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Process noise is often used in estimation filters to account for unmodeled and mis-

modeled accelerations in the dynamics. The process noise covariance acts to inflate

the state covariance over propagation intervals, increasing the uncertainty in the state.

In scenarios where the acceleration errors change significantly over time, the standard

process noise covariance approach can fail to provide effective representation of the

state and its uncertainty. Consider covariance analysis techniques provide a method to

precompute a process noise covariance profile along a reference trajectory, using known

model parameter uncertainties. The process noise covariance profile allows significantly

improved state estimation and uncertainty representation over the traditional formula-

tion. As a result, estimation performance on par with the consider filter is achieved for

trajectories near the reference trajectory without the additional computational cost of

the consider filter. The new formulation also has the potential to significantly reduce

the trial-and-error tuning currently required of navigation analysts. A linear estima-

tion problem as described in several previous consider covariance analysis publications

is used to demonstrate the effectiveness of the precomputed process noise covariance,

as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.
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I. Introduction

In almost all statistical estimation problems that involve dynamical systems, there are mis-

modeled or unmodeled forces that act to cause errors in the expected state of the system. Thus

measurements are needed to correct the state, and a formal covariance is also computed to provide

a measure of the uncertainty of that estimate. Between measurements, both the estimated state

and the covariance are propagated, and the covariance is also inflated to account for the increase

in uncertainty introduced by the mismodeled and unmodeled forces. This inflation of the state

covariance is commonly known as “process noise covariance” (PNC) [1], and should not be confused

with the traditional definition of process noise as the white noise process included in the dynamical

model.

The standard approach for determining the appropriate amount of PNC is often a lengthy trial-

and-error procedure that attempts to match the formal covariance to the covariance computed from

the distribution of errors generated by a Monte Carlo simulation. The process noise is typically

modeled as an uncorrelated sequence of Brownian increments, which may enter the determinis-

tic plant directly, or via shaping filters that impose a correlation structure. In other words, the

stochastic differential equation can become correlated from the homogeneous portion, but the forc-

ing function is uncorrelated in time and thus the process as a whole is Markov (i.e. the future

evolution depends only on the current state). However, there are many scenarios where the magni-

tude of known unmodeled or mismodeled perturbations can change significantly over the course of

a reference trajectory, which can make tuning the standard PNC challenging. If the perturbation

magnitude increase is significant enough, the standard PNC model may lead to a divergent filter.

An example where significant state-dependent perturbation magnitudes occur is a spacecraft

descent scenario to the surface of a newly explored celestial small body such as an asteroid or

comet. Onboard spacecraft navigation systems often use truncated spherical harmonic gravity

models of the bodies they orbit in order to reduce computational requirements for propagation of

the spacecraft position and velocity state about the body. Additionally, higher order gravity terms
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may not be observable in the higher orbits before a descent maneuver. These higher order gravity

terms, along with errors in the estimated lower order gravity terms, can introduce significant errors

in the trajectory as the spacecraft descends to the surface. These errors can lead to degraded filter

performance and strongly affect the spacecraft’s ability to land accurately and locate landmarks

for optical navigation. More generally, Wright [2] has shown that the errors resulting from using

imperfect spherical harmonic gravity coefficients and a truncated gravity model are correlated in

time. For these autocorrelated noise processes, the standard PNC approach can fail to provide

effective representation of the state uncertainty as well as effective estimation of the state. Thus a

better method for computing PNC is needed.

The method derived in this paper computes the PNC for each interval between measurements of

a reference trajectory by mapping model uncertainty into state uncertainty, as is done in Consider

Covariance Analysis (CCA) and consider filters such as the Schmidt-Kalman Filter (SKF) [3]. CCA

is covered extensively by Tapley [1] for the linearized method, and Lisano [4] using sigma point

transforms. However, in CCA the consider covariance is computed independently and does not

affect the performance of the underlying filter.

In the SKF, first introduced by Schmidt in 1966 [3, 5], the uncertainties in the considered model

parameters do affect the estimation of the state variables, and can provide significant improvement

to the state estimation without separate PNC added. As a result, PNC tuning is only necessary for

unmodeled perturbations that are not related to the consider parameters, and any state-dependent

perturbations are properly included. However, with the additional considered parameters the SKF

becomes more computationally demanding than the standard Kalman Filter (KF) (assuming none

of the considered model parameters are included in the KF), and may prove computationally in-

tractable for onboard systems. The additional computational burden can be partially mitigated

by avoiding unnecessary calculations associated with consider states that are structurally uncor-

related from the vehicle dynamics, such as measurement biases. However, such an approach does

not apply when the consider covariance terms directly relate to the vehicle dynamics, such as the

gravity spherical harmonic coefficients. The difference between the SKF and KF becomes more

pronounced as the number of considered parameters increases, particularly when considering many
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model parameters (e.g. a gravity field with thousands of terms). Thus when considering highly

limited computational systems such as those onboard a spacecraft, the question arises: is it possible

to obtain most or all of the benefits of the SKF without the higher computational costs?

The answer to this question is in fact yes, though some trade-offs must occur: the PNC must

be precomputed along a reference trajectory, which must be available and reasonably approximate

the true trajectory, and the precomputed PNC must be stored onboard in the form of a table or

interpolation coefficients. The precomputation of the PNC profile along the reference trajectory

involves computing the difference of the propagated state covariance for each propagation inter-

val between a covariance propagation including the consider uncertainties (SKF) and a covariance

propagation that does not include consider uncertainties (KF), as described in the “Method of Solu-

tion” section III. The PNC precomputation can be performed using linearized techniques involving

the Extended Kalman Filter (EKF) and Extended Schmidt-Kalman Filter (ESKF), or using sigma

point transformations. The most common sigma point transformation is the Unscented Kalman

Filter (UKF), the unscaled form of which is applied by Stauch and Jah to the SKF to derive the

Unscented Schmidt-Kalman Filter (USKF) [6]. “Unscaled” indicates that no central sigma point

value is computed and thus no tuning parameters are necessary. Stauch and Jah obtain the same

final form as in Zanetti and DeMars [7], but through a different derivation. Note that, like the

ESKF, the USKF does not resolve the issue of onboard computational limits. However, the USKF

is a key element of the PNC precomputation algorithm, as explained in more detail in the “Method

of Solution” section III.

DeMars and Bishop [8] use the linearized approach to map model uncertainties to estimation

state uncertainties for the purposes of precomputing PNC for onboard navigation. They also analyze

interpolation methods for precomputed PNC between measurement updates. The current work

takes these efforts a step further by incorporating the precomputed PNC into the onboard state

and covariance estimation. In addition, we show how a covariance analysis involving covariance

corrections is necessary to provide the appropriate cross-covariance contributions to the precomputed

PNC profile. Without updates, these cross-covariance contributions grow without bound; without

them, the precomputed PNC profile is incomplete following an expected measurement update.
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While there are many advantages to precomputing the PNC, the technique assumes the truth

trajectory will not deviate too far from a reference trajectory. Another assumption is that the error

in the dynamics model parameters is roughly equivalent to the parameter uncertainties used in the

precomputation of the PNC. If the error in the dynamics model parameters is significantly different

than the assumed uncertainty, or there are totally unmodeled perturbations, then the precomputed

PNC might be significantly different than the level of truth perturbations. In this scenario, adding

a blindly tuned standard PNC (on top of the precomputed PNC described in this paper) might

be necessary to account for the mismodeled and unmodeled perturbations. A limited analysis is

performed to investigate differences in the model error versus the assumed model uncertainties.

