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Executive Summary 

This report was commissioned to gather comprehensive information on, and to 

provide systematic analysis of the latest available scientific research and the 

latest available scientific evidence on indirect land use change (ILUC) greenhouse 

gas emissions associated with production of biofuels and bioliquids. 

The EU mandatory sustainability criteria for biofuels and bioliquids do not allow the 

raw material for biofuel production to be obtained from land with high carbon stock 

or high biodiversity value. However, this does not guarantee that as a consequence 

of biofuels production such land is not used for production of raw materials for other 

purposes. If land for biofuels is taken from cropland formerly used for other 

purposes, or by conversion of grassland in arable land for biofuel production, the 

former agricultural production on this land has to be grown somewhere else. And if 

there is no regulation that this must happen sustainably, conversion of land may 

happen, which is not allowed to be used under the EU sustainability criteria for 

biofuels. This conversion may take place in other countries than where the biofuel is 

produced. This is called indirect land use change (ILUC).  

According to Article 3 of the European Union’s Directive (EU) 2015/1513 of 9 

September 2015, the European Commission has to provide information on, and 

analysis of the available and the best available scientific research results, scientific 

evidence regarding ILUC emissions associated to the production of biofuels, and in 

relation to all production pathways.  

Besides, according to Article 23 of the revised European Union’s Directive 

2009/28/EC (RES Directive), the Commission also has to provide the latest 

available information with regard to key assumptions influencing the results from 

modelling ILUC GHG emissions, as well as an assessment of whether the range of 

uncertainty identified in the analysis underlying the estimations of ILUC emissions 

can be narrowed down, and if the possible impact of the EU policies, such as 

environment, climate and agricultural policies, can be factored in. An assessment of 

a possibility of setting out criteria for the identification and certification of low ILUC-

risk biofuels that are produced in accordance with the EU sustainability criteria is 

also required.  
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The report describes the selection and the review of the literature, and highlights 

the development and progress in understanding and quantifying ILUC. The main 

methods used to quantify ILUC are described, and the most relevant ILUC related 

studies, which provide detailed qualitative and quantitative results are outlined.  

ILUC factors found in the literature are presented and related to the quantification 

methodology applied. The report also provides an in-depth analysis of key 

assumptions in ILUC research and related uncertainties. Finally, it also analyses the 

main mitigation options for ILUC, including low ILUC-risk biofuels1. 

Literature review 

In order to provide a systematic analysis of the latest available scientific research 

and the latest available scientific evidence on ILUC GHG emissions associated with 

the production of biofuels, focus was put on the literature published in 2012-2016 

period, and included also the main landmark studies2 on ILUC published before 

2012. The literature review included peer reviewed scientific articles as well as 

grey literature such as reports from influential organisations, working papers and 

conference proceedings. The initial search was not constrained to any geographic 

scope in order to maximise the number of returned literature. Therefore, worldwide 

produced research was addressed. 

The initial literature search returned 1248 entries. This literature was narrowed 

down through a 1st preselection that excluded studies focusing on aspects that 

were not of direct interest to this study, i.e. literature focusing on biodiversity, 

water, air quality, (indirect) land use changes from drivers other than 

biofuels/bioenergy. The first preselection yielded 559 studies. A 2nd preselection 

was conducted in order to limit the number of studies to those that would help 

identifying causes, effects, determinants and mitigation options of ILUC for 

biofuel/bioenergy production. The 2nd preselection yielded 105 eligible studies 

providing quantitative information, 166 providing non-quantitative information, as 

well as 31 pre-2012 landmark studies. All eligible quantitative and landmark 

literature from the 2nd preselection underwent a detailed review in order to extract 

relevant information for the present report. 

                                           
1
 According to the Directive (EU) 2015/1513 low ILUC-risk biofuels and bioliquids can be defined as “biofuels 

and bioliquids of which the feedstocks were produced within schemes which reduce the displacement of 
production for purposes other than for making biofuels and bioliquids and which were produced in 
accordance with the sustainability criteria for biofuels and bioliquids set out in article 17 of Directive 
2009/28/EC on promotion of the use of energy from renewable sources”.   
2
 Landmark studies are identified as the most cited relevant literature. 
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ILUC GHG factors for pathways  

Analysis of the best available scientific evidence was mainly focused on 30 studies 

that reported land use change (LUC) and indirect land use change (ILUC) factors of 

different biofuels in units that allowed for direct comparison. These studies ranged a 

number of models and methods. The following methods were adopted by these 

studies: 

 Seventeen studies applied PE-, CGE- or IAM-models 

 Six studies used hybrid-LCA techniques 

 Five studies were based on empirical approaches analysis 

 One study used a Causal Descriptive model  

 One study was based on expert opinion 

Results of recent ILUC studies are far from consistent in their approaches and 

outcomes. After 2012, no further convergence in results is presented in the 

literature. Besides, studies that show similar levels of ILUC GHG emissions may in 

fact not imply result robustness. This is because the studies may be displaying 

completely different situations, arising from differences in parametrization, regional 

coverage, (potential) land use changes and scenario assumptions.  

 

 Summary of ILUC factors found in literature for biodiesel and ethanol. Grey bars: Mean, Black Figure 1
crosses: Median, Whiskers: Maximum-Minimum, number of studies quantifying ILUC factors written 

above each column. All ILUC factors have been harmonized to represent a 20 year amortization period. 
Note: a given study may include multiple scenarios or feedstocks. Source: Own work. 
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Concerning the modelling studies, results further vary because of differences 

in data sets, parameter choices, scenarios, etc. On average3 the highest 

ILUC factors in the assessed quantitative studies carried out in the time period 

2009 - 2015, are related to the production of biodiesel (median 52 gCO2-

eq/MJ),  with palm showing the highest variation in results in available research. 

Estimates of ILUC factors for palm oil biodiesel tend to be higher (median 216 

gCO2-eq/MJ) than other vegetable oils in studies (such as Overmars 2015 and 

Valin 2015) that take into account the increased emission from, and uncertainty 

of, peatland conversion. First generation ethanol presents a median ILUC factor 

of 21 gCO2-eq/MJ, with sugar crops (sugarcane and sugarbeet) showing the 

lowest ILUC factors, while maize has the highest numbers. 

Advanced biofuels, present a median ILUC factor of 5 gCO2-eq/MJ. It is 

important to stress though that unlike other feedstocks where there are multiple 

studies (18 for biodiesel and 24 for 1st generation), there are only six studies 

presenting results on advanced biofuels. Among these studies, there is 

significant disagreement and differences in methodological approaches as the 

types of lands assumed to be used for dedicated cropping with woody and 

perennial crops are defined differently in terms of current use status.  

A number of points have to be raised in order to help with the interpretation of 

the above results. These (I)LUC factors are based on studies whose scenarios 

are not consistent, and thus, the level of biofuel demand is not 

harmonised. These factors are not linear and would, thus, vary with 

changing levels of biofuel demand. Additional to this, increasing demands, 

may lead to different marginal feedstocks being used, further complicating 

the predictability of these ILUC factors. 

It is important to note that seven of the studies quoted in the above results, 

covering all feedstocks, explicitly calculate total LUC emissions, a combination of 

indirect and direct LUC (see Table 9 for details). Since these studies fall within 

the ranges presented in Figure 1, omitting them does not affect the median or 

mean values. 

 

                                           
3
 All number quoted below assume a harmonized amortization period (20 years). 
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Decomposition method for comparison of studies 

In order to understand uncertainty of GHG emissions due to ILUC, it is 

important to understand the main steps (components) in the analysis of 

indirect land use change as well as the availability of scientific evidence for 

these components. Insight in the main components is also required for 

understanding outcomes of different studies, even though most studies do not 

present their results in a manner enabling precise decomposition.  

Decomposition approach 

Based on decompositions accomplished in some relevant ILUC studies such as 

Valin et al. (2015), Laborde (2011), Searchinger et al. (2015) and Malins et al. 

(2014), an attempt has been made to integrate these into one framework. The 

main purpose is to compare the most important studies and to make clear 

where the main causes of uncertainty come from. 

The basic idea of this approach is a stepwise decomposition of the biofuel 

feedstock land use by starting with a gross feedstock area per GJ and resulting 

in the net land use change after taking into account the following impacts: 

 Gross land use of the biofuel feedstock 

 Reduced area because of co-production of by-products 

 Reduced area because of reduced demand for non-biofuel crops  

 Reduced area because of increase in yields of both biofuel feedstocks and 

other agricultural commodities 

 Relocation of production to areas or crops with different yields 

Some studies only focus on the change in crop area, while other studies also 

include permanent grassland or managed forest area4 explicitly in their analysis. 

In order to come from net cropland expansion towards GHG emissions from 

ILUC, it must also be determined which types of land are converted to cropland, 

and to have knowledge of carbon stock and carbon sequestration potential for 

all land use types. 

 

                                           
4
 This is a land use category defined in the GTAP-AEZ database (CARB 2009) that is for example used in the 

general equilibrium model MIRAGE (Laborde et al. 2014). 
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Uncertainty analysis/ quantification 

Empirical information of these 5 most relevant components for ILUC 

quantification is limited.  

Uncertainty about the yield trend has relatively small consequences for ILUC 

compared with the other factors. ILUC is more or less proportional to the area of the 

biofuel crops per GJ of biofuel. 

Reduced area because of increase in yields of both biofuel feedstocks and 

other agricultural commodities is challenging to estimate. Econometric 

estimates based on sound instrumental variable econometric techniques suggest 

small yield elasticities compared with area elasticities and therefore a small area 

reduction because of yields. However, these econometric estimates provide short-

term effects, while most economic models assume that long-term effects are much 

larger. 

Reduced demand for non-biofuel crops can reduce ILUC in one third or a half. 

However, studies like Searchinger et al. (2015) and Malins et al. (2014) doubt if the 

impact of reduced non-biofuel demand should be allocated to ILUC reduction for 

biofuels because the reduction in GHG emissions is the consequence of reduced 

consumption of non-biofuels such as food and feed while others bear the cost of 

creating this GHG benefit. According to them, it should at least be made explicit 

what share of ILUC reduction is caused by reduced consumption of non-biofuels. 

Furthermore, Schmidt et al. (2015) suggest that the consumption effect should not 

be included because in the long term agricultural supply is almost perfectly elastic. 

Persson (2016) suggests that there is still considerable uncertainty around how 

prices are affected by biofuel demand.  In order to predict in a better way both 

current and future impacts of biofuel demand, improvement of models and data, 

improved understanding, and empirical evidence for price elasticities is necessary. 

In addition, mechanisms for price transmission in international markets, and better 

capture of forces (including policies) that shape the future expansion of cropland 

should be understood better.5  

Furthermore, a lot of uncertainty exists related to the type of land converted by 

agricultural expansion and its GHG emissions (including how much carbon is 

                                           
5
 There is also an extensive literature on food security consequences of biofuels, but not in the context of 

ILUC analysis. 
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emitted with land clearance, or the amount of carbon emissions because of peatland 

development). However, some researchers, especially Plevin et al. (2015), suggest 

that this uncertainty is less than the economic effects incorporated in the by-

product, yield and consumption effect. 

Uncertainty related to relocation of production to areas or crops with different 

yields has not been analysed in detail, and is in most cases only implicit in the 

reporting of ILUC results.  

Nine studies include detailed ILUC GHG uncertainty analyses. Most studies apply 

Monte Carlo analyses by varying systematically a number of parameters in the 

model, and the outcome is in most cases that the spread is very large. Most authors 

conclude that it is not plausible that uncertainty will be narrowed down in the 

near future. 

By-products accounting in ILUC 

All studies take by-products into account. Most non-economic approaches 

distribute land use of the feedstock area over biofuels and by-products (with feed 

being the main by-product) based on weight or energy share, but in more 

complex economic models substitution between by-products (i.e. rapeseed cakes, 

DDGS) and alternative animal feed are explicitly modelled.  

In economic models the production of by-products may generate very complicated 

substitution processes, where for example production of rapeseed oil in the EU may 

result in reduction of soy cakes (by-product of soybean oil production) and 

consequently in reduction of soybean production in Brazil.  Reduction of soybean oil 

production leads to expansion of palm oil production in Malaysia and Indonesia as 

palm oil is the cheapest substitute of soybean oil. These results depend 

fundamentally on assumptions about substitution possibilities between different 

types of animal feed and between different types of vegetable oil. In most economic 

model studies, there is not an explicit comparison of results with and without biofuel 

by-products. Also, Lywood (2013) uses a complex substitution approach for by-

products. Compared with the economic studies, it shows a different perspective on 

the substitution process in animal feeding and the consequence of reducing soy 

vegetable oil production. As a result, it comes to findings that are more positive on 

the consequences of rapeseed biodiesel production for GHG emissions. 

Detailed assessments (based on hybrid-LCAs or bottom-up calculations) highlight 

that different by-product accounting methods lead to very different ILUC factors. 
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Some researchers suggest that ambiguities and different interpretations of 

calculation procedures in existing legislative frameworks, may lead to widely ranging 

ILUC factors. 

Factoring in the impacts of non-biofuel policies  

In general, in ILUC studies little or no information is available about the 

consequences of other EU-policies on ILUC GHG emissions. Global 

environmental policies like deforestation and peatland drainage prevention policies 

are sometimes modelled by reducing the amount of high carbon land available for 

conversion into agriculture or a general tax on emissions from land conversion. 

These type of studies show significant reductions of ILUC GHG emissions because no 

or less high carbon land is converted for non-biofuel uses, including agriculture. One 

study (Valin et al., 2015) refers to the “Common Agricultural Policy” (CAP) and its 

impact on the carbon stock on abandoned agricultural land, but without being it 

factored in.  

ILUC from dedicated energy crops  

Studies that evaluate the ILUC effects of advanced biofuels are rare, but the 

available studies overall show lower ILUC factors than other biofuels. Advanced 

biofuels, have a median ILUC factor of 5 gCO2-eq/MJ. Besides one study, they show 

the lowest variation in results. Negative emissions are generated if marginal 

areas6, in which the above and belowground carbon content is increased by 

perennial crops, are used. However, the way “marginal lands” are defined is 

different per study7 and this makes drawing general conclusions on negative 

emissions for dedicated cropping in marginal lands impossible. One study highlights 

that negative emissions could also be achieved if corn stover is used. Due to the 

limited number of studies and methodologies assessing advanced feedstocks, and 

the diversity of lands included in the “marginal land” group, it is not possible to 

make statements on the robustness of the results. 

                                           
6
  FAO definition for marginal land: Land having limitations which in aggregate are severe for sustained 

application of a given use. Increased inputs to maintain productivity or benefits will be only marginally 
justified. Limited options for diversification without the use of inputs. With inappropriate management, risks 
of irreversible degradation.  
7
 Many different names are used to designate lands in terms of their production capacity - favoured, fertile, 

marginal, low potential, resource poor, high potential, fragile, vulnerable or degraded. Terms which relate to 
"marginal" areas are frequently used interchangeably and often without definition. The difficulty in 
formulating a clear definition stems from the fact that "productivity" varies according to the type of land 
use. (FAO) 

http://www.fao.org/wairdocs/tac/x5784e/x5784e05.htm#2.1. marginal lands
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The main feedstocks studied reporting ILUC GHG emissions include: 

 Forest residues: Valin et al. (2015) report 17 gCO2-eq/MJ biofuel, these 

emissions are the result of a lower build-up of soil organic carbon. 

 Straw and stover: Overmars et al. (2015) report 2-3 gCO2-eq/MJ biofuel 

ILUC emissions; Valin et al. (2015) report 0-16 gCO2-eq/MJ biofuel ILUC 

emissions for cereal straw. Taheripour and Tyner (2013) present negative 

ILUC emissions for corn stover ethanol using the GTAP-BIO model with 

different emission factor databases (-0.9 to -1.6 gCO2-eq/MJ). 

 Switchgrass & miscanthus: Valin et al. (2015) report -12 gCO2-eq/MJ 

biofuel if grown on abandoned crop lands, negative emission caused by net 

carbon increase in above and below ground carbon compensating for the 

foregone carbon sequestration on abandoned lands. Taheripour & Tyner 

(2013) present ILUC emissions ranging from 5.8-74, depending on emission 

factor database. Mullins et al. (2011) reports a range of -10-155 gCO2-eq/MJ 

based on the 95% confidence interval of a Monte Carlo analysis of different 

parameters. Melillo et al. (2009), using the EPPA CGE model, reports very 

high values for ILUC emissions (275-285 gCO2-eq/MJ) for an aggregate of 

eucalyptus, switchgrass and poplar).  

 Short rotation plantations: Valin et al. (2015) report -29 gCO2-eq/MJ 

biofuel if grown on abandoned crop land. The negative emission is caused by 

net carbon increase in above and below ground carbon compensating for the 

foregone carbon sequestration on abandoned lands. Fritsche et al. (2010) 

provides a range of 38-75 gCO2-eq/MJ based on different assumptions of 

ILUC prevalence. 

Other indirect effects of EU biofuels policy 

The literature review described in this report focuses primarily on GHG emissions 

due to ILUC. Nonetheless, during the review, a number of studies pointed out other 

important indirect effects of biofuel production. Those are mainly focused on 

environmental impacts, especially on biodiversity, and social impacts of increased 

prices of agricultural commodities. Furthermore, concerns have been raised related 

to indirect nitrous oxide emission impacts (i.e. for production of fertilisers due to 

increased removal of agriculture residues), which may be higher than those from 

carbon loss. 
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Low-ILUC certification and ILUC mitigation options 

In order to prevent ILUC effects, different mitigation options have been discussed 

in the literature. The starting point for the inventory of low ILUC-risk biofuels is the 

definition in the ILUC Directive (EU) 2015/1513 that defines the concept as 

“biofuels, the feedstock of which were produced within schemes which reduce the 

displacement of production for purposes other than for making biofuels”. In other 

words, it concerns measures that reduce displacement, but not necessarily mitigate 

it completely.  Following, a summary overview of approaches that help to bring ILUC 

impacts down is given, and their effectiveness is discussed: 

 Prioritize the use of residues and by-products such as agricultural 

residues (i.e. straw, stover, manure), forestry residues (i.e. branches, 

stumps), by-products of the food processing industry (i.e. animal fats, peels, 

husks, molasses, etc.) and of the wood processing industries (i.e. bark, 

sawdust, cut-offs, etc.) or other types of waste and residues (i.e. demolition 

wood, organic fraction of municipal solid waste). As far as these by-products 

are unused by-products and their use does not lead to a reduction in carbon 

stock or loss of soil fertility, they can be regarded as low ILUC-risk.  Several 

studies indicate however, that when removal rates of primary residues 

exceed sustainable potentials, the resulting losses in soil organic carbon and 

fertility need to be compensated by increased use of fertilisers to prevent 

lower crop yields.  Fact that can potentially result in higher GHG emissions 

(i.e. Taheripour et al. 2013; Valin et al. 2015). Secondly, several economic 

oriented studies consider that harvesting of residues generates extra income 

and consequently may create an incentive to expand the production of main 

products, either through area expansion and/or yield increases, and this may 

have possible additional ILUC effects  (Dunn et al. 2013; Pratt and et al. 

2014; Taheripour and Tyner 2015; Thompson and Tyner 2014).   

 Prioritize the use of feedstock produced on abandoned8 , unused, 

marginal, fallow, under-utilised or polluted lands. In most studies, 

these lands are not clearly defined and this explains why these 5 terms are 

used here.  

 

                                           
8
 Land that was previously used to produce economic output (agricultural production, houses for residential 

purposes, industrial production, etc.) and that is no longer used for that purpose. Abandoned land is land in 
a not productive state, which can be reclaimed back to the original use or possibly converted to other uses, 
in case demand for such uses be. (Perpina-Castillo et al., 2015). 
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The key assumption in all studies evaluated (Valin et al. 2015; Plevin et al. 

2013; Overmars et al. 2015; van der Laan, Wicke, and Faaij 2015; Elbersen 

et al. 2013; Nsanganwimana et al. 2014; Frank et al. 2013) is that lands are 

used for the production of biomass for biofuels that would otherwise remain 

unused for the production of food, feed or biomass for non-energy purposes. 

In all studies evaluated addressing biofuel feedstock use from these lands, it 

is assumed  that  when promoting the production of many woody or grassy 

energy crops, these can be grown in areas that are not suitable for 

conventional crops, livestock, and forestry, and therefore do not compete 

with other land uses (marginal land). These crops include perennial grasses, 

such as switchgrass, miscanthus, mixed prairie grasses or short rotation 

coppices, such as eucalyptus or poplar. When carbon sequestration by the 

biofuel crop is larger than the carbon sequestration on the abandoned and/or 

unused degraded land, ILUC effects may even be negative. Whether the 

different types of lands that can be used for biomass crops are really unused 

and suitable for biomass production (and no food crops) is simply assumed in 

all studies evaluated on this issue (Valin et al., 2015; Plevin, 2013; Frank et 

al., 2013; Elbersen et al., 2013; van Laan, 2015). Furthermore, if the study 

predicts ILUC emissions to be 0 or negative it implies that it is assumed that 

the carbon value of the biofuel feedstock is higher than the carbon value in 

the original (natural) vegetation on the “unused” lands. This again is more 

based on assumptions than on real empirical evidence, since the exact 

vegetation status and carbon build up is not well studied for lands that are 

expected to be unused.       

 To increase agricultural yields, since improving the efficiency of 

agriculture will avoid conversions of natural vegetation and associated 

undesirable effects on biodiversity and GHG emissions from land use change. 

As far as the yield increase is on the area of biofuels, this is included in LCA 

analysis, but if it is on crops for other purposes, it is not, even though it is 

relevant for the calculation of net GHG emissions, and thus for the ILUC 

effect allocated to biofuel pathways. Furthermore, increased demand for 

biofuel feedstock may lead to higher prices that may also stimulate overall 

yield increases in agricultural lands. It can therefore be concluded that yield 

increases should not be focussed on biofuel crops only, both in allocating 

GHG mitigation and emissions.  
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Furthermore, policies will be more effective in bringing down land use 

conversions when applied to the whole agricultural sector and not the biofuel 

sector alone.  

 To protect areas with high carbon stock and/or high biodiversity values. 

The benefits of protection of natural vegetation and lower ILUC emissions 

from food and biofuels production cannot be allocated to the production of 

biofuels only, unless these policies are implemented as part of the policies 

that stimulate the sustainable production and use of biofuels. Moreover, the 

protection of natural vegetation may limit the ILUC emissions of biofuels, but 

this may also lead indirectly to a trade-off with higher food prices and impact 

on food consumption. 

Conclusions 

ILUC factors identified in the literature vary significantly across biofuel pathways, 

studies, or even within studies. Studies that have investigated parametric 

uncertainty conclude that parametric uncertainty has a significant effect on the 

outcomes. As a consequence of all the uncertainties in the components of ILUC 

emissions, it is very difficult to narrow them down. 

Low ILUC-risk feedstocks, especially residues from forestry or agriculture as 

well as dedicated energy crops may be relatively promising, but it has to be taken 

into account that sustainable supply potential may be limited for the use of residues 

due to impacts to other uses of the residues or indirect carbon loss in agricultural or 

forestland. As for dedicated cropping on unused lands, it is important that a further 

evaluation is done about the extension and status of lands that can potentially be 

regarded as “unused, abandoned, marginal or polluted”. The studies that evaluate 

the ILUC effects of these options (Valin et al., 2015;  Plevin et al., 2013; van der 

Laan, Wicke, and Faaij, 2015; Mullins, Griffin, and Matthews, 2011; Overmars et al., 

2015; Fritsche, Hennenberg, and Hünecke, 2010) are mostly based on assumptions 

regarding status, extension and the current natural vegetation present on these 

areas, rather than on empirical evidence. Uncertainty about how much land can 

eventually be converted to cropland is also confirmed by a study by Eitelberg, van 

Vliet, and Verburg (2015). 
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In general, it can be concluded that the certification of low ILUC-risk biofuels, as 

defined in the Directive (EU) 2015/15139 is possible as there are indeed, several 

options for using feedstock for biofuels that have low displacement effects as 

compared to most conventionally used cropped feedstocks used for current 1st 

generation biofuels. However, the evaluation of low ILUC-risk biofuel related studies 

also indicates that it is unlikely to be able to prevent all negative indirect effects 

through low ILUC-risk biofuels certification. On the other hand a ban on 

unsustainable land conversion for biofuel production, results in extra pressure on 

land for other purposes, and therefore, also in extra unsustainable land conversion 

for these other purposes.    

Additional measures beyond the scope of certification, continue to be needed, 

such as integrated land use planning, including protection of natural vegetation. 

                                           
9
 In Directive (EU) 2015/1513 low ILUC risk biofuels and bioliquids are defined as “biofuels and bioliquids of 

which the feedstocks were produced within schemes which reduce the displacement of production for 
purposes other than for making biofuels and bioliquids and which were produced in accordance with the 
sustainability criteria for biofuels and bioliquids set out in article 17 of Directive 2009/28/EC on promotion of 
the use of energy from renewable sources.   
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1. Introduction 

The European Union (EU) developed a renewable energy policy in order to fulfil its 

commitment to mitigate GHG emissions, as well as to promote security of energy 

supply, technological development and innovation, opportunities for employment and 

regional development, especially in rural and isolated areas or regions with low 

population density.  

