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Abstract 

 The ubiquity of noble metal catalysts in both industrial and academic settings is a testament 

to their impressive reactivity, versatility, and modularity. Recent advances in cross-coupling 

catalyses have principally been achieved with this privileged class of compounds, in large part due 

to the ability of noble metals to engage in well-defined two-electron redox events that are amenable 

to analysis and prediction. In contrast, the reactivity of first-row transition metals is mostly 

characterized by one-electron redox changes that can be deleterious and has precluded the systemic 

incorporation of these more earth-abundant and affordable metals in certain settings.  

 Considerations of the intrinsic electronic structure of these base metals provides insight 

into their apparently orthogonal redox reactivity to second and third-row transition metals. For 

many first-row transition metal compounds, the presence of a weak ligand field engenders a high-

spin electron configuration and one-electron events at the expense of two-electron elementary 

steps. Accordingly, our lab and many others have endeavored to utilize a strong ligand field 

approach whereby a highly-donating ligand set is installed at the first-row transition metal center 

to impart a strong ligand field and thereby disfavor one-electron redox changes.  

 Early work focused on the synthesis and characterization of cobalt derivatives of the 

(DIPPCCC) pincer ligand, (DIPPCCC = bis(diisopropylphenyl-benzimidazol-2-ylidene)phenyl),  a 

platform which provides highly-donating carbenes and an aryl carbon linkage to the coordinated 

metal. Multinuclear NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and EPR 

spectroscopies have established the successful isolation of Co(I), Co(II), and Co(III) derivatives 

with this ligand platform. The diamagnetic natures of the Co(I) and Co(III) compounds, 

(DIPPCCC)Co(N2) and (DIPPCCC)CoCl2py, respectively, confirmed the ability of the CCC ligand 

framework to support low-spin electron configurations at the first-row transition metal center and 
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motivated additional studies into the reactivity of the Co(I) dinitrogen compound. 

 Initial studies explored the catalytic competency of the (DIPPCCC)CoN2 species, 

specifically towards hydrosilylation and hydroboration, two processes typically mediated by 

precious metal catalysts. Hydrosilylation of terminal alkene substrates proceeded in good yields 

with secondary and tertiary silanes, an important feat for earth-abundant catalysts for which 

examples of hydrosilylation with tertiary silanes and hydrosiloxanes are relatively uncommon. 

Interestingly, the catalyst exhibited high chemoselectivity and 1,2-regioselectivity even towards 

challenging substrates bearing unprotected hydroxyl, amino, nitrile, formyl, and conjugated diene 

functionality, a consequence of both steric and electronic factors. A variety of experiments, 

including 29Si NMR and two-dimensional NMR spectroscopy experiments, confirmed oxidative 

addition of silane and established that this catalysis likely proceeds through a Chalk-Harrod-type 

mechanism, thereby establishing that a Co(I)/Co(III) redox couple is operative for this process.  

 Extension of this catalysis towards hydroboration was successful. In addition to exhibiting 

a chemoselectivity and regioselectivity similar to that of the hydrosilylation protocol, the 

(DIPPCCC)Co(N2) catalyst was also found to be competent towards nitrile reduction, a challenging 

process for earth-abundant metal catalysts. Mechanistic studies establish the intermediacy of a 

cobalt hydride, as well as the negotiation of insertion, isomerization, and b-hydride elimination 

processes. These results allowed us to propose a mechanism, similar to that proposed for the 

hydrosilylation protocol, whereby the cobalt catalyst accesses a Co(I)/Co(III) redox couple, 

highlighting the ability of this bis(carbene) CCC pincer platform to impart noble-metal-type 

reactivity onto base metals. 

 Finally, the stoichiometric reactivity of the CoI complex towards potential two-electron 

oxidants was probed in order to assess the viability of Co(I)/Co(III) redox couple with additional 
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substrates and advance our understanding of the reactivity of these interesting compounds. 
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Chapter 1  

Approaches to circumvent one-electron reactivity at first-row transition metal centers 

 
1.1 The origin of one-electron reactivity at first-row transition metals 

Noble metal centers have long held a privileged role in synthesis, small molecule 

activation, and catalysis, resulting in their frequent use in both academic and commercial settings. 

Indeed, some of the most well-known catalysts or organometallic complexes, such as Wilkinson’s 

catalyst,1 Vaska’s complex,2 and Karstedt’s catalyst,3 feature noble metal centers. The ubiquitous 

nature of these compounds is, in many ways, attributable to their predictability or modularity, 

engaging in well-defined two-electron redox processes that render them particularly amenable to 

rational ligand design and modification to achieve desirable regio-, stereo-, and chemoselectivities 

in chemical transformations. Pathways such as oxidative addition and reductive elimination have 

been systematically studied, enabling significant advances in the field of catalytic C–N bond 

formation for example.4 The work of different groups, such as the Hartwig lab and the Buchwald 

lab, has established the profound impact of ligand design on a catalyst’s competency towards redox 

processes.4,5 As a result, substantial attention has been given to the electronic and steric parameters 

of coordinating ligands in many catalytic systems, systematizing the effects of different ligand 

characteristics on overall function and structure of these compounds.6,7 Needless to say, a 

consideration of the fundamental electronic structures of these metals is required to appreciate 

their intrinsic tendency to engage in well-defined redox processes, particularly in relation to base 

metals. 

A comparison of the reactivity of second- and third-row transition metals has long 

established that, for a given ligand set, second-row metals generally react more rapidly than their 

third-row congeners.8 An investigation carried out by Wolczanski and coworkers probed the origin 
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of this general trend, specifically focusing on the olefin substitution chemistry of a niobium 

complex and its tantalum analogue to make inferences about the nominally swifter reactivity of 

second-row transition metal complexes.8 Interestingly, this study demonstrated that, despite higher 

olefin binding energies, the niobium complex exhibited greater levels of olefin substitution. This 

effect was attributed to a greater density of states (DOS) at the niobium complex compared to 

tantalum (Figure 1.1). This greater DOS, which can lower transition state energies by allowing 

greater mixing of surfaces near the transition states, is, in turn, attributed to the weaker field 

strength of second-row transition metals, as well as the greater mixing of 6s and 5d metal orbitals 

in third-row transition metal complexes compared to analogous mixing of 5s and 4d orbitals in 

second-row congeners. 

 

 
 

Figure 1.1 Density of states at second and third-row transition metal compounds 
 

Interestingly, this trend of greater DOS is also borne out in a comparison of first- and 

second-row transition metals.9 First-row transition metals possess a greater DOS, as evidenced by 
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UV spectroscopic studies.9 As in the case of second-row transition metals, this greater DOS is 

coincident with a weaker ligand field strength. However, in the case of first-row transition metal 

complexes, the ligand field strength is now sufficiently weak to generally promote high-spin 

electron configurations and render one-electron events, as opposed to two-electron events, more 

likely. In some cases, this complementarity to the two-electron reactivity of second- and third-row 

transition metals has been used to great effect.10 Nevertheless, the disruptive effect of one-electron 

redox changes has also precluded the systemic incorporation of more earth-abundant first-row 

transition metals in certain catalytic contexts.9 Recent research efforts have focused on mitigating 

or circumventing the proclivity of base metals to engage in one-electron chemistry, particularly 

considering the scarcity and the energy-intensive nature of the extraction processes for noble 

metals.11 Moreover, the generally reduced toxicity and biocompatibility of first-row transition 

metals has provided a further impetus for conferring noble metal reactivity on first-row transition 

metal centers.  

 
1.2 A redox-active ligand approach towards two-electron reactivity 

 Recent studies by Chirik12,13,14, Heyduk15,16 , and others17,18 have provided some early 

notable successes in the use of base metal systems towards two-electron processes. The prominent 

use of amidophenolate cobalt complexes by Soper19 and aryl-substituted bis(imino)pyridine iron 

compounds by Chirik, for example, has facilitated alkene and alkyne hydrogenation20, 

hydrosilylation, olefin cyclization21 (Scheme 1.1), and atom and group transfers at first-row metal 

centers.22 Such work features a prominent use of redox non-innocent ligands, whereby the ligand 

can serve as an electron reservoir, providing the reducing equivalents, i.e. electrons, to 

accommodate two-electron elementary steps that may otherwise be inaccessible to the ligated base 

metal. This approach signifies a departure from the more classical formulation of ligands as 
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“spectators” and is informed by Nature’s own prominent use of redox-active amino acids at the 

active sites of different enzymes.23 Thus, in contrast to a conventional oxidative addition process 

whereby the metal oxidation state changes by two units, the redox-active ligand and metal each 

supply an electron for a net two-electron process.							

 

  
 In addition to providing a platform by which base metals can access chemical space 

typically restricted to noble metal compounds, studies of base metal complexes bearing redox non-

innocent ligands have shown that these compounds can undergo unusual pathways over the course 

of a chemical transformation, in some cases providing potentially novel synthetic routes to 

products of interest. Desage-El Murr, Fensterbank, and coworkers reported an iron complex that 

is competent towards Csp2–Csp2 bond formation between benzene and aryl bromides.24  

Spectroscopic and DFT studies suggest an uncommon inner-sphere mechanism for the C–H 

activation step rather than a homolytic aromatic substitution pathway, where the transition state 
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involves three components – an HMDS- anion (HMDS = hexamethyldisilazide), the iron complex, 

and benzene.  Similarly, Budzelaar reported a bis(imino)pyridine cobalt complex that couples aryl 

chlorides and activated benzyl or allyl chlorides and bromides.25 This is thought to proceed by 

halide abstraction from the bis(imino)pyridine cobalt aryl complex, (L-•)CoIIAr to generate 

(L)CoII(Ar)(Br) (Scheme 1.2). Loss of an aryl radical from this complex, facilitated by the 

oxidizing nature of the ligand in the L0 oxidation state, enables radical recombination with a benzyl 

radical to generate the Csp2–Csp3 bond formation. Similar nickel-mediated cross-coupling 

studies26 lend further credence to the notion that such unconventional mechanistic pathways, 

particularly in the field of cross-coupling catalysis, are not necessarily metal-specific; the use of 

redox-innocent ligands is often accompanied by divergent chemical pathways. This, in turn, may 

enable access to new selectivities and synthetic schemes. 

 

 

Scheme 1.2 C-C coupling with a bis(imino)pyridine cobalt complex 

 
Interestingly, investigations have shown that, in some contexts, a ligand with potential to 

engage in redox-activity need not participate directly to engender interesting reactivity. Bielawski 

and co-workers reported a nickel catalyst with an N-heterocylic carbene ligand that incorporates a 

N
NN CoII

Br

Ar

N
NN CoII

Ar Br

N
NN CoII

Br

Ar C-C bond formation



	 6 

redox-active naphtoquinone moiety and performs aryl-aryl Kumada cross-coupling.27 Although an 

electronic contribution from the ligand is not invoked to achieve product formation, the addition 

of cobaltocene reductant to the complex arrested catalysis, demonstrating that modulation of 

catalytic reactivity can be achieved even in the absence of direct ligand assistance from the redox-

active moiety. 

Despite the advantages concomitant with the use of the redox-active ligand approach, some 

challenges have precluded its utilization to a more significant extent. The ambiguous nature of 

redox processes upon the complexation of non-innocent platforms means that the role of the ligand 

is not always clearly established.28 Coupled to the presence of frequently elusive paramagnetic 

intermediates that are less amenable to examination by conventional methods, this renders 

mechanistic analyses of these systems less tractable. Additionally, a potential pitfall of this strategy 

is that the added electronic complexity of such systems may translate into greater chemical 

complexity, introducing side reactions that mitigate system efficacy.29 Such difficulties have 

limited the optimization and extension of these types of systems to larger-scale synthetic 

processes.28 Nevertheless, the unusual reactivity observed with redox non-innocent platforms 

renders this a promising field for further development. 

 
1.3 A strong-field approach with base metals 

1.3.1 Phosphorous-based ligands with first-row transition metal complexes 

 Notwithstanding the successes of the redox-active approach, studies probing the 

fundamental ability of first-row metals to engage in two-electron processes like oxidative addition 

and reductive elimination have been explored. Given the intrinsically weaker ligand field of first-

row transition metals, ligands capable of inducing a stronger ligand field, i.e. possessing orbitals 

that better overlap with the 3d orbitals of the first-row transition metal, should disfavor one-



	 7 

electron pathways upon complexation and, thereby, result in metal-centered two-electron 

reactivity more akin to that of second- and third-row transition metal complexes.9 A consideration 

of angular overlap arguments is highly informative in this regard. As seen in Figure 1.2, carbon-

based and phosphorous-based (as opposed to nitrogen or oxygen-based) orbitals, for example, are 

especially well-suited to interact with the orbitals of a first-row transition metal given their 

proximity in energy.9 Consequently, carbon-based and phosphine-based ligands, are best able to 

impart a strong ligand field for first-row transition metals.   

 

 

Figure 1.2 Angular orbital overlap between metal and ligand orbitals 

 
 The use of phosphorous-based ligands with noble metals has already been extensively 

realized.30 Phosphines can support a wide range of oxidation states, serving as ligand of 

intermediate hardness and p-acceptor capability.30 The modularity of the electronic and steric 
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properties of phosphines also renders them attractive as ligands. Indeed, the impact of electronic 

and steric effects have been systematized to a great degree using such frameworks as the Tolman 

parameter and Lever parameter.30 The cone angle of ligated phosphines, for example, have been 

successful in rationalizing the reactivity of several complexes.30 Accordingly, it is unsurprising 

that these ligands have been used with first-row transition metal centers, particularly in a context 

where the increased donicity of these ligands may serve to “ennoble” the base metal.  

 Early reports of first-row transition metal complexes bearing phosphines and other 

phosphorous-based ligands indicated that such ligands have successfully facilitated two-electron 

chemistry at the low-valent metal center in some cases. Misono and coworkers reported the 

cleavage of dihydrogen with a cobalt phosphine complex to generate a cobalt bis(hydride) 

complex.31 Similarly, Muetterties and coworkers reported a low-valent cobalt 

triisopropylphosphite that generates a trihydride upon reaction with dihydrogen.32 Notably, these 

complexes were diamagnetic, consistent with a low-spin configuration, and, by extension, a strong 

ligand field. Perhaps one of the most notable examples of the utility of a strong ligand field 

approach are a series of cobalt complexes originally reported by Klein and coworkers.33 Cobalt(I) 

derivatives bearing strongly donating alkyl and phosphine ligands were shown to oxidatively add 

to the C–CN bond of acetonitrile, as well as the C–I bond of methyl iodide to yield the 

corresponding cobalt(III) bis(methyl) complexes.34–36 Later studies with the cobalt(III) bis(methyl) 

species have shown that it can, in turn, reductively couple ethane to furnish a Co(I) iodide,37 

underlying the importance of a strongly donating ligand set to facilitating these multi-electron 

process (Scheme 1.3). 
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Scheme 1.3 Reductive coupling of ethane from a Co(III) bis(methyl) species 
 
 

Such examples are not limited to cobalt. Field and coworkers reported an iron complex 

bearing two 1,2-bis(dimethylphosphino)ethane ligands that is able to activate the C–H bonds of 

alkenes and arenes,38 alkanes,39 and methane.40 Similarly, Jones and coworkers reported catalytic 

aldimine formation proposed to proceed via oxidative addition of a benzene C–H bond to a low-

valent iron complex bearing phosphine and isonitrile ligands.41 Electron-rich nickel phosphine 

complexes have proven to be similarly competent towards two-electron reactivity. Nickel(0) 

complexes have been shown to engage in the oxidative addition of aryl, vinyl, and acyl halide 

bonds,42 as well as the C–CN bond of nitriles43 for example.  

More recent examples of two-electron elementary steps occurring at first-row transition 

metal centers have incorporated some of the insights gleaned from these early studies, typically 

employing an electron-rich ligand set to more reliably facilitate two-electron pathways at base 

metals. These examples are replete with the use of pincers-type frameworks and chelates. A recent 

report by Hartwig using an electron-rich (BINAP)Ni(η2-NC-Ph) complex (BINAP = 2,2′-

bis(biphenylphosphino)-1,1′-binaphthalene)  for the catalytic amination of aryl halides supports a 

reaction pathway involving a Ni(0)/(II) couple.44 Analogously, Smith reported an iron catalyst 

supported by a chelating bis(carbene) ligand, K(crypt)[Ph2B(tBuIm)2Fe(CO)2] (
tBuIm = 3-tert-

butylimidazol-2-ylidene)), that undergoes a reversible intramolecular C–H insertion.45 

Interestingly, the iron(0) species must undergo a triplet to singlet spin-state change to engage in 
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this reactivity, again highlighting the importance of ligands that can induce a low-spin electron 

configuration.  

Recent reports by Caulton46, Arnold47, and Chirik48 have also provided evidence for two-

electron reactions at cobalt centers. Interestingly, these complexes employ PNP pincer ligands 

(PNP = bis(phosphino)pyridine), according this class of ligands a privileged status in many reports 

of demonstrably non-radical two-electron pathways with first-row transition metals (Scheme 1.4). 

Reactivity with these complexes has enabled the isolation of several cobalt hydride species47,48 and 

the isolation of a rare, putatively cobalt(V) species.46 Compelling evidence of the oxidative 

addition of C–H bonds and dihydrogen has also been shown with a cobalt(I) PNP complex.48 

Importantly, these complexes have also been used to great avail in catalytic contexts and studies 

have proposed that two-electron pathways were likely operative. The Chirik lab have reported 

protocols for the borylation of C(sp2) –H bonds49 and Suzuki cross-coupling of C(sp2)-C(sp2) 

bonds,50 the latter reaction signifying the first example of such a reaction with cobalt. Such 

impressive reactivity has also been demonstrated with other first-row transition metal centers, 

including manganese,51 iron,52 and nickel,53,54 further attesting to the versatility of this ligand 

platform.  

 

 

Scheme 1.4 Oxidative addition of hydrogen to a PNP Co(I) complex 
 
 

The extension of this reactivity to PCP (PCP = bis(phosphino)aryl) and related pincer 
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(POCOP = 1,3-bis((phosphino)oxy)benzene) was reported to undergo oxidative addition of methyl 

iodide to generate the corresponding the cobalt(III) iodomethyl complex.56 Similarly, the iron 

POCOP derivative Fe{(Ph2POCH2)2MeC}(H)(PMe3)2, prepared by the addition of FeMe2(PMe3)4 

to the disphosphinito PCP ligand (Ph2POCH2)2CH2, is believed to be generated from two C–H 

activations and a C–C coupling reaction between the methyl ligand and the central carbon atom of 

the disphosphinito moiety.56 A related nickel PCP complex, (iPrPCP)NiMe, (iPrPCP = 2,6-bis- 

((diisopropylphosphino)methyl)phenyl), also undergoes a reductive coupling of the methyl ligand 

with the anionic carbon of the pincer,57 highlighting the unusual pathways fostered by these 

electron-rich pincer platforms. This reactivity has been leveraged to catalytic effect in a number 

of systems. Sun reported the catalytic hydrosilylation of aldehydes and ketones with an iron 

hydrido complex supported by a POCOP pincer ligand.58 

1.3.2 Complexes bearing NHC carbenes 

The recent use of carbene complexes is a particularly interesting development for the study 

of two-electron processes negotiated by first-row metals. The substitution of N-heterocyclic 

carbenes (NHCs) for phosphines in second- and third-row transition metal systems employed in 

cross-coupling59, hydrogenation60, and olefin metathesis61 reactions has been met with a great 

degree of success. Such systems maintain the advantages concomitant with the use of PNP and 

POCOP pincer systems, i.e. the utilization of a sterically bulky, electron-rich planar ligand 

scaffold, while retaining a greater resiliency towards deleterious ligand oxidation. Such deleterious 

events have been observed with PCP nickel complexes, for example. The nickel methyl complex 

reported by Cámpora and coworkers, (iPrPCP)NiMe (PCP = 2,6-bis- 

((diisopropylphosphino)methyl)phenyl), undergoes a demetalation event and an oxidation of the 

pincer phosphines to phosphine oxides in addition to reductive coupling of a methyl ligand with 
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the central carbon of the pincer backbone upon reacting with oxygen.57  

Importantly, pincers incorporating NHCs have been shown to facilitate impressive 

catalytic reactivity in many first-row transition metal systems.12,62–64 Wang and coworkers reported 

a nickel pincer NHC complex that is able to cross-couple chloro- and fluoroaromatics.63 Similarly, 

Chirik reported cobalt and iron bis(carbene) pincer complexes, (iPrCNC)Fe(N2)2 and 

(iPrCNC)CoCH3 (iPrCNC = 2,6- (2,6-iPr2-C6H3-imadazol-2-ylidene)2-C5H3N), that catalyze the 

hydrogenation of trisubstitued olefins, a challenging class of substrates even for precious metal 

catalysts.64 Interestingly, the pyridine backbone of the cobalt complex exhibited redox-activity that 

aided the catalysis, contributing to the hydride and alkyl migration chemistry of the complex.  

In addition to their robustness, NHCs can provide comparable modularity to phosphines. 

The range of steric and electronic effects for NHCs can often be very useful.65 Indeed, NHCs can 

exhibit higher tunability than phosphines. Whereas phosphine design is largely confined to the 

selection of the phosphine R groups, a change that profoundly influences both the electronic and 

steric properties of the phosphine, the imidazol-2-ylidene substructure  can be modified in different 

ways beyond selection of the substituents at the N1 and N3 atoms.65 Different R groups can be 

present at the C4 and C5 carbons of the imidazole. Moreover, the azole subunit can be changed to 

a triazole, benzimidazole, imidazole, oxazole, etc, conferring a greater degree of control to the 

experimenter and permitting access to a greater breadth of electronic and steric properties (Figure 

1.3). Finally, many carbenes are significantly more electron-rich than phosphine ligands, as 

assessed by the Tolman electronic parameter, and often bind more strongly to late transition metals 

than phosphines, possessing higher bond dissociation energies in RuII and Ni0 complexes for 

example.66  
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Figure 1.3 Examples of N-heterocyclic carbene substructures 
 

Informed by these properties and pursuant to a strong-field approach for imparting noble 

metal reactivity onto base metals, we elected to pursue the metalation of a pincer framework 

reported by Chianese and coworkers (Figure 1.4).67 This (ArCCC) framework (ArCCC = bis(aryl-

benzimidazol-2-ylidene)phenyl) possesses many of the features desirable in the context of a 

strong-field ligand approach: (1) an anionic carbon linkage to impose the strong ligand field, (2) a 

benzimidazole to enforce coordination to the C2 carbon of the imidazole, rather than an abnormal 

carbene coordination, and (3) phenyl substituents that can be selected according to desired 

solubility and electron donicity. Moreover, the choice of phenyl substituent can provide diagnostic 

NMR spectroscopic handles useful in establishing the identity or coordination mode of products.  