Also note that this paper does not address another important tuning parameter in an onboard

filter: the measurement noise uncertainty. Early work by Bryson and Henrikson [9] investigates

filtering, prediction, and smoothing improvements when measurement data includes sequentially

correlated noise. A comparison of the algorithms derived by Bryson and Henrikson versus ap-

plication of the new method using measurement model parameters as consider states in order to

compute appropriate measurement noise is saved for future analysis. Other relevant works regard-

ing the treatment of bias in the measurement and dynamical models used by the estimation filter,

which may serve as benchmarks for future work, include Friedland [10], Ignagni [11], Hough [12],

and Zanetti and Bishop [13].

II. Process Noise

Before the PNC precomputation algorithm is derived, the relevant process noise terms must be

defined. Consider a random dynamical process obeying the linear differential equation

∆ẋ(t) = F (t)∆x(t) +G(t)u(t) (1)

with a priori value ∆x0 at time t = 0. ∆x(t) is the deviation from the reference state, u(t) is

the system model error, F (t) describing the system dynamics, and G(t) maps the model error to

the state error. If linearizing a non-linear system, F (t) and G(t) are partial derivative matrices
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evaluated at the nominal state. “Formally” integrating Eq. 1 from t0 = 0 to t = tk gives

∆x(tk) = Φ(tk, t0)∆x0 +
∫ tk

0
Φ(tk, t′)G(t′)u(t′)dt′ (2)

where Φ(tk, t0) is the state transition matrix. Define the state error covariance at time tk as

Pk ≡ E
[
∆x(tk)∆xT (tk)

]
(3)

and the process noise autocovariance as

Q(t, t′) ≡ E
[
u(t)uT (t′)

]
(4)

where E is the expectation operator (which computes the mean of the argument), and both ∆x(tk)

and u(t) are zero-mean. There is no assumption that the process noise is uncorrelated at separate

times. The covariance at time tk is

Pk = Φ(tk, t0)P0ΦT (tk, t0) +
∫ tk

0

∫ tk

0
Φ(tk, t′)G(t′)Q(t′, t′′)GT (t′′)ΦT (tk, t′′)dt′dt′′ (5)

assuming that u(t) is not correlated with the a priori value ∆x0; but not assuming that u(t) will

be uncorrelated with ∆x(t) at other times [1].

Assuming that Q(t, t′) = Q(t)δ(t − t′) (i.e. the process noise increments are uncorrelated at

separate times, otherwise known as a white-noise process when the process noise is also zero-mean),

one of the integrals in Eq. 5 is annihilated. More fundamentally, since future noise increments

depend in no way on the system’s past history, the present moments of ∆x(tk) give the only

information useful for predicting future values. This characteristic is known as the Markov property.

A common application for this assumption of uncorrelated process noise increments is the deriva-

tion of a PNC for a state consisting of the spacecraft position and velocity. This derivation is pro-

vided in detail in Tapley, et al. [1], which treats the process noise as white noise (i.e. no gravity

gradient information is used). With the additional assumption that the time interval t0 = 0 to

t = tk corresponds to the propagation time from the previous measurement time to the current

measurement time, ∆tk, the PNC for a spacecraft position and velocity can be expressed as

Qk = q


1
3I3∆t3k 1

2I3∆t2k

1
2I3∆t2k I3∆tk

 (6)
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where I3 is the 3x3 identity matrix, ∆tk is the propagation time from the previous measurement

time to the current measurement time, and q is the single tuning parameter [1]. Equation 6 is a

common PNC form, which we shall hereafter refer to as the traditional form.

By contrast, Wright [2] observes that errors in the gravity model used for orbit determination

induce a noise process that is correlated in time. In other words, Wright shows that when Eq. 1

describes errors in predicting the evolution of a satellite orbit due to gravity model errors, there is

a correlation structure among future and past noise increments that makes Eq. 1 a non-Markov

process, which Q(t, t′) = Q(t)δ(t − t′) fails to capture. He provides an alternative, autocorrelated,

but approximately Markov, model suitable for circular or near-circular orbits, based on projection

of the gravity model error covariance onto a sphere. However, there are many scenarios that do not

meet the criteria required for Wright’s model, such as a descent trajectory to the surface of a small

body. Thus an alternative method is needed that can determine PNC for any mission scenario.

III. Method of Solution

Denote the double-integral PNC term of Eq. 5 as

Qd(tk, t0) =
∫ tk

0

∫ tk

0
Φ(tk, t′)G(t′)Q(t′, t′′)GT (t′′)ΦT (tk, t′′)dt′dt′′ (7)

This paper investigates Qd(tk, t0) for arbitrary force model errors, with the aim to develop approx-

imations suitable for use in onboard robotic navigation. In other words, the PNC used to inflate

the state uncertainty across propagation intervals in order to appropriately reflect dynamical model

perturbations is precomputed along a reference trajectory. To understand how this can be done, it

helpful to first describe the components of the covariance propagation.

Let x(t) denote the truth Cartesian state of a satellite, which evolves according to the propa-

gation function φt:

x(t) = φt(t, x0, c) (8)

where c is a vector of uncertain model parameters. Let x̂(t) and ĉ respectively be the estimate of

x(t) and c maintained by a navigation filter, which assumes the nominal model propagation function

x̂(t) = φn(t, x̂0, ĉ) (9)
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Inherent in the nominal propagation function described by equation 9 is the standard assumption

that

E[f(x)] =
∫
f(x)p(x)dx ≈ f

(∫
x p(x)dx

)
= f(E[x]) (10)

where p(x) is the probability density function. Equation 10 is derived by dropping all but the first

term of the power series for the nonlinear propagation function about the current state estimate

(see Gelb [14]).

The propagation function φn used for the nominal model is not necessarily the same as the

truth propagation function φt. For example the gravity field maximum degree and order is likely

significantly truncated for an onboard dynamical model as compared to the truth dynamical model.

