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ABSTRACT 
Military personnel on patrol and industrial staff are likely to face various hazards from 

chemicals that can either kill them outright or cause them serious damage. Chemical substances 

known as chemical warfare agents (CWA) have been used in war zones since the end of the 

First World War. These chemical warfare agents are particularly dangerous to human life. 

They cause skin disease, disability and death of soldiers. These chemicals are also widely used 

for pharmaceutical purposes, for preparation in industrial plants, in laboratories, in nuclear 

plants and in food items. However, these chemicals cause toxic effects not only to human life 

but also to the environment as they have polluted widely including buildings, filtration 

systems, vehicles and equipment. The chemicals spread easily in the environment and remain 

for a long time. Finally, CWA was banned from use in 1996, but some of them are still being 

used in the warzone. Protection of people from exposure to hazardous chemicals, such as 

chemical warfare agents and toxic or corrosive chemicals is essential in today’s battlefield and 

industries.  

Chemical, biological, radiation and nuclear (CBRN) suits are designed for emergency 

circumstances and are likely to cause a thermal burden when worn over prolonged periods. 

Special protective clothing is available for use to protect from these chemicals but it is very 

heavy in weight, uncomfortable and expensive. Exploration of the superomniphobic surface for 

versatile protection against water, oil, liquids and chemicals has been the key to the 

development of protective clothing for chemical protection. However, simple, cost-effective 

methods to develop functional surface on textiles with durability and without compromising 

comfort much are still of great challenge.  

This research aims at developing protective fabrics with a functional coating that is capable of 

preventing the penetration of water, liquids, oil and certain chemical warfare agents without 

compromising the fabric weight and comfort properties. The intention of this research is not to 

develop a replacement for CBRN suits but to develop low-level threat fabrics that can either be 

used as combat uniforms and selective parts of the uniform or be applied in industrial 

protection. A widely used coating method of padding-knife coating-padding-curing was 

employed in this research to perform functional coating on fabrics towards high-performance 

protective clothing. Polymeric coating of polyurethane or silicone rubber membrane in 

combination with repellents including polydimethylsiloxane (PDMS), trimethylated silica 

(TMS) and fluoro-polymers was developed to form superomniphobic surface on cotton and 



 

xvi 

polycotton fabrics, and a comparison with coated fabrics with plasma treated fabrics and 

industrial fabrics was performed to justify the developed technology from this research. The 

coated fabrics were characterised by thickness, morphology and chemical components to 

understand the structure and mechanism of the coating. Measurements of protection against 

water, oil, aqueous liquids and chemicals and hydrostatic pressure were performed to test the 

versatile protection of the coated fabrics. Besides, the air permeability, water vapour 

permeability, thermal resistance, handle, stiffness and moisture management properties were 

tested to study of the comfort of the coated fabrics.  

It was found that the combination of polyurethane membrane and PDMS-TMS acted as 

repellents to give better results in terms of protection against water, liquids, oil, chemical, 

hydrostatic pressure on the fabric surface. The developed surface presented hydrophobicity 

with a water contact angle of around 150o, and the droplets of water, oil, aqueous liquids and 

chemicals were repelled for long periods. A cross-linked network was formed between the 

membrane and the PDMS-TMS, resulted in the excellent durability of the coating against 

different cycles of laundering and crocking together with rubbing. The comfort of the coated 

fabrics was compromised due to the blocking of the porous structure of the fabrics, but the 

selection of the coated membrane such as the thermoplastic polyurethane would improve the 

comfort to some extent. The coated fabrics were comparable to the plasma treated fabrics for 

defence and industrial fabrics in terms of protection and the coated fabrics can withstand much 

higher hydrostatic pressure than the other two. The advent of high-performance coating was 

suitable for long time protection for chemical as well as comfortable properties for the 

protective clothing for military and industry. 
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1 INTRODUCTION 

1.1 Background 

Chemicals are dangerous to human as they can enter human body to create severe diseases on the 

skin, causing disability and in some cases death within seconds (Russell et al., 2003). Chemical 

warfare agents (CWA) together with other toxic and corrosive chemicals in different industries 

and laboratories can cause skin disease, disability and death of soldiers and related personnel 

(Truong et al., 2008). It is thus important to provide better protection against these chemicals and 

to control their harmful effects to the human life. Protective clothing and related equipment are 

playing a key role in covering the whole body and providing an excellent barrier to these 

chemicals exposures (Rimpel, 2008). Chemical, biological, radiation and nuclear (CBRN) suits 

were developed for the protection purpose, and Fluorine based compounds were widely used for 

creating superhydrophobic surfaces for protective clothing (Schultze P-E, 2006). Research efforts 

have contributed to the surface science in terms of chemical protection. With the advanced 

materials being employed and novel fabrication techniques being developed, protective clothing 

with superomniphobic surface and versatile protection capacity has been developed (Moiz et al., 

2016).  

However, traditional protective clothing is heavy, bulky, inflexible and uncomfortable, and all the 

protective clothing provides limited protection against chemicals due to the imperfection of 

natural or synthetic fibrous materials available today (Sawhney et al., 2008). Fluoro-based 

compounds may cause environmental issues in the usage of the developed products (Hekster et 

al., 2002). Superomniphobic surface, namely surface that displays a contact angle of >150o along 

with low contact angle hysteresis with essentially all high and low surface tension liquids, 

including water, oils and chemicals, is necessary for developing protective clothing (OTA, 2014). 
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A simple and cost-effective technology to develop superomniphobic surface from new polymer 

materials with durability and without compromising the comfort is still of great challenge.  

1.2 Research question 

The research question of this PhD work is: how to develop a durable superomniphobic coating on 

fabrics effective as chemical, oil and liquid/water resistance and comfortable in real service, 

achieved from environmental friendly materials and by using the simple and cost-effective 

method. More specific research questions are as follows:  

1. How can superomniphobic surface help to enhance the resistance against chemicals, oil 

and liquids/water on fabrics? 

2. What is the mechanism of crosslinking between the coated layers and fabrics that endows 

the durability of coating?  

3. How does the pad-knife-pad-cure method enhance the chemical protection while 

maintaining the comfort level? 

4. How to make the critical comparison between the developed protective clothing with the 

industrial and plasma treated fabrics?  

1.3 Aim and objectives 

The aim of this research is to develop a simple and cost-effective coating technology for creating 

a durable superomniphobic surface on fabrics, targeting at providing low-level protection support 

against water, aqueous liquids, oil, chemicals and hydrostatic pressure while maintaining fabric 

comfort. 

The objective of this study is to coat polyurethane or silicone rubber membrane in combination 

with polydimethylsiloxane (PDMS) and trimethylated silica (TMS) and other repellents. The 

objectives of this research are: 

• To study and understand chemical protection mechanism and the current technology 

to develop protective clothing in this regard. A thorough understanding of the hazards 

and risks associated with chemicals will be contributed and current development of 

protective clothing will be studied to better understand the context of this research and 

help select the proper materials and formulate applicable techniques.  

• To investigate the application of layer-by-layer coating technique to form functional 

layer on fabrics from polyurethane and PDMS-TMS. The effect of experimental 
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details on the properties of the as-coated fabrics will be assessed to develop the 

trustable and effective coating technique.  

• To characterise the developed fabrics in terms of structure and properties, protection 

and comfort. A reproducible technology will be contributed with the high protective 

fabrics developed for further application in clothing upon the support of the results 

and outcomes in the research.  

• To understand the cross-linking mechanism between the coated layers and study the 

durability of the coating. This will help justify the developed technology in terms of 

coating durability and application potentials.  

• To make a critical comparison of the developed fabrics with plasma treated fabrics 

and industrial fabrics. The protection, comfort and the associated techniques will be 

compared and help develop the most robust, simple, trustable and effective technology 

in developing protective clothing for chemical protection.  

 

1.4 Significance of research 

The developed technology can be adopted for many applications in the textile industry. The pad-

knife-cure coating method is a simple method, useful for large scale in the textile industry to 

develop low-level protective clothing for military garments. The polymeric coating with repellent 

is useful for commercial garments such as lab coats, rain coats, protective jackets, gloves, boots 

and protective suits. This research provides better protection to water, oil, chemicals and a strong 

barrier for severe skin diseases. People working in chemical environments such as industrial 

plants for manufacturing and production units for chemicals use protective suits or lab coats, 

goggles, gloves and boots to provide better protection for oil and water but not for chemicals. 

Scientists working in a laboratory wear cotton lab coats. However, cotton has wettability 

properties and it can be easily absorbed many types of chemicals resulting in direct skin contact 

and potentially creating a rash or infection on the body.  

The low-level protective fabrics would be applicable as military garments or industrial protection 

gears and provide better protection for hazardous chemical, skin diseases, disability and deaths. 

The new innovation of superomniphobic surface with simple and commonly feasible techniques 

can be applicable for hydrophobic coating, waterproofing and semipermeable membrane in many 

industries. This newly developed protective fabric can successfully commercialised because it 

provides not only a chemical protection but also resistant to soil, stain, oil and water. 
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Theoretical perspectives are important because they provide the assumption or ideas to develop a 

new theory to explain the new framework, information and issues with bonding between 

substrate, membrane and repellents. The experimental work/observations and results give a new 

practical approach and methodology to achieve more beneficial work for research. 

This research has greater significance for industrial purposes because it represents a novel, 

feasible process for the large production of fabrication in the textile industry. Protective clothes 

are useful for chemical protection, comfort, lightweight and cost for military combat uniform and 

civilian garments. 

 

1.5  Dissertation overview 

This dissertation consists of eight Chapters as overviewed below. 

Chapter 1 consists of the basic information about the nature of research exploration, the aim and 

objects, the methodology, and the significance of the proposed research. 

Chapter 2 presents an intensive literature review to understand different aspects of the research 

problems. The classification of chemical warfare agents, chemicals with different level of 

hazards, chemical protection materials and techniques together with the mechanism and 

application of superhydrophobic surface were carefully reviewed and discussed.  

Chapter 3 provides details of the experimental work, including the materials and chemicals used, 

methods adopted, and details of the measurements and characterisation for investigating the 

structure and physical properties, protection and comfort of fabrics.  

Chapter 4 focuses on the development of multiple protective cotton fabrics from waterborne 

polyurethane in combination with PDMS and TMS by the pad-knife-pad coating method. The 

mechanism of the coating together with the results and discussion in the characterisation, 

protection and comfort of the coated fabrics will be delivered in details.  

Chapter 5 details the layer-by-layer coating of thermoplastic polyurethane in combination with 

PDMS and TMS on polycotton fabrics. This chapter investigates the effects of TPU polymeric 

coating on the comfort and moisture management together with handle properties of the fabrics, 

based on the overall study on the versatile protection of coated fabrics. 

Chapter 6 details the development of silicone rubber membrane in combination with fluoro-

polymers for the superomniphobic surface. The protection and comfort of the coated fabrics are 

presented and discussed in details.  
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Chapter 7 presents a critical comparison of the coated fabrics with plasma treated fabrics in 

defence and industrial fabrics. The structure and morphology, protection and comfort of all the 

fabrics are compared to justify the developed coating technology in this research. 

Chapter 8 outlines the conclusions that have been drawn from this research. The scope and 

limitations are listed and the recommendations for future research are made to guide further 

endeavour. 
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2 THEORETICAL BACKGROUND 
AND LITERATURE REVIEW 

2.1 Introduction 

Protective clothing is essential for military force and civilians, and its purpose is to provide better 

protection against the hazardous chemicals in the war zone and environment. Chemicals are 

dangerous to human as they can enter human body to create severe diseases on the skin, causing 

disability and in some cases death within seconds (Russell et al., 2003). It is thus important to 

provide better protection against these chemicals and to control their harmful effects to the human 

life. Protective clothing and related equipment are playing a key role in covering the whole body 

and providing an excellent barrier to these chemicals exposures. For instance, chemical, 

biological and radiological (CBR) suits have been developed to provide the better protection in 

specific areas (Thakare et al., 2017). Traditional protective clothing is heavy, bulky, inflexible 

and uncomfortable, and all the protective clothing provides limited protection against chemicals 

due to the imperfection of natural or synthetic fibrous materials available today. Advanced 

technologies of protective clothing consist of multi-layer fabrics have been developed to provide 

high-performance protection towards versatile applications such as Joint Service Lightweight 

Integrated Suit Technology (JLIST), Mission Oriented Protective Posture (MOPP) and 

Polytetrafluoroethylene (PTFE) membrane (Turaga et al., 2012). Current technologies in this area 

aim to reduce the number of layers while enhancing the comfort level and strengthen chemical 

protection (Truong et al., 2008). 
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2.2 Chemical protection 

Chemical substances can enter the human body through its digestive system, by inhalation and/or 

absorption through the skin. 

Chemical protection is required for specific areas such as the plants where these chemicals are 

being manufactured, handling of pharmaceuticals, pesticides, insecticides, and herbicides, 

laboratories and electronic industries. 

Chemical protection is required at two different levels. The minimum hazardous chemicals are 

used for decontamination in industry, laboratory, nuclear plants (radioactive dust particles), such 

as concentrated liquids immersion or splash and vapour. Staff handling these chemicals must be 

protected by wearing filter masks, protective suits or lab coats and gloves to avoid direct contact. 

For handling minimum hazardous chemicals used in hospitals (e. g. for X-ray) and welding, 

gardening and road work, personnel are required to wear an apron, fluorescent jacket, goggles 

and gloves (Truong et al., 2008). 

Hazardous chemicals are widely used for storage, manufacturing, packing, production, 

decontamination and warzones (Russell et al., 2003).  Related personnel must be covered with 

full protective mask, suits, and gloves and over boots (O’HERN et al., 1917). For other hazardous 

chemicals that are not absorbed by the skin but are highly toxic through inhalation, the staff must 

use breathing apparatus for completely sealing out chemical vapours (Turaga et al., 2012).  

 

2.3 Chemical warfare agents 

Chemical warfare agents (CWA) are those substances used in the war zone to destroy the lives of 

soldiers and civilians. These chemical substances have been very effective in causing death, 

disability and severe skin diseases. Table 2-1shows the brief history of chemical warfare agents. 

At present, the only way to protect human from CWA is using special CBR suits and face masks 

and decontamination solution-2 (DS-2) for the skin. The DS-2 solution contains 2% sodium 

hydroxide and ethylene ether that can neutralize all the toxic chemicals agents (Rimpel, 2008). 

CWA not only destroy human life, but also damage the building, filtration units, vehicles and 

equipment etc. Coating with different polymers and CBR protective suits are thus necessary for 

decontamination purpose (Russell et al., 2003). 
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Table 2-1: History of chemical warfare agents (Truong et al., 2008). 
Year Chemical Warfare Agents Location 
1914 Chlorine, Chloropicrin, Phosgene & Mustard gas London, France 
1919 Arsenic gas Russia 
1920 Chlorine gas Mesopotamia 
1920-1927 Sulphur Mustard gas Berber rebellion 
1930-1936 G-series & Sulphur mustard gas Ethiopia 

1939-40 G-series & Nerve agents (developing chemical 
and biological weapons) Yemen 

1944 Sulphur mustard gas London 

1950 
134 (New test methods of Chemical, Biological 
and Radiological agents) 
New class of V-series (1961) 

 

1960 Egypt Eritrean rebels 
1970 Ethiopia Laos 
1975-81 Multiple chemical warfare agents Kampuchea 
1979 Lewisite (Blister agents) China 
1980 Choking agents and Nerve agents Afghanistan 
1983-87 Sulphur Mustard gas Iran 
1988 Chlorine gas chambers Iraq (Halabja) 
1994 Sarin gas Japan ((Matsumoto) 
1995 Mustard gas Tokyo 

1996 Chlorine gas Japanese(underground rail 
station) 

1997 Banned of chemical warfare agents  

2001 Conventional (missile) Aircraft World Trade Centre,  
New York-USA 

2001 Conventional (explosive) planted Bomb United states America 
2002 Multiple no of chemical warfare agents  Moscow 
2004  Conventional (explosive) Planted Bombs Madrid Commuter Trains 

2005 Chemical (Chlorine with Vehicle-borne 
(explosive) London Underground 

2006 Conventional (explosive)Planted Bombers  Iraq 
2006 Conventional (explosive) Mumbai Commuter Trains 
2010 Conventional (explosive) Suicide Bombers Moscow Subway System 
2014 Conventional (explosive) Suicide Bombers Pakistan 
2015 Conventional (explosive) Suicide Bombers Afghanistan 
2016 Chemical Weapons Syria 
2017  Chemical Weapons attacks (missiles) Syria 

 

Awareness of the risks of CWA is a very important factor for controlling their effects and for 

protection. These chemical warfare agents are divided into five classifications according to the 

nature of structure, effect and mode of exposure. 
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2.4 Classification of chemical warfare agents 

2.4.1 Blister/Vesicant agents 

Blister agents, as the name indicates, are those produce the blisters on the skin. These agents are 

harmful and produce skin diseases in war zones, with the names of sulphur mustard (HD), 

nitrogen mustard (NH1, NH2 and NH3) and lewisite (L). 

Sulphur mustard is also known as Mustard gas (HD) which persists for one day in summer and 

four days in winter. It can easily penetrate ordinary clothing in the vapour form, and it is the most 

widely used gas in war zones that affect skin, eyes and lungs. Protection gears against sulphur 

mustard gas can be protective masks and gas filters, and protective suits and decontamination 

wipes are also effective (Russell et al., 2003).  

Nitrogen mustard (NH1, NH2 and NH3) is available in liquid form. NH3 is normally used in war 

zones which persist for only 10-15 minutes, and it can easily penetrate ordinary clothing in 

vapour form. It affects skin, eyes, respiratory tract and gastrointestinal tract, and it is also 

effective on the central nervous system and bone marrow suppression. It can be protected by a 

gas filter, mask and protective suits (Gorzkowska-Sobas, 2013).  

Lewisite (L) exists only in liquid form, and it persists in summer for one hour and one day in 

winter. Lewisite is regarded as a more toxic chemical to destroy human life, as it can easily 

penetrate ordinary clothing and even rubber materials, and protective suits are not effective to it. 

2.4.2 Nerve agents 

Nerve agents are more power CWA. Two groups of nerve agents are identified due to their 

chemical compositions, namely the G-agents (fluorine- or cyanide-containing organophosphates) 

and the V-agents (sulphur containing organophosphate) (Russell et al., 2003). The names of nerve 

G-agents include Tabun (GA), Sarin (GB) and Soman (GD), with the letter ‘G’ represents 

Germany as the country of origin. The chemical names of them are Ethyl N, N′-dimethyl 

phosphor amidecyanidate (TABUN) for GA, Isopropyl methyl phosphono fluoridate (SARIN) for 

GB and Pinacolyl methyl phosphine fluoridate (SOMAN) for GD, respectively. Another class of 

nerve agents is V-series with the letter ‘V’ stands for “Venomous”. V series was introduced in 

1961. The name of V-series chemical warfare agents is Vx, and the chemical name is o-ethyl S-2 

di-isopropylaminoethylmethyl phosphonothioate. 

G-series are present in liquid form, and these chemicals persist in summer for one day and winter 

for four days. These powerful chemical warfare agents can destroy human life in 10-15 minutes. 
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Nerve agents affect the central nervous system, which is why the agents are called Nerve agents. 

Besides, the Verve agents affect eyes, lungs, skin and nervous system, causing the blood 

preventing oxygen from reaching body tissues. The protection against Nerve agents includes 

masks and gas filters, and protective suits and decontamination wipes. Cyclosarin (GE) can 

penetrate the skin and be inhaled through the respiratory tract. Vx has simpler property as G-

series. It persists for three days in summer and eight days for winter. Protective suits, masks and 

gas filters, and documentation wipes for skin irritants are used for the purpose of protection. 

2.4.3 Choking agents 

The chocking agents include chlorine (CL), phosgene (CG) and diphosgene (DP). Chlorine and 

phosgene are available in the gas form, while diphosgene is available in liquid form. The choking 

agents can result in chest tightness, breathlessness, acute lung injury, burning sensation in the 

nose, throat and eyes, and redness and blisters on the skin. These agents can be protected by 

wearing protective suits, protective masks and a gas filter. However, chloropicrin can penetrate 

gas mask filters and cause vomiting. 

2.4.4 Asphyxiants/Blood agents 

Blood agents can block the oxygen in blood cells, producing the poisoning enzyme cytochrome 

oxidase which causes body dysfunction. Asphyxiation would usually occur and for this reason, 

the chemical warfare is called Asphyxiants agents. The names of Blood agents include Hydrogen 

cyanide (AC), Cyanogen Chloride (CK) and Arsine (SA). Arsine is known as a low toxicity 

chemical warfare agent. The cyanide compounds are effective in chemical asphyxiates because 

the cyanides interfere with oxygen transport at the cellular level and this causes tissue hypoxia, 

anaerobic metabolism and lactic acidosis. Cyanogen causes breathlessness, headache, dizziness, 

anxiety, palpitations, mydriasis, blurring of vision, nausea and drowsiness. Arsenic gas inhaled in 

the body causes rapid destruction of red blood cells, leading to hypoxia and renal failure. The 

blood agents can easily enter the skin, so that protection against these agents is mainly by 

wearing protective suits, masks and gas filters.  

2.4.5 Behaviour agents/Vomiting agents 

The names of behaviour agents are Adamsite (DM), Diphenylcyanoarsin (DA) and 

Diphenylchlore (DC). These agents persist in aerosol form (long or short solid state) and affect 

the central nervous system, eye, heart, respiratory system, skin, gastrointestinal tract and urinary 

bladder. Behaviour agents can easily penetrate the skin and produce severe skin diseases in 
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human life (Russell et al., 2003), so that the protection against these agents is by using protective 

suits, mask and gas filter masks. 

 

2.5 Chemicals used in war zones for chemical resistance analysis 

The stimulant compounds are those compounds which have relevant chemical and physical 

properties of chemical warfare agents, without producing any toxicity for the environment and 

human life. In other words, these compounds are used for research activity to ensure safety. The 

purpose of stimulant/alternate chemical warfare agents is to use an ideal compound to predict 

chemical exposure, persistence, and to formulate disposal strategies and to control contamination. 

The persistent chemical warfare agents’ means the agents present in the air for 24 hours, and non-

persistent chemical warfare agents mean those for 10-15 minutes (Gorzkowska-Sobas, 2013). 

Toxic chemical warfare agents are restricted to use in the research laboratory because there are 

very toxic in nature and not feasible to use in the safety precaution of the laboratory. The research 

work has to be done by using the alternative compounds of CWA to provide the protection in the 

war zone and to overcome the causalities and disability of human life (Chilcott, 2014). 

The alternative compounds of sulphur mustard (HD) are methyl salicylate (MS), Chloroethyl 

phenyl sulphide (CEPS), Dimethyl adipate (DMA) and Chloroethyl ethyl sulphide (CEES/HM). 

GA is simulated by Di-isopropyl fluorophosphates (DFP), Diethyl ester phosphonic acid (DEEP), 

Diethyl malonate (DEM), and Diethyl ester phosphonic acid (DEP). Alternative compounds for 

GB include Bush, 1 Butanethiol (DMMP), Dimethylmethylphosphonate (DPGME), Dipropylene 

glycolmonomethylether and Ethanol. GD alternative compounds are Ethylchloroacetate (ECA), 

Triethylphosphate (TEP), Trimethylphosphate (TMP), Diethylethyoxyphosphate (DEEP), Di-

phenylchlorophosphate (DPCP). Alternative compounds for VX are bis (2-ethylhexyl) phthalate, 

Diethyl sebacate (DES), diethyl phenyl phosphonothioate (DEPPT), and Parathion and ambition. 

Lewisite is used as alternative compounds in the form of Lewisite oxides and Phenyl arsine 

oxides. These alternative compounds were used for research activity, such as decontamination by 

hydrolysis, neutralisation with peroxides, oxidation of bleaches and other related reagents, 

detoxication with acid and basic media, and metal catalysed reaction (Wagner et al., 1999, 

Bartelt-Hunt et al., 2008, Kim et al., 2011). 
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2.6 Lower and higher level protective suits 

Toxicological Agent Protective (TAP) polyethylene coated suits (TYVEK), including adjustable 

collar, double sleeves, trouser cuffs, belt and mask, are widely used for liquid splash protection 

for one hour. There are protective suits for police and other civilians like yellow and orange 

fluorescent dyed suits. The air permeable or breathable suits such as Rampart, Saratoga Hammer 

(Truong et al., 2008, Turaga et al., 2012) and Tychem, and Kapplers commander brigade 

impermeable suits are commercially available for low-level chemical protection. Toxic 

Environment Protective Outfit (TEPO) also produces protective garments for civilians (Turaga et 

al., 2012). 

In the past, different substances were used for skin protection, such as resin oils and charcoal 

coated suits. Chemical warfare agents (CWA) then became the major threats on the battlefield. 

CWA was available in solids, liquids and gas forms, in which the solid ones were easily 

spreading by the wind, liquids were easily penetrating the skin and gases were unhealed into the 

respiratory tract. These chemical substances were the cause of 99% of deaths and skin diseases 

and 80% of disability. In the initial stage, some butyl rubber suits were used to protect against 

these chemical warfare agents but the CWA Lewisite easily penetrated butyl rubber (Russell et 

al., 2003). Besides, butyl rubber was not comfortable to wear due to its low breathability. The 

charcoal coated suits did not work against chemical substances because all substances were easily 

absorbed (Cowsar, 1980, Glitz et al., 1994). In the 1970s, protective suits were developed using 

PU foam coating to resist chemicals, but it did not work properly because mustard gas penetrated 

into the foam and the fabrics (Kovačević et al., 2010). 

In 1993, JSLIST of USA made special protective suits knew as CBR suits. There were five 

multilayer carbon active suits (Rimpel, 2008). This provided protection against wind, rain, air 

born virus, liquids chemical and bacterial. With its weight of about 5-7 lb, the suit contained 50% 

cotton and poplin and 50% nylon. JLIST developed a range of protective suits including helmets, 

gloves, masks, footwear and bodysuits with a cooling system for special condition of 24 hours in 

the war zone. Mission Oriented Protective Posture Gear (MOPP) designed CBR protective suits 

with four levels of protection. MOPP Level 1 and 2 did not provide the complete protection for 

more than two hours. But MOPP level 3 and 4 provided complete protection for more than six 

hours, including suits with mask and gloves carried (Rimpekl et al. 2008). French Paul Boy’s 

(NBC) developed the carbon base air permeable combat uniform suits. Chemical protective suits 

of USA exhibited vapour protection for 12 hours (Boopathi et al., 2008, Truong et al., 2008). 

Gore-Tex fabrics are water resistant, wind proof, washable and breathable, but the fabrics are not 
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suitable for chemical protection. Improved Toxicological Agent Protective Ensemble Gloves and 

Boots (ITAP) or Breathable Apparatus (SCBA) is used in emergency condition for fire-fighters. 

Kappler response fabrics are useful for chemical protection. Toxic Environment Protective Outfit 

(STEPO) or suits with breathable apparatus are used for civilian emergency conditions to 

withstand chemical and biological agents, missile/rocket fuels, petroleum oils and lubricants 

(POL) and industrial chemicals. 

There have been other advances in technology like carbon nanotubes, selectively permeable, 

impermeable and self-cleaning materials to make protective garments against CWA (Truong et 

al., 2008). 

 

2.7 Chemical protection by Fluoro-compounds 

Fluoro-compounds depend upon the strength of bonding between carbon and fluorine atoms. 

Fluorinated-compounds have the unique property to react as a single molecule with copolymers 

and homopolymeric substances for a variety of applications. Fifty years ago, it was introduced 

into the market and was used as a covering on products all over the world. Fluorinated-compound 

has been widely used on paper, paperboard, leather, carpet, textile, fire extinguishing equipment 

and surfactants, cooking (non-stick pans) etc. Fluoro-surfactant was also used for laundering of 

garments. The Fluoro-compounds were used as protective clothing (raincoat, rain proof jackets, 

and boots) (Schultze P-E, 2006). In the textile industry, fabrics coated with Fluoro-compounds 

provided resistance to stain, soil, oil, and also water repellency. Between 1998 and 2000, there 

was a great deal of activity in research laboratories, regulatory authorities and industry to classify, 

monitor and regulate these pollutants (Hekster et al., 2002). These Fluoro-compounds were very 

harmful to health and environment. Fluoro-compounds like perfluoro-carbons (PFCs) and sulphur 

hexafluoride (SF6) were measurable in the environment and impacted on climate condition. 