 

 

Figure 1.4 (DIPPCCC) ligand 
 

The selection of a pincer framework, as opposed to monodentate ligands or a bidentate 

chelate, reflects the successes that have been achieved using the pincer architecture.68 In addition 
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substantive control over increasing the regio- and stereoselectivity of processes occurring at the 

metal and lends itself to more facile study of mechanistic pathways or the elucidation of relevant 

intermediates. This well-defined bonding structure is also particularly amenable to rational 

catalytic design and the tuning of properties relevant to catalytic competency, i.e. stericity, ligand 

donicity, and the retention of important stereochemical information if needed. Moreover, pincer 

architectures are especially well-suited for immobilization on solid or dendrimeric supports, 

enabling the creation of robust recyclable catalysts.68 Therefore, the selection of a pincer complex 

should provide especially important insights into reactivity at the base metal and inform future 

catalyst design.  

 Herein, we report the synthesis of a library of cobalt complexes featuring the DIPPCCC 

(DIPPCCC = bis(diisopropylphenyl-benzimidazol-2-ylidene)phenyl) pincer ligand variant. The 

ability of these systems to engage in a Co(I)/(III) redox couple is explored with regard to the 

cleavage of substrate bonds and is inspired by a desire to activate small molecules and determine 

the competency of such systems for catalytic reactivity akin to that of noble metals. 
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Chapter 2 

Synthesis and characterization of cobalt CCC bis(carbene) pincer complexes† 

 
2.1 Metalation of the (DIPPCCC) platform  

 Seeking to promote two-electron reactivity at base metals through the application of a 

strong-field approach, we turned to the metalation of the DIPPCCC pincer (DIPPCCC = 

bis(diisopropylphenyl-benzimidazol-2-ylidene)phenyl) previously reported by Chianese and 

coworkers.1 Initial attempts to metalate the platform by reacting the benzimidazolium salt 

precursor with Co(N(SiMe3)2)2py in dichloromethane solvent led to intractable mixtures. 

Consequently, we explored alternative routes to metalated derivatives. Traditional metalation 

pathways for monoanionic pincer platforms on cobalt have been reported in the literature, citing 

the importance of lithiation of the aryl ring for the installation of the anionic Co-Caryl bond as in 

the case of [(POCOP)CoI] (POCOP = κ3-C6H3-1,3-[OP(tBu)2]2).
2 Given the parallels between the 

POCOP and CCC pincer framework, we sought to isolate the bis(carbene) and subsequently 

investigate the viability of a lithiation route to the targeted cobalt complexes. 

Initial attempts to isolate the bis(carbene) via deprotonation of [H3(
DIPPCCC)]Cl2 with 2.1 

equivalents of lithium hexamethyldisilazide proved challenging given the difficulty of separating 

the hexamethyldisilzane product from the targeted carbene, prompting an examination of alternate 

bases to achieve the deprotonation. Gratifyingly, a modification of the ligand procedure involving 

the addition of benzyl potassium instead of lithium hexamethyldisilazide was found to be 

especially successful (Scheme 2.1). The formation of toluene byproduct, as opposed to the less 

 

† Portions of this chapter are reproduced from the following publication with permission from the authors. 
Ibrahim, A.D.; Tokmic, K.; Brennan, M.R.; Kim, D.; Matson, E.M.; Bertke, J. A.; Nilges, M. J.; Fout, A.R. 
Dalton Trans. 2016, 45 (24), 9805-9811. 



	 21 

tractable hexamethyldisilazane, rendered this reaction especially amenable to purification and 

established this as the synthetically preferred route to the bis(carbene) ligand. Moreover, the 

dissipation of the orange color of the benzyl potassium in the reaction mixture provided a useful 

means with which to monitor the progress of the reaction, with a transition to a clear, light yellow 

solution indicative of the reaction’s completion.   

 

 

Scheme 2.1 Preparation of the bis(carbene) H(DIPPCCC)	 
 

 
 

Figure 2.1 1H NMR spectrum of H(DIPPCCC) in C6D6 
 

An analysis of the bis(carbene) product H(DIPPCCC) by 1H and 13C NMR spectroscopies, 

in addition to CHN elemental analysis, allowed for a definitive assignment of the free carbene. A 

loss of the downfield resonance at 12.45 ppm in the 1H NMR spectrum is consistent with a 
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deprotonation of the benzimidazolium salt (Figure 2.1). Similarly, the 13C NMR spectrum 

possessed a new resonance at 231.27 ppm, assigned to the carbene carbons of the ligand.         

Addition of an equivalent of nBuLi to the free carbene, H(DIPPCCC),3 resulted in the 

undesired activation of the sterically unencumbered C–H bond ortho to the NHC moiety, 

suggesting that lithiation would not be a plausible route for accessing the desired cobalt complexes. 

As a result, we explored alternative routes to the desired metalated derivatives. 

 
2.2 Synthesis of (DIPPCCC)CoIIICl2py  

 Initial attempts at metalation of the CCC ligand platform with cobalt focused on the 

preparation and subsequent reaction of the in situ generated bis(carbene) ligand with CoCl2, 

pyridine, and an equivalent of oxidant to generate a (DIPPCCC)CoIIICl2py derivative. While such 

attempts proved to be successful, low yields (< 50%) of the target complexes following workup 

deemed this route not synthetically useful.  

 We next investigated the use of metal hexamethyldisilazides as an alternative route to the 

desired cobalt derivative.  The sequential addition of LiN(SiMe3)2, Co(N(SiMe3)2)2(py)2,
4 and an 

equivalent of ClCPh3 as an oxidant to the benzimidazolium salt of the CCC platform, 

[H3(
DIPPCCC)]Cl2, in THF, followed by stirring of the mixture at room temperature overnight, 

resulted in the formation of a green solution (Scheme 2.2). Following workup, the product, 

(DIPPCCC)CoCl2py (1) was isolated as a bright green powder in good yield, 80%.  Characterization 

of 1 by 1H NMR spectroscopy revealed a diamagnetic spectrum with 14 resonances, consistent 

with the formation of a low-spin, CoIII product, assigned as the desired 1 (Figure 2.2).  Two 

doublets integrating to 12H each were located at 0.68 and 0.98 ppm, corresponding to the iPr 

methyl moieties of the flanking aryl substituents.  The presence of one septet integrating to 4H 
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corresponds to the methine protons of the iPr moieties, signifying a symmetric coordination of the 

ligand platform.  Additional resonances integrating to 22H between 6.41 and 8.83 ppm were 

assigned to the aryl backbone of the pincer ligand and the bound pyridine.  The corresponding 

signals in the 13C{1H} NMR spectrum at 195.29 and 156.39 ppm were assigned to the CNHC and 

CAr carbons, respectively, and were significantly shifted from those of the free carbene, 

H(DIPPCCC) (231.27 ppm (CNHC), 147.30 ppm (CAr)).  These values compare favorably with the 

previously reported (DIPPCCC)NiCl complex (185.89 ppm(CNHC); 150.88 ppm(CAr)).  

 

 

Scheme 2.2 Preparation of (DIPPCCC)CoCl2py 
 

 

Figure 2.2 1H NMR spectrum of (DIPPCCC)CoCl2py in CDCl3 
 

Further characterization of 1 by single-crystal X-ray diffraction studies established the identity 
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of the compound. Green crystals of the complex suitable for analysis were obtained via slow 

evaporation of a concentrated benzene solution, confirming the formation of the desired octahedral 

CoIII product (Figure 2.6, Tables 2.1 & 2.2). The two Co–CNHC bond lengths of 1.981(2) and 

2.000(2) Å of 1 are within the range reported for CoIII-CNHC bonds, 1.815 Å – 2.012 Å.5–7 Likewise, 

the Co–CAr bond length of 1.880(2) Å for 1 is within the range of CoIII–CAr bonds, which range 

from 1.845 – 2.057 Å,7–9 but is shorter than the bond length for the analogous CoIII species, 

(PCPMe-iPr)CoCl2 (PCP = N,N’-bis(diisopropylphosphino)-N,N’-dimethyl-1,2-

diaminobenzene),10 reported by Kirchner and coworkers (1.937(1) Å). This is likely due to the 

increased rigidity of the CCC ligand backbone compared to the PCP system. The Co–Cl bond 

lengths, 2.2787(6) and 2.3175(6) Å, also fall within the regime of recently reported CoIII 

complexes featuring an anionic Co–CAr linkage, 2.229 – 2.429 Å.7,11,12 Finally, the CAr–Co–Npy 

and CAr–Co–Cl bond angles of 179.26(9) and 89.23(7)°, respectively, signify a nearly idealized 

octahedral geometry at cobalt. 

 Strongly-donating monoanionic pincer ligands featuring a Co–Caryl linkage are uncommon 

in the literature. Van Koten’s report of a [C6H3(CH2NMe2)2]CoClpy species signifies one of the 

first cobalt pincer complexes containing an ECE ligand (E = donor groups).13 More recently, 

Nishiyama and coworkers reported the synthesis of NCN-Co complexes containing 

bis(oxazolinyl)phenyl (phebox) as auxiliary ligands.9 Similarly, the work of Li,14 Heinekey,2 

Wass,15 and Kirchner10 has been instrumental in establishing facile synthetic protocols to cobalt 

complexes featuring monoanionic PCP pincer ligands. Nevertheless, due to the difficulty in 

metalating these ligands with first-row transition metals, such compounds remain largely 

underexplored. 
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2.3 Synthesis of (DIPPCCC)CoIIClpy  

Interested in accessing different oxidation states of cobalt with the CCC platform, we next 

turned our attention to the preparation of a one-electron-reduced CoII derivative. Reasoning that 

withholding an equivalent of oxidant should provide the target complex, we employed a similar 

synthetic protocol to the preparation of 1 but without the use of an oxidant. Heating a mixture of 

LiN(SiMe3)2, Co(N(SiMe3)2)2py2
4

 with the benzimidazolium salt of the [H3(
DIPPCCC)]Cl2 platform 

in benzene resulted in the formation of an orange solution (Scheme 2.3).  Following workup, the 

product, (DIPPCCC)CoClpy (2) was isolated as an orange powder in 75% yield.  Characterization 

of 2 by 1H NMR spectroscopy was consistent with the formation of a new paramagnetic species 

with resonances ranging from -10 to 16 ppm. 

 

 

Scheme 2.3 Synthesis of (DIPPCCC)CoClpy 

 
 Interestingly, extension of this protocol to the mestiyl variant of the ligand platform was 

unsuccessful and another route to the CoII species was required. In contrast to the broad resonances 

observed in the paramagnetic 1H NMR spectrum for 2, the mesityl analogue is NMR silent.  

2.4 EPR spectroscopy  

The X-band EPR spectrum of 2 obtained from a 1:1 toluene:THF glass at 77 K is depicted 

in Figure 2.3. The EPR parameters for 2 (gx = 2.259, gy = 2.215, and gz = 1.995; ACo (x,y,z) = 9 
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MHz, 7 MHz, 266 MHz)  are consistent with a low-spin d7 S = 1/2 compound.16 While 

superhyperfine interactions to the 14N nuclei (AN (x,y,z) = 24 MHz, 27 MHz, 31 MHz) were 

observed, such interactions were weakly resolved. Moreover, no resolved superhyperfine coupling 

to the 35Cl and 37Cl nuclei was discernable.  

     

Figure 2.3 EPR spectra of (DIPPCCC)CoCl2py recorded in toluene:THF (1:1) glass at 77 K.  EPR 
parameters for (DIPPCCC)CoCl2py (2.5E+3 GAIN;   2.00 G MODAMP;  20.00 dB POWER; NU= 
9.2903 GHz)  
 

Gratifyingly, these results were consistent with the anticipated effects of pincer ligation. 

Given the highly donating nature of the CCC ligand platform, we expected a strong ligand field 

and, by extension, a low-spin configuration upon complexation of the cobalt metal center with the 

pincer. A low-spin CoII derivative is indicative that the electron configuration of the metalated 

derivatives is not exclusively the consequence of a favorable d-electron count and geometry, as in 

the case of the d6 CoIII octahedral complex. 
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2.5 Crystallographic characterization of (DIPPCCC)CoIIClpy 

To unambiguously identify the structure of complex 2, orange crystals suitable for X-ray 

diffraction were grown by slow evaporation from a concentrated solution in benzene at room 

temperature. Crystallographic characterization of 2 confirmed the formation of the target 

complexes, revealing a square pyramidal geometry (τ = 0.26)17 about a CoII center with a chloride 

occupying the apical position (Figure 2.6, Tables 2.1 & 2.2). The two Co–CNHC bond lengths of 

1.963(4) and 1.948(4) Å for (DIPPCCC)CoClpy are similar to typical values reported for CoII–CNHC 

bonds (1.845 – 2.127 Å). In contrast, the Co–CAr bond length of 1.871(3) Å for 2 is noticeably 

shorter than typical CoII –CAr bonds reported in the literature (1.9020 - 2.0570 Å)18,19,7 and shorter 

than those observed in the [Co(PCPMe-iPr)] complexes recently reported by Kirchner and 

coworkers (1.919 to 1.953 Å)10 or the RPOCOPRCoI complex reported by Heinekey (1.924(4) Å).2 

The Co–Cl bond length of 2.4465(9) Å for 2 also differ considerably from the value reported for 

the (iPrCNC)CoCl complex (2.201 Å), as well as the bond lengths in the [Co(PCPMe-iPr)] and 

[Co(PCP-tBu)] complexes (2.234(1) – 2.3103(4) Å) and 2.260(1) Å, respectively.10 Furthermore, 

the pyridine ligand of 2 lies in the basal position with a Co–N5 bond length of 2.025(3) Å, in 

contrast to the apical position of the pyridine ligand observed in the analogous PCP system (Co–

N: 2.1417(8) Å).10 Finally, the CAr–Co–N5 and Cl–Co–N5 angles in 2 (175.65(14)° and 93.66(9)°, 

respectively) are distorted from an idealized square pyramidal geometry but similar to those 

reported for (PCPMe-iPr)CopyCl (166.89(3)° and 96.28(3)°).10  

 
2.6 Cyclic voltammetry   

Seeking to investigate the accessibility of a CoI derivative of the DIPPCCC ligand platform, 

we studied the electrochemical properties of 2 using cyclic voltammetry (Figure 2.4). The study 
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was carried out in a 1 mM solution of 2 in acetonitrile with 0.1 M [NBu4][PF6] as electrolyte. At 

a scan rate of 100 mV/s, a single reversible redox event assigned to the CoII/CoI redox couple was 

observed in the window between -1 and -2 V with an E1/2 at -1.46 V vs Fc/Fc+. This suggested that 

the CoII species may be amenable to chemical reduction.  

 

 

Figure 2.4 Cylic voltammogram of 1mM solution of (DIPPCCC)CoCl2py in acetonitrile with 0.1 
M [NBu4][PF6]	 
 

2.7 Synthesis of (DIPPCCC)CoIN2  

 Encouraged by these results, and interested in the synthesis of low-valent complexes 

featuring the DIPPCCC ligand platform, we investigated the chemical reduction of 2. This goal was 

readily accomplished by the addition of an equivalent of 9,10-Dihydro-9,10-anthracendiyl-

tris(THF)magnesium as a solid to a frozen solution of 2 in benzene (Scheme 2.4). Workup of the 

dark brown reaction mixture afforded a brown powder in good yields (77%).  Characterization of 

the product by 1H and 13C NMR spectroscopies confirmed the formation of a new diamagnetic 

Potential (V) vs Fc/Fc+

Current 
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species, consistent with the predicted low-spin CoI product, (DIPPCCC)CoN2, 3. The presence of 

11 resonances in the 1H NMR spectrum, shifted from those of 1, indicated the loss of the pyridine 

ligand and is consistent with a C2 symmetric ligand environment (Figure 2.5). Resonances located 

at 0.88 and 1.27 ppm and integrating to 12H each were assigned to the methyls of the iPr moiety, 

while a septet at 2.71 ppm integrating to 4H was assigned to the methine protons of the iPr groups. 

The presence of 15 resonances in 13C NMR spectrum are also consistent with the proposed 

formulation.  The complex was additionally characterized by IR spectroscopy, revealing an intense 

feature at 2063 cm-1, assigned to the vibrational mode of a bound dinitrogen molecule, shifted from 

that of free N2 (2331 cm-1).20 The presence of this N2 ligand suggests formation of a monomeric 

species due to the steric bulk of the flanking aryl substituents. 

 

 

Scheme 2.4 Reduction of (DIPPCCC)CoClpy 

 

Figure 2.5 1H NMR spectrum of (DIPPCCC)CoN2 in C6D6 
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 Due to the limited amount of structural data on four-coordinate CoI compounds featuring 

a terminal dinitrogen ligand, complex 3 was further characterized by X-ray crystallography. Red-

brown crystals were grown by slow evaporation from benzene at room temperature. 

Crystallographic characterization of the complex provided definitive evidence of a square planar 

geometry about the metal, with an N2 molecule bound trans to the Co-Caryl bond (Figure 2.6, 

Tables 2.1 & 2.2).  The Co–CNHC bond lengths of 1.911(3) and 1.899(3) Å and the Co–Caryl bond 

length of 1.872(3) Å are shorter than those reported for complex 1, perhaps due to greater electron 

density in the Co–C bonds and coordinative unsaturation about the cobalt metal center. An N2 

bond length of 1.111(3) Å indicates a largely unactivated dinitrogen ligand (dN2:  1.09 Å). Indeed, 

a comparison to structurally analogous cobalt dinitrogen complexes reveals that the bond distance 

of the dinitrogen ligand typically falls within the regime of 1.011 – 1.122 Å,31–34 signifying that a 

lack of activation of the dinitrogen ligand is not uncommon with low-valent cobalt compounds. 

 Expectedly, given that 3 is a 16-electron complex, the addition of an equivalent of 

triphenylphosphine to (DIPPCCC)CoN2, 3, resulted in an immediate color change to deep red, 

affording the 18-electron (DIPPCCC)CoN2(PPh3) (3-PPh3) in excellent yields (89%). This 

compound possessed no resonances in the 31P NMR spectrum likely attributed to coupling of the 

phosphorous ligand to the 59Co nucleus (I = 7/2, 100% abundance). However, the additional aryl 

resonances in the 1H NMR spectrum compared to 3 are in agreement with the binding of a 

triphenylphosphine ligand.  

 As depicted in Scheme 2.5, the interconversion of all of these compounds is readily 

achieved. Conversion of the CoI derivative 3 to the CoII, 2, was accomplished by the addition of 

one equivalent of ClCPh3 as the oxidant.  An additional equivalent of ClCPh3 to 2 furnished the 

CoIII  analogue, although this was accompanied by the formation of small amounts of impurities 
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that could readily be overcome through the previously described synthetic pathways.   

 

 

Scheme 2.5 Interconversion between CoI, CoII, CoIII derivatives of the CCC pincer 

 

 

Figure 2.6 Crystal structures of complexes 1, 2, and 3 

 
2.8 Conclusions 

 In conclusion, a series of cobalt pincer complexes featuring the electron-rich, monoanionic 

bis(carbene) (DIPPCCC) were synthesized. The CoI-III derivatives have been prepared in good 

yields, including the room temperature synthesis of a CoIII derivative from the benzimidazolium 

salt precursor of the (DIPPCCC) ligand framework. In contrast to traditional routes that make use 

of lithiation and subsequent addition of cobalt halide compounds, this room temperature synthesis 

utilizes CoII sources featuring equivalents of internal base for aryl C–H bond cleavage to generate 

the metal derivative.  A suite of characterization techniques was used to identify and study these 
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complexes, including NMR spectroscopy and X-ray crystallography. Such complexes provide an 

interesting platform from which to study two-electron processes on base metals, particularly given 

the extensively characterized nature of the different oxidation states of cobalt with the ligand 

platform. 

 
2.9 Experimental section 

General Considerations. All manipulations of air- and moisture-sensitive compounds were 

carried out in the absence of water and dioxygen in an MBraun inert atmosphere drybox under a 

dinitrogen atmosphere except where specified otherwise.  All glassware was oven dried for a 

minimum of 8 h and cooled in an evacuated antechamber prior to use in the drybox. Solvents for 

sensitive manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, 

Nashua, NH) and stored over 4 Å molecular sieves purchased from Strem following a literature 

procedure prior to use.26 Chloroform-d, and benzene-d6 were purchased from Cambridge Isotope 

Labs and were degassed and stored over 4 Å molecular sieves prior to use. Lithium 

hexamethyldisilazide was purchased from Sigma-Aldrich and recrystallized from toluene under 

an inert atmosphere prior to use. Celite® 545 (J. T. Baker) was dried in a Schlenk flask for 24 h 

under dynamic vacuum while heating to at least 150˚C prior to use in a glovebox. DPEPhos 

(>99%) and CoCl2 (99% anhydrous) were purchased from stream and used as received. PdCl2 was 

purchased from Pressure Chemicals. [Co(N(SiMe3)2)2]2•THF27,28 and Pd(PPh3)4
29 were prepared 

by literature procedures. NMR Spectra were recorded at room temperature on a Varian 

spectrometer operating at 500 MHz (1H NMR) and 126 MHz (13C NMR) (U500, VXR500, 

UI500NB) and referenced to the residual CHCl3 and C6D5H resonance (δ in parts per million). 

Solid-state infrared spectra were recorded using a PerkinElmer Frontier FT-IR spectrophotometer 

equipped with a KRS5 thallium bromide/iodide universal attenuated total reflectance accessory. 
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Elemental analyses were performed by the University of Illinois at Urbana−Champaign School of 

Chemical Sciences Microanalysis Laboratory in Urbana, IL. Electrospray ionization mass 

spectrometry (ESI) was recorded on a Water Q-TOF Ultima ESI instrument.  Cyclic voltammetry 

studies were collected on CH Instruments 1410C potentiostat. EPR samples were prepared in an 

MBraun glovebox. The sample concentration is approximately 10mM in tetrahydrofuran/toluene 

(1:1) mixture. EPR spectra were recorded on a Varian E-line 12” Century series X-band CW 

spectrometer and the spectra were simulated using the program SIMPOW6.30,31 EPR parameters 

for 2a (2.5E+3 GAIN;   2.00G MODAMP;  20.00dB POWER; NU= 9.2903GHz). 