The state error can then be written as

∆x(t) = φt(t, x0, c)− φn(t, x̂0, ĉ) (11)

To isolate the error sources present in the state error, φt(t, x̂0, c) is added and subtracted from

equation 11 to yield

∆x(t) = [φt(t, x0, c)− φt(t, x̂0, c)] + [φt(t, x̂0, c)− φn(t, x̂0, ĉ)] (12)

The first bracketed expression is the error due solely to the initial state error, and the second

bracketed expression is the error due solely to force model errors. Rewriting these expressions as

∆x(t) = ex0(t) + ec(t) (13)

the covariance of the final error can be written as

P (t) = E
[
ex0(t)eT

x0(t) + ec(t)eT
c (t) + ec(t)eT

x0(t) + ex0(t)eT
c (t)

]
= Px0(t) + Pcc(t) + Pcx0(t) + PT

cx0(t)
(14)

Note that there are three contributions to the final mapped covariance: Px0(t) (contribution from

the initial state uncertainty), Pcc(t) (directly mapped contribution from the model uncertainty),

and Pcx0(t) + PT
cx0(t) (cross-correlation contribution between the state uncertainty and the model

uncertainty). The Px0(t) term is typically computed in the onboard filter, using the limited dynami-

cal models and assumed model values. The onboard filter also adds PNC to the mapped covariance,
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under the assumption that the dynamics are not modeled perfectly. Thus it is ideal to use the sum

of the Pcc(t) and Pcx0(t) +PT
cx0(t) terms as this PNC. Comparing equation 14 to equation 5 and 7,

the expression for Qd(tk, t0) becomes

Qd(tk, t0) = Pcc(tk, t0) + Pcx0(tk, t0) + PT
cx0(tk, t0)

= P (t)− Px0(t)
(15)

However, due to onboard computational limits, these values are precomputed, which requires that

they be computed along a known reference trajectory. To precompute Qd(tk, t0) for each interval

of a reference trajectory, the new approach makes use of consider covariance and filtering methods

such as the ESKF [5], USKF [6], and the newly developed Additive Divided Difference Schmidt

Kalman Filter (ADSF) described in the next section. The resulting precomputed PNC can be

used in computationally efficient filters such as the EKF. Note that the result of the subtraction

in equation 15 has the potential to become negative definite if the reference trajectory used differs

greatly from the truth trajectory; for this reason, a small additional standard PNC quantity may

become necessary.

These covariance contributions can be mapped via linearized integration or by sigma point

transformations. The linearized covariance propagation equations that are numerically integrated

are obtained from the SKF, as described by Woodbury [5] and DeMars [8]:

˙̂x(t) = F (t)x̂(t) +G(t)c

Ṗxx(t) = F (t)Pxx(t) + Pxx(t)FT (t) + Pxc(t)GT (t) +G(t)PT
xc(t)

Ṗxc(t) = F (t)Pxc(t) +G(t)Pcc

(16)

where c is the nominal vector of considered model parameters (which are in general not equal

to the truth model parameters). Note that the final term G(t)Q(t)GT (t) from Woodbury [5] is

not included because no traditional PNC (Q(t)) is included when precomputing the PNC profile

(the same formulation as in DeMars [8]). An exploration of how adding traditional PNC to the

precomputation of the PNC profile affects the resulting PNC profile is saved for future work.

In equation 16, the integration of Pxx(t) is dependent on Pxc(t). Thus the final two terms of

the Ṗxx(t) equation cannot be integrated independently due to this coupling, though doing so can

provide a reasonable approximation for some systems. Additionally, the dependence on the Pxc(t)
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terms requires that the measurement updates of the Pxc(t) be included. The SKF measurement

update equations, as described by Woodbury [5], reveal how the estimated state covariance update

is dependent on the Pxc(t) term (which is also updated):

ȳ = Hxx̄+Hcĉ

Pxy = P−xxH
T
x + P−xcH

T
c

Pyy = HxP
−
xxH

T
x +HxP

−
xcH

T
c +HcP

−
cxH

T
x +HcP

−
ccH

T
c +R

K = PxyP
−1
yy

P+
xx = (I −KHx)P−xx −KHcP

−
cx

P+
xc = (I −KHx)P−xc −KHcPcc

(17)

where Hx and Hc are the measurement partials with respect to the state and consider parameters, R

is the measurement noise covariance, and K is the Kalman gain. Note that when the measurement

model does not depend on the considered parameters, as is the case when considering gravity terms

and instantaneous optical measurements, Hc is zero. When performing these updates as part of

the precomputation of the PNC, the state is not updated (as there are no measurements) and the

reference trajectory is used to determine expected measurements at each time (as is done in standard

covariance analysis). The covariance update expressions in equation 17 can also be formulated using

the Joseph form [1], which is more numerically stable and holds true when the Kalman gain K is not

optimal. This form can be derived by segmenting the known Joseph covariance update formulation

P+ = (I−KH)P−(I−KH)T +KRKT into state and consider portions for each of the terms. The

resulting P+
xx term is

P+
xx = (I −KHx)P−xx (I −KHx)T −KHcP

−
cx − P−xcH

T
c K

T

+K
(
HcP

−
cxH

T
x +HxP

−
xcH

T
c +HcP

−
ccH

T
c +R

)
KT

(18)

where K is the portion of the Kalman gain matrix associated with the state values (as is the case

in equation 17). The P+
xc term remains the same as in equation 17 after cancellation of terms. The

Joseph formulation of the covariance update with consider parameters is also described in Zanetti

and DeMars [7]. The original covariance update formulation shown in equation 17 is implemented

in all analysis to maintain consistency with Woodbury [5]. The non-Joseph form of the covariance

update has been used in onboard filters on such vehicles as the retired Space Shuttle [15].
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The final PNC profile is obtained by taking the difference in the prefit P−xx terms between the

standard KF and the SKF at each measurement time (as described in equation 15), which are

computed by performing covariance propagation and updates along a reference trajectory. This

difference provides the full PNC contribution of both the Pcc(tk, t0) and Pcx0(tk, t0) + PT
cx0(tk, t0)

terms. Note that the KF and SKF covariance analyses are performed simultaneously, and the

computed PNC after each propagation is added to the KF propagated covariance before performing

the KF covariance update (keeping the KF covariance and state portion of SKF covariance equal

before performing the covariance updates).

As a result, the filter performance is approximately equal (and exactly equal for linear systems)

to the SKF, without the need to compute onboard the effect of the consider parameter uncertainty

on the state uncertainty. The overall algorithm is as follows (and is depicted in Figure 1):

• Input Arguments: initial state x0, initial state covariance Pxx0, nominal consider parame-

ters c, initial state-consider cross covariance Pxc0 (typically set to zero), consider parameter

covariance Pcc, measurement times, and expected measurement model

• Covariance Analysis (propagation and update of the formal covariance only) along reference

trajectory is performed along reference trajectory: Both Kalman Filter (with no consider pa-

rameters in state) and Schmidt-Kalman Filter (with consider parameters included) covariance

analyses performed simultaneously

• The covariance is propagated forward in time via the KF and SKF formulations

• The covariance associated with the estimated state is extracted from both propagation results

• The propagated covariance from the KF covariance analysis is subtracted from the SKF propa-

gated covariance (producing a positive definite matrix because the SKF propagated covariance

includes consider parameter uncertainties)

• This covariance difference is saved to form a single entry of the precomputed PNC profile
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• The covariance difference is added to the KF propagated covariance, in order to keep the two

covariance analyses in sync (alternatively the SKF propagated covariance can be used instead

of the KF propagated covariance plus the covariance difference)

• The covariance analysis is run forward for all measurement times, to produce the complete

precomputed process noise profile (which is employed in the onboard filter)

Propagate 
Covariance 

Update 
Covariance 

KF Covariance Analysis 

SKF Covariance Analysis 

Propagate 
Covariance 

Update 
Covariance 

(except        ) 

Onboard Filter 

Propagate 
Covariance, 

State 

Add PN to 
Covariance 

Update 
State, 

Covariance 
Observed 
Landmark 

Measurements 

Expected 
Reference  
Trajectory 

Meas 

+ 

+ 

- 

Fig. 1: Process Noise Covariance Algorithm

Note how the precomputed PNC is dependent not only on the model parameter uncertainty, but

also the initial state uncertainty (due to the measurement updates of the cross-covariance terms),

the measurement model and nominal expected measurements along the reference trajectory, and

the time between measurements.

