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1. Introduction 

 Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical 

properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic 

waters, they have difficulty operating in optically clear, shallow marine environments where light reflected 

from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in “optically 

shallow” waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst 

adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions 

with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance us-

ing existing knowledge of bathymetry and benthic albedo.  

 To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inver-

sion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived 

benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The al-

gorithm was incorporated into the NASA Ocean Biology Processing Group’s L2GEN program and tested in 

optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, 

we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized In-

herent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). 

3. Algorithm Structure 

 SWIM is a forward-inverse type algorithm. A ‘forward’ semi-analytical model [4] is used to simu-

late sub-surface remote sensing reflectances, rrs, which are compared within sensor observed val-

ues. The internal parameters (IOPs) of the forward model are dynamically varied using a con-

strained Levenberg-Marquardt non-linear least squares optimization routine. Once the cost func-

tion is minimized (i.e. modelled and observed rrs are most similar), SWIM returns the set of optimal 

IOPs as the ‘inverted’ solution. If convergence to a solution is not achieved, a product failure 

(PRODFAIL) flag is returned. Previously developed shallow water inversion algorithms sought to 

derive IOPs, water column depth, and benthic albedo simultaneously [6]. However such approach-

es were typically concerned with mapping bathymetry and/or benthic classification using airborne 

hyperspectral imagery. Conversely, SWIM uses bathymetry and a benthic albedo data as inputs, 

thereby reducing the number of free parameters in the algorithm. Within this study, an existing high 

resolution bathymetry [7] map of the Great Barrier Reef has been used. In addition, extensive 

knowledge of benthic composition [8] has been used to construct a two-class benthic albedo map 

of ‘light’ and ‘dark’ substrate types. 

5. Test region: the Great Barrier Reef 

 A sub-set of the northern Great Barrier Reef, Australia was used to demonstrate the SWIM algo-

rithm. The clear shelf waters of this region are on average 18 m deep with a mixed benthos com-

prising sand, seagrasses and corals. Results in Fig. 3 show that for shallow regions (< 20 m) GIOP 

and QAA give higher values of at(443), bbp(443) and Kd(488) than SWIM. This is further demonstrat-

ed using cross-shelf transects (Fig. 4). The results shows that once a depth of approximately 30 m 

is reached, SWIM, GIOP and QAA behave similarly. We therefore infer that under the optical condi-

tions of that day (22 May 2009), the combined effect of  water column depth and benthic reflec-

tance upon the water-leaving signal diminished, and thus the water became quasi-optically deep, 

after the depth exceeded 30 m. The differences between SWIM and GIOP/QAA demonstrated here 

were expected and complement the radiative transfer modelling study. Specifically, both the GIOP 

and QAA algorithms assume that the rrs signal is depended only upon IOPs. Thus, unlike SWIM, an 

increase in sensor-observed rrs due to benthic reflectance is interpreted by GIOP/QAA as in-

creased backscattering and/or absorption which then leads to exaggerated Kd(488). 

6. Time-series comparison 

 The shallow shelf waters of the region shown in Fig. 3 were selected for analysis using the 

MODIS Aqua time series (2002—2013). Values of at(443), bbp(443) and Kd(488) were derived using 

SWIM, GIOP and QAA from level-1A data and screened for bad values using standard masks and 

quality control flags. Monthly-averaged data and relative differences were then calculated and are 

shown in Fig. 5 As expected, SWIM-derived values were consistently lower than GIOP and QAA val-

ues through time for the SW region. Differences between SWIM and GIOP/QAA derived products 

were overestimated relative to SWIM values. The magnitude of these differences is similar those 

observed in the radiative transfer modelling study. 

Figure 1: Schematic diagram of the SWIM algorithm. Water column depth and benthic al-

bedo maps are included as auxiliary datasets and are illustrated to the right-hand side 

of the flow chart. Here, the free parameters P, G, and X, correspond to the absorption 

coefficient of phytoplankton at 443 nm, aϕ(443), the absorption coefficient of colored 

dissolved and detrital matter at 443 nm, adg(443), and the particulate backscattering co-

efficient at 443 nm, bbp(443) respectively.  

Figure 3: MODIS Aqua test image 

captured over the northern GBR on 

22 May 2009. The top row shows: (i) 

a RGB image in the top left-hand 

corner with horizontal (X) and verti-

cal (Y) cross-shelf transects indi-

cated as red lines, (ii) the water 

column depth, and (iii) the benthic 

albedo at 550 nm. The second row 

shows from left to right values of at

(443) derived using (i) SWIM, (ii) 

GIOP, and (iii) QAA. The third row 

shows from left to right values of 

bbp(443) derived using (i) SWIM, (ii) 

GIOP, and (iii) QAA. The bottom row 

shows from left to right values of 

Kd(488) derived using (i) SWIM, (ii) 

GIOP, and (iii) QAA. 