These compounds were quickly destroying the ozone layer and creating greenhouse gas. In 2005, 

Paulsen reported the telomere (FTOH) compounds which were used in the paper and boards 

industry to provide protection against grease and water (Poulsen, 2005). These compounds were 

treated in food contact items (cooking pans, disposable plates, food container, warping paper or 

bags) and non-food items (folding cartons, carbonless forms, masking paper and tapes) (Santillo, 

2006). 

Fluoro-compounds breakup easily (hexafluoro-propylene and perfluoro-isobutylene) and can 

enter food and non-food items (reported by Waritz in 1975) (Hekster et al. 2002). The analysis 
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methods of toxic fluoro-polymers (PTFE) in cooking pans is described by Ellis (Ellis, 2001). The 

fluoro-polymers broke up into different compounds and penetrated into foods. Boulanger and 

Butenhoff also reported that fluoro-compounds in detergents, repellents, waterproofing, raincoats 

and protective garments broke up and penetrated into the skin and the human body (Boulanger, 

2005, Butenhoff, 2006). Many companies, including Clariant, Bayer, Ciba, Daikin and DuPont, 

provided fluoro-compounds and claimed that these compounds were stable and strong bonding 

with other compounds (Santillo, 2006). However, wrong information about these compounds and 

they were already being found in textile wastes. 

Dinglasan Panlilio and Mabury (2006) reported that the fluoro-compounds of telomere 

methacrylate (FTOH) were also present in sewage water (Dinglasan-Panlilio, 2006). Two 

compounds, perfluoro-octane sulphonate (PFOS) and Perfluoro-octanoic acid (PFOA), 

represented in biological samples, showing degradation in human blood serum levels between 17-

53 μg /L for PFOS and 3-17 μg/L for PFOA. No differences could be observed between children 

with 37.5 μg/L and elderly people with 31μg/L. These fluoro-compounds were also persistent in 

the environment for many years (Hekster et al., 2002). 

The research done between 1998 and 2000 monitored the effects of fluoro-compound in the 

world. The organic pollutant compounds were then banned because of their persistence and harm 

to the health of wildlife, sea life and human life. In the United Kingdom and Sweden, the use of 

flour-compounds was restricted in different on-going projects and a specific application deadline 

was announced from 2007 to 2010. Concerning for the environment and human health, USA and 

China also announced an international ban on these compounds in 2013 (Butenhoff, 2006, 

Santillo, 2006). 

 

2.8 Chemical protection by Polyurethane 

PU is a useful polymer that is environmentally friendly and is widely used in textiles. PU has 

unique properties to provide many applications without any harmful effects to human life. PU 

does not produce any skin allergy or disease. Textiles coating plays an important role in the 

textile industry for different protection and functions, and PU coating has been used as 

hydrophobic materials in many applications due to their relatively safe nature when compared to 

fluoro-based polymers (MacPhee and Barton, 1987). The origin of polyurethane (PU) dates back 

to the beginning of World War II. It was first developed as a replacement for rubber to be used as 

coating materials.  
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PU coatings were used for the lamination of paper, the manufacture of mustard gas resistant 

garments, high-gloss aeroplane finishes and chemical and corrosion-resistant coatings (Kovačević 

et al., 2010). 

In 1970, Department of US Army required the application of chemical agent resistance coating 

(CARC) and thus PU painting was used in military equipment such as combat support, tactical 

wheeled vehicles, aircraft, and essential ground support (Duncan et al., 2001). TPU elastomeric 

based materials are suitable for protective clothing such as face masks, which resists chemical 

warfare agents (CWA) with desirable physical properties (Scott, 2005). PU coating was used as a 

peel-able coating to absorb the chemical warfare agent on the surface of military equipment. 

Polyester base polyurethane (PUS) was used as the direct coating for rainproof garments, due to 

its thermoplastic nature in fabric coating (Crawford and Escarsega, 2000). PU waterborne 

dispersion coating was also used in military equipment (Fricke et al). Water-dispersible PU 

coatings were used for the coating of exposed equipment such as military tank and other vehicles. 

PU was used as paint coating to oxidation to decontaminate chemical warfare agent on military 

vehicles (Gheewala and Wytiaz, 2003). PU coatings were applied on fabrics to produce shape 

memory and air permeable fabrics (Cho et al., 2004). PU was also used to enhance the 

mechanical properties and the flexibility of fabrics (Walker et al., 2003).  

PU used as microporous membranes with the self-decontaminating agent (polyoxometalate) were 

used to form a film for decontamination of the G-agent and HD surrogates on fabric surface 

(McPherson, 2005). PU laminated coating was combined with polytetrafluoroethylene (PTFE) 

laminated microporous membrane to produce water and vapour resistant fabrics in sports textiles 

industry (Jayaraman et al., 2006). Waterproof-breathable PU coating has been used as a unique 

layer with nanostructure in the protective clothing and sportswear industry (Kang et al., 2007). 

Electrospun nanofibre web provides good moisture, hydrostatic stability to water, self-cleaning 

property, drug delivery and vapour release properties while maintaining water and wind 

resistance. PU has been used effectively in textile coatings for garments, such as raincoats and 

industrial safety clothing against various hazards. Thermoplastic polyether-based PU is resistant 

to various micro-organisms and bears exceptional hydrolytic stability in fabrics (Cha et al., 2006, 

Fan and Chen, 2002). 

PU nanofibres were used as the high-performance barrier for breathable and waterproof clothing, 

and as thermal comfort materials of protective clothing (Romaškevič et al., 2006). PU-based 

materials were used for immobilization of enzymes and cells in biological and medical fields, 

such as biocompatibility and stability of water, drug delivery and medical devices (Russell et al. 



 

16 

2003). PU has been used as biocide materials to prevent the enzymatic attacks and to provide 

antibacterial properties on the fabric surface and paper (Boopathi et al., 2008, Makal et al., 2006). 

PU has been used as a protective membrane with nanoparticles to provide protection against 

pesticides, organic volatile solvents and other liquids chemical warfare agents. PU has also been 

used as the selective semipermeable nonporous membrane in protective clothing (Scholten, 

2011). PU has been combined with silica nanoparticles and fluorinated polymer to develop 

superomniphobic breathable membranes for oil resistance (Wang et al., 2012). PU coating with 

an ammonium salt and other polymer were used as single or multi-functional materials to 

decontaminate chemical and biological warfare agents. Microporous PU membranes exhibited 

robust mechanical property with good air permeability, high water resistance, water vapour 

transmittance and comparable tensile strength as a significant result of one step methods (Turaga 

et al., 2012). 

PU coating was used as multi-functional, self-decontaminating materials to remove the gram 

positive and negative bacteria as well as biological chemical warfare agents. PU coating was also 

used as the peel-able coating to absorb the chemical warfare agent on the surface of military 

equipment (Gazi and Mitchell, 2012). PU and fluorinated polymer were combined together to 

produce the microporous membrane to improve the breathability, air permeability, weather 

resistance, water vapour transmittance and tensile strength property of fabrics (Schutzius et al., 

2011). This work also provided a versatile strategy for further design and development of PU 

membranes on a large scale towards various applications (Kovačević et al., 2010). PU was also 

combined with silver and titanium dioxide nanoparticles by electrospinning and electrospraying 

to produce protective membrane against the attack of chemical warfare agents (Ryu et al., 2013). 

Polyurethane was mainly used with nanoparticles and fluoro-polymer as the microporous, 

semipermeable and breathable membrane for the chemical protection (Li, 2017 ).  

 

2.9 Chemical protection by nanocoating 

Nanotechnology focuses on the development of nanomaterial, nanostructure and nanoparticles 

with various applications in the fields of science, engineer, plastic, aerospace, medical, electronic 

and smart and intelligent textiles (Joshi and Bhattacharyya, 2011). Multi-function is introduced to 

enhance the properties of products for a wider range of application and in the textile industry, 

nanotechnology was adopted to enhance the multi-functional properties of fabrics (Brzeziński et 

al., 2009). Nanofibres, nanofinishes, nanocomposite and nanocoating has seen applications to 

endow the surface modification, water, oil repellency, ultraviolet (UV) radiation, hydrophobicity, 
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military protection, medical and self-cleaning properties of fabrics (Joshi and Bhattacharyya, 

2011). Nanocomposite fibres that consist of nanoparticles have improved the temperature 

resistance, dye-ability, mechanical and thermal stability, antibacterial and non-flammable 

properties of textile materials (Hebeish et al., 2013). The nanocoating was also used to refine the 

coating and finishing of products including medical, optical and electrical devices. 

Nanocomposite fibres refer to three types of fibres containing nanofiller, nanoclay and nanotubes 

(CNT), respectively. Electrospinning and electrospray techniques were usually used to the 

nanocomposite fibres. The nanofiller were used as multiple layers of silicate or nanoclay. Carbon 

nanotubes were used to generate hybrid nanostructures as reported (Ramaseshan and 2007). The 

carbon nanotubes were usually combined with metal oxide nanoparticles including TiO2, ZnO, 

Al2O3 and SiO2 (Martin et al., 2005). Nanoclay fibres were combined with maleic anhydride to 

improve the dye-ability of polypropylene, and the tensile strength, thermal stability, dynamic and 

creep of the nanocomposite filaments were improved at the same time. Nanofiller and polyhedral 

oligomeric silsesquioxane (POSS) hybrid with graphene oxide to increase the thermal resistance 

of multiple application (Xue, 2012). Nanoclay was added into polyurethane to improve the 

thermal stability, flame resistance and dye-ability, shrinkage and control of swelling of textiles. 

Polyurethane combined with clay were also applied to nylon substrate to improve the gas and 

water protection, tensile strength, heat and weather resistance (Joshi and Bhattacharyya, 2011). 

Novel polyurethane hybrids with nanographite particles or with metal oxides such as iron and 

nickel were used in defence as camouflage coating for the filtration system, vehicles, equipment 

and building (Truong et al., 2008). Polyurethane was combined with metal oxide nanoparticles to 

enhance the durability, flexibility and microwave shielding effect and self-decontamination of the 

coating  (Wynne, 2011). 

 

2.10 Superhydrophobic surface 

The textile industry has made many advances in the use of technology to improve the surface 

properties of fabrics, such as the protection against liquids including water, oil, stain resistance, 

water proofing, breathability, fire protection and greater comfort. A superhydrophobic surface is 

the key to surface functionalisation of textiles. A hydrophobic surface on textiles provides good 

resistance to water, oil and soil. Superhydrophobic surfaces are created artificially using 

nanomaterial, fluoro-carbon polymers and waxy materials to increase the surface roughness of 

the substrate while decreasing the surface energy (Luo and Huang, 2014). Fluoro-carbon 

compounds have also been used to provide better resistance to oil and water via a 
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superhydrophobic surface on the surface of textiles. Naturally occurring superhydrophobic 

surfaces are widely available in biological science. 

Butterfly wings, legs, water spiders, geckos’ feet and some plant leaves are examples of the 

superhydrophobic and self-cleaning surface (Chinchwade et al., 2014). The term 

superhydrophobic is defined as repellence to water droplets, or resistance to water, or water 

droplet rolling off. 

Materials are used to reduce the adhesive property and air gap between the solid state and surface 

particles. A superhydrophobic surface has the property to control water molecules outside the 

fabrics and does not allow water to penetrate the fabrics with non-wettability. A hydrophobic 

surface has endowed different surface morphology and surface tension to fabrics with reduced 

surface energy. It has the key factors involved to reduce the surface energy and to increase the 

surface roughness of fabrics. The superhydrophobic surface is determined by the water contact 

angle (WCA) measurement of >150° (He et al., 2004). 

A superhydrophobic surface has the unique property to repel dirt particles, soil, oil, stains and 

water molecules. The hydrophobic, anticorrosion, anti-fog and self-cleaning properties are 

endowed by the superhydrophobic surface for applications such as painting, sports, protective and 

outdoor clothing, integrated sensors, micro fluids and biomedical layers  (Liu et al., 2010). 

Fluoro-polymers were banned all over the world due to the toxicity involved. A perfluoro-alkyl 

chain C6 was used as a replacement for fluoro-compounds to solve the environment and health 

issues. Paulsen and Jensen (2005) discussed the possible alternatives to fluoro-compounds such 

as perfluoro-butane sulfonate (PFBS) or C4, CF3 or C2F5 pendant fluoro-alkyl polyether, 

dodecafluoro-2-methylpentan-3-one (CF3-CF2-CO-CF-(CF3)2) and C6 and sulfosuccinate and 

compound, and these alternatives were found to be useful for paint and wetting, as dispersing 

agent and in coating industry. Silicone polymers such as fluorinated alkyl silane (FAS), 

fluorinated-decyl polyhedral oligomeric silsesquioxane (FD-POSS) and dodecafluoro-

heptylmethacrylate (DFM) are also useful for non-wetting, painting and ink industry (Poulsen, 

2005). 

Silicone polymers are also used as the alternate compounds in the textile industry to produce a 

superhydrophobic surface on fabrics. Silicone-based compounds, like silane and silsesquioxane, 

have been proven to exhibit good hydrophobicity on cotton fabrics (Shirgholami et al., 2013). 

Daoud introduced a mixture of hexadecyltrimethoxysilane (HDTS), 3, 3 glycidyloxypropyl- 

trimethoxysilane (GTMS) and tetraethoxyorthosilicate (TEOS) to create a superhydrophobic 
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surface on cotton with a water contact angle of 141°, but the durability of the fabrics was poor at 

low-temperature processes (Daoud et al., 2004). Roe and Zhang (2009) investigated the use of bis 

(triethoxysilyl) ethane and octyltrimethoxysilane in combination with silica nanoparticles to bring 

hydrophobicity onto the surface of the cotton fabrics with a water contact angle of 139°, even 

though the durability against rubbing was not satisfactory (Roe and Zhang, 2009). Satam et al. 

grafted fluorinated alkyl silane (FAS) onto cotton and nylon blended substrate to produce a 

superoleophobic surface (Satam et al., 2010). Tong studied the combination of fluorinated alkyl 

silane (FAS) and fluorinated-decyl polyhedral oligomeric silsesquioxane (FD-POSS), resulting in 

water repellent coatings on the surface of polyester fabrics (Zhou, 2013). The developed 

functional coating produced textiles with chemical resistance, self-cleaning and super water 

repellent with durability against different cycles washing (Huang et al., 2011, Wang et al., 2011). 

The combination of dodecafluoroheptyl methacrylate (DFMA) with waterborne polyurethane 

epoxy emulsion resulted in a sticky superhydrophobic but not oleophobic surface on paper 

(Huang et al., 2012). However, these hydrophobic surfaces have been challenged in terms of 

durability. 

2.10.1 The theory of superhydrophobic surface 

The term hydrophobic comes from the Greek words hydro and phobic, with the meaning water 

and fear (repelling water), respectively. It means to resist water droplets on a solid surface. In 

contrary, hydrophilic is also derived from the Greek words with hydro means water and philia 

means love (attraction to water). The water contact angle of a hydrophilic surface is usually less 

than 90° (Latthe et al., 2014). The hydrophobic surface is usually determined by the water contact 

angle of a water droplet persistent on a solid surface. The term ‘water contact angle’ is defined as 

a quantitative measurement of wettability or non-wettability, in which the liquid droplet 

maintains the position with the contact of a solid surface and the specific values of a liquid’s 

droplet volume or shape, the degree of the contact line or the angle of water droplet when it 

contacts with the solid surface or contact line are reported. The water contact angle of a 

hydrophobic surface is greater than 90° while that of a superhydrophobic surface is great than 

150° (Kusumaatmaja and Yeomans, 2007). 

There are two types of water contact angle to describe the superhydrophobic surface. When the 

water droplet is changing its volume or place on the title surface, it can be characterised in two 

observed angles such as advancing and receding angles. When the volume of the water droplet is 

increased, the maximum angle it can get is called the advancing angle.  And when the volume of 

the water droplet is decreased, the smallest possible angle it can get is called the receding angle 
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(Li, 2017). The contact angle measurement during the growth and shrinkage is called advancing 

angle and receding angle, respectively. Difference between the receding angle and advancing 

angle is called the angle hysteresis (H).   

Contact angle hysteresis (H) = advancing contact angle (θa) − receding contact angle (θr) 

2.10.2 Surface tension 

A superhydrophobic surface is dependent upon the surface energy and surface tension of the 

substrate. The surface energy and surface tension of liquids are numerically equivalent. The 

surface tension is a term used to describe the tension between the liquid molecules (Gorzkowska-

Sobas, 2013). The cohesive force is present between molecules of the liquids (see Figure 2-1). 

The water molecules present in bulk form result in a cohesive force from the four sides of the 

neighbouring molecules. This means that the central water molecules have the net force of zero 

because all the four sides are subject to the same force of liquid that compensates each other. 

However, for some water molecules close to the corners cohesive forces from only three sides are 

applied and thus the molecules are pulled inwards, creating a possible small area of the surface 

that is under tension.  

 
Figure 2-1: Interactions between the molecules in the bulk and close to the surface of a 
liquid. Forces acting on the molecules on the surface are not in equilibrium, and the 
molecules are pulled inwards (Gorzkowska-Sobas, 2013). 
 

The surface tension is actually the cohesive force between the liquid molecules. Water molecules 

have a strong cohesive force between its molecules and the high surface tension values are 72 

dynes/cm (Brzeziński et al., 2009).  Cohesive force between the oil (n-heptane) molecules is 

weak and the surface tension value is 19.8 dynes/cm (American Association of Textile Chemists 

and Colorists, 2013c). Surface tension is used to explain the density and heaviness of liquid 

molecules. Surface tension depends upon the cohesive force (weak or strong) between the liquid 
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molecules. The surface tension (strong cohesive force) of water is higher so that it sits down in a 

mixture of water and oil, while the lower surface tension (weak cohesive force) of oil results it on 

the top of the mixture (see Figure 2-2).   

 

 

Figure 2-2: The mixture of water and oil. Oil has low surface tension and sits on top of the 
surface of water solution due to its high surface tension, surface energy and gravity. 
 

The boundary force applies to only three sides and makes changes in the volume, shape and 

energy of the liquid molecules. The concept of surface tension means that when a liquid droplet 

has a greater density as compared to water droplets (1,000 kg/m³), it is able to sit or doesn’t move 

on the surface (Gorzkowska-Sobas, 2013). For example, a mixture of water and oil droplets 

usually shows the oil sits on the water solution surface, because the surface tension or gravity of 

oil is less as compared to a water molecule (see Figure 2-2).  All the surface tension of chemicals 

was shown in Table 2-2. 
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Table 2-2: Surface tension value of water, oil and liquids chemicals and warfare agents (Pan 
et al., 2012). 
Chemical name Surface tension (dynes/cm) 
n-Hexane 18.4 
n–Heptane 19.8 
Triethylamine 20.7 
Methanol 22.1 
Isopropyl alcohol 23.0 
Acetone 23.2 
n-Decane 23.8 
Paraffin oil 26.0 
Tetrahydrofuran 26.4 
Dichloromethane 26.8 
n-Hexadecane 27.3 
Acetic acids 27.0 
Toluene 28.4 
Acetonitrile 28.7 
Dimethylformamide 36.7 
Butadiene 47.0 
Water 72.8 
Sodium hydroxide 101.0 
Chemical warfare agents 
GB 25.9 
GD 24.5 
VX 31.3 
GF 32.3 
Sulphur mustard gas (HD) 42.5 
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2.10.2.1 Young’s theory 

Young explained the situation when a water droplet was in a rest condition. The water droplet is 

in the balance position when the effective force from three sides by the atmosphere or vapour 

molecule as shown in Figure 2-3. The water droplet spreads out until the equilibrium is achieved. 

The contact angle of the water droplet is called the contact angle (θ) on a flat surface but not 

applicable on a rough surface (Li et al., 2007, Xue et al., 2010). 

 
Figure 2-3: Different surface tension of solid, liquids, and vapour phase according to the 
Young’s theory (Xue et al., 2010). 
 

The water droplet applies surface tension on solid to vapour condition (ᵞsv), solid to liquid (ᵞsL) 

and liquid to vapour (ᵞLv), respectively. Young explained the behaviour of the water droplet only 

on a flat surface by equation (1): 

𝒄𝒐𝒔∅ = �
(ᵞ𝐬𝐯 − ᵞ𝐬𝐋)

ᵞ𝐋𝐯
�                        (𝟏) 

The contact angle (θ) of a water droplet can measure the wettability of a flat surface. The surface 

roughness was explained in the earliest work of Wenzel and Cassie Baxter theory. 

2.10.2.2 Wenzel’s theory 

The basic theory of superhydrophobicity was explained by Wenzel in 1934. According to this 

theory, the main emphasis on wettability or hydrophilic phenomena depends upon the size of the 

contact angle (see Figure 2-4). The water droplet on a rough surface shows different behaviour of 

contact angle. The rough surface has some grooves for the water droplet to fill in or penetrate 
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through and thus smaller contact angle is shown on the surface   (Koishi et al., 2009, Roach et al., 

2008). 

 
Figure 2-4: The solid, liquids, and vapour phase according to Wenzel’s theory (Chinchwade 
et al., 2014). 
 

Wenzel’s theory explains the hydrophobic quality by following equation (2):  

𝒄𝒐𝒔ø𝒆𝑾 =  𝒓 𝒄𝒐𝒔 ø                  (𝟐) 

Where, 

W refers to Wenzel theory 

r refers to surface roughness 

∅e stands for the equilibrium contact angle on the smooth flat surface. 

∅e stands for the contact angle as the effect of surface chemistry. 

The surface roughness factor r is equal to 1 for a smooth surface. When the r is greater than 1 for 

a rough surface, the surface ratio on the flat and rough surface is equal and the equilibrium 

condition will be maintained. The contact angle of the water droplet sits on the surface. If the 

value of the contact angle is less than 90°, the surface roughness is much less likely to show the 

wettability or hydrophilic property of the surface. When the value of the contact angle is greater 

than 90°, it means the surface roughness clearly shows the non-wettability or hydrophobic 

property of the surface. The surface roughness has some rough grooves to trap the water droplets 

or air bubbles, which contributes to the non-wettability of the surface. While this theory considers 

the surface roughness r and the effect of surface chemistry ∅e, the wetting behaviour of the water 

droplet in a different situation has been described by Cassie Baxter  (Li, 2017). 
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2.10.2.3 Cassie Baxter’s theory 

In 1944, Cassie and Baxter explained the interface of a liquid surface, which consists of two 

phases, namely the solid-liquid and liquid-vapour interfaces. The contact angle of two states is 

explained in the equation (3). Two interfaces of a liquid surface show the bridge formation of an 

air gap or pocket between the water droplet and the solid surface. The water droplet does not 

touch the surface and thus there is no surface roughness. The scenario of the contact angle 

between an air gap and the flat surface is shown in Figure 2-5, and the sum of all contact angle 

(Ө1, Ө2) and surface fraction (f1, f2) between the two liquid-vapour phases are described as 

below.  

𝒄𝒐𝒔 Ө𝒄  =  𝒇𝟏 𝒄𝒐𝒔 Ө𝟏 +  𝒇𝟐 𝒄𝒐𝒔Ө𝟐             (𝟑) 

 

 
Figure 2-5: The solid, liquids, and vapour phase according to Cassie Baxter’s Theory (Li, 
2017). 
 

The cos Өc shows the contact angle of Cassie and Baxter’s equation. This equation applies to the 

liquids-vapour surface fraction with (f) and also the same solid fraction donated with (1-f) on the 

wetted surface by the liquid droplet (Li et al., 2007). The surface fraction of vapour (f) and the 

contact angle was cosӨ. The surface fraction of liquid-solid is (1-f) and the contact angle is 

cos180° on the flat surface. The surface fraction from vapour to solid surface can be calculated by 

equation 2 and the resulting angle represents on the wetted surface. The surface fraction of liquid 

to solid surfaces, as denoted by (1-f ) on the flat surface with the contact angle of 180⁰ as 

described in the equation below, is used to calculate the resulting contact angle of the wetted 

surface. 
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𝑐𝑜𝑠Ө𝑐 =   𝑓 𝑐𝑜𝑠Ө +  (1 −  𝑓 ) 𝑐𝑜𝑠180⁰ 

𝑤ℎ𝑒𝑟𝑒 , 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑛𝑔𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑙𝑎𝑡 𝑖𝑠 𝑐𝑜𝑠180⁰ =  1 

𝑐𝑜𝑠Ө𝑐 =   𝑓 𝑐𝑜𝑠Ө +  (1 −  𝑓 ) 

                 𝑐𝑜𝑠Ө𝑐 =  𝑓 𝑐𝑜𝑠Ө +  𝑓 − 1 

The value of surface fraction (f) ranges from 0-1. When the value of f is 0 it means the water 

droplet does not touch the surface at any time. If the value of f is 1, it means the water droplet just 

fills all grooves on the surface with a completely wetted surface just like the case of a flat surface. 

So, the first situation with the surface fraction of zero is to explain the small area of water 

droplets contacting the solid surface and water droplets easily rolling over the surface, according 

to the Cassie and Baxter’s theory. The contact angle is increased for the bridge formation with the 

increased air gaps between the two stages, so that water droplets easily roll over the surface. 

2.10.2.4 Transition between Cassie and Wenzel States 

The combined equation of Wenzel and Cassie and Baxter shows the uneven surface and defines 

the high hysteresis or sliding contact angle of water droplet rolling off in both directions. 

However, the measurement of the contact angle was not determined due to the water droplet 

sticking to the uneven surface and filling the air gaps (Kusumaatmaja and Yeomans, 2007). 

According to Wenzel, the water droplet is resting on an uneven surface, showing a contact angle 

greater than 90°. It means the water droplet sticks to the surface without penetrating inside the 

substrate. Cassie and Baxter’s theory can be used to explain the slippery behaviour of water 

droplets, namely their rolling off on the surface. 

The slippery behaviour demonstrated the rolling off the property of water droplets on the surface. 

When the water droplets stay in between the air bubbles and surface grooves then the water 

droplets adhere on the surface, regardless of the contact angle for an uneven surface. This theory 

is not a successful way to measure the surface roughness, fraction and contact angle of multi-

layers. Cassis and Baxter explained the bridging phenomenon of holding water droplets on the 

top surface. However, Wenzel’s theory explained the transition state of external energy being 

converted into electrical or vibrational energy or the transferring of water droplets from one phase 

to another phase (Roach et al., 2008). A superhydrophobic surface has a lot of interesting 

features, both in academia and from an industrial point of view due to its resistant properties. 

Recently, progress has been made in the preparation, theory, modelling and application 

techniques of superhydrophobic surfaces with fluoro-polymers. The main direction of the 
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superhydrophobicity theory was to explain the science in different ways. Wenzel and Baxter and 

Cassie’s theory explained the different conditions of global or free energy calculation and 

moulding dimension structure. Boltzmann explained the theory of 3D system and modelled the 

height of energy barrier transferring between the one places to another place or spreading out 

over the large surface area. Researchers described the metastable and chemical pattern of 

superhydrophobicity with the help of calculation methods (Kusumaatmaja and Yeomans, 2007, 

Li and Amirfazli, 2007, Marmur, 2004). Scientists are focusing further on extended theories, 

effects, features, factors and surface functionalization process with different types of materials 

(Reyssat and Quéré, 2009, Gao and McCarthy, 2007, Latthe et al., 2014, Whyman et al., 2008, 

Kwon et al., 2009).  

For textile fabrics, there are four types of hydrophobic surface that provide different repellency 

properties such as an ultra-hydrophobic, superhydrophobic, oleophobic and the omniphobic 

surface (Chinchwade et al., 2014). A hydrophobic surface means the contact angle is greater than 

90° to control the resistance to water with no penetration occurring inside the fabric. An ultra-

hydrophobic surface means the contact angle is between the ranges of 120°-150°. A 

superhydrophobic surface has three kinds of a special surface for which it provides resistance to 

oil, water and chemical. A superhydrophobic surface means the contact angle is in between the 

range of 150°-170°. An oleophobic surface means the excellent resistance to all kinds of oil or 

oily nature of chemicals, such as n-Hexadecane, n-Heptane and n-Decane. An omniphobic 

surface means the excellent resistance to all chemicals, namely acetic acids, sodium hydroxide, 

dimethylformamide, n-hexane, butadiene and isopropyl alcohol etc  (Pan et al., 2012). 