The Renewable Energy Directive (RED) sets a target of 10% renewable energy in 

transport by 2020, the majority of contribution for reaching this target is coming from 

biofuels. The EU mandatory sustainability criteria for biofuels and bioliquids do not 

allow the raw material for biofuel production to be obtained from land with high 

carbon stock or high biodiversity. However, this does not guarantee that as a 

consequence of biofuels production such land is not used for production of raw 

materials for other purposes.  

If land for biofuels is taken from cropland formerly used for other purposes or by 

conversion of grassland in arable land for biofuel production, the former agricultural 

production on this land has to be grown somewhere else. And if there is no regulation 

that this must happen sustainably, land conversion of land for production may happen 

on land which is not allowed to be used under the EU sustainability criteria for 

biofuels. This conversion may take place in other countries than where the biofuel is 

produced. This is called indirect land use change (ILUC). In 2015, it was decided 

that measures to reduce ILUC will also be included in the RED, although the ILUC 

factors are included only for reporting requirement. 

This report will provide inputs for the reporting requirements under Article 3 of the 

European Union’s Directive (EU) 2015/1513 of 9 September 2015 by 

summarizing and interpreting the available  and best available scientific evidence on 

ILUC GHG emissions associated with the production of biofuels and bioliquids and the 

latest available information with regard to key assumptions influencing the results 

from modelling of the ILUC GHG emissions associated with the production of biofuels 

and bioliquids. It will also analyse the scientific evidence on measures (introduced in 

the directive or not) to limit indirect land-use emissions, either through promotion of 

low ILUC-risk biofuels or more general measures. 
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Besides the report will also provide inputs for Article 23 of the revised European 

Union’s Directive 2009/28/EC (RES Directive) on the latest available information 

with regard to key assumptions influencing the results from modelling ILUC GHG 

emissions, as well as an assessment of whether the range of uncertainty identified in 

the analysis underlying the estimations of ILUC emissions can be narrowed down, and 

if the possible impact of the EU policies, such as environment, climate and agricultural 

policies, can be factored in. An assessment of a possibility of setting out criteria for 

the identification and certification of low ILUC-risk biofuels that are produced in 

accordance with the EU sustainability criteria is also required. 

What is ILUC? 

The cultivation of crops requires land. Production of biofuels increases demand for 

crops that needs to be satisfied either through intensification of current production or 

by bringing non-agricultural land into production. When new cropland is created for 

the production of biofuel feedstock, this land conversion is called direct land use 

change, or DLUC. When existing cropland is used for biofuel feedstock production, 

forcing food, feed and materials to be produced on new cropland elsewhere, this 

expansion is called indirect land use change, or ILUC. 

Direct land use changes can be directly observed and measured, and exclusively 

linked to the life cycle of the bioenergy product that can be expressed in direct GHG 

emissions. For biofuels in transport, the most common boundary of the life cycle is 

from the growth of the biomass to its application as fuel. This well-to-wheel method is 

applied to determine direct GHG emission and environmental impacts. The EU RED 

requires that for the calculation of the GHG emissions and GHG emission savings 

compared to fossil fuels, only the direct land use change emissions need to be 

included in accordance with the IPCC methodology.  

In the situation where the biofuel crop is grown on existing productive lands, it is likely 

that the original crop (or other productive land use) would (at least partly) have to be 

produced elsewhere. This is the starting point for the indirect land use change 

effects. Firstly, the new demand displaces existing production which needs to be 

produced elsewhere. This displacement leads directly or indirectly (through a number 

of other displacement steps) to conversion of natural (i.e. (tropical rain) forests, 

savannah and wetlands) and semi-natural lands (i.e. extensively grazed grasslands) 

into agricultural land10 for non-biofuel production purposes. Secondly, part of the 

demand is absorbed through intensification of existing land uses.  

                                           
10

 Any area taken up by arable land, permanent grassland or permanent crops (CAP Glossary) 
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The incremental use of land for agricultural production, whether a result of demand for 

biofuels, food, feed or other non-food applications, leads directly or indirectly to an 

increase of GHG emissions and to loss of natural habitats with adverse effects on 

biodiversity and ecosystem services. Indirect effects of additional bioenergy feedstock 

demand do not only cover indirect land use changes, but also affect agricultural 

commodity prices, with potential consequences for food security and demand-induced 

yield increases – where the additional demand for the feedstock triggers additional 

yield increases. 
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2. Scientific ILUC research review. Overview and Methodology 

In order to provide a systematic analysis of the latest available scientific research and 

the latest available scientific evidence on ILUC GHG emissions associated with the 

production of biofuels, focus was put on the literature published in 2012-2016 period, 

and included also the main landmark studies11 on ILUC published before 2012.  

The literature review included peer reviewed scientific articles as well as grey 

literature such as reports from influential organisations, working papers and 

conference proceedings. The search was conducted using academic search engines, 

google and by reviewing publication lists of important consultancies, international 

organizations, institutes, NGOs and governmental organizations. In order to ensure 

that the literature provides insights relevant for potential future biofuel/bioenergy 

possibilities, no constraints were placed on feedstocks or conversion technologies (1st 

generation, advanced biofuels, bioliquids for power, heat, etc.). The initial search 

was not constrained to any geographic scope in order to maximise the number of 

returned literature, however studies focusing on EU biofuel policies were given a 

priority. Furthermore, authors approached their extensive network of contacts in order 

to get information on the latest research carried out at national level by EU Member 

States, as well as other countries. Initially contacts in 25 countries were contacted. 

However, the response rate was very low. Contacts which did respond highlighted the 

importance of influential reports and peer reviewed literature which was already 

included in our literature search. Besides, a survey was launched to the ILUC related 

scientific community aiming at further complete the scientific literature review. 

Reports and peer reviewed literature compiled from the survey were included in the 

database.  

The initial literature search returned 1248 entries. This literature was narrowed down 

through a 1st preselection which excluded studies focusing on aspects which were 

not of direct interest to this study, i.e. studies focusing on biodiversity, water, air 

quality, or (indirect) land use changes from drivers other than biofuels/bioenergy. 

Furthermore, in order to aid data gathering the 1st preselection divided the eligible 

literature between studies containing detailed quantitative information (such as GHG 

emission factors, uncertainty values, etc) and studies that did not. After this 1st 

preselection, there were 191 documents with detailed quantitative information and 

337 other eligible documents. 

 

                                           
11

 Landmark studies are identified as the most cited relevant literature. 
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Table 1 Summary and figures of ILUC literature search. Source: Own elaboration 

1st Search 1st Preselection 2nd Preselection 

1248 559 302 

Landmark 31 31 

Quantitative 191 105 

Non- Quantitative 337 166 

 

A 2nd preselection was conducted in order to limit the number of studies to those 

which would help identifying causes, effects, determinants and mitigation of ILUC for 

biofuel/bioenergy production. This was done to filter out studies that, even though 

relevant for ILUC science, did not provide enough information in order to allow for the 

detailed analysis required by the matrix, (see Appendix 1: Matrix details). The 2nd 

preselection yielded 105 eligible studies providing quantitative information, 166 

providing non-quantitative information, as well as 31 pre-2012 landmark studies.  

All eligible quantitative and landmark literature from the 2nd preselection underwent a 

detailed review in order to extract relevant information. Data gathered is outlined in 

Appendix 2: Summary Matrix, and was compiled in a spreadsheet database. The 

literature identified in the 1st preselection is also included in the Matrix, without 

however including detailed insights. 

Among the studies from the 2nd preselection, the vast majority of ILUC related 

scientific research are Peer-Reviewed papers. The studies primarily focus on Europe 

and the United States, which together account for more than 80% of the output. 

They are followed by Brazil which is significantly behind at 7%. Within Europe, the 

Netherlands and Germany accumulate most of ILUC research (22% and 20% 

respectively). These are followed by United Kingdom, Austria, Belgium France and 

Spain. 

Among the main purposes of the 

available ILUC research, most of 

the papers aim at addressing 

Policy Impact Forecast, 

followed by Preventive or 

Mitigation Measures. The next 

most important topic is 

Identification of Biofuel Potential, 

while Regulatory issues are the 

least addressed. From the latest 

available research, most of the 

Figure 2 Classification of modelling studies. 
Source: Own work. 

Source: Own work. 
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studies are Model Projections (including hybrid LCA). Review Studies, Case Studies 

and Discussion or Methodological Studies follow, all of which have a very similar 

proportion. Regarding type of modelling, Economic Modelling is the most 

widespread, with a similar proportion of General Equilibrium and Partial Equilibrium 

models. Following are Deterministic (causal descriptive and empirical) approaches and 

LCA.  

Among studies focusing on specific policy targets, these usually evaluate the EU-RED 

and US-RFS. However, a very important part of the research does not indicate if and 

which policy measures are accounted for. Therefore, it is very risky to extract 

conclusions on this topic. Regarding the type of biofuels most commonly studied in the 

most recent ILUC research, those are focused in 1st Generation Biofuels, or cover 

1st and 2nd Generation Biofuels. In relation to the feedstocks covered, more than 

half cover the most important 1st generation crops such as corn, sugarcane, 

rapeseed, soybean, palm and wheat. Just over 10% of the reviewed studies cover 

advanced feedstocks such as SRC, forest residues or miscanthus. 

The most common demand regions considered in ILUC research studies are Global, 

EU or US demand. Concerning supply regions, Brazil is usually also included. 

However, it is important to note that a large portion of the reviewed literature (≈30%) 

does not state the geographic focus and therefore, it is very hazardous to extract 

conclusions on this topic.  

Although all studies take by-products into account, only a minor amount of research 

clearly indicates the consideration and accounting of by-products. In relation to 

uncertainty, this is explicitly considered in less than half of the reviewed ILUC 

research. It is addressed by different means such as sensitive analysis, or use of 

different scenarios. 

ILUC quantification methods 

ILUC cannot be measured or quantified directly and therefore has to be 

modelled. To quantify GHG emissions from ILUC in models, quantitative relations 

need to be established between (1) the additional biomass feedstock production and 

respective conversion of previous land use, and (2) the displaced agricultural 

production and its direct LUC effects. 
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Relation (1) can be derived from general or partial equilibrium, economic models for 

agricultural production that simulate the trade relations between countries, 

commodities, and markets, and can compute changes in land use. It is important to 

note that these models quantify the total land use changes, not splits between DLUC 

and ILUC; splits between ILUC and DLUC can only be made when DLUC is quantified 

by other means. For (2), biophysical models are needed to derive direct LUC effects 

and the respective CO2 emission balance. Thus, the quantification of GHG emissions 

from ILUC requires the coupling of very different models and compatible spatial, as 

well as time, resolutions. 

Model projections tend to project different futures, or scenarios. These are usually 

differentiated across intervention and no-intervention in order to investigate the effect 

of the said intervention. Interventions include biofuel policies such as EU-RED or US-

RFS; land use constraints and policies such as UN REDD Programme (United Nations 

Collaborative Programme on Reducing Emissions from Deforestation and Forest 

Degradation in Developing Countries); policies aimed at meeting strict climate goals; 

availability and improvement of (specific) biofuel technologies;  or, combinations of 

the above. 

Besides interventions, it is important to note that the results depend on a number of 

further model assumptions. These include projected trade patterns, substitutability 

of agricultural products, yield elasticities and consumption elasticity. These are all very 

uncertain and the harmonisation of models and methods, which would allow for a 

better understanding of “model uncertainty”, is notoriously difficult. As such, each 

model tells a different story. 

The vast majority of studies make projections 5 to 30 years into the future, while 

studies whose main focus is climate policy tend to have a long term time horizon, 

mostly 2050 or 2100. Depending on the model and scope of the study, geographic 

ranges cover country, multi-country (usually having a “demand” country and multiple 

“supply countries) or global (defined by multiple regions).  

Following a comparative analysis of different approaches and methodologies to 

evaluate (I)LUC GHG emissions of biofuels is presented. For each of the methodologies 

used nowadays, the main rationale and scientific evidences behind are compared, 

followed by the uncertainties and sensitivities that these present. Finally the main 

models used in each approach, as well as the geographic scope are presented. 

Finally the range of GHG ILUC results modelled in each of these approaches are 

presented. 
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Table 2 Comparative analysis of different approaches and methodologies to evaluate (I)LUC GHG emissions of biofuels. Source: Own elaboration 

Methodology12 
Scientific 
Evidence 

Main sources of 
uncertainties 

Main 
sensitivities 

Models 
Geographic 

Scope 

Ranges of 

ILUC 
results 

(gCO2-eq /MJ) 
Including 

outliers
13 

Key References 

Partial 
Equilibrium 

(PE)  
Models 

Based on the concept 

of “economic 
equilibrium”, i.e. 
supply and demand 
are equilibrated 
through price 
adjustments. 

Econometric analysis 
dictates this 
behaviour. 

The models tend to take a 

regional or global perspective 

and suffer from uncertainties 
arising from aggregation: 
- Crop yields, particularly 
marginal crop yields. Indirect 
effects on food consumption. 
-Broader indirect effects on the 

overall economy. Especially 
food consumption 
- Land use change emission 
factors. 

Feedstock type. 
i.e. use of 

maize leads to 
higher ILUC 
effects, 
compared to 
other crops. 

- CARD-
GreenAgSim 
- FAPRI  
- FAPRI-CARD 
- GLOBIOM 

 

Regional or 
global. 
Mostly 
covering 
the EU and 

US. 

Biodiesel: 
 -10 – 400 

1st Gen. 
bioethanol: 
-75 – 213 
Advanced: 
-30 – 30 

(Dumortier et al., 2011; 
Edwards, Mulligan, & 

Marelli, 2010; Mosnier et 
al., 2013a; Richard J Plevin 
et al., 2010; T. Searchinger 
et al., 2008; Valin et al., 
2015) 

General 
Equilibrium 

(CGE) 
Models 

Similar to PEs but 
accounting for the 
entire economy.  
Thus include further 

economic feedbacks 
ignored by PEs. These 
are based on input-
output tables (i.e. 
social accounting 
matrices) with flows 

usually measured in 

monetary terms. 

Similar to PEs, except that 

since CGEs include the 
broader economy: 
- Their characterisation of 
agricultural and energy 
systems is even more 
aggregate. 

- Substitution based on 
elasticities (CET). 
- Parameterisation very 
uncertain. 

- Land constraints and land 
aggregation methods. 

Parametric 
uncertainty shows 
that 90% of results 
are ±20 gCO2-eq/MJ 

from the mean 
(within a single 
study). 

- MIRAGE 
- IFPRI MIRAGE 

- LEITAP 
- GTAP 
- GREET-GTAP-
BIO-ADV 
 
 

Regional or 

global.  
Mostly 
covering 
the EU and 
US. 

Biodiesel:  
27 – 107 
1st Gen. 
bioethanol: 

1 – 155 
Advanced: 
272 – 285 

(Al-Riffai, Dimaranan, & 

Laborde, 2010; Edwards et 
al., 2010; D Laborde, 2011; 
David Laborde, Padella, 
Edwards, & Marelli, 2014; 
Melillo et al., 2009; Moreira, 
Gurgel, & Seabra, 2014; 

Richard J Plevin, Beckman, 
Golub, Witcover, & O’Hare, 
2015; Farzad Taheripour & 
Tyner, 2013; W. Tyner, 

Taheripour, Zhuang, Bidur, 
& Baldos, 2010) 

                                           
12

 PE and CGE models are also combined with biophysical models which determine changes in carbon stocks based on the land-use changes projected by the economic models. 
13

 These values assume a harmonized amortization period of 20 years. 
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Methodology14 
Scientific 
Evidence 

Main sources of 
uncertainties 

Main 
sensitivities 

Models 
Geographic 

Scope 

Ranges of 
ILUC 

results 
(gCO2-eq /MJ) 

Including 

outliers
15 

Key References 

Integrated 
Assessment 

Models 
(IAM) 

Aim to account for the 
long term and global 

interactions between 
human and natural 
systems by adopting 
a systems-dynamic 
approach combining 
land-use, energy, 

nutrient, societal and 
climate systems.  
No standard 
methodology, usually 
a combination PE, 
CGE, CD and LCA 

methods.  

- As these models aim to 
show long-term dynamics, 
uncertainties include the 
future development of key 
drivers (population, 

economic growth, etc.). 
- Uncertainties due to 
increased aggregation. 
 

Future energy and 
agricultural 

demand. 

- GCAM 
- GLOBIOM-
PRIMES-EPIC-
G4M 

-ReMIND/ MAgPie 
- IMAGE 
 

Global 

Results 

usually 

presented in 

changes in 

land 

demand. 

(Kraxner et al., 2013; 

Meller, van Vuuren, & 
Cabeza, 2015; Popp et al., 
2014; Wise, Dooley, 
Luckow, Calvin, & Kyle, 
2014) 

Causal 
Descriptive 

(CD)  
Models 

Extrapolations of 
observed  trends and 
assumptions of future 
trade patterns, 
displacement ratios 

and incremental land 
use. These methods 
were developed in 
order to simplify data 
intense and complex 

economic models. 

Key assumption is that 
current patterns are an 
adequate proxy for 

potential future ILUC. Thus 
they do not account for 
economic feedbacks which 
may arise. 

Unclear due to 

limited number of 
studies. 

Original methods 

- EU, 
Canada, 
Ukraine. 

- EU, US, 
Brazil, 
Argentina, 
Indonesia. 

Biodiesel:  

18 – 101 
 

(Baral & Malins, 2016) 

                                           
14

 PE and CGE models are also combined with biophysical models which determine changes in carbon stocks based on the land-use changes projected by the economic models. 
15

 These values assume a harmonized amortization period of 20 years. 
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Methodology16 
Scientific 
Evidence 

Main sources of 
uncertainties 

Main 
sensitivities 

Models 
Geographic 

Scope 

Ranges of 
ILUC 

results 
(gCO2-eq /MJ) 

Including 

outliers
17 

Key References 

Hybrid Life 
Cycle 

Assessment 

(LCA) 

Contains detailed 

information on 
techno-economic 
parameterisation. 
Limited understanding 
of land use change 
dynamics. 

Typically, LCAs ignore 

indirect effects. Some 
studies overcome this by 
combining them with 

economic modelling 
(Hybrid LCA).  

- Results sensitive 
to allocation of ILUC 

to all products of a 
given process, or to  
biofuel only. 
- Technological 
setups and 
feedstock 

possibilities. 

Consequential 
LCAs and Hybrid 
LCA 

Multiple, 
depending 
on study. 
Always 
local. 

Biodiesel:  

1 – 79 
1st Gen. 
bioethanol: 
4-113 
Advanced: 
-23 – 155 

(A.A. Acquaye et al., 2011; 

Adolf A Acquaye et al., 
2012; Bento & Klotz, 2014; 
Boldrin & Astrup, 2015; 
Mullins et al., 2011; 
Prapaspongsa & Gheewala, 
2016) 

Empirical 
Approaches 

Based on case studies 
and interpreting 
historical 
observations. 

Counterfactual if biofuels 
had not been produced. 
Assumptions are usually 
based on past behaviour. 

Extremely sensitive 
on assumptions 
about reduced 
allocation rules of 

ILUC factors (similar 
to LCAs), as well as 
changes in 
behaviour, 
particularly changes 
in cattle stocking 
rates and reduced 

meat consumption. 

- IMAGE 
- In field 
measurements 

Case 
studies 
focused in 

Brazil, 
Malawi and 
Germany. 
IMAGE 
used in a 
global 
study. 

Biodiesel: 

 -94-257 
1st Gen. 
bioethanol: 
1 – 154 

Advanced: 
0 - 75 

(Dunkelberg, 2014; 

Fritsche, Hennenberg, et al., 
2010; Lywood, 2013; 
Overmars et al., 2015; 
Overmars, Stehfest, Ros, & 
Prins, 2011) 

                                           
16

 PE and CGE models are also combined with biophysical models which determine changes in carbon stocks based on the land-use changes projected by the economic models. 
17

 These values assume a harmonized amortization period of 20 years. 
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3. Types of ILUC studies and objectives 

3.1. Review Studies 

In order to understand and state-of-the art overview of a specific topic, review studies 

are very useful. Review studies bring together and analyse writings, knowledge 

and views on a specific topic. Prior to 2012, the effects of ILUC were still 

uncertain. Nevertheless, the existence of the ILUC effects was recognized, as well the 

need to observe and quantify them. In addition, the necessity for developing and 

applying harmonized sustainability criteria was acknowledged. As modelling studies 

were increasingly published, research was done on identifying uncertainties of 

modelling ILUC. 

Since 2012, though ILUC continue to be an important topic of research, progress has 

been limited: apparently there is still a need to understand and evaluate claims about 

ILUC, as some studies are focusing on identifying and exploring the key factors which 

determine the amount of ILUC happening in the real world. Regarding quantifying the 

GHG of ILUC by modelling it, this area of research has progressed, and the differences 

in modelling approaches have been described and identified. Nevertheless, it is 

documented that the ILUC GHG emissions results depend on the model used, where 

the differences in results range a lot. In this regard, it has been acknowledged that 

there is still no way to determine which of the many models yields the most reliable 

overall carbon intensity. 

Table 3 . Review studies (Landmark and post-2012) focusing on the calculation and effects of ILUC. 
Source: Own elaboration 

Study Aim and main findings 

Gibbs et al. (2008) 
An analysis of direct carbon impacts of crop based biofuels into tropical 
ecosystems finding that this expansion will lead to net carbon emissions for 
decades to centuries. 

Cherubini et al. 
(2009) 

Review of bioenergy LCA. Explains ranges in indirect effects with respect 
methods employed, concluding that the use of advanced feedstocks, as by-
products, and higher yields are necessary in order to reduce net emissions. 

Liska & Perrin (2009) 

Review of ILUC methods, uncertainties and conclusions of the main ILUC 

research. Points out the necessity for additional and improved research including 
case studies. 

Cherubini & 
Stromman (2010) 

Review of LCA studies, highlighting the lack of ILUC in these analyses. 

Fargione et al. 
(2010) 

Review of ecological impacts of biofuels, including ILUC. 

Fritsche, Sims, et al. 
(2010) 

Review of current state of GHG emission calculation of bioenergy. Proposes 
options to reduce LUC and improve its accounting. 

Solomon (2010) 
Review of biofuels in the context of sustainability science concluding that  though 
biofuels have an important role to play, there is a need for sustainability criteria. 

Van Dam et al. Review the certification of biofuels and bioenergy. Highlights the necessity for 
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(2010) increased international harmonisation, monitoring and control.  

Gawel & Ludwig 
(2011) 

Covers state of ILUC discussion highlighting the “ILUC” dilemma, i.e. neglect 
ILUC effects or take them into account despite the lack of a sound methodology. 
The study suggests to avoid ILUC as much as possible by focusing on the use of, 
for instance, residues. 

Harvey & Pilgrim 
(2011) 

Review of demand drivers for food and fuels, and consequent (I)LUC. Highlights 
the need for integrated approaches in research and policy making. 

Scarlat & Dallemand 
(2011) 

Review of the certification of biofuels and bioenergy. Highlights the requirement 
for international harmonisation, monitoring and control. 

Djomo & Ceulemans 
(2012) 

Reviews models and approaches to quantify (I)LUC, focusing on the variability in 
results. They highlight that it is unclear which of the results was most 
appropriate. 

Ben Aoun et al. 
(2013) 

Review of methodologies to include LUC effects in LCAs. Finds that LCA should be 
adapted and combined to other tools in order to provide a more reliable 
assessment of the biofuels chain. 

Broch et al. (2013) 
Reviews approaches and databases in order to determine their effects on ILUC 
variability, highlighting that variability is very high but ILUC values have 
decreased since Searchinger (2008). 

Plevin et al. (2013) 
Reviews the ILUC projections of different economic models. Concludes that ILUC 
can be reduced by limiting competition between bioenergy feedstocks and other 
high-demand commodities.  

Malins et al. (2014a) 

Reviews how ILUC factors determined in models are used for regulatory 
purposes. Reduces ILUC to six key factors: elasticity of food demand to price; 
elasticity of yield to price; crop choices; co-product use; elasticity of area to 
price; carbon stock of new lands. 

 

Besides, since 2011 a number of studies have been published discussing the 

appropriateness and limits of quantitative methods concerning ILUC 

calculation. These studies take the form of methodology comparisons and evaluation 

of the underlying assumptions, highlighting key uncertainties and knowledge gaps. 

An over-arching insight from such comparisons is that it is difficult to judge which 

method/model is most appropriate as results/methods may not be comparable. Key 

differences in model parameterization (i.e. elasticities) and assumptions (i.e. 

amortization period, regional/land cover/biofuel definitions) pose further obstacles for 

comparison. Instead it is more appropriate to highlight strengths and weaknesses 

of different methods.  