2. Research objectives 

 Develop a shallow water inversion algorithm (SWIM) with depth and benthic albedo as inputs 

 Evaluate the algorithms performance with radiative transfer modelling study 

 Incorporate the algorithm into L2GEN processing software 

 Test the algorithm in optically shallow waters of the Great Barrier Reef, Australia 

 With the MODIS Aqua time series, compare IOPs and Kd(488)
 
[5] derived using SWIM with values 

7. Summary 

Here we have demonstrated SWIM, an optically shallow ocean color inversion algorithm. The SWIM 

algorithm is currently an evaluation product within L2GEN processing code and was successfully 

applied in the Great Barrier Reef, Australia. Radiative transfer modelling and comparisons between 

SWIM and GIOP/QAA indicate the algorithm performs as expected in both deep and shallow waters. 

SWIM has the potential to enhance research and management of sensitive shallow water environ-

ments by complementing existing systems for monitoring water quality and ecosystem health. Fur-

ther, because SWIM has been developed within the versatile L2GEN processing code it is easily ap-

plicable to sensors other than MODIS Aqua and regions outside the Great Barrier Reef. 

Figure 5: Left-hand side: 

Monthly means of at(443), 

bbp(443) and Kd(488) for the 

Shallow Water (SW) region 

retrieved using SWIM (red), 

GIOP (blue) and QAA 

(green). Right-hand side: 

Relative differences be-

tween GIOP and SWIM 

(blue) and QAA and SWIM 

(green). 

8. Future work 

 Validation and fine tuning of the SWIM algorithm using in situ datasets 

 Implementing a tide offset correction procedure 

 Extending the SWIM algorithm to other regions with well characterized bathymetry/benthos 

 Potential to incorporate SWIM into L2GEN’s generalized IOP algorithm framework 

26-31 October 2014, Portland, ME, USA. 

Figure 4: Comparison of at(443), bbp(443) and Kd(488) derived using SWIM (red), GIOP (blue) and 

QAA (green) as cross-shelf water column depth (dotted black) and benthic albedo at 550 nm 

(dashed black) varies. The left and right-hand sides correspond to the E-W and S-N cross-shelf 

transects depicted in Fig. 3. 

4. Radiative transfer case study 

Hydrolight-Ecolight 5.1 radiative transfer code (HE5) [9] was used to simulate above-water remote 

sensing reflectances for both optically deep and shallow situations (20, 15, 10 and 5 m). The syn-

thesized IOP data set of IOCCG (2006) [10] was used to parameterized the water column optics, 

whilst a dark sediment benthic albedo coefficient was used to represent the seafloor. Using SWIM, 

GIOP and QAA, values of at(443), bbp(443) and Kd(488) were derived and compared with the actual 

values. Plots of algorithm-retrieved against actual values are shown in Fig. 2. The results indicate 

that all three algorithms work well in optically deep waters. However, in optically shallow waters, 

GIOP and QAA show distinct positive biases. Conversely SWIM performs well in optically shallow 
waters. The corresponding regression sta-

tistics indicated that SWIM-derived at(443) 

and Kd(488) at 20, 15 and 10 m had R-

squared values for were > 0.90, with mean 

percent biases (MPB) ranging from 0 - 7 %. 

SWIM retrievals of bbp(443) at 20, 15 and 10 

m were also good with R-squared and 

MPB values ranging from 0.92—0.78 and 0 

- 5% respectively. At a depth of 5 m, SWIM-

derived at(443) and Kd(488) each had R-

squared values of 0.90 and MPBs of 16 %. 

Whilst SWIM-derived bbp(443) at 5 m had  

an R-squared of 0.61 and an MPB of 28 %. 

We note that the MPB in GIOP/QAA-

derived values of at(443), bbp(443) and Kd

(488) were approximately 30 % at 20m 

depth, and exceed 100 % at a depth of 5 m. 

Figure 2: Comparison plots of algorithm

-derived parameters (SWIM: red; GIOP: 

blue; QAA: green) and actual values 

from the synthesized IOP dataset. From 

left-to right the three columns repre-

sent at(443), bbp(443) and Kd(488). Rows 

from top-to-bottom correspond to de-

creasing water column depth. 
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