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ABSTRACT

In recent works, the first and third authors developed an automatic image registration algorithm based on a
multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed
strong performance, improving robustness over registration with wavelets alone. However, this method imposed
a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and
also involved an unintegrated mixture of MATLAB and C code.

In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix
of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a
flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover,
the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and
C prototype. We demonstrate the versatility and computational efficiency of this approach by performing
registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now
be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples
of synthetically warped and real multi-modal images are analyzed.
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1. INTRODUCTION

Image registration is the process of aligning two or more images of approximately the same scene, possibly
captured with different sensors or at different times.1 The registration of multimodal images is of particular
significance in medical imaging2 and remote sensing,3 where different sensors often produce very different types
of images. A variety of approaches to the multimodal registration problem have been proposed, including those
based on SIFT and related features,4 as well as those that attempt to efficiently represent the images to be
registered in a common feature space. While local features like SIFT do well in many cases, for images with
very different information content, there is often very little local similarity between the two images. This renders
local feature descriptors ineffective for image registration, though robust outlier detection can compensate to
some extent.5

Wavelets6 have been successful in extracting global features in common between two images that appear quite
different.7 By extracting some of the most significant features in the images, thresholded wavelet features remove
much of the noise and local differences that pose a challenge in multimodal registration. However, wavelets
are known to be theoretically suboptimal for sparse feature extraction for a large class of image signals.8–10

This known suboptimality motivated the field of anisotropic harmonic analysis, which developed a number of

Further author information: (Send correspondence to J.M.M.)
J.M.M.: E-mail: jmmurphy11@gmail.com

https://ntrs.nasa.gov/search.jsp?R=20180002565 2019-08-29T18:13:13+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/158348697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


constructions that incorporate directionality, including contourlets,11 curvelets,9 directional Gabor systems,12,13

and shearlets.14

It is known that shearlets and curvelets are theoretically near-optimal in generating sparse representations
of cartoon-like images, which can be understood as images that are smooth except for smooth boundaries.
Many remotely sensed images fall to some extent into this regime, which suggested the used of such anisotropic
dictionaries in the registration of remotely sensed images. Recent work15,16 proposed both a stand-alone shearlet
feature registration algorithm, and a novel two-stage registration algorithm using shearlets for the first stage of
registration, and wavelets to refine. The hybrid algorithm acquired a robust, though occasionally somewhat
inaccurate, first stage shearlet registration, which was refined with the less robust, but sometimes more precise,
wavelet registration. This algorithm provided substantial improvement over wavelet-only registration, on a
variety of synthetically warped and real multimodal images.

However, this prototype algorithm was unsatisfactory in several respects. While the wavelet decomposition
and feature-matching portions of the algorithm were coded in C, and were thus fast and portable, the shearlet
features component was coded in MATLAB.17 This reduced speed considerably, and limited the potential use of
the prototype algorithm by remote sensing scientists. Moreover, the prototype algorithm tested only a specific
combination of shearlet and wavelet features: shearlet features, from coarse to fine, followed by wavelet features,
from coarse to fine. While this had heuristic motivation and provided strong numerical results, other ordering
and combinations of the shearlet and wavelet features are possible.

The present article addresses these concerns. We demonstrate the fully-integrated C algorithm on a synthetic
and real multimodal dataset. Moreover, we consider other combinations of the shearlet and wavelet features, to
evaluate the potential benefit in using different orders of these features.

2. PROPOSED METHODS

The proposed algorithms were prototyped in recent works of the first and third authors.15,16 These algorithms
were based on the observation that while wavelet-based registration was usually accurate and efficient, even for
large classes of multimodal images, it was often not robust to the choice of initial registration guess. By examining
the features produced in the wavelet registration algorithm currently used at NASA,7 it was hypothesized that
this was due to the speckled and diffuse features often produced by wavelet algorithms. Indeed, it appeared
that the features produced were not particularly sparse. This observation is in accordance with the theory of
wavelets. In particular, wavelets are known not to be optimally sparse for an important class of images, namely
cartoon-like images, which are composed of smooth images with smooth edges; see16 for a fuller exposition on
the mathematical limitations of wavelets for image registration, and10 for a more general discussion.