In partial and general equilibrium models weaknesses arise from the underlying 

datasets which describe the social accounting matrices (SAM), the elasticities and 

biophysical properties of newly converted land (yields, carbon contents). Particularly 

for elasticities, these are usually based on historic data and thus implying that future 

projections are an extrapolation of observed trends. However, institutional changes 

such as sustainability criteria and land market regulations will affect the functioning of 

land markets.  
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Table 4 . Studies analysing and comparing ILUC study methods. Source: Own elaboration 

Study Aim and main findings 

Djomo & Ceulemans (2012) 
Reviews models and approaches to quantify (I)LUC, focusing on the 
variability in results. Highlights that it is unclear which of the results was 
most appropriate. 

Wicke et al. (2012) 

Provides an overview of the current status of ILUC modelling approaches 
highlighting their criticalities and uncertainties. Suggests that despite 
recent improvements and refinements of the models, large uncertainties 

still exist. 

Kloverpris et al. (2013) 
Suggests that estimates of ILUC are heavily influenced by assumptions 
regarding the production period and ignore key elements. 

Gohin (2014) 

Quantifies the effect of crop yield elasticities on LUC in the GTAP and 
FAPRI models. The study shows that across models the sensitivity to 
yield assumptions are not comparable because land and production 
elasticities assumptions are not comparable. 

Næss-Schmidt & Hansen 
(2014) 

Analyses the amplitude of ranges of results obtained with various models 
showing that little improvement has been achieved since 2012. 

Panichelli & Gnansounou 
(2015) 

Critical comparison of models in order to identify key modelling choices 
for assessing LUC-GHG emissions. Concludes that a compromise needs 
to be found between consistency and complexity that simultaneously 
captures the holistic and complex dependence of LUC-GHG emissions on 
global market forces and the specificities of local conditions. 

 

3.2. Partial and General Equilibrium models (PE/CGE) 

The starting point of economic models is the concept of economic equilibrium, i.e. 

the idea that supply and demand are equilibrated through price adjustment. Partial 

equilibrium (PE) models focus on specific sectors of the economy, which in the 

context of biofuels are the agricultural sector, the biofuel sector and sometimes also 

the forestry sector. This allows for a significant level of detail. For example, different 

management systems for crop production can be considered and explicit restrictions 

on feed composition for animals can be taken into account. Partial equilibrium models 

normally make all their calculations on physical quantities. 

Computable General equilibrium (CGE) models represent all sectors of the 

economy, but in order to keep the model manageable the level of detail of the 

agricultural sector is much lower than in partial equilibrium models. The advantage of 

the general equilibrium models is that they can take into account the interaction 

between markets in an economy, such as for example the agricultural market, the 

fertilizer market, the energy market and the food market, and can also quantify 

effects on GDP and welfare including their feedback effects.  
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In contrast with partial equilibrium models, most general equilibrium models are based 

on input-output tables, i.e. matrices that show for each sector from which sectors they 

buy inputs and to what sectors they sell their products, where everything is normally 

measured in monetary terms, implying that it is difficult to take account of physical 

relationships between quantities. The large number of interdependencies in the input-

output tables imply that elasticities of agricultural demand are indirect, i.e. through 

other sectors like the processing sectors, service sectors, etc.  

Most general equilibrium models use so-called constant elasticity of transformation 

(CET) functions for substitution between different land use types that allows for 

explicit consideration of price changes on land substitution, but is very coarse in its 

approach. Some models like MAGNET and MIRAGE (Laborde et al., 2014) include a 

land supply curve, i.e. a relationship between average land price and agricultural land 

supply, what can be seen as a substitution elasticity between agricultural land and 

non-agricultural land according to the CET approach. Recent research (Zhao, 

Mensbrugghe, & Tyner, 2017) provides an alternative for the CET approach using an 

additive version of the CET approach that makes the CET function consistent with 

physical characteristics in contrast with economic characteristics of land.  

Table 5 . PE and CGE modelling studies (Landmark and post-2012). Source: Own elaboration 

Study Aim and main findings 

Al.-Riffai et al. (2010) Investigates LUC effects of EU biofuel policies using the MIRAGE model. 

Edwards et al. (2010) 
Compares PE and CGE models under consistent scenarios, revealing a wide 
variation in ILUC factors. 

Dumortier et al. (2011) 
Sensitivity analysis on the CARD model, highlighting that uncertainty makes it 
difficult to make robust conclusions. 

Laborde (2011b) Quantifies LUC effects of EU biofuel policies using the MIRAGE model. 

Djomo & Ceulemans 
(2012) 

Review of models and approaches to quantify (I)LUC, focusing on the 
variability in results. They highlight that it is unclear which of the results was 
most appropriate. 

Bottcher et al. (2013) 
Analyses the effects of different mitigation options on land use, highlighting 
that targeting deforestation and biodiversity loss directly is most effective. 

Malins (2013) 
Performs a Monte-Carlo analysis on the MIRAGE model, highlighting that 
biofuel mandates may not decrease overall carbon emissions. 

Mosnier et al. (2013) 
Assesses the RFS2 using the GLOBIOM model highlighting that it will 
substantially increase agricultural land needed for biofuel production. 

Nunez et al. (2013) 

Quantifies the land use changes in Brazil and the USA, as well as the changes 
in commodity prices. The study shows that production of biofuel production can 
increase to 183 billion litres (from 103) with less than 2% increase in total 
cropland use. 

Oladosu & Kline (2013) 
Estimate/quantifies global LUC from USA biofuel demand using the GTAP 
model, showing lower iLUC values than previous studies. 

Taheripour & Tyner 
(2013) 

Uses the GTAP-BIO model to investigate the uncertainty of different biofuel 
production routes given different emission factor databases. Reveals that 
different databases lead to significant uncertainties for advanced biofuels. 

Kavallari et al. (2014) Evaluates sensitivity of LUC and different assumptions on blending mixes 
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between ethanol and biodiesel using the MAGNET model, concluding that the 
LUC due to RED is limited. 

Moreira et al. (2014) 
Combines an LCA (CA-GREET) and a CGE model (GTAP) to estimate life cycle 
emissions of jet fuel, showing that LUC emissions are the main contributor. 

Plevin et al. (2015b) 

Performs a Monte-Carlo analysis to quantify the parametric uncertainty of the 
GTAP model, finding that the modelling assumptions with strongest impact on 
results are the economic model parameters related to crop yield and the 
productivity of newly converted cropland. 

Searchinger et al. 
(2015a) 

Investigates the role of reduced food consumption, yield increases and price-
induced yield increases in economic models on GHG emissions, highlighting 
strong impact of assumptions related to food consumption on modelling 
results, suggesting that a substantial fraction of crops diverted 
to biofuels results in food reductions. 

Valin et al. (2015) 

Quantifies LUC GHG effects of EU biofuel policy per feedstock and different EU 
and global policy scenarios by using the GLOBIOM model. Results show huge 
ranges in LUC factors with advanced feedstocks having potentially negative 
LUC factors. 

Kristkova et al. (2016) 
Analyses the R&D budget needed to increase agricultural yields using the 
MAGNET model, showing it to be a significant fraction of the price of biomass. 

Smeets et al. (2016) 
Assesses land use effects of the use of residues and waste for energy 
production, highlighting that they may contribute to food security. 

Verstegen, van der 
Hilst, Woltjer, 
Karssenberg, de Jong & 
André P.C. Faaij (2016) 

Sensitivity analysis with the MAGNET CGE model and the PLUC land use model 
for Brazilian biofuel production. Highlights that LUC area has very high 
uncertainty. 

 

3.3. Integrated Assessment Models (IAM) 

Integrated assessment models (IAMs) have been developed as a tool to investigate 

the interactions between human and natural systems in order to evaluate the 

impacts of different policy settings. IAMs tend to have a long term (2050-2100) 

and global scope, simultaneously integrating many interrelated systems (land use, 

energy system, biophysical stock and flows, economics, demographics, etc.). Biofuel 

feedstocks usually fall under broad categories such as “agricultural crops”, “non-food 

crops” or forestry and land changes are described in aggregate terms, usually on a 

regional and biome scale. The usefulness of IAMs lies therefore in the identification of 

potential tradeoffs between systems to be considered in future research and frame 

boundaries for lower scale assessments, both in time and space. Due to the need to 

aggregate technologies, biophysical conditions and market effects, they lack important 

details and may not capture all relevant aspects appropriately. 

In a pre-2012 landmark study Melillo et al. (2009) coupled a CGE and a process based 

terrestrial biogeochemistry model into an IAM (EPPA-GTAP). This IAM was used to 

generate global land-use scenarios and explore direct and indirect GHG effects of 

possible land-use changes from an expanded global cellulosic bioenergy program over 

the 21st century, covering most of the transport fuels demand by biofuels by the end 
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of the century. Kraxner et al. (2013) combined the GLOBIOM (land use economics), 

PRIMES (energy system), EPIC (crop growth) and G4M (forestry) models into one 

IAM. While ILUC is not computed explicitly, the study focuses on how to avoid large 

scale deforestation while ramping up 1st generation and advanced biofuel production 

to very high levels in 2050. 

3.4. Causal Descriptive models (CD) 

Since 2011, a number of studies attempt to investigate ILUC from a non-

economic perspective (Baral & Malins, 2016; Bird, Zanchi, & Pena, 2013). Other 

studies place their focus on the potential of biofuels from feedstocks that would 

specifically avoid ILUC, such as abandoned lands and residues (Davis et al., 2012; 

de Wit, Lesschen, Londo, & Faaij, 2014; Diogo et al., 2014; Zetterberg & Chen, 2015). 

The findings of the above studies largely reiterate the results of economic models, 

pointing out the presence of ILUC and potential mitigating measures. 

3.5. Hybrid-Life Cycle Assessments (LCA) 

In practice, most of the LCA studies include direct effects of the production and use of 

the biofuels, but typically ignore the indirect effects, or treat them inefficiently. Even 

though some methods were proposed (hybrid LCA), they have not yet been widely 

adopted in practical applications. These types of studies move away from classical LCA 

and tend to fall under the LCA sub-category of “consequential-LCA” since they aim 

to account for marginal changes (R J Plevin, Delucchi, & Creutzig, 2014). Reviews 

of LCA studies have shown that although LCA is standardized, its application to 

biofuels leads to inconclusive results often fraught by a high variability and 

uncertainty. This is due to differences in quantifying the environmental impacts of 

feedstock production, and the difficulties encountered when considering LUC effects. 

The main conclusion being that LCA needs to be adapted and combined to other tools 

such as economic modelling in order to provide a more reliable assessment of the 

biofuels chain. In fact, both tools may complement each other. On the one hand, the 

use of results from economic models in consequential LCA would enhance the quality 

of ILUC estimation. On the other hand, complementing economic models by a LCA 

would broaden the range of environmental indicators used to assess biofuels 

performance, including local impacts such as eutrophication, air quality or 

(eco)toxicity. 
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Table 6 . (Hybrid) Life Cycle Assessment studies(Landmark and post-2012)  

Study Aim and main findings 

Cherubini & Stromman 
(2010) 

Review of LCA studies, highlighting the lack of ILUC in these analyses. See also 
section 3.1. 

Acquaye et al. (2011) 
Computation of ILUC of rape methyl ester biodiesel based on theoretical global 
average ILUC factors, summing up to 16% of total LCA-emissions.  

Acquaye et al. (2012) GHG emissions calculation of different biofuels, including ILUC.  

Malça & Freire (2012) 
Evaluates LUC scenarios and uncertainty in the LCA of wheat-based bioethanol, 
finding that LUC dominates the GHG intensity. 

Ben Aoun et al. (2013) 
Review of methodologies to include LUC effects in LCAs. Concludes that LCA 
should be adapted and combined to other tools in order to provide a more 
reliable assessment of the biofuels chain. 

Humpenoder et al. 
(2013) 

Analysis of LUC of 1st generation biofuels in the EU. Concludes that if LUC is 
considered, GHG emission savings are between -2% and 13%.  

Bento & Klotz (2014) 
Quantifies emission impacts of 4 US biofuel policies with a range from -16 
gCO2-eq/MJ to +24 gCO2-eq/MJ corn ethanol added by the policy.  

Prapaspongsa & 
Gheewala (2016) 

A CLCA of biofuels production in Thailand. ILUC emissions from cassava- and 
molasses-bioethanol are found equivalent to 39-76% of the emissions from 
gasoline. 

 

3.6. Empirical approaches 

In a pre-2012 landmark study Fritsche, Sims and Monti (2010) indicated that, in 

contrast to data-intense and complex economic models, deterministic approaches 

that use calculations which simplify the simulations of trade and respective LUC 

effects through statistical data on trade and historic land use, are needed. If 

used to project potential future ILUC, these methods need to be complemented with 

various assumptions on, for example, future trade patterns, and displacement ratios 

for incremental land use for biomass feedstock production. 

In such approaches, the key simplifying assumption is that (changes in) current 

patterns of land use for producing traded agricultural commodities are an adequate 

proxy to derive global averages of potential GHG emissions from ILUC. A second 

assumption is that for the near future, the pattern of global trade in agricultural 

commodities can be derived from observed trade trends. The ILUC factor approach 

assumes that the potential release of CO2 from LUC caused by displacement is a 

function of the land used to produce agricultural products for export, since trade flows 

will be affected by displacement.  
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Table 7 . Studies with empirical approaches (Landmark and post-2012). Source: Own elaboration 

Study Aim and main findings 

Fritsche, Sims and 
Monti (2010) 

Review of current state of GHG emission calculation of bioenergy. Proposes the 
use of non-economic models to simplify simulations. 

Lywood (2013) 
Estimates historic ILUC impacts of EU biodiesel, concluding that overall GHG 
benefits have been achieved. 

Nassar & Moreira 
(2013) 

Claims that sugarcane production in Brazil has very low ILUC effects since it 
leads to intensification. 

Dunkelberg (2014) 
A bottom-up empirical approach in the case study areas (Brazil, Malawi and 
Germany), highlighting that ILUC may vary significantly across locations and 
depends heavily on how it is allocated across products. 

Overmars et al. (2015) 
Uses FAO data to estimate historic ILUC factors, suggesting that ILUC factors 
are not constant. 
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4. ILUC research outside the EU and US 

Table 8 lists studies that have at least one co-author which is not located in the 

EU or US, or specifically focuses on ILUC effects outside of these regions. These 

studies rarely provide quantitative results concerning the ILUC effect (exceptions 

include Melillo et al., 2009; Ferreira-Filho et al., 2014), instead focusing on: overall 

land use changes, the potential of producing biofuels under different constraints, and 

economic/energy/emission evaluation of specific supply chains without focusing on 

ILUC.  

Among the studies there is almost complete agreement that (I)LUC will be big in 

countries in the tropics, something which is corroborated by observed land change 

patterns (Gibbs et al., 2008; Lapola et al., 2010; Miyake, Renouf, Peterson, McAlpine, 

& Smith, 2012; Okoro, Schickhoff, Bohner, & Schneider, 2016; Yeh, 2013). A number 

of studies have suggested that there is significant potential to mitigate this by 

increasing yields or livestock stocking rates of pastures (Gibbs et al., 2008; 

Lapola et al., 2010; Lossau et al., 2015).  One detailed modelling study highlights the 

ranges of ILUC values noting that the “interval is so wide that it is likely to straddle 

any legislation threshold, our opinion is that threshold evaluation for iLUC indicators 

should not be implemented in legislation” (Verstegen et al., 2016a). 

Publications originating from countries where literature indicates the largest risk for 

ILUC, primarily focus on discussions, assessments and reviews (with Moreria et al. 

(2014) being a notable example of the use of an economic model). Brazil produces 

most of the research and publications, with a (not peer reviewed) study by Nassar and 

Moreira (2013) highlighting that biofuel production in Brazil should be considered low 

ILUC-risk as it has taken place while increasing yields. Other Brazilian studies highlight 

the rational of farmers when choosing between shifting to biofuel production or 

investing in dairy farming (Novo, Jansen, & Slingerland, 2012), highlight the available 

potential for further expansion, especially if yields continue to increase (Alkimim, 

Sparovek, & Clarke, 2015; Ferreira Filho et al., 2014; Leal, Horta Nogueira, & Cortez, 

2013; Souza, GM; Victoria, RL; Joly, CA; Verdade, 2015; Strassburg et al., 2014), or 

provide empirical results concerning land use change and its emissions (Mello et al., 

2014). However critical studies have also been published, highlighting potential 

negative aspects, particularly for biodiesel (Castanheira et al., 2014).  
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Besides Brazil, relevant studies have also come from Malaysia and Thailand.  In 

Malaysia the GHG impacts of palm oil expansion have been assessed, highlighting the 

potential negative role of ILUC, but also emphasizing the huge uncertainty involved 

(Hansen, Olsen, & Ujang, 2014) and that regulations using ILUC as a basis are not 

supported by solid scientific evidence and do not account for developments that ease 

the pressure for land expansion (Næss-Schmidt & Hansen, 2014). In Thailand, LCA 

assessments have been made for palm-based biodiesel, as well as the country’s 

bioethanol policy (Prapaspongsa & Gheewala, 2016; Silalertruksa & Gheewala, 

2012a). These studies generally reveal that ILUC worsens the GHG balance, however 

highlighting that there still is a significant potential for climate beneficial biofuels. 
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Table 8 . Summary of studies focusing (either supply or demand) in ILUC and other effects from biofuels produced outside the EU and US. Source: Own elaboration 

 
Country of 
research18 

Focus 
Country19 

Biofuel  
type 

Purpose 
Approach 
Method 

Conclusion 
Finding 

Research 
done for 

Gibbs et al. 
(2008) 

USA Canada Tropics (supply) 
1st Gen. and 
advanced  

Assess carbon pay-back 
periods 

Review 

Biofuel expansion into natural tropical ecosystems will lead to net 
carbon emissions for decades to centuries. Carbon benefits are 
possible from expanding high-yielding crops, such as sugarcane and 
oil palm, into already degraded lands. 

NA 

Francesco 
Cherubini et al. 
(2009) 

Austria Australia NA 
1st Gen. and 

advanced ethanol, 
biodiesel 

Assess issues and 
recommendations for 

improving LCA of 
bioenergy systems 

Review 
Due to many site-specific issues, uncertainties and complexities, it is 
impossible to give exact values for the GHG effects of bioenergy use. 

NA 

Mathews & Tan 
(2009) 

Australia NA 
1st Gen. and 

advanced ethanol 
Probed assumptions of 

Searchinger et al. (2008) 
Review 

Though ILUC is a serious problem, the Searchinger et al. (2008) 
study is overly pessimistic and not reproducible. 

NA 

Melillo et al. 
(2009) 

USA  
Brazil 
 China 

NA 
1st Gen. ethanol, 

eucalyptus, poplar, 
switchgrass 

Examine direct and 
indirect effects of 

expanded bioenergy 
program 

CGE model 
Indirect carbon loss may be up to twice as much as direct. Increased 
fertilizer use may be even more important in terms of global warming 
potential. 

NA 

Fritsche, Sims, 
et al. (2010) 

Germany New 
Zealand Italy 

NA NA 
Review ILUC GHG 

emissions 
Review 

Biofuels should be produced from excess farm and forest residues. 
Approaches identified in order to translate ILUC factors into practical 
regulations. 

NA 

Lapola et al. 
(2010) 

Germany Kenya  
Brazil (supply & 

demand) 
1st Gen. ethanol 

and biodiesel 
Assess ILUC and DLUC of 

2020 biofuel targets 

Causal 
Descriptive 
(land use) 

model 

Biofuels contribute to deforestation by 2020 creating a carbon debt of 
about 250 years. Using oil palm performs better. A small increase of 
livestock density could avoid the ILUC. 

NA 

Arima, 
Richards, 
Walker, & 
Caldas (2011) 

USA Brazil (supply) 1st Gen. 
Confirm ILUC in Brazil 

statistically 
Empirical 

LUC is significant and considerable. A 10% reduction of soy in old 
pastures would have decreased deforestation by 12% - 40% in 
heavily forested counties of the Brazilian Amazon. 

NA 

Khatiwada, 
Seabra, 
Silveira, & 
Walter (2012) 

Sweden Brazil Brazil (supply) 
1st Gen. ethanol 

(sugarcane) 

Critically examine 
methodologies in existing 
regulatory schemes (EU, 

UK & US) 

Discussion 
Regulatory schemes vary greatly among themselves. Agricultural 
practices, co-product credits and uncertainties around ILUC are major 
areas of divergences. 

NA 

Lesschen et al. 
(2012) 

Netherlands 
Ukraine 

Ukraine (supply) 2nd Gen. 
Determine financial and 
GHG cost of avoiding 

ILUC 
Empirical 

GHG emissions on low quality soil without ILUC (12.5 gCO2-eq/MJ) 
are higher than for good quality soil grown switchgrass with ILUC 
(0.1 gCO2-eq/MJ pellet). Cost for low quality soils are 22% higher. 

Govern 
ment of 
Ukraine 

                                           
18

 This is determined from the author affiliations or commissioning institute. Countries listed according to author order.  
19

 Where it is possible to ascertain, whether the focus region acts as a biomass supplier or demand region is highlighted. 
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Country of 
research20 

Focus 
Country21 

Biofuel  
type 

Purpose 
Approach 
Method 

Conclusion 
Finding 

Research 
done for 

Miyake et al. 
(2012) 

Australia 

Brazil 
Indonesia 
Malaysia 

EU  
US  

(all supply) 

NA 
Review dynamics and 

patterns of (I)LUC 
Review 

Bioenergy-driven land-use change has affected and will impact most 
severely on the “land- and resource-abundant” developing regions,  
where economic development takes priority over sustainable land-
use policies, and the enforcement capability is limited. 

NA 

Novo et al. 
(2012) 

Brazil 
Netherlands 

Brazil (supply) 
1st Gen. ethanol 

(sugarcane) 

Determine heuristic tool 
in order to identify 

strategies for shifting 
from dairy farming to 

biofuel production 

Empirical 
Farmers that shift to sugarcane are not spurred only from better 
prices, but mainly changes in perceptions of labour constraints, risks 
and opportunities offered by diversification. 

NA 

Silalertruksa & 
Gheewala 
(2012b) 

Thailand Thailand Biodiesel 

Evaluate sustainability of 
biodiesel for transport in 
Thailand, while satisfying 

demand for food. 

Causal-
Descriptive 

Emissions depend heavily on what type of land is converted, and 
ILUC worsen overall balance. 

NA 

Alvarenga et al. 
(2013) 

Belgium Germany Brazil (supply) 1st Gen. ethanol 
Determine ILUC for 

bioethanol-PVC 
LCA 

Environmental gains if iLUC is kept below 5.7% of the sugarcane 
cultivation area. 

NA 

Berndes, 
Ahlgren, 
Borjesson, & 
Cowie (2013) 

Sweden Australia NA NA 
Discuss bioenergy and 

land use change 
Discussion 

Though quantifications of LUC emissions do not support the use of 
bioenergy to mitigate GHG emissions, bioenergy’s contribution must 
reflect a balance between near-term and long-term targets. 

NA 

Le, van Ierland, 
Zhu, & 
Wesseler, 
(2013) 

Netherlands 
Germany 

Vietnam 
(supply) 

1st Gen. ethanol 
Assess energy and 

emissions 
Empirical/ 
Discussion 

Variation in results due to yields, energy efficiency and by-product 
analysis. 

NA 

Leal et al. 
(2013) 

Brazil 
Global (supply & 

demand) 
1st Gen. ethanol 

Assess land use effects of 
meeting IEA, RED and 

RFS targets 

Review, 
scenario 
analysis 

Land use demands for ethanol production by 2030 do not give 
reasons for concern on a global scale, but may produce significant 
local impacts. 

NA 

Nassar & 
Moreira (2013) 

Brazil Brazil (supply) 1st Gen. ethanol 
Present evidence that 

sugarcane is a low ILUC-
risk resource 

Discussion 
Evidence presented demonstrates that sugarcane produced in Brazil 
is a low-ILUC raw material, and its production is more energy and 
land efficient than any other food feedstock. 

ICONE 

Nunez et al. 
(2013) 

Mexico 
USA 

Brazil  
USA (supply) 

1st Gen. ethanol 
(sugarcane, maize) 
Advanced ethanol 

(cellulosic) 

Develop a price 
endogenous model to 
simulate the effects of 

biofuel mandates 

PE 
Mandates can be met with small increases in commodity prices and 
increases in livestock intensity. ILUC not included. 

NA 

                                           
20

 This is determined from the author affiliations or commissioning institute. Countries listed according to author order.  
21

 Where it is possible to ascertain, whether the focus region acts as a biomass supplier or demand region is highlighted. 
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Country of 
research22 

Focus 
Country23 

Biofuel  
type 

Purpose 
Approach 
Method 

Conclusion 
Finding 

Research 
done for 

Poppens et al. 
(2013) 

Netherlands 

Ukraine (supply 
and demand) 
Netherlands 
(demand) 

Pellets 
Assess supply chain 

performance for pellets 
Case Study 

Potential for low ILUC-risk reed exists. Risks depend on displacing 
current uses such as animal feed, bedding and maintaining soil 
organic carbon. 

