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Abstract — Chance corrected agreement coefficients such as the Cohen and Fleiss Kappas are commonly used for the measurement 
of consistency in the decisions made by clinical observers or raters.  However, the way that they estimate the probability of 
agreement (Pe) or cost of disagreement (De) 'by chance' has been strongly questioned, and alternatives have been proposed, such as 
the Aickin Alpha coefficient and the Gwet AC1 and AC2 coefficients.  A well known paradox illustrates deficiencies of the Kappa 
coefficients which may be remedied by scaling Pe or De according to the uniformity of the scoring.  The AC1 and AC2 coefficients 
result from the application of this scaling to the Brennan-Prediger coefficient which may be considered a simplified form of Kappa.  
This paper examines some commonly used multi-rater agreement coefficients including AC1 and AC2. It then proposes an 
alternative subject-by-subject scaling approach that may be applied to weighted and unweighted multi-rater Cohen and Fleiss 
Kappas and also Intra-Class Correlation (ICC) coefficients. 
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I.  INTRODUCTION  

 
Studies of the consistency of clinical assessments are 

important in medical research.  A patient will often be 
observed by one clinician, at least initially.  The patient may 
be reassured to learn that the resulting assessment is likely to 
be independent of the choice of clinician since it is likely to 
affect any prescribed treatment.  If the assessments of certain 
conditions are often found to be different for different 
clinicians, this may not necessarily be a bad thing as 
different perspectives can be valuable.   However, it would 
be useful to know to what extent the assessments are likely 
to be consistent and whether certain observations are hard or 
easy to assess.   Such knowledge may, for example, suggest 
when a second opinion may be valuable. 

Investigating how much consistency is likely, and finding 
ways of improving it requires a clinical trial with a selection 
of subjects comprising patients and other volunteers and a 
number of clinical observers referred to as raters.  Such a 
trial was carried out by Gadepalli et al [1] for a voice quality 
assessment procedure with 102 subjects and five raters.  This 
trial required measurements of the intra-rater (self) 
consistency of decisions by the same raters at different times 
and also of inter-rater consistency of decisions by different 
raters observing the same subjects. 

The decisions may be diagnoses of medical conditions or 
the severity of such conditions.  The decisions may be 
categorical and denoted by labels.  Or they may by ordinal 
which means that they are numbers often referred to as 
scores.  Unlike labels, scores have magnitudes and may be 
compared in terms of differences between them. 

Given N subjects and R raters who each observe all 
subjects, the 'proportion of agreement' Po may be considered 
as a measure of consistency for categorical or ordinal 
decisions [2].  Denoting by A(i,r) the decision or score given 
by rater r to subject i, Po may be expressed as: 
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In equation (1), L = R(R-1)/2 which is the number ways 

in which two distinct raters, r and s, may be selected from 
the R raters for comparison of their decisions.  Therefore Po 
counts the number of times that a pair of raters agree for a 
subject.  It is expressed as a proportion of the number of 
subjects times the number of rater pairs, and is a number 
between 0 and 1.  When there is complete agreement by all 
raters for all subjects, Po will be equal to 1.  When there is 
almost no agreement, Po will be close to zero.   
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Although equation (1) is intended for categorical 
(nominal) decisions, it may be used also for ordinal scoring 
if the scores are considered as labels rather than numbers.  
When used for ordinal decisions (scores), equation (1) gives 
equal weight to all possible differences regardless of their 
magnitudes.  However, for ordinal scoring it is often 
preferable to give more importance to larger differences than 
smaller difference, and this leads to a weighted version of Po 