Modified Ligand Procedure 

Preparation of N-(2-bromophenyl)-2,6-diisopropylaniline (L1).  A 20 mL scintillation vial 

charged with Pd(PPh3)4 (0.454 g, 0.39 mmol) and DPEPhos (0.317 g, 0.589 mmol) was stirred at 

80°C for 20 minutes in toluene (20 mL).  The DPEPhos/Pd(PPh3)4 solution was then filtered 

through a pad of celite into a 150 mL Schlenk bomb and 2-bromoiodobenzene (6.696 g, 23.7 

mmol), 2,6-diisopropylaniline (2.784 g, 15.70 mmol) and sodium tert-butoxide (6.074 g, 63.20 

mmol) were added and the mixture was diluted toluene to a final volume of approximately 80 mL. 

After stirring the mixture at 100oC for 36 h, the suspension was allowed to cool to ambient 

temperature and then filtered through a plug of silica, eluting with 250 mL of Et2O. The filtrate 

was concentrated to an oil under reduced pressure and loaded on a silica gel column. The product 

was separated using hexanes as the eluent; yielding a white solid after removal of the solvent under 

reduced pressure (4.80 g, 14.44 mmol, 92%). The 1H and 13C NMR spectra match those of the 

reported compound.32  

Preparation of N1,N1’-(1,3-phenylene)bis(N2-(2,6-diisopropylphenyl)bezene-1,2-diamine) 

(L2).  A 20 mL scintillation vail charged with Pd(PPh3)4 (1.692 mg, 1.464 mmol) and DPEPhos 



	 34 

(1.176 g, 2.184 mmol) were stirred at 80°C for 20 minutes in toluene (20 mL).  The 

DPEPhos/Pd(PPh3)4 solution was then filtered through a pad of celite into a 250 mL Schlenk bomb 

and L1 (3.044 g, 9.161 mmol), 1,3-diaminobenzene (0.393 g, 3.634 mmol) and sodium tert-

butoxide (1.7563 g, 18.28 mmol) were added and the mixture was diluted with ca. 120 mL of 

toluene. After stirring the mixture at 100oC for 24 h, the suspension was allowed to cool to ambient 

temperature and then filtered through a plug of silica, eluting with 500 mL of Et2O. The solvent 

was removed under reduced pressure and the residue adsorbed on 30 g of dry silica and loaded 

onto a silica gel column.  The product is separated with a stepwise gradient of 2-5% ethyl 

acetate/hexanes, yielding an off-white solid after the removal of solvent (1.931 g, 3.16 mmol, 

87%). The 1H and 13C NMR spectra match those of the reported compound.1  

Preparation of 1,1’-(1,3-phenylene)bis(3-(2,6-diisopropylphenyl)-1H-benzo[d]imidazole-3-

ium) chloride [H3(
DIPPCCC)]Cl2.  Compound L2 (2.00 g, 3.274 mmol) was suspended in 20 mL 

triethyl orthoformate and heated to reflux at 80oC under an N2 atmosphere.  Concentrated 

hydrochloric acid (37% w/w, 808 mg of solution, 8.20 mmol) was added dropwise and the color 

of the suspension turned off-white.  After stirring the mixture for 4 h, the volatiles were removed 

under reduced pressure and a beige solid was collected.  The solid was triturated with Et2O (approx. 

5 x 10 mL) until washes were colorless and dried under vacuum at 70oC overnight (2.142 g, 3.045 

mmol, 93%).  The 1H and 13C NMR spectra match those of the reported compound.1   

Preparation of H(DIPPCCC). A 20 mL scintillation vial was charged with the benzimidazolium 

salt H3(
DIPPCCC)Cl2 (0.075 g, 0.107 mmol) and approximately 2 mL of benzene. The resulting 

slurry was frozen at −35 °C. To this frozen mixture, a thawing mixture of KCH2Ph (0.0291 g, 

0.223 mmol) in approximately 2 mL of benzene was added. An additional 2 mL of benzene were 

used to rinse and complete this transfer. After stirring for 10 min, ca. 2 mL of THF was added to 
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the reaction mixture, resulting in a rapid dissipation of the orange color. When the solution turned 

clear, solvents were removed under reduced pressure and the solid residue was dissolved in 

benzene and filtered over Celite to remove KCl. Removal of volatiles under reduced pressure led 

to the isolation of a yellow-white solid. Washing with hexanes (2 × 2 mL) left a white powder, 

which was dried in vacuo to afford H(DIPPCCC) as the pure product (0.042 g, 0.067 mmol, 62%). 

Anal. Calcd for C44H46N4: C, 83.77; H, 7.35; N, 8.88. Found: C, 83.10; H, 7.28; N, 8.88. 1H NMR 

(C6D6, 500 MHz): δ 8.82 (t, J = 2.2 Hz, 1H, Ar-CH), 7.89 (dd, J = 7.9, 2.1 Hz, 2H), 7.70 (d, J = 

7.8 Hz, 2H), 7.35(t, J = 7.8 Hz, 2H), 7.28(d, J = 7.8 Hz, 1H), 7.24(d, J = 7.4Hz, 4H), 6.94 (m, 4H), 

6.77 (d, J = 7.7 Hz, 2H), 2.70 (sept, J = 6.9 Hz, 4H, iPr-CH), 1.17 (d, J = 6.8 Hz, 12H, iPr-CH3), 

0.96 (d, J = 6.8 Hz, 12H, iPr-CH3). 13C NMR (C6D6, 126 MHz): δ 231.27, 147.30, 142.59, 138.36, 

135.70, 134.06, 130.12, 129.64, 124.21, 123.04, 122.98, 122.90, 121.77, 111.74, 111.36, 28.88, 

24.79, 23.53. 

Synthesis of Metal Complexes 

Synthesis of (DIPPCCC)CoCl2py (1). A 20 mL scintillation vial charged with [H3(
DIPPCCC)]Cl2 

(0.0585 g, 0.08321 mmol) in ca. 5 mL of THF, a solution of lithium hexamethyldisilazide (0.0135 

g, 0.0801 mmol) were stirred at ambient temperature for 5 min.  Dropwise addition of a THF (ca. 

3 mL) a solution of [Co(N(SiMe3)2)2]2•THF (0.0376 g, 0.0832 mmol) and 5 drops of anhydrous 

pyridine were then added, followed by a THF (ca. 3 mL) solution of trityl chloride (0.0232 g, 

0.832 mmol). After stirring the mixture for 18 h, the volatiles were removed under reduce pressure 

and the green solid was washed with hexanes (2 × 10 mL), dissolved in DCM (10 mL), filtered 

over a plug of Celite and the solvent was removed under reduced pressure to give a green solid 

(0.0558g, 0.0666 mmol, 80%). Crystals suitable for X-ray diffraction were grown by slow 
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evaporation from benzene. 1H NMR (CDCl3, 25 °C) δ 8.82 (d, J = 4 Hz, 2H), 8.27 (d, J = 8.0 Hz,  

2H), 7.87 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 7.8 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.8 Hz, 

2H), 7.16 (t, J = 7.8 Hz, 2H), 7.09 – 7.13 (m, 1H), 6.96 (d, J = 7.5 Hz, 4H), 6.75 (d, J = 8.0 Hz, 

2H), 6.41 (s, 2H), 2.69 (hept, J = 6.5 Hz, 4H), 0.98 (d, J = 6.0 Hz, 12H), 0.68 (d, J = 6.5 Hz, 12H). 

13C NMR (CDCl3): δ 195.3, 156.4, 153.6, 148.7, 147.5, 138.6, 138.6, 134.6, 133.0, 132.2, 130.2, 

124.6, 124.1, 123.8, 122.2, 122.1, 112.8, 112.1, 110.3, 27.8, 26.2, 22.8.  HRMS (ESI), calc. for 

C44H45CoN4 (M – Cl – C5H5N)+: 723.2665; found 723.2668. 

 
Alternative Synthesis of 1.  A solution of trityl chloride (0.052 g, 0.187 mmol) in approximately 

2 mL of THF was prepared and added to a solution of 2 (0.150 g, 0.187 mmol) in ca. 4 mL of THF 

at room temperature. Additional solvent (2 mL) was used to rinse and complete the transfer and 

the reaction mixture was stirred for 1 h. The solvent was removed under reduced pressure to afford 

a solid bright green residue. Trituration with diethyl ether (2 mL X 2) and subsequent evacuation 

of solvent under reduced pressure afforded a green solid (0.132 g, 0.157 mmol, 84%).  

 
Synthesis of (DIPPCCC)CoClpy (2). A 20 mL scintillation vial was charged with 

Co(N(SiMe3)2)2•THF (0.128 g, 0.283 mmol), LiN(SiMe3)2 (0.048 g, 0.287 mmol),  and 

approximately 4 mL of C6H6. Subsequent addition of anhydrous pyridine (30 drops) to this dark 

green solution resulted in an immediate color change to dark blue and the mixture was stirred for 

approximately 5 min. Upon completion of the stirring period, the solution was added to a 15 mL 

high-pressure vessel containing the benzimidazolium salt, [H3(
DIPPCCC)]Cl2 (0.200 g, 0.284 

mmol). The vessel was sealed, taken outside of the glovebox, and heated in an oil bath at 70 °C 

overnight. Following the conclusion of the heating period, the vessel was brought into a glove box 

and filtered over a frit layered with Celite. Benzene was added to the solid until the washes became 
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colorless and the filtrate was subsequently evacuated of all solvent under reduced pressure to afford 

a bright orange solid. The solid was stirred in a 4:1 mixture of hexanes (8 mL) and diethyl ether 

(2 mL) for 15 min and filtered over a frit. Subsequent washes with ether (ca. 5 mL) and hexanes 

(10 mL) followed by drying under reduced pressure yielded the pure solid (0.171 g, 0.213 mmol, 

75%). Crystals suitable for X-ray diffraction were grown by slow evaporation from benzene. 

Analysis for C49H50ClN5LiCl: Calcd.  C, 69.59; H, 5.96; N, 8.28.  Found C, 70.01; H, 6.15; N, 

8.28. 1H NMR (500 MHz, C6D6) δ 18.62, 13.29, 11.67, 10.78, 8.47, 7.96, 7.72, 7.55, 7.32, 7.00, 

6.86, 4.18, 1.14, -8.80. HRMS (ESI), calc. for C44H45CoN4 (M - Cl - py)+: 688.2980; found 

688.2976. 

Synthesis of (DIPPCCC)CoN2 (3). A 20 mL scintillation vial was charged with 2 (0.350 g, 0.436 

mmol) and approximately 4 mL of benzene. The resulting solution was frozen at -35 °C and 

Mg(C14H10)• 3THF (0.182 g,  0.435 mmol)  was added as a solid. The reaction mixture took on a 

dark brown color and was stirred to room temperature for 4 h. Following the completion of the 

stirring period, the mixture was filtered over a frit. Removal of solvent from the filtrate under 

reduced pressure afforded a solid brown residue that was stirred in hexanes (20 mL) for 15 min 

and subsequently filtered. The collected solid was washed with ca. 40 mL hexanes to remove 

anthracene and dried under reduced pressure (0.240 g, 0.335 mmol, 77%). Crystals suitable for X-

ray diffraction were grown by slow evaporation from benzene. 1H NMR (500 MHz, C6D6) δ 7.63 

(d, J = 7.5 Hz, 2H), 7.32 (d, J = 7.0 Hz, 2H), 7.29 – 7.23 (m, 2H), 7.20 (t, J = 7.5 Hz, 3H), 7.11 (d, 

J = 7.5 Hz, 4H), 7.04 (t, J = 7.5 Hz, 2H), 6.86 (t, J = 7.5 Hz, 2H), 6.55 (d, J = 8.0 Hz, 2H), 2.71 

(sept, J = 6.8 Hz,  4H), 1.26 (d, J = 6.5 Hz, 12H), 0.87 (d, J = 6.5 Hz, 12H). 13C NMR (500 MHz, 

C6D6) δ 149.9, 147.0, 139.1, 133.9, 131.4, 124.5, 123.7, 123.5, 122.5, 110.5, 110.3, 107.2 28.8, 
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24.7, 24.1. HRMS (ESI), calc. for C44H45CoN4 (M - N2)+: 688.2976; found 688.2973. IR:  2063 

cm-1 (N2).  

 
Synthesis of (DIPPCCC)CoN2(PPh3) (3-PPh3).  A 20 mL scintillation vial was charged with 3 

(0.040 g, 0.056 mmol), PPh3 (0.015g, 0.056 mmol) and benzene (ca. 2 mL). Immediately upon 

addition, the solution turned dark red and the benzene was removed after 5 min of stirring under 

reduced pressure to furnish a red solid (0.049 g, 0.050 mmol, 89%).  NMR data (in benzene-d6, 25 

°C):  1H δ = 7.76 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 2H), 7.03 (t, J = 

7.5 Hz, 2H), 6.98-6.73 (m, 10H), 6.53 (d, J = 8 Hz, 2H), 3.05-2.41 (broad, 4H), 1.04-0.60 (broad, 

24H). 13C δ = 144.0, 141.1. 137.3, 135.9, 132.1, 129.8, 128.6, 124.4, 121.8, 121.0, 119.6, 110.8, 

109.9, 105.8, 28.8, 25.2, 23.7. IR:  2117 cm-1 (N2).  HRMS (ESI), calc. for C44H45CoN4 (M – 

P(C6H5)3 N2): 689.3054; found 689.3037. 
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Table 2.1 Crystallographic Parameters for complexes 1, 2, and 3 

 

Table 2.2 Selected bond lengths and angles for complexes 1, 2, and 3 

 (DIPPCCC)CoCl2py  
(1) 

cd99da 

(DIPPCCC)CoClpy  
(2) 

cm49f 

(DIPPCCC)CoN2  
(3) 

cd06h 
Empirical Formula C55 H56 Cl2 Co N5 C49 H50 Cl Co N5 C47 H48 Co N6 
Formula Weight 916.88 803.32 755.84 
Temperature 105(2) K 173(2) K 100(2) K 
Wavelength 0.71073 Å 0.71073 Å 0.71073 Å 
Crystal system Monoclinic Monoclinic Triclinic 
Space group P 21/c C 21/c P-1 

Unit Cell Dimensions 

a = 14.7605(5) Å 
b = 17.6571(6) Å 
c = 17.9623(3) Å 
α= 90° 
β= 91.1198(13)° 
γ = 90° 

a = 36.876(3) Å 
b = 15.1289(11) Å 
c = 22.0454(17) Å 
α = 90° 
β = 121.969(8)° 
γ = 90° 

a = 10.9123(19) Å 
b = 13.358(2) Å 
c = 15.720(3) Å 
α = 65.272(7)° 
β = 78.937(8)° 
γ = 69.194(8)° 

Volume 4654.5(3) Å3 10433.6(14) Å3 1943.0(6) Å3 
Z 4 8 2 
Reflections collected 122537 30721 7133 
Independent reflections 10300 9540 7133 
Goodness-of-fit on F2 1.023 0.979 1.087 
Final R indices 
[I>sigma(l)] 

R1 = 0.0500 
wR2 = 0.1416 

R1 = 0.0577 
wR2 = 0.1612 

R1 = 0.0481 
wR2 = 0.1106 

 (DIPPCCC)CoCl2Py 
(1) 

(DIPPCCC)CoClPy 
(2) 

(DIPPCCC)Co(N2) 
(3) 

Bond Distances (Å)    
Co – C1 1.981(2) 1.963(4) 1.911(3) 
Co – C13 1.880(2) 1.871(3) 1.872(2) 
Co – C20 2.000(2) 1.948(4) 1.899(3) 
Co – Cl1 2.2787(6) 2.4465(9) N/A 
Co – Cl2 2.3175(6) N/A N/A 
Co – N 2.098(2) 2.025(3) 1.802(2) 
N – N N/A N/A 1.111(3) 
Bond Angles (°)    
C13-Co-N5  179.26(9) 175.65(14) 178.73(12) 
C1-Co-C13 79.90(10) 80.04(15) 79.76(11) 
C13-Co-C20 79.82(10) 80.73(15) 79.95(12) 
C1-Co-C20 159.69(10) 159.88(14) 159.54(11) 
C1-Co-Cl 176.93(2)  N/A N/A 
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Chapter 3 
 

Catalytic hydrosilylation with (DIPPCCC)CoN2: substrate scope and mechanistic insights†   

 
3.1 Introduction 

 The catalytic hydrosilylation of alkenes is a formidable tool for the synthesis of 

organosilicon reagents, a class of compounds widely employed in the production of consumer 

goods and commodity chemicals.1–3 Nevertheless, the high cost, irretrievability, and, at times, 

orthogonal reactivity of precious metal catalysts have inspired efforts to develop alternative 

platforms that feature a broad substrate scope and earth-abundant metals such as cobalt, iron, or 

nickel.4 In addition to the metal center, the silane featured in the catalysis is of great importance – 

as tertiary silanes are more difficult to use and hydrosiloxanes are of particular interest 

industrially.5 Hydrosilylation featuring earth-abundant catalysts has garnered a significant amount 

of attention from several research groups, but improvements to functional group tolerance with 

tertiary silanes within these systems is still a formidable endeavor.    

 Earth-abundant hydrosilylation catalysts featuring iron have been investigated by Chirik,6,7 

Huang,8 Thomas,9 Ritter10 and others.11 Likewise, nickel-catalyzed hydrosilylation has 

experienced a resurgence of interest.12–14 Recent reports from the labs of Holland,15 Hu,16 

Nagashima,11 and Chirik17 have provided powerful new catalysts that address some of the known 

hydrosilylation limitations. The CoI β-diketiminate complexes reported by Holland and coworkers 

were shown to facilitate the chemoselective hydrosilylation of alkenes in the presence of a variety 

of functional groups.15 However, the hydrosilylation of substrates 

 

† Portions of this chapter are reproduced from the following publication with permission from the authors. 
Ibrahim, A.D.; Entsminger, S.W.;Zhu, L.; Fout, A. R. ACS Catal. 2016, 6 (6), 3589–3593. 
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featuring ketone or protic functionalities, such as hydroxyls or NHx groups, was absent.15 

Similarly, Hu reports a highly chemoselective [(MeN2N)NiOMe] pincer complex for the 

hydrosilylation of alkenes in the presence of traditionally challenging functionalities such as esters, 

ketones, primary amines, and even formyl functionalities.16 However, hydrosilylation with tertiary 

silanes proceeded in low yields (~ 30%) and substrates featuring hydroxyl groups were not 

tolerated.16
 The report by Nagashima features the use of tertiary hydrosiloxanes11

  with an ill-

defined cobalt or iron catalyst and Chirik reports an expanded substrate scope with a cobalt 

system,17 but the functional group tolerance of both examples could be broadened.    

 Interested in exploring the competency of low-valent cobalt complexes, we probed the 

competency of (DIPPCCC)CoN2 (1) (DIPPCCC  = bis(diisopropylphenyl-benzimidazol-2-

ylidene)phenyl)18 toward catalysis. Our initial endeavors focused on the hydrosilylation of alkenes. 

Our addition into this well-established research area11,15,19–21 is to improve functional group 

tolerance with tertiary silanes and hydrosiloxanes.  Herein, we report a highly chemoselective CoI 

catalyst for the hydrosilylation of terminal alkenes that is amenable to the use of both secondary 

and tertiary silanes in high yields. In addition to substrates containing ketone, ester, and amine 

functionalities, we demonstrate the selective 1,2-hydrosilylation of alkenes in the presence of 

aldehyde, alcohol, and nitrile groups, as well as conjugated dienes.  

 
3.2 Results and discussion 

 Initial hydrosilylation experiments utilized 1-octene as a model substrate to optimize 

catalyst loading and solvent choice (Table 3.1). In all cases, the anti-Markovnikov product was 

exclusively observed at room temperature.  An addition of a drop of Hg to the reaction did not 

inhibit reactivity, suggesting that catalysis is likely homogeneous and not supported by colloids or 

nanoparticles of cobalt metal.  As depicted in Table 3.2, various silanes were compared at room 
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temperature under optimized conditions (5 mol% catalyst loading in benzene). The reaction was 

amenable to the use of secondary (Entry 2) and tertiary silanes, with low conversion for Et3SiH   

Table 3.1 Optimization of catalytic loading and solvent choice 

  

(Entry 3) but good yields with Me2PhSiH (Entry 4) and hydrosiloxanes such as MD’M (Entry 5) 

(MD’M = 1,1,1,3,5,5,5-heptamethyltrisiloxane) and trimethoxysilane (Entry 6). Running the  

 
Table 3.2 Hydrosilylation of 1-octene 

 

Solvent, RT
[Si]

Time GC-YieldEntry [Si]

2

Solvent

Ph2SiH2 Benzene 1 h 88%

3 Et3SiH Benzene 21 h < 35%

4 PhMe2SiH Benzene 1 h 82%

5 MD'M Benzene 1 h 41%

* = NMR yield

1 Ph3SiH Benzene 1 h < 5%

6 (OMe)3SiH Benzene 1 h 94%*

[Si](5 mol%)

N N

NN
iPr iPr iPr

iPr
Co

N2

Solvent
(DIPPCCC)CoN2 (5 mol%)

RT

1 equiv. HSiMe(OTMS)2

Time GC-YieldEntry % of cat.

Si

Solvent

1 5 mol % Benzene 1 h 41%
2 5 mol % THF 1 h 24%

3 5 mol % 1,4-dioxane 1 h 32%
4 5 mol % MeCN 1 h < 1%

5 2.5 mol % Benzene 1 h 5%
6 1 mol % Benzene 1 h 1%
7 1 mol % Neat 1 h 11%

OTMS

OTMS
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reactions in neat silane did result in the desired hydrosilylated product but was impeded by catalyst 

solubility.  All reactions were run in duplicate and yields were analyzed by gas chromatography 

and mass spectrometry.  

 Encouraged by these results, we sought to extend the substrate scope of the catalytic 

reaction sequence using both Me2PhSiH and MD’M (Table 3.3). Terminal alkenes bearing a wide 

variety of functional groups were investigated. In the presence of more than one olefinic bond, the 

less hindered double bond is selectively hydrosilylated (2a). Unfortunately, cyclic alkenes, such 

as cyclohexene (2b), and substrates such as limonene (2c), which feature a 1,1-disubstituted olefin, 

are not reactive towards hydrosilylation.  

