
Embedded Live Code: Status of Client-Side Interactive
Programming

Aadil Bhatti
Undergraduate Senior Thesis

University of Illinois at Urbana-Champaign
aadilzbhatti@gmail.com

Advisor: Lawrence Angrave

ABSTRACT
UPDATED—May 11, 2017. Today, static websites and dy-
namic web applications such as JSFiddle[3] exist to teach
programming through the use of static code snippets. We
present a project[8] which seeks to transform this paradigm by
turning static code snippets into programs which are editable
and executable in the browser without server-side computation.
With this interactive coding environment, users are allowed to
safely play and experiment with code and as a result have a
more dynamic and interactive learning experience.

ACM Classification Keywords
Computer and Information Science Education

Author Keywords
Programming; Education; Browser; Linux; System
Programming; Ace; jOr1k; OR1K; Code; C; Python

INTRODUCTION
There are many web applications whose purpose is to teach
users several aspects of programmin, such as writing pro-
grams using a specific language, the illustration of an algo-
rithm, or how to solve a posed question. Example websites
include CodeAcademy[1], StackOverflow[5] and cprogram-
ming.com[2]. These applications illustrate programming con-
cepts, languages, or paradigms via static code snippets. These
snippets illustrate how a solution to the posed problem should
look in the language specified by the application. The pitfall
of this model, however, is the solution code is static — it exists
purely in text form and the user is required to download the text
and set up a program to observe the solution in a realistic envi-
ronment. Applications such as JSFiddle and CodeAcademy
allow students to run the solution code in the browser, but this
is limited to web code (HTML, CSS, JavaScript) and as such
it natively runs in the browser. Online Read-Evaluate-Print
Loops (REPLs)[4] exist for many programming languages,

but these applications have significant overhead and as of now
only run as standalone applications, i.e. they do not support
embedding in other websites.

This project[8] provides an alternative interactive coding envi-
ronment which executes code natively in the browser and is
capable of being embedded in existing webpages. This project
exists to augment websites which have static text explanations
of how to accomplish something using a programming lan-
guage as well as code snippets illustrating the concept. This
project identifies these snippets of code and converts them into
runnable, editable programs. This allows the user to see first-
hand what the output of a program should be while learning
about it. In addition, this allows users to tweak the code to
see how changes affect the program, thus giving users a more
comprehensive grasp of the concept by observing its behavior
with different inputs.

FUNCTIONALITY AND USAGE

Functionality
The project provides two client-side components which exist
entirely in the browser. These are: A lightweight code editor
and a small Linux virtual machine. The code editor contains
a set of buttons and controls which users can use to edit and
compile the code written in the editor. When the editor sends
the program text to the virtual machine, the VM compiles and
executes the program whose output is displayed in a small
box next to the editor. Currently, C and Python programs are
supported by this project.

Usage
To use this project, a developer needs to download the pack-
age which contains two JavaScript files as well as the base
filesystem for the virtual machine. This filesystem contains
the root directory for the virtual machine, and is necessary
for the VM to load programs such as gcc and python. The
developer includes the relevant HTML documents in the same
directory as the above three components, includes the main
elc.js file in any HTML documents that need it, and adds
a <div> tag with ID named elc anywhere in the body of the
HTML documents (Figure 1). To embed an editor in an HTML
page, the developer needs to include a <pre> tag with the class
name code to distinguish it from other elements. Then, any
example code can be written within the <pre> tags. This code



Figure 1. An example HTML document with all the code necessary to
transform a static code snippet

Figure 2. The above HTML document rendered in the browser, before
pressing “submit”

will subsequently be transformed into the code present within
the editor (Figure 2), which will be compiled and run upon
pressing the “submit” button (Figure 3). To use different pro-
gramming languages, add another class attribute to the “code”
element containing the code. Adding “c_cpp” or “python” to
the class attribute will activate the syntax highlighting and
compilation for C and Python, respectively (Figure 1).