A. The Additive Divided Difference Sigma Point Schmidt-Kalman Filter

While the PNC profile can be precomputed with a linearized approach using the EKF and

ESKF, as shown in equations 16 and 17, it is also possible to accomplish this precomputation

using sigma point transformations. Additionally, the use of sigma point transformations allows
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the separate computation of the Pcc(tk, t0) term from equation 15, which can be valuable if it

sufficiently captures the PNC needed (eliminating the need to perform the more computationally

expensive covariance analysis described in Figure 1). In this study, a sigma point formulation called

the Additive Divided Difference Sigma Point Filter (ADF) is used to precompute the PNC profile

[16–18]. The derivation of the Consider Filter form of the ADF, the ADSF, is provided here.

The Divided Difference Sigma Point Transformation (DDT) is the heart of the ADF, and is

what makes the ADF unique from other sigma point filters. In linearized filters it is common to

approximate a nonlinear function f(x) with a Taylor series truncation, such as

f(x) ≈ f(x̂) + f ′(x)(x− x̂) (19)

where f ′(x) is an exact gradient. By contrast, the divided difference transformation uses a second-

order truncation along with numerical differencing formulas for the derivatives:

f(x) ≈ f(x̂) + D̃
(1)
∆xf(x̂) + D̃

(2)
∆xf(x̂) (20)

where the divided difference operators D̃(i)
∆xf(x̂) approximate the coefficients of the multidimensional

Taylor series expansion using Stirling interpolations. These interpolators difference perturbations

of f(x̂) across an interval, h, over a spanning basis set of sigma points, which are formed from the

columns of the Cholesky decomposition of the covariance of the domain vector, x. For additional

details, refer to Nørgaard, et al [16, 17].

Let X̂ denote the array whose columns are a particular ordering of the sigma points derived

from the domain mean x̂ and its corresponding covariance, Px. Then

X̂ =
[
x̂, x̂+ h c

√
Px(:, 1), x̂+ h c

√
Px(:, 2), ..., x̂− h c

√
Px(:, 1), x̂− h c

√
Px(:, 2), ...

]
(21)

where the index (:, i) denotes column i of c
√
Px, and P = c

√
P c
√
P

T denotes a lower-triangular

Cholesky factorization. There are a total of 2n+ 1 sigma point columns, where n is the dimension

of the state x. Let sigma points in the range of the function be given by

Y = f(X ) (22)
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where each column of Y corresponds to the mapped column of X . These range sigma points may

be merged to form the mean of the range of the function using

ŷ = µh(Y) = h2 − n
h2 Y(:,1) + 1

2h2

2n+1∑
i=2
Y(:,i) (23)

where the subscript (:, i) denotes column i of Y. To form an associated covariance, the following

divided-differences are next computed for values of i from 1 to n:

D̃
(1)
∆xf(x̂)(:,i) = 1

2h
[
Y(:,i+1) − Y(:,i+1+n)

]
D̃

(2)
∆xf(x̂)(:,i) =

√
h2 − 1
2h2

[
Y(:,i+1) + Y(:,i+1+n) − 2Y(:,1)

] (24)

The covariance is then computed from

Py =
[
D̃

(1)
∆xf(x̂), D̃(2)

∆xf(x̂)
] [
D̃

(1)
∆xf(x̂), D̃(2)

∆xf(x̂)
]T

(25)

The DDT is applied to the nonlinear dynamics function to compute the propagated mean state

x̄ and covariance P−xx, and then to the nonlinear measurement function to compute the expected

measurement ȳ and associated innovation covariance matrix Pyy (along with the measurement un-

certainty matrix R that is added to the mapped covariance). We employ the standard approach of

using augmented state and covariance matrices for these transformations to incorporate traditional

process and measurement noise [18, 19]. The tuning parameter h is typically set to the value of
√

3, but can be modified for each of the two sigma point transformations. The cross correlation

matrix is then obtained by using the Cholesky decomposition of the mapped state covariance and

the forward difference term from the measurement function DDT:

Pxy = c
√
P−xx

[
D̃

(1)
∆xf(x̂)(:,1:nx)

]T

(26)

where nx is the final index value of the state portion of the augmented state vector. The filter gain

matrix K is the same as in equation 17, and the state update has the same form as in the KF. The

updated covariance can be computed via either the traditional formulation

P+
xx = P−xx −KPyyK

T , (27)

or through the direct use of the difference values as

P+
xx =

[
c
√
P−xx −KSvv

x KSvv
xv

] [
c
√
P−xx −KSvv

x KSvv
xv

]T

(28)
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where

Svv
x = D̃

(1)
∆xf(x̂)(:,1:nx)

Svv
xv =

[
D̃

(1)
∆xf(x̂)(:,nx+1), ..., D̃

(1)
∆xf(x̂)(:,nxv), D̃

(2)
∆xf(x̂)(:,nxv)

] (29)

where nxv is the length of the augmented state vector for the measurement update (i.e. the number

of states plus the number of measurement values).

Reformulation of the ADF into the ADSF consider filter starts with the augmentation of the es-

timated state parameters with the consider parameters into a single vector. The state and covariance

propagation formulation remains the same, employing the DDT described above for the augmented

vector. For each sigma point used in the propagation step, the consider parameters are used in the

propagation of the state parameters and the consider parameters remain constant (which includes

the deterministic deviations of the sigma points). For the state and covariance update steps, the

update of the consider parameters is set to zero, and the portion of the covariance directly corre-

sponding to the consider parameters is not updated (though the state and cross-covariance terms

are updated) [6]. The augmented covariance update is shown by

P+
zz =

P−xx P−xc

P−cx Pcc

−
KxPyyK

T
x KxPyyK

T
c

KcPyyK
T
x 0

 (30)

where K =

Kx

Kc

, or using the difference method as described in equation 28 and setting the Pcc

update to zero by reseting it to the original value. The difference in state covariance matrices for

the ADF and ADSF are computed to generate the PNC profile that is used in the onboard filter,

as described in Figure 1.

As noted at the beginning of this section, the DDT described here can also be used to intuitively

map the uncertainty in the consider parameters into the space space. The resulting covariance is

the Pcc(tk, t0) term from equation 15. If the Pcc(tk, t0) term computed for each propagation interval

between measurements is used to generate the PNC profile, and the resulting filter performance

meets requirements, the more computationally expensive covariance analysis described in Figure 1

may not be required. However, since the PNC profile is computed in advance, and likely by ground-
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based resources, the additional computation required by the algorithm shown Figure 1 is not likely

to prove burdensome.