 We postulated that such steric constraints can be leveraged to selectively hydrosilylate 

more challenging substrates. Given the significant challenges associated with the 1,2-

hydrosilylation of conjugated dienes, we turned our attention to isoprene, an industrially relevant 

feedstock used in the production of natural rubber.22 We reasoned that the steric constraints 

afforded by the disubstituted alkene and conferred by our sterically encumbered catalyst would 

favor hydrosilylation at the less hindered terminal olefinic bond.  In line with our hypothesis, 

hydrosilylation of isoprene proceeded with 1,2-selectivity (2e).  As expected, the analogous 

reaction with 2.4 equiv of 1,3-butadiene, which possesses equally accessible double bonds, 

furnished the 1,4-hydrosilylation product, as detected in the 1H NMR spectrum.   These results 

corroborated the importance of sterics in modulating catalytic selectivity. Selective 1,4- 

hydrosilylation of dienes has been reported with a number of catalysts, attributed to the 

thermodynamic favorability of p–allyl intermediates.23 However, very few examples of selective 

1,2-hydrosilylation have been reported, and 2e signifies a rare example where steric control leads 

 



	 47 

Table 3.3 Substrate scope

 

to selectivity with a well-defined cobalt catalyst.23–25 

 Primary amines (2f), tertiary amines (2g), and nitriles (2h,3h) were also tolerated.  

Extending this protocol to 4-vinylaniline was successful, resulting in alkene-selective 

hydrosilylation to give 4-(2-(dimethyl(phenyl)silyl)ethyl)aniline (2f) in moderate yield (62%).  

C6H6, RT, x h

(DIPPCCC)CoN2 (5 mol%)
R

Me2PhSiH or MD'M

R
[Si]

[Si] = SiMe2Ph (2) or
             SiMe(OTMS)2 (3)

SiMe2Ph

2a, 7 h, 94% 2b, 4 h, not detected

SiMe2Ph
SiMe2Ph

2c, 52 h, not detected

SiMe2Ph

2d, 7 h, 84%

SiMe2Ph

2e, 17 h, 75%a

H2N

SiMe2Ph

2f, 25.5 h, 62%

N
SiMe2Ph

2g, 9 h, 97%

N
[Si]

2h, 5.5 h, 70%
3h 24 h, 68%

N

2i, 23.5 h, not detected

SiMe2Ph O

[Si]

2j, 2 h, 97%
3j, 5 h, 94%

O

SiMe2Ph

2k, 2.5 h, 94%

O

O
SiMe2Ph

2l, 2 h, 92%

HO

O
SiMe2Ph

[Si]

2n, 4.5 h, 87% 2o, 3.5 h, 95%b
3n, 7 h, 80%

O

O

SiMe2Ph

2m, 3 h, 95%

HO [Si]

2p, 3 h, 75%b

3p, 5 h, 74%b

O
O

O

SiMe2Ph
SiMe2Ph

SiMe2Ph

2q, 7 h, 98% 2r, 1.5 h, 99% 2s, 1.5 h, 81%

Isolated yields avg. of duplicate 
runs. All rxns performed on 0.56 

mmol scale with a 1:1 mol mixture 
of alkene and silane in 3 mL of 

benzene unless otherwise noted.

Isolated yields are an avg. of duplicate runs.  All reactions performed on 0.56 mmol scale with a 1:1 mol mixture of alkene and silane in 3 
mL of benzene unless otherwise noted.  a Heated at 70 oC and with 2 equiv of isoprene.  b Solvent was 1,4 dioxane.
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Although 4-cyanostyrene was not productive towards the formation of the desired organosilicon 

product (2i), 4-pentenenitrile was amenable to hydrosilylation with both Me2PhSiH (2h) and 

MD’M (3h). Such reactivity has been observed with precious metal catalysts26,27 but has not been 

reported with cobalt. 

 Encouraged by these results, we next turned our attention to the hydrosilylation of alkene 

substrates bearing carbonyl functionalities. Utilizing Me2PhSiH and 5-hexen-2-one as a model 

ketone-bearing substrate, the corresponding organosilicon product 6-

(dimethyl(phenyl)silyl)hexan-2-one (2j) was isolated in 97% yield. Extending the protocol to 

MD’M and Ph2SiH2 furnished the corresponding organosilicon in 94% (3j) and 86% isolated yield, 

respectively. In all cases, no hydrosilylation of the ketone functional group was detected and the 

anti-Markovnikov product was exclusively formed (2j-k). Esters (2l-m) and even a formyl-

containing substrate, 2,2-dimethyl-4-pentenal (2n), were tolerated with the latter also resulting in 

a high yielding product with the more challenging MD’M silane (3n). As of the publication of this 

manuscript, this signifies only the first cobalt system that is tolerant of formyl functionality.16 

 An investigation into the origin of this formyl group tolerance suggests that the observed 

selectivity is not solely attributable to steric considerations. Hydrosilylation of 10-undecenal, a 

substrate bearing a more sterically accessible aldehyde group, furnished two major products in a 

1.4:1 ratio favoring hydrosilylation of the aldehyde over the alkene (Scheme 3.1).  A competition 

experiment, between 1-octene and octanal, however, initially favors hydrosilylation of the alkene 

(1.6:1) but gradually converges to a 1:1 ratio over the course of 18 hours.  

 We next explored the hydrosilylation of substrates containing unprotected alcohols, a 

challenging functional group for iron and nickel catalysts.8,16 In the presence of 5 mol% of catalyst, 

3-buten-1-ol was reacted with Me2PhSiH to afford 4-(dimethyl(phenyl)silyl)butan-1-ol in 95% 
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yield (2o). The hydrosilylation of 5-hexen-1-ol with Me2PhSiH (2p) and MD’M (3p) proceeded 

in similar fashion in 1,4-dioxane. Although tolerated with certain Pt and Rh catalysts,28,29 to the 

best of our knowledge alcohols have not been previously reported with cobalt hydrosilylation 

catalysts.  Further elaboration of the catalyst’s ability to tolerate oxygen-containing substrates led 

us to investigate the hydrosilylation of substrates bearing methoxy, allyl ether, and epoxide 

moieties (2q-s). Gratifyingly, hydrosilylation of these substrates proceeded in excellent yields. 

Undesirable isomerization products or cleavage of the epoxide were not observed. 

 

 

Scheme 3.1 Hydrosilylation of aldehydes versus alkenes 

 
 Interested in gleaning insights into the mechanism of hydrosilylation, we next investigated 

the stoichiometric reactivity of the (DIPPCCC)CoN2 catalyst towards silanes. We hypothesized that 

treatment of the CoI complex with silane would result in oxidative addition of a Si-H bond to the 

metal center, similar to what has been observed in recent reports by Arnold30 and Chirik31 with 

low-valent, electron-rich cobalt complexes. Such a species could then proceed along a Chalk-

Harrod reaction profile to hydrosilylate unsaturated carbon-carbon bonds.32 Monitoring of the 

reaction of PhSiH3 with (DIPPCCC)CoN2 by 1H NMR spectroscopy suggested that such a 

hypothesis was plausible (Scheme 3.2). The presence of a broad upfield resonance at -5.76 ppm 

C6H6, RT, 1 h
(DIPPCCC)CoN2 (5 mol%)

1 equiv Me2PhSiHO

7

O

7 [Si]
O

7

[Si]
0.4 0.6

C6H6, RT, 18 h
(DIPPCCC)CoN2 (5 mol%)

1 equiv Me2PhSiH

1 equiv :1 equiv 1:1
4 4 4

O

4

O [Si]

[Si]

1 equiv
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and decreased symmetry in the 1H NMR spectrum, particularly in the resonances attributed to the 

iPr groups of the ligand framework, were consistent with the possibility of an oxidative addition 

of a Si-H bond onto the metal center.  However, rapid thermal decomposition of this species to a 

new compound precluded further characterization and therefore the possibility of an η2-bound 

Si-H bond could not be ruled out. The observation of intermediates following addition of 

Me2PhSiH was similarly limited, as no product formation was observed on the 1H NMR time scale 

in both the stoichiometric addition and in the presence of excess silane. 

 

 

Scheme 3.2 Reaction of cobalt catalyst with PhSiH3 monitored by 1H NMR spectroscopy 

 
 Interestingly, addition of Ph2SiH2 to the catalyst resulted in the formation of a more 

t = 0 min

t = 30 min

t = 60 min

Co-H

PhSiH3 N N

NN
Ar

Co

N2
[Si]Ar

H
C6D6

N N

NN
Ar

Co

N2
Ar

Ar = 2,6-diisopropylphenyl
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thermally robust compound amenable to characterization. Analogous to the reaction with PhSiH3, 

addition of Ph2SiH2 to the CoI catalyst rapidly resulted in the formation of a new diamagnetic 

compound, 4, with an upfield resonance at -7.08 ppm, as well as decreased symmetry of the ligand 

framework in the 1H NMR spectrum. Two septets at 3.42 and 2.21 ppm, attributed to the methine 

protons of the iPr groups of the ligand framework, and four doublets at 1.50, 1.11, 0.94, and 0.63 

ppm, assigned to the methyls of the iPr groups, are consistent with a Cs-symmetric compound. The 

presence of a downfield resonance at 5.52 ppm in the 1H NMR spectrum was assigned to the proton 

of a bound silyl ligand.  

 Additional characterization with 1H-coupled 29Si NMR spectroscopy was undertaken to 

establish the solution-state structure of 4. The presence of a resonance at 8.28 ppm in the 29Si NMR 

was assigned to a silyl ligand bound to the cobalt center. From this peak a 1JSiH coupling constant 

of 165 Hz and a smaller, weakly-resolved 2JSiH coupling constant of  ~13 Hz were measured. The 

value of the latter coupling constant is below the 20 Hz JSiH coupling value threshold associated 

with η2-bound Si-H bonds33 and is consistent with cleavage of the Si-H bond by the cobalt metal 

center. This was further corroborated by a two-dimensional 1H-29Si HMBC experiment, where the 

resonance centered at 8.28 ppm in the 29Si NMR exhibits a cross-peak with the hydride, and a one-

dimensional NOE experiment (Figures 3.5 and 3.3), allowing for the assignment of 4 as the CoIII 

silyl-hydride compound, (DIPPCCC)Co(SiHPh2)(H)(N2).  Complex 4 is catalytically relevant as the 

addition of 1-octene furnished the hydrosilylated compound and regenerated the (DIPPCCC)CoN2 

starting material. 

 Cooling a concentrated reaction mixture of (DIPPCCC)CoN2 and Ph2SiH2 in diethyl ether to 

-35 °C yielded yellow crystals suitable for single crystal X-ray diffraction. Surprisingly, an 
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octahedral CoIII bis(silyl) compound, (DIPPCCC)Co(SiHPh2)2(N2) (5), a minor decomposition 

product noted in 1H NMR spectra of 4 was obtained. Subsequent attempts to independently 

synthesize 5 were unsuccessful, accompanied in all cases by the concomitant formation of 4, which 

prohibited the effective characterization of the CoIII bis(silyl) species.  This off-cycle 

decomposition product (5) supports cleavage of the Si-H bond, as formation of 5 is likely the 

result of a σ-bond metathesis with 4 and an η2-bound silane (Scheme 3.3).   

 

 

Scheme 3.3 Proposed mechanism for formation of 5 

 

 

Figure 3.1 Proposed catalytic mechanism for hydrosilylation with (DIPPCCC)CoN2 

This series of experiments has led to the proposal of a Chalk-Harrod type mechanism (Figure 3.1) 
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whereby oxidative addition of the silane is followed by coordination of the alkene. Subsequent 

migratory insertion of the hydride or silyl ligand into the alkene, followed by reductive elimination, 

furnishes the hydrosilylated product and regenerates the CoI catalyst. 

 
3.3 Conclusions 

 In conclusion, we have developed a highly selective CoI system for the hydrosilylation of 

alkenes. This hydrosilylation, proposed to proceed through a Chalk-Harrod type mechanism, 

furnishes the anti-Markovnikov product exclusively in all observed cases and is tolerant of a wide 

range of challenging functionalities, including unprotected alcohols, ketones, and dienes. The 

hydrosilylation of a substrate bearing formyl functionality and an alkene bearing nitrile 

functionality have also been shown to proceed selectively at the alkene.   

 
3.4 Experimental section 

General Considerations. All manipulations of air- and moisture-sensitive compounds were 

carried out in the absence of water and dioxygen in an MBraun inert atmosphere drybox under a 

dinitrogen atmosphere except where specified otherwise. All glassware was oven dried for a 

minimum of 8 h and cooled in an evacuated antechamber prior to use in the drybox. Solvents for 

sensitive manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, 

Nashua, NH) and stored over 4 Å molecular sieves purchased from Strem following drying via a 

literature procedure prior to use.34 Chloroform- d1 and benzene-d6 were purchased from Cambridge 

Isotope Labs and were degassed and stored over 4 Å molecular sieves prior to use. Celite® 545 (J. 

T. Baker) was dried in a Schlenk flask for 24 h under dynamic vacuum while heating to at least 

150 ̊C prior to use in a glovebox. NMR Spectra were recorded at room temperature on a Varian 

spectrometer operating at 600 MHz, 500 MHz, or 400 MHz (1H NMR) 126 MHz or 101 MHz (13C 
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NMR), and 119 MHz (29Si NMR)  (UI600, U500, VXR500, UI500NB, U400) and referenced to 

the residual CHCl3 and C6D5H resonance (δ in parts per million, and J in Hz). Infrared spectra 

were recorded using a PerkinElmer Frontier FT-IR spectrophotometer equipped with a KRS5 

thallium bromide/iodide universal attenuated total reflectance accessory. Electrospray ionization 

mass spectrometry (ESI) was recorded on a Waters Q-TOF Ultima ESI instrument. Electron 

ionization mass spectrometry (EI) was recorded on a Waters 70-VSE EI instrument. 

Diphenylsilane and 1,1,13,5,5,5-heptamethyltrisiloxane were purchased from Oakwood Chemical. 

Dimethylphenylsilane and allyl phenyl ether were purchased from Alfa Aesar. 4-pentenenitrile and 

1,3-butadiene (15% in toluene) were purchased from TCI Chemicals, and the remainder of the 

alkene substrates, as well as trimethoxysilane, was purchased from Sigma-Aldrich. All liquids 

were dried over 4 Å molecular sieves prior to use. 

General Hydrosilylation Procedure. A 20 mL scintillation vial is charged with olefin (0.558 

mmol) and silane (0.558 mmol) inside a glove box. Using the selected solvent, the resulting 

mixture is then transferred to a vial containing the catalyst (DIPPCCC)CoN2 (1) (0.020 g, 0.02790 

mmol), which was prepared according to literature procedure.18 A final rinse and transfer with the 

selected solvent, for a total solvent volume of ca. 3 mL, completes the setup and the reaction is 

stirred at room temperature for the allotted time. Upon completion, the vial is taken out of the 

glove box and the crude reaction is concentrated under reduced pressure and loaded onto a silica 

gel column. Elution, followed by the removal of solvent under reduced pressure, affords the target 

compound. 

Characterization Data.  

Dimethyl(octyl)(phenyl)silane. A modified form of the 

general procedure, whereby purification was conducted inside 
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the glovebox, was followed using 1-octene (0.558 mmol), dimethylphenylsilane (0.558 mmol), 

and benzene (3 mL). After 2 h, the crude reaction was purified by flash chromatography with 

hexanes to afford dimethyl(octyl)(phenyl)silane as a colorless oil (0.125 g, 0.502 mmol, 90%). 1H 

NMR (500 MHz, CDCl3) δ 7.57-7.52 (m, 2H), 7.40-7.36 (m, 3H), 1.38-1.23 (m, 12H), 0.91 (t, J = 

6.9 Hz, 3H), 0.80-0.74 (m, 2H), 0.28 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 139.9, 133.7, 128.9, 

127.8, 33.8, 32.1, 29.4, 24.0, 22.8, 15.9, 14.3, -2.8. HRMS (EI), calc. for C15H25Si (M – CH3)
+: 

233.1726; found 233.1719.  

 

Octyldiphenylsilane. A modified form of the general 

procedure, whereby purification was conducted inside the 

glovebox, was followed using 1-octene (0.558 mmol), diphenylsilane (0.558 mmol), and benzene 

(3 mL). After 2 h, the crude reaction was purified by flash chromatography with hexanes to afford 

octyldiphenylsilane as a colorless oil (0147 g, 0.497 mmol, 89%). 1H NMR (500 MHz, CDCl3) δ 

7.62-7.56 (m, 4H), 7.45-7.35 (m, 6H), 4.88 (t, J = 3.7 Hz, 1H), 1.53-1.45 (m, 2H), 1.43-1.36 (m, 

2H), 1.32-1.24 (m, 8H), 1.20-1.15 (m, 2H), 0.90 (t, J = 6.8 Hz, 3H). 1H NMR (500 MHz, C6D6) δ 

7.64 – 7.54 (m, 4H), 7.22 – 7.15 (m, 6H), 5.13 (t, J = 3.7 Hz, 1H), 1.55 – 1.44 (m, 2H), 1.37 – 1.22 

(m, 10H), 1.15 – 1.07 (m, 2H), 0.89 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 135.3, 

134.9, 129.6, 128.1, 33.3, 32.1, 29.4, 24.6, 22.8, 14.3, 12.3. HRMS (EI), calc. for C20H27Si (M – 

H)+: 295.18821; found 295.18864.  

 

 
1,1,1,3,5,5,5-heptamethyl-3-octyltrisiloxane. A modified 

form of the general procedure, whereby purification was 
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conducted inside the glovebox, was followed using 1-octene (0.558 mmol), 1,1,1,3,5,5,5 

heptamethyltrisiloxane (0.558 mmol), and benzene (3 mL). After 2 h, the crude reaction was 

purified by flash chromatography with hexanes to afford 1,1,1,3,5,5,5-heptamethyl-3-

octyltrisiloxane as a colorless oil (0.164 g, 0.491 mmol, 88%). 1H NMR (400 MHz, CDCl3) δ 1.35-

1.23 (m, 12H), 0.88 (t, J = 6.9 Hz, 3H), 0.47-0.43 (m, 2H), 0.09 (s, 18H), -0.01 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 33.4, 32.1, 29.5, 29.5, 23.3, 22.9, 17.8, 14.3, 2.0, -0.1. HRMS (EI), calc. for 

C15H38O2Si3 (M
•)+: 334.21797; found 334.21797. 

 

 
Trimethoxy(octyl)silane. Inside a drybox, a mixture of 1-

octene (0.140 mmol), trimethoxysilane (0.140 mmol), and 

mesitylene internal standard (0.140 mmol) were taken up in C6D6 and added to a tared vial 

containing 1 (0.007 mmol) for a total volume of 3 mL. After 1 h of stirring at room temperature, 

an NMR aliquot was taken indicating 94% conversion to product. 1H NMR spectroscopy data 

match literature values.35 

 
 

(2-(cyclohex-3-en-1-yl)ethyl)dimethyl(phenyl)silane (2a). 

A modified form of the general procedure, whereby 

purification was conducted inside the glovebox, was followed 

using 4-vinyl-1-cyclohexene (0.558 mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 

mL). After 7 h, the crude reaction was purified by flash chromatography with hexanes to afford 2a 

as a colorless oil (0.128 g, 0.525 mmol, 94%). 1H NMR (500 MHz, CDCl3) δ 7.57-7.53 (m, 2H), 

7.40-7.37 (m, 3H), 5.70-5.67 (m, 2H), 2.15 (d, J = 16.4 Hz, 1H), 2.09-2.01 (m, 2H), 1.82-1.74 (m, 
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1H), 1.69-1.58 (m, 1H), 1.53-1.43 (m, 1H), 1.36-1.28 (m, 2H), 1.26-1.14 (m, 1H), 0.84-0.77 (m, 

2H), 0.31 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 139.7, 133.7, 128.9, 127.9, 127.2, 126.8, 36.7, 

31.8, 30.7, 28.7, 25.5, 12.8, -2.9. HRMS (EI), calc. for C16H23Si (M – H)+: 243.15691; found 

243.15629. 

 
 

dimethyl(phenethyl)(phenyl)silane (2d). The general 

procedure was followed using styrene (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and benzene (3 mL). 

After 7 h, the crude reaction was purified by flash chromatography with hexanes to afford 2d as a 

colorless oil (0.113 g, 0.469 mmol, 84%). 1H NMR (500 MHz, CDCl3) δ 7.56-7.51 (m, 2H), 7.39-

7.34 (m, 3H), 7.28-7.23 (m, 2H), 7.20-7.15 (m, 3H), 2.69-2.60 (m, 2H), 1.19-1.08 (m, 2H), 0.30 

(s, 6H). 13C NMR (126 MHz, CDCl3) δ 145.1, 139.2, 133.7, 129.1, 128.4, 127.9, 127.9, 125.7, 

30.1, 17.9, -2.9. HRMS (EI), calc. for C15H17Si (M – CH3)
+: 225.1100; found 225.1097. 

 

 
dimethyl(3-methylbut-3-en-1-yl)(phenyl)silane (2e). A 

modified procedure was followed using isoprene (1.116 

mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 

mL). The reaction was conducted in a high pressure vessel and sealed following addition of the 

silane and olefin mixture to the catalyst. The sealed vessel was then taken outside of the glove box 

and heated to 70 °C for 17 h. The crude reaction was purified by flash chromatography with 

hexanes to afford 2e as a colorless oil (0.086 g, 0.419 mmol, 75%). 1H NMR (500 MHz, CDCl3) 

δ 7.60 – 7.54 (m, 2H), 7.43 – 7.38 (m, 3H), 4.74 (s, 1H), 4.72 (s, 1H), 2.10 – 2.02 (m, 2H), 1.76 
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(s, 3H), 1.00 – 0.92 (m, 2H), 0.33 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 148.5, 139.4, 133.7, 

129.0, 127.9, 108.6, 32.0, 22.4, 13.9, -3.0. HRMS (EI), calc. for C13H20Si (M•)+: 204.1334; found 

204.1331. IR: 1649 cm-1 (C=C).  

 

(E)-1-Dimethyl(phenyl)silylbut-2-ene. Inside a drybox, a 

mixture of 1,3-butadiene (0.335 mmol) and 

dimethylphenylsilane (0.140 mmol) were taken up in toluene and added to a tared vial containing 

1 (0.007 mmol) for a total volume of 3 mL. After 1 h, the stirring was stopped, the vial was taken 

outside of the drybox, and volatiles were removed under reduced pressure. The residue was taken 

up in hexanes and filtered over a pipette filter containing silica. The filtrate was pumped down 

under vacuum to yield a clear oil. 1H NMR spectroscopy data of the oil match literature values for 

the title compound.36 

 

4-(2-(dimethyl(phenyl)silyl)ethyl)aniline (2f). The general 

procedure was followed using 4-vinylaniline (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and benzene (3 mL). 