WUR 

Yeh (2013) USA Brazil (supply) 1st Gen. Biodiesel 
Develop scenarios to 

measure land use impact 
UPLAN land 
use model 

dLUC: 14–84 gCO2-eq/MJ NA 

Castanheira et 
al. (2014) 

Portugal Brazil Brazil (supply) Biodiesel 

Identify potential 
environmental impacts of 

biodiesel production in 
Brazil 

Discussion 
Impacts of land use change on GHG emissions were found to be 
critical. Certification and zoning can play an important role in the 
sustainability of emerging biodiesel. 

 

Diogo et al. 
(2014 

Netherlands 
Argentina 

Argentina 
(supply) 

Soybean biodiesel 
and switchgrass 

ethanol 

Determine low ILUC-risk 
biofuel potential 

Land use 
model 

Limited potential in BAU scenarios. In a “progressive scenario”, 
switchgrass is particularly promising. 

NA 

Dunkelberg 
(2014) 

Germany 

Malawi 
Brazil 

Germany 
(supply) 

1st Gen. ethanol Determine ILUC Empirical 
Best estimates for ILUC are –11 gCO2-eq/MJ for sugarcane ethanol 
produced in Malawi. Brazil and Germany are 24 gCO2-eq/MJ of and 
50 gCO2-eq/MJ of respectively. 

PhD. 
Thesis 

Ferreira Filho et 
al. (2014) 

Brazil Australia Brazil (supply) 1st Gen. ethanol Analyse ILUC in brazil CGE 
Each new hectare of sugarcane requires 0.14 ha of new land and 
another 0.47 ha converted from pasture use. Thus policies limiting 
deforestation are unlikely to prevent ethanol expansion. 

NA 

Hansen et al. 
(2014) 

Denmark Malaysia 
Malaysia 
(supply) 

Palm  
biodiesel 

Identify GHG emissions 
associated with oil palm 

expansion 
LCA 

LUC emissions are responsible for approx. half of total emissions. 
Results sensitive to ILUC assumptions. 

NA 

Langeveld et 
al. (2014b) 

Netherlands 
Australia 

Brazil 
 USA 

Indonesia 
Malaysia China 
Mozambique  
South Africa 

EU27 (supply) 

1st Gen. ethanol 
Biodiesel 

Review observed land use 
change patterns 

Empirical 

Between 2000-2010, despite substantial expansion of biofuel 
production, more land has become available for non-fuel applications. 
Biofuel policies have had a small effect on observed land use 
changes. 

NA 

Laurance et al. 
(2014) 

USA Australia 
Tropical 
countries 

NA 
Effects of growing 

population and 
consumption on land use 

Discussion 

Study foresees major expansion and intensification of tropical 
agriculture, continued loss of tropical forests, pivotal road of 
roadways in determining spatial patterns, intensified conflicts 
between food production and nature conservation. 

NA 

                                           
22

 This is determined from the author affiliations or commissioning institute. Countries listed according to author order.  
23

 Where it is possible to ascertain, whether the focus region acts as a biomass supplier or demand region is highlighted. 
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Country of 
research24 

Focus 
Country25 

Biofuel  
type 

Purpose 
Approach 
Method 

Conclusion 
Finding 

Research 
done for 

Liu et al. 
(2014) 

China NA NA 
Review of effects of 

biofuel production on 
biodiversity 

Discussion 
Intensive management of biofuel production raises the risk of 
fragmentation, native extinction and bio-invasion. At an ecosystem 
level diversity and the food web may be damaged. 

NA 

Mello et al. 
(2014) 

Brazil 
 USA 

 France 
Brazil (supply) 1st Gen. ethanol Determine payback times Empirical 

Soil C stocks decrease following LUC from native vegetation and 
increase when cropland is converted to sugar cane. The payback time 
is 8 years for native vegetation and 2-3 years for pastures. 

NA 

Moreira et al. 
(2014) 

Brazil  Brazil (supply) 
1st Gen. Jet  

fuel 
Determine life cycle 

emissions 
CGE (GTAP) 

Feedstock production and LUC were the main sources of emissions, 
respectively estimated as 14.6 and 12 gCO2-eq/MJ. 

NA 

Næss-Schmidt 
& Hansen 
(2014) 

Malaysia Malaysia 1st Gen. Oilcrops Review ILUC methods Discussion 
Models (and thus EU ILUC policy) do not sufficiently recognise local 
conservation efforts, and, since ILUC methods are not consistent, 
ILUC should not be a basis for regulation. 

NA 

Strassburg et 
al. (2014) 

Brazil 
Poland 

UK 
 USA 

Brazil (supply) NA 

Assess potential for of 
intensification at 

mitigation land use 
change 

Discussion 
A slight increase in pastureland productivity (15-20%) would be 
enough to meet demands for meat, crops, wood products and 
biofuels until at least 2040. 

NA 

Alkimim et al. 
(2015) 

Brazil 
USA 

Brazil (supply) NA 

Identify land potential for 
biofuels, without 

compromising forested 
lands 

Spatial 
databases 

Converted pasturelands could provide up to 50MHa of highly suitable 
crop land, more than the area currently used for sugarcane 
production in Brazil. 

NA 

Creutzig et al. 
(2015) 

Germany 
India 

Sweden 
Denmark, Norway 

USA 
Spain 

Netherlands 
 Austria 
Brazil 

Switzerland 
Scotland Mexico  

NA NA 
Assess bioenergy from 
multiple perspectives. 

Discussion 

High variability in pathways, uncertainties in technologies, and 
ambiguity in political decisions render forecasts very difficult. 
However, uncertainty about projections should not preclude pursuing 
beneficial bioenergy options. 

NA 

Lossau et al. 
(2015) 

Germany 
Austria 

Brazil (supply) 
1st and 2nd  

Gen. 

Identify biofuel potentials 
meeting sustainability 

criteria 
Empirical 

84 Mha residual land of which 37 Mha occurred outside the territory 
of the Amazon biome and was neither legally protected nor 
categorized as highly biodiverse land. Yield increases in agriculture 
could provide large swathes of land. 

Daimler/II
ASA/TU 
Berlin 

                                           
24

 This is determined from the author affiliations or commissioning institute. Countries listed according to author order.  
25

 Where it is possible to ascertain, whether the focus region acts as a biomass supplier or demand region is highlighted. 
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Country of 
research26 

Focus 
Country27 

Biofuel  
type 

Purpose 
Approach 
Method 

Conclusion 
Finding 

Research 
done for 

T. D. 
Searchinger et 
al. (2015) 

USA 
Kenya 

Germany 
Australia 

Africa 
(Savannahs and 

shrublands) 

1st Gen. ethanol 
(maize), biodiesel 

(soybeans) 

Carbon and biodiversity 
effects of converting 

Afircan savannahs and 
scrublands 

Vegetation 
model 

(LPJmL), 
crop model 
(DSSAT), 

carbon stock 
databases 

Only 2-11.5% of these lands have a meaningful potential to be low-
carbon sources. 

NA 

Souza, GM; 
Victoria, RL; 
Joly, CA; 
Verdade (2015) 

Brazil NA NA 

A collective effort to 
assess bioenergy and 

sustainability. Includes 
chapter on ILUC. 

Review and 
discussion 

From a policy perspective, ILUC can be mitigated via (i) zoning and 
monitoring  to prevent deforestation, (ii) Increasing bioenergy 
production per hectare, (iii) close yield gaps, and, (iv) develop crops 
suitable for marginal and degraded lands. 

FAPESP, 
Brazil 

Grundy et al. 
(2016) 

Australia Australia 

Biofuels and 
bioelectricity from 
wheat, stubble and 
woody perennials. 

Generate scenarios for 
Australian agricultural 

production and land use 
to 2050 

Integrated 
Systems 
Modelling 

High levels of food/fibre production can co-exist with non-food land 
uses motivated by market responses to global change and domestic 
policy. 

NA 

Okoro et al. 
(2016) 

Germany 
Niger Delta 

(supply) 
1st Gen. biodiesel Map LUC Empirical 

In the 1999-2005 to 2009-2015 forested area decreases with most 
area converted to oil palm. 

NA 

Prapaspongsa 
& Gheewala 
(2016) 

Thailand 
Thailand 
(supply) 

1st Gen. ethanol 
Assess ILUC from 

Thailand’s bioethanol 
policy 

LCA 
Cassava and molasses ILUC account for 39% (±8%) to 76% (±15%) 
of the GHG emissions from gasoline. 

NA 

Verstegen, van 
der Hilst, 
Woltjer, 
Karssenberg, 
de Jong & 
Andre P. C. 
Faaij (2016) 

Netherlands 
Brazil (supply) 

 
1st Gen. ethanol Calculate ILUC and DLUC 

CGE 
(MAGNET) 

and land use 
model 
(PLUC) 

Given the 95% confidence interval, the iLUC area in Brazil might be 
2.4 times as high or as low as the projected mean. As the confidence 
interval is so wide that it is likely to straddle any legislation 
threshold. 

NA 

Furumo & Aide 
(2017) 

Puerto Rico Latin America 
Palm  

Biodiesel 
Characterize oil palm 

expansion 
Empirical 

79% of expansion replaced previously used lands (mostly cattle 
pastures), the rest coming from forests. 70% of exports stayed 
within Latin America. 

NA 

                                           
26

 This is determined from the author affiliations or commissioning institute. Countries listed according to author order.  
27

 Where it is possible to ascertain, whether the focus region acts as a biomass supplier or demand region is highlighted. 
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5. GHG factors results and evidence in relation to all 

production pathways 

Among the reviewed literature, 30 studies reported quantitative ILUC emission 

factors based on a range of methods. Therefore, these studies were selected  

because they report (I)LUC per mass unit, and thus can be compared. 

The methods adopted by the studies can be summarised as follows: 

 Seventeen studies applied PE-, CGE- or IAM-models (Al-Riffai et al., 

2010; CARB, 2009; Dumortier et al., 2011; Edwards et al., 2010; Flugge et al., 

2017; T W Hertel et al., 2010; D Laborde, 2011; David Laborde et al., 2014; 

Melillo et al., 2009; Moreira et al., 2014; Mosnier et al., 2013a; Richard J Plevin 

et al., 2010, 2015; T. Searchinger et al., 2008; Farzad Taheripour & Tyner, 

2013; W. Tyner et al., 2010; Valin et al., 2015). 

 Six studies were based on Hybrid Life Cycle Assessments (A.A. Acquaye 

et al., 2011; Adolf A Acquaye et al., 2012; Bento & Klotz, 2014; Boldrin & 

Astrup, 2015; Mullins et al., 2011; Prapaspongsa & Gheewala, 2016). 

 Five studies were based on empirical approaches (Dunkelberg, 2014; 

Fritsche, Hennenberg, et al., 2010; Lywood, 2013; Overmars et al., 2015, 

2011). 

 One study used a causal descriptive model (Baral & Malins, 2016). 

 One study was based on expert opinion (CARB, 2014). 

Studies are included in the analysis only when results were presented in emissions per 

energy or mass unit. All emission factors have been harmonised to gCO2-eq/MJBiofuel 

and are grouped by feedstock and ordered by year of publication. In further detail: 
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Table 9 . Summary of studies including GHG ILUC factor results. Source: Own elaboration 

Reference and 
institution 

Feedstock Biofuel type 

Result, average 

in brackets
28

 

(gCO2-eq/MJ) 

Approach 
Model 

Type of research 
Sensitivity 

analysis method 
Research done 

for 
Notes

29
 

  Summary of pre-2012 landmark studies including GHG ILUC factor results 

Acquaye et al. 
(2011) - Multiple 

Rapeseed Biodiesel 14-42 (33) Hybrid LCA Primary research 

Maximum-
minimum cut-offs, 

based on own 
calculation 

Peer reviewed 
publication 

20 year 
amortization. 
Includes DLUC 

Al.-Riffai et al. 
(2010) - IFPRI 

Sugarbeet 
Sugarcane 

Maize 
Wheat 
Palm 

Rapeseed 
Soybean 
Sunflower 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 
Biodiesel 

16-65 (41) 
18-19 (18)  
54-79 (67) 
16-37 (27) 
45-50 (47) 
51-54 (52) 
67-75 (71) 
56-61 (58) 

CGE  
(MIRAGE) 

Primary research 
(based on GTAP 

database) 

BAU and full trade 
scenarios 

IFPRI 
20 year 

amortization 

CARB (2009)  
Sugarcane 

Maize 
Soybean 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

32-57 (46) 
18-44 (30) 
27-51 (42) 

CGE  
(GTAP) 

Primary research Scenario Analysis CARB 
30 year 

amortization 

Edwards et al. 

(2010) – JRC-EC 

 
Wheat 
Maize 
Palm 

Rapeseed 
Oilseeds 

 

1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 

16-155 
62 
47 
222 
57 

Multiple PE & 
CGE 

 (GTAP, FAPRI-
CARD, 

AGLINK-
COSMO, 
LEITAP, 
IMPACT, 
CAPRI) 

Model comparison 
Model projections, 
quasi-harmonized 

scenarios 
JRC-EC 

20 year 
amortization. 
Includes DLUC 

Fritsche, 
Hennenberg, and 
Hünecke (2010) – 
Öko-Institut 

Sugarcane 
Wheat 
Palm 

Soybean 
Rapeseed 

SRC 

1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 
Advanced 

21-42 
34-67 
18-36 
41-67 
33-67 
38-75 

Empirical Primary research 

Sensitivity on ILUC 
emission factor 

(high/low). Based 
on own line of 
reasoning and 

literature 

 
Öko-Institut 

20 year 
amortization 

                                           
28

 Mean displayed only if more than two scenarios were presented. 
29

 Harmonize to 20 years. (Multiplied by “Amortization period / 20 years”) 
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Reference and 
institution 

Feedstock Biofuel type 

Result, average 

in brackets
30

 

(gCO2-eq/MJ) 

Approach 
Model 

Type of research 
Sensitivity 

analysis method 
Research done 

for 
Notes

31
 

Hertel et al. (2010) 
– Multiple 

Maize 1st gen. ethanol 27 
CGE  

(GTAP-BIO) 
Primary research 

Gaussian 
Quadrature 

Peer reviewed 
publication 

30 year 
amortization. 
Includes DLUC 

Laborde (2011) – 
IFPRI 

Wheat 
Maize 

Sugarbeet 
Sugarcane 

Palm 
Soybean 
Sunflower 
Rapeseed 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 
Biodiesel 

8-18 (14) 
6-13 (10) 
1-13 (7) 
7-27 (16) 
47-60 (54) 
38-74 (56) 
31-72 (53) 
28-81 (55) 

CGE  
(MIRAGE) 

Primary research 
(based on GTAP 

database) 
Monte-Carlo IFPRI 

20 year 
amortization. 
Includes DLUC 

Melillo et al. (2009) 
– Multiple 

Eucalyptus 
Poplar 

Switchgrass 
Advanced 181-190 

CGE  
(EPPA) 

Primary research 
(based on GTAP 

database) 

Scenario analysis, 
own elaboration 

Peer reviewed 
publication 

30 year 
amortization 

Mullins, Griffin, and 
Matthews (2011) – 
Carnegie Mellon 
University 

Maize 
Switchgrass 

1st gen. ethanol 
Advanced 

25-75 (49) 
-15-103 (44) 

CLCA Primary research 

Monte-Carlo. Own 
line of reasoning 

based on results in 
literature 

 
Peer reviewed 

publication 

30 year 
amortization 

Overmars et al. 
(2011) – 
Netherlands 
Environmental 
Assessment Agency 
(PBL) 

Wheat 
Sugarcane 
Sugarbeet 
Rapeseed 

Soy 
Palm 

1st gen. ethanol 
Biodiesel 

26-154 (79) 
30-204 (97) 

Empirical 

Secondary research 
(based on results 
from IMAGE and 
other databases) 

Uncertainty 
analysis. Own line 

of reasoning 

Peer reviewed 
publication 

20 year 
amortization 

Plevin et al. (2010) 
– Multiple 

Maize 1st gen. ethanol 21-142 (57) 
PE  

(reduced form) 
Secondary research 

Monte-Carlo. Own 
line of reasoning. 

Peer reviewed 
publication 

30 year 
amortization 

Searchinger et al. 
(2008) – Multiple 

Maize 1st gen. ethanol 104 
PE  

(GREET) 
Primary research 

Model projection. 
Own line of 
reasoning 

Peer reviewed 
publication 

30 year 
amortization 

Tyner et al. (2010) 
– Purdue University 

Maize 1st gen. ethanol 14-23 (18) 
CGE 

(GTAP) 
Primary research 

Scenario analysis. 
Own line of 
reasoning 

Purdue University 
30 year 

amortization. 
Includes DLUC 

                                           
30

 Mean displayed only if more than two scenarios were presented. 
31

 Harmonize to 20 years. (Multiplied by “Amortization period / 20 years”) 
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Reference and 
institution 

Feedstock Biofuel type 

Result, average 

in brackets
32

 

(gCO2-eq/MJ) 

Approach 
Model 

Type of research 
Sensitivity 

analysis method 
Research done 

for 
Notes

33
 

  Summary of post-2012 studies further developing pre-2012 approaches, including GHG ILUC factor results 

Acquaye et al. 
(2012) – Multiple 

Sugarcane 
Sugarbeet 

Maize 
Soybean 
Rapeseed 

Palm 
Cooking Oil 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 
Biodiesel 

18 
4 
22 
21 
31 
9 
0 

Hybrid LCA Primary research None 
Peer reviewed 

publication 
20 year 

amortization 

Dumortier et al. 
(2011) – Multiple 

Maize 1st gen. ethanol 57-65 (61) 
PE  

(CARD) 
Primary research 

Scenario analysis. 
Own line of 
reasoning 

Peer reviewed 
publication 

30 year 
amortization 

Flugge et al. (2017) 
– ICF 

Maize 1st gen. ethanol 1-17 (9) 
CGE  

(GTAP) 
Primary research 

Soil carbon 
databases 

USDA 
30 year 

amortization 

Laborde et al. 
(2014) – IFPRI & 
JRC-EC  

Sugarbeet 
Sugarcane 

Maize 
Palm 

Rapeseed 
Soybean 
Sunflower 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 
Biodiesel 

5-12 (7) 
13-18 (14) 
10-15 (12) 
54-64 (57) 
53-68 (57) 
55-72 (62) 
50-63 (55) 

CGE 
 (MIRAGE) 

Primary research 
(based on GTAP 

database) 

Scenario analysis. 
Own line of 
reasoning 

 
JRC-EC 

20 year 
amortization 

Moreira et al. 
(2014) – Multiple 

Sugarcane 1st gen. ethanol 12-17 

CGE 
 (GTAP-BIO-

ADV) and 
Emissions 

model (CA-
GREET) 

Primary research 

Scenario analysis 
(study also includes 
Monte-Carlo). Own 
line of reasoning 

Peer reviewed 
publication 

30 year 
amortization. 
Includes DLUC 

Mosnier et al. 
(2013) – Multiple 

Maize 1st gen ethanol 20-46 (31) 
PE  

(GLOBIOM) 
Primary research 

Scenario analysis. 
Own line of 
reasoning 

Peer reviewed 
publication 

30 year 
amortization 

  

                                           
32

 Mean displayed only if more than two scenarios were presented. 
33

 Harmonize to 20 years. (Multiplied by “Amortization period / 20 years”) 
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Reference and 
institution 

Feedstock Biofuel type 

Result, average 

in brackets
34

 

(gCO2-eq/MJ) 

Approach 
Model 

Type of research 
Sensitivity 

analysis method 
Research done 

for 
Notes

35
 

Overmars et al. 
(2015) – PBL & 

JRC-EC  

Wheat 
Sugarbeet 

Maize 
Sugarcane 
Rapeseed 
Soybean 

Palm 
Sunflower 
Jatropha 

Wheat straw 
Willow-poplar 
Switchgrass 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 
Biodiesel 
Biodiesel 
Advanced 
Advanced 
Advanced 

10-21 (16) 
7-19 (12) 
6-13 (10) 
5-19 (12) 

170-241 (204) 
187-257 (224) 
171-249 (201) 
171-243 (206) 
58-130 (93) 

0-3 (1) 
2-4 (3) 
1-3 (2) 

Empirical 

Secondary research 
(based on results 

from the IMAGE and 
CSAM models) 

Compare models 
and allocation. 
Evaluation of 

historical yield and 
land use change 

data  

 
JRC-EC 

20 year 
amortization 

Plevin et al. (2015) 
- Multiple  

 

Maize 
Sugarcane 
Soybean 

1st gen. ethanol 
1st gen. ethanol 

Biodiesel 

26-68 (41) 
4-56 (26) 
21-71 (40) 

CGE  
(GTAP-BIO-ADV) 
and Emissions 

model (AEZ-EF) 

Primary research 
Monte-Carlo. Own 
line of reasoning 

 
Peer reviewed 

publication 

30 year 
amortization 

Taheripour & Tyner 
(2013) – Purdue 
University 

Corn 
Corn stover 
Miscanthus 
Switchgrass 

1st gen. ethanol 
Advanced 
Advanced 
Advanced 

13-23 (17) 
-0.9- -1.6 (-1.3) 

6-32 (17) 
20-74 (44) 

CGE  
(GTAP-BIO) 

Primary research 
Different emission 
factor databases  

Peer reviewed 
publication 

Amortization 
period 

unclear. 
Includes DLUC 

Valin et al. (2015)   
Ecofys, IIASA & 
E4tech 

Wheat 
Maize 
Barley 

Sugarbeet 
Sugarcane 

Maize Sillage 
Sunflower 

Palm 
Rapeseed 

Soybean 
Cereal straw 
Perrenials 

SRC 
Forest Residues 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 

Biodiesel 
Advanced 
Advanced 
Advanced 
Advanced 

-40-70 (34) 
-75-60 (14) 
-50-90 (38) 
-15-35 (15) 
-20-175 (17) 

21 
0-170 (63) 

20->400 (231) 
-10-130 (65) 

10->400 (150) 
0-30 (16) 

-30-5 (-12) 
-50- -10(-29) 

17 

PE  
(GLOBIOM) 

Primary research 
Monte-Carlo. Own 
line of reasoning 

 
DG-ENER 

20 year 
amortization. 
Includes DLUC 

                                           
34

 Mean displayed only if more than two scenarios were presented. 
35

 Harmonize to 20 years. (Multiplied by “Amortization period / 20 years”) 
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Reference and 
institution 

Feedstock Biofuel type 

Result, average 

in brackets
36

 

(gCO2-eq/MJ) 

Approach 
Model 

Type of research 
Sensitivity 

analysis method 
Research done 

for 
Notes

37
 

  Summary of post-2012 studies with original approaches, including GHG ILUC factor results 

Baral & Malins 
(2016) – The 
International 
Council on Clean 
Transportation 

Rapeseed Biodiesel 18-101 (55) 
Causal 

Descriptive 
model 

Secondary research 
(biofuel demand 

and emission taken 
from multiple  

models/databases) 

Scenario analysis. 
Own line of 
reasoning 

Peer reviewed 
publication 

20 year 
amortization 

Bento & Klotz 
(2014) – Cornell 
University 

Maize 1st gen. ethanol 30-35 CLCA Primary research 
Scenario analysis. 

Own line of 
reasoning 

Peer reviewed 
publication 

Amortization 
period unclear 

Boldrin & Astrup 
(2015) – Technical 
University of 
Denmark 

Rapeseed Biodiesel 29-75 CLCA Secondary research 

Allocation criteria 
based on existing 

national and supra-
national guidelines 

Peer reviewed 
publication 

Amortization 
period unclear 

CARB (2014) 

Maize 
Sugarcane 
Sorghum 
Soybean 

Palm 
Rapeseed/Canola 

1st gen. ethanol 
1st gen. ethanol 
1st gen. ethanol 

Biodiesel 
Biodiesel 
Biodiesel 

20 
12 
19 
29 
71 
15 

Expert group Primary research Expert opinion CARB 
Amortization 

period unclear 

Dunkelberg (2014) 
– Technical 
University of Berlin 

Sugarcane Ethanol 1-144 Empirical Primary research 
Calculation. Own 
line of reasoning 

Dr.Ing Thesis 
100 year 

amortization 

Lywood (2013) Rapeseed Biodiesel -115-21 Empirical Secondary research 

Assumptions on co-
product benefits 

and trade. Own line 
of reasoning 

Sofiprotéol 
100 year 

amortization 

Prapaspongsa & 
Gheewala (2016) – 
Multiple 

Cassava-Molasses 1st gen. ethanol 30-68 (45) CLCA Primary research 
Scenario analysis. 

Own line of 
reasoning 

Peer reviewed 
publication 

20 year 
amortization 

 

                                           
36

 Mean displayed only if more than two scenarios were presented. 
37

 Harmonize to 20 years. (Multiplied by “Amortization period / 20 years”) 
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Figure 3 Summary of ILUC factors for ethanol production. Colours highlight the method each study employs. 
Note, these values have not been harmonized for amortization period. Source: Own work. 
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Figure 4 Summary of ILUC factors for biodiesel production. Colours highlight the method each study 
employs. Note, these values have not been harmonized for amortization period. Source: Own work. 