The proposed algorithms aimed to improve on this deficiency of wavelets by incorporating a generalization of
wavelets known as shearlets.8,14 Shearlets are one of many redundant anisotropic frames that incorporate both
multiscale and directional decomposition; in comparison, wavelets are multiscale but not directional. While
ridgelets and curvelets are earlier methods that incorporate anisotropy into the multiscale regime, shearlets were
considered over these other methods for two major reasons. First, shearlets incorporated directionality not by
rotations, which are often difficult to interpolate in the discrete setting, but by the action of shearing. Shearing
preserves the digital grid, meaning that one need not perform complicated interpolation when incorporating
directionality.10 Second, many implementations of shearlets exist, which gave us flexibility in how to imple-
ment of shearlet features algorithm. While the ShearLab software package18 and the implementation of King19

quite popular, we chose to use the fast finite shearlet transform (FFST),17 due its simple and user-friendly
implementation.

Originally, a shearlet-based registration approach was proposed in which only shearlet features were used to
register the images.15 This had theoretical justification, and numerical experiments confirmed that it offered
improved robustness to the initial registration guess when compared to wavelets, but suffered from a small loss



in accuracy in some cases. The loss in accuracy is due to the lack of translation invariance for shearlets, and also
a double-walling artifact that appears around thin edges in the shearlet features. Thus, a more sophisticated
registration hybrid algorithm was proposed, in which images would first be registered with shearlets, then with
wavelets.16 While this algorithm enjoyed improved robustness, it suffered from at least one major computational
weakness. While the wavelet features and registration optimization portions of the algorithm of the algorithm
were coded in C, the shearlet features portion of the algorithm was coded in MATLAB, because it utilized the
FFST MATLAB library17 to generate features. This limited its use for remote sensing scientists, since it required
MATLAB to perform. Speed also became a significant problem, because MATLAB does not enjoy the benefits
of a compiled language. The goal was to provide an automatic, robust, and portable registration algorithm to
remote sensing scientists. Thus, the MATLAB construction of the shearlets needed to be translated to C.

To do so, new shearlet code was written, based on the existing shearlet features code from the prototype and
the libraries of the FFST.17 During this process, new efficiencies with regard to memory storage were discovered,
improving the existing prototype algorithm. Moreover, the optimization procedure, which was designed for the
decimated wavelet transform, was modified for the redundant shearlet transform. This further improved the
numerical performance of both the shearlet-only and hybrd shearlet-wavelet algorithm.

In addition to presenting this fully-integrated C algorithm, the present article also considers ways in which the
order of the wavelet and shearlet decompositions may be permuted, to perhaps acquire better registration results.
The prototype hybrid algorithm16 registered first with shearlets, then with wavelets. Intuitively, this exploits
the high degree of robustness of shearlets by acquiring first an approximate registration with a large radius of
convergence, followed by a precision adjustment from the wavelet registration. However, it was of interest to
consider more general orders of the wavelets and shearlets, so as to produce a more agile registration algorithm.
Some initial results in this direction are also presented in this article.

In particular, we consider a registration algorithm in which the coarsest-scale shearlet feature is decomposed by a
decimating wavelet transform. Intuitively, this makes the first step of the registration algorithm a matching with
very low-pass features, since the already low-pass shearlet feature is being decomposed further in an isotropic
low-pass filter. This technique is referred to as hybrid shearlet-wavelet with decomposition. It is a novelty over
the methods explored previously,15,16 in which shearlet features did not mix with wavelet features explicitly. We
summarize this algorithm:

1. Input a reference image, Ir, and an input image Ii. These will be the images to be registered.

2. Input an initial registration guess (θ0, Tx0
, Ty0

). This is sometimes set at (θ0, Tx0
, Ty0

) = (0, 0, 0). This is
rather arbitrary, as this algorithm is fully automatic and assumes no a priori knowledge of the images to be
registered. If a priori knowledge is available, or if manual registration has been computed, this information
can be input for the initial guess at this stage. In many experiments, we will vary the initial registration
guess relative to the true registration in order to evaluate the robustness of the algorithm.

