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Abstract We present a general formulation of a
class of uniaxial phenomenological models, able to
accurately simulate hysteretic phenomena in rate-
independent mechanical systems and materials, which
requires only one history variable and leads to the solu-
tion of a scalar equation for the evaluation of the gener-
alized force. Two specific instances of the class, denom-
inated Bilinear and Exponential Models, are devel-
oped as an example to illustrate the peculiar features
of the formulation. The Bilinear Model, that is one of
the simplest hysteretic models which can be emanated
from the proposed class, is first described to clarify
the physical meaning of the quantities adopted in the
formulation. Specifically, the potentiality of the pro-
posed class is witnessed by the Exponential Model,
able to simulate more complex hysteretic behaviors
of rate-independent mechanical systems and materials
exhibiting either kinematic hardening or softening. The
accuracy and the computational efficiency of this last
model are assessed by carrying out nonlinear time his-
tory analyses, for a single degree of freedom mechan-
ical system having a rate-independent kinematic hard-
ening behavior, subjected either to a harmonic or to a
random force. The relevant results are compared with
those obtained by exploiting the widely used Bouc–
Wen Model.
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1 Introduction

Hysteresis is a widespread phenomenon in science and
engineering playing a significant role in industrial and
technological applications.

Generally, the output of a hysteretic system depends
on the past history of the input besides its current value,
so that a number of state variables need to be known.
Hysteresis is usually termed dynamic or static whether
the rate of variation of the input does or does not influ-
ence the output [16]. Equivalent denominations are
rate-dependent hysteresis in the former case and rate-
independent in the latter.

Magnetics and mechanics are the two main areas
of science and engineering where hysteresis phenom-
ena are observed [64]. Hysteresis occurring in soft or
hard magnetic systems and materials, such as soft iron,
Si steel, permalloy, hexagonal ferrites, and Nd–Fe–B
[6,13], is referred to as magnetic hysteresis, whereas
hysteresis occurring in mechanical systems and mate-
rials, such as ductile metals [67] and geomaterials [4],
is referred to as mechanical hysteresis.

Hysteretic phenomena are so complex that they can-
not be satisfactorily described by a single universal
model. Indeed, the spectrum of their applications is
so broad and their origin is due to such sophisticated
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and still unclear physical mechanisms that many phe-
nomenological models have been proposed in the past.

Basically, phenomenological models are mathemat-
ical models that do not try to shed light on the physical
origin of hysteresis but, rather, try to provide a suitable
description and generalization of experimental findings
[41]. Nevertheless, they have been resorted to, in the
past as well as at present times, as powerful tools for
design purposes.

As regards the hysteresis modeling of magnetic sys-
tems and materials, some of the widely used models
are the Preisach model [41], the Jiles–Atherton model
[31,32], the Energetic Hauser model [26], and the
Coleman–Hodgdonmodel [27]. As far as the hysteresis
modeling of mechanical systems and materials is con-
cerned, some of the widely usedmodels are the bilinear
model [1,11,19,68], the Bouc–Wen model [8,65,66],
the Ozdemir model [45], the Ramberg–Osgood model
[49], the Giuffrè–Menegotto–Pinto model [23,42], and
plasticity-based models, such as multilayer models
[7], single surface models [38], two-surface models
[14,15,34], multi-surface models [29], and parallel
elasto-plastic models [43].

Most of the existing phenomenological models, ini-
tially developed to describe a particular type of hystere-
sis, have been subsequently extended to describe other
types of hysteretic phenomena,with theirmathematical
forms being suitable for multi-disciplinary extensions.
For instance, hysteresis induced by friction occurring
beetween several mechanical components of systems
has been successfully described by the Preisach model
[16].

A comprehensive classification of the hysteretic
models is a rather hard task due to their large number.
This is usually performed in the literature depending
on the kind of equations that mathematically charac-
terize the output variables. Actually, it is possible to
distinguish:

– algebraic models, such as the bilinear, Ramberg–
Osgood [49], and Giuffrè–Menegotto–Pinto [23,
42] models, in which an algebraic equation is
solved to compute the output;

– transcendental models, in which the output is com-
puted by solving transcendental equations, such as
the Energetic Hauser model [26]. Transcendental
equations involve functions such as trigonomet-
ric, inverse trigonometric, exponential, logarith-
mic, and hyperbolic functions [56];

– differential models, such as the Jiles–Atherton
[31,32], Coleman–Hodgdon [27], Bouc–Wen [8,
65,66], and Ozdemir [45] models, in which first- or
higher-order differential equations, either of ordi-
nary or partial type, are solved to evaluate the out-
put;

– integral models, such as the Preisach model [41],
characterized by equations expressed in integral
form.

The above-mentioned models can be broadly classified
into two large categories. Actually, the current values of
the input and output variables, as well as the direction
of variation of the input variable, generally suffice to
fully describe the behavior of hysteretic systems by
exploiting differential models.

Conversely, the last reversal point of the hysteretic
response, the direction along which input variation is
considered, as well as additional information on the
system history, is generally taken into account by alge-
braic, transcendental, and integral models.

This paper presents a class of uniaxial phenomeno-
logical models able to simulate hysteresis loops, lim-
ited by two parallel straight lines or curves, typical
of rate-independent mechanical systems and materi-
als with kinematic hardening or softening hysteretic
behavior. The proposed class of models offers several
important advantages over hysteretic models generally
adopted to simulate themechanical hysteresis phenom-
ena. Actually, compared to differential models, the pro-
posed class does not exploit the numerical solution of
a differential equation, generally solved by adopting
multi-steps [48] orRunge–Kuttamethods [50],with the
remarkable benefit of very significantly reducing the
computational effort of finite element analyses. Com-
pared to plasticity-based models, the proposed class of
hysteretic models does not require the use of a return
map algorithm [53] and can be easily implemented in
a computer program.

The present paper is organized into three parts.
In the first part (Sect. 2), the rate-independent hys-
teretic behavior of mechanical systems and materi-
als, endowed with kinematic hardening or softening,
is shortly described. In the second part (Sects. 3 and 4),
the general formulation of the class of models is first
presented. To better illustrate the features of the gen-
eral formulation, always leading to the evaluation of
the generalized force by solving a scalar equation,
two specific instances of the proposed class, denom-
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inated Bilinear Model and Exponential Model, are pre-
sented. In particular, making reference to the classi-
fication alluded to above, the former is an algebraic
model whereas the latter is a transcendental one since
this characterizes, from a mathematical point of view,
the nature of the scalar equation that provides the gen-
eralized force. The Bilinear Model is first illustrated
to easily describe the meaning of the adopted quanti-
ties, since it represents one of the simplest models that
can be emanated from the proposed class, whereas the
Exponential Model is presented to illustrate the poten-
tialities of the class, since it is able to accurately sim-
ulate a wide spectrum of rate-independent mechanical
systems and materials.