Same-Origin Policy Protection
The functionality of this project is dependent on the use of web
workers for the virtual machine. A web worker is JavaScript
code which runs in the background, separate from the “main”
JavaScript. This is used to load different components of the
webpage asynchronously, which becomes useful when high-
overhead components may stall the entire page load. The VM
is an example of a high-overhead web component and as such
it utilizes web workers to load it independently from the rest
of the page components. One concern when working with web
workers is the Same-Origin policy. Same-Origin protections
are implemented in modern browsers and prevent websites
from being able to access sensitive data on other websites.
This is a major security measure and is a serious architectural
concern for this project. Since the project uses web workers,

Figure 3. The code snippet, after pressing “submit”

Figure 4. An example StackOverflow response[9] transformed using
ELC. Link to original post: http://stackoverflow.com/questions/
42318707/c-nested-loop-for-interest

http://stackoverflow.com/questions/42318707/c-nested-loop-for-interest
http://stackoverflow.com/questions/42318707/c-nested-loop-for-interest


the worker files have to be served remotely, as accessing local
files from the browser would break the Same-Origin protocol.

Applications in Educational Websites
This project has a variety of applications in computer science
education. As mentioned previously, websites like cprogram-
ming.com, which teach programming concepts through static
code snippets, will provide a dynamic environment for stu-
dents to learn and play with code. In addition, this project
allows students to have a safe environment to run code which
they do not fully understand.

Besides websites for teaching, the project can be used in any
environment that involves sharing code snippets. The popu-
lar website StackOverflow is one example. StackOverflow is
a question-and-answer website where programmers can ask
questions and receive answers from the computer science com-
munity. StackOverflow allows users to post questions and
code snippets, to which they hope to receive a response and
potentially an error-fixing code snippet. This interactive model
would benefit from a project like this as it allows the commu-
nity to run the code that the users are posting, thus providing a
more in-depth understanding of the solutions (Figure 4).

DESIGN AND IMPLEMENTATION

Project Structure
The project is built from Linux-in-the-Browser (LIB)[7], an
in-browser system programming environment developed by
Lawrence Angrave and several students from the University
of Illinois at Urbana-Champaign. Professor Angrave uses
LIB to illustrate system programming concepts and the C pro-
gramming language to students in the undergraduate system
programming course. The full project consists of videos, exer-
cises, and a full open-source textbook, detailing each of the
covered concepts. The programming environment consists
of a code editor, an in-browser Linux virtual machine, and
a set of compiler controls allowing users to edit the compile
command sent to the VM.

The code editor in the project is the Ace Editor[6], which is
an open source, widely-used code editor for web applications.
It is highly modularized and has a comprehensive set of con-
figurations which allow users to modify features such as the
syntax highlighting, the editing settings, and indentation.

Jor1k[11], the in-browser VM used, is an open-source project
developed by Sebastian Macke. Jor1k is a Linux virtual ma-
chine, written in JavaScript, which implements the OpenRisc
1000 (Or1k) instruction set architecture. Jor1k optimizes for
speed by minimally compiling installed packages, pre-loading
relevant files, and operating asynchronously from the rest of
the page.

This project is built using React.js[10] in the style of the Linux
in the Browser modules. React is a front-end library designed
by Facebook to help developers build “smart” user interfaces.
It abstracts away the writing of long, static HTML pages
to the design of small, functional components which contain
HTML snippets. These components are rendered separately by
React’s internal Document-Object Model (DOM) and can be

updated and rendered independently from one another. This fa-
cilitates dynamic updating of large chunks of rendered HTML
without page reloads. React projects are designed in terms
of large components built up from smaller components. This
project follows a similar model. React.js was chosen for this
project due to its rising popularity and support from many
organizations. In addition, the choice to use React allows
developers to write code in a more functional manner and
disregards the notion of global state. This paradigm results
in developers understanding exactly where DOM information
is flowing (called Reactive Data Flow) and thus debugging
becomes simpler compared to debugging native JavaScript
components.

There are two core React components to the project: the code
editor and the terminal. In a rendered webpage using the
project, there will be a single terminal with several code edi-
tors pointing to it. This significantly reduces page load time
as opposed to each code editor interacting with individual
terminals, as each terminal would render separately. The code
editor, upon activating the “submit” button, takes the code
from the Ace editor and saves it to Jor1k’s filesystem, and
then sends the compile command to run within Jor1k. For
example, if the user is writing C code, the editor will send
a gcc command to Jor1k; if the user is writing Python, the
editor will send a python command.

By including the required <script> tag in an HTML page,
the project will search for tagged code snippets and transforms
those snippets to runnable pieces of code, sending them to the
VM upon compilation. The initial JavaScript code searches
for these snippets, writes the code to the editor, and then links
each editor to the global VM. The editor is built from the
code snippet along with a compiler panel and a section for the
program output.