2.11 Application of the superhydrophobic coating 

The superhydrophobic surface was successfully produced using artificial methods of surface 

modification. Surface modification is a very helpful method to enhance surface roughness with a 

high contact angle. Superhydrophobic surfaces were prepared by approaches with two different 

categories for different practical applications. One category is the top-down approaches such as 

lithographic, plasma technology, templation, sublimation and sol-gel methods. The other 

category is the bottom-up approaches include chemical deposition, layer-by-layer (LBL), 

covalent bonding, colloidal assembles, electrospinning and electrospraying.  
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2.12 Top-down approaches 

2.12.1 Lithography 

Lithography involves a number of imprints of repeated patterns of the moulding process, and it 

has a light irradiation layer with desired features of coating but is also photo-resistant. This 

approach is based on long life usage of silicone materials, and the heat and pressure are used to 

make the small design on the layering of thermoplastic polyurethane polymers. Nano-imprint 

lithography is used in this process to make the master design.  The lithography approach involves 

a superhydrophobic surface that is produced by the etching step of salinization (Li, X-M, and 

Reinhoudt & Crego-Calama 2007). 

2.12.2 Plasma technology 

The plasma technology is used for the preparation of superhydrophobicity, water repellency, 

conductivity and dye-ability of the fabric surface. Plasma technology is eco-friendly, using low 

input energy and dry etching techniques. Surface roughness can be easily obtained with a high 

water contact angle of fabrics. Plasma techniques depend upon the different types of gas 

including tetrafluoro-methane, ammonia, and argon or oxygen, and different vacuum mode for 

low and high pressure (Dubas et al., 2006). Plasma treatment requires specific equipment and is 

not suitable for bulky treatment. 

2.12.3 Templation 

The template approach is defined as replicating of moulding and dissolution of the template. The 

template approach provides the lotus effect with natural materials. Templates are used to create 

the polymeric coating with a superhydrophobic surface. The template is used for a positive and 

negative replicating of micro or nanostructure, resulting in the natural lotus effect with the water 

contact angle of 160⁰. The template produces the nanotexture of mountains and repetition of 

hierarchical structure. But this negative repetition shows the contact angle of 110° while for the 

positive repetition it shows the contact angle of 160°. The difference in the contact angle is due to 

the different roughness of the surface of fibres, and it may result in different oil repellency on the 

fabric surface (Kim, 2008). 

2.12.4 Sublimation 

Sublimation is the chemical process of solid materials directly converting into gas formed 

without the liquid state. Sublimation is helpful in producing lightweight structure of surface 

roughness to enhance the fabrication of superhydrophobic surface on silica films. The 



 

29 

sublimation of aluminium acetylacetone was applied during the calcination process to create a 

transparent film with the superhydrophobic surface. Fluoro-alkyl polymeric coating by 

sublimation also enhances the surface roughness of fabrics (Zhang et al., 2008). 

 

2.13 Bottom-up approaches 

2.13.1 Sol-gel method 

The Sol-gel method is an approach to conversion of monomers into colloidal solution (sol) that 

transfers into nanoparticles (gel). This sol-gel preparation is time-consuming and expensive. The 

method of sol-gel combining with electrospinning was widely used in the continuous preparation 

of nanofibres and textiles. The sol-gel approach involves the hydrolysis of nano-oxides in the 

presence of a large amount of solvent. It is helpful in the preparation of gel formation of ortho-

silicate. It is used on its own or to be combined with a special filler of silica nanoparticles. The 

sol-gel approach was also used to enhance the surface of fabrics by integrating a functional group 

with a high contact angle. Sol-gel method is not feasible to be the lining of a protective suit 

(Brzeziński et al., 2009, Hikita et al., 2005, Ramaseshan and 2007, Latthe, 2009). 

2.13.2 Chemical deposition 

A Chemical deposition approach involves the chemical reaction with inorganic metals on the 

substrates, resulting in the deposition of very thin films on the substrates. The inorganic metals 

such as Zns, CdS, CuSe and InS are commonly used as the depositing materials. Chemical 

deposition is described using different terminologies, such as chemical bath deposition (CBD), 

chemical vapour deposition (CVD) and electrochemical methods (Zimmermann et al., 2008). 

This technique is used to create nano-pins, nano-tubes and nano-rods. 

2.13.3 Colloidal assemble 

Mono-dispersion of polystyrene beads creates a bead-like structure on the substrate by the spin 

coating method. This structure can also be controlled by oxygen plasma techniques that are 

suitable for laboratory condition. The polystyrene and silica nanoparticles were involved to create 

the hierarchical structure of surface roughness (Wang et al., 2006). The colloidal crystal film of 

polystyrene–n-butyl acrylic acids can be well tuned to control the wettability of fabrics by the 

chemical composition methods. These techniques are very cost-effective for the textile sector. 
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2.13.4 Layer-by-layer deposition 

Layer-by-layer techniques were introduced by Decher (Decher and Schmitt, 1992), which 

involved the layering on a substrate. Layer-by-layer techniques make it easy to control the 

thickness of the coatings and to increase the electrostatic charges such as polyanion and 

polycation between two layers. Layer-by-layer deposition is useful for cotton fabrics with 

additional properties including self-cleaning, hydrophobicity, water repellency and antibacterial 

activity. The surface roughness of a substrate is usually created by the nanoparticle layers, and 

the interaction between the first layer and the substrate was usually activated by positive and 

negative ions. 

2.13.5 Covalent layer-by-layer assembly 

Layer-by-layer is an assembly approach that uses covalent bonds to form the multilayer grafting, 

which is more durable, stable and practical; it is a versatile way to construct thin-film with nano-

composition on the surface of substrates. This technology is popular because it is simple and it 

allows hydrogen to the bond between the substrate and materials. It is most commonly used to 

fabricate an interface involving a multi-layer ionic assembly of polyelectrolytes. However, some 

ionic assemblies are of limited applicability because of the weak interaction between the substrate 

and the layers. The chemical reaction between two layers is very important and it affects the 

durability and stability of the coating as well as the feasibility of the process. Usually, the 

functionalized nanoparticles are used in the process. After layer-by-layer assembly, the outer 

surface usually contains residual functional groups, which can react with low surface energy 

agents by using covalent bonding (Yüksekkaya, 2008, Xue et al., 2010). 

2.13.6 Electrospinning 

Electrospinning is a common method for the preparation of nanofibres. The process consists of an 

extruder nozzle, a ground collection plate and the electrical bias to produce electrospun films 

with the lotus effect. This process has been applied to the fabrication of superhydrophobic films 

from polymers along with the evaporation of the solvent. This technique requires polymer 

materials with a lower molecular weight and with the hydrophobic and oleophobic surface. 

Electrospinning method can be used to optimise the rough surface together with other methods of 

chemical vapour deposition and sol-gel methods (Li et al., 2007). 
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2.14 Textile materials 

Cotton fibres are the most favoured and widely used fibres in the textile industry. Cotton fibres 

are derived from plants. The cotton plants give us fruit is called bolls. After the mature crop of 

cotton are picked and ginned and separate into the fibre known as cotton lint. Cotton lint is used 

in the same way as seed, stalks and seed hulls. Unfinished cotton is used as greige fabrics. India 

was cultivated in ancient times for cotton fibres. Cotton fibre contains the composed structure of 

the long chain of cellulose molecule. It involves binding force to combine the whole structure 

firm and straight. Unite of the cellulose are repeated in the cotton fibres as shown in Figure 2-6. 
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Figure 2-6: Chemical structure of cotton (Perincek et al., 2007). 
Cotton fibres are also used an ideal production in denim jeans, bed sheets, t-shirt, shirt, nappies, 

socks, towel, tarpaulins, tent and pharmaceutical and medical supplies and astronaut’s flight 

space suits. Cotton fibres are the most popular and famous fibres in the textile industry used as a 

wide application. A number of studies have described the water repellency and superhydrophobic 

surface so as to improve the wettability of cotton fabrics (Deng et al., 2010, Li et al., 2007, Roe 

and Zhang, 2009, Ramaseshan and 2007). 

 

2.15 Summary 

The previous study has contributed to the surface science in terms of chemical protection. With 

the advanced materials being employed and novel fabrication techniques being developed, 

today’s chemical protective textiles aim to be more versatile protective and durable without 

compromising comfort. This research bases on the safe polymeric coating of WPU, TPU and 

Rubber membrane with the combination of repellents and the superhydrophobicity on the surface 

of fabrics. The alternative compounds of fluoro-polymers such as oleophobic, phobol and 

trimethoxysilane and polydimethylsiloxane were used as repellents.  
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The superhydrophobic surface was developed by the layer-by-layer methods via knife-pad-knife-

cure coating. The superhydrophobic surface was produced on the two coated layers with the help 

of cross-linking agents on cotton fabrics, resulting in a low surface tension on the cotton fabric as 

well as enhanced resistance to water, oil and chemicals with altered comfort properties. 
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3 MATERIALS, METHODOLOGY 
AND MEASUREMENTS 

Chapter 2 described the background and literature review on chemical protection. This chapter 

explicates the design of experimental work to follow the aim and objectives of this research (see 

Chapter 1). In this chapter, information about the materials, methods of coating and testing 

evaluations are detailed. 

 

 

3.1 Materials 

To study of cotton fabric with different of silane compounds, nanoparticles and different coating 

methods to produces the superhydrophobic surface. The contact angle, laundering and rubbing 

fastness properties of fabric were measured with different techniques. The water repellency of 

cotton fabric was improved to the behaviour of resistance for water, oil, and stain. The challenge 

of the durability of cotton fabric still is present at this time. The treatments with polyurethanes 

coating with repellents found the better result as for laundering, oil and chemical resistances for 

fabrics as compare to the fluoro-polymers. The achievable result depends upon the types of 

coating and factors are very important to retain the water, oil and chemical resistance of the 

superhydrophobic surface of the fabric. All the specification of chemicals and materials as 

described in Table 3-1. 
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Table 3-1: Specification of materials, chemicals and suppliers. 

 

 

 

 

 

Materials Supplier 
Binder 
ICB Tubicoat Fix iso-cyanates CHT Pty Ltd, Australia 
Invadine PBN, Kinttex ®  Huntsman Singapore Pty Ltd 
Isys HPx CHT Pty Ltd, Germany 
Membrane 
Silastic 1941-200P (LSR (part-A+B), Rubber 
membrane Dow Corning Europe S. A, Beligum 

Thermoplastic polyurethane 
 (TPU, Texalan -598-A) Pacific Urethanes Pty Ltd, Australia 

Tubicaot I665 (WPU Membrane) CHT Pty Ltd, Australia  
Repellent 
Fel, Phobotex Rsh,  Huntsman Singapore Pty Ltd 
Olephobol® CP-C Huntsman Singapore Pty Ltd 
Phobol® CP-C  Huntsman Singapore Pty Ltd 
Trimethylmethoxysilane (TMMS) Sigma Aldrich Pty Ltd, Australia 
Xiameter (FBL-O563) PDMS-TMS Dow Corning Pty Ltd, Australia.  
Chemicals 
Acetic acid Ajax Fine. Chem PTY. Ltd Australia 
Acetone Ajax Fine Chem Pty Ltd Australia 
Acetonitrile BDH Limited Poole, England.  
Butadiene BDH Limited Poole, England.  
Dichloromethane BDH Limited Poole, England.  
Dimethylformamide Merck, Germany 
Isopropyl alcohol BDH Limited Poole, England.  
Methanol Honeywell International Inc. USA  
Mineral oil Johnson and Johnson Pacific Pty Ltd, Australia 
N-decane Sigma Aldrich Pty Ltd, Australia 
N-Heptane RCL LAB SCAN Limited, Australia  
N-hexadecane Sigma Aldrich Pty Ltd, Australia 
N-hexane Ajax Fine. Chem PTY. Ltd Australia 
Sodium Hydroxide Chem Supply Pty Ltd, Australia.  
Sulphuric acid (98%) RCL LAB SCAN Limited, Australia 
Tetrahydrofuran BDH Limited Poole, England.  

Toluene Rhone May & Baker Pronalys Chemicals Pty 
Ltd, Australia 



 

35 

3.1.1 Materials specification 

All the fabrics used in this work are summarised in Table 3-2.  

Table 3-2: Specification of fabrics. 
Materials Cotton  Polycotton Cotton  
Fibres 100% Cotton 80/20 Cotton /Polyester 100% Cotton 

Construction Plain 3/1Twill Plain 

Fabric thickness (mm) 0.56 0.58 0.34 

Thread density (Warp/cm) 33 33 25 

Thread density (Weft/cm) 15 20 25 

Fabric weight (g/m2) 150  180  160  

 

3.2 Methodology 

The method that used to coat fabrics is summarised here while specific recipes will be detailed in 

Chapter 4-7 accordingly. 

3.2.1 Scouring 

The cotton fabric was wetted by 0.01% (w/v) Triton X-100 solution in water for 30 minutes and 

scoured by caustic soda at 90°C for 1 hour. The fabric was rinsed with warm water and then with 

cold water, followed by an overnight hanging dry.  

3.2.2 Pad batch methods 

The Ernst Benz Pad machine was used to coat the cotton fabric. Two parallel rollers, one moving 

and the other stationary, were used to pad the fabric from both sides. The fabric passed down 

through these rollers into the liquid and then comes back up through the rollers (see Figure 3-1). 

The pad-batch method applies pressure to the fabric which reduces the thickness of the fabric. 

The pressure applied to the fabrics was around 8 kPa/cm. 
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Figure 3-1: Pad batch process of fabric. 
 

The fabric was weighted before and after the padding to calculate the wet pick up percentage. 

The formula is shown below: 

          Pick up% =   Rolled weight of the fabric – Dry weight of the fabric 
       Dry weight of the fabric 
 
3.2.3 Knife edge coating 

The scoured cotton fabric was subject to a three-step using the coating as Pad (Binder)–Knife 

(Membrane/polymers)–Pad (Repellent) methods. Knife coating machine is a simple technique 

which is applicable for a single layer coating of the textile substrate. A vertical sharp knife blade 

scrapes over the stretched fabric in a frame. The coating paste is applied to one side and the blade 

spreads the paste over the fabric, see Figure 3-2. The blade was 0.01 mm from the fabric. 

3.2.4 Drying and curing 

Drying is a simple method to dry the fabrics at room temperature in the air or laboratory oven at 

60°C for 30 minutes. In drying methods, the liquid portion of the solution is evaporated from the 

surface of fabrics. In the drying process, the liquids are converted into vapour and evaporated 

from the surface of fabrics. Sometimes this creates a problem with humidity and temperature of a 

laboratory. So, the best way is dry in a laboratory oven. The curing unit was used to maintain a 

standard condition for the environment, with the temperature at 150°C and 3 minutes to dry the 

fabric. This curing unit is very helpful for the fixation of the coating, as well as straightening the 

fabric (Figure 3-3) 
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Figure 3-2: Knife edge roll over coater. 
 

   
Figure 3-3: Laboratory oven (a) and curing unit (b) to dry the coated fabric. 
 

3.3 Measurements and characterization 

3.3.1 Thickness and GSM measurement 

The thickness of the coating was calculated using a thickness tester (British Indicators Ltd, St. 

Albans) according to the AS 2001.2.14 method (Australia Standard 1989). The actual thickness 

of fabric surface was measured both before and after coating. The thickness dial gauge was 

zeroed. The anvil and the foot were in contact with the fabric tested for 10 seconds and the 

thickness was measured on the dial gauge. Each coated fabric was tested ten times at different 

locations on the fabric and the average was calculated from the ten readings to find the thickness 

of the fabric coated surface. 

(a) (b) 
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The gram per square meter (GSM) cutter (Zweigle) test was used to calculate the weight of the 

fabric according to the Australian Standard AS-2001.2.13 (Australia Standard 1987). The average 

weight was calculated using ten test samples of both the uncoated and the coated fabric. 

Summary of all test method was available in Table 3-3. 

 

Table 3-3: Summary of test methods, equipment and manufacture details. 
 Test Method Equipment 

1 Contact Angle 
measurements 

Sessile Drop 
Method 

Contact angle system  
Data Physics, OCA 20, Germany 

2 FTIR spectroscopy - FTIR spectrophotometer  
Perkin Elmer 300, USA 

3 SEM image - FESEM, Quanta™-200, UK 
4 Fabric conditioning AS 2001.1-1994 Conditioning cabinet 

5 Thickness AS 2001.2.14-1989 Thickness tester  
British Indicators Ltd, St. Albans 

6 GSM AS-2001.2.13-1989 GSM cutter, Zweigle, Germany 
7 Crock fastness AATCC 08-2013 Crock meter, Toyoseiki, Tokyo, Japan 
8 Laundering fastness AATCC 61-2013 Launder-o-meter, SDL Atlas, UK 

9 Air permeability test AS 2001.2. 33-
1990 

Air permeability tester, M021S, SDL 
Atlas, UK 

10 Pilling resistance test ISO-12945- 2-2000 Martindale Pilling Tester, SDL Atlas, UK 

11 Fabric stiffness test ASTM D1388-14-
2012 

Shirley stiffness tester, John Casartelli 
Limited, England 

12 UV irradiation test ASTM G155-2012 Weather-o-meter, Ci 4000, SDL Atlas, UK 

13 Thermal and water 
vapour resistance ISO 11092:1993(E) Sweating Guarded Hotplate (SGHP), SDL 

Atlas, UK 

14 Moisture management 
test (MMT) 

AATCC TM 195-
2009 

Moisture Management Tester, SDL Atlas, 
UK 

15 Grab test ASTM 1682-1988 Tensile strength tester, INSTRON, USA 

16 Hydrostatic pressure 
test AS 2001.2.17-1987 Hydrostatic pressure tester, IDM 

Instrument Pty Ltd, Australia 

17 Water repellency spray 
test AATCC 22-2010 Spray rating tester, Toyoseiki, Tokyo, 

Japan 

18 Aqueous liquid 
repellency test AATCC 193-2012 no Equipment required 

19 Oil repellency test AATCC 118-2013 no Equipment required 
20 Chemical resistance test - no Equipment required 
21 Soil repellency test AATCC 130-2014 no Equipment required 

 

3.3.2 Water contact angle measurements 

The water contact angle was measured using a contact angle system (Data physics, CA20, 

Germany) at room temperature. A droplet size of 4 microlitre of ultra-pure water from a Milli-Q 

filtration system was used to evaluate the contact angle. A fixed needle was mounted 10 mm 
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above the tilting table on which the fabric sample was placed. The syringe was placed so that a 

droplet from the needle contacted the substrate. This allowed for the transfer of the droplet from 

the needle tip onto the surface of the fabric. A photo was taken to calculate the contact angle by 

Sessile Drop Method. The contact angle values were averaged from six readings taken at 

different places on the fabric. 

3.3.3 FTIR spectroscopy 

ATR FTIR spectroscopy was used to determine the chemical changes of uncoated and coated 

surface of the fabric. An attenuated total reflection infrared spectroscopy (ATR-FTIR) spectrum 

was reported for each of the samples using a spectrophotometer (Perkin Elmer 300, USA) with a 

diamond crystal. A single layer of fabric was placed on the ATR crystal and then the pressure 

clamp was lowered to provide good contact between the sample and crystal. The scanning ranges 

of spectra were 4000-650 cm-1. 

3.3.4 Scanning electron microscope 

Field emission scanning electron microscope (FESEM, Quanta™-200, UK) was used to study the 

surface morphology of the coated and uncoated fabrics. The instrument was set at a pressure of 

0.34 Torrs and voltage of 10keV and the analysis was conducted at room temperature. The 

samples were prepared with sputter coating (IMBROSE, Spi A20014, Australia) using a thin 

layer of gold particles. 

3.3.5 Crocking fastness test 

A crock meter (Toyoseiki, Tokyo, Japan) was used to determinate the durability to rubbing of the 

coated surface of the fabric. Specimen sizes of 130 mm x 40 mm were prepared in both the warp 

and weft directions for wet and dry testing. The samples were tested for 10 complete turns at the 

rate of one turns per second to slide the finger back and forth 20 times, in accordance to AATCC 

08: 2013. A crock meter test cloth was used to determine the crocking fastness with a downward 

finger force of 9 N (American Association of Textile Chemists and Colorists, 2013a). 

3.3.6 Laundering fastness test 

Accelerated laundering tests were performed in accordance with AATCC 61: 2013 (1A) cycle. 

The fabrics were washed in an SDL Atlas Launder-o-meter at 30°C along with 10 steel balls and 

AATCC Reference Detergent that did not contain any optical brightener. One washing cycle 45 

minutes is approximately five typical commercial launderings. Each specimen was twice hand 

rinsed with deionized water then dried in an air circulating oven for 30 minutes. All samples were 
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conditioned based on ISO 139 at a temperature of 20 ± 2°C and a relative humidity of 65 ± 4% 

prior to testing (American Association of Textile Chemists and Colorists, 2013b).  

3.3.7  Air permeability test 

To provide an indication of the breathability of the coated fabrics, the fabrics were tested for air 

permeability. Air permeability is defined as the volume of air in millilitres that passes through 

100 mm2 of a fabric at a pressure difference of 10 mm head of water in one second. Airflow of 

coated and uncoated fabrics was measured ten times with the air permeability tester (SDL Atlas 

Pty Ltd, England) using AS-2001.2.33: 1990 standard (Australia Standards, 1990). During the 

test, the specimen is clamped over an air inlet of the apparatus and air is sucked through it by 

means of a pump. The air valve is then adjusted to give a pressure drop across the fabric of 10 

mm head of water and the airflow is then measured using a flow meter. Ten specimens were 

tested and the mean air flow in cubic centimetre per square centimetre per second was calculated 

from the ten specimens reading for average results. The calculation of the air permeability of the 

fabric by used this formula: 

Air permeability (L) = Rate of air flow of specimen (V) 

  Area of fabric (A) 

Where 

L = air permeability, in cubic centimetres per square centimetre second 

V = rate of air flow, in cubic centimetres per second 

A = area of fabric under test, in square centimetres 

 

3.3.8 Pilling resistance test 

Pilling refers to the formation of surface dust balls that mix up with fibres and shift into pills. 

These pills are created during wearing and washing process in which the fabrics are affected with 

frictional force. The friction force is the cause of pilling of fabrics. Fabrics defects are usually 

judged by Martindale Pilling Tester (SDL Atlas international, England). The assessment of 

fabrics followed the pilling methods ISO 12945-2: 2000 (International  Standards Organization, 

2000). The specimens were prepared in the circular shape with help of a cutter, from both warp 

and weft directions. The specimen and foam were fixed in the given upper plate and mounted 

properly into the downward direction. The upper plate was then put in the instrument holder and 

was fixed into the centre of the lower plate. The yoke holder was then put on the top side of the 
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lower plate. The pressure plate at 9 kPa was loaded to stop the vibration of the upper plate at the 

start of the test. The specimen was subject to free direction rubbing for 50, 500, 1,000 and 2,000 

cycles. After the completion of abrasion cycles, the durability of the coating was measured 

accordingly. The standard photographs and rating were done to assess the pilling resistances of 

fabric as authorized by ISO (Table 3-4). 

 

Table 3-4: ISO Standard test for pilling resistances. 
Rating Surface evaluation 
5 No pilling 
4 Slightly pilling 
3 Moderate pilling 
2 Severe pilling 
1 Very severe pilling 

 

3.3.9 Fabric stiffness test 

The fabric stiffness is defining as the function of elastic or flexibility modulus against its own 

weight. The area of bending fabric is known as bending stiffness or flexural rigidity. Shirley 

stiffness tester (John Casartelli Limited, England) was used to conduct the stiffness rest according 

to the standard ASTM D1388-14 (American Society for Testing and Materials, 2012b). 

Cantilever test is widely used to determine the fabric stiffness in the practical application. All 

samples were conditioned based on ISO 139 at a temperature of 20 ± 2 oC and a relative humidity 

of 65 ± 4% prior to testing. Four specimens with the size of 25 mm x 75 mm were prepared in 

both the warp and weft directions. The specimen was placed along the horizontal direction on the 

flat surface of the stiffness tester with its edge matched with right-hand side of the tester marked 

as zero. The slide was then slightly moved for the specimen to touch the knife edge at an angle of 

41.5o. The overhanging length of fabric was recorded as the bending length, and flexural rigidity 

was calculated from the bending length and the fabric weight accordingly. 

Fabric stiffness is measured the bending length and calculated with Flexural rigidity by using the 

formula:  

G = 1.421 x 10-5 x W c3 

Where: 

G = flexural rigidity, μjoule/ m, 

W = fabric mass per unit area, g/m2, and 
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c = bending length, mm. 

And the units of the constant (1.421 × 10 –5) are mg/cm. 

Flexural rigidity is calculated for warp and weft ways of fabrics and over all flexural rigidity is 

calculated as geometric mean those two values. Overall flexural rigidity (Go). 

Go= (Gw. Gf)½ 

 

3.3.10 UV irradiation resistance test  

The ultraviolet (UV) irradiation resistance test was used to analyze the effect of UV light 

exposure on the coating. UV irradiation reduces the end life of garments and causes colour 

changes of the coating. UV resistance was performed on a Weather-o-Meter (Ci 4000, SDL Atlas 

Pty Ltd, England) according to the standard ASTM G155 (American Society for Testing and 

Materials, 2012a). A Xenon arc lamp was used to expose the fabric to high-intensity UV rays. 

The uniform exposure of UV radiation source was used to ensure the UV flux in the environment 

chamber at 340 nm wavelength. The specimen was cut into a rectangular shape with the size of 

20 cm x 5 cm for each fabric in both warp and weft directions. Specimens were exposed to UV 

light at 40oC and relative humidity 50% (RH) for 10,080 minutes. The amount of UV light the 

specimens were exposed to was 0.24 ± 0.01 W/m2 for seven days. The different time intervals 

including 1, 3, 5 and 7 days were used to measure the resistance of UV, fading, and damages of 

the surface of the coating. 

3.3.11 Thermal and water resistance test (Sweating Guarded Hotplate) 

Thermal resistance can be measured in the process of heat and moisture transfer between the skin 

and the fabric. Heat resistance of coated and uncoated fabrics was measured three times on the 

sweating guarded hotplate (SDL Atlas Pty Ltd, England) using ISO11092:1993 (E) standard 

(Organization, 1993). Three specimens were cut into 30 x 30 cm of each fabric and precondition 

required at the standard environment at 20°C with 64% RH for twenty-four hours. Calibration 

was required for the bare plate and gets the three reading for standard temperature and humidity. 

After conditioning, the specimen was inserted on the measuring plate with face-up side. The heat 

leakage was controlled by using masking tape to cover all four sides of the specimen’s edge and 

remove all air bubbles or air gaps between the specimen surface and measuring plate. Thermal 

resistances were measured of the uncoated and coated fabrics in (dry condition) of each sample 

with three readings. Thermal resistances measured the energy required to maintain the constant 

temperature of 34°C of the measuring plate. So, the energy value is defining the temperature 
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differences between the measuring plate surface and surrounding air circulation were used to 

determine the thermal resistances of fabric. Set temperature of measuring unit (Tm) was 34°C, air 

temperature (Ta) was 20°C and relative humidity (RH) was 64%, the air circulation speed was 

1m/s. Thermal resistances were measured by using the formula was given below: 

Rct = (Tm-Ta). A - Rcto 
  H - ∆HC 

Where 

Rct = Thermal resistances of fabric [m2 K/W] 

Rcto = Constant bare plate measurement of thermal resistances 

A = Area of the surface of measuring plate in 0.03 m2 

Ta = Temperature of the air circulation in the chamber in degree Celsius 

Tm = Temperature of the measuring plate in degree Celsius 

H = Heating power supplied to the measuring unit in watts to maintain the temperature of 

measuring plate 

∆HC = Heating power for the measurements of the thermal resistances Rct 

 

3.3.12  Water vapour resistance test 

Water vapour resistance (Ret) is required to estimate the water vapour pressure of the top and 

bottom layer of the coated fabrics. Water vapour resistances of coated and uncoated fabrics were 

measured three times with the sweating guarded hot plate (SDL Atlas Pty Ltd, England) using the 

ISO11092: 1993 (E) standard (Organization, 1993). The required power was to maintain the 

temperature of measuring plate with 15 minutes. Test condition required to maintain the 

temperature of 34°C and humidity with 30% RH. During the test required the airspeed was 

circulation 1m/s in the chamber. 