After 25.5 h, the crude reaction was purified by flash chromatography using a solvent gradient 

with ethyl acetate/hexanes (v/v = 1:20 to v/v= 1:2) to afford 2f as a light brown oil (0.088 g, 0.346 

mmol, 62%). 1H NMR (500 MHz, CDCl3) δ 7.58-7.50 (m, 2H), 7.40-7.35 (m, 3H), 6.98 (d, J = 

8.3 Hz, 2H), 6.62 (d, J = 8.3 Hz, 2H), 3.53 (s, 2H), 2.63-2.48 (m, 2H), 1.15-1.01 (m, 2H), 0.29 (s, 

6H).13C NMR (126 MHz, CDCl3) δ 144.1, 139.4, 135.3, 133.7, 129.0, 128.6, 127.9, 115.4, 29.1, 

18.0, -2.9. HRMS (ES), calc. for C16H22NSi (M + H)+: 256.1522; found 256.1524. IR: 3365 cm-1, 

3457 cm-1 (NH2). 
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9-(2-(dimethyl(phenyl)silyl)ethyl)-9H-carbazole (2g). The 

general procedure was followed using 9-vinylcarbazole (0.558 

mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 

mL). After 9 h, the crude reaction was purified by flash 

chromatography with ethyl acetate/hexanes (v/v = 1:50) to afford 2g as a white solid (0.178 g, 

0.541 mmol, 97%). 1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 7.6 Hz, 2H), 7.68 – 7.62 (m, 2H), 

7.54 – 7.46 (m, 5H), 7.33 – 7.27 (m, 4H), 4.33-4.37 (m, 2H), 1.51 – 1.38 (m, 2H), 0.45 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 139.8, 137.9, 133.7, 129.5, 128.2, 125.6, 123.1, 120.5, 118.8, 

108.6, 38.9, 16.2, -3.0. HRMS (ES), calc. for C22H23NSi (M•)+: 329.1600; found 329.1598. 

 

 
5-(dimethyl(phenyl)silyl)pentanenitrile (2h). The general 

procedure was followed using 4-pentenenitrile (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and benzene (3 mL). After 5.5 h, the crude reaction was 

purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:20) to afford 2h as a colorless 

oil (0.085 g, 0.391 mmol, 70%). 1H NMR (500 MHz, CDCl3) δ 7.53 – 7.48 (m, 2H), 7.39 – 7.34 

(m, 3H), 2.31 (t, J = 7.2 Hz, 2H), 1.67 (tt, J = 7.3 Hz, 2H), 1.52 – 1.42 (m, 2H), 0.83 – 0.73 (m, 

2H), 0.29 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 138.9, 133.6, 129.1, 128.0, 119.9, 29.0, 23.3, 

16.9, 15.3, 13.3, -3.0. HRMS (EI), calc. for C13H19NSi (M•)+: 217.12868; found 217.12881. IR: 

2246 cm-1  (CN), 1725 cm-1 (C=O) (aldehyde impurity ~4% by 1H NMR spectroscopy). 
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5-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)pentanenitrile 

(3h). The general procedure was followed using 4-

pentenenitrile (0.558 mmol), 1,1,1,3,5,5,5-

heptamethyltrisiloxane (0.558 mmol), and benzene (3 mL). After 24 h, the crude reaction was 

purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:20) to afford 3h as a pale 

yellow oil (0.125 g, 0.413 mmol, 68%). 1H NMR (500 MHz, Chloroform-d) δ 2.33 (t, J = 7.2 Hz, 

2H), 1.67 (tt, J = 7.3 Hz, 2H), 1.53 – 1.42 (m, 2H), 0.50 – 0.43 (m, 2H), 0.09 (s, 18H), 0.01 (s, 

3H). 13C NMR (126 MHz, CDCl3) δ 119.9, 28.6, 22.5, 16.9, 2.0, 1.8, -0.2. HRMS (EI), calc. for 

C12H29O2NSi3 (M
•)+: 303.1506; found 303.1499. IR: 2248 cm-1 (w) (CN) 

 

6-(dimethyl(phenyl)silyl)hexan-2-one (2j). The general 

procedure was followed using 5-hexen-2-one (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and benzene (3 mL). After 2 h, the crude reaction was 

purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:20) to afford 2j as a colorless 

oil (0.127 g, 0.541 mmol, 97%). 1H NMR (500 MHz, CDCl3) δ 7.52-7.48 (m, 2H), 7.38-7.33 (m, 

3H), 2.39 (t, J = 7.5 Hz, 2H), 2.11 (s, 3H), 1.59 (tt, J = 7.5 Hz, 2H), 1.38-1.26 (m, 2H), 0.77-0.73 

(m, 2H), 0.26 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 209.4, 139.5, 133.7, 129.0, 127.9, 43.6, 30.0, 

27.8, 23.7, 15.8, -3.0. HRMS (ES), calc. for C14H22OSiNa (M + Na)+: 257.1338; found 257.1337. 

IR: 1715 cm-1  (C=O). 

 

6-(diphenylsilyl)hexan-2-one (2j-Ph2). The general 

procedure was followed using 5-hexen-2-one (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and benzene (3 mL). After 2 h, the crude reaction was 
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purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:10) to afford 2j-Ph2 as a 

colorless oil (0.136 g, 0.480 mmol, 86%). 1H NMR (500 MHz, CDCl3) δ 7.59-7.53 (m, 4H), 7.43-

7.34 (m, 6H), 4.86 (t, J = 3.5 Hz, 1H), 2.40 (t, J = 7.4 Hz, 2H), 2.10 (s, 3H), 1.66 (tt, J = 7.6, 2H), 

1.50-1.43 (m, J = 9.5, 6.6 Hz, 2H), 1.18-1.14 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 209.2, 135.2, 

134.4, 129.7, 128.1, 43.5, 30.0, 27.4, 24.2, 12.2. HRMS (EI), calc. for C18H21OSi (M – H)+: 

281.1362; found 281.1357. IR: 1714 cm-1  (C=O), 2113 cm-1 (Si–H).  

 

6-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl) hexan-2-one 

(3j). The general procedure was followed using 5-hexen-2-one 

(0.558 mmol), 1,1,1,3,5,5,5-heptamethyltrisiloxane (0.558 

mmol), and benzene (3 mL). After 5 h, the crude reaction was purified by flash chromatography 

with ethyl acetate/hexanes (v/v = 1:20) to afford 3j as a pale yellow oil (0.168 g, 0.525 mmol, 

94%). 1H NMR (500 MHz, Chloroform-d) δ 2.40 (t, J = 7.5 Hz, 2H), 2.12 (s, 3H), 1.58 (tt, J = 7.5 

Hz, 2H), 1.36-1.26 (m, 2H), 0.49-0.41 (m, 2H), 0.07 (s, 18H), -0.02 (s, 3H).13C NMR (126 MHz, 

CDCl3) δ 209.4, 43.7, 30.0, 27.5, 22.9, 17.6, 2.0, -0.2. HRMS (ES), calc. for C13H32O3Si3Na (M + 

Na)+: 343.1557; found 343.1545. IR: 1719 cm-1  (C=O). 

 

2-(3-(dimethyl(phenyl)silyl)propyl)cyclohexan-1-one (2k). 

The general procedure was followed using 2-

allylcyclohexanone (0.558 mmol), dimethylphenylsilane 

(0.558 mmol), and benzene (3 mL). After 2.5 h, the crude reaction was purified by flash 

chromatography with ethyl acetate/hexanes (v/v = 1:20) to afford 2k as a pale yellow oil (0.144 g, 

0.525 mmol, 94%). 1H NMR (500 MHz, CDCl3) δ 7.52-7.47 (m, 2H), 7.37-7.32 (m, 3H), 2.39-

	

	

O

Si

Ph
	

O

Si

OTMS

OTMS
	



	 62 

2.34 (m, 1H), 2.31-2.21 (m, 2H), 2.09-1.96 (m, 2H), 1.89-1.76 (m, 2H), 1.73-1.53 (m, 2H), 1.41-

1.26 (m, 3H), 1.24-1.17 (m, 1H), 0.82-0.66 (m, 2H), 0.25 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 

213.7, 139.7, 133.7, 128.9, 127.8, 50.6, 42.1, 34.0, 33.4, 28.2, 25.0, 21.7, 16.0, -2.9. HRMS (ES), 

calc. for C17H26ONaSi (M + Na)+: 297.1651; found 297.1649. IR: 1709 cm-1  (C=O). 

 

methyl 5-(dimethyl(phenyl)silyl)pentanoate (2l). The general 

procedure was followed using methyl 4-pentenoate (0.558 

mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 

mL). After 2 h, the crude reaction was purified by flash chromatography with ethyl acetate/hexanes 

(v/v = 1:20) to afford 2l as a colorless oil (0.129 g, 0.513 mmol, 92%). 1H NMR (500 MHz, CDCl3) 

δ 7.52-7.48 (m, 2H), 7.37-7.33 (m, 3H), 3.65 (s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.65 (tt, J = 7.4 Hz, 

2H), 1.40-1.30 (m, 2H), 0.80-0.72 (m, 2H), 0.26 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 174.4, 

139.4, 133.7, 129.0, 127.9, 51.6, 33.9, 28.8, 23.7, 15.6, -2.9. HRMS (EI), calc. for C13H19O2Si (M 

– CH3)
+: 235.1154; found 235.1153. IR: 1738 cm-1  (C=O). 

 

ethyl 3-(dimethyl(phenyl)silyl)propanoate (2m). The 

general procedure was followed using ethyl acrylate (0.558 

mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 mL). After 3 h, the crude reaction was 

purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:10) to afford 2m as a pale 

yellow oil (0.125 g, 0.530 mmol, 95%). 1H NMR (400 MHz, CDCl3) δ 7.58 – 7.44 (m, 2H), 7.41 

– 7.31 (m, 3H), 4.08 (q, J = 7.1 Hz, 2H), 2.37 – 2.15 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.13 – 1.05 

(m, 2H), 0.29 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 175.1, 138.3, 133.7, 129.2, 128.0, 60.5, 29.0, 

14.4, 11.0, -3.2. HRMS (ES), calc. for C13H20O2NaSi (M + Na)+: 259.1130; found 259.1126. IR: 
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1733 cm-1  (C=O). 

 

5-(dimethyl(phenyl)silyl)-2,2-dimethylpentanal (2n). The 

general procedure was followed using 2,2-dimethyl-4-

pentenal (0.558 mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 mL). After 4.5 h, the 

crude reaction was purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:20) to 

afford 2n as a pale yellow oil (0.121 g, 0.485 mmol, 87%). 1H NMR (400 MHz, CDCl3) δ 9.42 (s, 

1H), 7.62-7.45 (m, 3H), 7.44-7.30 (m, 5H), 1.57-1.41 (m, 3H), 1.34-1.17 (m, 3H), 1.02 (s, 6H), 

0.80-0.67 (m, 3H), 0.26 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 206.6, 139.3, 133.6, 129.0, 127.9, 

46.2, 41.5, 21.4, 18.9, 16.6, -2.9. HRMS (EI), calc. for C15H23OSi (M – H)+: 247.15183; found 

247.15175. IR: 1727 cm-1  (C=O). 

 

5-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)-2,2-

dimethylpentanal (3n). The general procedure was followed 

using 2,2-dimethyl-4-pentenal (0.558 mmol), 1,1,1,3,5,5,5-

heptamethyltrisiloxane (0.558 mmol), and benzene (3 mL). After 7 h, the crude reaction was 

purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:20) to afford 3n as a colorless 

oil (0.149 g, 0.446 mmol, 80%). 1H NMR (500 MHz, Chloroform-d) δ 9.44 (s, 1H), 1.53 – 1.42 

(m, 2H), 1.29 – 1.16 (m, 5H), 1.03 (s, 6H), 0.47 – 0.38 (m, 2H), 0.07 (s, 18H), -0.02 (s, 3H). 13C 

NMR (126 MHz, CDCl3) δ 206.56, 46.17, 41.18, 21.41, 18.14, 2.01, -0.07. HRMS (ES), calc. for 

C14H34O3Si3Na (M + Na)+: 357.1713; found 357.1706. IR: 1730 cm-1  (C=O). 
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4-(dimethyl(phenyl)silyl)butan-1-ol (2o). The general 

procedure was followed using 3-buten-1-ol (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and 1,4-dioxane (3 mL). After 3.33 h, the crude reaction was 

purified by flash chromatography with a solvent gradient of ethyl acetate/hexanes (v/v = 1:10 to 

v/v= 1:2) to afford 2o as a pale yellow oil (0.110 g, 0.530 mmol, 95%). 1H NMR (500 MHz, 

CDCl3) δ 7.54-7.48 (m, 2H), 7.38 – 7.33 (m, 3H), 3.62 (t, J = 6.4 Hz, 2H), 1.59 (tt, J = 6.9 Hz, 

2H), 1.46-1.35 (m, 2H), 1.22 (s, 1H), 0.82 – 0.72 (m, 2H), 0.27 (s, 6H). 13C NMR (126 MHz, 

CDCl3) δ 139.5, 133.7, 129.0, 127.9, 62.8, 36.7, 20.3, 15.7, -2.9. HRMS (ES), calc. for 

C12H20ONaSi (M + Na)+: 231.1181; found 231.1181. IR: 3328 cm-1  (O–H). 

 

6-(dimethyl(phenyl)silyl)hexan-1-ol (2p). The general 

procedure was followed using 5-hexen-1-ol (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and 1,4-dioxane (3 mL). After 3 h, the crude reaction was 

purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:10) to afford 2p as a colorless 

oil (0.099 g, 0.419 mmol, 75%). 1H NMR (500 MHz, CDCl3) δ 7.57-7.49 (m, 2H), 7.40-7.34 (m, 

3H), 3.67-3.56 (m, 2H), 1.58-1.52 (m, 2H), 1.52-1.49 (m, 1H), 1.35 (s, 7H), 0.81-0.74 (m, 2H), 

0.28 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 139.7, 133.7, 128.9, 127.8, 63.1, 33.4, 32.8, 25.5, 

23.9, 15.8, -2.9. HRMS (EI), calc. for C13H21OSi (M – CH3)
+: 221.1362; found 221.1354. IR: 3323 

cm-1  (O–H). 

 

6-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)hexan-1-ol (3p). 

The general procedure was followed using 5-hexen-1-ol (0.558 

mmol), 1,1,1,3,5,5,5-heptamethyltrisiloxane (0.558 mmol), and 1,4-dioxane (3 mL). After 5 h, the 
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crude reaction was purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:10) to 

afford 3p as a pale yellow oil (0.133 g, 0.413 mmol, 74%). 1H NMR (500 MHz, CDCl3) δ 3.63 (t, 

J = 6.7 Hz, 2H), 1.61-1.52 (m, 2H), 1.38-1.30 (m, 7H), 0.49-0.41 (m, 2H), 0.08 (s, 18H), -0.01 (s, 

3H). 13C NMR (126 MHz, CDCl3) δ 63.2, 33.2, 32.9, 25.6, 23.2, 17.7, 2.0, -0.1. HRMS (ES), calc. 

for C13H34O3Si3Na (M + Na)+: 345.1714; found 345.1722. IR: 3341 cm-1  (O–H). 

 

 (4-methoxyphenethyl)dimethyl(phenyl)silane (2q). The 

general procedure was followed using 4-vinylanisole (0.558 

mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 

mL). After 7 h, the crude reaction was purified by flash chromatography with ethyl acetate/hexanes 

(v/v = 3:40) to afford 2q as a colorless oil (0.148 g, 0.547 mmol, 98%). 1H NMR (500 MHz, 

CDCl3) δ 7.65 – 7.58 (m, 2H), 7.49 – 7.40 (m, 3H), 7.20 – 7.13 (m, 2H), 6.92 – 6.85 (m, 2H), 3.84 

(s, 3H), 2.73 – 2.62 (m, 2H), 1.25 – 1.14 (m, 2H), 0.36 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 

157.7, 139.2, 137.2, 133.7, 129.0, 128.7, 127.9, 113.8, 55.4, 29.2, 18.1, -2.9. HRMS (EI), calc. for 

C17H22OSi (M•)+: 270.1440; found 270.1438. 

 

dimethyl(3-phenoxypropyl)(phenyl)silane (2r). The general 

procedure was followed using allyl phenyl ether (0.558 mmol), 

dimethylphenylsilane (0.558 mmol), and benzene (3 mL). 

After 1.5 h, the crude reaction was purified by flash chromatography with ethyl acetate/hexanes 

(v/v = 1:20) to afford 2r as a colorless oil (0.149 g, 0.552 mmol, 99%). 1H NMR (500 MHz, 

CDCl3) δ 7.61 – 7.54 (m, 2H), 7.43 – 7.36 (m, 3H), 7.34 – 7.27 (m, 2H), 6.99 – 6.93 (m, 1H), 6.93 

– 6.87 (m, 2H), 3.94 (t, J = 6.8 Hz, 2H), 1.90 – 1.80 (m, 2H), 0.96 – 0.87 (m, 2H), 0.35 (s, 6H). 

	

O Si

Ph	

	

O

Si

Ph	



	 66 

13C NMR (126 MHz, CDCl3) δ 159.2, 139.1, 133.7, 129.5, 129.1, 127.9, 120.6, 114.6, 70.5, 24.0, 

11.9, -3.0. HRMS (ES), calc. for C17H22ONaSi (M + Na)+: 293.1338; found 293.1344. 

 

        dimethyl(4-(oxiran-2-yl)butyl)(phenyl)silane (2s). The 

general procedure was followed using 1,2-epoxy-5-hexene 

(0.558 mmol), dimethylphenylsilane (0.558 mmol), and benzene (3 mL). After 1.5 h, the crude 

reaction was purified by flash chromatography with ethyl acetate/hexanes (v/v = 1:20) to afford 2s 

as a pale yellow oil (0.106 g, 0.452 mmol, 81%). 1H NMR (500 MHz, CDCl3) δ 7.56 – 7.48 (m, 

2H), 7.39 – 7.33 (m, 3H), 2.90-2.85 (m, 1H), 2.73 (t, J = 4.19 Hz, 1H), 2.45-2.42 (m, 1H), 1.58 – 

1.33 (m, 6H), 0.82 – 0.70 (m, 2H), 0.27 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 139.6, 133.7, 

128.9, 127.9, 52.5, 47.3, 32.3, 29.9, 23.9, 15.8, -2.9. HRMS (ES), calc. for C14H22ONaSi (M + 

Na)+: 257.1338; found 257.1335. 

 
1H NMR monitoring of the reaction of 1 with PhSiH3  

To a frozen solution of the catalyst (DIPPCCC)CoN2 (1) (0.020 g, 0.0705 mmol) in 0.5 mL of C6D6, 

was added PhSiH3 (0.009 g, 0.106 mmol). The reaction was monitored in a screw-top NMR tube 

following thawing by 1H NMR spectroscopy.  

 
Synthesis of (DIPPCCC)Co(SiHPh2)(H)(N2) (4). A 20 mL scintillation vial was charged with 

diphenylsilane and taken up in ca. 0.5 mL of deuterated benzene. The resulting dark brown solution 

was added to a J. Young NMR tube bearing the catalyst 1 (0.020 g, 0.0705 mmol) and analyzed 

by 1H and 29Si NMR spectroscopy. 1H NMR (600 MHz, C6D6) δ 7.44 (d, J = 7.8 Hz), 7.31 (s, 1H), 

7.03 (d, J = 4.4 Hz), 7.00 (d, J = 7.8 Hz), 6.80 (m), 6.73 (t, J = 7.2 Hz), 6.48 (d, J = 8.0 Hz), 5.52 

	
O Si

Ph
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(s), 3.42 (sept, J = 6.7 Hz), 2.21 (sept, J = 6.7 Hz), 1.50 (d, J = 6.7 Hz), 1.11 (d, J = 6.8 Hz), 0.94 

(d, J = 6.8 Hz), 0.63 (d, J = 6.8 Hz), -7.08 (s, 1H). T1 (min, 293 K, 500 MHz) of resonance at -7.08 

ppm: 148 ms. 29Si NMR (600 MHz, C6D6) δ 8.28. IR: 2280 cm-1, 2268 cm-1.  

1H NMR of unreacted 12 (500 MHz, C6D6) δ 7.63 (d, J =  7.5 Hz), 7.32 (d, J =  7.0 Hz), 7.29 – 

7.23 (m), 7.20 (t, J =  7.5 Hz), 7.11 (d, J =  7.5 Hz), 7.04 (t, J =  7.5 Hz), 6.86 (t, J =  7.5 Hz), 6.55 

(d, J =  8.0 Hz), 2.71 (sept, J =  6.8 Hz), 1.26 (d, J =  6.5 Hz), 0.87 (d, J =  6.5 Hz). 
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Figure 3.4 1H-coupled 29Si NMR spectrum of 4 
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Figure 3.5 29Si – 1H HMBC NMR spectrum of 4 
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Synthesis of (DIPPCCC)Co(SiHPh2)2(N2) (5). A 20 mL scintillation vial was charged with 

Ph2SiH2 (0.013 g, 0.0705 mmol) and transferred to a separate vial containing 12 (0.025 g, 0.0349 

mmol) using C6H6 (ca. 3 mL). The resulting red-purple reaction mixture was stirred at room 

temperature for 1 h. Following completion of the stir time, the solvent was removed under reduced 

pressure and the remaining solid residue was dissolved in diethyl ether before being filtered over 

a plug of Celite. Additional solvent was added to the plug as needed until the washes were virtually 

colorless. The filtrate was, in turn, cooled at -35 °C at least overnight to yield crystalline material 

suitable for X-ray diffraction. The mother liquor was then decanted and the remaining yellow 

material was dried in vacuo prior to analysis by 1H NMR spectroscopy in C6D6 solvent. Both 

compounds 1 and 4 (NMR data listed below) are present in the material. HRMS (ES), calc. for 

C68H68CoN4Si2 (M – N2)+: 1054.4236; found 1054.4253.  