IV. Linear Problem: Falling Object Scenario

A simple, linear estimation problem is used throughout the literature for demonstration of

consider covariance analysis and filtering techniques, and proves effective in showing the utility of

the new PNC computation method. Additionally it is used to verify correct implementation of the

algorithms. The problem is a one dimensional falling object scenario, with an uncertain gravity

model value. This problem is employed in Stauch [6], Tapley [1], Lisano [4], and Woodbury [5]. The

point mass in freefall is shown in Figure 2. The state consists of the position x and velocity ẋ, while

the gravitational parameter g is a consider parameter. The position range y is directly measured.

x y(obs) 

g 

Fig. 2: Free Falling Point Mass

A. Simulation Scenario

The nominal initial conditions are

xnom(t0) = 1 m, ẋnom(t0) = 0 m/s, gnom = 10 m/s2 (31)

while the truth initial conditions are

xtru(t0) = 0.8 m, ẋtru(t0) = 0.3 m/s, gtru = 9.8 m/s2 (32)

The initial state covariance, state-consider cross-covariance, consider parameter g uncertainty, and

measurement uncertainty are

Pxx0 =

1 m2 0

0 1 (m/s)2

 , Pxc0 =

0

0

 , Pcc =
[
1
(
m/s2)2] , R = [1 pixels] (33)
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Note that the initial error for this single simulation is well within the initial state and consider

parameter uncertainty distributions. The governing equations of motion areẋ
ẍ

 =

ẋ
g

 (34)

The position range y is directly measured every second from 0 to 10 seconds, and the mea-

surement error is set to zero for this simple linear problem (though importantly the measurement

uncertainty is non-zero for each measurement). The PNC for this linear problem is computed as

described in the “Method of Solution” section, taking the difference between the prefit KF state

covariance and prefit SKF state covariance at each measurement time. The precomputed PNC is

added to the state covariance at the end of each propagation interval between measurements.

B. Results

First the linear scenario is run with both the KF and SKF, with no PNC added to the KF

after each propagation of the state uncertainty. The estimated states for the KF and SKF are the

position and velocity, and the considered parameter in the SKF is the gravity term. The resulting

position and velocity errors and 1-σ covariance values are shown in Figure 3. These results are

identical to those shown in Stauch [6]. The KF without PNC added does not account at all for the
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Fig. 3: SKF versus KF without Process Noise Covariance
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uncertainty in the gravity value, and as a result the estimated covariance artificially converges and

the state error diverges.

To account for the uncertainty in the gravity term, PNC must be added. To start, the consider

state (gravity) uncertainty is mapped into the state space over each propagation interval using the

DDT, as described in section IIIA. This mapping provides the Pcc(t) term as shown in equation 14.

Using only this term as the PNC, the KF performance significantly improves, as shown in Figure 4.

Most of the performance gain of the SKF over the KF is achieved by adding this Pcc(t) PNC term.
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Fig. 4: SKF versus KF with Only Mapped Gravity Uncertainty Process Noise Covariance

However, the KF performance does not fully match the performance of the SKF, with slightly lower

uncertainty values and slightly higher error values. In an attempt to achieve better performance

with the KF, the PNC values Pcc(t) derived from the gravity uncertainty mapping are multiplied by

a factor of three. This simple multiplication of the covariance is equivalent to how standard filter

tuning operates (except the standard PNC doesn’t have the Pcc(t) starting point). The result is

shown in Figure 5. A factor of three was chosen (by trial and error) to obtain KF errors on par

with the SKF, but as a result the velocity uncertainty is greatly inflated.

To understand why the KF doesn’t match the SKF, and why no amount of modifying the Pcc(t)

term will produce matching results, is it helpful to plot the magnitude of the Pcc(t) variance values

versus the 2Pcx0(t) term variance values and the full process noise P (t) variance values as described

in equation 14. This plot is shown in Figure 6. Because of the linear nature of the problem, the Pcc(t)
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Fig. 5: SKF versus KF with 3x Only Mapped Gravity Uncertainty Process Noise Covariance
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contribution is identical for each segment, but the 2Pcx0(t) cross contributions change significantly

and are greater in magnitude than the Pcc(t) contribution starting at the time of two seconds. Note

that the variance values are plotted instead of the 1-σ standard deviations values to show how the

Pcc(t) and 2Pcx0(t) cross contribution values added together produce the full process noise variance

values. If the full PNC is used in the KF, the resulting performance matches exactly the SKF, while

using the computationally much less expensive KF, as shown in Figure 7.

Note that identical precomputed PNC values and overall simulation results are achieved using

three different filter forms: the EKF and ESKF, the UKF and USKF, and the ADF and ADSF.
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Fig. 7: SKF versus KF with Full Precomputed Process Noise Covariance

Achieving identical results for these different non-linear filters in a linear problem provides a strong

sanity check for the algorithm implementation.
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V. Nonlinear Problem: Asteroid Descent Scenario

Precomputed PNC is next generated for a nonlinear estimation problem: a spacecraft descent

scenario to a checkpoint above the surface of an asteroid, using surface landmarks for optical naviga-

tion. The descent scenario simulated matches the currently planned descent trajectory of NASA’s

OSIRIS-REx asteroid sample return mission during the sample collection phase of the mission,

ending at a predetermined checkpoint above the surface. The simulated camera also matches the

specifications of the NavCam camera intended for optical navigation during the descent. There are

several challenges in this scenario which make use of the new PNC precomputation method:

• Onboard computational limits

• Prior to the descent trajectory, only limited gravity field estimates are available

• The magnitude of the central body force and gravity harmonics perturbations increase signif-

icantly during the descent trajectory, which exacerbate dynamical errors resulting from lower

order gravity term errors and truncation of higher order gravity terms

A. Simulation Scenario

The reference descent trajectory employed in this simulation is shown in the inertial and body-

fixed frames in Figure 8. Note that the object plotted in the Figure 8a is the Brillouin Sphere (i.e.

a sphere with radius equal to the largest radius of the asteroid), while the object in Figure 8b is

a triaxial ellipsoid with minimum, median, and maximum radii corresponding to the current best

estimated dimensions of the asteroid Bennu (the intended target of the OSIRIS-REx mission). The

orientation of the body-fixed frame with respect to the inertial frame is provided in Table 2. Figure

8b also shows a portion of the 300 predetermined and randomly located surface landmarks assumed

known for this simulation. Remaining above the Brillouin Sphere also allows spherical harmonics

to be used for the entire trajectory.

The simulation setup, including timing and initial spacecraft states, is described in Table 1. Note

that for the onboard optical navigation, photos are taken every two minutes during the descent

trajectory. The descent trajectory is also chosen such that lit landmarks will be visible for the

entirety of the trajectory.
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(a) Inertial Frame

(b) Body-Fixed Frame

Fig. 8: Descent Trajectory

Table 1: Simulation Setup

Simulation Parameter Values

Epoch Time 11-Oct-2019 12:17:04.953

End Time 11-Oct-2019 16:17:04.953

Minimum Time Before First Update 1 minute after epoch

Time Between Photos 2 minutes

Spacecraft Initial Inertial Position [-0.644, 0.288, -0.655] km

Spacecraft Initial Inertial Velocity [1.182x10-5, 3.009x10-5, 6.368x10-5] km/s
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The properties of the small body used for the simulations are given in Table 2. Note that the

triaxial ellipsoid from Figure 8b is used as the shape model in the simulations. While a higher fidelity

polyhedron shape model is available, it is not necessary to evaluate the new PNC algorithm. The

Table 2: Asteroid Properties

Simulation Parameter Nominal Values

Initial Pole Right Ascension, Declination 0, 10 deg

Pole Right Ascension, Declination Rates 2, 3 deg/Julian century

Longitude of the Prime Meridian at Epoch 0 deg

Rotation Rate 2010.489449 deg/day

GM 5.2x10-9 km3/s2

GM Uncertainty (1- σ) 5.2x10-11 km3/s2 (1%)

Radius Values 0.259 × 0.250 × 0.230 km

Number of Landmarks on surface 300

Nominal Gravity Harmonics 4 x 4 (Bennu Estimate) [20]

Truth Gravity Harmonics 12 x 12 (Bennu, Perturbed)

Gravity Harmonic Uncertainties Modified Kaula Rule [20]

asteroid GM and nominal spherical harmonic coefficients for Bennu are provided in McMahon [20].