Ret = (pm-pa). A – Reto 
  H - ∆He 

Where 

Ret = Water vapour resistances of fabric [m2 Pa / W] 

Ret0 = Constant bare plate measurement of water vapour resistances 

A = Area of the surface of measuring plate in 0.03 m2 

pa = water vapour partial pressure in Pascals at (Ta) Temperature of the air circulation in 

the chamber in degree Celsius 

pm = Saturation water vapour partial pressure in Pascals at (Tm) Temperature of the 

measuring plate in the chamber in degree Celsius 
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H = Heating power supplied to the measuring unit in watts and to maintain the 

temperature of measuring plate 

∆He = Heating power for the measurements of the water vapour resistance Ret 

3.3.13  Moisture management properties (MMT)  

The moisture management property of fabrics was measured on the SDL Atlas moisture 

management tester (MMT), in accordance with the standard AATCC-TM-195 (American 

Association of Textile Chemists and Colorists, 2012b). Five specimens 80 cm × 80 cm were 

prepared to do the test under the standard condition. A saline solution was penetrating from the 

top side to the bottom side of the sample in the test, while the wetting time, wetting radius, 

spreading time, absorption and overall moisture management capacity (OMMC) were reported on 

the associated computer. 

3.3.14 Grab test 

The mechanical properties of the coated fabric were measured on a tensile strength tester 

(INSTRON, USA) according to the ASTM 1682 Grab Test (American Society for Testing and 

Materials). Before testing, the coated fabrics were conditioning at 20 ± 2°C and 64 ± 2% RH for 

4 hours. Samples with the size of 100 mm wide x 140 mm long were used and the central piece 

24 mm of fabric was stressed. The fabric marked on both side of edge 37 mm and clamping 

between the jaws. The gauge length of coated fabrics was about 74 mm, and the speed was set at 

20 ± 2 seconds.  The central piece of fabric was under stress to measure the strength of fabrics. 

3.3.15 Hydrostatic pressure test 

Hydrostatic pressure tester (IDM Instrument Pty Ltd, Australia) was used to measure water 

resistance of the coated fabric in accordance with (Australia Standard, 1987). To carry out the 

test, the hydrostatic pressure was applied at three different points on the fabric to measure the 

leakage or resistance of water on the fabric. To conduct this, three fabric specimens of coated 

fabrics were cut in the size 200 mm x 200 mm. These specimens were then conditioned at 21 ± 

2°C with 64 ± 2 RH for at least 4 hours before testing. After this these specimens were subjected 

to hydrostatic pressure in the range of 60-200 kPa. 

3.3.16 Water repellency test 

The Water repellency test (Toyoseiki, Tokyo, Japan) was performed in accordance with AATCC 

22: 2010 to measure the water resistance of the coated fabrics (American Association of Textile 

Chemists and Colorists, 2014). Before testing, the coated fabrics were conditioning at 20 ± 2°C 

and 64 ± 2% RH for 4 hours. Samples with the size of 180 mm x180 mm were secured between 
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the test hoops then 240 millilitre of distilled water was sprayed onto the surface of coated fabric 

over 30 seconds. Each sample was then spray rated using the international standard chart for 

spray rating, see Table 3-5. 

 

Table 3-5: AATCC Standard spray test ratings. 
Rating Description 
100 (ISO-4) No wetting or non-sticking of the upper surface 
90 (ISO-4) Slightly random sticking or wetting surface at sprayed points 
80 (ISO-3) Wetting of the upper surface at sprayed points 
70 (ISO-2) Partial wetting of upper surface at sprayed points 
50 (ISO-1) Completed wetting of the sprayed surface 
0 Wetting of the whole upper and lower surface at sprayed points 

 

3.3.17 Oil repellency test 

The oil repellency test was performed to measure the oil repellency of the coated fabric in 

accordance with AATCC 118: 2013 standard (American Association of Textile Chemists and 

Colorists, 2013c). Three specimens were cut in the size of 2 mm x 2 mm square and were placed 

in petri-dish. Three 10.0 microlitre drops of the chemicals were placed on the three-fabric 

specimen. Three types of oil, namely n-hexadecane, n-decane, and n-heptane, were used to do the 

test. The chemical droplets on the fabric were observed after 300 and 600 seconds at an angle of 

34°. The grade was recorded if the droplet was repelled otherwise a zero was recorded if it 

penetrated into the fabric (Table 3-6). Grading of oil repellency which has been expressed to the 

nearest 0.5 indicates a borderline pass for the chemical test. 

 

Table 3-6: AATCC Standard test oil liquids. 
Oil repellency 
grade number Composition 

Surface tension 
(dynes/cm) 

0 - - 
1 Mineral oil 31.5 
2 64:34 Mineral oil: n-Hexadecane - 
3 n-Hexadecane 27. 3 
4 n-Tetradecane 26. 4 
5 n-Dodecane 24. 7 
6 n-Decane 23. 4 
7 n-Octane 21. 4 
8 n-Heptane 19. 8 
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3.3.18 Aqueous liquids repellency test 

Aqueous liquids repellency test was performed in accordance with the AATCC 193: 2012 

standard. Three specimens were cut in the size of 2 mm x 2 mm square and were placed in a petri 

dish (American Association of Textile Chemists and Colorists, 2012a). Three droplets of the 

chemical (Isopropyl alcohol, 10 microlitre) were placed on the specimen. The chemical droplets 

on the fabric were observed after 300 and 600 seconds at an angle of 44°. The grade was recorded 

if the droplet was repelled otherwise a zero was recorded if it penetrated into the fabric (See 

Table 3-7). Grading of aqueous liquids repellency which has been expressed to the nearest 0.5 

indicates a borderline pass for the chemical test. 

  

Table 3-7: AATCC Standard aqueous liquids. 
Aqueous repellency 
grade number Composition 

Surface tension 
(dynes/cm) 

0 None (fail 98% Water) - 
1 98:2 Water: Isopropyl alcohol 49.0 
2 94:5 Water: Isopropyl alcohol 40.0 
3 90:10 Water: Isopropyl alcohol 32.0 
4 80:20 Water: Isopropyl alcohol 33.0 
5 70:30 Water: Isopropyl alcohol 27.4 
6 60:30 Water: Isopropyl alcohol 24.3 
7 40:40 Water: Isopropyl alcohol 23.4 
8 30:60 Water: Isopropyl alcohol 23.0 

 

 

3.3.19  Chemical resistance test 

The chemical resistance testing method has been developed from the standard methods of 

American Society for Testing and Materials (ASTM). The specific issue of method requirements 

for chemical evaluation is explained in ASTM F1001-99 (a) for protective clothing (Forsberg, 

2001). This test method is applicable only for liquid chemicals but not suitable for solvents. The 

list of chemicals is followed by the standard methods and the chemical resistance can be analysed 

with a modified method of oil repellency. 

The chemical resistance of coated and uncoated fabric was evaluated using the similar method for 

the oil and aqueous liquids repellency testing. Three specimens were cut in the size of 2 mm x 2 

mm and placed in a petri-dish. Three 10.0 microlitre drops of the chemicals were placed on each 

fabric specimens. Sixteen types of chemicals were used to do the test, and water was employed in 
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the test for comparison. Photos of the droplets on the fabric were taken from an angle of 44° after 

300 seconds and 600 seconds, respectively. The time for chemicals to diffuse into the sample was 

also recorded. 

3.3.20 Soil release stain test 

The soil resistance was measured with the stain on the fabrics, according to the standard method 

AATCC-130-2015 with the minor change of replacing oil (corn oil) with water (American 

Association of Textile Chemists and Colorists, 2016). Soil particles (5.0 g) were dissolved in 5.0 

millilitre of water to make the solution. A medicine dropper was used to drop the solution onto 

the fabric surface. Three specimens with the size of 50 cm x 100 cm were used to determine the 

soil staining. The specimen was mounted on a glass slide at 45o with the help of paper clips. Soil 

resistance was measured into five grades of equivalent staining for 20 seconds. The grade of soil 

resistance was rated by comparing the observed stain to the standard stains, with grade 5 the best 

soil resistance and grade 1 the worst soil resistance (see Table 3-8). A piece of white blotter paper 

was placed at the bottom to absorb the remaining solution of soil from the fabric surface. 

 

Table 3-8: AATCC Standard soil release stain resistances. 
Grading Surface evaluation 
5 Stain equivalent to standard stain 5 
4 Stain equivalent to standard stain 4 
3 Stain equivalent to standard stain 3 
2 Stain equivalent to standard stain 2 
1 Stain equivalent to standard stain 1 
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4 CHEMICAL AND WATER 
PROTECTIVE SURFACE ON 
COTTON FABRICS BY PAD-

KNIFE-PAD COATING OF WPU-
PDMS-TMS 

4.1 Introduction 

Surface functionalization of textiles is essential to protect different kinds of consumers from 

potential environmental hazards including hazardous liquid, poisonous chemical and biological 

contamination. Surface properties of clothing, such as water resistance, breathability, 

superhydrophobicity and stain resistance, are significant for military uniform and sportswear to 

withstand severe weather conditions while keeping hygienic and comfortable for wearers, and 

resist hazards imparted from chemicals, dirt, and soil, oil and water. Water repellent and 

moisture/air permeable fabric have been developed, in which the breathable or microspores 

membrane is used to generate resistance to water while allowing  the penetration of air and water 

vapour (Borisova and Reihmane, 2013). As an example, the Gore-Tex® polytetrafluoroethylene 

(PTFE) membrane has been commercialised in textile industry. In addition, fluoro-based 

polymers or compound have been widely used in the textile industry to form hydrophobic 

surfaces that are not only repellent to water but also have good resistance to oil (Colleoni et al., 

2015). These surfaces have low surface energy, exhibiting lotus effect or self-cleaning properties 

when subject to liquids. Fluoro-based polyurethane was used to form hydrophobic coatings, it 
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formed short chains fluoro-alkyl such as CF3CF2CH2 and (CF3)2CH on cotton fabric (Jiang et 

al., 2006) even though the durability to washing was an issue. Polyurethane has also been used 

with methyl acrylate (MA) and fluoro-ethers such as perfluoro-alkyl ether acrylate to improve 

hydrophobic surface properties of the coating (Lim et al., 2001). However, the coating negatively 

altered thermal properties of the coated fabric (Zhu et al., 2008). Another compound used to 

develop superhydrophobic surface was polyurethane synthesized with perfluoro-octanate chains, 

this coating also imparted UV visible properties to the fabric (Liu et al., 2012). However, Fluoro-

based polymers have the long chain of hydrocarbon that can break up into toxic compounds of 

perfluoro-octanoic acids (PFOA) and perfluoro-octane sulphonates (PFOS), which are extremely 

harmful to the human health and surrounding environment and thus are banned all over the world 

(Hekster et al., 2002). 

Alternatively, eco-friendly non-fluorinated polymers such as polyurethane and silicone and its 

derivatives compound are commonly used in place of fluoro-based polymers to form the 

hydrophobic surface.  

A mixture of hexadecyltrimethoxysilane (HDTMS), 3, 3glycidyloxypropyltrimethoxysilane 

(GTMS) and tetraethoxyorthosilicate (TEOS) with silica nanocomposite compounds was used to 

create a superhydrophobic surface on cotton fabrics with a contact angle of 141° and 104° after 

washing (Daoud et al., 2004). Bis (triethoxysilyl) ethane and octyltrimethoxysilane together with 

silica nanoparticles were also used to develop the superhydrophobic substrate with a contact 

angle of 139° on cotton fabric (Roe and Zhang, 2009). Fluorinated alkyl silane (FAS) was also 

grafted onto cotton and nylon blended substrates to explore high initial superhydrophobic and 

superoleophobic surfaces (Satam et al., 2010). In addition, fluorinated alkyl silane (FAS) and 

fluorinated-decyl polyhedral oligomeric silsesquioxane (FD-POSS) were used to produce water 

repellent coatings on the surface on polyester fabrics (Wang et al., 2011), but the abrasion 

resistance of the coated fabric was an issue. In addition, Polyurethane has been widely used as 

conductive polymer, wind and water proof breathable (Lomax, 2007) and flame retardant (Chen 

et al., 2005, Wu et al., 2014) materials, owing to its smooth surface, flexibility and soft hand, 

rigidity and strong physical properties, and safety to human and environment. 

In combination with PDMS, polyurethane exhibits low glass transition point, low surface energy 

and excellent thermal stability (Pergal et al., 2013). PDMS has been successfully used with 

waterborne polyurethanes to achieve water proofing of clothing. A contact angle of 146° was 

achieved while the durability of the coating might be an issue. Polyurethane was combined with 

PDMS and 1H, 1H, 2H, 2H-perfluoro-1-octanol (PDMS/PFC) to produce the hydrophobic 
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coating for biomedical applications, and the reduction of non-adherent properties of the coating 

was obvious at a contact angle of 118° (Butruk et al., 2011). Soy-based polyols of polyurethane, 

perfluoro-polyether, and PDMS were also combined in the form of a film to impart 

hydrophobicity and oleophobicity to steel panel while the mechanical properties were improved 

(Rengasamy and Mannari, 2013). Even though coating has been proved to be an effective way of 

functionalizing the surface of textiles, protective clothing usually needs to withstand different 

hazards from the environment including water, liquid, oil, and chemicals, and the durability of the 

coating must be excellent to justify further application of the coating technology. Thus, a versatile 

and durable coating with repellency to water/liquid, oil and chemicals are still of great challenge. 

The durable functional coating on cotton fabric would bring opportunities to the development of 

cotton protective clothing; it has application potential in high performance and safety protective 

apparel. 

This study explores the effects of WPU combined with various concentrations of PDMS/TMS on 

cotton fabric to enhance its repellent and hydrophobic properties. The aim of this research is to 

enhance multifunctional properties of cotton fabric by pad-batch/knife coating. Coating of WPU 

membrane acted as a waterproof barrier and PDMS/TMS acted as a repellent layer. WPU-

PDMS/TMS coated fabric does not only have high contact angle but also is resistant to water oil 

and aqueous liquids solution. The developed coating method can be further applied in exploring 

protective clothing for military force and specialised workers who deal with hazardous chemicals 

and liquids. 

 

4.2 Materials and Methods 

4.2.1 Materials 

Cotton fabric (plain, 150 g/m2) was sourced from Bruck Textiles, Australia. ICB Fix Tubicoat 

Iso-cyanates and waterborne polyurethane (WPU, Tubicoat membrane 1665, in paste form) was 

purchased from CHT Pty Ltd, Australia. A mixture of 35% polydimethylsiloxane (PDMS) and 

35% Trimethylated silica (TMS) were purchased from Dow Corning Pty Ltd, Australia. 

Hexadecane and n-Decane were obtained from Sigma Aldrich. Heptane (HPLC grade) was 

provided by RCL LAB SCAN Limited, Australia. Isopropyl alcohol (Ana-R) was purchased from 

BDH Limited Poole, England. 
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4.2.2 Pad-Knife-Pad coating 

The cotton fabric was wetted by 0.01% (w/v) Triton X-100 solution in water for 30 minutes and 

scoured by caustic soda at 90°C for 1 hour. The fabric was rinsed with warm water and then with 

cold water, followed by an overnight hanging dry.  

The scoured cotton fabric was subject to a three-step coating as illustrated in Figure 4-1. Firstly, 

Ernst Benz Pad was used to perform ICB Fix padding for three passages. The solution in the pad 

contained 0.15 g of ICB Fix dissolve in 30 ml of distilled water. The sample was dried at 60°C 

for 30 minutes. After padding, the percentage of the total pickup on the cotton fabric was 

calculated. 

 

Figure 4-1: Pad-knife-pad coating of WPU-PDMS-TMS on cotton fabric. 
 

Secondly, the padded fabric was coated with 30-44 g original paste of WPU membrane (Tubicoat 

1665) by knife coating edge rollover method. The sample was dried at 60° C for 30 minutes. The 

thickness of WPU membrane coating was calculated on a thickness tester (British Indicators Ltd, 

St. Albans) according to AS 2001.2.14 method.  

Thirdly, the pad-knife treated fabric was further padded with PDMS-TMS. The PDMS/TMS 

combined solution was diluted with n-Heptane with a concentration of 2%, 4%, 6% and 8%, 

respectively. The sample was dried at 60°C for 30 minutes followed by a 150°C curing process 

for 3 minutes. A three-layer coated ultra-hydrophobic surface was then formed on cotton fabric 

based on the copolymerization of WPU-PDMS/TMS (WPT). 
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4.3 Results and discussion 

The study investigates effects of WPU as a suitable coating for cotton fabrics to impart chemical 

and water protective properties. WPU combined with PDMS/TMS was coated onto cotton fabric 

through the pad-knife-pad method; this initiated the copolymerization of WPU with PDMS/TMS. 

The wettability of cotton fabrics was greatly changed due to the formation of PDMS methyl long 

chains between the amino groups of WPU. The hydroxyl and amino groups of WPU are 

combined with PDMS to form different copolymers of polydimethylsiloxane diamines, which 

enhance the hardness, softness, and flexibility of the cotton fabric. WPU-PDMS/TMS provides 

flexible and soft segments with siloxane group which reduces the surface energy of cotton fabric 

(Wu et al., 2014). 

4.3.1 FTIR spectra 

Figure 4-2 illustrates the FTIR spectra of cotton (a), WPU coated only (b), PT coated only (c) and 

WPT coated (d-g) with the concentration of PT from 2 % to 8 %. Cotton fabric (Figure 4-2(a)) 

exhibits characteristic peaks around 3300, 2934, 1424, 1240 and 1072 cm-1 , corresponding for H-

bonded OH stretching, CH2 stretching, CH wagging, CH and C-O-C stretching, respectively. 

Cotton fabric coated with WPU only (Figure 4-2(b)) shows the characteristic peaks for 

polyurethane, including the NH wagging bands at 770 cm-1, CH stretching bands at 817 and 848 

cm-1. The absorption peaks at 1718 cm-1 are ascribed to C=O group of urea and urethane, and the 

peaks at 1444, 1431 and 1497 cm-1 owing to the benzene ring C=C group of WPU. The peaks of 

WPU membrane also indicates the presence of symmetric and asymmetric bands of CH2 and 

CH3 groups at around 2934 and 2681 cm-1, respectively. 

Cotton fabric coated with 8% PT only (Figure 4-2(c)) exhibits the absorption bands at around  

799 cm-1 for (CH3)2-Si linkage. The absorption bands at around 1017, 1071 and 1087 cm-1 

indicate the presence of Si-O-Si group and other bands at 1160 cm-1 for Si-O-C (Butruk et al., 

2011, Pergal et al., 2013, Wu et al., 2014). The symmetric banding of Si-CH3 can be seen at 1241 

cm-1, owing to the methyl groups of the TMS and PDMS. 
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Figure 4-2: ATR-FTIR spectra of cotton, WPU coated only, 8% PT coated only and WPT 
coated with different concentrations of PT. 
 

WPT coated fabric shows the characteristic peaks of WPU at 2935cm-1 and 1713 cm-1 for CH2 

and C=O group. In addition, the characteristic bands of PT such as the Si-O-Si and Si-O-C 

overlapped bands can be seen in all the spectra for WPT. These bands are more obvious with 

higher concentrations of PDMS. Similarly, the presence of TMS can be noted at 1251-1257 cm-1 

and the peak becomes more evident with higher concentrations of PT. There is no difference in 

the absorption bands in the FTIR spectra of the 2-8% WPT coated. 

 

4.3.2 SEM images 

The uncoated cotton fabric shows a clear cellulose fibrous structure with different magnifications 

(100x, 400x and 1000x) in Figure 4-3 (1a-c). 

After the coating with WPU membrane, the surface morphology of cotton fabrics changes with a 

thick membrane of WPU covering the cellulose fibres in Figure 4-3. 8% PT coated fabrics show 

rough surface on cotton fibres. WPTs in Figure 4-3 (4a-c) and the (7a-c) show the smooth WPU 

membrane at the bottom surface with a rough surface containing many white shiny particles from 

PT on the top layer. This enhances the ultra-hydrophobicity of the coated fabrics with the 

increase of the concentration of PT. 
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Figure 4-3: SEM images of uncoated (1), WPU (2), 8% PT (3), and 2-8 % WPT (4-7) coated 
fabrics at different magnifications (a = 100x, b = 400x, c = 1000x). 

(1a)  (1b) 

 (2a)  (2b)  (2c) 

 (3a)  (3b)  (3c) 

 (4a)  (4b)  (4c) 

 (5a)  (5b)  (5c) 

 (7a)  (7b)  (7c) 

 

 (6a)  (6b)  (6c) 
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4.3.3 Contact angle  

Pad-knife-pad coating has successfully brought waterproof properties to cotton fabric, as shown 

in Figure 4-4. Cotton fibre has a hydrophilic nature due to the hydroxyl groups in cellulose, and 

the CA of cotton fabric is around 30° WPU coated only cotton fabric gives a CA of 94°, 

suggesting that WPU membrane by itself provides ultra-hydrophobic and waterproof properties 

to the fabric to some level. 

The reason for this is that WPU membrane increases the surface tension of cotton fabric to 72.8 

dynes/cm. 8% PT coated only cotton fabric shows a CA of 155°, indicating a superhydrophobic 

surface of the coated cotton fabric. The high CA of the PT coating is due to the presence of 

polydimethylsiloxane group which reduces the surface energy of fabric (Chen et al., 2005).  

 

 
Figure 4-4: Contact angle of cotton fabric coated with WPU, 8% PT and WPT with 
different concentrations of PT. 
 

WPT coated fabrics show lower contact angles than that of 8% PT but higher than WPU only, 

this is due to the existence of PT that further enhances the hydrophobicity of the WPU coated 

cotton fabric. With the increase of the concentration of PT, the CA increases slightly at first and 

then keeps stable as the high concentration of PT does not affect the already coated WPU further. 
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4.3.3 Durability of coating after laundering and crocking fastness 

It is evident that WPT coating further enhances the water contact angle of WPU coating, resulting 

in higher water resistance properties to the coated cotton fabric. The water contact angle of cotton 

fabric is reduced evidently after laundering and crocking as shown in Figure 4-5. WPU coating 

shows very good durability as the water contact angle is the same after laundering and crocking. 

It is evident that the WPT coated cotton fabrics show excellent durability to laundering and 

crocking compared to that of uncoated cotton fabric as illustrated in Figure 4-5. The enhancement 

of durability of WPT coated fabrics is due to the copolymerization of WPU with PDMS-TMS by 

the formation of PDMS methyl long chains between the amino groups of WPU. It is thus obvious 

that WPT coating brings durable and water protective properties of cotton fabrics that show great 

application potential in protective clothing and safety apparel. 

 

 

Figure 4-5: Contact angle of uncoated and coated fabrics after laundering and crocking to 
show the durability of coating. 
 

4.3.4 Water repellency 

In addition to CA that shows the surface wettability of materials, water repellency is a direct 

index for textiles to show waterproof properties. Water can be easily absorbed into cotton fabric 

due to the wettability of cotton fibre, so that the water repellency of cotton fabric is as low as 

40%. WPU coated cotton fabric enhanced the water repellency to 70%, as shown in Figure 4-6. 
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The coated fabric is not absolutely repellent to water as some pores exist in the coated WPU 

membrane.  

The 8% PT coated only cotton fabric has a water repellency of 100%, this is due to the siloxane 

group of PT that brings low surface energy to the fabric surface. In the WPT (Chen et al., 2005), 

which enhances the water repellency of WPU coated fabric to 80% and 90% for 2% WPT and 

4% WPT, respectively. Further increase of PT concentration does not enhance the water 

repellency further as the bonding between the membrane and the PT solution stays the same after 

PT concentration reaches the threshold of 4%. Similar to the trend of water contact angle, the 

WPT coating further enhances the water repellency of WPU coating which would widen the 

application potential of the coated cotton fabric. 

 

 
Figure 4-6: Water repellency of cotton fabric coated with WPU, 8% PT and WPT with 
different concentrations of PT. 
 

4.3.5 Hydrostatic pressure 

The hydrostatic pressure to water is a crucial index in protective clothing as the clothing is 

usually subject to liquid/water contact under different pressure. The level of hydrostatic pressure 

is thus important to protect the wearer and the higher the hydrostatic pressure, the better it will 

protect the wearer. However, the hydrostatic pressure for cotton fabric is zero kPa because of the 

wettability property of cotton fabric. Figure 4-7 shows the hydrostatic pressure of cotton fabric 
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coated was different components by the pad-knife-pad method. WPU coated cotton fabric shows 

a hydrostatic pressure of 120 kPa, which significantly enhances the waterproof properties.  

WPU membrane forms closed pores on the fabric surface, blocking water molecules from passing 

through under pressure. Hence, WPU acts as a water proof barrier to high hydrostatic pressure 

(Ozen, 2012). 

However, the 8% PT coated only cotton fabric has a very low hydrostatic pressure of 1 kPa in 

comparison to WPU coated only one. The thin layer of PT coating on fabric consists of open 

pores, allowing water to pass through under pressure (Jassal et al., 2004). Therefore, when PT is 

applied without WPU, the coated fabric has poor resistance to hydrostatic pressure. Experimental 

observation reveals that the size of pores within PT increased with the increase of PT 

concentration, the fabric was thus less resistant to hydrostatic pressure of water. 

 
Figure 4-7: Hydrostatic pressure of cotton fabric coated with WPU, 8% PT and WPT with 
different concentrations of PT. 
 

Cotton fabric coated with the combination of WPU and PT shows the excellent hydrostatic 

pressure of 200 kPa, as shown in Figure 4-7.  

The surface of fabric becomes smooth and uniform without defects and open pores after adding 

the PT to WPU layer, making the coating a good barrier to liquids. Besides, the cross-linking and 

copolymerisation between WPU and PT on the surface result in higher strength against water 

pressure. It is noted that the hydrostatic pressure keeps stable at 200 kPa with the increase of PT 

concentration from 2% to 8%. Combined with the previously discussed water contact angle and 

water repellency, it is evident that WPT coating brings the coated cotton fabric with 
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hydrophobicity, water repellency, and high hydrostatic pressure. This kind of versatile coating 

would prevent water from contacting, diffusion and penetration into clothing an application. 

 

4.3.6 Oil repellency 

The coated cotton fabric exhibits oil repellency compared with uncoated cotton, as shown in 

Figure 4-8. The WPU coated only shows good repellency to the n-heptane (blue droplet) as the 

WPU membrane builds high surface tension (72.8 dynes/cm) to prevent n-heptane from being 

absorbed into the fabric (Borisova and Reihmane, 2013, Vazquez, 2005, Wang et al., 2011). 

 
Figure 4-8: Oil repellency of uncoated, WPU coated only, 8% PT coated only and 8%WPT 
coated cotton fabrics (purple: n-Hexadecane; white: water; red: n-Decane; and blue: n-
Heptane). 
However, 8% PT coated only shows very poor repellency to n-heptane as the n-heptane 

hydrocarbon gets diluted in 8% PT solution and penetrates the coated fabric easily. The surface 

tension of 8% PT coated only (22.0 dynes/cm) is close to that of n-heptane (19.8 dynes/cm) and 

n-decane (23.8 dynes/cm), so that the red and blue droplets penetrate the fabric as shown in 

Figure 4-8. The purple droplet stays on the surface of 8% PT coated only without penetration due 

to its relatively higher surface tension (n-hexadecane, 27.3 dynes/cm) (Vazquez, 2005). 

When WPU is combined with 8% PT, the surface tension of the fabric increases and hence the 

overall oil repellency is increased. It was noticed that when different concentrations of PT were 

further coated on the WPU fabric, the n-heptane droplet expanded in the top PT layer but not 
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penetrated into the WPU layer. From the photos in, it is obvious that WPT coated fabric shows 

oil repellency to water and all kinds of oil. 