In the third part (Sect. 5), the accuracy and the com-
putational efficiency of the more elaborate Exponential
Model are assessedby carryingout somenonlinear time
history analyses performed on a rate-independent kine-
matic hardening post-yield single degree of freedom
mechanical system. In particular, the results obtained
for two different external forces, that is, a harmonic
and a random force, have been compared with those
obtained by using the celebrated Bouc–Wen Model
[8,65,66], one of the most used differential models in
the literature [2,3,17,25,33,35,36,44].

2 Rate-independent mechanical systems and
materials

Mechanical hysteresis is a rate-dependent or rate-
independent process having ageneralizeddisplacement
u, that is, displacement, rotation or strain as input,
and a generalized force f , that is, force, moment or
stress as output, or vice versa. In actual mechanical sys-
tems andmaterials, both types of hysteretic phenomena
can be observed at the same time, although only rate-
independent mechanical hysteresis is considered in this
paper.

In rate-independent mechanical systems andmateri-
als, hysteresis is generally induced by plastic deforma-
tion mechanisms and/or friction forces [47]. If the gen-
eralized displacement cycles between two values, the
generalized force traces a hysteresis loop in the input–
output plane. This behavior is characterized by kine-
matic hardening (softening)when the generalized force
increases (decreases) with generalized displacement
and the hysteresis loops are limited by two bounds,
i.e., two parallel limiting straight lines or curves, whose

(a)

(b)

Fig. 1 An example of hysteresis loop limited by two straight
lines typical of mechanical systems and materials exhibiting
kinematic hardening (a) and softening (b) behavior

distance remains constant under repeated cycles. The
increasing (decreasing) values of generalized forces as
function of increasing values of generalized displace-
ments, which typically characterizes hardening (soft-
ening), do not have to be confused with the behavior of
the generalized tangent stiffness d f/du whose value is
positive (negative) when hardening (softening) occurs.

As an example of the aforementioned behaviors,
Figs. 1a, 2a shows a hysteresis loop bounded by two
straight lines (curves) typical of kinematic hardening
mechanical systems and materials, whereas the hys-
teresis loop plotted in Figs. 1b, 2b is typical of kine-
matic softening behaviors.

In the field of structural, geotechnical, and seismic
engineering, there are several examples of mechanical
systems and materials having a rate-independent hys-
teretic behavior.
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(a)

(b)

Fig. 2 An example of hysteresis loop limited by two curves
typical ofmechanical systems andmaterials exhibiting kinematic
hardening (a) and softening (b) behavior

Hysteretic behavior characterizedbyhysteresis loops
limited by two parallel straight lines is typical of many
materials, such as ductile metals, e.g., steel [67], and
geomaterials, e.g., soils [55] and concrete [4]. This hys-
teretic behavior is also typical of structural joints, such
as steel [22], masonry [37], and wooden [52] joints,
structural elements, e.g., steel braces [70], and seis-
mic isolation bearings, such as wire rope isolators [60],
steel dampers [30], and recycled rubber–fiber rein-
forced bearings [54].

Hysteretic behavior characterizedbyhysteresis loops
limited by two parallel curves is typical of some struc-
tural joints [19], seismic devices, such as wire rope
isolators [61], high damping rubber bearings [57], elas-
tomeric seismic isolators [40], and recent hysteretic
devices [9].

Generally, the above-described hysteretic behaviors
are modeled in the literature [58,59] using a uniax-

ial hysteretic spring parallel to a nonlinear elastic one,
whose generalized tangent stiffnesses are kh and ke,
respectively. The former allows one to reproduce hys-
teresis loops limited by two straight lines, whereas the
latter allows one to modify the shape of the straight
lines to obtain two parallel limiting curves. This basic
idea is generalized in the following section by assigning
suitably defined functional forms to kh and ke.

3 Proposed class of uniaxial phenomenological
models

Mathematical modeling of hysteresis phenomena
observed in mechanical systems and materials is very
challenging, especially if the main aim is the develop-
ment of accurate and computationally efficient models
based on a small number of parameters having a clear
mechanical significance.

In this section, a general formulation of a class of
uniaxial phenomenological models, able to accurately
simulate rate-independent mechanical hysteresis phe-
nomena, is presented. More specifically, after some
preliminaries about the adopted nomenclature, the pro-
posed general form of the generalized tangent stiffness
kt , obtained by the sum of kh and ke, is described; sub-
sequently, the general expressions for the generalized
force f and for the history variable u j are derived.

3.1 Preliminaries

Let cu and cl denote the upper and the lower limiting
curves of a hysteresis loop, as shown in Fig. 3. The
former intercepts the vertical axis at f = f̄ , whereas
the latter at f = − f̄ . Assuming that cyclic loading
phenomena do not modify the limiting curves, the dis-
tance between the two curves, along the vertical axis,
is constant and equal to 2 f̄ .

Let c+ denote the generic loading curve connect-
ing points lying on the lower limiting curve cl , having
abscissa u+

i , with points on the upper limiting curve
cu , having abscissa u+

j , with u+
i = u+

j − 2u0. Fur-
thermore, let c− denote the generic unloading curve
connecting points lying on the upper limiting curve cu ,
having abscissa u−

i , with points on the lower limiting
curve cl , having abscissa u

−
j , with u

−
i = u−

j +2u0. The
+ (−) sign used as superscript is reminiscent of loading
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(unloading) curves starting from the lower (upper) lim-
iting curves. Furthermore, the subscript i ( j) denotes
the starting (ending) point of each curve.

The curves cu , cl , c+, and c−, in the case of a hystere-
sis loop limited by two parallel straight lines (curves),
are shown in Fig. 3a, b. Notice that, for simplicity, the
loading (unloading) curves have been further specified
bymeans of arrows directly plotted on the curves.More
specifically, a loading (unloading) curve is the one char-
acterized by a positive (negative) sign of the velocity.

3.2 Generalized tangent stiffness

In the proposed formulation, the generalized tangent
stiffness kt is given in the following general form:

kt (u, u j ) = ke(u) + kh(u, u j ), (1)

where kh(u, u j ) is a function of a relative generalized
displacement, obtained by relating the absolute dis-
placement u to the history variable u j ; this last one is
represented by u+

j , when u̇ > 0 (generic loading case),

andbyu−
j ,when u̇ < 0 (generic unloading case),where

u̇ is the time derivative of the generalized displacement
u.

