An abnormal number of immature and mature white cells are characterized in the acute and chronic leukaemia respectively. Leukaemia can also be classified based on their cell origin-myeloid and lymphoid. Hence, different types of leukaemia are named as in acute lymphocytic, acute myeloid, chronic lymphocytic and chronic myeloid leukaemia (Hughes-Jones & Wickramasinghe, 1996).

Established causes of leukaemia include, occupational exposure to ionizing radiation, certain drugs used in the treatment of cancer and some chemicals (most notably benzene) used largely in industrial settings. Because of an increased in the morbidity and mortality of human leukaemia in recent years, control of human leukaemia through intervention is highly desirable (Gao et al., 2009). Blood diseases such as leukaemia expected to be increasing with years, as there is an increased in morbidity and mortality of leukaemia recently. Therefore, the need for control of leukaemia through chemoprevention or intervention with fewer side effects is highly required.

Epidemiologic studies have indicated that consumption of a fruit and vegetable-based diet reduces the risk of various cancers (Vecchia, 2004). These observations had led to
the latest global strategy on the cancer prevention which recommends consumption of colorful fruits and vegetables (Heber, 2004). Consequently, the focus of cancer research in recent years has been shifting toward the isolation, and characterization of potential chemo-preventive agents present in some fruits and vegetables (Cooke et al., 2005).

Chemotherapy is a main curative approach to treat leukaemia. Most, anti-cancer drugs destroy cancer cells by inhibiting their growth rate or multiplying at one or more points in their cell cycles. Some chemotherapy is characterized by relatively low inactivity and high toxicity for patients. Recently, besides conventional methods such as surgery, radiotherapy and chemotherapy, herbal therapy has been distinguished as a safe way for cancer treatment (Saiful, 2003). Although, chemotherapy drug are powerful enough to kill cancer cells and also may be used as a medications to prolong life period when a cure is impossible, it has notable side effects such as nausea and vomiting, hair loss, early menopause, fatigue, infections, mouth and throat sores, gain weight, nail weakness and memory problems (chemo-brain) (George, 2014; National Cancer Institute, 2012). In this research introducing BVFCE as a complementary treatment to over come to side effect of chemotherapy is highlighted.

The importance of herbal therapy does not limit itself to local Malaysian’s plants, but also overspreads of foreign plants. It leads to a study of non-native plant called Berberis vulgaris which predominantly found in Asia, Europe, the British Isles and in North America (Arayne et al., 2007). To date, there is no literature report on the mechanism of Berberis vulgaris fruit crude extract (BVFCE) and its effects on leukaemia. Hence, the effect of BVFCE as anti-leukaemic was investigated in both in vitro and in vivo models of experiments.

The determination of nutritional compounds in barberry (Berberis vulgaris) fruits is very important as it is a part of the daily diet for certain people. It is an herb derived from the Berberidaceae shrub family. Hanchi and her colleagues reported that Berberis vulgaris exhibited varying degree of antioxidant properties (Hanachi et al., 2006). Berberine, a natural isoquinoline alkaloid, has been found in many clinically important plants like Berberis vulgaris (Barberry) (Piyanuch et al., 2007). The most promising actions of berberine are its inhibition of cell growth, and induction of apoptosis in many human cancer cells (Mantena et al., 2006), but the mechanism behind these actions need to be elucidated.

This research resulted to determine the herbal therapy and antioxidant effect of BVFCE on leukaemia as an herbal treatment. As compared to chemotherapy, herbal therapy has shown lower toxicity, easier availability and better acceptability, thus patients with cancer prefer to use complementary and alternative medicine (Gao et al., 2009). Therefore, this study also aims to determine the use of Berberis vulgaris fruit crude extract (BVFCE) as a co-treatment in leukaemia cases.

1.2 Research Hypothesis

Based on the current explanation, it is hypothesized that the Berberis vulgaris fruit crude extract has an anti-leukaemic effect in both the in vitro and in vivo experiments. It seems as a complementary agent with no side effect, to the current chemotherapy drugs which are known with adverse side effects. BVFCE with the high antioxidant activity could be
a novel anti-leukaemic mediator in the medicinal world by suppressing of cancer cells development in leukaemic groups.

1.3 Research Objectives

1.3.1 General Objective:

To evaluate the anti-leukaemic properties of the *Berberis vulgaris* fruit crude extract using both the *in-vitro* and *in-vivo* experimental models.

1.3.2 Specific Objectives:

The specific objectives for the *in vitro* and *in vivo* experiments are as follows:

1. To obtain the crude extract of *Berberis vulgaris* fruit (B.v).
2. To evaluate the total phenolic, total flavonoid, and total antioxidant content of *Berberis vulgaris* crude extract (BVFCE).
3. To determined specific compound of *Berberis vulgaris* fruit (B.v) by HPLC.
4. To detect the presence of toxic metal elements in BVFCE.
5. To determine the cytotoxic effect of BVFCE on murine leukaemia (WEHI-3) cells and human promyelocytic leukaemia cells (HL-60) compared with the normal fibroblast cell line (3T3).
6. To examine the expression level of genes (p53, Bcl2, MAPK-1 and Cox2) using quantitative RT-PCR in both the treated, and untreated leukaemic cell lines.
7. To determine physical appearance of BALB/c mice after induction by WEHI-3 (Gross body weight, organomegaly, bleeding tendency and hair loss).
8. To observe histological changes of tissues stained with Haematoxyline and Eosine.
9. To detect haematological parameters (WBC, PLT, Hb level and blast count percentage).
10. To measure biochemical properties (liver and kidney functional tests)
REFERENCES

American Cancer Society. (2013). Leukemia--Chronic Myeloid (Myelogenous) What is cancer ? (pp. 1–47).

Anatomy and Function of the Human Liver.

From http://www.innerbody.com/image_digeov/card10-new2.html#full-description

mydr. (2001). Full blood count (FBC) - myDr.com.au. myDr.

Society, A. C. (2012). *Second Cancers Caused by Cancer Treatment Treatments linked to the development of second cancers* (pp. 1–14).

Tran, K. (2013). BARBERRY. *George Mason University*.