4.3.7 Mechanical properties 

It was also noted that WPU and WPT coated cotton fabric maintained the oil repellency and 

water resistance under tension (around 2 Newton load cell), however, 8% PT failed due to the 

fibrous structure of the cotton fabric. WPU has formed a smooth and intact membrane on the 

surface of the cotton fabric so that the protective properties were maintained under tension; this is 

very important to protective clothing as it will bear different tensions when the apparel is subject 

to different kinds of movements. It is evident that WPT coated cotton fabric has excellent oil 

repellency, which would benefit the application of protective clothing from cotton. 

4.3.8 Aqueous liquid repellency 

Cotton fabric is not resistant to aqueous liquid due to its excellent wettability. WPU coated only 

cotton fabric shows resistance to all the three types of aqueous liquid with different ratios of 

water/alcohol, as shown in Figure 4-9. 

 The surface of the aqueous liquid decreases from 44 dynes/cm to 33 dynes/cm and then 24 

dynes/cm with the increase of the ratio of alcohol from 10% to 20% and then 40% in the liquid. 

The surface tension for 8% PT coated only fabric is 22 dynes/cm, so that the 60/40 liquid 

penetrates due to its closer surface tension to 8% PT. Whereas the 80/20 and 90/10 liquids with 

higher surface tension are repelled.  

 
Figure 4-9: Aqueous liquids repellency grades of cotton fabric coated with WPU, 8% PT, 
and WPT with different concentrations of PT. 
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The combination of WPU and PT coating has excellent aqueous liquid repellency as the data for 

the WPT shown in Figure 4-9. It is evident that the WPT coated cotton fabric can withstand 

different aqueous liquids, resulting in a high application potential in protective clothing. 

4.3.9 Chemical resistance 

Table 4-1 lists the chemical resistance of the coated cotton fabrics to different chemicals. WPU 

coated shows better chemical resistance to 8% PT coated as the time for chemicals to diffuse into 

WPU coated is longer than that of 8% PT coated. WPT coated fabrics show higher chemical 

resistance than both WPU coated and 8% PT coated, and ten of the chemicals have been repelled 

successfully as shown in Table 4-1. 

It takes longer time for other chemicals to diffuse into the WPT coated fabric (see Figure 4-10), 

suggesting an improved chemical resistance compared to WPU coated (Pan et al., 2012). It is 

evident that WPT coated cotton fabric repels most chemicals and thus this coating technology has 

great potential in developing chemical protective clothing. 

 

Table 4-1: Chemical resistance (seconds) of cotton fabrics coated with WPU, 8% PT, and 
WPT with different concentrations of PT, ordered by surface tension. 
 

Chemical 
Surface tension 
(dyne/cm) WPU 

8% 
PT 

2% 
WPT 

4% 
WPT 

6% 
WPT 

8% 
WPT 

n-Hexane 18.4 10 0 22 37 34 31 
n-Heptane 19.8 300 0 300 300 300 300 
Triethylamine 20.7 10 0 10 9 8 4 
Methanol 22.1 247 0 300 300 300 300 
Isopropyl alcohol 23.0 300 10 300 300 300 300 
Acetone 23.2 49 10 81 99 116 129 
n-Decane 23.8 300 0 300 300 300 300 
n-Hexadecane 24.3 300 300 300 300 300 300 
Paraffin oil 26.0 300 16 300 300 300 300 
Tetrahydrofuran 26.4 62 0 111 100 80 70 
Dichloromethane 26.8 14 4 14 20 22 24 
n-Hexadecane 27.3 300 300 300 300 300 300 
Acetic acid 27.0 300 300 300 300 300 300 
Toluene 28.4 300 0 287 247 194 104 
Acetonitrile 28.7 223 0 283 270 290 300 
Dimethylformamide 36.7 300 300 300 300 300 300 
Butadiene 47.0 300 300 300 300 300 300 
Sulphuric acid 84.0 300 10 300 300 300 300 
Sodium hydroxide 101.0 300 300 300 300 300 300 
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Figure 4-10: Chemical resistance after 300 second for coated fabric of 8% WPT and 
uncoated cotton fabrics. 
 

4.3.10 Air permeability 

The air permeability of untreated cotton fabric was 95.0 cm/s as airflow can easily penetrate 

through the pores of the fabric. The air permeability depends upon the pore sizes of fabric (Fang 

et al., 2012, Jassal et al., 2004, Kang et al., 2007, Zeng et al., 2015). The presence of WPU 

membrane affects the pore size and blocks the pores of fabric, thus the air permeability of WPU 

coated only drops dramatically to 0.184 cm/s (see Figure 4-11). 

The reductions in the air permeability with the increase in hydrophobicity suggest a continuous 

defect-free film of WPU coating. 8% PT coated only shows higher air permeability than WPU as 
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PT coating does not affect the pore size of fabric. WPT coated fabric shows further lower air 

permeability than WPU and the permeability decreases with the increase of PT concentration. 

 

 
Figure 4-11: Air permeability flow rate of cotton fabrics of WPU membrane with different 
concentration of PT. 
 

4.3.11 Ultraviolet resistance 

Ultraviolet radiation exposure is a very important factor to describe the damaged surface of the 

hydrophobic coating. After exposure to UV radiation, the coating can be damaged due to the 

absorption of UV lights. Ultraviolet radiation exposure in Australia is very strong because the 

ozone layer has been destroyed to leak UV radiation. Firefighter protective clothing can block 

94% of ultraviolet radiation, however, the tear and tensile strength and water repellency of the 

coating drop dramatically after exposure to UV for 13 days (Davis et al., 2010). 

An ultraviolet curable method was applied on waterborne polyurethanes and PDMS to improve 

the functionality of coating and mechanical strength (Hwang et al., 2011). It has been found in 

this research that the hydrophobicity keeps at a satisfactory level after the high-intensity 

ultraviolet radiation exposure (40.32 kJ/m2) of seven days, with a slight reduction of 3-4° in the 

CA (Figure 4-12). The damage of coating for 8% PT and 8%WPT was quite evident after the 

exposure to the reduction in CA was 24-12°. WPU membrane combining with repellent (2-6% 

PT) showed the excellent performance against ultraviolet radiation exposure. 
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Figure 4-12: UV resistance of WPU, PT and WPT with different concentration of PT. 
 

4.4 Summary 

Ultra-hydrophobic coating on cotton fabric successfully provided multiple protective layers from 

waterborne polyurethane (WPU), polydimethylsiloxane (PDMS) and trimethylated silica (TMS). 

The chain of PDMS-TMS cross-linked and combined with the backbone chain of WPU 

membrane in the pad-knife-pad coating, initiating the copolymerization between the two 

polymers on the surface of the cotton fabric. A membrane with particles on the surface was 

formed on the WPT coated fabrics as observed from SEM photos. 8% PT coated cotton fabric 

showed a water contact angle of 155°, suggesting a hydrophobic surface on cotton fabric. The 

coating showed excellent durability after laundering and crocking. A combination of WPU-

PDMS-TMS (WPT) coating on cotton fabric greatly enhanced the repellency and protective 

properties. The WPT coated fabric showed excellent repellency to water, oil, aqueous liquid and 

hydrostatic pressure. WPT coated cotton fabric also showed better chemical resistance than WPU 

coated and 8% PT coated, successfully repelled most chemicals and the time for other chemicals 

to diffuse into the coated fabric was much longer than WPU. After exposure to high-intensity 

ultraviolet light for seven days, the WPT coated fabrics showed the excellent hydrophobicity. The 

continuous defect-free WPU film on the surface of cotton fabric affected the pore size and 

blocked the pores of fabric, thus the air permeability of WPT coated cotton fabric was much 

lower than that of cotton fabric. 

This chapter was published in Cellulose 2016; 23, 3377-3388, doi: 10.1007/s10570-016-1028-5 

https://link.springer.com/article/10.1007/s10570-016-1028-5
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5 COATING OF TPU-PDMS-
TMS ON COTTON FABRICS FOR 

VERSATILE PROTECTION 

5.1  Introduction 

A coating is a very effective technology that brings extra functions to the substrate materials. A 

classic example of this is the coating for superhydrophobicity towards self-cleaning textiles, in 

which the superhydrophobic surface is measured by a water contact angle of >150° (Pan et al., 

2012). Usually, for self-cleaning textiles, the apparent contact angle is very high (150–170°) and 

the angle of hysteresis is very low for the water droplets to roll off from the surface of the fabrics. 

Similar to hydrophobicity, oleophobicity has been developed to bring resistance against oils to 

fabrics. Chemical resistance is another important factor for protective clothing, and it is very 

effective in surface decontamination for military uniforms, mining clothing and outdoor 

sportswear (Gorzkowska-Sobas, 2013). When the surface of textiles is not penetrated by water, 

oils, and liquids chemicals (such as acids, base, and solvents), it is called omniphobic surface. 

The omniphobic surface of clothing is helpful in protecting skin against hazardous liquid 

chemicals, industrial chemicals, petroleum oils, lubricants and bacterial viruses. Versatile 

protection from the developed omniphobic surface of textiles is crucial for customers who are 

facing threats from either environment or working places. 

Comfort is another important factor for developing protective clothing, as the widely applied 

coatings usually affect the thermal and moisture behaviour of the fabrics (especially their 

breathability which will severely deteriorate due to the blocking of pores in the fabrics). 
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Polytetrafluoroethylene (PTFE) has been used to develop protective textiles under the brand 

Gore-Tex®. With a water contact angle of 110°, Gore-Tex has the properties of waterproof, 

breathability and windproof that make it applicable in various areas. The success of Gore-Tex 

indicates that a balance between protection and comfort is the key to developing the protective 

textiles. Besides, fluoro-based polymers or compounds have been widely applied to form 

superhydrophobic surfaces (Jiang et al., 2006, Lim et al., 2001). However, toxic by-products, 

such as perfluoro-octanoic acids (PFOA) and perfluorooctane sulphonates (PFOS), are usually 

produced in the synthesis of C8-based fluorocarbon resins, and removal of them would result in 

high costs. Replacement of fluoro-based polymers for protective coating on fabrics is of great 

interests to textile industry (Hekster et al., 2002). Eco-friendly polymers have been developed to 

be the ideal replacement in this regard (Daoud et al., 2004). Among them, polyurethane and 

silicone together with its derivative compounds are promising in developing superhydrophobic 

surfaces on fabrics towards versatile protective clothing (Satam et al., 2010, Roe and Zhang, 

2009). Polyurethane (PU) has been widely applied as coating materials for breathable but wind 

and water proof membranes (Lomax, 2007), and as flame retardant materials for functional 

textiles (Chen et al., 2005, Wu et al., 2014). The thermoplastic polyurethane (TPU) based 

materials have found to be suitable for protective textiles such as facemasks which resist 

chemical warfare agents (CWA) (Forsberg, 2001). Microporous PU membrane with self-

decontaminating agent (polyoxometalate) was used for decontaminating the G-agent and distilled 

mustard (HD) surrogates (Walker et al., 2003). With good membrane-forming ability, 

polyurethane itself can provide protection to textiles. However, the surface of polyurethane would 

need further functionalization to introduce value-added protection mechanisms. A laminated 

coating of microporous PU membrane with polytetrafluoroethylene (PTFE) was used to form 

water and vapour resistant fabrics for sportswear (Jeong and An, 2001). Waterproof-breathable 

PU nanofibres coating has been used as high-performance protective clothing for sportswear 

industry (Romaškevič et al., 2006, Kang et al., 2007). As an environmentally friendly polymer, 

PU has been modified by 5, 5-dimethylhydantoin to form multifunctional and self-

decontaminating biocidal surface to remove the gram positive and negative bacteria (Boileau et 

al., 2009, Makal et al., 2006). 

In order to develop versatile protection against different agents, PU has been combined with other 

protection mechanisms to enhance the protection capacity. Recent research on 

polydimethylsiloxane (PDMS)-based silica surface or silica-based polymer surface has shown 

oil-water separation and versatile protection (Pergal et al., 2013, Rengasamy and Mannari, 2013, 

Moiz et al., 2016). Waterborne polyurethane was combined with PDMS-TMS to produce a 
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hydrophobic surface with low surface tension and high resistance to water, oil, and chemicals. 

The chemical resistance to methanol, acetone and isopropyl alcohol requires a low surface 

tension of around 25 dynes/cm. Superoleophobic surface usually has a surface tension of less 

than 20 dynes/cm (Arkles, 2006), while superhydrophobic surface usually has a high surface 

tension of 72 dynes/cm (Borisova and Reihmane, 2013). It would be very challenging to achieve 

a superomniphobic surface that is resistant to water, oil, and chemicals in terms of reaching a 

compromised surface tension of the coated surface. A combination of waterborne polyurethane 

(WPU) cross-linked with PDMS and trimethylated silica (TMS) has been developed for this 

purpose to resist different agents including water, oil and chemicals (Moiz et al., 2016). However, 

due to the existence of the uniform membrane of WPU, the comfort, handle and flexibility of the 

coated cotton fabrics have been severely affected. It is a big challenge to develop versatile 

protective coating while maintaining the proper comfort of fabrics. Changes in the polyurethane, 

either its chemical composition or its structure, are needed for further development of 

polyurethane based versatile protective clothing. 

A soft, flexible and protective coating that does not compromise much of the breathability of 

fabric structure is needed to address the challenge. It is thus important to study the substrate 

materials of polyurethane, and an ideal substrate would facilitate the functional coating while 

maintaining the comfort the as-coated fabrics. This study investigates the coating of 

thermoplastic polyurethane (TPU) combining with polydimethylsiloxane and trimethylated silica 

(PT) using a three-step pad-knife-pad coating on polycotton (PC) fabrics. A three-layered 

hierarchical structure based on the complex modification of TPU by PT has been obtained to 

form cross-linking reaction, in which the polydimethylsiloxane reacts with the amino groups of 

the polyurethane to form Si–OCH3 compounds. The TPU-PDMS-TMS coating has shown higher 

hydrophobicity with better durability, more flexible handle and better thermophysiological 

comfort compared to the WPU-PDMS-TMS coating. This study will benefit the development of 

alternative coating processes to replace the fluoro-polymers based coating technology. 

 

5.2 Experimental 

5.2.1 Materials 

Blended fabrics polycotton (150 g/m2, plain) were purchased from Bruck Textiles, Abbotsford, 

Australia. The fabrics were fabricated from cotton and polyester fibres with a blend ratio of 80/20 

for cotton/polyester, respectively. Tubicoat Fix ICB concentration was provided by CHT 
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Australia Pty Ltd., Dandenong South, Australia. Thermoplastic polyurethane (TPU, Texalan-598-

A, in pellets form) were purchased from Pacific Urethanes Pty Ltd., Carrum Downs, Australia. 

Xiameter FBL-0563 (15–35% PDMS, 15–35% TMS) was sourced from Dow Corning Pty Ltd., 

Pennant Hills, Australia. Hexadecane and n-Decane were purchased from Sigma Aldrich Pty 

Ltd., Castle Hill, Australia. Heptane (HPLC grade) was purchased from RCL LAB SCAN 

Limited, Australia. Isopropyl alcohol (Ana-R) was purchased from BDH Limited, Dorset, UK. N, 

N-dimethylformamide (DMF) was purchased from Merck KGaA, Darmstadt, Germany. 

5.2.2 Methods 

The polycotton fabric was wetted by 0.01% (w/v) Triton X-100 solution in water for 30 minutes 

and scoured by caustic soda at 90°C for 1 hour. The fabric was rinsed with warm water and then 

with cold water, followed by an overnight hanging dry.  

The polycotton fabric was then subject to a three-step coating process as illustrated in Figure 5-1. 

Firstly, an Ernst Benz Pad was used to perform ICB Fix padding for three passages. The solution 

in the pad contained 30 ml distilled water with 0.15 g ICB Fix dissolved in it. The fabric was first 

dipped into the solution to reach thorough impregnation. The fabric with solution impregnated 

was then passed between the two rollers of the pad to squeeze out air and to force the solution 

into the fabric.  

 
Figure 5-1: Schematics of pad-knife-pad coating of thermoplastic polyurethane (TPU)-
polydimethylsiloxane (PDMS)-trimethylated silica (TMS) (TPT) on polycotton fabrics and 
the cross-linking mechanism. 
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The excess of the solution was sent back along the fabric to the solution bath at the same time. 

After this dip-nip process, the sample was dried at 60°C for 30 minutes and the percentage of the 

total pickup on the fabric was calculated. 

Secondly, the padded fabric was coated with 6% TPU paste (prepared by dissolving TPU pellets 

in DMF) by a knife edge rolling over method. In the coating process, the fabric was mounted on 

the frame of the coater (Werner Mathis AG, Oberhasli, Switzerland), and the knife was set on the 

surface of the fabric with a given distance to determine the thickness of the coating. A certain 

amount of TPU paste was poured in front of the edge of the knife, and the knife was then moving 

slowly on the surface of the fabric to spread the TPU paste evenly. The thickness of the coating 

can be controlled by adjusting the distance between the knife edge and the fabric. The coated 

sample was then dried at 60°C for 30 minutes. The thickness of TPU coating was calculated on a 

thickness tester (British Indicators Ltd., St. Albans, UK) according to the AS 2001.2.14  methods. 

Thirdly, the padded and knife coated fabric (6% TPU) was further padded with a PDMS-TMS 

solution. The PT solution was prepared by diluting the Xiameter FBL-0563 into n-heptane with 

the concentration of 2, 4, 6 and 8%, respectively. After padding, the sample was dried in a lab 

oven (Electrolux) at 60°C for 30 minutes. The sample was then placed in a curing unit (W. 

Mathis AG, Oberhasli, Switzerland) at 150°C for 3 minutes. The three-layered functional coating 

was then formed on the polycotton fabric based on the cross-linking network of TPU-PDMS-

TMS (TPT). 

 

5.3 Results and discussion 

5.3.1 Characterizations  

The combined coating of TPU and PDMS-TMS results in a cross-linked network on the surface 

of polycotton fabrics, and the network brings versatile protection to the fabrics. Tubicoat ICB Fix 

acts as the cross-linking agent that binds the TPU with polycotton fabrics, providing a durable 

and flexible substrate for forming cross-linked network. The cross-linking between TPU and 

PDMS-TMS is schematically depicted in Figure 5-1. The long chain of TPU combines with 

PDMS-TMS to form cross-linking, providing flexible and soft segments with siloxane groups to 

exhibit low surface energy on polycotton fabrics (Moiz et al., 2016, Wu et al., 2014). The handle 

test has found that all the coated polycotton fabrics are stiffer, less soft, and shiny in luster with 

lower bending ability than the uncoated polycotton fabrics. Nevertheless, the TPT coated fabrics 
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are softer and more flexible than the previously developed WPU-PDMS-TMS (WPT) coated 

fabrics, suggesting improved handle property by adopting TPU rather than WPU. 

5.3.1.1 FTIR spectra 

The chemical components of coated fabrics were characterized by using FTIR-ATR 

spectroscopy, as shown in Figure 5-2. The spectrum of the uncoated polycotton shows significant 

bands around 3282, 2917, 1425, 1315, 1054 and 1017 cm-1. These bands are due to the O-H 

vibration stretching, the CH2 stretching, the CH bending, the asymmetric stretching of C-O-C, 

and the asymmetric plain stretching of C-O, respectively. The spectrum of TPU coated cotton 

fabric shows extra characteristic bands of urea and urethane groups, such as NH stretching band 

at around 3335 cm-1, 2955 cm-1 for CH2, and 1728 cm-1 for C=O. Besides, there are other 

relevant bands of benzene ring structure of TPU including 1597, 1531, 1454, and 1414 cm-1
. 

The CH stretching bands can be observed around 848, and 817 cm-1 and the NH wagging bands 

can be identified by 770, 711, and 663cm-1 band. The 8% PT coated cotton fabric exhibits 

symmetric banding of TMS including the band at 1251cm-1 for Si-CH3 and 1160cm-1 for Si-O-C. 

In addition, the vibration symmetric stretching bands of Si-O-Si can be observed around 1059, 

876, 845 and 770 cm-1. 

The chemical components of the coated fabrics were characterized using FTIR-ATR 

spectroscopy, as shown the spectra in Figure 5-2. All the functional groups of the samples from 

the FTIR spectra are listed in Table 5-1. The spectrum of the uncoated polycotton fabric shows 

significant bands around 3282, 2917, 1425, 1315, 1054 and 1017 cm−1. These bands are 

attributed to the O–H vibration stretching, the CH2 stretching, the CH bending, the asymmetric 

stretching of C–O–C, and the asymmetric plain stretching of C–O, respectively. 

The spectrum of TPU coated polycotton fabric shows characteristic bands of urethane groups, 

such as NH stretching band at around 3335, 2955 cm−1 for CH2, and 1728 cm−1 for C=O. 

Besides, there are other relevant bands of the benzene ring structure of TPU including 1597, 

1531, 1454, and 1414 cm−1. The CH stretching bands can be observed around 848 and 817 cm−1, 

and the NH wagging bands can be identified by the 770, 711, and 663 cm−1 bands. 

The 8% PT coated polycotton fabric exhibits the symmetric banding of TMS including the bands 

at 1251 cm−1 for Si–CH3 and at 1160 cm−1 for Si–O–C. In addition, the vibration symmetric 

stretching bands of Si–O–Si can be observed around 1059, 876, 845 and 770 cm−1. 
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Figure 5-2: ATR-FTIR spectra of cotton, TPT coated only, 8%PT coated only and TPT 
with different concentration of PT. 
 

Table 5-1: Detection functional groups for all coated and uncoated fabric by FTIR. 

Samples 
Functional 
groups 

Wave number 
(cm−1) Attributed to 

Polycotton O–H  3382 (ѵ)  Stretching of hydroxyl group 
 CH2 2970 (ѵs)  Stretching of methyl group 
 CH  1425 (δ)  Bending of methyl group 
 C–O–C  1315 (a) Asymmetric stretching of ester group 

 C–O 1017 (a) Asymmetric stretching of carbon 
monoxide group 

TPU NH  3335 (ѵ)  Stretching of amide group 
 CH2  2955 (ѵa) Symmetric stretching of methyl group 
 C=O 1728 Stretching of carbonyl group 

 C=C  
Benzene ring  1597–1414 (δs) Bending of symmetric of carbon with 

double bonding in ring 
PDMS-TMS CH2 2975 (a) Asymmetric stretching of methyl group 

 Si–CH3 1270–1250 (ѵa) Asymmetric stretching of methyl and 
silicone group 

 Si–(CH3)n 870–700 (δ) Bending stretching of silicone and no 
methyl groups 

 Si–O–Si 1059–1020 (ѵa) Asymmetric stretching of silicones and 
oxygen group 

TPU-PDMS-
TMS 

NHCOO–Si–
O–CH3 

1713–749 Cross-linking between TPU chain and 
PDMS-TMS groups 

Note: ѵ: stretching, δ: bending, ρ: rocking, a: asymmetric and s: symmetric.  
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The TPT-coated polycotton fabrics with different PT concentrations show the characteristic 

bands of both TPU and PT. It is noted that the stretching bands at around 1713 to 749 cm−1 are 

ascribed to the cross-linking of TPU and PDMS-TMS (Wu et al., 2014, Chen et al., 2005). The 

spectra of TPTs show similar absorption bands, and the characteristic bands of PT are more 

evident with the increase of the concentration of PT. Specifically, the band intensity of Si–O–Si 

and Si–CH3 increases gradually with the increase of PT concentration. 

5.3.1.2 SEM photos 

The coating has affected the morphology of polycotton fabrics, as indicated in Figure 5-3. The 

uncoated polycotton fabric shows a clear fibrous structure with the typical convolutional ribbon 

profiles of cotton fibres. The inset of Figure 5-3(a) shows the clean surface of a cotton fibre from 

the uncoated polycotton fabric. 

TPU coating has brought a thin layer to the surface of fibres with neighbouring fibres bridging 

together, resulting in a rather smooth surface morphology as shown in Figure 5-3(b). Detailed 

view (the inset of Figure 5-3(b)) suggests that fibre has been coated successfully. Besides, the 

fibres have been bridged together as the gaps between neighbouring fibres are fed with TPU. 

Considering single fibres can be seen from the TPU-coated polycotton fabric, TPU coating hasn’t 

formed a bulky and uniform membrane on the fabric surface. 8% PT padding has hardly affected 

the morphology of polycotton fabrics but small shiny particles can be observed from the surface 

of fibres (the inset of Figure 5-3(c)). The TPT coating has brought a thin coating layer onto the 

surface of fibres with particles on it, as shown in Figure 5-3(d-f). More particles can be observed 

with the increase of the concentration of PT, as seen from the insets. The previous study on 

waterborne polyurethane coating (Moiz et al., 2016) indicated that a uniform membrane was 

formed to cover the surface of the cotton fabrics. It can be seen from the SEM photos that the 

fibrous structure of polycotton fabrics has been partly preserved after TPT coating, and the 

particles contribute to the surface roughness of the coated polycotton fabric. 

5.3.2 Versatile protection 

5.3.2.1 Water contact angle 

The coating of TPU-PDMS-TMS has brought protection against water to polycotton fabrics. 

Figure 5-4 shows the water contact angle of polycotton fabrics before and after coating.  
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Figure 5-3: Scanning electron microscopy (SEM) photos of (a) uncoated polycotton fabric; 
(b) TPU coated; (c) 8% PT coated; (d) 2% TPT coated; (e) 4% TPT coated; and (f) 6% 
TPT coated (Insets: detailed view with scale bar 20μm). 
 

Untreated polycotton fabrics have very good wettability to water with an immediate water contact 

angle of around 50°, and no evident water contact angle can be observed after one minute as the 

droplet will be absorbed into the fabric. A simple knife coating of TPU has resulted in an 

enhancement of water contact angle to 134 ± 10° with hysteresis of 4.61 ± 2°, indicating that a 

hydrophobic surface has been formed on the surface of the fabric. The reason for the 

hydrophobicity of the surface of the polycotton fabric is the decrease of surface tension. The 

previous study has found that waterborne polyurethane (WPU) coating decreased the surface 

tension of cotton fabrics to 72.8 dynes/cm, resulting in a water contact angle of 94° (Moiz et al., 
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2016). TPU coating is more effective in reducing the surface tension than WPU, and it decreases 

the surface tension to 46.2–39.4 dynes/cm for polycotton fabrics to be resistant to water and 

liquids/chemicals. The 8% PT coated polycotton fabric displays a water contact angle of 155 ± 4° 

with hysteresis of 0.36 ± 1°, and this is due to the further lower surface tension (22.0 dynes/cm) 

of PT (Wu et al., 2014, Zeng et al., 2015). The polydimethylsiloxane group in PT reduces the 

surface tension of polycotton fabrics. It is also noticed that the hydrophobicity is probably due to 

the rough surface of the coated fabric due to the particles on fibres. The water contact angles of 

TPTs are 139 ± 1° (hysteresis 1.49 ± 1°), 142 ± 7° (hysteresis 0.38 ± 1°), 140 ± 8° (hysteresis 

8.01 ± 1°), and 127 ± 10° (hysteresis 9.39 ± 2°) with PT concentrations of 2, 4, 6 and 8%, 

respectively. The water contact angles of TPTs are slightly higher than that of TPU as shown in 

Figure 5-4, suggesting that PT further enhances the hydrophobicity of the TPU on the surface of 

polycotton fabrics. It is noted that the concentration of PT has little effects on the water contact 

angle. Compared with the water contact angle of WPU as reported (Moiz et al., 2016) , the TPT 

coating has resulted in an enhanced hydrophobicity evidently as the water contact angle (around 

140°) is higher than that of WPT coating (around 127°). For comparison, the water contact angle 

of the widely-applied Gore-Tex is around 110°C, while TPT coating brings better hydrophobicity 

to fabrics with a higher water contact angle. 

Durability of coating is always an issue as the linking between the coated components and the 

substrate is very weak, so it is very hard to maintain the added functions when the coated fabrics 

are subject to different cycles of laundering or crocking (Deng et al., 2010, Lin et al., 2015, 

Huang et al., 2011). The TPU-PDMS-TMS coating shows an excellent durability against 

laundering and crocking, as indicated in Figure 5-4. The PT coating shows a reduction of around 

14% after laundering and crocking, and this is due to the removal of polydimethylsiloxane 

particles from the surface of the coated polycotton fabric. Statistical analysis suggests that the 

water contact angles after laundering and crocking are significantly different to the coated for 8% 

PT. However, TPU forms a smooth membrane on the surface of fibres and thus the durability 

against washing and crocking is very high, as shown in Figure 5-4. 

