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Abstract— The Landsat-7 ETM+ sensor has been operating on orbit for more than 12 years and 

characterizations of its performance have been ongoing over this period.  In general, the radiometric 

performance of the instrument has been remarkably stable: (1) Noise performance has degraded by 2% or 

less overall, with a few detectors displaying step changes in noise of 2% or less, (2) Coherent noise 

frequencies and magnitudes have generally been stable, though the within-scan amplitude variation of the 

20kHz noise in bands 1 and 8 disappeared with the failure of the scan line corrector and a new similar 

frequency noise (now about 18kHz) has appeared in two detectors in band 5 and increased in magnitude 

with time, (3) Bias stability has been better than 0.25 DN out of a normal value of 15 DN in high gain, (4) 

Relative gains, the differences in response between the detectors in the band, have generally changed by 

0.1% or less over the mission, with the exception of a few detectors with a step response change of 1% or 

less and (5) Gain stability averaged across all detectors in a band, which is related to the stability of the 

absolute calibration, has been more stable than the techniques used to measure it. Due to the inability to 

confirm changes in the gain (beyond a few detectors that have been corrected back to the band average), 
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ETM+ reflective band data continues to be calibrated with the pre-launch measured gains. In the worst case 

some bands may have changed as much as 2% in uncompensated absolute calibration over the 12 years. 

 
Index Terms—Landsat, radiometry, ETM+, calibration 

I. INTRODUCTION 

andsat-7 has been on-orbit and collecting Earth imagery with its Enhanced Thematic Mapper Plus 

(ETM+) sensor since April 1999.  The ETM+ is a derivative of the Thematic Mapper (TM) sensors flown 

on Landsats 4 and 5.  Salient characteristics of the ETM+ are presented in table 1.  The ETM+ has been 

well described in a number of publications, e.g., the Landsat Science Data Users Handbook [1], as have its 

on-board radiometric calibration capabilities, pre-launch radiometric characterization [2], and early on-orbit 

radiometric characterization and calibration [3,4]. Among the radiometric characteristics evaluated during 

the first few years on orbit were noise, both overall and coherent; stability, both in terms of biases and gain; 

and artifacts, for example, detector ringing.  

The radiometric stability of the instrument for the first 4 years on orbit was generally better than the 

techniques used to detect any changes [4,5].  An independent study [6] also could not find trends in the 

ETM+ response through 2003 to within the uncertainty of their methods.  A more recent study covering the 

time period through 2008, using some of the same Pseudo Invariant Calibration Sites (PICS) as used in [3], 

continued to show no definitive trend in the ETM+ response [7]. The relative gains (detector-to-detector 

within a band), with the exception of a few detectors that had small jumps or dips in response at up to the 

2% level, changed less than 0.1%  over the period.  

The objective of this study was to extend the radiometric assessment of ETM+ and its on-board 

calibrators over the current lifetime of the mission.  In particular, the analyses conducted in [3] and [4] were 

extended. 

The Image Assessment System (IAS), a portion of the Landsat-7 ground system, has the responsibility for 

monitoring the performance of the ETM+ instrument and the quality of the data products. The IAS is 
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staffed by USGS calibration analysts in conjunction with the NASA Land-cover satellite Project Science 

Office (LPSO) analysts.  Results are reported regularly at internal Landsat Calibration Working Group 

(LCWG) meetings. The LCWG consists of the IAS teams from USGS and NASA and outside investigators 

typically involved in vicarious calibration of the ETM+ reflective and thermal bands. Members of this 

group conducted the analyses in this paper. 

II. ETM+ NOISE CHARACTERIZATION 

A. Total Noise 

The analysis discussed in [3] was extended over the current mission lifetime. Basically, solar diffuser 

images collected across a range of solar illumination angles during monthly 15 minute collects, provided 

the data sets for measuring the noise as a function of radiance. An equation of the form: 

NE∆L = (a+b*Lλ)0.5  

was fit to the data, where NE∆L is noise equivalent change in radiance (W/m2 sr µm), Lλ is the radiance, 

and a ((W/m2 sr µm) 2) and b (in W/m2 sr µm) are fitting parameters. From this equation the noise is 

evaluated at two radiance levels, “typical” and “high”.  In figure 1 are shown the trends for the typical and 

high radiance levels for band 3, after converting noise to signal-to-noise ratio (SNR).  