  

Overall, the results show a high variation, with the ranges presented reflecting the 

variety of approaches38. Concerning the modelling studies, results further vary 

because of differences in data sets, parameter choices, scenarios, etc. On 

average39 the highest ILUC factors in the assessed quantitative studies carried out in the 

time period 2009 - 2015, are related to the production of biodiesel (median 52 gCO2-

eq/MJ),  palm showing the highest variation in results in available research. Estimates of 

ILUC factors for palm oil biodiesel tend to be higher (median 216 gCO2-eq/MJ) than other 

vegetable oils in studies (such as Overmars 2015 and Valin 2015) that take into account 

the increased emission from, and uncertainty of, peatland conversion. First generation 

ethanol presents a median ILUC factor of 21 gCO2-eq/MJ, with sugar crops (sugarcane 

and sugarbeet) showing the lowest ILUC factors, while maize has the highest numbers. 

                                           
38

 It is important to note that seven of the studies quoted in the above results, covering all feedstocks, 

explicitly calculate total LUC emissions, i.e. a combination of indirect and direct LUC (see Table 9 for details). 
Ommiting these studes does not affect the median (or mean) values. 
39

 All number quoted below assume a harmonized amortization period (20 years). 
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Advanced biofuels, present a median ILUC factor of 5 gCO2-eq/MJ. It is important to 

stress though that unlike other feedstocks where there are multiple studies (18 for 

biodiesel and 24 for 1st generation), there are only six studies presenting results on 

advanced biofuels (Fritsche, Hennenberg, et al., 2010; Melillo et al., 2009; Mullins et al., 

2011; Overmars et al., 2015; Farzad Taheripour & Tyner, 2013; Valin et al., 2015). 

Among these studies, there is significant disagreement and differences in methodological 

approaches as the types of lands assumed to be used for dedicated cropping with woody 

and perennial crops are defined differently in terms of current use status.  

The negative ILUC factors of Valin et al. (2015), which present an overall improvement 

in land based carbon stocks with the production of biofuels, are mainly due to direct land 

use change, that is, the improvement in carbon stocks on the land on which biomass is 

produced, outweighing the emission from ILUC. Thus these negative factors are not due 

to ILUC, but rather due to LUC which outweigh the otherwise positive ILUC factors. 

Furthermore, ILUC emissions are also low in the case of the Valin et al. (2015) study, 

because the land used for dedicated cropping is assumed to be unused before it is 

converted into dedicated crops. In the study of Melillo et al. (2009) for example this 

unused status of land is not assumed, leading to much higher ILUC factors. 

A number of points have to be raised in order to help with the interpretation of the above 

results. These (I)LUC factors are based on studies whose scenarios are not 

consistent, and thus the level of biofuel demand is not harmonised. These factors 

are not linear and would thus vary with changing levels of biofuel demand. 

Additional to this, increasing demands, may lead to different marginal feedstocks being 

used, further complicating the predictability of these ILUC factors. 

Furthermore, results are very sensitive to methodological assumptions, i.e. Baral & 

Malins (2016) used a non-economic causal-descriptive model to determine ILUC 

effects of rapeseed biodiesel across a number of scenarios. They find that in a “central 

scenario” the ILUC factor is 57 gCO2-eq/MJ. When considering impacts of reduced food 

consumption, this falls to 18 gCO2-eq/MJ, a considerably stronger effect than computed 

by equilibrium models. The highest value (101 gCO2-eq/MJ) illustrates a case where 

oilseed rape for the EU vegetable oil market is displaced by palm grown on peat soils. 

The large biodiesel ranges presented by Valin et al. (2015), using a partial equilibrium  

model, are due to uncertainty in the natural vegetation displacement, particularly peat 

lands. 
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For empirical and LCA studies, advanced biofuels have a range of -23–155 gCO2-

eq/MJ, 1st generation ethanol of 1-154 gCO2-eq/MJ and biodiesel of -94-257 gCO2-eq/MJ. 

The large ranges presented are due to the methods adopted, highlighting the effect of 

different ILUC compensation measures, such as increased cattle stocking rates or 

reduced meat consumption, the way by-products are accounted for, and the choice of 

emissions factors for different land conversion.  
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6. General principles of ILUC40 research 

6.1. Decomposition approach 

When going through ILUC studies, a large number of parameters are used to generate 

the results, where parameters are different for different models. Consequently, it is not 

straight forward to trace the causal relations between parameters in complex models to 

the final ILUC results (C. Malins et al., 2014; T. Searchinger et al., 2015a). Therefore, in 

the context of this report a decomposition methodology has been developed to 

understand the results of different studies. 

The methodology developed in the context of this report is based on decompositions 

accomplished in some of the key ILUC studies like Valin et al. (2015), Laborde (2011), 

Searchinger et al. (2015), Allen et al. (2013) and Malins et al. (2014). An attempt has 

been made to integrate these decomposition methods into one framework. The main 

purpose is to compare the most significant ILUC studies and to make clear where the 

most important causes of uncertainty come from. 

The basic idea of this approach is a stepwise decomposition of the biofuel feedstock 

land use by starting with a gross feedstock area per GJ and resulting in the net land use 

change after taking into account the following impacts: 

 Gross land use of the biofuel feedstock 

 Reduced area because of co-production of by-products 

 Reduced area because of reduced demand for non-biofuel crops  

 Reduced area because of increase in yields of both biofuel feedstocks and other 

agricultural commodities 

 Relocation of production to areas or crops with different yields 

Some studies only focus on the change in crop area, while other studies also include 

permanent grassland or managed forest area41 explicitly in their analysis. 

The starting point to understand the fundamental components of ILUC as a consequence 

of biofuels, is executing an analysis per biofuel pathway. When ILUC factors per 

pathway are known, one can aggregate them to the effects of a biofuels policy, taking 

into account that there may be non-linearity in the system. 

                                           
40

 Land use change (LUC), the sum of direct and indirect land use change, is likely to be a more appropriate 

term because models can not differentiate between direct and indirect land use change and normally report just 
land use change. However, because ILUC is the term standardly used, the report follows this convention. 
41

 This is a land use category defined in the GTAP-AEZ database (CARB, 2009) that is for example used in the 

general equilibrium model MIRAGE (Laborde et al., 2014). 
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Figure 5 Overview of the ILUC decomposition.         
Source: Own work. 

 

Figure 5 provides an example of an 

ILUC decomposition for a specific 

pathway in hectares per TJ. The 

numbers in this graph have no 

empirical meaning; they just illustrate 

the principle. In this case the area 

feedstock per TJ (for example maize, 

wheat, soybean, or palm oil) of biofuel 

is 20 ha. If nothing would happen with 

production of the feedstock crop for 

non-biofuel purposes nor the yields of 

the feedstock, the total increase in area needed to produce the extra 1 TJ of biofuels 

would also be 20 hectares. This is represented by the size of the first column. If also 

nothing happens with other crop production, this would imply that total crop area also 

increases with 20 hectares. This is represented by the second column. Finally, the 

expansion of total cropland could be into grassland area. If also production and yields of 

grassland remain the same, then total cropland and grassland area have to expand by 20 

hectares, and this is at the cost of natural area. This is represented in the third column. 

In practice expansion of feedstock area will be less than 20 hectares because of 

different mechanisms included in the elements of the feedstock column, resulting 

finally in the total feedstock area expansion. In addition, mechanisms for other crops 

may reduce or increase land use, which combined with the changes in the feedstock 

crop, generate the expansion of cropland area in the second column. The same holds if 

mechanisms that change grassland area are included, represented in the third column. 

Besides, the components that explain the difference between gross land use change 

and the final expansion of feedstock area, cropland area and cropland plus grassland 

area shall be considered.  

First, because the land used for the biofuel may produce the biofuel together with other 

products such as animal feed (co-products), and these other products may reduce the 

need of substituting them. In this example the co-product reduces the area needed for 

the feedstock crop in 1 ha (first column), and the area needed for other crops in 2 ha, 

implying 3 ha for all crops together (second column). Besides it also reduces the need for 

grassland in 0.5 ha. This implyies that utilised agricultural area growth is 3.5 ha less than 

the original 20 ha needed to produce the feedstock (third column). Be aware that the 

numbers are only for illustrative purpose and have no empirical meaning. 
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The increase in land requirements is further reduced because the area needed for the 

biofuel feedstock gives pressure on the land market and maybe other input markets and 

therefore land prices and commodity prices rise. The increase in prices induces a 

reduction of feed, food, consumption or waste of other non-biofuel uses. Reduced 

demand reduces the area expansion. Again, the reduction of demand (consumption and 

waste) not only reduces the area expansion of the crop that is used as biofuel feedstock, 

but may also reduce the area for other crops or livestock.  

Third, because of the higher commodity and land prices, it may be beneficial to increase 

supply side efficiency, in particular yields. The feedstock yields increase, but also the 

yields of other crops, and maybe also the yields of grassland.  

Finally, all substitution processes because of price changes imply that different 

commodities are produced having different area requirements per unit of output, and 

maybe also that land conversion and crop production takes place in different regions with 

different yields. This is included here as the relocation effect, that can be both negative 

and positive.  

What is left over is the total area change. In most cases the increase in feedstock area 

will be more than the increase in crop area, and this will be more than the increase in 

utilised agricultural area. When needed, one may add a fourth column that includes 

utilised agricultural area plus managed forest. 

The decomposition approach above provides the decomposition in hectares. In order to 

understand the decomposition further, the changes in hectares need to be related to 

GHG emissions. In order to do this, it shall be determined which land is converted (i.e. 

location of area expansion), and the GHG emissions changes related with these 

conversions (i.e. the emission factors). 

6.2. Stepwise decomposition approach 

Once the idea behind the decomposition is discussed in the previous section, it is certain 

that each column of Figure 5 takes a number of steps to go from the total land use for 

the biofuel towards the net increase in feedstock area, cropland area or cropland plus 

grassland area. These steps are described in this section in further detail. Initially first 

column in Figure 5 is discussed, and then the steps in the other two columns are shortly 

described, followed by the steps needed to come from land use change towards GHG 

emissions. 
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Step 1: Gross land use for the production of the feedstock for biofuels 

production (per pathway) 

Growing the feedstock of biofuels, the biofuels area, requires an area that is determined 

by the energy per kg of feedstock biofuel and the yield of land. This is a straightforward 

calculation. The result is quantification of direct land need for production of biofuel 

feedstock.  

Step 2: Reduced area because of production of by-products (co-product effect) 

The production of biofuels generates by-products, mainly animal feed (i.e. rapeseed 

cakes, soybean cakes, DDGS from wheat and maize) that may reduce land use for the 

production of animal feed elsewhere. This explains why the gross land use need for 

biofuels production (biofuel area), is more than the net area needed.  

This is also a technical relationship, but the calculation about which animal feed is 

substituted away can be relatively complicated (i.e. to what extent can soybean cake be 

substituted by rapeseed cake or wheat). Furthermore, normally land for production of 

other crops than the biofuel feedstock is converted, so it is more relevant for the analysis 

of the increase of total crop expansion than for the analysis of feedstock area expansion. 

A careful analysis of the effect of all substitutions in the chain is required for this, where 

the reduction in feedstock area is only a part. 

Other by-products like electricity have no land use change consequences, but have GHG 

emissions consequences, that normally are tackled in a standard LCA analysis of direct 

emissions. 

Step 3: Reduced area because of reduced demand for non-biofuel crops 

(consumption effect) 

The increase in demand for the biofuel feedstock may generate a price increase of the 

biofuel feedstock that is also used for other purposes. The increase in price may also 

generate a reduction in demand for the feedstock for other purposes. This may be 

because the feedstock is used more efficiently for these purposes (i.e. reduction of food 

waste), or because consumption is reduced. In case of use for food, this implies that less 

is available for nutrition or that waste is reduced. If the lower demand is for animal feed, 

this will have consequences for other types of feed or consumption of meat. 
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Step 4: Reduced area because of increase in yields of both biofuel feedstock and 

other agricultural commodities (yield effect) 

The increase in price may generate a yield increase, reducing the amount of land needed 

for the biofuel, but at the same time changing land use GHG emissions because of 

increased fertilizer use, and perhaps also emissions related with mechanization. As far as 

the yield increase is on the area of biofuels, this is included in LCA analysis, but if it is on 

crops for other purposes, it is not included in standard GHG analysis, even though it is 

relevant for the calculation of net GHG emissions. 

Next to the yield effect, as a consequence of price changes, average yields may also 

change because average and marginal yields differ. In most econometric analysis on the 

yield elasticity, the effects are combined. But in most models, the difference between 

marginal and average yields, and the increase of average yields on current land, are 

analytically separated. However, the difference is not visible in most model outputs, 

where normally average yields or production and area are reported. 

While statistics are normally on harvested area, for land cover the physical area is the 

relevant criterion. This implies that increase in double cropping (i.e. when land has more 

than one harvest per year), or reduction of unused cropland are included in the yield 

increase component. 

Step 5: Relocation of production to areas or crops with different yields 

(relocation effect) 

Normally, the exercise above will be accomplished with standard yields (i.e EU yields). 

However, because some production is taking place in other regions with different yields, 

LUC changes will be different. Second, there may also be substitution processes going on 

in animal feeding, where production area needs per unit of feed differ depending on the 

feedstock substituted, and the regional yields for its production. These relocation effects, 

which can be both positive and negative, also need to be considered. 

Step 6: Net increase in feedstock area for biofuels (area change) 

Both yield and demand effects reduce the additional land needs for the feedstock of the 

biofuel. This generates the net expansion of land due to the production of the feedstock 

for biofuels. However, the difference between gross and net land use effect may be at 

the cost of GHG emissions increase related to agriculture practices (i.e yield increases 

require more fertilizer inputs that generates GHG emissions), or at the cost of food, feed 

and other non-biofuel consumption in the case of demand reductions. 
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6.3. Additional details on the decomposition approach 

Analysis at cropland level 

The analysis of the area of the feedstock crop is only part of the total analysis. This 

expansion of feedstock area is at the cost of other types of land. For analytical 

simplification, it can be assumed that feedstock production is at the cost of other 

cropland, as direct land use change is either forbidden under the RED, or accounted 

under the direct emission methodology. This implies that these other crops have to be 

produced elsewhere, have to be produced with a higher yield, or demand for these crops 

must be reduced. This is the same line of reasoning as with the feedstock area, except 

for that instead of an increase in demand, the driving force is a reduction in area.  

However, the required crop area of other crops may be changed also because of the co-

production of by-products of the biofuel production, especially animal feed. So, the 

demand for crops may be reduced as a consequence of substitution of the biofuel by-

product. Furthermore, the demand for other crops may be changed because of changes 

in livestock production caused by price changes of livestock products. All these effects 

are included in the share of original crop land use needs, that is absorbed by demand 

reduction, and these elements may be split out. The end result is the increase in crop 

area as a consequence of the increase in biofuel demand. 

Analysis of pasture land 

For analytical simplification purposes, it can be assumed that i.e. the cropland expansion 

is at the cost of permanent grassland. Again the same line of reasoning can be followed, 

i.e. the tension between currently used permanent grassland and demanded area can be 

solved by yield increases, consumption reduction and area expansion. If it is 

accomplished through intensification of livestock, this will probably generate extra 

demand for crops for animal feed (instead of less energy intensive feed), as discussed 

above, although part of intensification can be accomplished through higher grassland 

productivity as a consequence of fertilisation, mechanisation or other methods. As far as 

the reduction in land use is caused by reduced livestock production, this may have 

consequences for meat and milk consumption and food waste reduction. The end result is 

a net reduction in permanent grassland. 
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Analysis of managed forest land 

In some studies, also consequences for managed forest land are taken explicitly into 

account. The expansion of agricultural land into other types of land, gives a pressure on 

managed forest land, and again this may be accomplished through consumption 

reduction, yield increases and area expansion into other types of area (pastures, 

abandoned land, etc.). 

Location of area expansion 

What is defined as total land expansion depends on the model. In most cases (Laborde, 

2011; Valin et al., 2015) it is cropland expansion by converting non-cropland into 

cropland, in some cases it is agricultural land expansion by converting other types of land 

(abandoned land) into cropland or grassland, and in some cases it is agricultural land 

expansion by conversion of managed forests, or conversion of non-managed forests into 

managed forests. When total land use conversion is known, it is important to know which 

type of land is converted. Depending on the study, the end result of the exercise is an 

expansion that will be at the cost of the remaining land use types, with highest impacts 

in case of conversion of natural forest land, peat land and other natural land (direct 

conversion of natural forests and other highly biodiverse areas as well as peatland and 

other high carbon areas is forbidden under the RED sustainability criteria). The 

distribution of area expansion over different types of pristine areas is the next step in the 

analysis. This may depend on the region where expansion happens, but depends also on 

the assumptions on which types of land are most likely to  be converted in practice. 

Emission factors 

The end result of the whole exercise is a table of changes of each land use type per 

region. These land use changes need to be translated into GHG emission changes. Each 

type of land use has a different carbon stock. So, when land use changes, the carbon 

stock of land changes, and this carbon change may be emitted in or captured from the 

air, or otherwise may be associated to products produced from the feedstock cultivated 

on the converted land. Direct and indirect land use change emissions may arise from two 

mechanisms; (i) loss of carbon stock in above and below ground biomass, (ii) foregone 

sequestration (or carbon loss) which would have occurred if the initial land cover 

remained. 
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Concerning the first, the way in which the land transition is accomplished determines also 

how much GHG is released. For example, by burning forests all carbon stock will be 

released in the air, while if wood is harvested the carbon stock will be captured in the 

products made from it, or burned as biofuel. So, the share of carbon stock that is 

released in the air is also an important factor explaining the emission factors. For the 

latter (foregone sequestration), assumptions on “counterfactual” land use and climate 

are important. For instance, if biomass production moves onto agricultural land which 

would otherwise be abandoned, this land may have reverted to natural vegetation, 

potentially becoming a carbon sink. For both emission types, emission factors are usually 

quantified over a fixed period (20 years – as in the EU, or 30 years – as in the US) and 

averaged over the years. 

Aggregation towards biofuel policies 

The outcomes per biofuels pathway may be aggregated towards the totals as a 

consequence of biofuels policies. Normally, the outcome of a biofuels policy is just the 

sum of all the effects of the biofuels pathways used in the production. Analysing how the 

choice of biofuel pathways is made is sometimes endogenously determined and often 

based on current feedstock mix. 
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7. Research results available on the ranges of uncertainty 

identified in ILUC estimations 

Analysis of the uncertainty of ILUC factors that are found in different studies is complex 

because it arises from the large number of uncertainties of different models. A good 

overview of ILUC GHG emissions ranges is presented in Table 9, and besides, in the 

following table more detailed information of studies focusing on ILUC uncertainty is 

presented. 

Table 10 . Summary of studies including ILUC uncertainty results. Source: Own elaboration 

Ref. Result on uncertainty 
Feeds

tock 

Biofuel 

type 

Approach 

Model 

Type of 
sensitivity 
analysis 

Research 
done for 

M
a
li
n
s
 e

t 
a
l.
 

(2
0
1
4
) 

Uncertainty of specific 
components. The most 
important of which are 
“elasticity of yield to price”, 
“crop switching” and “carbon 
stock of new land”. Each of 
these may vary results by 10-

150 gCO2-eq/MJ  

Corn 
1st gen. 
ethanol 

Sensitivity 
analysis by 
best and worst 
case per ILUC 
component for 
GTAP and 
simple model. 
Large ranges 

Own 
researching 
using modelling 
results from 
other studies 

International 
Council on 
Clean 
Transportation 

G
o
h
in

 (
2
0
1
4
) Ranging yield elasticity (0-2): 

10.8-68.6 gCO2-eq/MJ;  
Ranging substitution elasticity 
(0-0.37):  

11.2-61.5 gCO2-eq/MJ 

Corn 
1st gen. 
ethanol 

Analysis of 
results from 
FAPRI and 
GTAP-BIO 

Own 
researching 
using modelling 
results from 
other studies 

NA 

T
y
n
e
r 

&
 

T
a
h
e
ri
p
o
u
r 

(2
0
1
6
) 

Corn 10-35 gCO2-eq/MJ; Soy 

18-47 gCO2-eq/MJ 
Corn, 

soy 

1st gen. 

ethanol 

Scenarios 
varying 
systematically 
one parameter 
at a time 

Additional 
sensitivity 
analysis 

CARB 

 

Most studies on uncertainty of ILUC use Monte Carlo analyses by varying 

systematically a number of parameters in the model, and the outcome is in most cases 

that the spread is very large, while there is no a priori reason why one set of parameters 

is better than the other, nor that the average values are the most plausible ones (D 

Laborde, 2011; W. E. Tyner & Taheripour, 2016; Valin et al., 2015). 

Since uncertainty is distributed over the different components of ILUC, first an overview 

is provided on the available information of the different components of ILUC. Then a 

number of studies analysing uncertainty are discussed. 
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7.1. Key assumptions 

Because the outcome of models is determined by the assumptions of the different 

components of ILUC, in order to understand the uncertainties, it is necessary to explore 

the evidences available behind the mechanisms that are implicitly used in the models. 

Malins et al. (2014) and Searching et al. (2015) provide a comprehensive overview of 

current empirical evidence, and therefore the description below uses the information in 

these studies as a starting point.  

7.1.1. Trends in yields 

Area of feedstock that is necessary per TJ of biofuel depends on the average crop 

yields, energy content per crop and energy conversion efficiency in the 

processing plant per ton of crop. Especially crop and processing yields develop over 

time, and therefore are important for area use per TJ. The area of ILUC per TJ of biofuel 

is expected to be roughly proportional to the increase in feedstock area per TJ of biofuel, 

because almost all components of ILUC increase with the area increase needed for the 

biofuel. Therefore, also GHG emissions are set to be proportional to area per TJ of 

biofuel. 

Global yields for crops increased on average 2% per year between 1961 and 2006 

because of new crop varieties, increased use of pesticides and fertilizers, and improved 

access to irrigation (Baldos & Hertel, 2016; Burney, Davis, & Lobell, 2010). The increase 

in potential yields, i.e. the yield that can be reached with current technology at optimal 

conditions, ranges between 0.6% and 1.1% annually. Regarding closing the gap between 

potential and actual yields, according to some estimates, total factor productivity in 

farms42 increased only a little bit less than yields (Baldos & Hertel, 2016). 

Future yield growth is difficult to predict. R&D expenditures have been reduced in the 

1990s, but increased in the 2000s. Because a larger fraction of current R&D expenditures 

is private compared with the past, it may be that promotion of the innovations is more 

difficult. Climate change may influence productivity growth, where for example increasing 

temperatures may reduce crop yields while increased CO2 concentrations in the air may 

increase yields (Baldos & Hertel, 2016).  

  

                                           
42

 Total factor productivity is the productivity of all production factors together, normally aggregated by value 

share of these production factors in total value added. 
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Another key poiny is to what extent further potential yield improvements are possible. 

Statistically, the expectation is that the growth rate of yields will be lower in the future, 

especially because yields were growing at an arithmetic rate instead of a geometric rate, 

implying that the percentage rate of yield growth is going down (T. Searchinger, 

Edwards, Mulligan, Heimlich, & Plevin, 2015b). It may be that through extra R&D 

expenditures, such as faster improvements in farming practices, or the acceptance of 

new techniques like genetic modification, yields can grow more in the future than may be 

expected based on past growth rates, but this is something that must be proven. There 

are also arguments that climate change and other factors will reduce the growth rate of 

yields further. 

Future yield growth is relevant to predict the area need of biofuels production. But 

besides, in combination with demand factors such as population, GDP growth and income 

distribution, it has consequences in the area needed for non-biofuel purposes, and 

therefore potential land available for biofuel production. 

Looking at recent history, Langeveld et al. (2014) show that between 2000 and 2010 

global utilised agricultural area was reduced by 47 million ha. This is partly caused by 

increased multi-cropping, which increased harvested area on the same crop area in 92 

million ha (7% of a total of 1.4 billion ha). The background of utilised agricultural area 

reduction may be urbanisation, tourism and increase of nature area, but also land 

abandonment because land use is not profitable anymore or because of land degradation. 

With respect to Brazil, utilised agricultural area increased in 12 million ha, where 4.9 

million ha of harvested area were added by increased double cropping. On that topic, 

increase in yields because of double cropping is only 10% of the total yield increases, and 

therefore makes not a significant difference in the calculation of ILUC (JRC, 2015). 

7.1.2. Consumption reduction 

Part of the increase in demand for agricultural crops as a consequence of the increase of 

biofuel demand, is accommodated through a reduction in demand for crops for food, 

feed and other non-biofuel purposes. This makes it relevant in the food versus fuel 

debate, although also some non-food agricultural demand like palm oil for cosmetics will 

be replaced, for which the substitutes may also have GHG emissions. The share of biofuel 

land expansion accommodated through consumption reduction depends on the 

response of demand compared with the response of supply with respect to 

price, i.e. the price elasticity of demand versus the price elasticity of supply. A difficulty 

in the estimation of relevant elasticities is that it is not only about the effect on specific 

commodities, but also on all crops together, and even the effect on livestock production.  
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So, the essential question is to what extent the amount of food, both crop-based and 

livestock, is reduced as a consequence of biofuel policies. 