McMahon also provides a Modified Kaula Rule that has been derived for Bennu, which provides

realistic maximum uncertainties for the gravity spherical harmonic coefficients. The upper bound

expressions of both the zonal coefficients (0.183/n2) and non-zonal coefficients (0.043/n2) are used as

the uncertainties in the harmonic coefficients up to degree and order 12. Note that the uncertainties

for the GM and lower order terms are likely to be significantly lower from estimation of the terms

in the mapping orbits of the preceding mission phases, but a more strenuous scenario is sought to

evaluate the new precomputed PNC method.

B. Dynamical Model

The spacecraft position and velocity are propagated via numerical integration between picture

times using fixed step RK8 propagation. The covariance is numerically integrated to the same
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times, also using fixed step RK8 propagation. The simulation includes central body acceleration

and perturbations from a spherical harmonic gravity field, for both the truth and filter dynamics.

Standard perturbations such as third body perturbations (TBP) and solar radiation pressure (SRP)

are not included for simplicity, as the focus of this analysis is to evaluate the new PNC algorithm in

the context of gravity field uncertainty. These SRP and TBP terms also do not change significantly

in magnitude over the descent trajectory, unlike the direct gravity forces and perturbations.

A 4x4 degree and order spherical harmonic gravity model of the Bennu asteroid that is employed

for mission design analysis of the OSIRIS-REx mission is used for the nominal onboard dynamical

model. A higher order 12x12 gravity field is used for the truth dynamical model in order to emulate

the higher order terms of a true body that are truncated in the onboard model. These higher

order terms introduce unmodeled perturbations in the trajectory, and it is desired to know if the

filter performs sufficiently well when experiencing these perturbations. An analysis investigating the

effect of this truncation on the filter performance for different levels of nominal and truth gravity

fields is saved for future work.

To obtain a higher order 12x12 gravity field for each of the truth trajectories, first the uncer-

tainties for the 12x12 field are sampled to generate errors for each of the 12x12 field coefficients.

For the lower order 4x4 field values, these errors are added to the non-zero nominal 4x4 field values

(which are expected to be estimated in the prior mapping orbit) to obtain the truth 4x4 coefficients.

For the higher order terms up to 12x12, these errors are added to the zero value (i.e. truncated)

nominal coefficients: the error values become the coefficient values. As described in the Simulation

Scenario section above, these coefficient uncertainties are obtained from the Modified Kaula Rule

[20], which provides maximum deviations from zero of the spherical harmonic coefficients. Thus

using these uncertainties for the higher order terms allows us to account for the “errors of omission”

introduced by the truncation of the gravity field.

C. Measurement Model

The navigation simulation uses optical line-of-sight direction vector measurements from the

spacecraft to the landmarks on the surface of the small body, whose locations are assumed to be
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known. Landmarks are defined as the central positions of surface maplets computed using the

stereophotoclinometry method, as described in Gaskell [21], which have numerous advantages over

the use of natural surface features such as craters. It is assumed that the spacecraft is commanded

to point its camera at the center of mass of Bennu using onboard position and attitude knowledge

at every picture time using reaction wheels or thrusters. A similar simulation can be performed

using a predetermined inertial attitude profile.

The navigation camera parameters are described in Table 3. These parameters match the

NavCam camera planned for navigation use in the OSIRIS-REx mission. Camera distortion effects

that are typically calibrated in flight are not included in these simulations, nor are the remaining

errors after calibration at the FOV edges that are more likely for a wide FOV lens. The landmarks

observation model is provided in Bhaskaran [22].

Table 3: Navigation Camera Properties

Simulation Parameter Nominal Values

Focal Length 7.68 mm

Sensor Array 2592 × 1944 pixels

Pixel Density 454.54 pixels/mm

Field of View (FOV) 40.74◦ × 31.12◦

D. Estimation Filter Architecture

A sequential EKF is employed to evaluate the effectiveness of the new PNC model. The esti-

mated states are the spacecraft position and velocity. It is assumed that the small body orientation,

rotational velocity, shape model, gravity field, and set of surface landmarks listed in Table 2 have

been previously estimated. These quantities are held as constants in the “onboard” filter. A sum-

mary of onboard filter parameters is shown in Table 4 [23, 24].

The spacecraft attitude is not estimated, nor are knowledge attitude errors added for each photo,

because it is assumed that a highly accurate separate attitude determination system (ADS) consist-

ing of gyroscopes, star cameras, and an attitude determination filter will provide attitude estimates
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Table 4: Onboard Filter Parameters

Simulation Parameter Nominal Values

Initial Filter Position Covariance (Radial, In-Track, Cross-Track) (1-σ) [0.012, 0.053, 0.004] km

Initial Filter Velocity Covariance (Radial, In-Track, Cross-Track) (1-σ) [3.92x10-6, 5.06x10-7, 3.10x10-8] km/s

Measurement Noise Covariance (1-σ) [29.5, 29.5] arcsec ([0.5, 0.5] pixels)

Traditional Process Noise q for Position and Velocity 5x10-16 km2/s3

at each photo time. Should ADS knowledge attitude errors prove significant (as is predicted for the

actual OSIRIS-REx mission due to expected thermal variations in the spacecraft structure), it is

possible to further correct the attitude using landmark observations [18]. It is also not the focus

of this analysis to investigate spacecraft attitude estimation performance, but rather how the new

PNC algorithm affects spacecraft position and velocity estimation performance.

E. Monte Carlo Simulation Design

Monte Carlo analyses are employed to compare the standard and precomputed PNC techniques.

A single estimated state and covariance is assumed known at the start of the descent trajectory.

Also assumed known are the nominal estimated coefficients for a 4x4 gravity field, as well as a

covariance matrix that includes uncertainties up to degree and order 12.

The errors for the initial state, GM, and gravity field coefficients are sampled assuming a

Gaussian distribution with the 1-σ values provided in Table 5. Note that modern image processing

capabilities can generate landmark center values at sub-pixel precision [22, 25] (depending on the

relative resolution of the landmark maplet data and the image pixel scale). Thus 0.5 pixel errors,

equivalent to 29.5 arc seconds angular error for this camera, are used in this simulation. In higher

fidelity simulations a resolution-dependent term is used for filter measurement noise value, which is

neglected in this example for simplicity.