Several observations from figure 1: (1) the overall change in noise over almost 12 years of data collection 

is small, i.e., less than 2% for most detectors, (2) the low radiance SNR trend is noisy between years 2 and 

4, (this is an artifact due to short acquisitions being taken at this time, so that noise performance at the 

typical radiance level was extrapolated) and (3) one detector (#6) experienced a step-like change in noise of 

about 2% in year 9. These patterns, consisting of trends on the order of 1% with occasional channels that 

have a small step-like decrease in SNR, are typical for all bands. Table 2 presents those detectors that have 

exhibited step changes in noise response. Overall the instrument has been maintaining its noise performance 

well. 
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B. Coherent Noise 

Coherent or pattern noise is a component of the total noise discussed above.  As described in [3], Fast 

Fourier Transforms (FFT’s) on night (dark) scenes are used to characterize coherent noise. Four types of 

coherent noise have previously been observed on ETM+ [2]. Figure 2 shows the power history for the 

coherent noise types using representative detectors for each noise type. 

The panchromatic band (band 8) 104 kHz noise (half cycle per pixel) is one of the most consistent and is 

the highest power (~ 0.13 DN2 in low gain mode) found in ETM+ data with the exception of the 

inconsistent noise in band 5 detectors #12 and #10. A subtractive correction algorithm is implemented to 

eliminate this panchromatic band noise in the Landsat Level 1 Product Generation System at USGS EROS. 

Figure 2 shows the lifetime trend of 104 kHz coherent noise of band 8 detector #3. 

The 4.9 kHz (one cycle per ~20 pixels) coherent noise is found in the primary focal plane bands. Bands 2, 

3 and 8 are most affected. The power of this noise is usually less than 0.05 DN2 and varies from detector to 

detector. For a specific detector it is very stable over the mission lifetime except at the time of the scan line 

corrector (SLC) failure (May 2003) when a slight decrease of this noise power was detected in some 

detectors. Figure 2 depicts the nature of this noise power for three representative detectors from bands 2, 3 

and 8. 

The 20 kHz noise has changed over the mission lifetime. Band 8 detector #5 noise encountered a sharp 

increasing trend for few months prior to the scan line corrector failure and then decreased and maintained 

stability, except for a few fluctuations, for the rest of the life. Band 1 detector #9 noise also increased 

slightly before the SLC failure. The 20 kHz noise of this detector decreased with SLC failure to such a level 

that it is almost undetectable by IAS. Figure 2 shows lifetime trends of band 8 detector #5 and band 1 

detector #9 coherent noise power as estimated using IAS trended database. 

The anomalous nature of the 20kHz noise [3], where the noise power decreases from the shutter region 

towards the center of a scan line, disappeared with SLC failure. The occasional ringing events [3] continue, 

characterized by large amplitude 20kHz oscillations that exponentially decrease in amplitude with time. 
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Band 1 detectors #9 and  #14 and band 8 detector #1 are most affected by 20 kHz noise powered by ringing 

events. 

The band 5 detector #10 and #12 coherent noise, identified as 20kHz noise for the first few years after 

launch [3], has changed both in power and frequency. This noise behavior is considerably different from 

that of the other detectors affected by 20 kHz noise and will be considered a fifth type of coherent noise. At 

present the peak frequency of this noise is around 18 kHz. Although the noise peak frequency shows a 

decrease over mission lifetime, the noise power has increased significantly (Figure 2). This noise was 

almost undetectable until 2007 and then started to increase gradually followed by rapid increase after 

switching to bumper mode operation in April 2007. This noise frequency and power are highly correlated to 

instrument time-on. Figure 3 shows the decaying trend of band 5 detector #12 noise power with instrument 

time-on as seen from February 29, 2010 night data collected at the beginning of FASC acquisition. Due to 

this decaying effect, only a few ETM+ scenes at the beginning of an interval are visibly affected by this 

coherent noise. 