defined as follows: 
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where w(u,v) is a 'weighting function' [3], which may be 
expressed in terms of a 'cost function' C(u,v) as follows: 
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Assuming that there are Q possible scores 1, 2, …, Q, for 
linear weighting:  
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for quadratic weighting,  
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and for no weighting, 
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When C(u,v) is defined by equation (6), equation (2) 
becomes identical to equation (1) as applied to ordinal scores 
considered as labels. There are many other possible cost-
functions that may be considered, but these three are of 
special interest.  In equations (4) to (6), C(u,v) is the cost of 
any disagreement between score u and score v.  The cost 
determines the degree to which the value of Po is decreased 
from unity by a rater-pair disagreement.  In all cases, the cost 
of the maximum possible disagreement is 1 and the cost is 
zero when there is no disagreement.  With linear weighting, 
C(u,v) is proportional to the magnitude of the score 
difference, with quadratic weighting, this magnitude is 
squared and with no weighting, any score difference 
contributes the same unit cost.  As with the unweighted 
version of Po, the weighted version is equal to 1 for perfect 
agreement, and   the minimum possible value is equal to 0.  
A value of Po close to zero would indicate that all rater-pairs 
disagree to the maximum possible extent for all subjects.  
 

Po may be re-expressed as: 
 

Po = 1 – Do                                       (7) 
 

where Do is the overall unweighted or weighted cost of 
disagreement defined as:  
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II. CHANCE-CORRECTED AGREEMENT COEFFICIENTS 
 
Unweighted and weighted versions of Po are 

straightforward measures of consistency for categorical or 
ordinal scoring.  But they are biased by the probability of 
some agreement occurring by chance.  If all raters were to 
make random decisions evenly distributed over Q categories 
or scores, 'by chance' agreement would be expected with a 
probability of 1/Q, even if the raters made their decisions 
without reference to the subjects.  This would make 
unweighted Po equal to 1/Q and weighted Po equal to Tw/Q2 
where [3]: 
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With four scoring categories and 'by chance' scoring, the 
expectation of unweighted Po would be 1/4 or 25% for an 
even spread of decisions over the four categories, and with 
an uneven spread of decisions, Po could be even greater, thus 
giving a false impression of some consistency when there 
may be none.   

Chance corrected agreement coefficients aim to cancel 
out the bias in Po, while still providing a number between 0 
and 1.  They are normally expressed as: 
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where, for categorical or unweighted scoring, Po is as 
defined by equation (1) and Pe is an estimate of the 
probability of agreement by chance.  Pe may be re-expressed 
as: 
 

Pe = 1 – De                                 (11)  
 

where De is an estimate of the probability of disagreement by 
chance.   

To extend equations (10) and (11) to weighted ordinal 
scoring, Po is generalised by equation (2) and De is 
generalised to be an estimate of the overall weighted cost of 
disagreement by chance.  If there is almost complete 
agreement, Po will be close to 1 and  will be close to 1 
unless Pe is also close to 1.  If Pe is close to 1, almost all 
agreement or disagreement would be considered to have 
occurred by chance.  
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III. BRENNAN-PREDIGER COEFFICIENT 
 
The simplest chance corrected agreement coefficient is 

known as the Brennan-Prediger coefficient [4].  The 
unweighted or categorical version is: 
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with Po defined by equation (1).   The weighted version 

for ordinal scoring is: 
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with Po defined weighted by equation (2) and Tw by 

equation (9).  The Brennan-Prediger coefficient cancels out 
the bias in Po when the rater decisions or scores are evenly 
distributed among the Q categories.  But it will not do this 
accurately for uneven distributions. 

 
IV. MULTI-RATER COHEN KAPPA 

 
The Cohen Kappa aims to remove the bias present in Po 

by estimating and taking into account the probability of 
agreement ‘by chance’ given the distribution of decisions 
produced by each rater.  It was originally proposed [5] for 
categorical rating by two raters, and was generalised by 
Hubert [6] and Conger [7] to a multi-rater version that may 
be expressed [2] as follows:  
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Po is as defined by equation (1).  As defined by equation 
(14), Pe is an estimate of the probability of a pair of arbitrary 
raters agreeing by chance when these raters make arbitrary 
decisions which are not necessarily the same as those of the 
actual raters, but are similarly distributed over the Q possible 
categories or scores.  The distributions depend on the 
individual scoring characteristics of each rater and also on 
the diversity of the N subjects. Assuming that the scoring is 
applied to the severity of some condition such as voice 
quality impairment, ranging from normal to severe, if the 
diversity of the subjects is such that the distribution of 
degrees of severity across this range is fairly uniform, then 
the scoring will be expected to be fairly uniform.  Pe will 
then be mainly dependent on the scoring characteristics of 
each rater and how these differ from rater to rater.  If, 
however, there is an inherent bias towards a particular degree 
of severity, for example, a high number of severe cases, this 
will affect the rater scoring distributions in a way that is 
unrelated to the scoring characteristics of the raters.   