As an example, assuming ke(u) = 0, Fig. 4a, b
shows the graphof the function kt (u, u j ) for the generic
loading (unloading) curve c+ (c−) of Fig. 3a. In partic-
ular, the generalized tangent stiffness is a nonlinearly
decreasing function, from ka to kb, on [u+

j − 2u0, u
+
j ]

when u̇ > 0, or on [u−
j , u−

j + 2u0] when u̇ < 0, being

constant and equal to kb on [u+
j ,∞) when u̇ > 0, or

on (−∞, u−
j ] when u̇ < 0.

The choice of amore elaborate analytical function to
describe the generalized tangent stiffness may require
the selection of an increasing number of model param-
eters. Such parameters are obtained by calibrating the
curves of the hysteresis loop on the basis of the results
of experimental tests.

3.3 Generalized force

According to Fig. 3, in the generic loading case, it turns
out to be f = c+ when u+

i < u < u+
j , and f = cu

when u > u+
j , whereas, in the generic unloading case,

f = c− when u−
j < u < u−

i , and f = cl when

u < u−
j . Thus, in the sequel, the expressions for the

upper (cu) and lower (cl ) limiting curves as well as for
the generic loading (c+) and unloading (c−) curves are
derived by integrating the generalized tangent stiffness
kt given by Eq. (1).

3.3.1 Upper limiting curve

The upper limiting curve cu can be obtained by inte-
grating Eq. (1) as follows:

cu
(
u, u+

j

)
=

∫
ke(u)du +

∫
kh

(
u, u+

j

)
du + Cu .

(2)

Being interested in expressing the function cu , we can
assume that u > u+

j so that kh(u, u+
j ) is constant and

equal to kb. Hence, Eq. (2) becomes:

cu(u) = fe(u) + kbu + Cu, (3)

where

fe(u) =
∫

ke(u)du. (4)

The integration constant Cu can be determined by
imposing that the curve cu intercepts the vertical axis
at f = f̄ :

fe(0) + Cu = f̄ , (5)

from which, assuming fe(0) = 0:

Cu = f̄ . (6)

Thus, the general expression for the upper limiting
curve is:

cu(u) = fe(u) + kbu + f̄ . (7)

3.3.2 Lower limiting curve

The lower limiting curve cl can be obtained by inte-
grating Eq. (1) as follows:

cl
(
u, u−

j

)
=

∫
ke(u)du+

∫
kh

(
u, u−

j

)
du+Cl . (8)

123



N. Vaiana et al.

Fig. 3 Curves cu , cl , c+,
and c− in the case of a
hysteresis loop limited by
two parallel straight lines
(a) or curves (b)
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Fig. 4 Graph of function
kt (u, u j ) for a generic
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(b) case in Fig. 3a
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As detailed for cu , the function cl comes into playwhen

u < u−
j , a condition for which kh

(
u, u−

j

)
is constant

and equal to kb. Hence, Eq. (8) becomes:

cl(u) = fe(u) + kbu + Cl , (9)

where fe(u) is given by Eq. (4). The integration con-
stant Cl can be determined by imposing that the curve
cl intercepts the vertical axis at f = − f̄ :

fe(0) + Cl = − f̄ , (10)

from which, assuming fe(0) = 0, one infers:

Cl = − f̄ . (11)

Thus, the general expression for the lower limiting
curve is:

cl(u) = fe(u) + kbu − f̄ . (12)

It is apparent that the upper and lower limiting curves
are parallel and that the distance between them, along
the vertical axis, is equal to 2 f̄ .

3.3.3 Generic loading curve

The generic loading curve c+ can be obtained by inte-
grating Eq. (1) as follows:

c+ (
u, u+

j

)
=

∫
ke(u)du +

∫
kh

(
u, u+

j

)
du + C+,

(13)

or, equivalently

c+ (
u, u+

j

)
= fe(u) + fh

(
u, u+

j

)
+ C+, (14)

where fe(u) is given by Eq. (4), whereas fh(u, u+
j ) is

evaluated as:

fh
(
u, u+

j

)
=

∫
kh

(
u, u+

j

)
du. (15)

The integration constant C+ can be determined by
imposing that the generic loading curve c+ intersects

the upper limiting curve cu at u = u+
j :

c+ (
u+
j , u+

j

)
= cu

(
u+
j

)
; (16)

hence, on account of (7), one has:

fe
(
u+
j

)
+ fh

(
u+
j , u+

j

)
+C+ = fe

(
u+
j

)
+kbu

+
j + f̄ ,

(17)

from which one gets:

C+ = kbu
+
j + f̄ − fh

(
u+
j , u+

j

)
. (18)

In conclusion, the general expression for the generic
loading curve is:

c+ (
u, u+

j

)
= fe(u) + fh

(
u, u+

j

)
+ kbu

+
j

+ f̄ − fh
(
u+
j , u+

j

)
. (19)

To show that the model parameters f̄ and u0 are
related, we impose that the generic loading curve c+
intersects the lower limiting curve at u = u+

i . Thus,
remembering that u+

i = u+
j − 2u0 and setting:

c+ (
u+
j − 2u0, u

+
j

)
= cl

(
u+
j − 2u0

)
, (20)

the following equation is obtained, on account of (12):

fe
(
u+
j − 2u0

)
+ fh

(
u+
j − 2u0, u

+
j

)
+ kbu

+
j + f̄

− fh
(
u+
j , u+

j

)
= fe

(
u+
j − 2u0

)
+ kb

(
u+
j − 2u0

)
− f̄ ,

(21)

and the general expression relating f̄ to u0 is:

fh
(
u+
j − 2u0, u

+
j

)
+2kbu0+2 f̄ − fh

(
u+
j , u+

j

)
= 0.

