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Abstract

Given an undirected graph G whose vertices are associated to different subsets of
colors, the MPA problem asks for partitioning G into a minimal set of monochromatic
connected subgraphs. We prove that MPA is NP-hard as well as its extensions BDMPA
where the vertices of G have a bounded maximum degree, PMPA where G is planar,
BDPMPA where the maximum vertex degree is bounded and G is planar, and GMPA
where G consists of a p× q grid.

Let G = (V,E) be an undirected graph with |V | = n and |E| = m; and let C be a set
of k colors such that each vertex vi ∈ V is associated to (or ”contains”) a non-void subset
Ci of C. We set:

MPA Problem. Assign to each vertex vi of G a single color from among the ones in Ci
such that the number σ of maximal connected subgraphs of G1, . . . , Gσ of G whose vertices
have the same color is minimal. One such color assignment, and the corresponding family
of subgraphs, will be called an MPA for minimal partition (color) assignment.

See the sample graph of Figure 1 with its (unique) MPA.
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Figure 1: A graph with six vertices A,B,C,D,E, F and four colors a, b, c, d. The subsets of colors
are indicated at the vertices. In this case Problem 1 has exactly one MPA with σ = 2, where G1

contains vertices A,B,C with assigned color a, and G2 contains vertices D,E, F with assigned
color b.

Observation 1. Let M ⊆ C be a minimum subset of colors such that the total number of
their occurrences in the vertices of G is ≥ n. Then in any MPA we have σ ≥ |M |.
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In Figure 1 the minimal subsets are {a, c}, {b, c}, whose colors occur in total ≥ 6 = n
times in the vertices. So σ ≥ 2, although the MPA contains colors a, b. Observation 1,
whose validity is obvious, suggests that the subgraphs in an MPA tend to be as large as
possible. However a largest possible mono-colored subgraph of G may not occur in any
MPA. In Figure 1 the subgraph of four vertices B,D,E, F could be colored with b, but
the vertices A,C should then be assigned to two different subsets and the partition would
not be minimal.

Observation 2. The subsets of vertices of any two subgraphs Gi, Gj of an MPA are
mutually disjoint.

In fact if Gi, Gj contained a common vertex v with color c, all the vertices of the
two subgraphs would have color c and Gi, Gj should be merged into a unique subgraph.
Letting |Gi| = ni, 1 ≤ i ≤ σ, we then have n1 + . . . nσ = n. Note that two subsets Gi, Gj
of an MPA may be associated with the same color, but in this case they must not be
connected with an edge of G. We have:

Theorem 1. The MPA Problem is NP-hard.

Proof. Reduction from Set Cover. Let X = {x1, . . . , xn} be a set of n integers and
{Y1, . . . , Yk} be a set of subsets of X. Build an MPA Problem where G is a complete
graph whose vertices v1, . . . , vn correspond to the elements x1, . . . , xn of X; C contains k
colors c1, . . . , ck corresponding to Y1, . . . , Yk; if xi is contained in Yi1 , . . . , Yis , vertex vi is
associated to the colors ci1 , . . . , cis .

A polynomial time algorithm for solving the MPA Problem would produce a minimal
number of disjoint subgraphs G1, . . . , Gσ of G, where each Gj is associated with a color cij
and its vertices correspond to (possibly not all) the elements of Yij : in fact note that the
subsets {Y1, . . . , Yk} are not necessarily disjoint. The solution of Set Cover on X consists
of the collection of subsets Yi1 , . . . , Yiσ . �

Note that MPA is NP-hard in its general form, but its complexity could be lower for
particular classes of graphs. We now show that the following versions of the problem are
also NP-hard.

BDMPA Problem (for Bounded-Degree MPA), that is the MPA Problem where the
maximum vertex degree (number of incident arcs) is a constant d ≥ 3.

PMPA Problem (for Planar MPA), that is the MPA Problem where G is planar.

BDPMPA Problem (for Bounded-Degree PMPA), that is the PMPA Problem where
the maximum degree of the vertices is a constant d ≥ 3.

GMPA Problem (for Grid MPA), that is the MPA Problem where G is a p× q. This is
a special case of BDPMPA because the grid is a planar graph with bounded vertex degree
four.

PMPA, BDPMPA, and GMPA arise in the field of innovative chip layout where the colors
represent input variables each of which has to be connected to many terminals of a chip.

Theorem 2. The BDMPA Problem is NP-hard.
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Proof. Reduction from MPA, by insertion of new vertices to reduce all vertex degrees
to at most 3. If edges (a, b), (a, c), (a, d), (a, e) and possibly other edges (a, x) exist, i.e.
deg(a)> 3, insert a new vertex z with Cz = Ca ∪ Cb ∪ Cc, delete edges (a, b), (a, c), and
insert new edges (a, z), (z, b), (z, c). Note that the degree of a decreases by 1, the degrees
of b, c are unchanged, and z has degree 3. Continue until each vertex has degree ≤ 3. The
solution for the new graph, i.e. the connected mono-colored subgraphs, coincides with a
solution for MPA if the new vertices z are deleted and the original edges are restored. �

Theorem 3. The PMPA Problem is NP-hard.