For Pe to be a reliable estimate of 'by chance' scoring for 
a population of subjects, it has to be assumed that the N 

subjects are a reasonable sample of the population.  If there 
is a bias in the scores obtained for the N subjects, then it is 
assumed that that the same bias exists in the population. 
Otherwise the sample will be unrepresentative of the 
population and the estimate of Pe will be unreliable. 

Equation (14) becomes identical to the original Cohen 
Kappa when the number of raters, R, is equal to two.  An 
alternative generalisation by Light [8] is also identical for 
two raters but slightly different for more.  Equation (14) may 
be further generalised to weighted form [9] for ordinal 
scoring by defining Po by equation (2) and Pe by equation 
(15):  
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As with the Brennan-Prediger coefficient, the 

introduction of weighting increases the cost of any by chance 
disagreement between arbitrary raters.  But Pe is no longer a 
constant that is independent of the distribution of rater 
scores.   Combining equations (2), (10) and (15) we obtain 
an expression for the weighted multi-rater Cohen Kappa 
which can be expressed [2] as follows:    
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V. FLEISS-KAPPA 
 
The Fleiss Kappa [10] is an alternative chance-corrected 

agreement coefficient originally defined for two or more 
categorical raters.  When used for two raters, it becomes 
identical to the Scott Pi coefficient [11].  A Fleiss Kappa of 1 
indicates perfect agreement between all raters, and lower 
values are interpreted on a scale similar to that assumed for 
the Cohen Kappa.   

For categorical scoring with R raters and Q scoring 
categories, Fleiss [10] calculates Po by equation (1) and then 
calculates the proportion, k , of all assignments to category 
k, for all raters and all subjects, for k = 1, 2, …, Q, as 
follows: 
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If it is assumed that the N subjects are a reasonable 
sample of the population, k may be considered an estimate 
of the probability that a randomly selected rater will classify 
a randomly selected subject into category k.  As there are Q 
categories, it follows that: 
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Fleiss [10] then estimates the probability of agreement ‘by 
chance’ as: 
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A weighted version [3] of the Fleiss Kappa is obtained by 
defining Po by equation (2) and Pe by equation (20): 
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Substituting these values of Po and Pe into equation (10) 
gives an expression for Fleiss Kappa which can be re-
expressed [2] as: 
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The cost function C may apply no weighting, or linear, 

quadratic or other weighting as in equations (4 - 6).  
Equation (21) is valid for any number, R, of raters including 
R = 2.  

The Fleiss and Cohen versions of Kappa differ because 
Fleiss specifies that each rater index does not necessarily 
refer to the same person.  In this case, it is considered 
inappropriate to define Pe in terms of the distribution of 
scores for each rater index.  The more general assumption 
made by Fleiss about the likely distribution of scores for 
each rater index, i.e. that they are all equal, is more 
appropriate.  The Fleiss Kappa [10] is unaffected by the 
characteristic trends in the scoring by individuals. Only the 
distribution of scores among the Q scoring categories by all 
raters is considered important, though, as for the Cohen 
Kappa, this is affected by any inherent bias in the diversity of 
the N subjects.  The differences between the Fleiss Kappa 
and the multi-rater Cohen Kappa are often small but 
sometimes noticeable.   Where there are individual (fixed) 
raters it is appropriate to use the multi-rater Cohen Kappa 
rather than the Fleiss Kappa because it takes into account the 
typical scoring characteristics of the individual raters. 

 
VI. MISSING SCORES 

 
The equations given above for the multi-rater Cohen, 

Fleiss and Brennan-Prediger coefficients assume that all N 
subjects are scored by all R raters.  They have been 
generalised by Gwet [3] to the case where some scores are 
missing, but we do not consider this case here. 