1H NMR of 4 (600 MHz, C6D6) δ 7.44 (d, J = 7.8 Hz), 7.31 (s, 1H), 7.03 (d, J = 4.4 Hz), 7.00 (d, 

J = 7.8 Hz), 6.80 (m), 6.73 (t, J = 7.2 Hz), 6.48 (d, J = 8.0 Hz), 5.52 (s), 3.42 (sept, J = 6.7 Hz), 

2.21 (sept, J = 6.7 Hz), 1.50 (d, J = 6.7 Hz), 1.11 (d, J = 6.8 Hz), 0.94 (d, J = 6.8 Hz), 0.63 (d, J = 

6.8 Hz), -7.08 (s, 1H). 

1H NMR of unreacted 12 (500 MHz, C6D6) δ 7.63 (d, J =  7.5 Hz), 7.32 (d, J =  7.0 Hz), 7.29 – 

7.23 (m), 7.20 (t, J =  7.5 Hz), 7.11 (d, J =  7.5 Hz), 7.04 (t, J =  7.5 Hz), 6.86 (t, J =  7.5 Hz), 6.55 

(d, J =  8.0 Hz), 2.71 (sept, J =  6.8 Hz), 1.26 (d, J =  6.5 Hz), 0.87 (d, J =  6.5 Hz).  
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Table 3.4 Crystallographic Parameters for complex 5 

  (DIPPCCC)Co(SiHPh2)2(N2) (5) 
Empirical formula C76H87CoN6O2Si2 
Formula weight 1231.62 
Temperature (K) 100.15 
Wavelength (Å) 0.71073 
Crystal system monoclinic 
Space group P21 
Unit Cell Dimentions  
a (Å) 12.1686(4) 
b (Å) 15.7163(5) 
c (Å) 17.6104(6) 
α (°) 90 
β (°) 100.7617(11) 
γ (°) 90 
Volume (Å3) 3308.67(19) 
Z 2 
Reflections collected 73761 
Independent reflections 14756 [Rint = 0.0346] 
Goodness-of-fit on F2 1.041 
Final R indexes [I>=2σ (I)] R1 = 0.0276, wR2 = 0.0708 
Final R indexes [all data] R1 = 0.0295, wR2 = 0.0737 

 

Table 3.5 Select bond distances and bond angles for 5 

	 	
 (DIPPCCC)Co(SiHPh2)2(N2) 

Bond Distances 

(Å) 

 
Co – Si1 2.3507(7) 
Co – Si2 2.3467(7) 
Co – C1 1.940(2) 
Co – C20 1.948(2) 
Co – C13 1.866(2) 
Co – N5 1.8401(19) 
N5 – N6 1.102(3) 

Bond Angles (°)  
C1-Co-C20 160.19(9) 
C13-Co-N5 179.62(10) 
Si1-Co-Si2 166.26(2) 
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Chapter 4 

Catalytic hydroboration with (DIPPCCC)CoN2: evidence for insertion, isomerization, and b-

hydride elimination processes†  

 
4.1 Introduction 

 Catalytic hydroboration is a powerful synthetic tool for the reduction and functionalization 

of unsaturated bonds, providing products that can serve as valuable synthons in a variety of 

chemical transformations. The widely-employed Suzuki-Miyaura coupling, for example, 

effectively uses organoboronates as nucleophiles for the construction of C–C bonds, cementing its 

status as one of the most versatile and employed reactions in the pharmaceutical industry.1,2 

Accordingly, several catalysts have been reported for the preparation of organoboron reagents, 

traditionally via the hydroboration of alkenes or the borylation of olefinic or alkane substrates.3–5 

Catalysts have typically featured noble metal centers, primarily Rh and Ir.5 However, the high cost, 

low abundance, and environmentally impacts associated with the use of such metals has motivated 

the development of first-row transition metal congeners.6,7 

 Recent reports from the labs of Ritter, Chirik, Huang, and others have provided new Fe, 

Co, and Cu catalysts for the hydroboration of alkynes and terminal alkenes.8–18 Such systems boast 

operational simplicity and provide powerful platforms for the reduction of unsaturated bonds. 

Huang and coworkers reported a potent Co(PNN) (PNN = 6-[(dialkylphosphino)methyl]-2,2’-

bipyridine) hydroboration catalyst that tolerates a variety of functional groups, including ketones, 

allyl ethers, tertiary amines, and substituted amides.19 Similarly, Chirik reported a complement of 

simple cobalt catalyst precursors for the hydroboration of simple alkenes, including a  

 

† Portions of this chapter are reproduced from the following publication with permission from the authors. 
Ibrahim, A. D.; Entsminger, S. W.; Fout, A. R. ACS Catal. Submitted. 
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(PPh3)3CoH(N2) system that is competent towards the catalytic isomerization-hydroboration of 

alkenes.20 Recent reports from Thomas,21 Lu,22 and Huang23 have paralleled such developments 

with Fe-based hydroboration catalysts, conferring a notable degree of functional group tolerance 

or enantioselectivity where applicable, as in the case of the chiral iminopyridine oxazoline iron 

complexes reported by Lu.22 However improvements to these these reports could be the removal 

of activators such as Grignard reagents and NaBHEt3. The selective hydroboration of ketone-

bearing alkene substrates is also not widely reported.  

 Similar functional group constraints have also been noted in copper catalysts, several of 

which feature the use of activated or simple alkene and alkyne substrates. Recent reports from the 

Ito group12,24 and Takaki group25 have obviated some of these limitations, providing copper-based 

systems that can be modulated to provide interesting Markovnikov regioselectivity or that 

otherwise confer an improved functional group tolerance. 

 
4.2 Results and discussion 

 We recently reported the hydrosilylation of terminal alkene substrates with a CoI catalyst 

bearing an electron-rich CCC pincer ligand.26 Mechanistic studies suggested that the catalyst 

engages in oxidative addition of the Si–H bond to generate a catalytically active CoIII hydrido silyl 

complex and then proceeds along a Chalk-Harrod reaction profile reminiscent of noble metal 

catalysts to afford the targeted alkylsilane product. This reactivity, as well as the impressive 

chemoselectivity of the (DIPPCCC)CoN2 (1) catalyst, prompted us to explore the hydroboration of 

alkenes bearing ketones and other traditionally challenging oxygen-containing functional groups, 

particularly given the paucity of earth-abundant complexes tolerant of such functionalities. 

Pursuant to this end, we investigated the hydroboration of 5-hexen-2-one as a model substrate. 

Gratifyingly, hydroboration with pinacolborane proceeded with anti-Markovnikov selectively at 
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the alkene at room temperature, with no evidence of ketone hydroboration. The use of an air-stable 

CoIII analogue, (DIPPCCC)CoCl2py, was also successful with the addition of NaHBEt3 or 

TMSCH2Li activators, albeit in reduced yield. Optimization of catalytic loading led us to select 

2.5 mol % of CoI catalyst for catalytic reactivity (Table 4.1).  

 
Table 4.1 Hydroboration optimization 

 

 
 Following determination of catalytic conditions, we sought to investigate the substrate 

scope of the cobalt catalyst (Table 4.2). The hydroboration of 1-octene and styrene proceeded in 

excellent yield, furnishing the anti-Markovnikov product in both cases with no evidence of 

dehydrogenative borylation. The hydroboration of 4-vinylcylohexene, a substrate bearing both an 

internal alkene and a terminal alkene, proceeded selectively at the terminal alkene position, with 

complete retention of the internal olefin (entry 2d). More sterically hindered substrates were not 

amenable to the hydroboration protocol. The hydroboration of limonene, a gem-disubstituted 

alkene, did not result in any detectable conversion while the hydroboration of cyclohexene resulted 

in only trace product formation after 17 hours, highlighting the steric influence on the selectivity 

observed. This sensitivity to steric effects was previously observed in the hydrosilylation protocol 

C6H6, 0.5 h
(DIPPCCC)Co

RT

1 equiv. HBpin

GC-YieldEntry

1 CoI  (5 mol %) None >99%

2 CoI  (2.5 mol %) None 82%

3 CoI (1 mol %) None 5%

4 CoIII (2.5 mol %) 77%

5 CoIII (2.5 mol %) 2 equiv. NaEt3BH 51%

6 CoIII (2.5 mol %) 2 equiv. MeMgBr <1%

Additivecatalyst (mol %)

O O

B
O

O

2 equiv. (Me3Si)CH2Li
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established with this CoI system and has been observed with the PNN pincer Co system used by 

Huang.11  

 Informed by the steric constraints of the catalytic system and given the difficulties 

associated with 1,2-selective additions to conjugated dienes,27 we turned to the hydroboration of 

isoprene, a conjugated diene bearing both a gem-disubstituted alkene and a mono-substituted 

alkene. Addition was 1,2-selective across the less-substituted olefinic bond, as previously observed 

in our hydrosilylation studies. Such examples of 1,2-hydroboration with cobalt or iron catalysts 

are uncommon.28 Although Ritter reports the 1,4-hydroboration of conjugated dienes with an iron 

iminopyridine catalyst,8 the analogous 1,2-addition has rarely been realized with iron or cobalt 

catalysts given the thermodynamic favorability of π-allyl intermediates.27 Indeed, with few 

exceptions, general reports of 1,2-addition with conjugated dienes are infrequent.  

 Extension of the catalytic protocol to alkenes bearing oxygen-containing functional groups 

proved to be similarly successful. Allyl ethers, esters, and epoxides were found to be compatible 

with the catalyst with no evidence of competing dehydrogenative borylation pathways. Addition 

across carbonyl moieties, as in the case of 5-hexen-2-one (entry 2a) and 2-allylcyclohexenone 

(entry 2f), was not detected under these conditions.  

 Encouraged by the tolerance of oxygen-containing functional groups, we turned our 

attention to the hydroboration of amines. The hydroboration of 9-vinylcarbazole with 

pinacolborane proceeded in 80% yield after an hour. Interestingly, N-allylaniline, a secondary 

amine, was also tolerated under the hydroboration protocol with no concomitant formation of the 

N-borylated amine. To the best of our knowledge, the catalytic compatibility of unprotected 

amines has only been reported for a single iron hydroboration catalyst,21 while the use of such 

substrates has not been previously realized with a cobalt system.  Interestingly, the corresponding  
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Table 4.2 Hydroboration substrate scope 

 

reaction with 4-aminostyrene, a primary amine, did not result in the formation of the target 

O

O

N

2e, (75%)a

1H NMR yields reported as average of 
duplicate runs.

Isolated yield in parentheses (avg of 
duplicate runs). 

a = heated at 70 oC and with 4 equiv of 
isoprene.

b = mixture of products

2b, 99%(87%)

2d, 90%(97%) 2f, 95%(65%)

2h, 97%(92%) 2i, 86%(77%)

2j, 80%(99%) 2k, 93%(92%)

2g, 96%(80%)

C6H6, RT, 1 h

 (2.5 mol%)

R
HBpin

R Bpin

O

O
O

N
H
N

O

O

2a, (88%)

2nb

2lb

H2N

2mb

2c, 90%(88%)

C6H6

(DIPPCCC)CoN2 (2.5 mol%)
2 equiv HBpin

R
N

R N Bpin

Bpin70 °C, 16h

3a, 79% 3b, 52% 3c, 67%

3e, 85%3d, 79%

N N

N

S

N

NF

F

Isolated yields 
of the 

ammonium salt 
are reported as 
an average of 
duplicate runs.

N N

NN
iPr iPr iPr

iPr
Co

N2
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organoboronate ester, suggesting that the observed chemoselectivity may be sterically-modulated. 

Seeking to further probe the chemoselectivity of the (DIPPCCC)CoN2 system, the hydroboration of 

4-pentenenitrile was attempted. In contrast to the exclusive alkene-selectivity observed in the 

hydrosilylation protocol for this catalyst,26 two organoboronate products corresponding to a single 

and a double addition of borane to the substrate, respectively, were detected by GC-MS. Intrigued 

by this reactivity, we sought to investigate the viability of nitrile reduction. Although such 

reductions can be accomplished stoichiometrically, established protocols typically require the use 

of LiAlH4 and NaBH4 reagents, which generate large quantities of inorganic side-products.29,30 The 

development of catalytic reduction strategies with hydrogen is also restricted, often requiring the 

use of poorly selective heterogeneous catalysts or the use of highly energetic conditions.31 Current 

strategies, developed by Beller,32 Milstein,33,34 Sabo-Etienne,35 and others promise to mitigate 

some of these challenges but reports are otherwise limited.31 Alternate strategies featuring the use 

of silanes or boranes for the reduction of nitriles have gained traction, however Recent reports by 

Szymcak36 and Hill37 have demonstrated homogeneous reductions of nitriles using boranes. 

However, such hydroborations with first-row transition metals remains rare. As such, a cobalt 

catalyst is an attractive option for the reduction of nitriles, particularly since current strategies are 

mostly limited to the use of noble metal catalysts.31  

 Initial investigations into the reduction of nitriles (Table 4.2) made use of simple aliphatic 

nitriles (entries 3a and 3b). Heating a mixture of 1, pinacolborane, and butyronitrile at 70 °C in 

benzene solvent afforded the desired bis(borylated) amine, as detected by GC-MS. Subsequent 

workup of the reaction mixture led to the isolation of the corresponding ammonium salt in good 

yields (entry 1). The reduction of acetonitrile was similarly successful, furnishing ethylammonium 

chloride in excellent yield following workup. To our delight, extension of the protocol to aromatic 
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nitriles (entries 3c-3e) also furnished the corresponding ammonium salts upon isolation, 

demonstrating a tolerance for thiophene moieties (entry 3d), as well as a fluorinated arene (entry 

3e).   

 Interested in obtaining further insights into hydroboration with the (DIPPCCC)CoI platform, 

we turned to labeling experiments with deuterated pinacolborane. Upon reacting styrene with an 

equivalent of deuterated pinacolborane, we observed deuterium incorporation into the targeted 

linear alkylboronate ester product at both the terminal and benzylic positions in approximately 

equal proportion (Figure 4.1). Moreover, deuterium resonances corresponding to incorporation at 

vinylic positions of the styrene starting material were also detected. These observations are 

consistent with the intermediacy of a cobalt hydride over the course of catalysis, as well as the 

negotiation of b-hydride elimination processes to regenerate alkene substrate. The absence of a 

deuterium resonance at 6.57 ppm, corresponding to the vinylic proton at the benzylic position of 

the styrene substrate suggests that 1,2 insertion is immediately followed by liberation of the 

targeted boronate ester while 2,1 insertion is reversible and not productive towards the formation 

of product, as only the linear alkylboronate ester is formed. This process is generalizable to non-

vinylarene substrates. Upon reacting 1-octene with deuterated pinacolborane in the presence of the 

cobalt catalyst, evidence of both 2,1- and 1,2-insertions is observed; deuterium is incorporated at 

both the a and b carbons of the alkylboronate ester product. Additionally, the exclusive generation 

of the linear alkylboronate ester product, rather than a combination of the branched and linear 

products, suggests liberation of product immediately follows 1,2-insertion, i.e. b-hydride 

elimination from this insertion mode is not competitive with elimination of the target 

organoboronate ester while 2,1-insertion is not a productive pathway to the formation of 

alkylboronate ester product.  
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                              Figure 4.1 2H NMR spectrum of the hydroboration of styrene  

 
 The susceptibility of 2,1-insertion products to b-hydride elimination and the general lack 

of turnover observed for this insertion mode may be a result of the substantial steric shielding of 

the generated secondary alkyl cobalt intermediates, which may preclude elimination with a boryl 

ligand to give the target compound. The inactivity of this cobalt system toward more substituted 

terminal alkenes is also consistent with this possibility, as greater substitution at the substrate 

would provide significant steric limitations even in the event of a 1,2-insertion. To test this 

hypothesis, the addition of deuterated pinacolborane to cyclohexene, a substrate that generates 

only trace amounts of product after 24 h of stirring, was investigated. Although incorporation into 

the olefinic bond was not observed after 6.5 h of stirring, minor deuterium incorporation at the 

adjacent aliphatic carbons suggests an alkene-isomerization-type event, where insertion into the 

olefin is followed by b-hydride elimination from a proximal carbon to generate a deuterium-

enriched cyclohexene. Importantly, the absence of the observed organoboronate product suggests 

the generated secondary alkyl intermediate is unreactive towards turnover, in stark contrast to 

C6H6, RT, 1 h

(DIPPCCC)CoN2 (2.5 mol%)
DBpin

(H/D)b

(H/D)a

B O

O

Dd

Dc

C6D6

Da Db

Dc Dd
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C6H6 

a b 
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primary alkyl cobalt intermediates which can proceed along the reaction sequence. Interestingly, 

allowing the reaction to stir over a longer period (7 d) does eventually result in deuterium 

incorporation at all sites of the cyclohexene substrate, including the olefinic carbons.  

 Intrigued by this result, we sought to study these putative alkene isomerization events in 

greater detail. Accordingly, the hydroboration of the internal alkene trans-4-octene, a substrate 

with sterically differentiable primary and secondary alkyl sites, with deuterated pinacolborane was 

investigated. Deuterium incorporation was observed along the length of the substrate, consistent 

with alkene isomerization. In contrast to cyclohexene, however, minor resonances corresponding 

to the linear alkylboronate ester product were also observed in the 2H NMR spectrum, indicating 

that, upon isomerization to the more sterically accessible termini of the octyl chain, i.e. upon 

formation of a primary alkyl cobalt intermediate, liberation of the alkylboronate ester is viable. 

Given the profile of the cyclohexene substrate, i.e. any insertion or hydrocobaltation step 

necessarily generates a sterically hindered cobalt-secondary alkyl intermediate, the opportunity to 

generate the analogous alkylboronate is rendered far less likely and the catalysis is effectively 

arrested at the insertion step.  

 In addition to providing a rationale for the observed regioselectivity, these data may also 

explain some of the chemoselectivity observed for this catalyst platform. The reduction of a ketone 

functionality, for example, may be disfavored given the steric profile of the insertion product. By 

extension, reducible functionalities such as esters and substituted amines should also be, and are, 

tolerated, particularly in the presence of a more sterically accessible terminal alkene that is 

amenable to reduction with borane. The competing reductions of the formyl group in 2,2-dimethyl-

4-pentenal (entry 2n) and the nitrile moiety in 4-pentenenitrile (entry 2m) are consistent, as these 

reducible functionalities are sterically accessible and would generate insertion products with a 
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comparable steric profile to mono-substituted terminal alkenes.  

 

 

Figure 4.2 Proposed catalytic mechanism for hydroboration with (DIPPCCC)CoN2 

 

 Informed by these insights and given the similarities to a hydrosilylation protocol 

previously reported for this system,26 a mechanism was proposed for the observed reactivity 

(Figure 4.2). Oxidative addition of borane (A) is proposed to commence the catalytic cycle and 
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generate a cobalt(III) hydrido boryl species. This is followed by coordination of an alkene or nitrile 

(not shown) substrate (B).  Subsequent migratory insertion of the hydride (D) into the alkene 

affords a cobalt alkyl intermediate. This process is reversible in the event of a 2,1-insertion (C) or 

if the substrate is sufficiently sterically encumbered, regenerating the alkene via b-hydride 

elimination as established by deuterium labelling experiments. In the event of an internal alkene 

substrate, alkene isomerization to a terminal position may generate product. Finally, reductive 

elimination with the boryl ligand furnishes the organoboronate ester product and regenerates the 

CoI catalyst.    

 In conclusion, we have developed a highly selective CoI system for the hydroboration of 

alkenes. This reaction sequence is selective for alkenes in the presence of a number of functional 

groups, furnishing the anti-Markovnikov product exclusively in all observed cases. Additionally, 

the protocol is amenable to the reduction of nitriles to their corresponding amines, a valuable 

chemical reaction that is relatively underexplored with earth-abundant first-row transition metal 

systems. Deuterium labeling studies have provided important insights into the observed reactivity, 

demonstrating that the cobalt catalyst can negotiate insertion processes, b-hydride elimination 

pathways, and alkene isomerization events. These processes underpin the regioselectivity, and 

perhaps the chemoselectivity, of the system, as the generation of primary alkyl intermediates over 

the course of catalysis is required to liberate the alkylboronate esters.  

 
4.3 Experimental section 

General Considerations. All manipulations of air- and moisture-sensitive compounds were 

carried out in the absence of water and dioxygen in an MBraun inert atmosphere drybox under a 

dinitrogen atmosphere except where specified otherwise. All glassware was oven dried for a 

minimum of 8 h and cooled in an evacuated antechamber prior to use in the drybox. Solvents for 
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sensitive manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, 

Nashua, NH) and stored over 4 Å molecular sieves purchased from Strem following drying via a 

literature procedure prior to use.38 Chloroform-d1,water- d2, dimethyl sulfoxide- d6,benzene-d6 

were purchased from Cambridge Isotope Labs and were degassed and stored over 4 Å molecular 

sieves prior to use. Celite® 545 (J. T. Baker) was used as received. NMR Spectra were recorded 

at room temperature on a Varian or Bruker spectrometer operating at 500 MHz or 400 MHz (1H 

NMR), 126 MHz or 101 MHz (13C NMR), and 119 MHz (2H NMR)  (U500, VXR500, UI500NB, 

CB500, U400) and referenced to the residual CHCl3, C6D5H, HDO, or C2D5HSO2 resonances (δ 

in parts per million, and J in Hz). Electrospray ionization mass spectrometry (ESI) was recorded 

on a Waters Q-TOF Ultima ESI instrument. Electron ionization mass spectrometry (EI) was 

recorded on a Waters 70-VSE EI instrument. Allyl phenyl ether were purchased from Alfa Aesar. 

4-pentenenitrile was purchased from TCI Chemicals, N-allylaniline was purchased from Alfa 

Aesar, and the remainder of the alkene substrates were purchased from Sigma-Aldrich. All liquids 

were dried over 4 Å molecular sieves prior to use.  