The share of biofuel land expansion accommodated through consumption reduction is 

determined by the difference between the price elasticity of supply and demand. Most 

economic models have implicit or explicit price elasticities of supply that are equal to or 

a little bit higher than the price elasticity of demand, implying that between 30% and 

50% of ILUC is reduced through consumption changes, although it is a little bit less in 

the GLOBIOM results (Valin et al., 2015). 

Although demand elasticities from different sources of literature, especially of the US 

and China, are available on the ERS-USDA website (ERS-USDA, n.d.), the foundation is 

relatively weak, and the database is no longer updated. Recent econometric studies 

trying to estimate both supply and demand elasticities for agricultural commodities are 

Haile et al. (2016), Berry & Schlenker (2011) and Roberts & Schlenker (2013), using 

advanced instrumental variable techniques. They come at supply elasticities around 0.1 

and demand elasticities around -0.05, implying that an increase in demand for biofuels of 

5%, increases the price of the four main staple food commodities in 35% (Roberts & 

Schlenker, 2013, p. 2279). They suggest that these elasticities are also relevant for the 

long term, but Baldos and Hertel (2016) suggest that long term elasticities are much 

higher, because there are more adjustment possibilities in the long term than in the short 

term. Based on Muhammad et al. (2011) they conclude that the price elasticity of 

demand ranges between 0.30 and 0.86, the crop yield elasticity to land rents about 0.11 

(Lubowski, Plantinga, & Stavins, 2006), the yield elasticity to price about 0.25 (Keeney & 

Hertel, 2009), and the area elasticity to price about 0.05, implying a supply elasticity of 

about 0.3. This is the same as estimated by Scott (2013). Hertel & Baldos (2016, p. 42) 

suggest that the area elasticity of supply is about 0.05 after 5 years, and 0.15 after 20 

years. 

Persson (2016) shows in a literature overview that price elasticities of demand of CGE 

and PE models are around -0.7, but that they range between 0 and -3.4. However, 

average supply elasticities of the PE models studied are significantly lower at about 0.45, 

and CGE models have on average a supply elasticity of about 2.48. This is much larger 

than estimated, but the estimations are normally short term elasticities for specific 

commodities, instead of long term elasticities for crops as a whole. 

Long term price elasticities of supply and demand will be different from short term 

elasticities.  
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In perfect competition price elasticities of supply tend towards infinity, and Schmidt et al. 

(2015) suggests that consumption effects should not be taken into account at all. 

However, for agriculture, there is always a restriction on the availability and quality of 

land, so costs and therefore price, may increase when less suitable land has to be taken 

into cultivation. 

Searchinger et al. (2015) and Malins et al. (2014) suggest to exclude the part of GHG 

emissions reduction related to reduced food consumption from their GHG emission 

calculations, or to make the trade-offs transparent. For this reason, Searchinger et al. 

(2015) presents results of three different studies with and without the effect of reduced 

food consumption. However, most researchers do not make explicit what the effect of 

non-biofuel demand reduction is on the ILUC factors calculated. 

7.1.3. Yield increase 

The share of production increase accommodated through yields depends on the 

price elasticity of yields compared with the price elasticity of area expansion. 

Gohin (2014) shows that analysis of yield elasticity without consideration of land 

elasticity is not very meaningful, so the fundamental issue is the relative size of both 

elasticities. 

When interpreting results of price elasticities of yield, it has to be taken into account 

that they are a combination of differences between yields on new area compared with 

average area (the marginal yields) that are in some models explicitly included, and 

changes in yield on current land (that includes increases in double cropping). Searchinger 

et al. (2008) assumes these two effects cancel out, but all more recent studies assume 

that the net effect is positive, i.e. an increase in biofuel production increases yields. 

The price elasticities of area and yield do conceptually not include the effect of marginal 

yields43. However, the estimation these two cannot be disentangled, and therefore in 

practice the ratio between yield and area elasticities, both with respect to price and 

production, should be the same. This ratio is the essence of explaining the share of 

production increase accommodated through area expansion. 

Al.-Riffai et al. (2010, p. 92) suggest that “there are no robust estimates from the 

econometric literature because of the complexity of the linkage and the highly 

fragmented data available for land use in deforested regions, the lack of a continuous 

time series on local prices, and more importantly, land rent, when they exist” (Malins et 

al. 2014, p. 91). 

                                           
43

 Marginal yields are the yields on extra land taken into use. 
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The analysis for the California Air Resource Board (Carb, 2011) is originally based on a 

paper by (Keeney & Hertel, 2009), reviewing literature on yield elasticities for the US and 

suggesting a yield elasticity of about 0.25. Berry (2011) and later Searchinger et al. 

(2015), dispute the size of this elasticity based on a different interpretation of the 

literature and the fundamental issue of endogeneity of both price, yield and area 

change. 

Another criticism on econometric estimates is that most estimations are on short term 

effects, where it is plausible that supply responds much less in the short term than in the 

long term because area expansion and yield increases require investments (Berry, 2011, 

p. 7). Besides, the elasticities of the econometric studies are crop specific, or in Berry & 

Schlenker (2011) specific for the combination of four crops. The total supply elasticity 

implicit in these estimates is so small that it is inconsistent with long term dynamics of 

agricultural markets where supply elasticities probably tend to much higher values. 

Roberts and Schlenker (2013) use instrumental variable techniques (using weather 

as the main tool) to analyse yield and area elasticities for wheat, corn, rice and soy, 

where production is defined by total digestible energy content. They find that yield 

elasticities are small compared with area elasticities. This is developed further by Berry & 

Schlenker (2011) with estimations not only for the US but also for the whole world, and a 

more advanced use of instrumental variable techniques. They find a global short-run 

price elasticity of area of around 0.1, and a price elasticity of yield around zero. Area 

elasticities are significantly higher, but also far below 1 (around 0.2) for all estimations. 

Although some yield elasticities are significantly positive, others are significantly 

negative, showing how unreliable current estimation techniques and data still are 

(Roberts and Schlenker, 2013). 

Miao et al. (2016) estimate the responsiveness of crop yield and area of US corn and 

soybean to prices and climate by a panel data instrumental variable analysis with 

county fixed effects on US yearly data for 1977-2007. They find a significant own price 

elasticity of corn yield of 0.23, but not for soybean yield (p. 194), while the price 

elasticities for area are respectively 0.45 and 0.63, implying that in the short run area 

expands more than yields, even for corn. The lagged fertilizer price index has a 

significantly negative effect on corn yield and a significantly positive effect on both corn 

and soybean area. 
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Haile et al. (2016) use dynamic panel data estimation techniques on a multi-country 

multi-crop panel data set, and find own price elasticities of yields for wheat, corn, 

soybeans and rice of 0.166, 0.094, 0.146 and 0.043 and area elasticities of 0.075, 0.069, 

0.146 and 0.024, respectively. They find also significant negative yield effects of 

increases in crop price volatility, which may be relevant if an inflexible biofuels policy 

increases volatility in agricultural prices. 

The final recommendation from the CARB Elasticities Values Subgroup (Carb, 2011) is to 

use a yield elasticity of 0.25, taking into account that long term elasticities are larger 

than short term elasticities because of double cropping and the time lag in introducing 

new seed varieties or management practices. This argument is still defended by them as 

valid, independent of newer econometric studies with lower short term elasticities. 

However, the share of ILUC reduced by yield increases is determined by a combination of 

yield and area elasticities. 

Some authors (B. A. Babcock, 2015; B. A Babcock & Iqbal, 2014; Overmars et al., 2015, 

2011) suggest to use historical data to estimate the fraction of production increase 

accommodated through yield increases. However, none of these studies differentiates 

between changes in yields caused by price increases, and yield increases caused by 

exogenous processes like technological change or economic development. 

In summary, some information is available on short term yield and area elasticities for 

specific crops. However, it is extremely difficult to get reliable information on long 

term effects of production increases on yields, because it is almost impossible to 

disentangle exogenous trends in yields from price-induced yields. Furthermore, yield 

increases of crops as a whole is even more difficult to estimate. The evidence on yield 

effects is insufficient and mainly short term. 

7.1.4. Relocation of production 

Yields in different regions differ. Yields of different crops differ. For example, when 

instead of maize, soybean is used for animal feeding, the required area for feed 

production increases.  

However, the topic is broader. For example, Laborde (2011) proposes a free trade 

scenario for EU-biofuels, where more sugarcane ethanol is produced in Brazil. This has 

consequences for land use. It may also be that livestock production in Brazil is reduced 

because of competition of biofuels, and that this results in more livestock production in 

the EU, that requires less land and has less GHG emissions per kg meat. All these 

matters are implicit in CGE and PE models, and complicated to trace. Therefore, no 

study is very explicit on this relocation effect. 
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The method by which international trade is modelled is an important aspect of 

international relocation of production. The most common assumptions are the 

Armington assumptions. In these, current trade flows are the main determinant of future 

trade, and the minimum cost approach is stablished, where the region with the lowest 

cost (including transportation cost and sometimes some quadratic adjustment cost 

function) determines the location of additional production. 

7.1.5. Location of area expansion44 

Once it has been determined how large the expansion of cropland or total agricultural 

land is, the basic question is what type of ecosystem is destroyed. The first step is to 

determine the fraction of cropland expansion into each type of land, the so-called 

land extension coefficients (LEC) (Malins et al., 2014).  

These LEC’s may be determined by comparing satellite data on land cover, as is done 

by Winrock-MODIS (Malins et al., 2014). However, their approach is criticized because 

there is much uncertainty in satellite data. When 5% of area is incorrectly allocated and 

when this is random, almost 10% of land use changes that are measured may be wrong; 

this is a multiple of actual real land use changes (Malins et al., 2014, p. 97). Miettinen et 

al. (2012) provide more robust results with much more precise satellite data. However, 

MIRAGE uses Winrock-Modis LECs to allocate land expansion over land categories (Malins 

et al., 2014, p. 98). Besides,  Lark, Meghan Salmon, and Gibbs (2015) show that for the 

US, the expansion of soybean area and maize area that is triggered by biofuels 

expansion is to a large extent into land that has not been used for agriculture before, and 

that is less suitable for conversion “raising concerns about adverse environmental and 

economic costs of conversion”. 

A second approach to allocate land expansion is accomplished in models like MIRAGE 

(Laborde et al., 2014) and GTAP (CARB, 2009), where a CET function based on relative 

prices, determines to what extent cropland expands into managed forest land and 

commercial grassland (Malins et al., 2014, p. 97). This approach cannot be used to 

analyse expansion into pristine land, because for this land no prices are available. 

  

                                           
44

 For this section, the analysis is based on Malins et al. (2014) and page numbers refer to this study. 
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Most models tend to allocate more land expansion into grassland than into forest 

(Malins et al., 2014, p. 98-9, figure 3.11). Forests store more carbon than shrub land 

and shrub land more than grassland. GTAP (CARB, 2009) includes only grassland and 

managed forest to expand in, MIRAGE (Laborde et al., 2014) also does not include shrub 

land, while FASOM uses 25 different forest species types and 18 forest management 

intensities. So this fact, may influence carbon consequences. 

A third approach to address the allocation of cropland expansion, may be the use of a 

land allocation models. In such models, land characteristics per grid cell (i.e rainfall, 

slope, soil quality, proximity to roads and distance to existing production areas), 

determine the probability of land conversion (Malins et al., 2014, p. 98). Malins et al. 

(2014) refer in this context to the work carried out by the Joint Research Center of the 

European Commission (Hiederer & Ramos, 2010). The land allocation models CLUE and 

IMAGE have been used for the same purpose in other studies, and besides more land 

allocation models are available. 

Different types of models have different land categories, and many of them are based 

on FAO statistics. The way land is categorized is essential for the availability of land that 

is currently not used. JRC (2015) argues that the availability of fallow land is 

overestimated as a source of crop area, because in many studies unharvested cropland is 

used as a proxy for available land. However, some harvested crops are not in the 

statistics, and thus, part of land that is not harvested in the FAO statistics is harvested in 

reality, and therefore should not be included as unharvested area.  

Furthermore, a lot of unharvested land is unharvested for a reason. There are many 

reasons for land not generating a harvest such as; failed harvests through weather 

events,  land is left fallow with or without a cover or nitrogen fixing crop to improve soil 

fertility, there is no harvest yet as it concerns  establishment  of a perennial  crop, or  the 

land is not harvested in order to have a buffer for fluctuations in demand over the years. 

There may also be nature reserve areas that are considered as fallow, while regulations 

do not allow their use. Furthermore, there is no indication that cropland expansion occurs 

preferentially in regions where crop area has been recently reduced, implying that there 

were reasons to abandon the land. In summary, if land is not harvested there might be a 

number of (economic) reasons for this. 
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Own analysis. Laborde (2011) versus Valin et al. (2015) 

Different models have different results.  

Different models may have different mechanisms, which are mainly related to the 
implicit assumptions on the different components of ILUC, rather than with the 

model itself. These differences are illustrated by decomposing the results of the two 
main studies for the EU for maize ethanol (Laborde, 2011 and Valin et al., 2015). 
The difference in emissions is relatively small, i.e. 14 and 10.8 g CO2-eq/MJ 
respectively. However, the emissions have different causes, as illustrated by the 

change in agricultural land area, which is more than 10 times higher in Valin et al. 
(2015) than in Laborde (2011). 

Although land area and GHG emissions are stated explicitly in both studies, the 

decomposition below is a very rough attempt to interpret figures in the models, 
implying that the approximate tendency is correct, but that the exact figures are an 
interpretation of the authors of this report. 

Table 11 Model outcome comparison for maize ethanol. Source: own calculations, partly 
based on Searchinger et al. 2015 

 
Valin et al. (2015) Laborde (2011) 

  ha/TJ % ha/TJ % 

Gross feedstock area 15.6 
 

13.5 
 

By-product 4.1 26% 6 44% 

Net feedstock 11.5 
 

7.6 
 

Feed demand 3.4 29% 3.9 52% 

Production increase 8.2 
 

3.6 
 

Yield increase 2.3 28% 2.7 75% 

Cropland change (calculated) 5.9 
 

0.9 
 

Reallocation effect -1.8 -30% 
  

Cropland change 7.7 
 

0.9 
 

Grassland area change 1.3 17% 0.4 43% 

Agricultural land 6.4 
 

0.5 
 

 

Both studies start with more or less the same gross feedstock area per TJ, but 

Laborde (2011) reduces the area needed already with a percentage that is 70% 
higher than Valin et al. (2015), and the same holds for the reduction in demand for 
animal feed as a consequence of higher maize prices. 

 

 
Land demand reduction because of price-induced yield increases as a 
percentage of land use, is 150% higher in Laborde (2011), and the 

difference is even more because in Valin et al. (2015), an unexplained part 
that we call reallocation effect is left. Finally the percentage of cropland 
expansion that is accommodated through a reduction in grassland area, is 
also 150% higher in Laborde (2011). 

If land use changes are so much different in the two models, why are the 
GHG emissions more or less the same? The answer is that except for 
grassland and peatland, different types of lands are converted and different 

types of GHGs are taken into account (see Table 12). While in Valin et al. 
(2015), mainly natural land and abandoned land in the EU are converted 
(where carbon sequestration on cropland is explicitly taken into account), 
Laborde (2011) converts mainly managed forests, and also grassland, both 
with a much higher amount of carbon stock per hectare. 

Table 12 Model outcome comparison for maize ethanol with respect to carbon 
accounting. Source: own calculations 

Valin et al. (2015) Laborde (2011) 

  ha tCO2/yr   ha tCO2/yr 

Natural land 5.70 9   
  Abandoned 2.00 6 Managed forest 0.48 6.0 

Cropland 7.70 -4 Natural forest 0 0.0 

Grassland 1.30 1 Grassland 0.4 2.0 

Peatland 0.03 2 Peatland 0.05 2.8 

Total 

 

14 Total 0.88 10.8 

 

In summary, it is not easy to get a precise insight into the land use 

dynamics based on the information provided in the studies. However, the 
rough dynamics is clear, and it is also clear that the GHG emissions in the 
two reports have completely different backgrounds. 
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7.2. Uncertainty Analysis45 

Valin et al. (2015) analysis in some studies 

Valin et al. (2015) (IIASA/Ecofys – GLOBIOM model) perform a Monte Carlo sensitivity 

analysis to analyse uncertainties. They vary a large number of parameters, and 

sometimes assume that some parameters vary independently of each other, and other 

parameters vary in the same direction. In annex V of Valin et al. (2015), the 

sensitivity analysis is presented in detail. A representative idea of what type of 

information comes out of it, is presented below for maize ethanol. 

Valin et al. (2015) show per 

feedstock the average, 25-

75% and 5-95% uncertainty 

ranges for different GHG 

emissions components,  i.e. 

natural vegetation conversion, 

natural vegetation reversion, 

agricultural biomass, soil 

organic carbon and peatland 

conversion (see Figure 6). 

These variations are the 

consequence of systematic 

variation of the parameters, 

but it is not possible to 

decompose the uncertainties in the components of LUC. The result is a total 

distribution of ILUC factors that is extremely broad, with the 90% interval for maize 

between -70 and +60 gCO2-eq/MJ, which is extremely wide compared with the 

average. 

Valin et al. (2015) conclude that important uncertainties remain, because of variability 

around biophysical values and around causalities assumed by the modelling approach 

(p. xiii). 

  

                                           
45

 For this section, the analysis is based on the highlighted studies, and page numbers refer to these 

studies. 

Figure 6 Detail of Sensitivity Analysis. Source: Valin et 
al. (2015). 
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Plevin et al. (2010, 2015) studies 

Plevin et al. (2010) conclude that “lack of data and understanding (epistemic 

uncertainty) prevents convergence of judgment on a central value for ILUC emissions. 

The complexity of the global system being modelled suggests that this range is 

unlikely to narrow down.” (p. 8015). There is a lack of consistency in expert judgment 

on correct parameter values, functional relationships and the efficacy of models to 

represent the relevant processes.  

This makes it difficult to model uncertainty probabilistically, and so it may be better to 

evaluate different scenarios (p. 8016). Despite this, they develop a simple ILUC model 

that distinguishes the fuel yield, the net displacement factor, the relevant production 

period to which emissions have to be allocated, emissions factors for forest, grassland 

and wetland, and the fraction of cropland expansion going into these land cover types. 

In their analysis they conclude that the net displacement factor (i.e. the economic part 

of the analysis), accounts for about 70% of the variance in the emission factors. 

According to them, it is unlikely that modellers will be able to reduce the uncertainty 

in this parameter significantly (p. 8019). 

In Plevin et al. (2015) a Monte Carlo simulation is accomplished in a combination of 

the general equilibrium model GTAP-BIO-ADV, and the carbon accounting model AEZ-

EF. They analyse US maize ethanol, Brazilian sugar cane ethanol and US soy biodiesel. 

They analyse parametric uncertainty in the combined models, and identify the main 

parameters that generate the variance of ILUC emissions in the Monte Carlo 

simulations. Choices on distribution of parameters are based on expert judgment, 

literature, other model’s outputs and sometimes measurement (p. 2659). 

In their simulations Plevin et al. (2015) find that 70% of variance in emission factors 

is caused by the economic model, and 30% by carbon accounting. With respect to 

uncertainty in carbon accounting, available data on biomass are uncertain, and 

estimates of soil carbon fluxes from land-cover change, where the remote sensing is 

used to allocate land cover, are highly uncertain (p. 2657). 

In their interpretation Plevin et al. (2015) conclude that handling of uncertainty 

depends on the cost of error, and suggest the application of a safety-factor to prevent 

wrong decisions (p. 2663).  
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Figure 7 Illustrative model of how assumptions for each 
parameter affect ILUC results for U.S. corn ethanol. 
Source: Malins et al. (2014) 

 

ICCT’s simple model uncertainty analysis 

Just as Plevin et al. (2010), Malins et al. (2014) developed a simple macro-ILUC 

model in order to get a better understanding on the fundamental causes of ILUC. In 

contrast with the standard policy assumption of zero net ILUC, it starts with the 

situation where all biofuel land is at the cost of pristine area.  

The components that reduce ILUC are the reduction in food consumption, the increase 

in yields, the use of by-products, the location and type of crops compared with 

average global yields, the elasticity of area to price, and the carbon stock of new land. 

Figure 7 shows the resulting 

distribution for corn ethanol 

using assumptions that are 

relatively consistent with the 

CARB’s ILUC estimate, and 

varying for each parameter a 

best and worst case, with 

parameter choices based on 

judgment and parameter values 

in the literature (p. 110). The 

analysis shows that varying one 

of these parameters, while 

keeping the others on the 

default values, provides already 

very large ranges of ILUC.  

CARB sensitivity analysis  

Tyner & Taheripour (2016) perform a sensitivity analysis in the ILUC analyses 

performed for the CARB and determining its 2015 ILUC factors for biofuels regulation. 

Instead of a Monte Carlo analysis, Tyner & Taheripour (2016) perform a number of 

simulations to indicate the effect of systematically varying some parameters. One is 

the crop yield price elasticity, and another the emission factor for conversion of a 

specific, low-carbon type of grassland, that in the past had been used as cropland or 

cropland-pasture, that is used in the GTAP model46 (CARB, 2015). Also a correction 

factor for marginal productivity compared with average productivity based on a net 

                                           
46

 Cropland pasture includes “buffer land”, upon which crops expand in profitable years and are not 

cultivated in unprofitable years. As economic models do not have any annual price fluctuations caused by 
the effect of weather on yields, they allow this land to be permanently occupied without encroaching on 
pasture land itself. But if this happened in real life, a farmer would convert more pasture land the next time 
he foresees a profitable year.” 
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primary productivity indicator is investigated, as is the Armington elasticity, i.e. the 

reaction of trade on international price differences. 

One finding of this study is that the size of ILUC depends on the size of the shock. This 

is caused by the CET elasticities for land. The increase in cropland with an increase in 

maize ethanol demand from 9.59 to 11.59 billion gallons is 30 % higher than an 

increase from 1.59 to 3.59 billion gallons. Resulting also in about 30% more GHG 

emissions, i.e. 16.5 instead of 12.5 gCO2e/MJ.47  

7.3. Possibilities to narrow down uncertainty 

Many authors (Laborde, 2011; Plevin et al., 2010,2015; Valin et al., 2015) suggest 

that it will not be easy to narrow down uncertainties in the near future.  

For example, Valin et al. (2015) conclude that important uncertainties remain, 

because of variability around biophysical values and around causalities assumed by 

the modelling approach (p. xiii). Plevin et al. (2010) conclude that “the lack of data 

and understanding (epistemic uncertainty) prevents convergence of judgment on a 

central value for ILUC emissions. The complexity of the global system being modelled 

suggests that this range is unlikely to narrow substantially in the near future. Fuel 

policies that require narrow bounds around point estimates of life cycle GHG 

emissions, are thus incompatible with current and anticipated modelling capabilities.” 

(p. 8015). Laborde (2011) mentions with respect to uncertainty that “ILUC can only 

be modelled, not measured, because it is generated by global mechanisms in a large 

interdependent system (p. V). The outcomes are the results of assumed causalities in 

the model (p. xiii), i.e. the understanding of the agricultural market system (p. xv) 

and on biophysical values. For both it is very difficult to reduce uncertainty. As a 

consequence of this inherent uncertainty that cannot be avoided, it is not suitable to 

include ILUC factors directly in the calculations" (p. xv). 

Malins et al. (2014) are more optimistic. They state: “For each of the six factors 

identified here, further research would help to narrow the range of ILUC 

results and progressively increase confidence about the magnitude of ILUC for each 

feedstock” (p. 23). 

                                           
47

 Calculation based on table 3-33 of Tyner and Taheripour (2016), p. 40. 
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8. Different approaches used and results on taking by-

products into account 

The basic idea of by-products is that part of the harvest cannot be used for biofuels 

and is available for other purposes, especially animal feeding. For rapeseed and 

soybean based biodiesel, the by-product is protein-rich rapeseed and soybean meal 

(cake), respectively. While for wheat and maize, it is dried distillers grains with 

solubles (DDGS).  All these by-products are substitute protein-rich meals.  

In simple models, this is just distributed according to the weight, the energy 

content or the market value, but in practice substitution processes are much 

more complicated.   

Table 13 . Summary of most important studies including by-products in ILUC results. Source: Own 
elaboration 

Reference Model Approach By-products 
Type of 

research 
Research 
done for 

Laborde 
(2011) 

MIRAGE 
Substitution through 
nested CES function 

Protein rich feeds 
Own 

modelling 
EC 

Valin et al. 
(2015) 

GLOBIOM 
Substitution through 
linear programming 

model 
Protein rich feeds 

Own 
modelling 

EC 

Overmars et 
al. (2015) 

Historical Value or energy shares Protein rich feeds 
Own 

modelling 
EC 

Lywood 
(2013) 

Historical Substitution approach Protein rich feeds 
Own 

modelling 
SOFIPROTÉ

OL 

Hertel and 
Baldos (2016) 

GTAP 
Substitution through 
nested CES function 

Protein-rich feeds 
Own 

modelling 
NA 

Most studies consider by-products, so in the table above only a small but 

representative selection is presented. In a lot of causal models like Overmars et al. 