The 5.6 kHz noise of band 3 detector #4 with varying power was occasionally present in ETM+ data 

before mid 2005. Since mid 2005,  this low power noise occurs more regularly.  The noise power is around 

0.02 DN2 as found from band 3 night data collected in low gain mode. 

Overall the coherent noise behavior of the ETM+ has changed relatively little over the mission lifetime 

with some improvement in the band 1 and 8 20kHz noise, particularly near the edges of the images after the 

scan line corrector failure and an increase in the band 5 20 kHz (now 18kHz) noise in two detectors.  The 

band 5 noise is only visually objectionable for the first few scenes after instrument turn-on and decreases to 

levels that should be acceptable for most users after this time. 
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III. ETM+ RADIOMETRIC STABILITY 

A. Detector Bias Stability 

Each detector’s bias, or output for zero signal input, is measured at the end of each scan line when the 

shutter passes in front of the focal plane.  Nominally 10 DN for low gain and 15 DN for high gain, the 

levels vary slightly among detectors. Band 5 detector #9 shows the largest long-term change in bias, though 

it is only about 0.25 DN (Figure 4). Band 5 detector #4, shown in [3] as an example for detectors with very 

stable biases, has continued to be stable (Figure 5).  Note that the bias is corrected line-by-line in Landsat 

product generation and the amount of change in bias is small enough to have no significant impact on the 

dynamic range of the system, so these changes have essentially no impact on the usability of the ETM+ 

data.  That the bias levels are very stable over time is a general indication of the stability and health of the 

electronics of the system. 

 

B. Relative Gain Stability (detector-to-detector) 

The ETM+ has multiple detectors per band (table 1). Each detector has a similar responsivity or gain, 

generally varying by no more than ± 1% within a band. The relative gains, here defined as the ratios of each 

detector’s gain to the band-average gain, are measured on-orbit by using the bright uniform images 

provided by the sun illuminated diffuser as well as Earth image statistics. The relative gain is determined by 

ratioing a particular detector’s net response (having subtracted the bias) to the band-average net response.  

When a relative gain changes by about 0.2% or more for at least two consecutive diffuser acquisitions 

(generally about 2 months), the calibration parameter file is updated so as to limit striping in processed 

ETM+ data.   

The relative gains of the ETM+ bands have continued to be extremely stable, with an occasional detector 

changing up to 1% in a step-like fashion.  Band 1 (Figure 6) has shown no detectors even reaching 0.1% 

change in relative gain over 12 years on-orbit.  Band 5 (Figure 7) detectors have been somewhat less stable, 
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but only one detector (#9) has reached the 0.2% threshold with a long-term drift and one dip and recovery 

of about 0.2%. 

C. Absolute Gain Stability (band average) 

A number of techniques are used to monitor the stability of the absolute radiometric calibration of the 

ETM+ bands.  These include on-board calibrator and vicarious calibration methods. 

The ETM+ has three on-board radiometric calibration systems [2]:  the lamp-based internal calibrator, the 

direct solar view partial aperture solar calibrator and the diffuser-based full aperture solar calibrator.  

Previously [4,8], the partial aperture solar calibrator and primary lamp on the internal calibrator have been 

shown to be unstable over the long term, i.e., changes in output by greater than 1% per year in most bands, 

whereas the instrument’s inherent stability appears to be at least a factor of 5 better than this [4].  Even for 

the best behaved of the on-board calibrators, the infrequently used lamp 2 of the internal calibrator and the 

diffuser, the ETM+ variation in response to these devices appears to be more a function of their instability 

than the ETM+ itself. 

The vicarious techniques include calibrations using (1) ground targets independently characterized 

simultaneously with their acquisition by ETM+, and (2) ground targets that are believed to be inherently 

stable, i.e., PICS [4].  