The existence of TPU enhances the durability of PT, so that the TPT coatings with different 

concentrations of PT show reductions in water contact angle of less than 5% after laundering and 

crocking. PDMS alkyl chains have strong bonding strength between the fabric and the TPT 

coating, thus the durability of the coating is very high. The statistical analysis shows that the 

water contact angles are not significantly different for TPU and TPTs, indicating that the 

hydrophobicity is very durable against laundering and crocking. 
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Figure 5-4: The water contact angles of the uncoated polycotton fabric, TPU coated, 8% PT 
coated and TPT coated with different concentrations of trimethylated silica (PT) (The 
photos in blue and green boxes refer to the water contact angle profiles after laundering 
and crocking, respectively). 
 

It is noticed that for WPT coating there is an 8–15% reduction in water contact angle after 

laundering or crocking the coated fabrics (Moiz et al., 2016), the durability of TPT coating is thus 

more durable than that of WPT. 

5.3.2.2 Water repellency 

Polycotton fabrics are not waterproof, and the water repellency of the untreated polycotton fabric 

is as low as 50%. The low water repellency is due to the porous structure of the fabric and the 

wettability of the cotton fibres in the fabric. Coating of TPU has enhanced the water repellency to 

70%, as shown in Figure 5-5. The surface of polycotton fibres has been covered with TPU 

membrane after coating (Figure 5-3(b)), so that water can only penetrate through the pores and 

channels of the fibrous structure. It is noted that PT coating brings 100% water repellency to 

polycotton fabrics. The surface energy of the PT coated polycotton fabric is very low due to the 

siloxane groups, resulting in a high-water contact angle and the absolute water repellency. TPT 

coated fabrics show the water repellency of 80%, suggesting a 10% enhancement than the TPU 

coated. However, the water repellency of TPTs is lower than that of 8% PT, and this is due to 

their relatively lower surface tension. The recrystallization of the alkyl long chains of PDMS 

leads to stronger bonding strength between the middle chains of TPU, thereby the water 

repellency of coated fabric has been enhanced (Roe and Zhang, 2009, Moiz et al., 2016).  
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The concentration of PT does not affect the water repellency of the TPT coated fabrics, as shown 

in Figure 5-5. It is evident that coating with TPU-PDMS-TMS has brought excellent water 

repellency to polycotton fabrics. 

 

 

Figure 5-5: Water repellency of the uncoated polycotton fabric and polycotton fabrics 
coated with TPU, 8% PT and TPT with different concentrations of PT. 
 

5.3.2.3 Oil repellency 

The coated polycotton fabrics display different oil repellency, as illustrated in Figure 5-6. The 

TPU coated fabric shows good repellency to n-heptane, paraffin oil, and n-hexadecane, and this is 

because that the TPU coating has resulted in a high surface tension to prevent these hydrocarbons 

oils from penetrating into the coated fabric (Wang et al., 2011, Rengasamy and Mannari, 2013). 

The surface tension of TPU coated polycotton fabric is similar to n-decane (23.8 dynes/cm) and 

n-heptane (19.8 dynes/cm), so that the fabric is less repellent to them. The 8% PT coated 

polycotton fabric exhibits the poor repellency to n-heptane because the n-heptane has been used 

as the diluted solvent to prepare PT solutions.  

The surface tension of 8% PT (22.0 dynes/cm) is very close to that of n-heptane (19.8 dynes/cm) 

and n-decane (23.8 dynes/cm), so that these oils penetrate into the fabric as shown in Figure 5-6. 

The droplet of n-hexadecane stays on the surface of the fabrics due to its relatively higher surface 

tension (27.3 dynes/cm) (Moiz et al., 2016). 

From Figure 5-6 it is noticed that the 2% TPT shows excellent oil repellency against the castor oil, 

paraffin oil, vegetable oil and n-hexadecane. These droplets expand on the top layer of PT 
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without penetrating into the underneath TPU layer. The oil repellency declines with the increase 

of the concentration of PT, and this is due to the resulted in lower surface tensions of the top layer 

that allow the droplets to penetrate into the fabrics. When the coated fabrics are under a tension, 

the repellency to some oils deteriorates, but in most cases, it remains the same. As shown in 

Figure 5-6, the repellency against castor oil drops gradually with the increase of tension for 4 % 

TPT and 6% TPT. Besides, the repellency against paraffin oil for 6% TPT drops evidently with 

the increase of tension. The oil repellency remains the same after laundering with only slight 

declines, but PT coating shows very poor durability against laundering. On the other hand, the oil 

repellency deteriorates apparently after crocking.  

 

 
Figure 5-6: Oil repellency grades of fabric coated of TPU with different concentrations of 
PT. (For each sample, the four series of data from left to right stands for the oil repellency 
without tension and with the tension of 1, 3 and 5 NP, respectively).  
 

5.3.2.4 Aqueous liquid repellency 

Uncoated polycotton fabric is not resistant to aqueous liquids due to its hydrophilic property. The 

TPU coated control fabric to shows the excellent resistant to all kinds of water/alcohol aqueous 

liquids, as shown in Figure 5-7. It is also noted that the droplets on the TPU coated fabric are in 

the shape of semi-sphere. The 8% PT coated cotton fabric is repellent to all kinds of aqueous 

liquids except for the 60/40 one. The surface tension of the mixture of water/alcohol decreases 

from 44 to 24 dynes/cm with the increase of alcohol in the mixture. The surface tension of 8% PT 

is 22.0 dynes/cm, similar to that of the 60/40 one, thus the fabric is not resistant to the 60/40 
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(Moiz et al., 2016). Besides, the droplets on 8% PT are in the shape of the sphere, suggesting a 

better repellency than that of TPU coated. The reason for the better repellency from 8% PT is 

probably due to the higher superhydrophobicity as discussed earlier. The 8%TPT shows excellent 

repellency to all kinds of aqueous liquids, and the repellency is not altered after 300 seconds and 

when the fabric is subject to an external tension, as shown in Figure 5-7. 

 

 

Figure 5-7: Aqueous liquid repellency of the uncoated polycotton fabric, TPU coated, 8% 
PT coated and 8% TPT coated fabrics (water/alcohol composition ratios are 98/2 for 
shopping pink, 90/10 for orange, 80/20 for blue and 60/40 for yellow, respectively). 
 

5.3.2.5 Chemical resistances 

Chemical resistance depends on the surface tension of the coated fabrics, and usually, the fabric 

is resistant to chemicals with higher surface tensions. On the other hand, if the surface tension of 

a chemical is closer to the coated fabric; the chemical will penetrate into the fabric within a short 

period of time. Polycotton fabrics are not resistant to chemicals due to their excellent wettability, 

as shown in Table 5-2. 

The TPU-coated fabric shows excellent resistance to liquid chemicals, such as acetonitrile, acetic 

acid, butadiene, dimethylformamide, n-heptane, n-hexadecane, isopropyl alcohol, paraffin oil and 

sodium hydroxide. This is due to the higher surface tensions of these chemicals than that of the 

TPU-coated fabric. TPU coating brings omniphobic surface to the coated fabric with the excellent 



 

79 

chemical resistance (Pan et al., 2012, Zeng et al., 2015). However, TPU coating is not resistant to 

n-hexane, triethylamine, and n-decane due to their similar surface tensions. 

With its lower surface tension, the 8% PT coated fabric is limitedly resistant to chemicals 

including acetic acids, butadiene, dimethylformamide, n-hexadecane and sodium hydroxide. The 

TPT coating is resistant to most of the chemicals as indicated in Table 5-2, as the coating 

combines the resistance from both TPU and PT. An increase of the concentration of PT has 

limited effects on the chemical resistance. Similar to the oil repellency, the chemical resistance is 

not severely affected after laundering but it deteriorates evidently after crocking. It is evident that 

the TPT coating has brought the excellent chemical resistance to polycotton fabrics, and the 

versatile protective capacity of the coated polycotton fabrics can be applied in various areas 

where chemicals are involved. 

 

Table 5-2: Chemical resistances (seconds) for all coated and uncoated cotton fabric. 

Chemical 
Surface tension 
(dynes/cm) 

Poly 
cotton TPU 

8% 
PT 

2% 
TPT 

4% 
TPT 

6% 
PT 

8% 
TPT 

n-Hexane 18.4 0 0 0 0 0 0 0 
Triethylamine 19.7 0 0 0 0 0 0 0 
n-Heptane 19.8 0 300 0 300 300 300 300 
Methanol 22.1 0 146 0 69 75 85 137 
Isopropyl alcohol 23.0 10 300 10 300 300 300 300 
Acetone 23.2 0 70 10 5 16 30 57 
n-Decane  23.8 0 40 0 13 6 5 4 
Paraffin oil  26.0 0 300 16 300 45 50 57 
Tetrahydrofuran  26.4 0 62 0 82 91 141 167 
Dichloromethane 26.8 0 70 5 0 16 30 35 
n-Hexadecane 27.3 0 300 300 118 30 29 28 
Acetic acid 27.0 0 300 300 300 300 300 300 
Toluene 28.4 0 185 0 0 0 0 0 
Acetonitrile 28.7 0 186 0 114 228 289 297 
Dimethylformamide 36.7 0 300 300 300 300 300 300 
Butadiene 47.0 0 300 300 300 31 16 10 
Sulphuric acid  84.0 0 300 300 300 300 300 300 
Sodium hydroxide 101.0 0 300 300 300 300 300 300 

 

5.3.3 Comfort 

5.3.3.1 Air permeability 

Air permeability of the untreated polycotton fabric is 95 cm/s, indicating that the airflow can 

easily penetrate through the pores of the fabric. Coating inevitably blocks the pores of fabrics and 
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thus the air permeability of the as-coated fabrics usually deteriorates (Lomax, 2007, Jassal et al., 

2004, Kang et al., 2007). As shown in Figure 5-8, the TPU-coated fabric has an air permeability 

of 3.3 cm/s and the 8% PT has that of 4.76 cm/s. It is evident that TPU coating has evident effects 

in blocking the pores of polycotton fabrics than PT. TPT coated fabrics have even lower 

permeability than that of TPU, and the permeability decreases further with the increase of the 

concentration of PT. The adding of PT on the top of TPU would further block the pores between 

the neighbouring fibres, thus the air permeability decreases further with the increase of the 

concentration of PT. Nevertheless, the air permeability has been improved by replacing WPU 

with TPU in the coating (Moiz et al., 2016). WPT coating shows an air permeability of 0.1-0.2 

cm/s, which is much lower than that of TPT coating. WPU forms a uniform membrane on the 

surface of cotton fabrics without fibres being seen from SEM photos, while TPU coating does not 

fully cover the surface of the fabric with fibres observable from SEM photos. TPT coating thus 

allows air to penetrate through the limitedly preserved pores of the fabrics, resulting in higher air 

permeability than WPT coating.  

 

 
Figure 5-8: Air permeability of polycotton fabrics coated with TPU, 8% PT, and TPTs with 
different concentrations of PT. 
 

5.3.3.2 Water vapour resistance and permeability 

Water vapour resistance is the factor to determine the breathability of fabrics. TPU coating has 

deteriorated the water vapour permeability of polycotton fabrics; the water vapour resistance and 

permeability index are shown in Figure 5-9. This is due to the blocking of the pores of polycotton 
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fabrics by the TPU membrane. The coating of PT doesn’t affect the breathability of polycotton 

fabrics much as most of the pores within fabrics are preserved.  

The increase of the concentration of PT in TPT coatings has significant effects on the 

breathability of the coated fabrics, and the higher the concentration of PT, the higher the water 

vapour resistance (Havenith, Heus & Lotens 1990). In this case, the increase of the thickness of 

the coated layers from increasing the PT concentration results in the worse breathability as more 

pores of the coated fabrics have been blocked. For comparison, Gore-Tex has an excellent 

breathability, the TPT coating doesn’t exhibit as good breathability as Gore-Tex though its 

surface is more superomniphobic. 

 

 

Figure 5-9: Water vapour resistances and permeability index of the uncoated fabric 
polycotton fabric, 8% PT coated and TPT coated with different concentration of PT.  

5.3.3.3 Thermal resistance 

The thermal resistance of polycotton fabrics is enhanced after coating, as shown in Figure 5-10. 

The uncoated polycotton fabrics have open pores (as shown the inset) to allow heat exchange 

between the hotplate and the environment so, that the thermal resistance is very low. The PT 

coated polycotton fabric has a similar fibrous structure as indicated in the inserted SEM photo, 

but the thickness of the coated fabric is higher than the uncoated. The thermal resistance of PT 

coated polycotton fabric is thus slightly higher than that of uncoated (Majumdar et al., 2010), but 

the data of thermal resistance is not significantly different according to the standard deviations in 

Figure 5-10. TPU coating exhibits a thermal resistance of 0.085 m2K/W, which is much higher 

than that of the uncoated polycotton fabric (0.063 m2K/W) with a statistically significant 
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difference. The enhancement of thermal resistance after coating of TPU is due to the blocking of 

the open pores, as shown in the inserted SEM photo. The blocked pores capture static air within 

the fibrous structure, resulting in less heat transfer with a higher thermal resistance. The thermal 

resistance of TPTs is similar to that of TPU, with a significant difference in the untreated cotton 

fabrics. The increase of PT concentration in TPT coating has limited effects on the thermal 

resistance, as seen in Figure 5-10. In this case, the enhancement of thermal resistance is mainly 

from the blocking of open pores within the fibrous structure, whereas the increase of thickness of 

the coating does not contribute much to the increase of thermal resistance. 

 

 
Figure 5-10: Thermal resistances of cotton fabric, TPU coated and TPT coated with 
different concentrations of PT. 
 

5.3.3.4 Moisture management properties 

The moisture management property of polycotton fabrics has changed after the coating, as 

indicated by the MMT profiles in Figure 5-11. For polycotton fabrics, water can transport across 

the fibrous structure easily due to its excellent wettability and wicking property (Kar et al., 2007, 

Shaid et al., 2014). There are no evident differences between the top and bottom surfaces for 

polycotton fabrics in terms of the MMT index, as shown in Table 5-3. Coating of TPU has made 

the top surface of the polycotton fabric smooth for water to spread, as shown the MMT profile 

with a larger wet area. However, a smaller amount of water has been transported to the bottom 

surface so, that the one-way transport capability is significantly lower. It is evident that TPU 

coating has enhanced the water spreading performance on the top surface but deteriorated the 
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water transport capability of the polycotton fabrics. The overall moisture management capacity 

(OMMC) has changed from 0.47 to 0.04 after TPU coating. 

The water droplet on 8% PT appears as a sphere, as shown in Figure 5-11. The rough surface and 

low surface energy of PT have made the polycotton fabric surface superhydrophobic, thus the 

water does not spread on the top surface or does not it transport to the bottom side. The bottom 

surface has not been wetted, as shown the profile in Figure 5-11.  

Table 5-3: Moisture management properties of cotton fabric, TPU coated and TPT coated 
with different concentrations of PT (measure time = 120.00 seconds). 
 

MMT index 

Polycotton TPU 8%PT 2-8%PT 
Top 
surface 

Bottom 
surface 

Top 
surface 

Bottom 
surface 

Top 
surface 

Bottom 
surface 

Top 
surface 

Bottom 
surface 

Wetting time 
(s) 5.9 5.99 4.68 12.23 8.42 120 7.58–

9.54 120 

Absorption 
rate (s) 5.73 15.93 67.98 4.89 253.66 0 90.20–

406.33 0 

Maximum 
wetted radius 
(mm) 

15 15 25 0 5 0 5 0 

Spreading 
speed (mm/s) 2.47 3.2 4.84 0 0.58 0 0.51–

0.64 0 

One way 
transport 
capability 

62.08 –624.90 –995.77 −988.00- −1086.26 

OMMC 0.47 0.04 0 0 

 

 
Figure 5-11: Moisture management tester (MMT) profile of the uncoated polycotton fabric, 
TPU coated 8% PT coated and TPT coated with different concentrations of PT. 
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It is evident that PT coating has made the polycotton fabrics superhydrophobic and water cannot 

penetrate through the fabrics. Besides, TPT coatings have the similar moisture management 

property with PT coating, and this is due to the existence of PT on the surface from these coatings.  

 

5.4 Summary 

A soft, flexible, highly durable, comfortable and versatile protective coating for polycotton 

fabrics was developed by the pad-knife-pad coating of TPU-PDMS-TMS. The coating brought a 

thin layer to the surface of fibres while the fibrous structure of the fabric was not severely 

affected. The active TPU combined with PDMS-TMS to form a cross-linked network, providing 

flexible and soft segments with low surface energy siloxane groups to the polycotton fabrics. The 

coated polycotton fabrics showed a superhydrophobic surface with a water contact angle of 142–

155° and the superhydrophobicity was durable against different cycles of laundering and 

crocking. The enhanced durability of the samples has been achieved through the recrystallization 

of the long chains of the methyl groups of the PDMS and Si–OCH3 bonding imparted between 

the substrate and the TPT coating. The coating also showed the excellent repellency against 

water, oil, aqueous liquids and different chemicals. The versatile protection was not noticeably 

affected when the fabric was subject to tensions. The air permeability together with the water 

vapour permeability of the polycotton fabrics deteriorated after coating due to the blocking of 

pores by the deposited TPT. The thermal resistance of the coated polycotton fabrics was higher 

than that of the uncoated polycotton fabric due to the trapping of static air within the fabric 

structure by the coated layers. TPU coating enhanced the water spreading capacity on the surface 

of polycotton fabric but deteriorated the water transport capacity. The TPT coated fabrics 

exhibited water droplets on their surface and showed poor moisture management capacity.  
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6 DURABLE SUPEROMNIPHOBIC 
SURFACE ON COTTON FABRICS 

VIA COATING OF SILICONE 
RUBBER AND FLUORO-

POLYMERS  

6.1 Introduction 

Clothing is mainly used for aesthetic favour and protection. In some extreme cases, clothing has 

to provide higher level protection for the wearer to withstand hazards and threats from the 

environment (cold, hot, wind, water, soil, gas, etc.) or other sources (fire, explosion, corrosive 

chemicals, and pollution). Performance textiles have been developed to prevent human for these 

purposes (Owen and Dvornic, 2012, Lin et al., 2015). As a very important performance textile, 

protective clothing has seen a big success in the past years. With different products developed, 

protection clothing with solo function, such as flame retardant (Xiang et al., 2017, Holme, 2007), 

water repellency/superhydrophobicity (Chen et al., 2018), oil repellency (Wang et al., 2011), self-

cleaning (Zeng et al., 2015), cold protection (Emelyanenko et al., 2017), chemical protection 

(Zeng et al., 2015) and moisture management has been widely developed to serve customers in 

different areas (Shin, 2005, Xiang et al., 2017). Recent research and development are focusing on 

multiple protection of performance textiles (Lu et al., 2017), because protective clothing is 

usually used in complex situations in which wearers must be protected from different threats from 

environment and incidents. Against this background, the omniphobic surface of textiles has been 
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the research focus (Pan et al., 2012), and the developed products have the capability of protecting 

skin from hazardous liquid chemicals, industrial chemicals, petroleum oils, and lubricants. 

Development of new fibres and functionalization of current fibres is the key to advance 

technology towards the next generation performance textiles. High-performance fibres are 

developed with their intrinsic properties to fulfil the heat and fire protection needs, such as 

protective clothing, commercial fabrics use in liners, curtain and transport materials, medical and 

military garments (Horrocks, 2014), Kevlar for ballistic resistance (Park et al., 2014), carbon 

fibre (Thakare et al., 2017), nanofibres (Fang et al., 2012). However, most protection would need 

a special fabric surface in which surface and interface functions are crucial. Much attention has 

been put on functionalization of fabric surface for the development of performance textiles, and 

different technologies have been developed including Plasma-enhanced chemical vapour 

deposition (PCVD) (Tan et al., 2012), plasma (DeCoste and Peterson, 2013), grafting (Satam et 

al., 2010), coating (Singh and Singh, 2017). 

A coating is regarded as the most feasible and applicable technology for developing performance 

surface on fabrics. The coated materials and the chemical reaction together with the developed 

surface structure are the determining factors of the targeted performance. Easy conducting and 

feasibility of industrial application are the key to develop coating technology and robust coating 

technology including knife coating (Moiz et al., 2016), dip coating (Lin et al., 2015), 

Electrospinning coating (Kang et al., 2007), and combined coating (Schutzius et al., 2011) have 

developed. From the materials side, the coated layer usually exhibits a low surface tension to 

withstand different substances. Polyurethane, silicone rubber, and fluoro-compounds are the most 

widely used materials in the functional coating of textiles (Nouri and Saadat-Bakhsh, 2017, Seitz 

et al., 2016). The development of Gore-Tex has seen a big success in which the 

polytetrafluoroethylene (PTFE) film is used to functionalize textiles (Kang et al., 1996). 

However, some fluorine-based substances, such as perfluoro-octane sulfonate (PFOS) and 

perfluorooctanoic acid (PFOA) of carbon chains greater than six are restricted in the functional 

coating of textiles due to the health issues these compounds cause to human. Searching for 

replacement of fluoro-polymers is on the way of developing protective clothing (Hekster et al., 

2002). 

The development of superomniphobic surface would require the developed coating layer to 

withstand a series of agents, thus the combination of materials and the combined action of 

different coating methods are required in the process. The previous endeavour has found the 

combination of polyurethane with polydimethylsiloxane and trimethylated silica exhibits versatile 



 

87 

protection on cotton fabrics (Moiz et al., 2016) and polycotton fabrics (Moiz et al., 2017). 

Actually, there are many fluoro-polymers that are environmental friendly, such as oleophobol, 

phobol and Trimethylmethoxysilane (TMMS) (Dhiman and Chakraborty, 2014). This work 

would focus on the combined coating of rubber membrane and environmental friendly fluoro-

polymers to achieve superomniphobic surface on cotton fabrics. The coated fabrics were 

characterized by chemical analysis, handle, morphology and protection against different agents 

including water, oil, an aqueous liquid, chemicals and soil, and the comfort of the coated fabrics 

were studied to better understand the effect of coating on clothing. The developed coating 

technology would benefit the development of the next generation performance textiles for 

versatile protection.  

 

6.2 Experimental 

6.2.1 Materials 

Cotton fabrics were purchased from Bruck Textiles, Australia. Isys HPx was purchase from CHT 

Pty Ltd, Germany. Rubber membrane (SILASTIC 1951-200P, LSR), in paste form, was 

purchased from Dow Corning Europe S.A, Belgium. Invadine PBN, Kinttex ® FEL, Phobotex 

RSH, Phobol ® CP-C and Olephobol® CP-C were purchased Huntsman Singapore Pty Ltd. 

Trimethylmethoxysilane (TMMS), n-Hexadecane and n-Decane were purchased from Sigma 

Aldrich Pty Ltd, Australia. Mineral oil was purchased from Johnson and Johnson Pacific Pty Ltd, 

Australia. Acetonitrile, isopropyl alcohol and dichloromethane (Ana-R) were purchased from 

BDH Limited Poole, England. Sulphuric Acids (98%) was purchased from RSL LAB SCAN Ltd, 

Thailand. Dimethylformamide was purchased for Merck, Germany. Sodium Hydroxide was 

purchased from Chem Supply Pty Ltd, Australia.  

6.2.2 Methods 

A conventional dipping-padding-knife-curing method (Moiz et al., 2016, Moiz et al., 2017) was 

applied to perform the coating on cotton fabrics, as shown in Figure 6-1(a). The cotton fabric was 

wetted by 0.01% (w/v) Triton X-100 solution in water for 30 minutes and scoured by caustic soda 

at 90°C for 1 hour. Scoured fabrics were rinsed in warm water and then in cold water. Rinsed 

fabrics were left overnight for hanging dry in an ambient environment. To impart hydrophobic 

properties on fabrics, various chemical coatings were applied on the fabric using an Ernst Benz 

Pad machine. Fabrics were passed through the machine at a pad speed of 2 m/min at 8 kPa/cm 

pressure. While padding, 10% solution of the chemical was applied and each fabric sample was 
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passed through the pad three times to ensure even layering of the chemical on the fabric surface. 

These samples were then dried at 60° C for 30 minutes and cured at 160° C for 5 minutes. 

At first, cotton fabrics (A) were padded with a single layer of the chemical solutions on the fabric 

surface. As shown in Figure 6-1(b), a solution of 5 g/100 ml of Isy Hpx with 95 ml distilled water 

was applied to the fabric surface to test its reaction. The solution acted as a cation cross-linking 

agent to network the repellent chemical layers on the fabric. A single layer of rubber membrane 

was coated on the padded fabrics by knife-edge coating method. The coating consisted of (LSR 

(part a (90.0 g) + part b (10.0 g) and was applied uniformly on the fabrics (B). Using the same 

padding method, fluoro-polymers Phobol CP-C (10% Solution) and Oleophobol CP-C (10% 

solution) were applied on the fabric surface and a percentage pickup of the chemical after 

padding on the cotton fabric was calculated. The further padded fabrics were denoted as sample C 

and D, respectively. Alternatively, a double layer of TMMS + Phobol was padded onto the Isys 

Hpx padded fabric to make sample E. 

 

Figure 6-1: Schematics of the pad-knife-pad-cure method (a) and experimental design (b). 
 

In order to study the combination of rubber membrane and fluoro-polymers, three different 

samples were prepared by applying the multi-layer coating on the surface of cotton fabrics 

(Figure 6-1(b)). It included triple layers of Isy Hpx + rubber membrane + Phobol (F), Isy Hpx + 

rubber membrane + Oleophobol (G) and Isy Hpx + Rubber membrane + TMMS + Phobol (H). 
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6.3 Results and discussion 

The multi-layer coating has resulted in a cross-linked network on the surface of cotton fabrics, as 

illustrated in Figure 6-2(a) the mechanism of the coating. With Isy Hpx acting as the cross-

linking agent in the first padding process, a cross-linked network between the rubber membrane 

and the fluoro-polymers has been formed. Strong bonding between the CH3 groups of rubber and 

the CF2 groups of fluoro-polymers has been established after the curing process, bringing 

durability of the coated layers. As a result, the surface appearance, morphology, handle, thickness 

and chemical components of the surface of cotton fabrics have been changed. Meanwhile, the 

protection of the surface has been enhanced with comfort compromised to a certain level. 

6.3.1 Characterization 

6.3.1.1 Morphology of fabrics 

Figure 6-2(b) shows the optical photos of all the samples. It is evident that rubber coating has 

resulted in a membrane with shiny appearance on the surface of fabrics, as shown the optical 

photos of samples B, F, G and H. Whereas, the padding of fluoro-polymers (samples C, D, and E) 

have not affected the fibrous structure much as compared to uncoated cotton fabrics (sample A). 

SEM photos have further confirmed the surface morphology of all the samples, as shown in 

Figure 6-2(b). The typical morphology of cotton fibres is shown in the photo for sample A, 

indicating the convolutional ribbon profile of cotton. The samples padded with fluoro-polymers 

(samples C, D and E) show clear fibrous structures, but the structure of these samples is more 

compact than that of sample A. The squeezing involved in the padding process has forced the 

fibres together with fluoro-polymers impregnated into the fibrous structures, resulting in the 

compacted structure of the padded samples. On the other hand, samples B, F, G, and H show a 

membrane on their surface with some fibres and particles, and the fibrous structure has been 

severely altered by the coating of rubber. A quite uniform membrane has been formed on the 

surface of fabrics after coating with rubber, and it is evident that this layer will act as the barrier 

to withstand water, oil, and chemical from penetrating onto the fabrics. Unfortunately, the 

membrane blocks the pores of the fibrous structure, and thus the comfort of the as-coated fabrics 

will be deteriorated accordingly. 
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Figure 6-2: (a): Schematics of the mechanism; (b): Optical photos and SEM photos; (c): 
Thickness; (d): FTIR spectra. 
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6.3.1.2 Thickness 

The thickness of coated fabrics is different from the uncoated fabrics depending on the coating 

methods and the as-coated materials. Figure 6-2(c) illustrates the thickness of cotton fabrics 

before and after different scenarios of coating Figure 6-2(b).  