(22)

As shown in Sect. 4, Eq. (22) can be solved for f̄
or u0 either in closed form or numerically depending
on the type of function fh obtained by integrating the
selected generalized tangent stiffness function kh .
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3.3.4 Generic unloading curve

The generic unloading curve c− can be obtained by
integrating Eq. (1) as follows:

c− (
u, u−

j

)
=

∫
ke(u)du +

∫
kh

(
u, u−

j

)
du + C−,

(23)

or, equivalently

c− (
u, u−

j

)
= fe(u) + fh

(
u, u−

j

)
+ C−, (24)

where fe(u) is given by Eq. (4), whereas fh
(
u, u−

j

)
is

defined by:

fh
(
u, u−

j

)
=

∫
kh

(
u, u−

j

)
du. (25)

The integration constant C− can be determined by
imposing that the generic unloading curve c− intersects
the lower limiting curve cl at u = u−

j :

c− (
u−
j , u−

j

)
= cl(u

−
j ); (26)

hence, on account of (12), one has:

fe(u
−
j ) + fh

(
u−
j , u−

j

)
+ C− = fe(u

−
j ) + kbu

−
j − f̄ ,

(27)

from which

C− = kbu
−
j − f̄ − fh

(
u−
j , u−

j

)
. (28)

Thus, the general expression for the generic unloading
curve is:

c− (
u, u−

j

)
= fe(u) + fh

(
u, u−

j

)
+ kbu

−
j

− f̄ − fh
(
u−
j , u−

j

)
. (29)

By imposing that the generic unloading curve c−
intersects the upper limiting curve at u = u−

i , it is
possible to derive a further general expression relating
f̄ to u0. Thus, remembering that u−

i = u−
j + 2u0 and

setting:

c− (
u−
j + 2u0, u

−
j

)
= cu

(
u−
j + 2u0

)
, (30)

the following equation is obtained on account of (7):

fe
(
u−
j + 2u0

)
+ fh

(
u−
j + 2u0, u

−
j

)
+ kbu

−
j − f̄

− fh
(
u−
j , u−

j

)
= fe

(
u−
j + 2u0

)
+ kb(u

−
j + 2u0) + f̄ .

(31)

In conclusion, the general expression relating f̄ to u0
is:

fh
(
u−
j + 2u0, u

−
j

)
−2kbu0−2 f̄ − fh

(
u−
j , u−

j

)
= 0,

(32)

which complements the analogous relation (22).

3.4 History variable

Figure 5 shows a generic loading (unloading) curve
having an initial point P : (uP , fP ) that lies between
the two limiting curves. In this case, the distance, along
the horizontal axis, required to reach the upper (lower)
limiting curve, is equal to u+

j − uP (|u−
j − uP |) and,

therefore, it is smaller than 2u0. The generalized dis-
placement u+

j (u−
j ), required to evaluate the general-

ized force f , has been previously presented as a his-
tory variable since it determines the current behavior
of the system as a function of the previous states. How-
ever, we will show in the sequel that this variable can
actually be computed for any starting point P; hence,
there is no reason for storing its value, as it happens
for classical history variables, if not for the pratical
goal of enhancing the computational efficiency of the
implementation.

In the following, the general expressions for u+
j and

u−
j are derived for any starting point P .

3.4.1 Evaluation of u+
j

The generic loading curve c+, shown in Fig. 5, is given
by Eq. (19). By imposing that c+ passes through the
point P : (uP , fP ), the following equation is obtained:

c+ (
uP , u+

j

)
= fP , (33)
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Fig. 5 Evaluation of the
history variable u j

Pf

Pu

lc

uc

02 u 

Pj uu −+

f−
−c

Pj uu −−

+c

−
j u +

j u

f

02 u 

which gives

fe(uP )+ fh
(
uP , u+

j

)
+kbu

+
j + f̄ − fh

(
u+
j , u+

j

)
= fP ,

(34)

from which u+
j can be evaluated.

3.4.2 Evaluation of u−
j

The generic unloading curve c−, shown in Fig. 5, is
given by Eq. (29). By imposing that c− passes through
the point P : (uP , fP ), the following equation is
obtained:

c− (
uP , u−

j

)
= fP , (35)

which gives

fe(uP )+ fh
(
uP , u−

j

)
+kbu

−
j − f̄ − fh

(
u−
j , u−

j

)
= fP .

(36)

Both u+
j , by means of (34), and u−

j , by means of
the expression above, can be evaluated in closed form
or numerically depending on the type of function fh
obtainedby integrating the selected generalized tangent
stiffness function kh . This will be addressed in the next
section considering two hysteretic models.

4 Two instances of the presented class: the Bilinear
and Exponential Models

In this section, two hysteretic models, namely Bilinear
Model (BM) and Exponential Model (EM) that repre-

sent two specific instances of the proposed class are
developed by using the general formulation described
in Sect. 3.

The Bilinear Model, able to simulate hysteresis
loops limited by two parallel straight lines, is one of
the simplest hysteretic models that can be emanated
from the presented class; thus, it is described to easily
illustrate the meaning of the adopted quantities.

The Exponential Model, able to simulate the hys-
teresis loops limited by two parallel straight lines or
curves, is presented to show the potentialities of the pro-
posed class, since it can be adopted to accurately simu-
late more complex rate-independent hysteretic behav-
iors.

By selecting general tangent stiffness functions dif-
ferent from the ones adopted in the Bilinear and Expo-
nential Models and by applying the general relations
of Sect. 3, it is possible to derive new models charac-
terized by hysteretic loops of different shapes and by
different computational features in terms of numerical
accuracy and efficiency.

4.1 Bilinear Model

4.1.1 Generalized tangent stiffness

The selected generalized tangent stiffness functions
are:

ke(u) = 0 on (−∞,∞) , (37)

kh(u, u+
j ) =

⎧
⎪⎨
⎪⎩

ka on
[
u+
j − 2u0, u

+
j

[
(38a)

kb on
]
u+
j ,∞

)
, (38b)
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kh
(
u, u−

j

)
=

⎧⎪⎨
⎪⎩

ka on
]
u−
j , u−

j + 2u0
]

(39a)

kb on
(
−∞, u−

j

[
. (39b)

Thus, the model parameters to be calibrated from
experimental tests are ka , kb, and u0.We further assume
that ka > kb, ka > 0, and that u0 > 0.

Notice that the function kh is discontinuous at u+
j

(u−
j ). This is due to the different value assumed by the

tangents at u+
j for the two curves c+ and cu . The same

property does hold at u−
j if one considers the curves c

−
and cl . The graph of the function kh is plotted in Fig. 6
for the generic loading case.

4.1.2 Generalized force

The expressions for the upper (lower) limiting curve cu
(cl ) and for the generic loading (unloading) curve c+
(c−) are first derived; subsequently, the expression for
f̄ , required for the evaluation of cu , cl , c+, and c−, is
obtained.

Upper (lower) limiting curve
According to the definition (4) and to the assumption

(37), it turns out to be:

fe(u) = 0. (40)

Hence, Eq. (7) yields:

cu(u) = kbu + f̄ , (41)

whereas Eq. (12) becomes:

cl(u) = kbu − f̄ . (42)

Generic loading (unloading) curve
On account of the assumption (38a), Eq. (15) spe-

cializes to:

fh
(
u, u+

j

)
= kau, (43)

so that Eq. (19) yields:

c+ (
u, u+

j

)
= ka(u − u+

j ) + kbu
+
j + f̄ . (44)

Similarly, because of the assumption (39a), Eq. (25)
becomes:

fh
(
u, u−

j

)
= kau. (45)

Hence, Eq. (29) yields:

c− (
u, u−

j

)
= ka

(
u − u−

j

)
+ kbu

−
j − f̄ . (46)

Expression for f̄
The expression for f̄ can be obtained by using Eqs.