 

1) On-board calibration results 

As indicated, two on-board devices, the internal calibrator with its lamp 2 and the diffuser continue to 

give useful information on the long-term stability of the ETM+ instrument.  Lamp 1 has been used on the 

vast majority of the ETM+ acquisitions, whereas lamp 2 was used during the initial on-orbit check out 

period, about once every two months beginning 3 years after launch and about twice a month beginning 7 

years after launch. The FASC diffuser is deployed approximately monthly and the light reflected off the 

diffuser is used as a calibration signal for the ETM+ [4]. Responses of the ETM+ bands 3, 4, 5 and 7 to 

lamp #2 and FASC (as well as the other calibration sources and techniques) are shown in Figures 8, 9, 10 
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and 11 respectively.  The pre-launch calibration values, which are fixed and used for operational data 

processing, are also shown in these figures. 

 

2) Vicarious calibration results 

Two organizations, the University of Arizona and South Dakota State University (SDSU), have continued 

to collect ground reflectance and atmospheric measurements concurrent with the Landsat-7 overpasses of 

their sites [4].  The Arizona measurements are typically at the Railroad Valley and Ivanpah sites (bright, dry 

lake beds) and the SDSU measurements are at a grass field in Brookings, SD [5].  

Four sites have continued to be used for PICS: Sudan 1, Mauritania 1/2, Arabia 1 and Libya 4 per 

Cosnefroy terminology [9].  The measured responses, converted to radiance, are normalized for variations 

in illumination conditions of solar zenith angle and Earth-Sun distance [4].  Results for all vicarious 

methods are presented in figures 8-11. In table 3 the apparent changes in ETM+ gain relative to each 

calibration source over the life of the mission are presented for all bands. 

 

 

3) Discussion 

The lifetime trends in radiometric gain continue to be consistent with those observed over the first 5 

years of the mission [4].  The responses to the regularly used calibration lamp 1 are a function of 

wavelength, being strongest in the blue and smallest in the SWIR bands.  The NIR band (figure 9) and the 

SWIR band 7 actually increased in apparent gain relative to the lamp for a period of time.  The responses to 

the infrequently used lamp 2 showed similar trends, though of smaller magnitude (circa ¼ of lamp 1 

values).   The changes occurred as a function of lamp usage, not instrument usage, indicating that most of 

the change was lamp induced.  The FASC diffuser trends are a smooth function of wavelength with the 

peak degradation apparent in the NIR band 4.  In band 7, the response to the diffuser increased slightly with 
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time.  This trend is not consistent with the lamps in magnitude or spectral dependence, again indicating that 

it is primarily a diffuser change as opposed to an instrument change. 

The University of Arizona and South Dakota State University measurements show sufficient scatter that 

it is difficult to discern any trends in the response.  The PICS sites have less scatter than the traditional 

vicarious measurements and significantly more data points.  However, seasonal patterns in the PICS site 

responses complicate the analyses.  Linear fits to the PICS data (table 3) do indicate small (2-3%), but 

statistically significant, changes in the response in bands 5 and 7.  The systematic seasonal variations limit 

the statistical validity of the linear fits.  However, these results set an upper bound on the amount of change 

that may have occurred in these bands that has not been accounted for with the current constant calibration.  

Attempts are ongoing to beat down the systematic variation in some of the PICS sites. 

The PICS site results do not provide absolute calibration information and for purposes of display have 

been normalized to the pre-launch gains of the instrument.  They thus “match” the pre-launch results, on 

average, in the plots.  The traditional vicarious measurements  provide absolute calibration information, and 

the average differences between the vicarious calibration results and the current operational calibration 

results are presented in table 4. 

Key among the observations are:  (1) the operational calibration is within 3% of the Arizona results, 

which based on the site and the standard deviations of the measurements, is the more precise data set and 

(2) on average, a bias exists between the vicarious and operational calibration with the vicarious results 

being lower. 

Overall, the ETM+ continues to provide data with absolute calibration uncertainty of 5% or less.  There 

may be some small-uncompensated trends in one or two bands in the absolute calibration of up to 2% over 

the 12 years that are difficult to confirm with the techniques available. For most users, this amount of 

change should not be an issue.  For example, for a target with a surface reflectance of 20%, a 2% relative 

change translates to less than one half of a reflectance unit delta over the life of the mission. Work is 

continuing to reduce the uncertainties in PICS methodology with the goal of better quantifying any change. 
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IV. CONCLUSION 

Landsat-7 ETM+ has been remarkably well behaved and stable radiometrically over its 12 years on-orbit.  