3. Apply shearlet features algorithm and wavelet features algorithms to Ir and Ii. This produces a set of
shearlet features for both, denoted Sr

1 , ..., S
r
n and Si

1, ..., S
i
n, respectively, as well as a set of wavelet features

for both, denoted W r
1 , ...,W

r
n and W i

1, ...,W
i
n. Here n refers to the level of decomposition chosen. In

general, n is bounded by the resolution of the images as

n ≤ b1
2

log2(max{M,N})c, (1)

where Ir, Ii are M×N pixels. For example, for images of size 256×256, n ≤ 4. The bound (1) is determined
by the elongated, anisotropic support of the shearlet functions at higher scales. In order for the support
of the shearlet function used to compute the shearlet coefficients at the nth level of decomposition to fit
inside of an M ×N image, it is necessary that (1) hold; see20 for details. The order of the coefficients for



both wavelets and shearlets is from coarsest to finest, i.e. from the coefficients containing mostly global
features to those containing mostly local features. This is because the coarse features should produce the
most robust but least precise matching in general, and this guess will be iteratively refined by matching
with increasingly fine scale coefficients.

4. Apply the wavelet features algorithm to Sr
1 , S

i
1 to acquire decompositions of these coarse shearlet features.

These are denoted Sr
1,1, ..., S

r
1,k and Si

1,1, ..., S
i
1,k, respectively. Here, k denotes the number of scales used

in this wavelet decomposition; for the present experiments, k = 2.

5. Match Sr
1,1 with Si

1,1 with a least squares optimization algorithm and initial guess (θ0, Tx0
, Ty0

) to get a

transformation TS
1,1. More precisely, we solve

TS
1,1 = arg min

Tp

1

K

K∑
j=1

(Sr
1,1(xj , yj)− Si

1,1(Tp(x′j , y
′
j)))

2 (2)

with a Marquadt-Levenberg optimization scheme. Here, is the sum is over all K pixels in the features
and Tp is the registration transformation, determined by parameters p. The parameter p could refer to the
rotation, scale, and translations in an RST transformation, or to the coefficients in an affine transformation.
Using TS

1,1 as an initial guess, match Sr
1,2 with Si

1,2 as in (2) to acquire a transformation TS
1,2. Iterate this

process by matching Sr
1,j with Si

1,j using TS
1,j−1 as an initial guess, for j = 2, ..., k. At the end of this

iterative matching, we acquire a decomposed shearlet-based registration, call it TS
1 = (θS,1, TS,1

x , TS,1
y ).

6. Using TS
1 as an initial guess, match Sr

2 with Si
2 as in (2) to acquire a transformation TS

2 . Using TS
2 as an

initial guess, match Sr
3 with Si

3 as in (2) to acquire a transformation TS
3 . Iterate this process by matching

Sr
j with Si

j using TS
j−1 as an initial guess, for j = 2, ..., n. At the end of this iterative matching, we acquire

a full shearlet-based registration, call it TS = (θS , TS
x , T

S
y ).

7. Using TS as an initial guess, match W r
1 with W i

1 as in (2) to acquire a transformation TW
1 . Using TW

1

as an initial guess, match W r
2 with W i

2 as in (2) to acquire a transformation TW
2 . Iterate this process by

matching W r
j with W i

j using TW
j−1 as an initial guess, for j = 2, ..., n. At the end of this iterative matching,

we acquire the final hybrid registration, call it TH = (θH , TH
x , T

H
y ).