(22) and (43) to get:

ka
(
u+
j − 2u0

)
+ 2kbu0 + 2 f̄ − kau

+
j = 0, (47)

from which we obtain:

f̄ = (ka − kb)u0, (48)

an expression providing a positive value of f̄ . The same
result is arrived at by exploiting Eq. (32).

4.1.3 History variable

Involving (40) and (43), Eq. (34) specializes to:

kauP + kbu
+
j + f̄ − kau

+
j = fP , (49)

fromwhich the following expression of the history vari-
able, holding for the loading case, is obtained:

u+
j = kauP + f̄ − fP

ka − kb
. (50)

Similarly, using (40) and (45), Eq. (36) becomes:

kauP + kbu
−
j − f̄ − kau

−
j = fP , (51)

fromwhich the following expression of the history vari-
able, holding for the unloading case, is obtained:

u−
j = kauP − f̄ − fP

ka − kb
. (52)

Note that the history variable u+
j (u−

j ) may be posi-
tive or negative according to the coordinates of the ini-
tial point P of the generic loading (unloading) curve.
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Fig. 6 Graph of function kh
for the generic loading case
(Bilinear Model)

bk

02uu j −
+ +

j u

hk

ak

4.1.4 Hysteresis loop shape

Figure 7 shows two different shapes of the general-
ized force–displacement hysteresis loop obtained by
applying a sinusoidal generalized displacement of unit
amplitude and simulated by adopting the Bilinear
Model parameters listed in Table 1. More specifically,
Fig. 7a, b shows a hysteresis loop bounded by two
straight lines typical of kinematic hardening (softening)
mechanical systems and materials. Note that, although
the hysteresis loop of Fig. 7b does not simulate a real-
istic softening behavior, it has been plotted to illustrate
the properties of the Bilinear Model.

4.2 Exponential Model

4.2.1 Generalized tangent stiffness

The selected generalized tangent stiffness functions
are:

ke(u) = −2β + β
(
eβu + e−βu) on (−∞,∞) ,

(53)

kh
(
u, u+

j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kb + (ka − kb)e
−α

(
u−u+

j +2u0
)

on
[
u+
j − 2u0, u

+
j

[

(54a)

kb on
]
u+
j ,∞

)
,

(54b)

kh
(
u, u−

j

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kb + (ka − kb)e
−α

(
−u+u−

j +2u0
)

on
]
u−
j , u−

j + 2u0
]

(55a)

kb on
(
−∞, u−

j

[
,

(55b)

where ka > kb, ka > 0, u0 > 0, α > 0, and β is real.
They represent the model parameters to be calibrated

from experimental tests. In particular, the parameter β

defines the shape of function ke, a function that is con-
vex on (−∞,∞), when β > 0, whereas it is concave
on (−∞,∞), when β < 0.

Function kh is a nonlinearly decreasing function,
from ka to kb + (ka − kb)e−2αu0 , on [u+

j − 2u0, u
+
j [,

when u̇ > 0, and on ]u−
j , u−

j + 2u0], when u̇ < 0;

moreover, kh is equal to kb on ]u+
j ,∞), when u̇ > 0,

and on (−∞, u−
j [, when u̇ < 0. The positive param-

eter α rules the rate of variation of kh from ka to
kb + (ka − kb)e−2αu0 . Figure 8 shows the graph of
the function kh for the generic loading case.

Note that the function kh is discontinuous atu
+
j (u

−
j ).

Denoting by δk the difference between the two different
stiffness values at u+

j (u−
j ), as shown in Fig. 8 for the

generic loading case, we can write:

(ka − kb)e
−2αu0 = δk, (56)

from which we obtain:

u0 = − 1

2α
ln

(
δk

ka − kb

)
, (57)

an expression yielding positive values of u0 for δk > 0.
To have a generic loading (unloading) curve c+ (c−)
that smoothly approaches the upper (lower) limiting
curve cu (cl ), i.e., with a generalized tangent stiffness at
u+
j (u−

j ) very close to the one of the upper (lower) lim-
iting curve cu (cl ), one should set δk = 0 in (57), thus
making u0 indefined.However, the extensive numerical
tests which have been carried out, only partially doc-
umented in the next section, have proved that a value
δk = 10−20 suffices for pratical purposes.

4.2.2 Generalized force

After deriving the expressions for the upper (lower)
limiting curve cu (cl ) and for the generic loading
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Fig. 7 Hysteresis loops
simulated by adopting the
Bilinear Model parameters
given in Table 1
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Table 1 Bilinear Model parameters

ka kb u0

(a) 5.0 0.5 0.1

(b) 5.0 −0.5 4.7

Fig. 8 Graph of function kh
for the generic loading case
(Exponential Model)

02)( u   
bab e kkk −−+

bk
+
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hk
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02uu j −
+

k

(unloading) curve c+ (c−), we obtain the expression
for f̄ required for the evaluation of cu , cl , c+, and c−.

Upper (lower) limiting curve
According to the definition (4) and to the assumption

(53), it turns out to be:

fe(u) = −2βu + eβu − e−βu . (58)

Hence, Eq. (7) yields:

cu(u) = −2βu + eβu − e−βu + kbu + f̄ , (59)

whereas Eq. (12) becomes:

cl(u) = −2βu + eβu − e−βu + kbu − f̄ . (60)

Generic loading (unloading) curve
On account of the assumption (54a), Eq. (15) spe-

cializes to:

fh
(
u, u+

j

)
= kbu − (ka − kb)

α
e
−α

(
u−u+

j +2u0
)
, (61)

so that, recalling (58), Eq. (19) yields:

c+ (
u, u+

j

)
= −2βu + eβu − e−βu + kbu

− (ka − kb)

α

[
e
−α

(
u−u+

j +2u0
)

− e−2αu0

]
+ f̄ .

(62)
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Similarly, because of the assumption (55a), Eq. (25)
becomes:

fh
(
u, u−

j

)
= kbu + (ka − kb)

α
e
−α

(
−u+u−

j +2u0
)
. (63)

Substituting the previous expression in Eq. (29) and
recalling (58), one obtains:

c− (
u, u−

j

)
= −2βu + eβu − e−βu + kbu

+ (ka − kb)

α

[
e
−α

(
−u+u−

j +2u0
)

− e−2αu0

]
− f̄ .