The initial state errors are used to distribute the initial truth states about the nominal. As a

result, a different truth trajectory and set of observations exists for each Monte Carlo trial. A small

body mission will have a single estimated nominal state at the beginning of the descent trajectory,
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Table 5: 1-σ Monte Carlo Error Parameters

Simulation Parameter 1-σ Values

Spacecraft Initial Position (Radial, In-Track, Cross-Track) [0.012, 0.053, 0.004] km

Spacecraft Initial Velocity (Radial, In-Track, Cross-Track) [3.92x10-6, 5.06x10-7, 3.10x10-8] km/s

Observation [29.5, 29.5] arcsec ([0.5, 0.5] pixels)

GM 5.2x10-11 km3/s2 (1% of nominal)

Asteroid Gravity Coefficients Modified Kaula Rule [20]

which will be used as the reference trajectory for precomputing the PNC. The truth state will not be

known, but the Monte Carlo analysis will reveal the performance of the filter with the precomputed

PNC method for many different possible truth trajectories. The same logic extends to the asteroid

gravity coefficients: only estimates will be known, about which the precomputation of the PNC will

occur. As a result, the landmark measurements are at least slightly different for each Monte Carlo

trial. The variation in the landmarks detected and used is valuable as an evaluation of the filter

performance using precomputed PNC.

F. Application of Precomputed Process Noise Covariance Method

For this scenario, the model parameters of interest that are used to generate precomputed PNC

are the GM and the gravitational spherical harmonic coefficients through degree and order 8. The

gravity model is higher order than the 4x4 gravity field used in the “nominal” propagation function

φ̂ in order to capture the effect of these higher order terms on the trajectory. The gravity model is

lower order than the 12x12 gravity field used in the “truth” propagation function φ to represent the

fact that no finite gravity model will capture the infinite degree and order truth gravity field.

The precomputed PNC profile is computed via either the linearized or sigma point approaches

described in the “Method of Solution” section. These different approaches deliver approximately

the same PNC profile in this problem. When using the DDT, the h tuning parameters described in

equations 21, 23, and 24 are set equal to standard value of
√

3 [18].

The resulting precomputed 6x6 PNC matrices for each picture time are stored as a 6x6x121

three dimensional array (the 6x6 covariance matrix at 121 time steps), totaling 4356 double precision
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numbers (34 kB). If the symmetry of the PNC matrices is accounted for, the storage required is

reduced by 5/12. A table containing these values is possible to use directly onboard if fixed step

integration and set measurement times are used. If greater amounts of PNC data are needed,

variable step integration is employed, or photos don’t occur at predictable times, the PNC sigma

and correlation coefficient values can be fit to polynomials. See DeMars [8] for a detailed study of

interpolation methods for precomputed process noise between measurements (which would likely

need only minimal adjustment to account for measurement updates).

The spacecraft position and velocity covariance is propagated using both the precomputed PNC

model and standard PNC model. The resulting filter performance and spacecraft state uncertainty

representation is evaluated for both approaches.

G. Results

The precomputed PNC position and velocity magnitudes for each two minute interval between

measurements for this scenario is plotted in Figure 9. Note how the PNC changes significantly in

magnitude over the simulation timeline. The cross-covariance terms 2Pcx0 are found to be many

orders of magnitude smaller than the Pcc(t) terms in this scenario (unlike for the linear estimation

problem). In such cases, the required computation can be reduced by calculating only the Pcc(t)

PNC component for each interval. However, in this analysis, all terms of the PNC are precomputed

and utilized.

To determine the improvement from using the precomputed PNC shown in Figure 9, a 100

trial Monte Carlo simulation is run using standard PNC as defined in equation 6 and using the q

value from Table 4. The resulting errors and state uncertainty are shown for position and velocity

in Figure 10. Note that the Max and RMS statistics provided are for the post-initial-convergence

period, starting at the sixth picture time. Next the same Monte Carlo simulation is run using the

precomputed PNC profile, with results shown in Figure 11.

The precomputed PNC profile results in a 8% reduction of the position error RMS and 21%

reduction of the velocity error RMS. Additionally the velocity formal uncertainty now better matches

the error distribution. The “velocity smugness” (i.e. overconfidence in the accuracy of the velocity
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Fig. 9: Precomputed Process Noise Covariance Profile

errors evident from lower formal covariance values) has special significance for the OSIRIS-REx

mission due to an abort trigger based on “time of touch” that is sensitive to velocity errors. Note

that the position errors and uncertainty are less affected by the PNC chosen than the velocity

errors due to the strong position information obtained from low optical measurement errors and

uncertainty.

For the standard PNC method, a q value of 5x10-16 km2/s3 is chosen as the best balance of

performance between the start and end of the simulation, an unsatisfactory compromise no longer

necessary with the new PNC method. Also unnecessary is the extensive time that it takes to find

such a compromise.

In Figures 10 and 11, there is significant disparity in the magnitude of the minimum and

maximum 3-σ formal covariance values for the 100 different Monte Carlo trials. This disparity,

particularly for the spacecraft position, is a result of the significant variation in the number (and

distribution) of the visible landmarks between trials at the later photo times. This variation occurs

because small differences in the trajectory can lead to significant differences in the specific landmarks

visible at each time.

To determine if the error in each trial is consistent with the formal covariance, the position

and velocity error values from each of the 100 Monte Carlo trials are divided by the 1-σ formal

29



0 1 2 3 4
0

1

2
x 10

−4 Position Error Magnitude

Time from first picture [hours]

E
rr

o
r 

M
a

g
n

it
u

d
e

 [
k
m

]

(a) Position, Max 2.5E-4, RMS 3.7E-5 km

0 1 2 3 4
0

1

2

3

4

5
x 10

−6 Velocity Error Magnitude

Time from first picture [hours]

E
rr

o
r 

M
a
g
n
it
u
d
e
 [
k
m

/s
]

 

 

RSS Error

Median RSS Error

RSS Error 3−sigma Cov

Median 3−sigma Formal Cov

Min/Max 3−sigma Formal Cov

(b) Velocity, Max 2.3E-6, RMS 4.3E-7 km/s

Fig. 10: Descent Scenario with Traditional Process Noise Covariance
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Fig. 11: Descent Scenario with Precomputed Process Noise Covariance

standard deviation values at each picture time, and the resulting values are provided in Figures 12

and 13. These plots reveal the the density of the errors relative to the covariance for the traditional

and precomputed PNC scenarios. For the Monte Carlo trials that employ the traditional PNC,

the error-to-formal-covariance ratio is reasonable for the position prior to hour 3, but after hour 3

the ratio becomes larger than desired (with many trials having errors that significantly exceed the

3-σ formal covariance). The corresponding ratios for the velocity are consistently very low prior

to hour 2 (indicating greater than desired conservatism in the formal covariance), while after hour
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Fig. 12: Error Divided By 1-σ Formal Covariance, Traditional Process Noise Covariance

0 1 2 3 4
0

1

2

3

4

5

6
Position Sigma−Error

Time from first picture [hours]

E
rr

o
r 

/ 
1

−
s
ig

m
a

 C
o

v
 M

a
g

n
it
u

d
e

 

(a) Position

0 1 2 3 4
0

2

4

6

8
Velocity Sigma−Error

Time from first picture [hours]

E
rr

o
r 

/ 
1
−

s
ig

m
a
 C

o
v
 M

a
g
n
it
u
d
e
 

(b) Velocity

Fig. 13: Error Divided By 1-σ Formal Covariance, Precomputed Process Noise Covariance

2 the ratios become much larger. For the Monte Carlo trials that employ the precomputed PNC,

the error-to-formal-covariance ratio is reasonable for the position and velocity at all times, showing

significantly improved consistency between the error and formal covariance over the results using

the traditional PNC.