 
VII. GWET'S PARADOX 

 
There is controversy about the way the Cohen Kappa [5] 

and Fleiss Kappa [10] estimate by chance agreement (14). 
Different approaches, such as the AC1 and AC2 coefficients 
by Gwet [3], are gaining currency.  The deficiencies of the 
Cohen & Fleiss Kappas are illustrated by the following 
example which is similar to examples quoted by Gwet [3]. 

In this example, there are two raters for 20 subjects with 
two possible scoring categories.  Rater 1 scores all subjects 
in category 1, and rater 2 scores 18 out of 20 in category 1.  
It may appear that that there is a high level of agreement.  
However, since Po = 0.9 and Pe = 0.9 for unweighted Cohen 
Kappa and Pe = 0.905 for unweighted Fleiss Kappa, both 
Kappas give zero or a value close to zero, thus indicating 
little or no agreement.   The problem lies with the estimation 
of Pe, since almost all agreement is classified as occurring by 
chance.  This is because the scoring of the raters is assumed 
to be biased towards 1.  If the diversity of the subjects is such 
that the anticipated scores are fairly evenly spread across the 
range 1 to Q (with Q=2), the rater scores would then be 
unrelated to the subjects so that any agreement would mostly 
be by chance.  However, if the subjects themselves are 
inherently biased towards the score of 1, this could account 
for the scores in Table 1, making them highly consistent and 
the Kappa values misleading.    By equation (12), the 
Brennan-Prediger coefficient, which is independent of the 
distribution of scores, gives the more intuitive value of 0.8. 

Ideally, when defining a chance-corrected agreement 
measure we should specify the expected scoring 
characteristics for a population of subjects.   If this is a 
population for which the overwhelming majority of subjects 
are expected to be scored as category 1, then the Cohen and 
Fleiss Kappas obtained from Table 1 are highly pessimistic.  
The Brennan-Prediger coefficient disregards the effect on Pe 
of the distribution of actual scores in Table 2 and assumes an 
even distribution.  The Cohen and the Fleiss Kappa take the 
actual distribution into account, while assuming a subject 
group with an even distribution of degrees of severity.  This 
assumption appears unlikely to be appropriate and is 
responsible for the paradox. 

 
VIII. EFFECT OF DISTRIBUTION OF SCORING 

 
The The paradox illustrated above, and referred to by 

Gwet [3], occurs whenever the value of k becomes close to 
1 for some value of k.  In this case, by equation (18), all 
other values of k become close to zero.  To investigate this 
situation, we randomly generated a set of scores for N = 50 
subjects, R = 5 raters and Q = 4 scoring categories.  Given Q 
values of k, we generated a random score in the range 1 to 
Q (inclusive) for each subject index i, for each of the R 
raters, such that the overall probability of getting score k was 
equal to k for k = 1, 2, …, Q.   
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Initially, we made k = 1/Q for k = 1, 2, …, Q,  which 
meant that all  scores were equally probable over all subjects 
and all raters.   By equations (14) and (19), this case gives Pe 
= 1/Q for both the unweighted Cohen and Fleiss Kappas, 
which are lowest possible values.  Pe is always equal to 1/Q. 
for the unweighted Brennan-Prediger coefficient. 

We then randomly generated further sets of random 
scores, with one of the k values increased from 1/Q, and the 
other (Q-1) values decreased to satisfy equation (19).   We 
chose 1 to be the value that increased, and made all other k 
values equal to (1- 1)/(Q-1).  By gradually increasing 1 
towards 1 we generated a series of scoring patterns that 
gradually approached the maximally concentrated 
distribution where 1 = 1 and all other values of k are zero.  
For this maximally concentrated distribution, all raters give 
score1, to all subjects.  

The situation when 1 becomes close to 1 further 
demonstrates the paradox pointed out by Gwet [3].  The 
resulting values of unweighted Cohen and Fleiss Kappas are 
plotted against increasing 1 in Figure 1, along with the 
Brennan-Prediger coefficient and the Gwet AC1 coefficient. 
It may be seen in Figure 1 that as 1 approaches 1, both the 
Cohen and Fleiss Kappas remain close to zero indicating no 
agreement except by chance.  The Brennan Prediger 
coefficient approaches 1 (perfect agreement) as 1 
approaches 1.   