Although the failure of its scan line corrector has been unfortunate; the remaining Earth-coverage data 

continue to be valid and valuable.  
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TABLE CAPTIONS 

Table 1: ETM+ Spectral Bands 

Table 2: Detectors with Step Changes in SNR 

Table 3. Apparent Changes in Radiometric Gain (percent) based on On-Board and Vicarious Calibrations 

over first 12 years of Landsat-7 Mission. 

Table 4:  Differences Between Operational ETM+ Calibration and Vicarious Calibrations:   (Vicarious-

Operational)/Operational 
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FIGURE CAPTIONS 

Figure 1. ETM+ band 3 SNR at (a) “high” radiance level, 149.6 W/m2 sr µm and (b) “typical” radiance 

level, 21.7 W/m2 sr µm. 

Figure 2.  Power history of coherent noise for representative detectors  (secondary y-axis represents band 5 

detector #12 only) 

Figure 3.  ETM+ band 5 detector 12 20 kHz noise change in power with instrument time-on. 

Figure 4.  Band 5 detector #9 scene average high-gain bias variation since launch. 

Figure 5.  Band 5 detector #4 scene average high-gain bias variation since launch. 

Figure 6. Band 1 relative gains in low gain mode. 

Figure 7. Band 5 relative gains in high gain mode. 

Figure 8. Band 3 radiometric gain history based on on-board sources and vicarious calibrations.  

Figure 9. Band 4 radiometric gain history based on on-board sources and vicarious calibrations.  

Figure 10. Band 5 radiometric gain history based on on-board sources and vicarious calibrations. 

Figure 11. Band 7 radiometric gain history based on on-board sources and vicarious calibrations. 
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Table 1 

Band Bandpass (nm) IFOV (m) Detectors 
1 441-514 30 16 
2 519-601 30 16 
3 631-692 30 16 
4 772-898 30 16 
5 1547-1748 30 16 
6* 10.31-12.36 µm 60 8 
7 2065-2346 30 16 

8 (Pan) 515-896 15 32 
* Not discussed in this paper 
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Table 2 

Band Detector 
Date of 
change 

Low Signal 
Change (%) 

High Signal 
Change (%) 

2 6 Apr 2008 1.8 1.0 
2 8 Sep 2008 1.7 1.0 
3 6 Sep 2008 2.3 1.5 
8 6 May 2009 1.4 1.1 
8 18 Oct 2010 2.2 1.6 
8 25 Apr 2009 2.0 1.5 
8 26 Jan 2010 1.6 1.2 
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Table 3 
 
 
 
 
 
 
 
 
 
 
 
  

Band Lamp 
1 

Lamp 
2 

FASC PICS (linear fit) 

    Change Uncertainty 
1 -28.3 -6.8 -7.1 -1.1 0.4 
2 -24.8 -4.6 -7.0 -0.3 0.2 
3 -19.5 -4.0 -8.5 -0.2 0.2 
4 -3.8 +0.8 -11.8 -1.3 0.4 
5 -7.2 -0.8 -2.4 -2.2 0.3 
7 -1.9 -0.9 1.9 -2.7 0.5 
Pan -10.0 -2.5 -9.0 -0.4 0.4 
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Table 4 
 

Band University of 

Arizona (n~95) 

South Dakota State 

University (n=31) 

 Mean 

Difference 

(%) 

Standard 

Deviation 

(%) 

Mean 

Difference 

(%) 

Standard 

Deviation 

(%) 

1 -3.3% 2.4% 1.2% 4.9% 

2 -2.7% 3.3% -0.2% 6.1% 

3 0.6% 3.1% -0.6% 7.0% 

4 -0.6% 2.8% -1.1% 5.2% 

5 -2.9% 2.4% -7.2% 5.6% 

7 -2.2% 2.9% -7.6% 6.9% 

Pan - - - - 
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Figure 1a 

  
Figure 1b  
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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