General Hydroboration Procedure for Alkenes. A 20 mL scintillation vial is charged with 

mesitylene or naphthalene standard (0.140 mmol), olefin (0.140 mmol), and pinacolborane (0.140 

mmol) inside a glove box. Using benzene-d6, the resulting mixture is then transferred to a vial 

containing the catalyst (DIPPCCC)CoN2 (1) (0.0025 g, 0.00349 mmol), which was prepared 

according to literature procedure.39 A final rinse and transfer with the deuterated benzene solvent, 

for a total solvent volume of ca. 2 mL, completes the setup and the reaction is stirred at room 

temperature for 1 h. Upon completion, an NMR aliquot of the reaction is taken and the yield is 

determined by integration relative to the resonances of the internal standard.  

Isolation Protocol for Alkylboronate Esters. A 20 mL scintillation vial is charged with 1 (10 
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mg, 0.0140 mmol), olefin (0.558 mmol), pinacolborane (0.558 mmol), and benzene (1.5 mL). The 

crude reaction was taken outside of the glovebox, concentrated under reduced pressure, and 

purified by flash chromatography with an ethyl acetate:hexanes solvent mixture (1:20) to afford 

the product. 

General Hydroboration Procedure for Nitriles. A 20 mL scintillation vial is charged with nitrile 

(0.558 mmol) and a separate vial is charged pinacolborane (1.116 mmol) inside a glove box. Using 

benzene solvent, the pinacolborane is transferred to a vial containing the catalyst (DIPPCCC)CoN2 

(1) 2 (0.010 g, 0.0140 mmol), followed by the nitrile. A final rinse and transfer of the resulting 

solution to a high-pressure glass vessel with the benzene solvent gives a total solvent volume of 

ca. 1.5 mL and completes the setup. The vessel is sealed, taken outside of the glovebox and heated 

at 70 C for 16 h. Upon completion, the crude reaction is transferred to a vial and the volatiles are 

removed using a rotary evaporator. Aqueous hydrochloric acid (0.95 mL of 37 wt%) is 

subsequently added to the vial, followed by 1 mL of deionized water, and the mixture is stirred for 

approximately 10 mins. The water is then removed using a rotary evaporator and the solid is 

filtered over Celite, using solvent to wash off impurities. The remaining solid is then flushed with 

methanol into a separate container and the filtrate is dried under reduced pressure to give a solid. 

Characterization Data.  

 

6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-

one (2a). The isolation protocol was followed to afford 2a as 

an oil (0.111 g, 0.491 mmol, 88%). 1H NMR (500 MHz, Chloroform-d) δ 2.40 (t, J = 7.5 Hz, 2H), 

2.11 (s, 3H), 1.62 – 1.52 (m, 3H), 1.46 – 1.33 (m, 2H), 1.23 (s, 12H), 0.81 – 0.74 (m, 2H). 13C 

	

O

B
O
O
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NMR (126 MHz, CDCl3) δ 209.4, 83.1, 43.8, 29.9, 26.6, 25.0, 23.8, 11.2 (broad). 11B NMR (161 

MHz, CDCl3) δ 33.9. 1H, 13C, and 11B NMR spectroscopy data match literature values.40 HRMS 

(ES), calc. for C12H23BO3Na (M + Na)+: 249.1638; found 225.1635.  

 

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (2b). The 

general procedure was followed using napthalene as the 

internal standard, 1-octene, pinacolborane, and benzene-d6 (2.5 mL) (1H NMR yield: 99%). The 

isolation protocol was followed to yield 2b as an oil (Isolated yield: 87%). 1H NMR (400 MHz, 

Benzene-d6) δ 1.71 – 1.59 (m, 2H), 1.47 – 1.34 (m, 2H), 1.36 – 1.19 (m, 8H), 1.08 (s, 12H), 1.03 

(t, J = 7.7 Hz, 2H), 0.94 – 0.83 (m, 3H). 13C NMR (101 MHz, Benzene) δ 86.2, 82.7, 32.9, 32.3, 

30.0, 29.8, 25.0, 24.7, 23.1, 14.4. 11B NMR (161 MHz, CDCl3) δ 34.1. 1H, 13C, and 11B NMR 

spectroscopy data in CDCl3 solvent match literature values.41 HRMS (EI), calc. for C13H26O2B (M 

– CH3)+: 225.2026; found 225.2036.  

 

 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane (2c). 

The general procedure was followed using naphthalene as the 

internal standard, styrene, pinacolborane, and benzene-d6  (1H 

NMR yield: 99%). The isolation protocol was followed to yield 2c as an oil (Isolated yield: 88%). 

1H NMR (500 MHz, Benzene-d6) δ 7.17 – 7.10 (m, 4H), 7.04 – 6.99 (m, 1H), 2.83 (t, J = 8.0 Hz, 

2H), 1.25 (t, J = 7.9 Hz, 2H), 0.97 (s, 12H). 13C NMR (126 MHz, Benzene-d6) δ 144.8, 128.5, 

128.5, 125.9, 83.0, 30.6, 25.0. 11B NMR (161 MHz, CDCl3) δ33.9. 1H, 13C, and 11B NMR 

spectroscopy data in CDCl3 solvent match literature values.42 HRMS (EI), calc. for C14H21O2B 

(M�)+: 232.1635; found 232.1637. 

	

B O
O
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2-(2-(cyclohex-3-en-1-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (2d). The general procedure was followed 

using mesitylene as the internal standard, 4-vinyl-1-

cyclohexene, pinacolborane, and benzene-d6 (1H NMR yield: 90%). The isolation protocol was 

followed to yield 2d as an oil (Isolated yield: 97%). 1H NMR (400 MHz, Benzene-d6) δ 5.82 – 

5.54 (m, 2H), 2.18 – 2.05 (m, 1H), 2.04-1.88 (m, 2H), 1.78 – 1.48 (m, 5H), 1.28 – 1.14 (m, 1H), 

1.06 (s, 12H), 1.03 – 0.96 (m, 2H). 13C NMR (101 MHz, Benzene-d6) δ 127.2, 127.0, 82.8, 36.1, 

32.1, 31.3, 29.1, 25.7, 25.0, 25.0. 11B NMR (161 MHz, CDCl3) δ 34.1. 1H, 13C, and 11B NMR 

spectroscopy data in CDCl3 solvent match literature values.43 HRMS (EI), calc. for C14H25O2B 

(M�)+: 236.1948; found 236.1955. 

 

4,4,5,5-tetramethyl-2-(3-methylbut-3-en-1-yl)-1,3,2-dioxa 

-borolane (2e). A modified isolation protocol was followed 

using 1 (10 mg, 0.0140 mmol), isoprene (2.232 mmol), 

pinacolborane (0.558 mmol), and benzene (2.5 mL). The reaction was conducted in a high-pressure 

vessel and sealed following addition of the borane and olefin mixture to the catalyst. The sealed 

vessel was then taken outside of the glove box and heated to 70 °C for 2 h. The crude reaction was 

concentrated under reduced pressure and purified by flash chromatography with hexanes to afford 

2e as a colorless oil (0.082 g, 0.419 mmol, 75%). 1H NMR (500 MHz, Chloroform-d) δ 4.69 – 

4.59 (m, 2H), 2.10 (t, J = 7.8 Hz, 2H), 1.71 (s, 3H), 1.23 (s, 12H), 0.91 (t, J = 7.9 Hz, 2H). 13C 

NMR (126 MHz, CDCl3) δ 147.9, 108.6, 83.1, 31.8, 24.9, 22.7, 9.7. 11B NMR (161 MHz, CDCl3) 

δ 34.0. 1H, 13C, and 11B NMR spectroscopy data match literature values.44 
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   2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl) 

cyclohexan-1-one (2f). The general procedure was followed 

using naphthalene as the internal standard, 2-

allylcyclohexanone (0.140 mmol), pinacolborane (0.140 mmol), and benzene-d6 (1H NMR yield: 

95%). The isolation protocol was followed to yield 2f as an oil (Isolated yield: 65%). 1H NMR 

(500 MHz, Benzene-d6) δ 2.21 (dtd, J = 13.4, 4.3, 1.5 Hz, 1H), 2.08 – 1.90 (m, 2H), 1.83 (dddd, J 

= 13.4, 12.4, 5.8, 1.2 Hz, 1H), 1.77 – 1.67 (m, 1H), 1.65 – 1.55 (m, 2H), 1.54 – 1.47 (m, 1H), 1.38 

– 1.32 (m, 1H), 1.31 – 1.18 (m, 2H), 1.08 (s, 12H), 1.04 – 0.94 (m, 4H). 13C NMR (126 MHz, 

Benzene-d6) δ 210.5, 82.8, 50.6, 42.0, 33.9, 32.6, 28.0, 25.1, 25.0, 22.3. 11B NMR (161 MHz, 

CDCl3) δ33.8. 1H and 13C NMR spectroscopy data in CDCl3 solvent match literature values.19 

HRMS (ES), calc. for C15H27BO3 (M + H)+: 267.2132; found 267.2130.  

 

 4,4,5,5-tetramethyl-2-(3-phenoxypropyl)-1,3,2-dioxaboro-  

lane (2g). The general procedure was followed using 

naphthalene as the internal standard, allyl phenyl ether, 

pinacolborane, and benzene-d6 (1H NMR yield: 96%). The isolation protocol was followed to yield 

2g as an oil (Isolated yield: 80%). 1H NMR (500 MHz, Benzene-d6) δ 7.15 – 7.10 (m, 2H), 6.89 

(d, J = 8.1 Hz, 2H), 6.84 (t, J = 7.3 Hz, 1H), 3.75 (t, J = 6.7 Hz, 2H), 1.98 (p, J = 7.1 Hz, 2H), 1.10 

– 0.97 (m, 14H). 13C NMR (126 MHz, Benzene-d6) δ 159.9, 129.7, 120.6, 115.0, 83.0, 69.6, 25.0, 

24.4. 11B NMR (161 MHz, CDCl3) δ34.0. 1H, 13C, and 11B NMR spectroscopy data in CDCl3 

solvent match literature values.45 HRMS (ES), calc. for C15H23BO3Na (M + Na)+: 285.1638; found 

285.1648. 
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methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)pentanoate (2h). The general procedure was followed 

using naphthalene as the internal standard, methyl 4-

pentenoate, pinacolborane, and benzene-d6 (1H NMR yield: 97%). The isolation protocol was 

followed to yield 2h as an oil (Isolated yield: 92%). 1H NMR (400 MHz, Benzene-d6) δ 3.31 (s, 

3H), 2.13 (p, J = 7.4 Hz, 2H), 1.72 – 1.62 (m, 2H), 1.52 (p, J = 7.6 Hz, 2H), 1.04 (s, 12H), 0.90 (t, 

J = 7.6 Hz, 2H). 13C NMR (101 MHz, Benzene-d6) δ 173.4, 128.1, 86.2, 82.8, 50.9, 34.1, 27.9, 

25.0, 24.2. 11B NMR (161 MHz, CDCl3) δ33.8. 1H and 13C NMR spectroscopy data in CDCl3 

solvent match literature values.46 HRMS (ES), calc. for C12H23BO4Na (M + Na)+: 265.1587; found 

265.1582.  

 

4,4,5,5-tetramethyl-2-(4-(oxiran-2-yl)butyl)-1,3,2-dioxa-

borolane (2i). The general procedure was followed using 

naphthalene as the internal standard, 1,2-epoxy-5-hexene, pinacolborane, and benzene-d6 (1H 

NMR yield: 86%). The isolation protocol was followed to yield 2i as an oil (Isolated yield: 77%). 

1H NMR (500 MHz, Benzene-d6) δ 2.66 – 2.50 (m, 1H), 2.33 (t, J = 4.6 Hz, 1H), 2.08 (dd, J = 5.3, 

2.6 Hz, 1H), 1.60 – 1.49 (m, 2H), 1.47 – 1.23 (m, 4H), 1.06 (s, 12H), 0.93 (t, J = 7.7 Hz, 2H). 13C 

NMR (126 MHz, Benzene-d6) δ 82.8, 51.8, 46.4, 32.8, 29.0, 25.0, 24.4. 11B NMR (161 MHz, 

CDCl3) δ34.0. 1H, 13C, and 11B NMR spectroscopy data in CDCl3 solvent match literature values.47 

HRMS (ES), calc. for C12H23BO3Na (M + Na)+: 249.1638; found 249.1649. 
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9-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-

9H-carbazole (2j). The general procedure was followed using 

mesitylene as the internal standard, 9-vinylcarbazole, 

pinacolborane, and benzene-d6 (1H NMR yield: 80%). The 

compound was also isolated in a modified procedure using 1 (10 mg, 0.0140 mmol), 9-

vinylcarbazole (0.558 mmol), pinacolborane (0.558 mmol), and benzene (2 mL) whereby the crude 

reaction was taken outside of the glovebox after 3 h of stirring, concentrated under reduced 

pressure, and purified by flash chromatography with an ethyl acetate:hexanes solvent mixture 

(1:20)  to afford 2j as a white solid (0.177 g, 0.552 mmol, 99%).  1H NMR (499 MHz, Chloroform-

d) δ 8.15 (d, J = 7.8 Hz, 2H), 7.58 – 7.47 (m, 4H), 7.27 (t, J = 7.2 Hz, 2H), 4.57 – 4.45 (m, 2H), 

1.26 (s, 12H).13C NMR (126 MHz, CDCl3) δ 140.1, 125.5, 123.0, 120.4, 118.7, 109.1, 83.6, 38.8, 

24.9, 12.1. 11B NMR (161 MHz, CDCl3) δ33.4. 1H and 13CNMR spectroscopy data in CDCl3 

solvent match literature values.19 HRMS (ES), calc. for C20H25NO2B (M + H)+: 322.1978; found 

322.1971. 

 

4,4,5,5-tetramethyl-2-(4-(oxiran-2-yl)butyl)-1,3,2-dioxa-

borolane (2k). The general procedure was followed using 

mesitylene as the internal standard, N-allylaniline, 

pinacolborane, and benzene-d6 (1H NMR yield: 93%). The isolation protocol was followed to yield 

2k as a viscous oil (Isolated yield: 92%). 1H NMR (400 MHz, Benzene-d6) δ 7.22 – 7.15 (m, 2H), 

6.75 (t, J = 7.3 Hz, 1H), 6.50 (d, J = 7.6 Hz, 2H), 3.35 (s, 1H), 3.00 – 2.85 (m, 2H), 1.65 (p, J = 

7.3 Hz, 2H), 1.04 (s, 12H), 0.89 (t, J = 7.5 Hz, 2H). 13C NMR (101 MHz, Benzene-d6) δ 149.2, 

129.5, 117.2, 113.0, 83.0, 46.2, 25.0, 25.0, 24.3.  
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1H NMR (500 MHz, Chloroform-d) δ 7.21 – 7.13 (m, 2H), 6.68 (tt, J = 7.3, 1.2 Hz, 1H), 6.64 – 

6.59 (m, 2H), 3.78 (s, 2H), 3.11 (t, J = 7.1 Hz, 2H), 1.69 – 1.83 (m, 2H), 0.89 (t, J = 7.6 Hz, 2H). 

13C NMR (126 MHz, CDCl3) δ 148.7, 129.3, 117.0, 112.7, 83.2, 46.2, 25.0, 24.0. 11B NMR (161 

MHz, CDCl3) δ 33.9. HRMS (ES), calc. for C15H25BNO2 (M + H)+: 262.1978; found 262.1979. 

 

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (3a). The 

general procedure for nitriles was followed with ethyl acetate 

(15 mL) used for washes (isolated yield: 79%). 1H NMR (400 MHz, Chloroform-d) δ 8.09 (s, 3H), 

2.97 (t, J = 7.5 Hz, 2H), 1.73 (t, J = 7.6 Hz, 2H), 1.39 (q, J = 7.5 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 40.1, 29.6, 20.0, 13.6. 1H and 13C NMR spectroscopy data match 

literature values.48  

 

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (3b). The 

general procedure for nitriles was followed with ethyl acetate 

(5 mL) and DCM (10 mL) used for washes (isolated yield: 52%). 1H NMR (500 MHz, Deuterium 

Oxide) δ 2.87 (q, J = 7.0 Hz, 2H), 1.10 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, D2O) δ 35.1, 12.0. 

1H and 13C NMR spectroscopy data match literature values.49 

 

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (3c). The 

general procedure for nitriles was followed with ethyl acetate 

(18 mL) and DCM (3 mL) used for washes (isolated yield: 67%). 1H NMR (400 MHz, D2O) δ 

7.44, 4.15. 13C NMR (101 MHz, D2O) δ 132.5, 129.1, 128.7, 43.0. 1H and 13C NMR spectroscopy 

data match literature values.36 

	 NH3+Cl-

	

NH3+Cl-

	

NH3+Cl-
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4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (3d). The 

general procedure for nitriles was followed with ethyl acetate 

(18 mL) and DCM (12 mL) used for washes (isolated yield: 79%). 1H NMR (400 MHz, DMSO-

d6) δ 8.64 (s, 3H), 7.68 – 7.62 (m, 1H), 7.57 (dd, J = 4.9, 2.9 Hz, 1H), 7.38 – 7.23 (m, 1H), 3.99 

(s, 2H). 13C NMR (101 MHz, DMSO) δ 134.8, 128.2, 126.9, 125.1, 37.2. 1H NMR spectroscopy 

data match literature values.50 

 

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (3e). The 

general procedure for nitriles was followed with ethyl acetate 

(8 mL) and DCM (3 mL) used for washes (isolated yield: 85%). 1H NMR (500 MHz, Deuterium 

Oxide) δ 7.11 – 7.04 (m, 2H), 7.06 – 6.98 (m, 1H), 4.20 (s, 2H). 13C NMR (126 MHz, Deuterium 

Oxide) δ 164.1 (d, J = 13.3 Hz), 162.1 (d, J = 12.9 Hz), 136.2 (t, J = 9.6 Hz), 112.1 (q), 104.7 (t, 

J = 25.5 Hz), 42.4. HRMS (EI), calc. for C7H8NF2 (M)+: 144.0625; found 144.0624.  

 

General Protocol for Deuterium Labelling Experiments. A 20 mL scintillation vial is charged 

with olefin (0.140 mmol) and deuterated pinacolborane (0.140 mmol), which was prepared 

according to literature procedure,9 inside a glove box. Using benzene solvent, the resulting mixture 

is then transferred to a vial containing the catalyst (DIPPCCC)CoN2 (1) (0.0025 g, 0.00349 mmol), 

which was prepared according to literature procedure. A final rinse and transfer with the benzene 

solvent, for a total solvent volume of ca. 2 mL, completes the setup and the reaction is stirred. 

Upon completion, an NMR aliquot of the reaction is taken. 
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Figure 4.3 Hydroboration of styrene with DBpin 

 

Figure 4.4 Hydroboration of 1-octene with DBpin 
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Figure 4.5 Deuterium labeling of cyclohexene with DBpin at 26 h 

 

Figure 4.6 Deuterium labeling of cyclohexene with DBpin at 7 days 
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Figure 4.7 Hydroboration of trans-4-octene with DBpin 
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Chapter 5 
 

Reactivity of (DIPPCCC)CoN2 towards dichalcogenides and other potential two-electron 

oxidants  

 
5.1 Introduction 

 The use of highly electron-donating ligands with cobalt has been a successful approach to 

“ennobling” the base metal. Recent examples of cobalt-mediated oxidative addition or reductive 

elimination reactions, observed with substrates such as silanes,1,2 dihydrogen,3–5 and even 

arenes,5,6 underlie the tenability of two-electron redox events with base metals in the proper 

electron-rich ligand environment. Interestingly, although these cobalt-mediated processes are 

likely to proceed along two-electron pathways reminiscent of second- and third-row transition 

metal compounds, they can nevertheless provide orthogonal selectivities or reactivity to precious 

metal congeners.7,8 Accordingly, a study of the reactivity of electron-rich cobalt complexes 

towards various potential oxidants can provide meaningful insights into what factors impact 

observed selectivities and/or what factors dictate whether two-electron or single-electron redox 

events will be operative over the course of a reaction. 

 Using the electron-rich (DIPPCCC) ligand platform (DIPPCCC = bis(diisopropylphenyl-

benzimidazol-2-ylidene)phenyl), our laboratory has also investigated the ability of a strong-field 

ligand environment to support two-electron processes at a cobalt metal center. Using a CoI 

compound, (DIPPCCC)CoN2, we reported a highly chemoselective hydrosilylation process with 

evidence of the oxidative addition of silane as the initial catalytic step.9 This process’ selectivity 

is dictated in many cases by the steric profile of the substrates, although the unique ability of the 

base metal to tolerate functionalities such as hydroxyl groups, amino groups, and nitriles, suggests 

electronic factors likely play an important role as well. Similarly, catalytic hydroboration with 
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(DIPPCCC)CoN2 has highlighted the prominent role that sterics play in determining selectivity, in 

addition to establishing the viability of insertion, alkene isomerization, and b-hydride elimination 

processes at the metal under catalytic conditions.  

 Seeking to further elaborate on the reactivity of (DIPPCCC)CoN2, we sought to explore the 

reactivity of the complex towards potential oxidants, such as diphenyl dichalcogenides and methyl 

iodide. These oxidants are regularly reacted with transition metal complexes and may, in theory, 

oxidize the metal by either a single electron or two electrons, providing a useful means with which 

to better understand the redox reactivity of the cobalt center.  

 
5.2 The reactivity of (DIPPCCC)CoN2 towards diphenyl dichalcogenides 

 To commence our studies, we investigated the reaction of (DIPPCCC)CoN2 with diphenyl 

disulfide. Treatment of (DIPPCCC)CoN2 (1) with diphenyl disulfide in the presence of pyridine 

resulted in the formation of a brown Co(III) bis(thiophenolate) complex, (DIPPCCC)Co(SPh)2(py), 

2, in excellent yields (81%) (Scheme 5.1).  

 

 

Scheme 5.1 Reaction of (DIPPCCC)CoN2 with diphenyl dichalcogenides 

 
 The 1H NMR spectrum of 2 revealed a C2-symmetric diamagnetic compound consistent 

with cleavage of the sulfur-sulfur bond of the oxidant. 1H NMR resonances corresponding to the 
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methyl protons of the iPr moiety appear at 0.85 and 1.23 

ppm and are slightly shifted from those of starting 

material, 0.02 ppm and 0.03 ppm respectively. Similarly, 

the methine protons of the iPr moieties are shifted from 

those of the CoI, appearing at 3.73 ppm vs. 2.71 ppm for 

1, (DIPPCCC)CoN2. Such a downfield shift for the 

methine proton septet has been regularly observed with 

a higher oxidation state at the metal for this platform. 