(2015),  by-products are simply handled according to the energy or value share in the 

final product. In more advanced models like MIRAGE (Laborde et al., 2014) and 

GLOBIOM (Valin et al., 2015), there is first a substitution between different protein 

rich feeds, and then a substitution between energy and protein feeds. In many 

models the increase in protein-rich feed by-products leads only partially to a reduction 

of other protein-rich by-products, while the main effect is that the energy-rich feed is 

reduced and sometimes also feed from grassland. 

Although the substitution process in feed is relatively well described, the dynamics 

generated are not. The increase in by-products generates a price reduction of protein-

rich feed, and depending on the price changes of other feed components, total crop-

based feed price may either increase or decrease. 
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In MIRAGE (Laborde et al., 2014) and GLOBIOM (Valin et al., 2015), but not in GTAP 

(CARB, 2009), the substitution mechanism starts as the consequence of increased 

protein-rich animal feed. As far as the increase in biofuel by-products, i.e. rapeseed 

meal is accommodated through a reduction in production of other protein-rich feed, 

i.e. soy meal, this may generate a reduction of soy production reducing supply of soy 

oil, which is replaced with the cheapest oil on the market, palm oil, that produces less 

by-products. This way, the positive land use effect of a decrease in land use of feed 

by-products of biofuels, may be compensated by the relocation of oil production for 

non-biofuel demand. Thus, leading to conversion of peatland and carbon rich forests 

into palm oil plantations (Malins, Searle and Baral, 2014b). 

What is the evidence for this mechanism? First, recent history increases in global 

vegetable oil demand are mainly accommodated through increases in palm oil 

production. Therefore, an increase in biodiesel demand, also generates an increase in 

palm oil production (Valin et al., 2015). Second, the results of the economic models 

are based on two important assumptions on substitution possibilities: that substitution 

between oil cake from rapeseed and oil cake from soy is relatively easy, that the ratio 

between vegetable oil production and oilcake production is more or less fixed, and that 

substitution between palm oil and soybean oil is relatively easy. The most adequate 

approach is not clear, but it is clear that models widely differ on assumptions about 

this mechanism, generating large differences in LUC GHG emissions from soy and 

rapeseed oil. 

An alternative historic approach is found in Lywood (2013), who comes at a very 

high carbon benefit of rapeseed biodiesel because of substitution of by-products. 

Although data on the substitution process between rapeseed by-product and soybean 

is not fundamentally different from Valin et al. (2015), the outcome is. One reason is 

that in Lywood (2013), the reduction of soy oil production is compensated by reduced 

biodiesel production in Argentina, while it is compensated by increased palm oil 

production in Valin et al. (2015). Another reason is that in Valin et al. (2015) prices of 

oil meals are reduced, and therefore livestock production increases, and the share of 

protein meal in livestock increases. The result is a net expansion in cropland area, 

which is partly at the cost of high carbon peatland forests. On the contrary, Lywood 

(2013) presents a net reduction in land area; where the reduction in land area is 

mainly in South America, generating large reductions, and the increase in land area is 

mainly in the EU, with relatively low foregone sequestration GHG emissions. 

In summary, it is very difficult to trace the consequences of by-product substitution in 

different studies due incomplete reporting, and results can be fundamentally different.  
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9. Research results on the possibility of factoring in the 

impact of EU policies in ILUC estimations. 

In general, in ILUC studies little is mentioned about the consequences of other 

EU-policies on ILUC GHG emissions. Therefore only some possible effects of other 

policies are discussed, with only limited evidence derived from ILUC studies, and a 

large part based on logic. 

Table 14 . Summary of studies including other policies on ILUC results. Source: Own elaboration 

Ref. Result Policy Biofuel type 
Approach 

Model 
Type of  

research 
Research 
done for 

V
a
li
n
 e

t 
a
l.
 (

2
0
1
5
) Reduction of GHG 

emissions as 
consequence of EU 
biofuels policy from 97 
to 48 gCO2-eq/MJ, and 
if no peatland 
conversion is 
effectively forbidden to 
4 gCO2-eq/MJ 

Global 
CO2 price 
of 50$ 
per ton 

EU-biofuels 
mix 

GLOBIOM 
Own 

modelling 
EC 

V
a
li
n
 e

t 
a
l.
 (

2
0
1
5
) Foregone sequestration 

emissions may not 
happen because of 
annual mowing in 
order to receive CAP 
money, occasional 
mowing by 
smallholders, or 
extensive grazing. 

CAP 
policy 

All biofuels 
investigated. 

Only 
mentioned 

as a warning 

Comment to 
own 

modelling 
EC 

L
a
b
o
rd

e
 

(2
0
1
1
) 

More ethanol from 
sugar cane in Brazil 

Trade 
policy for 
biofuels 

EU-biofuels 
mix 

MIRAGE 
Own 

modelling 
EC 

 

Agricultural policies 

Some agricultural policies may have consequences for LUC of biofuels. First, Valin et 

al. (2015, p. xiii) mention that foregone sequestration emissions may not happen 

because of annual mowing in order to receive CAP money, occasional mowing by 

smallholders, or extensive grazing. 

Second, if agricultural policies promote less intensive schemes with lower yields, then 

this may increase the amount of land used for feed and food production, and therefore 

reduce the amount of low-carbon land that is available for biofuels. Also for example 

animal welfare regulation may influence the amount of land needed for food 

production.  
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Third, subsidy policy is an important aspect of agricultural dynamics. Decoupling of 

subsidies, reduced prices and made European feed more competitive compared to 

imported feed. Taheripour et al. (2011, p. 11) conclude that in the past, crop area in 

the US was mainly determined by government programs, while currently market 

forces become more important. The same holds more or less for the EU (C Malins et 

al., 2014). 

Fourth, also rural development policy is sometimes focused on improving yields and 

efficiency of agriculture practises, as well as on improving infrastructures. This fact 

may provide the same type of effects as R&D and technology diffusion policies. 

Environmental and climate policies 

Environmental policies may reduce the opportunities to convert high biodiversity land. 

In most cases high biodiversity areas are also high carbon areas, so if high 

biodiversity areas are protected this may reduce the possibilities for land conversion. 

Legislation and enforcement of legislation in the regions where land use change 

happens is crucial, and country specific governance is therefore essential. 

Environmental legislation in the EU may change options for land conversion. This can 

potentially force land conversion in areas with low carbon conversion costs. However,  

stricter environmental policies may also drive agricultural production out of the EU, 

with potentially larger GHG effects than it would have had in the EU. GHG emissions 

may be larger outside the EU because legislation and law enforcement is less or 

because land management practices are less efficient. 

A consistent climate policy including prices, land conversion and GHG sequestration of 

forests, may reduce ILUC substantially. For example, Valin et al. (2015, p. 39) 

calculate that a price of 50$ per ton CO2 would reduce LUC emissions from the EU 

biofuels policy from 97 gCO2-eq/MJ to 48 gCO2-eq/MJ, and if peatland would not be 

allowed to be converted to 4 gCO2-eq/MJ . Dixon et al. (2016) model UN REDD policies 

by reducing available land in the model, but do not calculate emission factors based 

on this. Policies like REDD+ to prevent forest conversion are meant to accomplish 

some pricing of carbon in forests.  

One of the broader issues debated in the context of biofuels climate policies is to what 

extent biofuels policy is the most cost-effective method to reduce GHG emissions in 

the transport sector. 
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Trade policies 

More flexibility to import biofuels, potentially provides an opportunity to reduce GHG 

emissions. For example, direct GHG emissions from sugar cane ethanol are much 

lower than for maize or wheat ethanol, although indirect emissions depend 

substantially on the land use policy in the producing countries. Laborde (2011) models 

a free biofuel trade scenario where exactly this effect is found. 

More flexibility in the trade of crops and livestock in general, may change the 

international relocation of land. If increased biofuels production in the EU is at the cost 

of other cropland in the EU because other regions are more cost competitive, while 

these other regions have lower yields or other reasons for larger GHG emissions, the 

indirect land use effects of EU biofuels may increase with more free trade. 

On the other hand, trade policy can also be used as an instrument to force third 

countries for stricter compliance to environmental regulation. If tariff reduction in free 

trade agreements are made conditional on environmental policies, then LUC of biofuels 

may be reduced. 

R&D and technology diffusion policies 

First, research on advanced biofuel technologies and technologies to improve yield on 

marginal land, may result in the development of low ILUC-risk biofuel pathways. This 

may happen to the extent that it provides profitable opportunities for biofuels 

production, while it is not possible to produce other commodities on that land in a 

cost-effective manner. 

Second, research devoted to increasing yields for biofuel feedstock will reduce direct 

land use change, and therefore also indirect land use change (being normally a fixed 

fraction of direct land use change). 

Third, research leading to a general increase in yields will reduce the amount of land 

that is needed for non-biofuel purposes. This land may be low carbon land without 

competitive uses, that may be used for biofuel production. However, in quantifying 

GHG effects the capacity of abandoned land to sequester carbon must be taken into 

account. 

What has been said about R&D, holds also for technology diffusion that is meant to 

spread the knowledge that has been generated by R&D. R&D without diffusion of the 

knowledge generated, is not effective. 
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10. Availability of research on other indirect effects of the EU 

biofuel policy. 

The literature review described in this report focuses primarily of GHG emission due to 

ILUC. Nonetheless, during the review, a number of studies pointed out other 

important direct and indirect effects of biofuel production. 

Table 15 . Summary of studies including other indirect effects results. Source: Own elaboration 

Ref. 
Other 

Indirect 
Effect 

Biofuel 
type 

Impact 
Approach 
Method 

Type of 
research 

Research 
done for 

M
e
li
ll
o
 e

t 

a
l.
 (

2
0
0
9
) 

Nitrous 

Oxide 
Emissions 

Cellulosic 
feedstocks 

Nitrous oxide emissions 
may be greater than 

carbon loss in terms of 
warming potential, due to 
additional fertiliser use. 

IAM 
Own 

modelling 
NA 

B
a
n
s
e
 e

t 
a
l.
 

(2
0
1
1
) 

Agricultural 
Commodity 

prices 

1st 
Generation 

Import of biofuels will be 
strong, even under 
scenario settings which 
prohibit international 
trade. Global land 
expansion by 1-5%. The 
long term trend of 
declining agricultural 
prices may be reversed. 

CGE 
Own 

modelling 
NA 

P
e
rs

s
o
n
 

(2
0
1
6
b
) Agricultural 

Commodity 
Prices 

Multiple 

Significant uncertainty 
concerning the effect of 
increased biofuel 
production on food prices. 

Review 
External 

sensitivity 
analysis 

NA 

Im
m

e
rz

e
e
l 

e
t 

a
l.
 

(2
0
1
4
) 

Biodiversity Multiple 

Impacts depend on initial 
land use and generally 
negative, especially in 
tropical regions. Advanced 
biofuel mitigate this.  

Review NA NA 

 

Melillo et al. (2009) compared different long-term biofuel production pathways using 

an IAM linking economic and terrestrial biogeochemistry model. Their results show 

that indirect land use will be responsible for substantially more carbon loss (up to 

twice as much) than direct land use. However, because of predicted increases in 

fertilizer use, nitrous oxide emissions will be more important than carbon losses 

themselves in terms of warming potential. A global GHG emissions policy that protects 

forests and encourages best practices for nitrogen fertilizer use can dramatically 

reduce emissions associated with biofuels production.  
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Persson (2016) reviewed t the impact of increased bioenergy demand on agricultural 

commodity prices. This study suggests that there is still considerable uncertainty 

around how prices are affected by biofuel demand. Three areas were identified where 

effort needs to be directed to improve models and data, in order to better predict both 

current and future impacts of biofuel demand: (1) increase the understanding and 

empirical evidence on price elasticities, (2) price transmission in international 

agricultural markets, and (3) better capture the forces (including policies) that shape 

the future expansion of cropland.48 

Regarding the impact of bioenergy in biodiversity, many studies have been produced 

in this direction. A review of different studies addressing bioenergy impact on 

biodiversity was done by Immerzeel et al. (2014). In their study, they analysed 53 

studies and also summarized them, by the area of focus, crop, studied taxonomic 

groups, etc. The conclusion of the study was that “reported impacts depend on initial 

land use and are mostly negative, especially in tropical regions. The impacts of second 

generation bioenergy crops tend to be less negative than first generation ones, and 

are in some cases positive (at the field level), in particular in temperate regions. Land-

use change appears as the key driver of biodiversity change, whereas the associated 

habitat loss, alterations in species richness and abundance are the main impacts 

addressed”. 

                                           
48

 There is also an extensive literature on food security consequences of biofuels, but not in the context of 

ILUC analysis. 
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11. Availability of ILUC research data on impacts of 

advanced biofuels produced from dedicated energy crops49  

Advanced biofuels, present a median ILUC factor of 5 gCO2-eq/MJ. It is important to 

stress though that unlike other feedstocks where there are multiple studies (18 for 

biodiesel and 24 for 1st generation), there are only six studies presenting results on 

advanced biofuels (Fritsche, Hennenberg, et al., 2010; Melillo et al., 2009; Mullins et 

al., 2011; Overmars et al., 2015; Farzad Taheripour & Tyner, 2013; Valin et al., 

2015). Among these studies, there is significant disagreement and differences in 

methodological approaches as the types of lands assumed to be used for dedicated 

cropping with woody and perennial crops are defined differently in terms of current 

use status.  

A comprehensive overview of ILUC GHG emissions ranges of advanced biofuels 

produced from dedicated energy crops is presented in Table 9. Besides, in the next 

section related to low ILUC-risk biofuels certification and main mitigation options, 

more detailed information of studies focusing on ILUC of dedicated energy crops is 

presented (Table 16). 

 
  

                                           
49

 Crops dedicated to production of energy. This category comprehends non-food, lignocellulosic crops, 

belonging to the 2nd generation feedstock. Species included are both herbaceous and woody such as 
miscanthus, switchgrass, reed canary, giant reed, cardoon, willow, poplar and eucalyptus among others  
(Perpina-Castillo et al. JRC 2015). 
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12. Overview on availability of research on low ILUC-risk 

biofuels certification and main mitigation options 

In order to prevent ILUC effects, different mitigation options including low-ILUC 

biofuels, are suggested in a wide number of studies discussed in this chapter. 

The starting point for the inventory of low-ILUC biofuels is the definition in the ILUC 

Directive (EU) 2015/1513, that defines the concept as: “biofuels, the feedstock of 

which were produced within schemes which reduce the displacement of production for 

purposes  other than for making biofuels”. In other words, it concerns measures that 

reduce displacement, but not necessarily mitigate it completely. 

In the LLIB50 methodology study (Ecofys, 2012), produced by Ecofys in collaboration 

with the RSB Secretariat at EPFL and WWF International, three levels of approaches 

are mentioned: 

1. Prevent unwanted direct land use change globally and for all sectors. 

2. Reduce pressures on land from the agricultural sector as a whole. 

3. Reduce/prevent indirect impacts at the (biofuel) project level. 

Many studies indicate, that mitigation of land use changes for agriculture or forestry 

as a whole, are most effective in bringing down risks for ILUC related emissions. 

However, the literature focuses at project level, and therefore, ILUC mitigation 

strategies discussed in the following chapter, mostly focus at the project level. 

Four categories of options are commonly found in the literature (Wicke et al., 2012; 

Plevin et al., 2013; Fritsche, Sims, et al., 2010 and see Table 16): 

1. Prioritize low ILUC- risk feedstock. 

2. Prioritize abandoned and unused degraded lands. 

3. To increase agricultural yields. 

4. To protect areas with high carbon stock and/or high biodiversity values. 

In a fifth sub-section of this chapter, certification systems, which often include 

strategies to avoid or bring down ILUC effects of biofuel production, are discussed with 

a complete focus on biofuel project level 

                                           
50

 Low Indirect Impact Biofuel (LIIB) Methodology 
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Table 16 . Summary of studies including low ILUC-risk biofuels and mitigation strategies. Source: Own 
elaboration 

Reference  
Approach 
Method 

Feedstock 
ILUC mitigation 

strategy 
Type of 

research 
Research 
done for 

Plevin et al. 
(2013) 

Review 
study 

 

Perennial 
grasses 

Grow perennial grasses 
on land that does not 
compete with food 
production (i.e. marginal 
lands)  

Review of 
modelling 
studies 

University, 
Berkeley 

Wheat straw Use residues 
Review of 
modelling 
studies 

University, 
Berkeley 

Overmars et al. 
(2015) 

Historic 
trade data 
analysis 

Wheat straw Use residues Own analysis JRC 

Valin et al. 
(2015) 

PE model 
application 

Forestry 
residues 

Use residues Own modelling IIASA 

Valin et al. 
(2015) 

PE model 
application 

Switchgrass and 
miscanthus 

Grow perennial grasses 
on land that does not 
compete with food 
production (i.e. 
abandoned arable lands) 

Own modelling IIASA 

Van der Laan et 
al. (2016) 

Integrated 
spatial 

analysis 
Oil Palm 

Grow oil palm on land 
that does not compete 
with food production 
(under-utilised lands) 

Own MIRAGE 
model 

application & 
quantitative & 

spatial 
assessment 

University 
Utrecht-

Copernicus 

Nsanganwimana 
et al. (2014) 

Review 
Woody and 
perennial crops 

Grow perennial crops on 
contaminated soils 

Review 
University 

Lille 

Wicke et al., 
(2015); 
Gerssen-
Gondelach et al. 
(2015); 
Brinkman et al. 
(2015); Tešić et 
al. (2010) 

Spatial 
analysis and 

analytical 
approach 

Rapeseed, corn, 
miscanthus 

Increase yield in 
conventional food crops 
to use unused land for 
energy crops 

Own MIRAGE 
model 

application & 
quantitative & 

spatial 
assessment 

University 
Utrecht-

Copernicus 

Lapola et al. 
(2010) 

PE model 
application 

Sugarcane, 
Eucalyptus, 
Soya 

Increase livestock 
productivity per area of 
grazing land 

Own model 
application 

Center for 
Environmental 

Systems 
Research-
Kassel and 
Max Planck 

institute 

Schueler et al. 
(2013) 

Review Not specified 

RED sustainability 
criteria to avoid use of 
high carbon stock and 
high biodiverse areas 

Review of 
other 

modelling 
studies 

Potsdam 
Institute for 

Climate 
Impact 

Research, 
Potsdam 

Frank et al. 
(2013) 

PE model 
application 

Sugar cane, 
corn, wheat, 
rapeseed, palm 
oil, soybeans, 
forest biomass, 
wood processing 
residues, short 
rotation tree 
plantations 

RED sustainability 
criteria to avoid use of 
high carbon stock and 
high biodiverse areas, 
use of unused lands 

Own modelling IIASA 
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Elbersen et al.  

Post model 
and spatial 

analysis 
approach 

Agricultural 
residues, 
dedicated 
woody and 
grassy crops, 
waste, forest 
biomass 

RED sustainability 
criteria to avoid use of 
high carbon stock and 
high biodiverse areas 
and higher minimal GHG 
reduction criteria for 
bioenergy (incl. biofuels) 
(above RED) in different 
scenarios, use of unused 
lands 

Post-model 
analysis CAPRI 

output 

Alterra-
Wageningen 

Böttcher et al. 
(2013) 

PE model 
application 

Sugar cane, 
corn, wheat, 
rapeseed, palm 
oil, soybeans, 
forest biomass, 

Sustainability constraints 
on land use and GHG 
mitigation targets for 
biofuels, use of unused 
lands 

Own modelling IIASA 

Junker et al. 
(2015) 

Review 

Rapeseed and 

other 
conventional 
food crops 

RED GHG reduction 
target and impact on 
rapeseed 

Review of 

other 
modelling 
studies 

Thünen 
Institute of 

Market 
Analysis, 

Braunschweig 

 

12.1. Low ILUC-risk biofuels  

An important strategy suggested in many studies for the production of low ILUC-risk 

biofuels, is the use of residues and by-products. These can include agricultural 

residues (i.e. straw, stover, manure), forestry residues (i.e. branches, stumps), 

by-products of the food processing industry (i.e. animal fats) and of the wood 

processing industry (i.e. bark, sawdust), or other types of waste and residues51 

(i.e. demolition wood, organic fraction of municipal solid waste) (Fritsche, Sims and 

Monti, 2010 and also Table 16).  

Several studies evaluate the sustainable potential of residues and by-products in 

the EU and other regions, taking into account various theoretical, technical, socio-

economic and environmental limitations.  

These studies indicate that the sustainable potential of residues from agricultural and 

forestry, that is or will become available in the EU, at attractive prices, can be 

substantial, although estimates vary considerably (Dees et al., 2017; Khawaja and 

Janssen, 2014; Mantau et al., 2010; Pudelko, Borzecka-Walker, and Faber, 2013; 

Spöttle et al., 2013). A key aspect thereby is how much agricultural harvest residues 

can be removed from the field, without decreasing the soil organic carbon content and 

productivity of the soil. A number of studies investigate how much agricultural harvest 

residues can be used without reducing soil fertility, for example using the CESAR 

model (Vleeshouwers and Verhagen, 2002) and the CENTURY Soil Organic Matter 

                                           
51

 Distinction between waste and residues cannot be made based on the definition of pathways, as the EU 

legislation (Waste Framework Directive) defines waste as “substance or object which the holder discards 
or intends or is required to discard”. Therefore, only the term residue is used.  
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Model (Campbell and Paustian, 2015; Melorose, Perroy, and Careas, 2015; Monforti-

Ferrario et al., 2015). Dees et al. (2017) suggest that about 50% of straw can be 

removed without reducing soil carbon, although this removal level varies strongly per 

region. These studies take as a starting point the stabilisation of organic carbon levels. 

If the aim should be increase of the soil organic carbon levels, residue removal rates 

would be lower however. 

At this moment, the most important production and use of residues for the production 

of biofuels in the EU, concerns hydrogenated vegetable oils (HVO) produced from 

used cooking oils, animal fats and other waste oils and fats. Also important is the use 

of methanol produced from glycerine from first generation biodiesel production. On 

the contrary, the production of ethanol from wheat straw and sawdust is currently 

very limited. 

No studies were available evaluating ILUC effects of the use of used cooking oils, 

animal fats, other waste oils and fats or glycerine for biofuel production. The use of 

second generation biofuels produced from lignocellulose residues is, and will likely 

remain, very limited during the coming years. However, a few studies have been 

carried out to evaluate the ILUC effects of using residues for biofuels production. 

Overmars et al. (2015) quantified the ILUC effects of ethanol produced from 

wheat straw in the EU. The ILUC effects are quantified by assigning part of the ILUC 

effects of wheat production in the EU to straw. Based on the value ratio, the value of 

wheat straw is 5% of the value of wheat grains. The calculation of the ILUC effects of 

wheat straw are based on historical data for 2004-2012 about the contribution of yield 

and area growth to higher wheat production in the EU.  

The best approach of Overmars et al. (2015), results in negligible ILUC emissions of  

2-3 gCO2-eq/MJ ethanol produced from wheat straw, compared to 10-21 gCO2-eq/MJ 

wheat ethanol. However, the additional use of straw may result in soil degradation. 

Aspect that has not been addressed by Overmars et al. (2015). Taheripour et al. 

(2013) suggest that soil degradation can be compensated by adapting fertilisation 

inputs. They estimate that 23% of corn stover supply cost goes to fertilizer inputs, 

that are used to compensate for fertility loss.  
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Besides, Valin et al. (2015) quantify with the GLOBIOM model the ILUC effects of 

cereal straw-based biofuels in the EU. The resulting ILUC effects are 16 gCO2-eq/MJ. 

These ILUC emissions result from straw overharvesting in specific regions of EU, and 

consequently a loss of soil carbon, and a yield reduction as a result of nutrient 

depletion, is produced. In case wheat straw harvesting is limited to a sustainable 

removal rate of 33-50%, then no yield decreasing effects occur according to Valin et 

al. (2015), and the ILUC effects are consequently zero. 

Valin et al. (2015) also quantified the ILUC emissions of second generation 

biofuel production from forestry residues with GLOBIOM. The total net emissions 

are modelled at 17 gCO2-eq/MJ biofuel. These emissions are the result of a lower 

build-up of soil organic carbon. In the strict sense however, these can be categorized 

in the LUC emissions, rather than in the indirect emissions. 

An interesting mechanism in some economic studies is that harvesting of by-products 

of agricultural products, may generate an extra income for these agricultural products, 

and therefore creates an incentive to expand the production of these crops (Dunn et 

al., 2013; Pratt and et al.,  2014; Taheripour and Tyner, 2015; Thompson and Tyner, 

2014). Yet, results indicate that the ILUC effects are limited compared to first 

generation biofuels. 

12.2. Feedstock grown on areas that do not compete with food production and 

that are not used for other purposes  

Another ILUC reduction option is the production of woody or grassy energy crops on 

areas that are not suitable for rotational crops (mainly used for food and first 

generation biofuels), and do not compete with other land uses (marginal land). 