To determine how the performance of the precomputed PNC changes when the gravity coefficient

errors do not match the uncertainty values used to generate the precomputed PNC, the gravity

coefficient error 1-σ values are deterministically varied from -50% to +50% of the 1-σ values used
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for the PNC precomputation. A 100 trial Monte Carlo simulation is performed for each each 10%

interval, and the position and velocity error RMS for the post-initial-convergence period (starting at

the sixth picture time) of each interval are plotted in Figure 14. Note that lower errors are obtained

when the uncertainty values for the precomputed PNC are higher than the error 1-σ values. However,

the resulting formal covariance is conservative relative to the error values. This result suggests that

using conservative higher-than-expected gravity uncertainty values in the PNC precomputation may

provide lower state errors in an actual mission (though with slightly less realistic uncertainties). A

more complete sensitivity analysis of mismatching distributions of the model parameter error versus

uncertainty used in the PNC precomputation, including how these different distributions affect the

earlier versus later portions of the trajectory, is saved for future work.
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Fig. 14: Error RMS values for Gravity Error 1-σ deterministic variations

It is not the intent of this paper to provide detailed timing comparisons, but some approximate

timing values can give the reader a sense of the computational savings achieved by precomputing

the PNC before using it in a computationally efficient KF. All code is written in Fortran, using

the latest 1995 and 2003 standards, and compiled using standard release mode settings in 2011

Intel Visual Fortran. All simulations are run on a single processor of a quad-core Intel Xeon CPU

running at 3.60 GHz. The precomputation of the PNC using the DDT takes approximately 371

seconds (6.2 minutes), while a single trial of the Monte Carlo simulation takes 13 seconds to perform

the onboard estimation steps (approximately 3.5% of the PNC precomputation time). To achieve
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a comparable level of estimation accuracy and covariance realism without precomputing the PNC,

a full SKF would be necessary to run onboard the spacecraft, which would take approximately 200

seconds instead of 13 seconds (increasing the required onboard computation by 15x). Note that

for higher order gravitational fields, or if other force model parameters are considered, the onboard

computational savings increase approximately with O(N2), where N is the number of state and

consider parameters [26].

Note that the filter type used for the PNC precomputation and the onboard filter are inter-

changeable: it is entirely possible to use other filters such as the UKF or ADF onboard the spacecraft,

with no requirement for the type of filter used in the PNC precomputation. The only stipulation is

that the onboard filter must be able to access the additive PNC profile, in addition to the traditional

tuned PNC.

H. Future Work

Future analysis involving the new precomputed PNC method includes application to other

estimation problems that possess mismodeled or unmodeled perturbations, particularly for large,

state-dependent perturbations. For the specific problem of spacecraft estimation, the spacecraft

mass, area, and reflectivity coefficient could be included as consider parameters when precomputing

the PNC, which would better account for SRP and TBP errors. Another possibility would be to

apply this PNC technique to other perturbations that change with time, such as atmospheric drag.

For challenging perturbations such as atmospheric drag, the proposed PNC precomputation may

serve as an initial starting point that can be fine-tuned with traditional PNC values.

Another possibility for future research is the generation of functions that provide averaged

PNC as a function only of the spacecraft radius magnitude, or other temporal/spatial variations.

Such functions could prove useful for mission design and analysis of trajectories about small bodies,

eliminating the need to recompute the PNC for each reference trajectory.

It is also possible to employ different levels of traditional PNC via a staged approach for different

time intervals, or based on an exponential model of the radius of the spacecraft position (derived

manually instead of the averaged PNC approach from the precomputed PNC proposed above).
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Both of these approaches involve adding more manual tuning parameters to the PNC method. As

a result, obtaining initial tuning parameters can be even more challenging. Thus, a future analysis

comparing the multi-parameter traditional PNC model to the precomputed PNC approach is likely

valuable, as is a study of how the use of the precomputed PNC approach might assist in initially

tuning the multi-parameter traditional PNC model.

To go a step further in precomputing elements of the onboard filter, if the nominal trajectory

and nominal measurement inclusion is fairly well known a priori, the full formal covariance and

Kalman gain can be precomputed for the measurement times. Instead of storing onboard the PNC,

the Kalman gain could be stored. An analysis investigating the effectiveness of this approach, both

overall and in comparison to the process noise precomputation method described in this paper, is

saved for future work.

Another possible method to account for mismodeled and unmodeled perturbations in the dy-

namics is the inclusion of unmodeled accelerations in the filter. Estimating these three “unmodeled”

states allows for the introduction of correlated process noise without modeling it precisely. While

the estimation of unmodeled accelerations is more ad hoc than the inclusion of model uncertainties

via process noise as described in this paper, the significant heritage of this approach [27] suggests a

comparison of the effectiveness of the two different approaches would be valuable for future work.

Other items for future analysis include a study of how the measurement cadence and the mea-

surement error magnitude changes the effectiveness of the precomputed PNC, as well as an in-

vestigation of the effect on the precomputed PNC from including higher order gravity coefficient

uncertainties. From this investigation of how higher order gravity coefficient uncertainties affect

the precomputed PNC, an analysis of how to choose the parameters included in the process noise

precomputation can be pursued.

VI. Conclusions

The primary contribution of this paper is an approach that applies known consider covari-

ance analysis tools and filters to precompute a PNC profile along a reference trajectory, and then

employ that PNC in an onboard estimation filter. As a result, the need for traditional extensive
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manual tuning of PNC is reduced, and robotic systems that experience significant state-dependent

perturbations can employ appropriate levels of PNC in onboard navigation filters.

In addition to providing better estimation performance, the new PNC method also allows the

onboard navigation filter to better represent the uncertainty in the system state. The example

considered here is a better representation of the position and velocity uncertainty of a spacecraft

during a descent trajectory that contains gravity perturbations that vary dramatically in magnitude

across the reference trajectory.

A secondary contribution of this paper is the translation of the ADF to a consider filter form.

The derivation is almost identical to the USKF, where the considered parameters are added to the

“state” and then simply not updated in the measurement update portion of the filter (for both

the state and covariance updates). The DDT that forms the heart of the ADF can also be used

to intuitively map the uncertainty in the consider parameters into the space space. The resulting

covariance used as the PNC lacks the cross-covariance contributions, but may prove sufficiently

accurate in some applications.

There are limitations of the new precomputed state-dependent PNC method. A reference tra-

jectory must exist, and the vehicle must not deviate too far from the reference path for the precom-

puted PNC to be effective. The errors in the considered model parameters must also approximately

match the model parameter uncertainties used for the PNC precomputation. However, it is noted

through a limited analysis that conservative uncertainties in the PNC precomputation may prove

more effective than less conservative uncertainties (particularly if there is risk of underestimating

the truth gravity errors). While the new precomputed PNC method is shown to be effective for the

two examples described in this paper, the method may prove less reliable and effective for scenarios

that do not meet these conditions.
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