The thickness of fabrics after padding usually decreases due to the squishing of the rollers, 

resulting in thinner fabrics with a more compact fibrous structure. As shown the thickness of 

samples C, D and E in Figure 6-2(c), fabrics after padding ended up with a lower thickness no 

matter what fluoro-polymers or silicone were used. 

Knife coating usually results in a uniform membrane on fabric surface with a larger thickness. 

Cotton fabrics coated with rubber (sample B) show an evidence increase in thickness as indicated 

in Figure 6-2(b). Further padding of fluoro-polymers on the coated rubber surface would reduce 

the thickness a little bit due to the squeezing effect, so that the thickness of sample F and G is 

relatively lower than that of sample B. However, sample H shows the highest thickness due to the 

multi-layer of fluoro-polymers that were added to the rubber surface. 

6.3.1.3 Handle 

The cotton fabrics exhibit different handle after the padding and coating processes. The stiffness 

of fabrics is different before and after coating. Cotton fabrics are flexible with a bending length of 

2.2 cm and flexural rigidity 0.12 mg/cm, and this is due to the loose woven structure as shown in 

Figure 6-2(b). Padding has ended up with a compact fabric structure for cotton fabrics as 

suggested by the SEM photos, thus the padded fabrics become inflexible, hard and stiffer 

(Yüksekkaya, 2008, Ye et al., 2006). As a result, the bending length and flexural rigidity for 

fluoro-polymers padded cotton fabrics (samples C, D and E) are around 2.3 cm and 0.17 mg/cm, 

respectively. It is noted that padding of fluoro-polymers has not affected the stiffness much, 

considering the slightly changed stiffness. However, a coating of rubber has the dramatic effect 

on the stiffness of cotton fabrics. The formation of rubber membrane within and on the surface of 

the fibrous structure has made the fabrics rigid and stiff. The bending length and flexural rigidity 

of rubber coated samples (B, F, G, and H) have been enhanced to 3.4-3.9 cm and 1.35-2.22 

mg/cm.  Especially, the coating of rubber plus Phobol (sample F) showed the highest stiffness. 

The surface friction and roughness of cotton fabrics are also different after the coatings. The 

coefficient of surface friction (MIU) and geometrical roughness (SMD) of cotton fabrics (A) and 

fluoro-polymer coated fabrics such as C, D, and E are almost the same with the value change 

around 0.16-0.18 µm and 4.0-4.2 µm for MIU and SMD, respectively. It is evident that fluoro-
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polymers coating has no obvious effect on the surface friction and roughness of cotton fabrics 

even though particles of fluoro-polymers have been formed on the surface of fabrics. However, 

with rubber membrane coated (samples B, F, G, and H), the surface friction together with 

geometrical roughness have been increased to 0.2-0.3 µm and 5.6-6.4 µm, respectively (Baek and 

Khonsari, 2008). 

6.3.1.4 FTIR spectra 

The FTIR spectra of all the samples are depicted in Figure 6-2(d). The cotton fabrics (sample A) 

represent peaks around 2962 cm-1, attributing to the asymmetric and symmetric stretching of the 

C-H bond of the methyl group. The bands at 3400 cm-1 are assigned to the O-H stretching for 

vibration bonding. The rest bands at 1425, 1250 and 1072 cm-1 are due to the C-H bending, C-H 

and C-O-C stretching, respectively. 

The cotton fabrics coated with the rubber membrane (sample B) show the peaks at 1258, 1080, 

1009 and 792 cm-1, cross-pounding to the Si-CH3 and Si-O-Si groups of rubber. Individual 

spectra of phobol, oleophobol and TMMS as seen in Figure 6-2(d), (sample C, D, and E) present 

clear peaks of CF2 and CF3 groups at around 1338 and 1208 cm-1, respectively. After the coating 

of rubber membrane combined with the fluoro-polymers (sample F, G and H), the peaks for the 

functional groups of fluoro-polymers (CF2 and CF3) have slightly shifted due to the formation of 

tri-fluoro-acetic anhydride (-Si-CH2-CF3) as a result of their polymerization reactions with cyclic 

organo-silanes (Tan et al., 2012). Fluoro-polymers have been involved to make the hydrophobic 

surface on cotton fabrics as shown in these FTIR spectra (Lin et al., 2015). The CF2 and CF3 

were deformed and mixed with other rocking bands at 1338 to 1330 cm-1. Other peaks in the 

range of 1100 to 650 cm-1 represent the bands of fluoro-polymers combined with rubber. Overall, 

surface functionalization of fluoro-polymers combined with rubber membrane has been 

evidenced by the FTIR spectra. 

6.3.2 Protection 

Due to the combined effect of fluoro-polymers and rubber membrane, a superomniphobic surface 

has been created on the surface of the coated cotton fabrics. The developed performance fabrics 

showed excellent protection against water, liquids, oils, different chemicals and soil. 

6.3.2.1 Water contact angle 

Figure 6-3(a) illustrates the WCA of all the coated cotton fabrics with the profiles of the water 

droplet on each fabric. Cotton fabrics are hydrophilic and a droplet of water can penetrate and 



 

93 

sink into the fabrics within a second. The WCA of uncoated cotton fabrics is around 30-50°. The 

developed coating has apparently made the fabrics resistant to water, and the water droplets can 

stay on the surface of the as-coated fabrics (as shown the profiles of water droplets in Figure 

6-3(a). 

 

 

Figure 6-3: Protection of the as-coated cotton fabrics against water and aqueous liquids: (a) 
WCA after laundering (Photos: WCA profiles); (b) WCA after pilling; (c) Water repellency 
and air permeability; (d) Aqueous liquid repellency; (e) Photos of droplets of aqueous 
liquids on the surface of cotton fabrics (Water/alcohol ratios: Orange 98/2; Pink 90/10; 
Purple 80/20; Yellow 60/40). 
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Coating of rubber has brought a membrane with particles onto the surface of cotton fabrics, the 

surface roughness has been enhanced and the surface energy been reduced. The WCA for rubber 

coated fabrics is 141° as shown the sample B in Figure 6-3(a). Fluoro-polymers have very 

evident hydrophobic effect and the treated fabrics usually exhibit a WCA of around 150°. Phobol, 

oleophobol and TMMS-phobol were used to generate the surface roughness on cotton fibres, and 

the treated cotton fabrics show a WCA of 145° (C), 147° (D) and 142° (E), respectively. The 

combination of rubber membrane and fluoro-polymers (phobol, oleophobol and TMMS-phobol) 

has resulted in a WCA of 142° (F), 144° (G) and 145° (H) for the coated cotton fabrics. The 

enhancement of WCA to cotton fabrics is due to the low surface tension and the roughness of the 

coated rubber and fluoro-polymers. 

The durability of the coating is the determining factor of the as-developed performance textiles 

because the products are subject to different cycles of washing and different mechanical 

movements. Figure 6-3(a) shows the WCA of all the coated samples after different cycles of 

laundering. The coating of rubber shows excellent durability as the reduction of WCA is 7.0% 

even after 30 cycles of laundering. The durability of rubber coating is probably due to the 

excellent membrane-forming properties of rubber which can withstand repeated washing. Fluoro-

polymers coatings show poor durability (samples C-E in Figure 6-3(a)), and the reduction of 

WCA is 11.7%, 15.0%, and 12.0%, respectively. Fluoro-polymers coating results in particles on 

the surface of cotton fabrics that bring hydrophobicity to the coated fabrics. However, the 

bonding between cotton fibres and the fluoro-polymers is very poor. The poor durability of the 

fluoro-polymers is due to the removal of the formed particles on the surface of cotton fabrics after 

washing. The combination of rubber and fluoro-polymers (samples F-H) show enhanced 

durability, and the reduction of WCA is 7.0%, 9.7%, and 10.3%, respectively. Compared with the 

reduction of WCA of fluoro-polymers coating, the combination of rubber and fluoro-polymers 

has enhanced the reduction of WCA by 4.7%, 5.3% and 1.7% for phobol, oleophobol and 

TMMS-phobol, respectively. As discussed in the mechanism, a cross-linked network has been 

formed between rubber and fluoro-polymers after the establishment of the bonding between the 

CH3 groups of rubber and the CF2 groups of fluoro-polymers. The cross-linked network is rather 

strong to withstand washing; thus, the combination of rubber and fluoro-polymers shows 

enhanced durability. 

Figure 6-3(b) shows the durability of the coated cotton fabrics after different cycles of pilling. All 

the samples show excellent durability against pilling, suggesting the strong adhesion between the 

coated layers and the cotton fabrics to withstand mechanical movements. Rubber membrane 
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shows the best durability against pilling as the WCA doesn’t change much even after 2000 cycles 

of pilling. An evident reduction of WCA can be seen for the coatings with fluoro-polymers while 

the combination of rubber and fluoro-polymers shows enhanced durability as expected. The 

cross-linked network between rubber and fluoro-polymers has better durability when the coated 

fabrics are subject to pilling, and this is due to strong bonding within the network. 

6.3.2.2 Water repellency and air permeability 

The hydrophobicity of cotton fibre and the porous fibrous structure make cotton fabrics a low 

water repellency of 50% cotton fabric (Moiz et al., 2016). The water repellency of the coated 

fabrics is much higher than that of cotton fabrics (Figure 6-3(c)) due to the surface 

hydrophobicity and the altered surface structure. Coating of rubber has resulted in a membrane on 

the surface of cotton fabrics, and thus the water repellency is as high as 80%. 

The rubber membrane is not absolutely waterproof, suggesting some pores exist within the 

membrane to allow the penetration of the 20% of the water. The water repellency of coated 

surface with fluoro-polymers is 90% for sample C and D, and 80% for sample E. The lower 

surface tension of fluoro-polymers shows excellent resistance to water as compared to the rubber 

membrane. Besides, the forming of particles on the surface of fabrics blocks some the pores of 

the fabrics, so that the water repellency has been enhanced. 

The combination of rubber and fluoro-polymers has not contributed to the enhancement of water 

repellency further, and the repellency is 80% and even 70% for sample H. As the fluoro-polymers 

have been coated on the rubber membrane rather than on the cotton fabrics, the pores from 

fibrous structures are just covered by the rubber membrane. The blocking effect from the formed 

particles is not as evident as sample C, D, and E, resulting in a relatively lower water repellency. 

The air permeability of cotton fabrics has been affected by coating, as the results shown in Figure 

6-3(d). The pore size and the fibrous structure usually determine the air permeability or the 

breathability of the fabrics (Jassal et al., 2004, Fang et al., 2012). Cotton fabrics show the air 

permeability of 86 cm/s. The coating of rubber membrane on cotton fabrics has resulted in the air 

permeability of 70 cm/s. The decline of air permeability is due to the blocking of pores by the 

rubber membrane. Coating of fluoro-polymers has created many particles to block the pores of 

cotton fabrics, thus the air permeability is similar to that of rubber coated one. However, sample 

E shows the air permeability of 50 cm/s as the TMMS-phobol has the maximum blocking effect 

to the pores within the fibrous structure. On the other hand, the air permeability of the 

combination of rubber and fluoro-polymers is similar to that of rubber or fluoro-polymer coated 
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ones. Since the fluoro-polymers are coated on the surface of rubber membrane, the blocking 

effect from the formed particles is not evident as that on the surface of cotton fabrics. 

6.3.2.3 Aqueous liquid repellency 

Figure 6-3(d) shows the aqueous liquid repellency of cotton fabrics before and after coatings, and 

Figure 6-3(e) lists the photos of the aqueous liquids on the surface of cotton fabrics. Cotton 

fabrics are not resistant to any aqueous liquids and all the liquids penetrate into the fibrous 

structure within several seconds. Due to the excellent hydrophobicity, the coated samples repel 

all the aqueous liquids for 600 seconds. The lower surface tension of coated surface usually plays 

an important role in the resistance to aqueous liquid and chemicals (Vazquez, 2005). The surface 

tension of aqueous liquids decreases from 59.0 to 25.4 dynes/cm with the increase of the 

alcohol/water ratio. As the surface tensions of all the coated fabrics are much lower than this, thus 

all the aqueous liquids are expelled and near-sphere droplets are shown in the photos of Figure 

6-3(e). 

6.3.2.4 Oil repellency 

The oil repellency depends upon the surface tension of the coated surface. Uncoated cotton 

fabrics have a high surface tension to enhance the absorbency of liquids and oil, so that all the 

oils have penetrated into the fibrous structure as shown in Figure 6-4(a). The rubber membrane 

and fluoro-polymer have low surface tensions to reduce the surface tension of the coated cotton 

fabrics and thus enhance the oil repellency (Moiz et al., 2016). 

As shown in Figure 6-4(a), all the coated cotton fabrics show excellent oil repellency and the oil 

droplets stay on the surface of fabrics for as long as 600 seconds. The oil with high surface 

tensions, such as castor oil 41.35 dynes/cm, paraffin oil 28.0 dynes/cm, n-hexadecane 27.3 

dynes/cm, n-decane 23.8 dynes/cm and vegetable oil 26.8 dynes/cm are repelled by fluoro-

polymers and their combination with rubber coated samples C-H. It is evident that the low 

surface tension of fluoro-polymers (16.2 -18.2 dynes/cm) brings the excellent oil repellency to 

the coated fabrics. Due to the closer surface tensions between n-heptane (19.8 dynes/cm) and the 

coated fabrics (18.2 dynes/cm), the n-heptane is not repelled by most coated fabrics except for 

sample E and H (16.2 dynes/cm), (Wang et al., 2011, Jarvis and Zisman, 1965). However, the 

difference in surface tension between TMMS (41.0 dynes/cm) (Lee, 1968) and n-heptane is high 

enough to grant the coated fabrics with repellency to n-heptane. On the other hand, rubber coated 

fabrics are not resistant to n-heptane and n-decane, as shown in Figure 6-4(a), and this is also due 
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to their similar surface tensions. It is evident that fluoro-polymers coating has a very evident 

effect on oil repellency (Liang and Ruckenstein, 1996, Vazquez, 2005). 

 
Figure 6-4: Protection of the as-coated cotton fabrics against oil (a), chemicals (b) and soil 
(c).  
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6.3.2.5 Chemical resistance 

Table 6-1 illustrates the chemical resistance of cotton fabrics to different chemicals, and Figure 

6-4(b) shows the photos the droplets of some chemicals on the all the samples. Cotton fabrics are 

not resistant to chemicals due to the wettability of cotton, and all the chemicals have been 

absorbed into the fibrous structure immediately with wet marks left on the surface of fabrics.  

The coated cotton fabrics are resistant to most the chemicals except for dichloromethane, n-

hexane and tetrahydrofuran. Due to the extremely low surface tension, fluoro-polymers are more 

effective in resisting chemicals than rubber. The coated cotton fabrics are resistant to most the 

chemicals except for dichloromethane, n-hexane, and tetrahydrofuran.  

Fluoro-polymers coated cotton fabrics show chemical resistance to n-decane, sulphuric acids, n-

heptane, triethylamine, and toluene, while that of rubber membrane coated is not resistant to these 

chemicals. Besides, the combination of rubber and fluoro-polymers is slightly more effective than 

fluoro-polymers. The combination of rubber membrane and fluoro-polymers has generated an 

omniphobic surface to display the optimized chemical resistance as compared to the uncoated 

surface of cotton fabrics (Pan et al., 2012, Moiz et al., 2016, Zeng et al., 2015, Moiz et al., 2017). 

6.3.2.6 Soil resistance 

Soil resistance has been measured to analyse the self-cleaning property of the coated fabrics. 

Uncoated cotton fabrics are not resistant to soil solution as the soil remains on the surface of 

fabrics as shown in Figure 6-4(c). The soil particles stain on the surface, making it hard to 

remove them from the surface of the fabrics. All the coated fabrics show excellent soil resistance 

with an excellent grade 5, and all the soil particles have been absorbed on the tissue papers as 

seen in Figure 6-4(c). The rubber membrane coated (sample B) and its combination with TMMS 

and phobol (sample H) are less resistant to soil with the grade 1. Together with the 

omniphobicity, the self-cleaning property brings the lotus effect to the coated fabrics (Zeng et al., 

2015, Dhiman and Chakraborty, 2014, Chen et al., 2018), which will see a great application 

potential in protective clothing such as military uniform, mining uniform and outdoor sportswear. 

6.3.3 Comfort 

Comfort is another determining factor in developing performance textiles/protective clothing. 

The coated cotton fabrics show totally different comfort to the uncoated cotton fabrics as shown 

the results in Figure 6-5. The thermal resistance (Figure 6-5(a)) and water vapour resistance 

(Figure 6-5(b)) of fluoro-polymers coated cotton fabrics is not evidently different compared to 

that of the uncoated cotton fabrics. It is thus evident that the blocking of pores by the formed 
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particles slightly affects the thermal conduction and moisture transfer (Li, 2017 ). However, once 

rubber membrane is coated onto the surface of cotton fabrics, the thermal and water vapour 

resistance are so different. 

As seen from Figure 6-5(a), the rubber coated and the combined coated ones show lower thermal 

resistance. Besides, the water vapour resistance of these samples are much higher than the rest 

(Figure 6-5(b)). The thermal conduction, in this case, is mainly determined by the materials and 

the structure of the fabrics. Coating of rubber membrane has an evident blocking effect on the 

surface of cotton fabrics so, that the conduction of heat and transportation of moisture 

(permeability index) through the pores have been blocked.  

 

Table 6-1: Chemical resistance (seconds) of uncoated and coated cotton fabrics 
Sample code A B C D E F G H Status 
Acetic acid 0 600 600 600 600 600 600 600 ER 
n-Decane 0 0 600 600 600 600 600 600 ER 
n-Hexadecane 10 600 600 600 600 600 600 600 ER 
n-Heptane 0 0 39 540 600 120 147 600 ER 
Paraffin oil 0 600 600 600 600 600 600 600 ER 
Sulphuric acid 0 0 103 105 107 600 600 540 LR 
Isopropyl alcohol 0 600 600 600 600 600 600 600 ER 
n-Hexane 0 0 0 0 0 0 19 20 NR 
Sodium hydroxide 0 600 600 600 600 600 600 600 ER 
Tetrahydrofuran 0 0 0 0 0 18 0 0 NR 
Triethylamine 0 10 535 26 10 540 23 45 LR 
Methanol 0 10 600 600 600 186 570 600 ER 
1, 4 butadiene 0 600 600 600 600 600 600 600 ER 
Dimethylformamide 0 600 600 600 600 600 300 600 ER 
Acetonitrile 0 600 600 600 600 600 600 600 ER 
Toluene 0 0 600 0 0 600 0 0 NR 
Dichloromethane 0 0 0 0 0 60 10 15 NR 
Castor oil          0 600 600 600 600 600 600 600 ER 

Note: ER: excellent resistance; LR: limited resistance; NR: not resistance. 

 

The water vapour resistances of these fabrics are thus higher. However, the thermal conduction is 

also determined by the materials of the fabrics, and the coated rubber membrane has a higher 

thermal conduction capability to overweight the blocking of thermal conduction through the 

fibrous structure (Rasid, 2017, Li, 2017 ). The overall thermal resistance of these fabrics are thus 

lower than the uncoated and fluoro-polymers coated ones. 
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The moisture management property of cotton fabrics has been changed after the coating. The 

uncoated cotton fabrics show similar MMT profiles from the top and bottom surfaces, as shown 

in Figure 6-5(c). Cotton fabrics have excellent wettability, and thus a droplet of water can easily 

penetrate and spread on both sides of the fabrics. However, the coated fabrics show totally 

different profiles with a droplet of water on the top surface and nothing on the bottom surface. 

This is due to the excellent superhydrophobicity of the coating that prevented the water from 

penetrating and spreading into the fabrics. 

 

 
Figure 6-5: Comfort analysis of the as-coated cotton fabrics: (a) Thermal resistance; (b) 
Water vapour resistance with permeability index; (c) Moisture management test (MMT) 
profiles. 
 

6.4 Summary 

In the summary, a durable and superomniphobic surface was developed by the pad-knife-pad-

cure coating of rubber membrane and fluoro-polymers. The coating brought a thin membrane 

with a low surface tension and many particles to increase of surface roughness. The coated cotton 

fabrics were more rigid with a higher bending length and were stiffer with higher KES values of 

surface friction and roughness. The coating resulted in a cross-linked network due to the strong 

bonding between the CH3 groups of rubber and the CF2 groups of fluoro-polymers. The coated 

cotton fabrics showed a water contact angle of around 140-150°, and the superhydrophobicity 
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was durable against different cycles of laundering and pilling. The coated fabrics repelled 80-

90% of water with air permeability of around 70%, and all the aqueous liquids with different 

water/alcohol ratios were repelled from the coated surface. The coated cotton fabrics showed 

excellent oil repellency and chemical resistance as most oils and chemicals were repelled from 

the surface. However, oil and chemicals with closer surface tension to the coated surface were not 

resistant. The coated fabrics also showed soil resistance without staining of sands on the surface. 

Due to the existence of the coated layers, the coated fabrics showed decreased thermal resistance 

and increased water vapour resistance with quite different MMT profiles compared to the 

uncoated fabrics. 

 

 

 

This chapter was published in Coatings 2018; 8(3), 104, doi: 10.3390/coatings8030104    
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7 COMPARATIVE STUDY OF IMP 
TECHNOLOGY, PAD-KNIFE 

COATING AND LAMINATED 
MEMBRANE FABRICS 

7.1 Introduction 

Plasma technology uses different gases such as nitrogen, oxygen and helium to increase the 

hydrophobicity and surface roughness of fabrics while the physical properties of the treated 

fabrics are well preserved (Asadian et al., 2017). Surface modification with plasma technology 

brings the fabric higher liquid entry pressure and an air gap between the membranes. The plasma 

treatment was also used in combination of chemical vapour deposition of nanoparticles from 

fluoro-polymers, and the combined method was used to remove toxic gases. However, these 

methods are based on multi-step and not suitable for hydrostatic pressure resistant (DeCoste and 

Peterson, 2013). Plasma treatment with fluoro-polymer chain C8 was found to better resist oil, 

acids, UV light with the self-cleaning property. However, the superhydrophobicity and 

oleophobicity were not effective after the mechanical action of laundering and abrasion, which 

meant the coating was not stabilised on the surface of fabrics to exhibit durability. Therefore, the 

long chain of fluoro-polymer C8 is not suitable to be used as the safer polymeric coating (Wang et 

al., 2011). Plasma surface modification combined with polyvinylidene fluoride (PVDF) 

membrane were used to develop superhydrophobic and omniphobic surface by the 

electrospinning (Liao et al., 2013). PVDF and fluoro-silane polymer were applied on fabrics by 

dip coating, and the coated fabrics were further treated by vacuum plasma to enhance the 
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superhydrophobicity, oleophobicity and self-healing with durability against laundering and 

abrasion.    

Plasma treatment always requires specific equipment that adds the cost of the application of the 

technology (Zhou, 2013). Plasma treatment usually has to be applied under a specific pressure, 

and a lower vacuum pressure does not guarantee the good hydrophobicity of the fabric surface 

(Hossain, 2006). Besides, the plasma treated fabrics cannot resistant organic contaminations 

waste (Chul Woo et al., 2017, Keating et al., 2018). Argon plasma treatment was used with lactic 

acids to increase the dyeing efficiency, biodegradable and antibacterial activity, but the process 

was very hard to control in order to obtain the dark shade of the dyeing (Wang et al., 2017).  

The IMP plasma Pi2 technology (IMP) is a liquid repellent functionalising technique which 

consumes a low level of energy with little wastes created. The technology is available in two 

styles, namely the elite force Wpi technology that provides ultimate resistances with comfort and 

the shielding force that provides fire resistance protection. IMP is an invisible technology with 

the visible results of water repellency or self-cleaning properties (USA, 2010). It brings a 

nanolayer which is 1000 times thinner than a human hair to the treated fabrics for protection. The 

layer is light weight, breathable, water resistant and less wettable with durability, and it provides 

high- level resistance to water, chemical warfare agents and blood borne pathogens. 

IMP treated products are solvent resistant, and they don’t absorb any dirt particles from mud or 

car splashing. It is widely used to develop protective coating with lightweight, breathability, 

protection and durability. IMP technology has been adopted to provide the ultimate protection 

with comfort for policemen, paramedics and soldiers. It creates the robust superhydrophobic 

surface for commercialisation and research with application in outdoor clothing, sports life 

science, food packaging industry, medical devices, biomaterials, filtration and energy (Pankaj, 

2014, Holme, 2007). Military force uses IMP technology to develop military garments with 

excellent resistance to chemical warfare agents, oil and staining. 

Eco-friendly C6 perfluorinated acrylic copolymer and PDMS silicone polymer were used to 

develop excellent water-resistant coating with durability after laundering and abrasion stress, but 

its hydrostatic pressure stability was only 2.56 kPa (Zahid et al., 2017). Pad-knife-pad coating 

methods were developed to coat WPU, TPU and PDMS-TMS on cotton and polycotton fabrics to 

enhance the resistance to water, oil and chemicals. WPU membrane was less air permeable as 

compare to the TPU polymeric coating, and TPU polymeric coating showed better comfort (Moiz 

et al., 2016, Moiz et al., 2017). This Chapter focuses on the comparison between the pad-knife-
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pad coated fabrics with the IMP treated fabrics and industrial fabrics, contributing a critical 

analysis of the results which will benefit the further development of chemical protective clothing. 

 

7.2 Experimental  

7.2.1 Materials  

Different fabrics were used and the properties of each fabric were displayed in Table 7-1. A non-

ionic detergent of the octylphenol ethoxylate was sourced from the Dow Corning Pty Ltd, 

Australia. ICB Fix Tubicoat Iso-cyanates and waterborne polyurethane (WPU, Tubicoat 

membrane 1665, in paste form) were purchased from CHT Pty Ltd, Australia. A mixture of 35% 

polydimethylsiloxane (PDMS) and 35% trimethylated silica (TMS) was purchased from Dow 

Corning Pty Ltd, Australia. Invadine PBN, Kinttex® FEL, Phobotex RSH and Olephobol ® CP-

C were purchased Huntsman Singapore Pty Ltd. Hexadecane and n-Decane were purchased from 

Sigma Aldrich Pty Ltd, Australia. Mineral oil was purchased from Johnson and Johnson Pacific 

Pty Ltd, Australia. Acetonitrile, Isopropyl alcohol and Dichloromethane (Ana-R) were purchased 

from BDH Limited Poole, England. Sulphuric Acid (98%) was purchased from RSL LAB SCAN 

Ltd, Thailand. Dimethylformamide was purchased for Merck, Germany. Sodium hydroxide was 

purchased from Chem Supply Pty Ltd, Australia. 

7.2.2 Preparation of Fabrics 

In IMP treatment, the fabrics were first scoured in an MCS mini jet dyeing vessel with o.1 w/v 

octylphenol ethoxylate solution in water and a liquor ratio of 20:1, for 30 minutes and scoured by 

caustic soda at 90°C for 1 hour. Scoured fabrics were rinsed in warm water and then in cold 

water. Rinsed fabrics were left overnight for hanging dry in an ambient environment. After 

scouring the fabrics were cut into A4 size for the IMP treatment at the Global Defence Solutions 

Pty Ltd, Australia. The IMP machine (Figure 7-1) has the capacity of about 400 litres with the 

dimension of 560 mm.  

The specimens were placed into the chamber, and a low vacuum pressure was achieved to create 

plasma inside the chamber. The exposure time for each specimen was five minutes. The IMP 

treated fabrics were denoted as OG, SG, PB and RB with details listed in Table 7-1 

LPB and LRB used as industrial fabrics. WPTC and WOC fabrics were prepared by the pad-

knife-pad-cure method as described in Chapter 4.  
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Table 7-1: Specification of fabrics used.  

Fabrics Construction 
Fabric weight 
(g/m2) 

Fibres 
 

Olive Green (OG) 2/2 twill 80  100% polyester 

Safety Gold (SG) 2/1 twill 220  45% Aramid, 32% FR 
viscose, 17% nylon 

Paris Blue (PB) plain weave 155  50% Nomex, 50% FR 
viscose 

Royal Blue (RB) plain weave 90  100% polyester 

Lines Paris Blue 
(LPB) 

plain weave face, PTFE 
membrane, plain weave 
polyester lining 

190  100% polyester 
(industrial fabrics) 

Laminated Royal 
Blue (LRB) 

plain weave with laminated 
membrane backside 60  100% polyester 

(industrial fabrics) 

WPU-PDMS-TMS 
(WPTC) 

RMIT University developed the 
blended cotton fabric with 
camouflage printing. 