(64)

Expression for f̄
The expression for f̄ can be obtained by using

Eq. (22) or (32). Adopting (61), the former equation
becomes:

kb
(
u+
j − 2u0

)
− (ka − kb)

α
+ 2kbu0 + 2 f̄ − kbu

+
j

+ (ka − kb)

α
e−2αu0 = 0,

(65)

from which we obtain:

f̄ = (ka − kb)

2α

(
1 − e−2αu0

)
. (66)

Since α > 0 and u0 > 0, the previous expression
provides a positive value of f̄ .

4.2.3 History variable

Involving (58) and (61), Eq. (34) specializes to:

− 2βuP + eβuP − e−βuP + kbuP

− (ka − kb)

α
e
−α

(
uP−u+

j +2u0
)

+ kbu
+
j + f̄ − kbu

+
j + (ka − kb)

α
e−2αu0 = fP ,

(67)

fromwhich the following expression of the history vari-
able, holding for the loading case, is obtained:

u+
j = uP + 2u0 + 1

α
ln

[
α

(ka − kb)

(−2βuP + eβuP − e−βuP

+ kbuP + (ka − kb)

α
e−2αu0 + f̄ − fP

)]
.

(68)

Similarly, using (58) and (63), Eq. (36) becomes:

− 2βuP + eβuP − e−βuP + kbuP

+ (ka − kb)

α
e
−α

(
−uP+u−

j +2u0
)

+ kbu
−
j − f̄ − kbu

−
j − (ka − kb)

α
e−2αu0 = fP ,

(69)

fromwhich the following expression of the history vari-
able, valid for the unloading case, is obtained:

u−
j = uP − 2u0

− 1

α
ln

[
− α

(ka − kb)

(−2βuP + eβuP − e−βuP

+ kbuP − (ka − kb)

α
e−2αu0 − f̄ − fP

)]
.

(70)

The history variable u+
j (u−

j ) may be positive or
negative according to the coordinates of the initial point
P of the generic loading (unloading) curve. In any case,
the argument of the logarithm in Eqs. (68) and (70) is
positive if ka > kb, ka > 0, u0 > 0, and α > 0. To
show this, we consider the argument of the logarithm
in Eq. (68):

arg = α

(ka − kb)

(−2βuP + eβuP − e−βuP + kbuP

+ (ka − kb)

α
e−2αu0 + f̄ − fP

)
,

(71)

and we show that its minimum value argmin is always
positive. Making reference to Fig. 5, we remember that
u+
j has two extreme values, which are uP + 2u0, when

P lies on the lower limiting curve cl , and uP , when P
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lies on the upper limiting curve cu ; hence, the argument
of the logarithm in (68) has to be equal to 1 in the
former case and equal to δk

ka−kb
in the latter. Since δk =

10−20�1, we have:

argmin = δk

ka − kb
, (72)

a quantity that is always positive.

4.2.4 Hysteresis loop shape

Figure 9 shows four different shapes of the general-
ized force–displacement hysteresis loop obtained by
applying a sinusoidal generalized displacement of unit
amplitude and simulated by adopting the Exponential
Model parameters listed in Table 2. More specifically,
Fig. 9a, c shows a hysteresis loop bounded by two
straight lines (curves) typical of kinematic hardening
mechanical systems and materials, whereas the hyster-
sis loop diagrammed inFig. 9b, d is typical of kinematic
softening behaviors. Note that, although the hysteresis
loop of Fig. 9b does not simulate a realistic softening
behavior, it has been plotted to illustrate the properties
of the Exponential Model.

Figure 10 illustrates the influence of each EM
parameter on the size and/or shape of hysteresis loops
producedby imposing a sinusoidal generalized unit dis-
placement. More specifically, the hysteresis loops in
Fig. 10a have been obtained adopting kb = 0.5, α = 5,
β = 0, and three different values of ka , that is 5, 10,
and 15. It is evident that the increase of ka produces
an increase of the size of the hysteresis loop without
modifying its shape.

Figure 10b, c shows hysteresis loops simulated using
ka = 5, α = 5, β = 0, and three values of kb, that is, 0,
0.5, and 1 (0,−0.5, and−1). It can be observed that the
increase (decrease) of kb produces a counterclockwise
(clockwise) rotation of the hysteresis loop and a slight
decrease (increase) of its size.

The hysteresis loops in Fig. 10d have been obtained
setting ka = 5, kb = 0.5, β = 0, and adopting three
different values of α, that is, 5, 10, and 15. This figure
reveals that the increase of α allows the reduction of
the hysteresis loop size without modifying its shape.

Finally, Fig. 10e, f presents hysteresis loops simu-
lated using ka = 5, kb = 0.5, α = 5, and three positive
(negative) values of β, that is, 0, 1, and 1.5 (0, −1, and

−1.5). It is evident that the parameter β significantly
affects the hysteresis loop shape.

4.3 Computer implementation

For the reader’s convenience, a schematic flowchart
of the Bilinear (Exponential) Model is presented in
Tables 3 and 4. To this end, we suppose that a rate-
independentmechanical systemormaterial is subjected
to a given time-dependent load and that a displacement-
driven solution scheme has been adopted; hence, the
generalized displacement history, in particular ut−�t

and ut , is known over a time step �t and the gener-
alized force ft has to be determined. Because of this
assumption, the generalized velocity history, that is,
u̇t−�t and u̇t , and the generalized force ft−�t are also
known.

Tables 3 and 4 summarize the implementation
scheme for theBilinear (Exponential)Model. The algo-
rithm is composed of two parts. In the first one, called
Initial settings, the model parameters are assigned and
the associated internal ones are calculated. In the sec-
ond one, called Calculations at each time step, the his-
tory variable u+

j (u−
j ) is updated if the sign of general-

ized velocity at time t , namely st = sgn(u̇t ), changes
with respect to the one at t − �t ; then, the general-
ized force ft is evaluated by adopting the expression
of the generic loading (unloading) curve c+ (c−) if
u+
j − 2u0 < ut < u+

j (u−
j < ut < u−

j + 2u0); other-
wise it is evaluated by using the expression of the upper
(lower) limiting curve cu (cl ).

5 Numerical applications

In this section, the nonlinear dynamic response of a
rate-independent kinematic hardening single degree of
freedom mechanical system is simulated by modeling
the generalized force of the system on the basis of the
Exponential Model (EM) described in Sect. 4.