The corresponding values of Pe for each of the 
coefficients plotted in Figure 1 are plotted against 1 in 
Figure 2.  Perhaps unexpectedly, the probability of 
agreement by chance, as estimated by both the unweighted 
Cohen and Fleiss Kappas, increases as the scores become 
more and more concentrated on score 1. Pe for the 
unweighted Brennan-Prediger coefficient remains constant at 
1/Q with Q=4.  The Gwet AC1 coefficient will be discussed 
in the next Section.  

 
IX. GWET'S AC1 AND AC2 COEFFICIENTS 

 
Gwet's AC1 and AC2 coefficients can be considered 

generalisations of the unweighted and weighted Brennan-
Prediger coefficients and they use the same value of 
unweighted or weighted Po.   In order to calculate a value of 
Pe (probability of agreement by chance) Gwet [3] adapts the 
idea used previously by Aickin [12] of dividing the subjects 
into those which are 'hard to score' and those which are 'easy 
to score', and estimating Pe for the 'hard' subjects only. It is 
suggested that the 'easy' subjects may be disregarded on the 
grounds that any agreement for easy subjects will not be by 
chance.   
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Figure 1. Graph comparing unweighted Cohen and Fleiss Kappas with the 

Brennan-Prediger and Gwet’s AC1 coefficients for increasing concentration 
of scores (Kappas almost coincide). 
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Figure 2: Graph of Pe against 1 for unweighted Cohen and Fleiss Kappas 

and the Brennan-Prediger and Gwet AC1 coefficients. 
 

Gwet implements this idea in a probabilistic way by 
defining a function P(R) as the 'degree of uniformity' of the 
distribution of subjects across the Q categories.  P(R) is 
estimated from the distribution of the scores given to all 
subjects by the R raters.  The degree to which all raters give 
the same or similar scores to the N subjects is presumed to 
determine the degree to which the subjects are easy to score.  
A group of subjects given rater scores that are more 
uniformly distributed over the Q available scores is 
presumed to be harder to score, since there is less agreement 
in the scoring.  P(R) lies between 0 and 1, and becomes close 
to 1 when the distribution of scores is close to being uniform, 
i.e. evenly spread out among all possible categories or 
scores.  P(R) becomes close to zero when there is a strong 
bias towards one particular category or score as in Table 1.  
Gwet refers to P(R) as the probability of selecting a hard 
subject.  Gwet's formula for P(R) is equation (22):  
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The upper curve in Figure 3 shows P(R) plotted against 

1 for N=50, R=5 and Q=4.  When 1 = 0.25 the distribution 
of rater scores is even and all scores are equally likely.  In 
this case, equation (22) gives a value of P(R) close to 1.     
As 1 is increased towards 1, P(R) decreases towards zero.  

  The formulae for Gwet's AC1 and AC2 coefficients are 
obtained by modifying the Brennan-Prediger coefficient as 
follows: 
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Figure 3.  Gwet's P(R) function and function E 

 
AC1 applies to categorical or unweighted scoring and 

AC2 to ordinal scoring with weighting.  The effect of P(R) is 
to reduce the estimation of Pe as the degree of uniformity 
decreases.  AC1 is plotted against 1 in Figure 1, and the 
corresponding values of Pe for AC1 are plotted in Figure 2.   

As may be expected, the behaviour of AC1 is similar to 
that of the Brennan-Prediger coefficient.   The effect of P(R) 
is to decrease Pe as the degree of concentration on a single 
score increases.  This increases AC1 in comparison to the 
Brennan-Prediger coefficient which continues to assume a 
uniform distribution of scores. 

It seems reasonable to assume that Pe should decrease as 
the distribution of scores decreases.  In this case, the subjects 
are indeed likely to become easier to score.  But there are 
other cases where subjects may become easier to score, but 
the scores are not concentrated on a single score. 

Consider, for example, the scores given in Table 2.  
Almost all scores agree, therefore it must be inferred that 
these subjects are easy to score.  But P(R) as defined by 
Gwet [3] will be close to 1 for this example.  The description 
of P(R) as the probability of selecting a subject that is hard to 

score may therefore be misleading.  It is better to describe 
P(R) in terms of the degree of uniformity of scoring.  Despite 
the explanation given by Gwet [3], P(R) is really defined 
from the overall distribution of scores and not the hardness 
or easiness of scoring. 