Proof. Reduction from planar graph 3-coloring. Let H be an arbitrary planar graph to
be 3-colored with colors 1, 2, 3, and let G be a corresponding PMA to be built. The set of
colors of G is {1, 2, 3, 4, 5, 6, 7, 8, 9}. For each edge e = (u, v) of H there are nine vertices
u, e, v, x1, x2, x3, y1, y2, y3 in G connected as shown in Figure 2, with subsets of colors:

Cu = {1, 2, 3}, Cv = {1, 2, 3}, Ce = {4, 5, 6, 7, 8, 9},

Cx1 = {1, 6, 7, 8, 9}, Cx2 = {2, 4, 5, 8, 9}, Cx3{3, 4, 5, 6, 7},

Cy1 = {1, 4, 5, 6, 9}, Cy2 = {2, 5, 6, 7, 8}, Cy3{3, 4, 7, 8, 9}.

Consider a minimal collection of monochromatic connected subgraphs G1, . . . , Gσ of G.
We have: (1) the vertices u, v must belong to two distinct subgraphs Gi, Gj and the vertex
e cannot belong to Gi or to Gj because Ce∩Cu and Ce∩Cv; (2) at most one of the vertices
x1, x2, x3 may belong to Gi and most one of the vertices y1, y2, y3 may belong to Gj due
to their colors; (3) at most two of the vertices x1, x2, x3 and most two of the vertices
y1, y2, y3 may belong to the same subgraph of e implying that the colors assigned to u and
v must be different due to the colors of all the vertices involved. Letting G = (V,E), from
the points 1, 2, and 3 we have σ ≥ |V | + |E| and equality is met if and only if different
colors can be assigned to u and v, depending on the color constraint imposed by the other
vertices to which u and v are adjacent in H. That is, H can be 3-colored if and only if
MPA can be solved on G with σ = |V |+ |H|. �
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Figure 2: Portion of graph G corresponding to the edge e = (u, v) of graph H.

Theorem 4. The BDPMPA Problem is NP-hard.

Proof. Reduction from PMPA with the same transformation used in the proof of Theorem
2. Note that the graph resulting after transformation is planar. �

Theorem 5. The GMPA Problem is NP-hard.

Proof. By reduction from BDPMPA.
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1. A result of Leslie G. Valiant (Theorem 2 of [2]), state that a planar graph G of n
vertices with degree at most four admits a planar embedding in an O(n×n) grid Γ. Of the
O(n2) cells of Γ, obviously only n are used in the embedding for the vertices of G, while
many of the others are used for embedding the edges of G as non intersecting sequences of
cells in i, j directions. In [1] was then shown that one such embedding can be built where
all edges are just straight line segments.

2. Build the embedding on Γ, and extend the grid to Γ′ a follows. If two horizontal
sequences of cells representing two edges of G lie in two rows i, i + 1 and part of these
sequences share the same columns (i.e. the two sequences are partly adjacent), insert a
new empty row between i and i+ 1, using its cells where needed to fix vertical sequences
possibly interrupted by the new row. Repeat the operation for any pair of partly adjacent
sequences. Repeat the process on the columns, inserting new columns until no vertical
sequences are partly adjacent. Note that the construction of Γ′ has been done in time and
space polynomial in n.

3. If two adjacent vertices a, b of G are embedded in two non adjacent cells of Γ′,
assign the set of colors Ca ∩ Cb to the cells of the sequence representing the edge (a, b).
Repeat for all pairs of adjacent vertices. Assign a new color c 6∈ C to all the grid cells not
corresponding to the vertices and and to the edges of G.

4. Solve GMPA on Γ′ considering all the cells as vertices of a new larger graph. Discard
the subsets of cells with color c, and in any other subset take only the cells corresponding
to original vertices of G. These subsets constitute a solution for BDPMPA. �

Two other possibly important versions of MPA are the following. Their complexity
has still to be investigated.

BCMPA Problem (for Bounded-color MPA), that is the MPA Problem where the num-
ber of colors is a constant k ≥ 2.

LMPA Problem (for power-Law MPA), that is the MPA Problem where vertex degrees
follow a power law.

BCMPA has to do with networks where a unique leader (color) among a bounded set
of candidates has to be assigned to a cluster of vertices. LMPA may be connected to the
diffusion of information in social and other networks.

References

[1] H. da Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings of
planar graphs. Proc. STOC ’88, 426-433 (1988).

[2] L.G. Valiant. Universality considerations in VLSI circuits. IEEE Trans. on Computers
C-30, 135-140 (1981).

4