To demonstrate the accuracy of the EM and its capa-
bility to significantly decrease the computational bur-
den of nonlinear time history analyses, the numerical
results and the computational times are compared with
those obtained bymodeling the generalized force of the
mechanical systemwith the Bouc–WenModel (BWM)
[8,65,66], which is one of the most used differential
models in the literature [2,3,17,25,33,36,44]. Two dif-
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Fig. 9 Hysteresis loops
simulated by adopting the
Exponential Model
parameters given in Table 2
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Table 2 Exponential Model parameters

ka kb α β

(a) 5.0 0.5 5.0 0.0

(b) 5.0 − 0.5 5.0 0.0

(c) 5.0 0.5 5.0 1.0

(d) 5.0 0.5 5.0 −1.0

ferent external forces, that is, a harmonic and a random
force, are considered in the analysis.

5.1 Analyzed mechanical system

We first consider a nonlinear mechanical system char-
acterized by a single degree of freedom; its motion is
described by the equation:

mü + fd(u̇) + f (u) = p(t), (73)

where m denotes the mass of the system, u the
generalized displacement, u̇ the generalized veloc-
ity, ü the generalized acceleration, fd(u̇) the gener-
alized rate-dependent force, f (u) the generalized rate-
independent force, and p the generalized external force
depending upon time t . In rate-independentmechanical
systems, the nonlinear ordinary differential equation
given by Eq. (73) simplifies to:

mü + f (u) = p(t). (74)
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Fig. 10 Influence of the
EM parameters on the size
and/or shape of the
hysteresis loops

-1 -0.5 0 0.5 1
-4

-2

0

2

4

displacement

fo
rc

e 

ka = 5
ka = 10
ka = 15

(a)

-1 -0.5 0 0.5 1
-2

-1

0

1

2

displacement

fo
rc

e 

kb = 0.0
kb = 0.5
kb = 1.0

(b)

-1 -0.5 0 0.5 1
-2

-1

0

1

2

displacement

fo
rc

e 

kb =  0.0
kb = -0.5
kb = -1.0

(c)

-1 -0.5 0 0.5 1
-2

-1

0

1

2

displacement

fo
rc

e 
 = 5
 = 10
 = 15

(d)

-1 -0.5 0 0.5 1
-4

-2

0

2

4

displacement

fo
rc

e 

β = 0.0
β = 1.0
β = 1.5

(e)

-1 -0.5 0 0.5 1
-4

-2

0

2

4

displacement

fo
rc

e 

β =  0.0
β = -1.0
β = -1.5

(f)

123



A class of uniaxial phenomenological models

Table 3 Bilinear Model
algorithm 1. Initial settings

1.1 Set the three model parameters: ka , kb, and u0

1.2 Compute the internal model parameter [see (48)]: f̄ = (ka − kb)u0

2. Calculations at each time step

2.1 If st st−�t < 0, update the history variable [see (50) and (52)] u j = kaut−�t+ f̄ st− ft−�t
ka−kb

2.2 Evaluate the generalized force at time t

if u j st − 2u0 < ut st < u j st ft = ka(ut − u j ) + kbu j + f̄ st [see (44) and (46)]

otherwise

ft = kbut + f̄ st [see (41) and (42)]

Table 4 Exponential Model algorithm

1. Initial settings

1.1 Set the four model parameters: ka , kb, α, and β

1.2 Compute the internal model parameters [see (57) and (66)]

u0 = − 1

2α
ln

(
δk

ka−kb

)
and f̄ = ka−kb

2α

(
1 − e−2αu0

)
, with δk = 10−20

2. Calculations at each time step

2.1 If st st−�t < 0, update the history variable [see (68) and (70)]

u j = ut−�t + 2u0st + st
α
ln

[
αst

ka−kb

(
−2βut−�t + eβut−�t − e−βut−�t + kbut−�t + ka−kb

α
st e−2αu0 + f̄ st − ft−�t

)]

2.2 Evaluate the generalized force at time t

if u j st − 2u0 < ut st < u j st

ft = −2βut + eβut − e−βut + kbut − st
ka−kb

α

[
e−α(ut st−u j st+2u0) − e−2αu0

]
+ f̄ st [see (62) and (64)]

otherwise

ft = −2βut + eβut − e−βut + kbut + f̄ st [see (59) and (60)]

The properties of the analyzed rate-independent
kinematic hardening mechanical system are listed in
Table 5, where kti is the generalized pre-yield tangent
stiffness, whereas kty is the constant value assumed by
the generalized post-yield tangent stiffness for gener-
alized displacements greater than 2uy .

5.2 Applied generalized external forces

Thenonlinear dynamic responseof the rate-independent
mechanical system is simulated for two different exter-
nal generalized forces: a harmonic force and a random
force.

The harmonic force, shown in Fig. 11a, is a sinu-
soidal force having an amplitude p0 that increases lin-
earlywith time from0 to 5N, forcing frequencyωp = 2
rad/s, and time duration td = 10 s.

The random force, shown in Fig. 11b, is a Gaussian
white noise having intensity iwn = 7.5 N, and time
duration td = 30 s.

5.3 Model parameters

The generalized force in (74), simulating a large variety
of hysteretic behaviors, is usually assigned by means
of the celebrated Bouc–Wen Model, a so-called differ-
ential model based on the Duhem hysteresis operator
[18].

In particular, according to the Bouc–WenModel, the
generalized force of a mechanical system is given by:

f (u) = aku + (1 − a) kdz, (75)
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Table 5 Analyzed mechanical system properties

m
(
Ns2m−1

)
kti

(
Nm−1

)
kty

(
Nm−1

)
uy (m)

1 32 π2 π2 0.126

Fig. 11 Applied
generalized external forces:
a harmonic and b random
force
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where a is a dimensionless parameter, and k and d are
parameters having dimension of stiffness and displace-
ment, respectively. Finally, the adimensional variable
z is obtained by solving the following first-order non-
linear ordinary differential equation:

ż = d−1
(
Au̇ − b |u̇| z |z|n−1 − cu̇ |z|n

)
, (76)

where A, b, c, and n are dimensionless parameters that
control the hysteresis loop shape.

To simulate the nonlinear behavior of the analyzed
mechanical system and to compare the computational
features of the EMwith the ones of the classical BWM,
the parameters listed in Tables 6 and 7 have been
adopted.

In the Exponential Model, the parameter β has been
set equal to 0 to have two limiting straight lines; thus,
being ke = 0, ka = kti and kb = kty . The parameter
α has been evaluated adopting (57) with u0 = uy and
δk = 10−20.

In the Bouc–Wen Model, the following parameters
n = 1.5, A = 1, b = 1, and c = 0 have been used to
obtain the desired hysteresis loop shape [28,59]. Fur-
thermore, the parameters k, a, and d have been selected
so as to reproduce the hysteresis loops simulated with
the Exponential Model.

A comparison between Tables 6 and 7 clearly shows
that the EM requires a reduced number of parameters
with respect to the celebrated BWM.