8. Output TH .

As in the prototype algorithm, three wavelet implementations are considered: Simoncelli band-pass filters,
Simoncelli low-pass filters, and spline wavelet filters. These filters do not implement a frame, but rather filter
the images in an isotropic and decimating way. The shearlets algorithm we implement has the benefit of being
a redundant frame, which is useful in extracting meaningful features from the images.

3. EXPERIMENTS AND RESULTS

We consider two sets of images that were previously analyzed with the prototype hybrid-shearlet registration
algorithm.16 We consider synthetic experiments consisting of radiometrically warped images of Mossy Rock,
in the Mount St. Helens region of WA, USA, and real lidar and optical images of a rural scene in WA, USA.
Experiments with nine algorithms were considered: wavelets-only, shearlets+wavelets, and shearlets+wavelets
with decomposition. To test robustness of the algorithm, many different choices of starting registration value
(θ0, Tx0 , Ty0) were considered; to ease computation, these starting values were parametrized as RT , where RT = α
means the initial guess was (θ0, Tx0

, Ty0
) = (α, α, α). The algorithm also registers images at different scales, but

the present images are at the same scale.



3.1 Mossy Rock Synthetic

The original image is a 512 × 512 shaded relief lidar image captured in 2002, generated from an airborne laser
swath mapping conducted by Terrapoint, LLC under contract with the USGS. This image was synthetically
altered via convolution with a point spread function (PSF). The PSF is implemented by the 512 × 512 matrix
M , given by:

M(i, j) =

{
1, 254 ≤ i, j ≤ 258.
0, else.

(3)

This matrix is then convolved with the reference image to generate an input image that simulates a radiomet-
rically varied image of the same scene. This can be considered as a simulation of the challenges of multimodal
registration: many of the same features appear in the images, but not all, and the common features are often
rendered differently. The original image of Mossy Rock, together with the radiometrically warped version, appear
in Figure 1.

Figure 1: 512×512 lidar shaded relief images of Mossy Rock without (left) and with (right) synthetic radiometric
distortion. The images have been converted to grayscale.

These experiments illustrate the value of the new optimization scheme for registering shearlet features. Compared
to the results for these images already analyzed,16 the radius of convergence for the shearlets+wavelets algorithm
is larger. These images also display a relatively straightforward pattern for how each algorithm performs rela-
tively, as can be seen in Figure 2 and Table 1. In particular, nothing is gained over applying the decomposition to
the low-pass shearlet features, though the shearlet+wavelets with decomposition still outperforms wavelets-only.
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Figure 2: Comparison of algorithms for Mossy Rock synthetically warped experiments (from left to right: splines,
Simoncelli band-pass, Simoncelli low-pass ); blue is wavelets, yellow is hybrid shearlets+wavelets with decomposition, and
red is shearlets+wavelets without decomposition.

Registration
Technique

Number of
Converged
Experiments
(out of 200)

Percentage of
Converged
Experiments

Mean RMSE
Relative
Improvement

Spline
Wavelets

74 36.82% .3591 -

Simoncelli
Band-Pass

42 10.50% .0074 -

Simoncelli
Low-Pass

72 55.50% .2412 -

Shearlets 162 80.60% .0748 -

Shearlet+
Spline
Wavelets

162 80.60% .3287 118.92%

Shearlet+
Simoncelli
Band-Pass

162 80.60% .0074 285.71%

Shearlet +
Simoncelli
Low-Pass

162 80.60% .2432 125.00%

Shearlet+
Spline
Wavelets
Decomp

91 45.27% .2404 22.97%

Shearlet+
Simoncelli
Band-Pass
Decomp

89 44.28% .0069 111.90%

Shearlet +
Simoncelli
Low-Pass
Decomp

91 45.27% .2202 26.39%

Table 1: Comparison of registration algorithms for Mossy Rock synthetically warped experiments.