According to Plevin et al. (2013) the most beneficial situation from a climate change 

perspective is to grow perennial grasses, such as switchgrass, miscanthus, or 

mixed prairie grasses on marginal land, which deep root systems can increase the 

soil carbon content and improve soil structural properties. 

There are several studies that assess the potential of abandoned farmland, 

under-utilised, contaminated, fallow land, unused and degraded areas for the 

production of biomass crops.  In most studies these lands are not clearly defined 

and this explains why these 5 terms are used in the context of this report (see also 

Table 16). The key assumption in all studies evaluated (Valin et al., 2015; Plevin et 

al., 2013; Overmars et al., 2015; van der Laan, Wicke and Faaij,  2015; Elbersen et 

al., 2013; Nsanganwimana et al., 2014; Frank et al., 2013), is that these lands used 

for the production of biomass for biofuels, would otherwise remain unused.  
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Unused land availability assumptions are however very challenging to make, and in 

none of the studies, the estimates of these land resources are underpinned with 

empirical evidence. The challenge of making reliable estimates of cropland expansion 

options is also confirmed in the study of Eitelberg, van Vliet, and Verburg (2015), who 

show a range in cropland availability at global level from 1,552 to 5,131 Mha, 

including the 1.550 Mha that is already cropland. Part of the additional cropland 

availability above the current cropland area will need to come from lands regarded 

“unused, marginal, abandoned, underutilised”. Differences in estimates of cropland 

size by Eitelberg, van Vliet, and Verburg (2015) are attributed to institutional 

assumptions, i.e. which land covers/uses (i.e. forests or grasslands) are societally or 

governmentally allowed to convert to cropland, while there was little variation in 

biophysical assumptions. The analysis by Eitelberg, van Vliet, and Verburg (2015) 

confirms that land availability is linked to strong uncertainty, while it can have a large 

influence on the outcomes of model based assessment.  

Valin et al. (2015) quantified with the GLOBIOM model the ILUC effects of biofuels 

made from switchgrass and miscanthus grown on abandoned lands. The 

results show that these have no ILUC emissions, and that they even have a positive 

mitigation effect on GHG emissions (-12 gCO2-eq/MJ for FT biodiesel). The mitigation 

of GHG emissions, is the result of the sum of: (a) foregone sequestration on 

abandoned cropland, (b) conversion of natural vegetation to agricultural land, and (c) 

an increase of the above and below ground carbon content from the establishment of 

switchgrass and miscanthus. The use of abandoned lands for cropping of miscanthus 

and switchgrass is especially expected to take place in Europe, according to the Valin 

et al. (2015) GLOBIOM assessment. This new production requires 1.4 Million ha in the 

EU, from which 300,000 ha. is expected to be sourced from abandoned land and 

580,000 ha from other natural vegetation.  

So, it is basically assumed that the carbon value of the biofuel feedstock is higher than 

the carbon stock or carbon sequestration potential of the original vegetation. To 

underpin this type of analysis, several studies highlight the potential of woody and 

grassy energy crops to restore contaminated soils, although the potential is 

determined by local and regional conditions (Nsanganwimana et al., 2014). Valin et al. 

(2015) analyse also biodiesel from short rotation coppice plantations, with even 

larger mitigation effects of -29 gCO2-eq/MJ biodiesel, because of larger carbon 

sequestration by the crop than with switchgrass and miscanthus. 
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The use of abandoned agricultural land by Valin et al. (2015) is explored in the 

abandoned agricultural land scenario, and is implemented in combination with a 

reduction of biofuels made from palm oil, soybean oil and sugar cane, so the effect 

cannot be split off easily. Furthermore, it is logical that GHG emissions because of 

biofuel production combined with incentives to use abandoned land, will not have 

fundamentally different results for GHG emissions than a baseline with incentives to 

use abandoned land in general.52 

12.3. Increasing the efficiency of agriculture, forestry and bioenergy 

production chains 

Several studies emphasize the importance of improving the efficiency of 

agriculture, in order to avoid the conversion of natural vegetation and associated 

undesirable effects on biodiversity, and GHG emissions from ILUC  (Brinkman et al., 

2015; Gerssen-Gondelach et al., 2015; Langeveld et al., 2014; Peters et al., 2016; 

Souza, GM; Victoria, RL; Joly, CA; Verdade, 2015; Tešić et al., 2010; Wicke et al., 

2015). However, as discussed previously, the endogenous yield increase from higher 

demand for crops for biofuels production is insufficiently large to avoid an 

expansion of agricultural land and ILUC effects. Policies aimed at increasing the 

productivity of crop and livestock production, including those of intercropping and 

integrated systems such as agro-forestry systems (Jose and Bardhan, 2012; Nair, 

Kumar and Nair, 2009),  are therefore needed. These can have a large effect on land 

use, and thus on GHG emissions of food and biofuel production.  

Already in the last decades, changes towards double cropping have contributed to 

increase the amount of available food and biomass (Langeveld et al., 2014a; Bonner 

et al., 2016). In the ITAKA project (Junquera, 2015), Camelina was identified as a 

very suitable crop to be grown on fallow land to become part of the rotation, 

particularly in arid regions. It can provide extra income to farms, and helps to increase 

the productivity of the land in a sustainable manner.  

  

                                           
52

 Acknowledgments to Robert Edwards for providing this argument. 
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Projections by FAO indicate that, most production increases (90%) are expected to be 

supported by a combination of yield improvement and increasing cropping 

intensity (Nachtergaele, Bruinsma, Valbo-Jorgensen, & Bartley, 2009). The room for 

yield improvements is still very large, as is also robustly underpinned by the “Global 

Yield Gap Atlas”53 (van Ittersum et al., 2016), and specifically for the production of 

biomass for bioenergy (Achterbosch, Meijerink, Slingerland, & Smeets, 2013). 

However, a higher productivity cannot be allocated to the production of biofuels only, 

unless the increased productivity is implemented to offset the ILUC effects of biofuels. 

The latter can happen at project level, as illustrated in low-ILUC certification 

approaches discussed in next chapter. 

Estimates with the MAGNET CGE model suggest that, compensating ILUC effects 

through higher investments in R&D in agriculture can be realised at limited 

additional costs, both in the EU but especially in developing regions (Kristkova et al., 

2016). They estimate the costs of R&D investments to avoid negative LUC effects at 

0.4 to 0.6 $/GJ, which is limited compared to biomass price. 

An example of cheap compensation of the ILUC effects of biofuels production in Brazil 

is the study of Lapola (2009), which showed that a small increase in livestock 

productivity in Brazil is sufficient to accommodate land use increase for biofuels, and 

mitigate related GHG ILUC emissions. 

A comment to all approaches related to R&D investment or intensification for higher 

yields, is that these policies are as useful for food production as they are for 

biofuel production. If investments are profitable to compensate for biofuels 

production, they are also for other production purposes. 

12.4. Protecting areas with high carbon stock and/or high biodiversity values  

The benefits of protection of natural vegetation and lower ILUC GHG 

emissions from food and biofuels production, cannot be allocated to the 

production of biofuels only, unless these policies are implemented as part of the 

policies that stimulate the sustainable production and use of biofuels. Moreover, the 

protection of natural vegetation may limit ILUC GHG emissions of biofuels, 

but this may also lead to a trade-off, with higher food prices and higher impact 

on food consumption. 

                                           
53

 The Global Yield Gap Atlas (GYGA) providing a web based tool to identify yield gaps in main crops all over 

the world is the result of an international collaboration among agronomists with knowledge of production 
systems, soils, and climate governing crop performance in their countries. Detailed maps and associated 
databases are displayed and available to download at the website of the Global Yield Gap Atlas  

http://www.yieldgap.org/web/guest/home
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Winchester & Reilly (2015) conclude that global bioenergy use increases 

deforestation, if no costs are associated with GHG emissions from land use 

change. As regions are linked via international agricultural markets, irrespective of 

the location of bioenergy production, natural forests decrease is larger in regions with 

the lowest barriers to deforestation. 

Valin et al. (2015) evaluate the impact of global policies to limit deforestation 

and peatland drainage, on ILUC GHG emissions of biofuels. A price of 50 $/t 

CO2 emissions from deforestation, reduces LUC emissions of the EU 2020 biofuel mix 

from 97 gCO2-eq/MJ biofuel to 48 gCO2-eq/MJ. If also emissions from peatland are 

avoided, then the overall LUC emissions from biofuels used in the EU would further 

decrease to 4 gCO2-eq/MJ. The share of crops used for biofuels production that is 

diverted from the food and feed sector, is however higher in these low deforestation 

scenario compared to the default scenario of biofuel use in the EU.  

In summary, measures to reduce deforestation and peatland drainage are especially 

effective if they are accommodated to all land using sectors, and not only to 

biofuels sector. The protection of high carbon areas reduces ILUC, but at the same 

time increases agricultural prices. 

12.5. Low ILUC-risk biofuels certification systems  

Most existing certification schemes do not explicitly deal with ILUC, but several, 

include measures that avoid undesirable DLUC effects, and indirectly avoid or 

compensate ILUC effects. 

Following, the specification in the Directive (EU) 2015/1513 to identify options of low 

ILUC-risk biofuels through the use of certification schemes. In the Directive, low ILUC-

risk biofuels are defined as “biofuels, the feedstock of which were produced within 

schemes which reduce the displacement of production for purposes  other than for 

making biofuels”.  

In response to this, Ecofys published a study “Methodologies identification and 

certification of `low ILUC-risk biofuels” (Peters et al., 2016), in which two 

methodologies are presented to certify low ILUC-risk biofuels. The focus of the 

approach is therefore at biofuel project level, and 2 options of low-ILUC certification 

approaches are presented:  

1. Higher crop yields through improved inputs and management practices, 

including; better fertilisation, sowing practices, crop rotation, crop protection, 

pollination, harvest, and precision farming or,  
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2. Expanding agriculture on previously non-agricultural land with low 

carbon stocks and low biodiversity value.  

Both options were already discussed above, but the proposed methodology is studied 

a little bit more in-depth. 

The key starting point of the approach is that of “additionality”. The economic 

operator (which can be one farmer or a group of farmers or a whole region), needs to 

prove that additional biomass that can be certified as “low ILUC-risk”, is produced in a 

baseline situation, and that the incentive to increase yields or take unused lands in 

production, comes from additional non-food biomass demand. 

The identification of biomass supply from higher crop yields is based on a 

comparison of the development of the actual productivity, compared to the trend line 

development of crop yields. If feedstock producers can demonstrate that yield 

increases are above the trend line, then the additional production is qualified as low 

ILUC-risk feedstock. Crucial thereby is that, the higher productivity does not occur in 

absence of biofuel production, and can be attributed to improved management. 

However, it is extremely difficult to prove that a farmer would not have implemented 

the measures to increase yield without biofuels. Whether the biomass yielded above 

trend line can be certified completely as low ILUC-risk, cannot be ensured completely. 

No studies are known that have further investigated this situation at higher national 

and global scale, in terms of different levels of take up of this strategy and indirect 

impacts (Sammy, Takriti, Malins, & Searle, 2016). 

It will also be very challenging to determine which part of the yield increase is related 

to the listed management adaptations allowed in the certification scheme, and which 

come from more unsustainable practices ( i.e. increased irrigation in zones coping with 

aridity). After all, yield increases can only be reached if limitations for the inputs 

required, are declined (i.e. more nitrogen use can only result in a yield increase if 

there is also enough water). 

The second strategy of growing biomass crops on unused lands, requires 

economic operators to prove the absence of other provisioning services on this land in 

the last 5 years, in order to ensure “additionality”. Furthermore, it is required to 

comply with EU RED sustainability criteria for biofuel production, when land is taken 

into production. Therefore, (Peters et al., 2016) pay much attention to techniques and 

data for verifying the unused land status. This is carried out by using the Normalised 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) based on 

satellite data, that are however not very well validated. 
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Elbersen et al. (2014) suggest that a 5 year unused land status is too short to 

prove that there are not extensive grazing practices, while it is also difficult to define 

which land is exactly high carbon stock, and which feedstock may be expected to 

increase carbon sequestration compared to the native vegetation (Lewandowski et al., 

2015; Lord, 2015; Masters et al., 2016; Monti & Zegada-Lizarazu, 2016; Mbonimpa et 

al., 2016). 

Peters et al. (2016b) study proposes a 10 year certification period, that may be too 

long, because within such a period it may also become needed for feed and food 

production (Monti and Zegada-Lizarazu, 2016; Lewandowski et al., 2015; Larsen et 

al., 2014; Fagnano et al., 2015). However, it may also be too short because perennial 

plantations require a longer period to build carbon stock and to make a profit. 

One should consider at the same time, that limiting agricultural expansion to 

previously non-agricultural land with low carbon stocks and low biodiversity value, are 

most effective in avoiding ILUC effects if extended to all land uses including food 

and feed (Ecofys, 2013; Bottcher et al., 2013; Frank et al., 2013). 

The low ILUC-risk approach is one type of approach that is aimed at project level. This 

is presented by Ecofys as a one level project approach, which is not seen as the only 

solution to bringing down ILUC emissions (Ecofys, 2013). Therefore, it does not 

imply that other higher level approaches in all land using sectors, such as taking policy 

measures that prevent unwanted direct LUC and reduce pressures on land, may be 

efficiently applied.  Overall, low ILUC-risk biofuels certification approaches developed 

and also tested in case studies, by Ecofys in collaboration with World Wildlife Fund 

(WWF) and Roundtable for Sustainable Biomass (RSB) since 2009, are promising, but 

still need further adaptations to improve their effectiveness.  This is in line with the 

conclusion made by Sammy et al. (2016), who also reviewed the low-ILUC 

certification approaches developed by Ecofys (2013). They conclude “that low ILUC 

impact biofuels, even though described through several measures and methodologies, 

are still in their infancy state, and would require supplementary requirements 

and risk analysis if were to be included in new European legislation”.  
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13. Research recommendations  

The review of the ILUC literature that is published since 2012 shows that the progress 

in the calculation of ILUC effects from biofuel production, and reduction of 

uncertainties, has been limited. This uncertainty is largely irreducible due to the 

complexity of market mediate effects. Further progress can be achieved through 

better understanding of the different ILUC components, their sensitivities, 

and closure of data uncertainty gaps. However, the “forecasting” of the full impact 

of LUC of biofuels will be limited and the validity of existing models will continue to be 

questioned. 

Enhanced cooperation on improving the availability of ILUC relevant data at global 

level, and increased convergence in terms of standardisation of data formats, 

might help to increase transparency, and to narrow down uncertainties leading to 

large differences in research and sensitivity analysis results. 

Making the background of modelling results explicit is something else than improving 

the knowledge that is incorporated in these results. The analysis of the evidence on 

the different components of ILUC shows that for most ILUC components the scientific 

evidence is extremely poor. Furthermore, when investigating and comparing the 

results of different ILUC analyses, it is difficult to track their precise background. This 

is consistent with the conclusion of Persson (2016, p. 479) that “far too many studies, 

simply focus on the quantitative outputs (i.e., price changes) of single model runs, 

without attempting to understand or explain the model dynamics that give rise to 

those results, compare outputs with empirical data, or conduct parametric and 

structural sensitivity analyses.” 

Thus, datasets on biofuel crop production must be collected, synthesized and 

standardized to common data formats. Analysis of historical information on 

agricultural production, trade, prices and yield, as well as land use changes may 

require further attendance in order to get a better understanding of the fundamental 

parameters that generate ILUC. Increased data availability and convergence of data 

formats and transparency, could also potentially help for validation of models and 

increase the use of empirical models. Satellite monitoring (GIS – systems) can 

support this development for different purposes, including ILUC research.54 

  

                                           
54

 i.e. Miettinen 2012, GRAS tool of the ISCC 
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Besides, a potential target for future research is to make model outputs 

comparable. A possible useful approach for comparing the results of different 

models, is the decomposition of ILUC effects developed in this study, which builds 

on various existing studies (i.e., Searchinger et al., 2015; Malins et al., 2014, 

Laborde, 2011; Valin et al., 2015).  

With respect to by-products, an interesting approach could be to model biofuels 

increase with and without considering by-products, as for example is done by 

Taheripour et al. (2010). It would be useful if each biofuel scenario is run with and 

without biofuels, in order to make explicit what the consequences of by-products are, 

while in reporting the results it should be made explicit what land use is exactly 

changed. Further research, mainly empirical in nature, is required to get better 

insights into the complex dynamics of by-product substitution. 

Further, literature suggests that there is still considerable uncertainty around how 

agricultural commodity prices are affected by biofuel demand (Persson, 2016). In 

order to better predict both current and future impacts of biofuel demand, effort needs 

to be directed to: (1) increase the understanding and empirical evidence on price 

elasticities, (2) price transmission in international agricultural markets, and (3) better 

capture the forces (including policies) that shape the future expansion of cropland. 

In relation to yield elasticities, disagreements are found in literature based on different 

interpretations, and the fundamental issue of endogeneity of both price, yield and 

area change. Therefore, methods that correct the endogeneity problem, such as 

instrumental variable methods, should be further investigated in order to be applied. 

In many studies considering sustainable removal rates of residues, the 

"maintenance" of soil organic carbon (SOC) is presented as a relevant benchmark to 

ensure carbon neutrality of residue use. However, SOC in many managed soils of the 

EU is not at a steady-state (Stolte et al., 2016). Therefore, in carbon-poor soils, it 

would be desirable to increase soil organic matter (SOM), which would allow 

productivity to be increased. The effect of increasing SOM in these situations leading 

to increased productivity, should be taken into account in new modelling studies 

addressing LUC and ILUC of biofuels.  

There is still much uncertainty and little empirical evidence on the extend of land 

defined as “unused, marginal, and/or underutilised and converted to crop 

land”. Further work on its identification and characterisation is recommended to bring 

down the uncertainty in model results (Eitelberg, van Vliet, and Verburg, 2015).  
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Finally, in relation to the methodologies presented to certify low ILUC-risk biofuels 

(Peters et al., 2016), these need further refinement, particularly regarding: (1) the 

prove of additionality through calculation of trend line baseline yields, (2) availability 

of reliable data in all potential sourcing regions in the world, and (3) risk for 

unsustainable increases in irrigation water consumption needed to increase yields in 

arid regions. Also, the evaluation of unused land status and the duration of 

certification of 10 years, still has many open ends which need to be evaluated further. 

If applied alone, certification of low ILUC-risk biofuels might not be able to avoid all 

indirect effects (Sammy et al., 2016; Ecofys, 2013). Therefore, additional measures, 

beyond the scope of certification, need further research. 
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14. Conclusions 

ILUC GHG emission factors identified in the literature vary significantly across 

biofuel pathways, studies and also within studies. Studies which have investigated 

parametric uncertainty conclude that parameter variation has a significant effect on 

the outcome, but that the empirical basis and scientific evidence is weak. 

As a consequence of all uncertainties related to the modelling of the different 

components that determine ILUC effects, it is very difficult to narrow them down. 

The analysis by ICCT (Malins et al., 2014) shows that if the variation of each 

component is considered, then the plausible range of ILUC emissions can be very 

broad. If all uncertainties are combined, as is done in several sensitivity analyses, for 

a lot of biofuels, the variation in ILUC effects is even broader. However it is difficult to 

trace down the components that generate the probability distribution of ILUC GHG 

emissions. For this reason, doing a sensitivity analysis by just varying one parameter 

at a time, as is done in Malins et al. (2014), is potentially more informative when 

evaluating the impact of various assumptions. 

Several mitigation options have been proposed that might avoid or reduce the ILUC 

effects of biofuel use. Low ILUC-risk feedstocks, especially residues from 

forestry or agriculture are relatively promising. Most studies have shown that 

ILUC GHG emissions of these, are from null to very low and considerably lower than 

those of crop based biofuels (Valin et al., 2015; Overmars et al., 2015; Taheripour et 

al., 2013). However, for these residues the sustainable supply may be limited, or 

harvesting of the residues may be at the cost of other uses of the residues or carbon 

loss in agricultural or forest land (Taheripour et al., 2013; Valin et al., 2015). 

Furthermore, harvesting by-products of agricultural products may generate an extra 

income, and may create an incentive to expand the production of these crops (Dunn et 

al., 2013; Pratt and et al., 2014; Thompson & Tyner, 2014; Taheripour & Tyner, 

2015). Yet, results indicate that the ILUC effects are limited compared to first 

generation biofuels.  

The use of degraded and low carbon land to grow perennials seems effective. The 

carbon value of the biofuel feedstock may be higher than the carbon value or carbon 

sequestration potential in the original vegetation, thus generating negative emissions 

from land use change (Valin et al., 2015; Nsanganwimana et al., 2014).  
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However, it is also important to consider why should “unused, marginal, and/or 

underutilised and converted to crop lands” lands be prioritised to biomass 

cropping for bioenergy. These marginal lands could also be used for the production of 

other commodities (like paper pulp and sometimes food), which would also 

be  reducing the pressure on pristine areas or releasing agricultural land (Valin et al., 

2015; Bottcher et al., 2013; Frank et al., 2013).  

Measures to increase yields may be an adequate strategy to reduce GHG emissions 

of land use changes. However, it is clear that the increased yield stimulation coming 

only from biofuels will not be enough for bringing agricultural land use emissions down 

sufficiently. The same holds for a strategy to protect areas with high carbon 

stocks. Measures to reduce deforestation and peatland drainage are only effective if 

they are implemented in all land using sectors, and not only in biofuels sector 

(Valin et al., 2015; Bottcher et al., 2013; Frank et al., 2013). The protection of high 

carbon areas reduces ILUC, but may at the same time increase agricultural prices and 

this may lead to additional land use conversions for agricultural production, increasing 

GHG emissions. Policies stimulating higher land productivity should therefore, ideally, 

be focussed on all land using sectors. Also, measures preventing unwanted land use 

changes should apply to all sectors and globally, particularly protecting high 

biodiversity and carbon rich areas of importance for the provision of ecosystem 

services. 

In general it can be concluded that the certification of low ILUC-risk biofuels alone 

might not be able to avoid all indirect effects (Sammy et al., 2016). When low ILUC-

risk biofuels certification approaches were presented in 2012 (Ecofys, 2013), it was 

made clear that three levels of potential approaches are needed, of which low-ILUC 

certification addressing biofuels at project level was one. Additional measures, 

beyond the scope of certification, are therefore needed, such as integrated land use 

planning at regional and national levels, including effective territorial policies aimed at 

preventing unsustainable land use conversions in all sectors. The latter is also in line 

with conclusions made by Valin et al. (2015) and Bottcher et al. (2013), who show 

higher GHG mitigation effects in scenarios where RED criteria are widened to the 

whole agricultural and forest sectors.  
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Appendix 1: Matrix details 

The following matrix is a summary of all the bibliography selected for revision in this 

report, providing a summary of the insights of these papers and most important 

information of them. 

1) Bibliographic details 

a. Authors 

b. Year of publication 

c. Title 

d. Journal 

2) Aim, Method and Boundary Conditions 

a. Theoretical framework of study (i.e. empirical, review, model 

projections, scenarios analysis) 

b. Main objectives of the study 

c. Main methods used (i.e. case study, real life study, historical approach, 

partial/general equilibrium, life cycle analysis, consequential, discussion, 

name of model, etc.) 

d. Scenarios used and time-frame covered   

e. Allocation period for GHG calculation assumed 

f. Method concerning inclusion of by product allocation 

g. Economic and environmental impact fields covered (including GHG-ILUC 

emissions, biodiversity, etc.) 

3) Assumptions on biofuel demand 

a. Demand region 

b. Biofuel types covered (1st gen, 2nd gen, biomaterials, bio-power, etc.) 

c. Conversion technologies covered and related technological advances 

taken into account 

d. Volumes of biofuel/bioenergy demand specified per period 

e. Demand policy targets or Stimulation policies assumed 

4)  Assumptions on biomass/biofuel supply 

a. Supply regions covered 

b. Types of Feedstock assumed to satisfy the demand  

c. Potential land changes included in analysis 

d. Feedstock covered for ILUC effect calculation 

e. Yield increase assumptions/source of yield increase data 

f. GHG emission data for conversions used/sources, emission factors 

g. Key stimulation policies for mobilization of supply assumed  
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h. Other key data sets used (i.e. market elasticities) 

5) Results 

a.  Main locations where ILUC takes place and types of land use changes 

involved 

b. Calculation of the ILUC effect (GHG emissions gCO2-eq/MJ) 

c. Net land-use effect 

d. Decomposition of the ILUC effect (i.e. land effect, price effect, yield 

effect, marginal yield, consumption effect, intensification effect) 

e.  Other reported effects (i.e. effects on biodiversity, food security, 

ecosystem services, water, air, soil, rebound effect, carbon debt effect) 

6) Evaluation 

a. Uncertainty addressed in the study? (sensitivity analysis, Monte Carlo 

analysis) 

b. Main conclusions and policy recommendations of the study 

c. Strengths and novel aspects of the study 

d. Weakness of the study 
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