In addition, it has to be noted that an important ben-
efit of the EM consists in the accurate determination
of its parameters through an analytical fitting of the
experimental hysteresis loops. Indeed, as it has been
shown in 4.2.4, the EM parameters are directly associ-
atedwith the graphical properties of the hysteresis loop.
If more accurate identifications are required, usually of
nonlinear nature, such computed parameters represent
suitable first trial values for the iterations required to
compute the optimal parameters, i.e., the ones that best
fit the experimental curves according to the adopted cri-
terion.Moreover, the peculiar analytical formulation of
the proposed class permits a closed form computation
of the response gradient, an issue of the outmost impor-
tance in identification procedures.

On the contrary, the interpretation of the BWM
parameters is not straightforward and their identifi-
cation from experimental data still remains an open
issue which has been investigated over years by several
approaches, depending on the peculiar formulation of
the BWM [10,12,51,69].
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Table 6 EM parameters adopted in numerical simulations

ka
(
Nm−1

)
kb

(
Nm−1

)
α β

32 π2 π2 205 0

Table 7 BWM parameters adopted in numerical simulations

k
(
Nm−1

)
a d (m) n A b c

16 π2 1/16 0.005 1.5 1 1 0

5.4 Results of the nonlinear time history analyses

In the sequel, the accuracy and the computational effi-
ciency of the Exponential Model are assessed by pre-
senting the results of some numerical simulations.

The equation of motion, given by Eq. (74), has been
numerically solved by adopting a conventional solution
approach, that is the explicit time integration central
differencemethod [5,24], and using a time step of 0.005
s. Furthermore, in the Bouc–WenModel, the first-order
nonlinear ordinary differential equation, given by Eq.
(76), has been numerically solved by using the uncon-
ditionally stable semi-implicit Runge–Kutta method
[50] and considering 50 steps. The solution algorithm
and the hysteretic models have been programmed in
MATLAB and run on a computer equipped with an
Intel�CoreTM i7-4700MQ processor and a CPU at
2.40 GHz with 16 GB of RAM.

The results of the nonlinear time history analy-
ses (NLTHAs), associated with harmonic and random
forces, are shown in Tables 8 and 9, respectively.

The accuracy of the EM is very satisfactory since
the maximum and minimum values of the generalized
displacements, velocities, and accelerations are numer-
ically quite close to those predicted by the BWM.

However, the computational burden of the EM,
expressed by the total computational time tct , is signif-
icantly reduced with respect to that characterizing the
BWM.Clearly, the parameter tct is not a fully objective
measure of the algorithmic efficiency, since it depends
upon the amount of the background process running on
the computer, the relevant memory and CPU speed; for
this reason, tct has been normalized as:

EM tctp [%] = EM tct

BWM tct
· 100 , (77)

to get a moremeaningful measure of the computational
benefits associated with the use of the EMwith respect
to the BWM.

Time histories of the mechanical system are illus-
trated in terms of generalized displacement, e.g.,
Fig. 12, generalized velocity, e.g., Fig. 13, and gen-
eralized acceleration, e.g., Fig. 14; generalized force–
displacement hysteresis loops are shown in Fig. 15.
Generally speaking, the comparison between the
responses associated with the EM and the BWM shows
a very good agreement.

6 Conclusions

We have presented a general formulation of a class of
uniaxial phenomenological models, able to simulate
hysteresis loops limited by two parallel straight lines
or curves, typical of rate-independent mechanical sys-
tems and materials with kinematic hardening or soft-
ening hysteretic behavior. The proposed class of mod-
els requires only one history variable and leads to the
solution of a scalar equation for the evaluation of the
generalized force.

To illustrate the peculiar features of the proposed
general formulation, two specific instances of the class,
denominated Bilinear Model and Exponential Model,
have been described. The Bilinear Model, able to sim-
ulate hysteresis loops limited by two parallel straight
lines, is one of simplest models that can be emanated
from the proposed class, whereas the Exponential
Model, able to reproduce hysteresis loops limited by
two parallel straight lines or curves, is a more elabo-
rate model that can simulate the behavior of a wider
spectrum of mechanical systems and materials.

To investigate the overall computational features of
the EM, some nonlinear time history analyses have
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Table 8 NLTHAs results | Harmonic force

tct (s) tctp u (m) u̇
(
ms−1

)
ü

(
ms−2

)

max min max min max min

BWM 8.98 – 0.1691 −0.1605 1.0210 −1.0734 6.8034 −7.1500

EM 0.06 0.66% 0.1690 −0.1604 1.0205 −1.0730 6.8046 −7.1546

Table 9 NLTHAs results | Random force

tct (s) tctp u (m) u̇
(
ms−1

)
ü

(
ms−2

)

max min max min max min

BWM 26.76 – 0.1225 −0.1803 0.7156 −0.5657 30.171 −25.893

EM 0.185 0.69% 0.1234 −0.1803 0.7183 −0.5627 30.148 −25.895

Fig. 12 Generalized
displacement time history
obtained applying the a
harmonic and b random
force
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Fig. 13 Generalized
velocity time history
obtained applying the a
harmonic and b random
force
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Fig. 14 Generalized
acceleration time history
obtained applying the a
harmonic and b random
force
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Fig. 15 Generalized
force–displacement
hysteresis loops obtained
applying the a harmonic
and b random force
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been carried out on a rate-independent SDOF mechan-
ical system with kinematic hardening behavior.

Both a harmonic and a random force have been con-
sidered in the analyses and the results of the EM have
been compared with those associated with the cele-
brated BWM. In this respect, the following conclusions
can be drawn:

– the results of the EM closely match those predicted
by the BWM, independently of the kind of external
force;

– the total computational time associatedwith theEM
is equal to 0.66% (0.69%), for the harmonic (ran-
dom) force case, of the one required by the BWM;

– the BWM requires the calibration of seven param-
eters to simulate hysteresis loops limited by two
parallel straight lines, whereas the EM needs only
three model parameters having a clear mechanical
significance.

Current research activities, which will be the topic
of future contributions, are focused on the parame-
ters identification performed by gradient-based least
square optimization algorithms, previously employed
by the authors for similar purposes [20,62], and by
static inverse identification [46]. Furthermore, cur-
rent research is focusing on the extension of the pro-
posed general formulation to the three-dimensional
case through the definition of interaction domains
involving loads and displacements. Such an approach
has been successfully employed in characterizing non-
linear materials by means of uniaxial relationships typ-
ically obtained from experimental tests, e.g., concrete
[63], composites [21] or alloys [39]. Thus, using suit-
ably defined interaction domains, one can infer equiva-
lent load–displacement quantities which are related by
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uniaxial relationships capable of determining equiva-
lent flow rules.
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