Student Testing and Feedback
To measure how accessible the project is for students, we
conducted feedback sessions with five computer science and
electrical/computer engineering undergraduate students who
are familiar with programming. In addition, we included
students currently enrolled in Angrave’s System Programming
course to see if familiarity with Linux in the Browser would
translate across to this project.

The main issue reported by the surveyed students was that
the buttons in the application were unintuitive. Initially, the
names of the buttons were chosen based on their function as
we saw it, which did not necessarily make sense to students. In
addition, since the buttons all looked the same, it was difficult
for students to distinguish between them. As a result, the
buttons were updated to show their function based on more
intuitive icons which are present in many other applictions.

The other issue concerned students not understanding the out-
put component. Initially, there was a set of options in the box
labeled “Program Output” for users to customize the output
with. The main options were two radio-buttons, one labeled
“Clear” and the other “Append”. The initial purpose of these
buttons was to allow for clearing the output every time a pro-
gram was run or to append to the existing output. These



features were unclear to students, thus we removed the ra-
diobuttons, instead adding a “Close output” x-button in the
top-left corner to provide an intuitive way for users to close
and clear the output.

NEXT STEPS
In the future, we will simplify integration of the project into
existing webpages. The project requires two JavaScript files
and an extensive filesystem; we would like to reduce this to
one JavaScript file and potentially find a way to serve the
filesystem remotely and access it from within the project, or
utilize local browser assets.

Besides size, improvements to the Jor1k virtual machine al-
lowing more language support would be productive as this
would make the project useful to a larger number of users.
This would involve installing components like the JVM onto
the Jor1k platform, which may also result in larger file sizes
and slower load times. Currently, we are investigating tools
such as WebAssembly and researching to understand how we
can decrease load times and other overhead for Jor1k or the
other project components.

Finally, we would like to conduct more feedback sessions with
students and other developers whose software interests would
find this project useful. This, along with making the project
open-source will allow many different voices to contribute to
the project and provide different educational perspectives.

CONCLUSION
While many web applications seek to teach users how to pro-
gram via static code snippets, our project provides an alter-
native which takes those static snippets and transforms them
into live, runnable code, embedded in the webpage. This
provides end users with a more comprehensive, interactive
programming experience, which will ultimately result in more
learning. We see applications of this project in many different

environments: in traditional learning applications, question-
and-answer applications, and web-based programming tutori-
als. By bringing a more interactive experience to the process,
this project is a step forward in the technology behind online
learning.

REFERENCES
1. Codecademy. http://www.codecademy.com

2. cprogramming.com - Learn C and C++ Programming.
http://www.cprogramming.com/

3. JSFiddle. https://jsfiddle.net/

4. repl.it - Online REPL, Compiler, and IDE.
https://repl.it/

5. StackOverflow. http://www.stackoverflow.com

6. ajax.org. Ace - The High Performance Code Editor for
the Web. https://ace.c9.io/

7. Lawrence Angrave and Neelabh Gupta. Linux in the
Browser. http://cs-education.github.io/sys/#VM

8. Aadil Bhatti. Embedded Live Code: Bringing Interactive
Programming to Educational Applications.
https://github.com/cs-education/elc-dev

9. dreed https://stackoverflow.com/users/7282656/dreed. C
Nested Loop for Interest. StackOverflow.
https://stackoverflow.com/questions/42318707/

c-nested-loop-for-interest

10. Facebook. React.js: A declarative, efficient, and flexible
JavaScript library for building user interfaces.
https://facebook.github.io/react/

11. Sebastian Macke. jOR1K: Online OR1K Emulator
Running Linux. https://github.com/s-macke/jor1k

http://www.codecademy.com
http://www.cprogramming.com/
https://jsfiddle.net/
https://repl.it/
http://www.stackoverflow.com
https://ace.c9.io/
http://cs-education.github.io/sys/#VM
https://github.com/cs-education/elc-dev
https://stackoverflow.com/users/7282656/dreed
https://stackoverflow.com/questions/42318707/c-nested-loop-for-interest
https://stackoverflow.com/questions/42318707/c-nested-loop-for-interest
https://facebook.github.io/react/
https://github.com/s-macke/jor1k

	Introduction
	Functionality and Usage
	Functionality
	Usage
	Same-Origin Policy Protection

	Applications in Educational Websites

	Design and Implementation
	Project Structure
	Student Testing and Feedback

	Next Steps
	Conclusion
	References 