X. APPLICATION OF P(R) SCALING TO COHEN AND 

FLEISS KAPPAS 

Gwet [3] states that it would not be appropriate to take 
marginal probabilities (i.e. score distributions) into account 
when defining AC1 and AC2.   Despite this assertion, there 
may be a case for applying a measure of the degree of 
uniformity to both the Cohen and Fleiss Kappas.  Taking 
P(R) as such a measure, multiplying equations (15) and (20) 
for the Cohen and Fleiss Kappas respectively by P(R) gives 
the graphs referred to as CohenK-AC1 and FleissK-AC1 in 
Figure 4.  The graphs almost coincide, and the paradox 
exhibited by the Cohen and Fleiss Kappas has now been 
eliminated. 
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Figure 4. Cohen and Fleiss Kappas with P(R) and subject-by-subject scaling 

compared with Gwet’s AC1 coefficient. 
 

XI. SUBJECT-BY-SUBJECT IMPLEMENTATION OF SCALING 

 
A more direct way of implementing the 'hard/easy to 

score' principle discussed by Gwet [3] is to apply it to each 
individual subject rather than applying it probabilistically.  
For each subject i, define a 'by chance' probability, H(i), 
according to the rater scores it has been given and the overall 
spread of rater scores.  Then the contribution to Pe of any 'by 
chance' disagreement within rater pairs scoring subjects i and 
j may be scaled according to H(i) and H(j).  The maximum 
value of these probabilities determines the contribution. 

For Cohen Kappa, Pe as previously defined by equation 
(15) becomes: 
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where w(u,v) = 1  C(u,v) as in equation (3).  The 
contribution to Pe from scores A(i,r) and A(j,s) are unaffected 
if either subject i or subject j is considered likely to have 
been scored by chance.  If both subjects are considered less 
likely to have been scored by chance, the maximum of H(i) 
and H(j) will be reduced, perhaps to zero.  Therefore, the 
contribution to Pe from scores A(i,r) and A(j,s) will be 
reduced, thus reducing the estimated probability of 
agreement by chance.   

For the Brennan-Prediger coefficient, Pe in equation (13) 
becomes: 
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which is valid for categorical or weighted ordinal scoring. 
For the Fleiss Kappa: 
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This new approach requires a definition of 'by chance' 

probability H(i) for each subject.   
There are several interesting ways to do this, but a simple 

and obvious one is to use equations (28) and (29) as 
suggested by equation (22) which defines P(R).  
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Therefore H(i) quantifies the uniformity of the scores 

given by all R raters to a single subject i since k(i) is the 
proportion of these R scores that is equal to k.  Clearly,  
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However, it must be noted that:  
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Therefore we do not expect the subject-by-subject scaling by 
H(i) to be equivalent to the scaling by P(R) as defined by 
Gwet.  Differences between this subject-by-subject approach 
and Gwet's P(R) implementation may be illustrated by 
comparing the curves in Figure 3.  The black curve is P(R) 

and the red curve represents E as defined by equation (31).  
Both curves in Figure 3 reduce to zero as subjects become 
more and more concentrated on a single score.  However E, 
when scaled to a maximum of 1, remains close to P(R) as 1 
approaches 1. 

The probability measure defined by equation (28) was 
applied subject-by-subject to the unweighted Cohen and 
Fleiss Kappas by redefining Pe as in equations (25) and (27).  
The new forms of Kappa are referred to as CohenK-S/S and 
FleissK-S/S.  The result is seen in Figure 4, and may be 
compared with the other measures.  It may be seen that the 
Kappas almost coincide and are close to but generally lower 
than the AC1 coefficient.   The modification has eliminated 
the paradox that kept the Fleiss and Cohen Kappas close to 
zero in Figure 1.  Applying the subject-by-subject 
implementation to the scores in Table 2 gives values of H(i) 
that are mostly zero.  Therefore Pe will be small.  This 
demonstrates that the hard-easy' principle of Gwet is now 
applied whether or not the majority of scores are 
concentrated on a small subset of scores. 