This formulation was corroborated by X-ray diffraction studies; characterization of the crystalline 

product, obtained by slow evaporation of a concentrated solution of 2 from benzene, indicates the 

presence of two thiophenolate ligands and a pyridine coordinated to the metal center in an 

octahedral geometry, establishing a formal +3 oxidation state at the metal (Figure 5.1).  

Reactions of 1 with diphenyl diselenide and diphenyl ditelluride produced similar NMR 

spectra and verify the successful formation of the selenide (3) and telluride (4) analogues to the 

bis(thiophenolate) complex. 1H NMR resonances of 3 corresponding to the methyl protons of the 

iPr moiety appear at 0.85 and 1.23 ppm and are again shifted from those of starting material. 

Similarly, the methine protons of the iPr moieties are shifted from those of the CoI, appearing at 

3.76 ppm vs. 2.71 ppm. Similar shifts are observed in the 1H NMR resonances of 4. Methyl protons 

of the iPr moiety appear at 0.89 and 1.21 ppm, while a resonance at 3.78 ppm is attributed to the 

methine protons of the iPr group. 

Complex 2 is a rare example of a cobalt(III) bis(thiophenolate) compound. A search for 

similar complexes in the Cambridge Structural Database at the time of this isolation yielded only 

7 other examples of crystallographically characterized mononuclear Co(III) centers featuring two 

Figure 5.1. Crystal Structure of 2 
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thiophenolate moieties.10  

 Mechanistic investigations suggest radical events may be operative in the cleavage of the 

dichalcogenide bonds. Treatment of 1 with 0.5 equivalents of Ph2S2 resulted in the formation of a 

complex mixture of diamagnetic products, which includes the bis(thiophenolate) species 2, in 

addition to paramagnetic species whose 1H NMR resonances are similar to those reported for the 

CoII complex (DIPPCCC)CoClpy. Similarly, treatment of 1 with 0.5 equivalent of Ph2S2 and 0.5 

equivalents of Ph2Se2 resulted in the formation of three products by 1H NMR spectroscopy, 

assigned to the bis(sulfide), bis(selenide), and a presumed mixed species bearing both 

thiophenolate and selenophenolate ligands (Scheme 5.2).  

 

 
Scheme 5.2 Reaction of (DIPPCCC)CoN2 with 0.5 equivalents of Ph2S2 and Ph2Se2 

 
5.3 Synthesis of (DIPPCCC)Co(Me)I  

In an attempt to investigate the potential of 1 to undergo oxidative addition, MeI, a substrate 

that can either undergo SN2 type reactivity or homolytically cleave in the presence of a nucleophilic 

metal species, was reacted with a thawing solution of 1 in C6D6 (Scheme 5.3). The solution took 

on a yellow-green color and was immediately characterized by 1H NMR spectroscopy (Figure 5.2).  

A new upfield singlet in the 1H NMR integrating to three protons was observed at -0.26 ppm and 

was assigned to the newly appended methyl moiety. The appearance of four doublets and two 

septets corresponding to the methyl and methine protons of the iPr moieties of the ligand also 

confirmed the presence of a dissymmetric environment about the metal center, suggesting the 
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compound was a Co(III) iodomethyl species, (DIPPCCC)Co(Me)I (5), rather than a C2-symmetric 

CoIII bis(iodide) or bis(methyl) compound. Thermal instability of product 5 has precluded further 

characterization.  

The transient nature of 5 is not unusual given the significant trans effect of the aryl 

backbone carbon of the pincer. The presence of strongly-donating alkyl or aryl ligands is often 

difficult to detect with the (DIPPCCC) ligand. Indeed, transmetalation attempts with 

(DIPPCCC)CoCl2py and MesMgBr have resulted in the formation of bimesitylene and 

(DIPPCCC)CoN2 (1) products, rather than targeted (DIPPCCC)Co(Mes)Clpy.  

 

 

Scheme 5.3 Reaction of (DIPPCCC)CoN2 with MeI  

 

Figure 5.2 1H NMR spectrum of Co(III) iodomethyl species  
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limited number of homogeneous dehydrocoupling catalysts featuring first-row transition 

metals12,13, we sought to explore the reactivity of 1 towards ammonia-borane. We reasoned that 

the absence of a coordinating atom capable of directly assisting in the cleavage of the amine-borane 

bonds may result in an entirely metal-mediated process to generate a CoIII product.   

Addition of NH3BH3 to a solution of 1 in benzene and subsequent stirring at room 

temperature overnight afforded a light brown-yellow reaction mixture. Subsequent workup of the 

reaction afforded a light yellow solid 6 (Scheme 5.4). 

 The presence of a cobalt hydride and an η2-BH4 was established by 1H NMR and infrared 

spectroscopies (Figure 5.3). Upfield singlets at -14.52, -8.56, and -0.11 ppm, integrating in a 1:1:2 

ratio, were assigned to a cobalt-hydride, a bridging hydride, and the two hydrides exclusive to the 

BH4 moiety. Additionally, the presence of a dissymmetric environment, reflected in the presence 

of additional doublets and septets corresponding to the iPr moieties of the ligand, lend credence to 

the formation of  (DIPPCCC)Co(η2-BH4)(H). 

 Similarly, the presence of B–H stretches at 1879 cm-1, 2431 cm-1, and 2452 cm-1 by infrared 

spectroscopy establish an η2 coordination mode for the BH4 ligand, comparing favorably to values 

observed for a cobalt tetrahydroborate complex reported by Peters11, as well for other transition 

metal tetrahydroborate complexes.14 In addition to the significance of this chemistry to hydrogen 

storage and the formation of inorganic polymers,15 such molecules may provide insight into the 

dehydrogenation of ammonia-borane.16,17  
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Scheme 5.4 Reaction of (DIPPCCC)CoN2 with NH3BH3  

 

Figure 5.3 1H NMR spectrum of Co(III) tetrahydridoborate species  

 
5.5 Conclusions 

 In conclusion, the reactivity of the (DIPPCCC)CoN2 species towards a variety of oxidants 

may largely be dictated by the bond strengths of the particular substrate. The cleavage of bonds 

with a higher bond dissociation energy, such as Si–H and B–H bonds for example,18 appears to 

proceed along two-electron pathways, as observed in the case of ammonia borane, diphenylsilane,9 

and pinacolborane (see Chapters 3 and 4). In contrast, the lower BDE of the E–E bond in 

dichalcogenide substrates is coincident with apparent homolytic cleavage pathways.18 Finally, the 

apparent oxidative addition of the weak C–I bond in methyl iodide suggests that the accessibility 

of alternative pathways (perhaps SN2 substitution for a sterically unencumbered alkyl halide)19 

may eclipse simple BDE metrics of the targeted bond in determining operant mechanisms, i.e. one-

electron or two-electron pathways, for certain substrates. These results, while requiring further 
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elaboration, may provide a framework to rationalize reactivity observed with the (DIPPCCC) system 

and should inform future experiments with this platform. 

 
5.6 Experimental section 

General Considerations. All manipulations of air- and moisture-sensitive compounds were 

carried out in the absence of water and dioxygen in an MBraun inert atmosphere drybox under a 

dinitrogen atmosphere except where specified otherwise. All glassware was oven dried for a 

minimum of 8 h and cooled in an evacuated antechamber prior to use in the drybox. Solvents for 

sensitive manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, 

Nashua, NH) and stored over 4 Å molecular sieves purchased from Strem following drying via a 

literature procedure prior to use.1
 
Benzene-d6 were purchased from Cambridge Isotope Labs and 

was degassed and stored over 4 Å molecular sieves prior to use. Celite® 545 (J. T. Baker) was 

used as received. NMR Spectra were recorded at room temperature on a Varian or Bruker 

spectrometer operating at 500 MHz or 400 MHz (1H NMR), 126 MHz or 101 MHz (13C NMR), 

and 119 MHz (2H NMR)  (U500, VXR500, UI500NB, CB500, U400) and referenced to the 

residual C6D5H resonances (δ in parts per million, and J in Hz). (DIPPCCC)CoN2 was prepared 

according to literature procedure.20 Diphenyl disulfide, diphenyl diselenide, and diphenyl 

ditelluride were obtained from Sigma-Aldrich and used as received. All liquids were dried over 4 

Å molecular sieves prior to use.  

 

Preparation of (DIPPCCC)Co(SPh)2(py) (2). A solution of (DIPPCCC)Co(N2) (1) (0.035 g,  0.0488 

mmol) in approximately 1 mL of THF was prepared and cooled to -35 °C. To this mixture was 

added a similarly chilled solution of diphenyl disulfide (0.0107 g, 0.0490 mmol) in THF (1 mL). 
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Additional solvent (1 mL) was used to rinse and complete the transfer, a drop of pyridine was 

added, and the reaction mixture was stirred overnight at room temperature. Upon completion of 

the stirring period, volatiles were removed in vacuo to yield the pure brown solid (0.039 g, 0.0395 

mmol, 81%). Crystals suitable for X-ray diffraction were grown by slow evaporation from 

benzene. 1H NMR (500 MHz, Benzene-d6) δ 8.74 (d, J = 5.2 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 

7.12-7.03 (m), 7.01 (d, J = 7.8 Hz, 4H), 6.91 (d, J = 8.0 Hz, 6H), 6.85 (dd, J = 14.8, 7.4 Hz, 6H), 

6.72 (d, J = 8.0 Hz, 1H), 6.61 (dd, J = 18.6, 7.9 Hz, 6H), 6.47 (t, J = 7.4 Hz, 4H), 6.16 – 6.06 (m, 

2H), 3.82 – 3.65 (m, 4H), 1.23 (d, J = 6.6 Hz, 12H), 0.85 (d, J = 6.7 Hz, 12H). 13C NMR (126 

MHz, Benzene) δ 154.21, 148.38, 145.88, 144.56, 139.62, 137.53, 132.14, 130.05, 128.36, 128.25, 

128.12, 128.06, 127.92, 127.87, 126.68, 124.39, 123.94, 123.28, 121.76, 112.60, 111.21, 108.84, 

28.25, 26.07, 23.48. 

 
Preparation of (DIPPCCC)Co(SePh)2(py) (3). Inside a glovebox, a solution of 1 (0.030 g,  0.0419 

mmol) in approximately 1 mL of THF was prepared and cooled to -35 °C. To this mixture was 

added a similarly chilled solution of diphenyl diselenide (0.0131 g, 0.0420 mmol) in THF (1 mL). 

Additional solvent (1 mL) was used to rinse and complete the transfer, a drop of pyridine was 

added, and the reaction mixture was stirred overnight at room temperature. Upon completion of 

the stirring period, volatiles were removed under reduced pressure to yield the green-brown solid 

(0.0392 g, 0.0363 mmol, 87%). 1H NMR (500 MHz, Benzene-d6) δ 8.63 – 8.55 (m, 2H), 7.72 (d, 

J = 8.1 Hz, 2H), 7.51 (dd, J = 7.2, 2.2 Hz, 4H), 7.11 – 7.00 (m), 6.93-6.83 (m, 14H), 6.71 (d, J = 

7.5 Hz, 4H), 6.67 (t, J = 7.8 Hz, 2H), 6.57 (d, J = 8.0 Hz, 2H), 6.45 (t, J = 7.5 Hz, 3H), 6.02 (t, J 

= 6.7 Hz, 1H), 3.76 (sept, J = 6.7 Hz, 4H), 1.22 (d, J = 6.6 Hz, 12H), 0.85 (d, J = 6.8 Hz, 12H). 

The product was not sufficiently pure to definitively assign the product compound’s resonances in 

the 13C NMR spectrum. Accordingly, the following values are tentatively assigned. 13C NMR (126 
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MHz, C6D6) δ 206.3, 164.2, 155.3, 148.5, 145.6, 139.9, 138.5, 134.7, 134.1, 132.6, 131.7, 131.4, 

130.1, 129.4, 127.9, 126.6, 124.7, 124.5, 123.0, 121.8, 121.5, 121.5, 28.2, 26.2, 23.6. 

 

Preparation of (DIPPCCC)Co(TePh)2(py) (4). Inside a glovebox, a solution of 1 (0.005 g, 0.00698 

mmol) in approximately 1 mL of THF was prepared at room temperature. To this mixture was 

added a solution of diphenyl ditelluride (0.0029 g, 0.00696 mmol) in THF (1 mL). Additional 

solvent (1 mL) was used to rinse and complete the transfer, a drop of pyridine was added, and the 

reaction mixture was stirred overnight at room temperature. Upon completion of the stirring 

period, volatiles were removed under reduced pressure to yield the green-brown solid (0.0068 g, 

0.00600 mmol, 86%). 1H NMR (499 MHz, Benzene-d6) δ 8.61 (d, J = 5.4 Hz, 2H), 7.64 (d, J = 

8.4 Hz, 2H), 7.11 – 6.77 (m), 6.77– 6.61  (m), 6.55 (t, J = 8.9 Hz, 4H), 6.44 (t, J = 7.5 Hz, 6H), 

5.86 (t, J = 6.8 Hz, 1H), 3.78 (sept, J = 6.8 Hz, 4H), 1.21 (d, J = 6.6 Hz, 12H), 0.89 (d, J = 6.7 Hz, 

12H). The product was not sufficiently pure to definitively assign the product compound’s 

resonances in the 13C NMR spectrum.  

 

Reaction of (DIPPCCC)Co(N2) with 0.5 equiv. of Ph2S2 and 0.5 equiv. of Ph2Se2. Inside a 

glovebox, a solution of 1 (0.0248 g, 0.0346 mmol) in approximately 1 mL of THF was prepared 

in a 20 mL scintillation vial and chilled to -35 °C. To this solution, was added a solution of diphenyl 

disulfide (0.0038 g, 0.0174 mmol) and diphenyl diselenide (0.0054 g, 0.0173 mmol) in THF (2 

mL). Additional solvent (1 mL) was used to rinse and complete the transfer, a drop of pyridine 

was added, and the reaction mixture was stirred overnight at room temperature. Upon completion 

of the stirring period, volatiles were removed under reduced pressure to yield a brown residue. An 
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NMR of this compounds revealed both 2 and 3, in addition to a presumed mixed species assigned 

as the (DIPPCCC)Co(SPh)(SePh)(py). 

 

Reaction of (DIPPCCC)Co(N2) with 0.5 equiv. of Ph2S2. Inside a glovebox, a solution of 1 (0.040 

g, 0.0558 mmol) in approximately 2 mL of THF was prepared in a 20 mL scintillation vial and 

chilled to -35 °C. To this solution, was added a solution of diphenyl disulfide (0.0061 g, 0.0279 

mmol) in THF (1 mL). Additional solvent (1 mL) was used to rinse and complete the transfer, a 

drop of pyridine was added, and the reaction mixture was stirred overnight at room temperature. 

Upon completion of the stirring period, volatiles were removed under reduced pressure to yield a 

brown residue. An NMR of this compounds revealed 2, as well as a complex mixture of 

diamagnetic and paramagnetic compounds. 

	

Preparation of (DIPPCCC)Co(Me)I (5). Inside a glovebox, a solution of 1 (0.005 g, 0.00698 

mmol) in approximately 0.5 mL of C6D6 was prepared and frozen -35 °C. To this thawing solution 

was added a drop of methyl iodide and the resulting mixture quickly turned a yellow-green color, 

whose 1H NMR spectrum was rapidly recorded. 1H NMR (500 MHz, Benzene-d6) δ 7.65 (d, J = 

8.4 Hz, 2H), 7.48 (d, J = 7.9 Hz, 2H), 7.37 – 7.20 (m), 7.13 – 6.97 (m, 3H), 6.93 – 6.81 (m, 3H), 

6.68 (d, J = 8.9 Hz, 2H), 3.98 – 3.75 (m, 2H), 2.62 – 2.33 (m, 2H), 1.53 (d, J = 6.4 Hz), 1.08 (d, J 

= 6.6 Hz, 6H), 0.91 (d, J = 6.8 Hz, 6H), 0.74 (d, J = 6.8 Hz, 6H), -0.25 (s, 3H). 

 

Preparation of (DIPPCCC)Co(η2-BH4)(H) (6). A   20   mL   scintillation   vial   was   charged   

with   NH3BH3 (0.0018 g, 0.0583 mmol). To this vial was added a solution of 1 (0.00205 g, 0.0286 

mmol) in ca. 1 mL of THF. Additional solvent (1 mL) was used to rinse and complete the transfer, 

and the reaction mixture was stirred overnight at room temperature. Upon completion of the 
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stirring period, volatiles were removed under reduced pressure and the residue was taken up in 

benzene, filtered over Celite, and dried under reduced pressure to afford a light brown-yellow 

solid. (0.020 g, 0.0284 mmol, 99%). 1H NMR (500 MHz, Benzene-d6) δ 7.74 (d, J = 8.0 Hz, 2H), 

7.58 (d, J = 7.7 Hz, 2H), 7.39 (t, J = 7.7 Hz, 1H), 7.13 (d, J = 7.7 Hz, 2H), 7.11 – 7.08 (m, 2H), 

7.05 (dd, J = 7.6, 1.8 Hz, 2H), 7.01 (t, J = 7.4 Hz, 2H), 6.81 (t, J = 7.6 Hz, 2H), 6.54 (d, J = 8.0 

Hz, 2H), 2.91 – 2.84 (m, 2H), 2.84 – 2.78 (m, 2H), 1.35 (d, J = 6.5 Hz, 6H), 1.28 (d, J = 6.8 Hz, 

6H), 0.81 (d, J = 6.7 Hz, 6H), 0.65 (d, J = 6.9 Hz, 6H), 0.11 (s, 2H), -8.57 (s, 1H), -14.52 (s, 1H). 

IR:  1879 cm-1, 2431 cm-1, 2452 cm-1.  

 
5.7 References 
 
1. Rozenel, S. S., Padilla, R. & Arnold, J. Chemistry of reduced monomeric and dimeric cobalt 

complexes supported by a PNP pincer ligand. Inorg. Chem. 52, 11544–11550 (2013). 

2. Scheuermann, M. L., Semproni, S. P., Pappas, I. & Chirik, P. J. Carbon dioxide 
hydrosilylation promoted by cobalt pincer complexes. Inorg. Chem. 53, 9463–9465 (2014). 

3. Ingleson, M., Fan, H., Pink, M., Tomaszewski, J. & Caulton, K. G. Three-Coordinate Co(I) 
Provides Access to Unsaturated Dihydrido-Co(III) and Seven-Coordinate Co(V). J. Am. 
Chem. Soc. 128, 1804–1805 (2006). 

4. Rozenel, S. S., Padilla, R., Camp, C. & Arnold, J. Unusual activation of H2 by reduced 
cobalt complexes supported by a PNP pincer ligand. Chem. Commun. (Camb). 50, 2612–
2614 (2014). 

5. Semproni, S. P., Hojilla Atienza, C. C. & Chirik, P. J. Oxidative addition and C–H activation 
chemistry with a PNP pincer-ligated cobalt complex. Chem. Sci. 5, 1956–1960 (2014). 

6. Obligacion, J. V, Semproni, S. P. & Chirik, P. J. Cobalt-catalyzed C-H borylation. J. Am. 
Chem. Soc. 136, 4133–4136 (2014). 

7. Obligacion, J. V., Semproni, S. P., Pappas, I. & Chirik, P. J. Cobalt-Catalyzed C(sp 2 )-H 
Borylation: Mechanistic Insights Inspire Catalyst Design. J. Am. Chem. Soc. 138, 10645–
10653 (2016). 

8. Obligacion, J. V., Bezdek, M. J. & Chirik, P. J. C(sp 2 )–H Borylation of Fluorinated Arenes 
Using an Air-Stable Cobalt Precatalyst: Electronically Enhanced Site Selectivity Enables 
Synthetic Opportunities. J. Am. Chem. Soc. 139, 2825–2832 (2017). 

9. Ibrahim, A. D., Entsminger, S. W., Zhu, L. & Fout, A. R. A Highly Chemoselective Cobalt 



	 115 

Catalyst for the Hydrosilylation of Alkenes using Tertiary Silanes and Hydrosiloxanes. ACS 
Catal. 6, 3589–3593 (2016). 

10. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures 
and rising. Acta Crystallogr. Sect. B Struct. Sci. 58, 380–388 (2002). 

11. Lin, T. & Peters, J. C. Boryl-Mediated Reversible H 2 Activation at Cobalt : Catalytic 
Hydrogenation, Dehydrogenation, and Transfer Hydrogenation. 135, 15310–15313 (2013). 

12. Clark, T. J., Russell, C. A. & Manners, I. Homogeneous , Titanocene-Catalyzed 
Dehydrocoupling of Amine - Borane Adducts. 9582–9583 (2006). 

13. Vogt, M., de Bruin, B., Berke, H., Trincado, M. & Grützmacher, H. Amino olefin nickel(i) 
and nickel(0) complexes as dehydrogenation catalysts for amine boranes. Chem. Sci. 2, 
723–727 (2011). 

14. Besora, M. & Lledós, A. Coordination Modes and Hydride Exchange Dynamics in 
Transition Metal Tetrahydroborate Complexes. (Springer-Verlag Berlin Heidelberg, 2008). 

15. Baker, R. T. et al. Iron complex-catalyzed ammonia-borane dehydrogenation. A potential 
route toward B-N-containing polymer motifs using earth-abundant metal catalysts. J. Am. 
Chem. Soc. 134, 5598–5609 (2012). 

16. Duman, S. & Özkar, S. Hydrogen generation from the dehydrogenation of ammonia–borane 
in the presence of ruthenium(III) acetylacetonate forming a homogeneous catalyst. Int. J. 
Hydrogen Energy 38, 180–187 (2013). 

17. Murugesan, S. & Kirchner, K. Non-precious metal complexes with an anionic PCP pincer 
architecture. Dalt. Trans. 45, 416–439 (2016). 

18. Blanksby, S. J. & Ellison, G. B. Bond Dissociation Energies of Organic Molecules. 36, 255–
263 (2003). 

19. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. (John Wiley & 
Sons, Inc., 2009). 

20. Ibrahim, A. D. et al. Monoanionic bis(carbene) pincer complexes featuring cobalt( I–III ) 
oxidation states. Dalt. Trans. 45, 9805–9811 (2016). 

 

 
 

	