3.2 Lidar-to-optical multimodal experiments

We also considered experiments with registering a lidar image to an optical image, a problem known to be quite
challenging. These images are shown in Figure 3. The lidar data was acquired in 2003 by Terrapoint, Inc., under
contract to NASA, using a multi-return airborne laser swath mapping (ALSM) instrument. The optical data is
a natural color aerial photograph, presented as a grey-scale image, obtained by the Google Earth database from
the United States Geological Survey in 2006. These data sources have related, but quite different information
content. A lidar image, commonly referred to as a digital elevation model (DEM), is a measure of the elevation of
the components making up the surface. The data we used is a highest surface DEM. This represents vegetation
canopy tops where vegetated, and ground, roads, and building tops where not vegetated. On the other hand, an



optical image records solar radiance reflected from the surface. The latter is a function of the reflectance of the
surface components and their three-dimensional organization. Together, these define the patterns and brightness
of illuminated and shadowed patches seen in optical images.

Figure 3: Lidar ALSM elevation image (top left), the derived shaded relief image (top right), and aerial
photograph (bottom) for a scene in WA state. The shaded relief image, illuminated in the same direction as in
the optical image, depicts similar patterns of textures and edges. All images are 256 × 256. The images have
been converted to grayscale.

The results of our algorithm in this case are substantially more mixed than in the synthetic example. While in
general the shearlet-wavelet hybrid algorithm outperforms wavelets-only, there are some cases in which it does
not. In particular, the shearlet-wavelets plots in Figure 4 are not monotonic. This indicates the complicated
image changing the initial value has for the shearlets features. Moreover, the decomposition of the shearlet
low-pass features appears to hurt the registration algorithm greatly, as performance for shearlet+wavelet with
decomposition is clearly the worst; see Table 2. Indeed, it shows the erraticism of the shearlets-wavelets algorithm,
without its larger radius of convergence. This suggests that the shearlet features are perhaps unhelpful for this
example, and that the wavelet features do most of the registration work in the shearlets+wavelets algorithm.
This is corroborated by earlier findings.16
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Figure 4: Comparison of algorithms for WA lidar-to-optical experiments (from left to right: splines, Simoncelli band-
pass, Simoncelli low-pass ); blue is wavelets, yellow is hybrid shearlets+wavelets with decomposition, and red is shear-
lets+wavelets without decomposition.



Registration
Technique

Number of
Converged
Experiments
(out of 200)

Percentage of
Converged
Experiments

Mean RMSE
Relative
Improvement

Spline
Wavelets

55 54.46% 1.3446 -

Simoncelli
Band-Pass

61 60.40% 1.5862 -

Simoncelli
Low-Pass

86 85.15% 1.4868 -

Shearlets 68 67.33% 6.1300 -

Shearlet+
Spline
Wavelets

60 59.41% 1.3143 9.09%

Shearlet+
Simoncelli
Band-Pass

70 69.31% 1.5831 14.75%

Shearlet +
Simoncelli
Low-Pass

84 83.17% 1.4934 -2.33%

Shearlet+
Spline
Wavelets
Decomp

42 41.58% 1.4411 -23.64%

Shearlet+
Simoncelli
Band-Pass
Decomp

26 25.74% 1.5915 -57.38%

Shearlet +
Simoncelli
Low-Pass
Decomp

35 34.65% 1.5860 -48.53%

Table 2: Comparison of registration algorithms for lidar-to-optical.

4. CONCLUSIONS AND SUMMARY

The experiments confirm the effectiveness of coupling shearlets with wavelets for image registration. On both
synthetic and real images, the hybrid algorithm outperforms using wavelets alone. The effect of applying a
wavelet transform to the low-pass shearlet component appears, however, uncertain. In some cases, it appears
to perform better than wavelets alone, but it never performs as well as the original shearlet-wavelet hybrid
algorithm. Indeed, it some cases, it does quite poorly, even when compared to wavelets alone. One possible
reason is that we are essentially applying a low-pass filter to a feature than is already low-pass. This would
degrade the low-pass information even more, losing an unacceptably large amount of information. The impact
of applying the wavelet features algorithm on high pass shearlet features remains of interest.
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