 
XII. INTRA-CLASS CORRELATION (ICC) 

 
Measurements of consistency in ordinal scoring are 

forms of correlation.  The Pearson Correlation coefficient 
[13] is not normally appropriate for measuring consistency 
[14] as it takes into account only variations about the mean 
for each rater.  However, the ‘intra-class correlation’ 
coefficient (ICC) [15] may be used as a consistency measure.    
The original form of ICC [16] for a pair of raters A and B 
may be written as follows: 
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where N subjects are scored {A(i)}1,N by rater A and 
{B(i)}1,N by rater B, and m denotes the mean of the scores 
given by both A and B.  Multi-rater ICC generalises the pair-
wise version in equation (32) to R raters as follows: 
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with A(i,r) denoting the score given by rater r to subject i 

and L = R(R-1)/2. Therefore, m is now the pooled arithmetic 
mean of scores over all subjects and all raters. 

By equation (21) with C(u,v) defined by equation (5), the 
quadratically weighted Fleiss Kappa for R raters is equal to: 
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As equation (40) is identical to equation (34), the 
quadratically weighted Fleiss Kappa for R raters is identical 
to the multi-rater ICC as defined above.  It is well known 
that ICC and quadratically weighted Cohen Kappa are 
usually close, though not identical.  However the identity 
established above may not be so widely known.   Therefore, 
like the Fleiss Kappa and unlike the Cohen Kappa, ICC 
disregards differences in the scoring patterns of individual 
raters.  

Since ICC is exactly equal to quadratically weighted 
Fleiss Kappa, it therefore may be considered to incorporate 
correction for chance agreement.  Consequently, it produces 
the Gwet paradox when there is a concentration on one 
score.  As with the Cohen and Fleiss Kappas, it may be 
modified by the application of Gwet's P(R) function or its 
subject-by-subject implementation. 

 
XIII. CONCLUSIONS 

 
There is a paradox with the Cohen and Fleiss Kappas 

which is observed when rater scores are concentrated on one 

score.  Since Intra-classCorrelation (ICC) in its original form 
[16] and quadratically weighted Fleiss Kappa have been 
shown to be identical, the paradox will also occur with ICC 
when used for measuring rater agreement.  It arises because 
the rater scores are used not only to quantify the actual 
agreement but also to estimate the probability of agreement 
by chance, or the cost of disagreement by chance (Pe).  The 
basic problem is that Pe is inadequately defined by rater 
scores with a strong bias towards a small subset of the 
possible scores.  

If it is assumed that all scores are equally likely in the 
population, the Brennan-Prediger coefficient correctly 
estimates Pe.  As a means of catering for other distributions 
of scores, Gwet [3] sets out to improve this coefficient by de-
emphasising the contributions to Pe from subjects that are 
considered easy to score.  These subjects are considered 
unlikely to have been scored by chance.  The de-emphasis is 
achieved by multiplying each contribution by a function 
P(R) which is a measure of the degree of uniformity in the 
scoring.  The description of P(R) as the probability of 
selecting a subject which is hard to score is perhaps 
misleading.  This is because there can be many subjects that 
may be considered easy to score but whose scores are not 
concentrated on one score or a small subset of scores.   
Nevertheless, there is a case for applying P(R) as a measure 
of uniformity to the Cohen and Fleiss Kappas and ICC to 
eliminate the paradox that may be exhibited by these 
coefficients.  

We have investigated a subject-by-subject 
implementation of the Gwet 'hard-easy' principle with a 'by 
chance' probability estimated for each individual subject.  It 
eliminates the paradox and has potential to improve the 
underlying estimate of the population statistics from the 
sample provided. 
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TABLE I.  DISTRIBUTION OF SUBJECT SCORES ILLUSTRATING THE GWET PARADOX 

TABLE II.  DISTRIBUTION OF SCORES FOR SUBJECTS LIKELY TO BE EASY TO SCORE 

Rater Scores for subjects 1-20 
1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 

 

Rater Scores for subjects 1-20 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 