182  
80:20 % cotton and 
polyester with 
camouflage printing 

WPU-Olephobol 
(WOC) 

RMIT University developed the 
blended cotton fabric with 
camouflage printing. 

182  
80:20 % cotton and 
polyester with 
camouflage printing 

 

 

 

Figure 7-1: The process of IMP treatment: (a) ion mask chamber; (b) ionisation of 
polymerisation; and (C) ions attached with the fabrics surface. 
 

 

7.3 Result and discussion  

In the plasma treatment, the low vacuums pressure was created to allow the energized polymer 

molecules to pass through the surface of fabrics with fewer amounts of fluorocarbon chemicals. 

(a) 

(b) (c) 
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Meanwhile, polymers molecules were ionized in the chamber, creating active binding sites for the 

micro- or nano-level coating penetrating in between the fibres.  

7.3.1 Morphology of fabrics  

Figure 7-2 shows the surface morphology of the IMP treated fabrics and the coated fabrics with 

insets of the untreated/uncoated fabrics. The untreated fabrics show smooth and clean surfaces. 

The IMP treatment has formed a thin layer of polymeric coating on the surface of OG fibres with 

surface roughness and many particles aggregated, as shown in Figure 7-2(A). For IMP treated SG 

fabrics, accumulated particles can be observed from the surface of fibres Figure 7-2(B). The 

surface of PB fibres have been severely etched and damaged after the IMP treatment, resulting in 

a rough and uneven morphology with particles in Figure 7-2(C). Similarly, the RB fabrics show 

blister and hills on the surface after IMP treatment, as shown in Figure 7-2(D) (Wróbel et al., 

1978, Caschera, 2014). The damaged surface with particles on fibres is due to the degradation 

and ionisation of polymers in the IMP treatment. The plasma treatment energised the polymer 

molecules and deposited them onto the fibre surface with low surface energy. The rough surface 

with particles was then formulated.  

 

 
Figure 7-2: SEM images of IMP treated and pad-knife-pad coated fabrics (A-F: treated 
fabrics; insets a-f: untreated fabrics). 
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For comparison, the surface morphology of coated fabrics is shown in Figure 7-2(E-F). The 

WPTC (WPU membrane plus 8% PDMS-TMS) coated fabrics have been covered with a whole 

layer of the membrane of WPU with surface roughness and many particles from PDMS-TMS. 

The WOC (WPU membrane plus oleophobol) coated fabrics indicate an uneven surface with 

roughness, and the fibrous structure of fabric has been half covered by the coated layer. 

7.3.2 FTIR spectra 

Figure 7-3 shows the FTIR spectra of the IMP treated and pad-knife-pad coated fabrics. The 

spectrum of OG fabrics shows the functional groups of CH stretching and bending at 2900 cm-1 

and 2966 cm-1, respectively. The C-C vibrational bonding in the benzene ring is shown at around 

2250-1650 cm-1. The carbonyl group and OH group appears at 1709 cm-1 and 3350 cm-1, 

respectively. The anhydride group appears at 1958 cm-1 and C=O strong bonds present at 1757 

cm-1 with asymmetric stretching. After the treatment with IMP, a number of visible dominating 

peaks shifted slightly in the spectrum with large parks at 1734 cm-1 to 650 cm-1 due to the 

presence of carbonyl group from OG fabrics.  

 

 
Figure 7-3: FTIR spectra of IMP treated and pad-knife-pad coated fabrics. 
 

The spectra for IMP treated fabrics (OG-RB) show the changes in the functional groups of C=O 

and OH. There is a reduction in the OH group that contributes to the hydrophobicity of the 

surface. No further changes in the chemical components have been observed after the treatment, 

because the IMP technology is used to change the surface and structures of fabrics slightly 

(Caschera, 2014).  
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WPTC coated fabrics show the characteristic peaks of WPU at 2935 cm-1 and 1713 cm-1, 

corresponding to the CH2 and C=O groups. In addition, the characteristic bands of PT, such as 

the Si-O-Si and the Si-O-C overlapped bands can be seen in the spectrum. Similarly, the presence 

of TMS can be noted at 1251-1257 cm-1 due to the copolymerization reaction between the two 

polymers (Moiz et al., 2016). WOC coated fabrics exhibit the spectrum with similar functional 

groups of NH, CH2, C=O and visible peak of fluoro-polymers (CF2-CF3) between the 1338 cm-1
 

to 1208 cm-1, resulted in the hydrophobic surface on the fabrics.  

7.3.3 Superhydrophobicity and durability 

IMP treatment has brought excellent superhydrophobicity to fabrics, as shown in Figure 7-4. The 

IMP treated fabrics show the water contact angle of around 160o. Whereas, the industrial fabric 

LPB and pad-knife-pad coated fabrics are hydrophobic with the water contact angle around 130-

140o. The other industrial fabric LRB is hydrophilic with a water contact angle of 86o. The 

superhydrophobicity is due to the generated rough surface with an extremely low surface tension 

by the IMP treatment. LRB has a laminated layer at the back side of fabric; however it can absorb 

oil and chemical from the front side. 

 

 
Figure 7-4: The water contact angle of all the fabrics before and after laundering and 
crocking.  
 

The durability of the hydrophobic surface against laundering and crocking has been the issue for 

developing protective clothing. The weak bonding between the coated layer and the substrate can 

break easily after rubbing (Roe and Zhang, 2009). IMP treated fabrics SG, PB and RB have very 

good durability against washing as the water contact angle only decreases by 2-3° after washing. 
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At the same time, the IMP treated fabric OG is much less durable as the water contact angle 

decreases by 18° after laundering. IMP treated fabrics SG and PB have excellent durability 

against crocking with a 2-4° decrease in the water contact angle. However, OG and RB are less 

durable with the reduction of 13-25° in water contact angle after crocking. Industrial fabrics LPB 

and LPB show acceptable durability against washing and rubbing with the reduction of 2-5° in 

water contact angle. LRB is less durable due to the laminated layer on its backside. WPTC coated 

exhibits excellent durability with only 1° reduction after laundering cycles and crocking (Moiz et 

al., 2016). WOC coated fabrics retain the hydrophobicity with reduction of 9° and 2° after 

laundering and crocking, respectively.  

The durability of the hydrophobic surface is crucial in maintaining long-lasting properties of the 

protective garments (Zeng et al., 2015). The strong bonding sites always play a key role in 

maintaining the durability of hydrophobic surface. The excellent durability of IMP treated and 

pad-knife-pad coated fabrics are due to the strong bonding between the formed layers and the 

fabrics.  

 

 
Figure 7-5: The water contact angle of all fabrics after different cycles of pilling. 
 

All the fabrics were subject to different cycles of pilling to assess the durability of the surface 

against mechanical action (Figure 7-5). The water contact angle of all the fabrics decreases 

slightly after 50-500 cycles of pilling followed by evident drops after 1000 cycles. However, the 

SG and LRB show changes in water contact angle even after 2000 cycles of pilling. The 

superhydrophobicity can be well preserved after different cycles of pilling as the reduction for 

most fabrics is within 20°. It is noted that OG shows a very evident drop in water contact angle 
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after different cycles of pilling, indicating poor durability against the mechanical action. Overall, 

the IMP treated fabrics except for OG, industrial fabrics and pad-knife-pad coated fabrics have 

the strong surface with durability to withstand different cycles of pilling. 

7.3.4 Aqueous liquid repellency 

IMP treated fabrics have low surface tensions to increase the repellency to aqueous liquids of  

water and alcohol mixtures with different ratios (2-40%). The surface tension of the treated 

fabrics such as OG, SG, PB and RB fabrics is within the range of 59-24 dynes/cm. Figure 7-6 

shows the photos of aqueous liquids on each fabric after 600 seconds. It is obvious that the IMP 

treated fabrics are resistant to all the aquous liquids as shown in Figure 7-6. The industrial fabrics 

LPB  and LRB show no resistannce to all types of aqueous liquids, and the liquids penetrate into 

the fibrous structure within a second. This is due to the similar surface tension between the 

liquids and the industrial fabrics. WPTC and WOC fabrics show excellent resistance to all types 

of aqueous liquids. The coated surface of WPTC and WOC with lower surface tensions repels the 

liquid mixtures with higher surface tensions (Moiz et al., 2016). IMP treated fabrics have a 

superhydrophobic surface with super repellency and self-cleaning properties (Vazquez, 2005). 

 

 
Figure 7-6: Aqueous liquid repellency of IMP treated fabrics, WPTC and WOC coated 
fabrics and industrial fabrics (Water/alcohol Composition ratio: Orange 98/2; Red 90/10; 
Blue 80/20; Yellow 60/40, respectively). 
 

7.3.5 Oil repellency  

The surface with oleophobicity and superhydrophobicity plays a key role in protection against oil 

and water. The untreated fabrics were not resistant to all types of oil due to their hydrophilic 

nature. After the IMP treatment, the surface tension and energy of fabrics were reduced at the 
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same time, resulted in the excellent oil repellency. As shown in Figure 7-7, the IMP treated 

fabrics repel all kinds of oil with the droplets of oil staying on the surface of fabrics like balls. 

Table 7-2 lists the time for oil to be absorbed into the fabrics as another way to show the oil 

repellency. WPTC and WOC are resistant to all types of oil due to the lower surface tension of 

the coated surface (Moiz et al., 2016, Wang et al., 2011). However, the droplets of oil on the 

surface of the coated fabrics are in the shape of semi-sphere. It is apparent that IMP treatment 

brings better oil repellency to fabrics than the pad-knife-pad coating. In contrary, industrial 

fabrics LPB and LRB are not resistant to all types of oil. 

 

Table 7-2: Oil repellency in different time intervals (seconds). 

Sample Castor oil 
Vegetable 
oil Paraffin oil  

n-
Hexadecane n-Decane n- Heptane 

OG  600 600 600 600 600 600 
SG 600 600 600 600 600 44 
PB 600 600 600 600 600 600 
RB 600 600 600 600 600 600 
LPB 136 0 0 0 0 0 
LRB 94 50 10 60 20 0 
WPTC 600 600 600 600 600 600 
WOC 600 600 600 600 600 600 

 

 
Figure 7-7: Oil repellency of IMP treated fabrics, WPTC and WOC coated fabrics and 
industrial fabrics. 
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7.3.6 Chemical resistance 

Chemical stability is a very important factor in protective clothing for safety. Military uniforms 

with chemical resistance can protect skin from being attacked by chemical agents and save lives.  

 Shows the example of chemical resistance to sulphuric acid for all the fabrics, and apparently, all 

the fabrics are not resistant to the strong acid and burns on the surface of fabrics can be observed. 

Table 7-3 lists the chemical resistance of all the fabrics to a range of chemicals. Industrial fabric 

LRB has no chemical resistance and all the chemicals penetrate the fabric swiftly, whereas the 

other industrial fabric LPB resists some of the chemicals as shown in Table 7-3. LPB has 

excellent resistance to isopropyl alcohols, acetic acid, and sodium hydroxide, 1-4 butadienes, 

dimethylformamide and acetonitrile for 600 seconds as seen from the data.   

Table 7-3: Chemical resistance of all the fabrics. 

Sample OG SG PB RB LPB LRB WPTC WOC Status 
Acetic acid 600 600 600 600 600 0 600 600 ER 
Sulphuric acid 276 201 152 212 10 10 422 545 LR 
Isopropyl alcohols 600 600 600 600 600 0 600 600 ER 
n-Hexane 0 0 0 0 0 0 15 13 NR 
Sodium hydroxide 600 600 600 600 600 0 600 600 ER 
Tetrahydrofuran 446 550 147 489 0 0 125 174 ER/LR 
Triethylamine 133 77 0 60 0 0 212 298 LR/NR 
Methanol 600 600 600 600 489 0 235 600 ER 
1,4 butadiene 600 600 600 600 600 0 600 600 ER 
Dimethylformamide 600 600 600 600 600 0 600 600 ER 
Acetonitrile 600 600 600 600 600 0 515 473 ER 
Toluene 600 600 600 600 0 0 180 600 ER 
Dichloromethane 276 201 152 212 0 0 24 10 LR 

Note: ER: excellent resistance; LR: limited resistance; NR: not resistance. 

 

Figure 7-8: Chemical resistance to sulphuric acid of IMP treated fabrics, WPTC and WOC 
coated fabrics and industrial fabrics. 
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IMP treated fabrics are not resistant to n-hexane and the droplet penetrates into the fabrics 

immediately. The IMP treated fabrics show limited resistance/no resistance to triethylamine with 

less than 120 second and limited resistance to dichloromethane and sulphuric acid with 152-276 

seconds. Other than these, the IMP treated fabrics show excellent resistance to most of the 

chemicals for 600 seconds due to the low surface tension of their surface.  

WPTC and WOC show excellent resistance to most of the chemicals and limited resistance to n-

hexane, tetrahydrofuran and dichloromethane due to their similar surface tension (Moiz et al., 

2016, Pan et al., 2012, Zeng et al., 2015). 

 

 

 

Figure 7-9: Water repellency, air permeability (a) and hydrostatic pressure (b) of all the 
fabrics. 
 

(a) 

(b) 
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7.3.7 Air permeability, water repellency and hydrostatic pressure 

Figure 7-9(a) shows the air permeability, water repellency and hydrostatic pressure of all the 

fabrics. It is evident that both coating and IMP treatment affect the air permeability of fabrics, as 

most of the coated/treated fabrics show very low air permeability. All the fabrics except for LRB 

show excellent water repellency as 80-100% water is repelled. The industrial fabrics and the 

coated fabrics show excellent hydrostatic pressure as shown in Figure 7-9(b). The reason for this 

is probably due to the uniform membrane on the surface of fabrics that can withstand the pressure 

to a much higher level. In contrary, the IMP treated fabrics have extremely low hydrostatic 

pressure. As the plasma treatment does not bring a whole uniform membrane to the surface of 

fabrics, the capability of the surface to prevent hydrostatic force is very weak.  

 

7.4 Summary  

IMP is very simple and unique techniques to functionalise the surface of fabrics with 

superhydrophobicity. The IMP treated fabrics show the rough surface with particles, but the 

fibrous structure has been well preserved after the treatment. IMP treated fabrics show higher 

superhydrophobicity than industrial fabrics and pad-knife-pad coated fabrics, and the durability 

of the hydrophobic surface is excellent. The repellency against oil, aqueous liquids, and 

chemicals of IMP treated fabrics and pad-knife-pad coated fabrics are more or less similar. The 

hydrostatic pressure of IMP treated fabrics is extremely low, whereas that for coated fabrics and 

industrial fabrics is very high. The simple method of the pad-knife-pad coating has brought the 

omniphobic surface to fabrics with excellent hydrostatic pressure, which has a high potential in 

developing protective clothing for military force and/or industrial applications. 
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8 CONCLUSION AND FUTURE 
RESEARCH 

8.1 Summary 

Chemicals create severe risks and danger to civilian and military. Research base investigation has 

determined the effects of chemicals and the comfort properties of protective clothing. Protective 

clothing is available in multilayered, yet the garments are heavy and uncomfortable to wear. 

There is a need to develop simple methods of polymeric coating and repellent to enhance the 

protection of chemical, towards low weight and comfortable wearing clothing in the war zone. As 

a result, the protective clothing from cotton or cotton-based fabrics might be wearable, especially 

on the battlefield. Solider and civilian surveyed would be more comfortable and would be 

provided with better protection against water, liquids, oils, and chemicals. 

In this research, the widely used padding-knife coating-padding-curing (pad-knife-pad) coating 

technology was adopted to develop multiple protective layers from waterborne polyurethane 

(WPU), polydimethylsiloxane (PDMS) and trimethylated silica (TMS). The chain of PDMS-

TMS cross-linked and combined with the backbone chain of WPU to form a cross-linked 

network between the two polymers on the surface of cotton fabrics. Morphology study revealed 

that a uniform membrane of WPU with particles was formed on the surface. Due to the low 

surface tension of the coated layers, the coated cotton fabrics showed a water contact angle of 

155°. The coating showed excellent durability after laundering and crocking, and this was due to 

the strong bonding within the coated layers and between the coating and the fabrics. A 

combination of WPU-PDMS-TMS (WPT) coating on cotton fabrics greatly enhanced the 

repellency and protective properties, as the coated fabric showed excellent repellency to water, 
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oil, aqueous liquid and hydrostatic pressure. Chemical resistance was brought to cotton fabrics 

after the coating, and the WPT coated cotton fabrics showed better chemical resistance than WPU 

coated and 8% PT coated. After exposure to strong ultraviolet light on WPU membrane, the 

excellent resistance to chemicals and the hydrophobic surface were unchanged. The air 

permeability of WPT coated cotton fabrics was much lower than that of cotton fabrics due to the 

continuous defect-free WPU film that affected the pore size and blocked the pores of fabrics. 

Careful selection of the coated materials has proven to be the determining factor of the protection 

and comfort of the coated fabrics. Using the same pad-knife-pad coating method, a soft, flexible, 

highly durable, comfortable, and versatile protective surface from the combination of 

thermoplastic polyurethane and PDMS-TMS was formed on polycotton fabrics. Morphology 

study revealed that a thin layer was formed on the surface of fibres rather than a uniform 

membrane on the fabrics. The cross-linked network from TPU-PDMS-TMS (TPT) provided 

flexible and soft segments with low surface energy siloxane groups to the polycotton fabrics. The 

superhydrophobic surface was formed on the coated fabrics with a water contact angle of up to 

155°. Excellent durability of the coating was noticed when the coated fabrics were subject to 

different cycles of laundering and crocking, and this was due to the recrystallization of the long 

chains of the methyl groups of the PDMS and Si–OCH3 bonding imparted between the substrate 

and the TPT coating. Similar to WPT, the TPT coating showed excellent repellency against 

water, oil, aqueous liquids and chemicals, and the protective capacity was not heavily affected 

even when the coated fabrics were subject to tensions. The TPT coating showed better comfort 

than WPT, even though the air permeability and water vapour permeability were deteriorated to 

some extent due to the blocking of the porous fibrous structure of polycotton fabrics. The thermal 

resistance of the coated polycotton fabrics was enhanced due to the trapping of static air within 

the fabric structure by the coated layers. The moisture management properties of the coated 

fabrics were totally different. TPU coating enhanced the water spreading capacity on the surface 

of polycotton fabric but deteriorated the water transport capacity. The TPT coated fabrics 

exhibited water droplets on their surface and showed poor moisture management capacity. 

A combination of silicone rubber and environmentally friendly fluoro-polymers was found to be 

effective in generating superomniphobic surface on cotton fabrics by the same pad-knife-pad 

coating method. The coating resulted from thin membrane with roughness surface and particles 

on the fabrics, and the coated fabrics were more rigid with a higher bending length, and were 

stiffer with higher KES values of surface friction and roughness. A cross-linked network with a 

very low surface tension was formed through the strong bonding between the CH3 groups of 
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rubber and the CF2 groups of fluoro-polymers, resulting in a durable superhydrophobic surface 

with the water contact angle of around 140-150°. The coated fabrics showed excellent repellency 

to water, aqueous liquids, oil and chemicals, and staining resistance of the coated fabrics to soil 

was noticed as well. The coated fabrics showed decreased thermal resistance and increased water 

vapour resistance with quite different MMT profiles after coating.  

A careful comparison between the plasma treatment (IMP technology) and the pad-knife-pad 

coating was contributed with industrial fabrics as references. The IMP treated fabrics showed the 

rough surface with particles on fibres with the fibrous structure well preserved, whereas a 

membrane was usually formed on the pad-knife-pad coated fabrics. IMP treated fabrics showed 

higher superhydrophobicity than industrial fabrics and pad-knife-pad coated fabrics. The 

durability of the hydrophobic surface on all the fabrics was excellent due to the strong bonding 

between the functional layers and the fabrics. Both the treated and coated fabrics showed similar 

repellency against water, oil, aqueous liquids and chemicals. However, the hydrostatic pressure of 

IMP treated fabrics was extremely low, whereas that for the coated fabrics and industrial fabrics 

was very high.  

With the superomniphobic surface brought to fabrics with excellent protection capacity and 

durability together with strength against hydrostatic pressure, the simple method of the pad-knife-

pad coating has a high potential in developing protective clothing for military force and/or 

industrial applications. 

 

8.2 Scope and limitations 

The pad-knife-pad coating method was demonstrated in the chemical laboratory with the size of 

coating limited to 30 cm by 30 cm. The measurement of protection against different threats was 

conducted one by one, which might not reflect the real complex attack that the protective clothing 

suffered from. The comfort assessed was conducted on the fabrics rather than clothing, thus the 

understanding of the comfort after coating might be limited. Only polyurethane and silicone 

rubber membrane were chosen as the bottom layer of the coating, there might be other durable 

membranes that can be considered. For the functionalisation purpose, only PDMS and TMS 

together with fluoro-polymers were used for the creation of a cross-linked network.   
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8.3 Recommendation for future research work 

During this research, a number of suggestions for proposed further work were identified. 

1. The pad-knife-cure method is good for laboratory and industrial scales. However, the results 

of coating may vary when the production is scaled up. It is worthwhile to further develop this 

method in an industrial scale. 

2. Deploying bottom layer membrane with uniform thickness and without affecting the 

breathability of the porous fibrous structure can be explored. Advanced fabrication 

techniques, such as electrospinning and electrospraying, could be adopted to overcome the 

issues from thickness, weight and comfort. 

3. Cotton and polycotton fabrics were used in this research. The addition of repellent layers 

always comprised the moisture management properties of the cotton fabrics. Blended fabrics 

with cotton and poplin or wool, could probably maintain the thermophysiological comfort 

properties better without compromising the protection. 

4. With a huge application potential in the chemical, biological, radiation and nuclear defence 

(CBRN), the protection side of this research work can be further extended to firefighting and 

biological, radiation and nuclear protection areas. Research into the antibacterial protection 

could be promising in developing protective gears against viral infection or biological 

pathogens/agents. 
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1 BLISTER /VESICANT AGENTS 
  

Common name 
and designation 

Sulphur Mustard 
(HD) 

Nitrogen Mustard Lewisite 
(L) HN1 HN2 HN3 

Chemical 
formula C4H8Cl2S C6H13Cl2N C5H11Cl2N C6H12Cl3N C2H2AsCl3 

Physical state at 
20°C Liquid Liquid Liquid Liquid Liquid 

Volatility[mg/m3] 906 at 25°C 2230 at 
25°C 

3490 at 
25°C 

120 at 
25°C 

3860 at 
25°C 

Persistency Persistent Persistent Persistent Persistent Persistent 

Stimulants Methyl salicylate - - Di methyl 
acetamide 

Phenylarsine 
oxide 

Effects Skin, eyes and 
lungs 

Affect the skin, eyes, respiratory tract 
and gastrointestinal tract. Like SM’s, 
systemic absorption can lead to bone 
marrow suppression and central 
nervous system effects 

Some 
features of 
arsenic 
toxicity can 
also develop 

Protection 

Protective masks & 
gas filters. 
Protective suits and 
decomintation 
wipes 

Protective masks and gas 
filters. (HN1and HN2 are 
not used in the war zone 

Protective 
suits, 
masks and 
gas filters 

No 
Protective 
Suits are 
applicable in 
special 
situation 

Penetration 

It can easily 
penetrate ordinary 
clothing in vapour 
form 

It can easily penetrate ordinary 
clothing in vapour form 

It can easily 
penetrate 
ordinary 
clothing and 
even rubber 
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2 NERVE AGENTS 
 

Common 
name and 

designation Tabun (GA) Sarin (GB) Soman (GD) 
Cyclosarin 

(GE) Vx 

Chemical 
formula C5H11N2O2P C4H10FO2P C7H16FO2P C7H14FO2P C11H26NO2PS 

Physical state 
at 20°C Liquid Liquid Liquid Liquid Liquid 

Volatility 
[mg/m3] 497at 25°C 1.8x104 at 

25°C 4x103 at25°C 898 at 25°C 10 at 25°C 

Persistency Non-persistent Non-
persistent Non-persistent Non-persistent Persistent 

Stimulants 
di- ethyl 

ethylphosphonate 
(DEEP) 

Diphenyl 
chlorophosph
-ite (DPCP) 

triethylphospha
-te (TEP), 

dimethyl 
methylphosph-

onate 
(DMMP) 

Amiton 

Effects 

Affect eyes, 
lungs, skin and 
nervous system. 
Blood prevent 
oxygen reaching 
body tissues 

Affect eyes, 
lungs, skin 
and nervous 
system. 
 

Affect eyes, 
lungs, skin and 
nervous 
system. Blood 
prevent oxygen 
reaching body 
tissues 

Blood prevent 
oxygen 
reaching body 
tissues 

Affect eyes, 
lungs, skin and 
nervous 
system. Blood 
prevent 
oxygen 
reaching body 
tissues 

Protection Protective masks and gas filters. Protective suits and decontamination wipes for skin 
irritants 

Penetration Skin 
Skin and 
inhaled in 
respiratory tract 

Skin 
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3 CHOKING AGENTS 
 

Common name designation               Chlorine CL          Phosgene CG       Diphosgene DP 

Chemical formula                                                     Cl2 COCl2 C2Cl4O2 

Physical state at 20°C                     Gas Gas liquid 

Volatility [mg/m3]         2.19x107 at 25°C 7.46x106 at 25°C 4.8x104 at 20°C 

Persistency               Non-persistent Non-persistent Non-persistent 

 Effects  

Immediately after 
exposure patients 

complains of chest 
tightness, burning 

sensation in the nose, 
throat and eyes, redness 
and blisters on the skin 

like first bite. 

Breathlessness and 
acute lung injury. 

Effects on nose, throat 
and especially lungs 

Protection  Protective suits. Protective suits and 
protective masks. 

Protective masks and 
gas filters. Protective 

ware suits 

Penetration Skin 

Chloropicrin 
penetrates. Gas mask 
filters causing 
vomiting 

Skin 
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4 ASPHYXIANTS/ BLOOD AGENTS 
  

Common name designation 
Hydrogen cyanide   

AC 
Cyanogen Chloride     

CK 
Arsine SA 

(low toxicity) 

Chemical formula HCN CNCl AsH3 

Physical state at 20°C Liquids Gas Gas 

Volatility [mg/m3] 1.1x106 2.6x106 31x106 

Persistency Non-persistent Non-persistent Non-persistent 

Effects 

Chemical asphyxiates 
like cyanides interfere 
with oxygen transport 

at cellular level. 
Causing tissue hypoxia, 
anaerobic metabolism 

and lactic acidosis. 

Causes breathlessness, 
headache, dizziness, 
anxiety, palpitations, 
mydriasis, blurring of 

Vision, nausea and 
drowsiness. 

Inhaled arsine gas 
causes rapid 

destruction of red 
blood cells leading to 

hypoxia and renal 
failure. 

Protection 
Protective masks and 
gas filters. Protective 

suits. 

Protective masks and 
gas filters. Protective 

suits 

Protective masks and 
gas filters. Or 

Properly protected 
personnel should 
remove the victim 

from continued 
exposure to arsine. 

Penetration Skin Skin Skin 
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5 BEHAVIOUR AGENTS/VOMITING AGENTS 
 

Common name 
designation 

Adamsite 
(DM) 

Diphenylcyanoarsin 
(DA) 

Diphenylchlore 
(DC) 

Chemical formula C12H9AsClN C12H10AsCl C13H10AsN 

Physical state at 20°C Solid Solid Solid 

Volatility  [mg/m3]  
26x103 – 120x103 

at 20°C 
48 at 45°C 2.8 at 20°C 

Persistency Aerosol form: short, solid state: long 

Effects  

Central nervous 
system, Eye, heart, 
respiratory system, 

skin, gastrointestinal 
tract, and urinary 

bladder. 

central nervous system 
 

Central nervous 
system, Eye, heart, 
respiratory system, 

skin, gastrointestinal 
tract, and urinary 

bladder. 

Protection  
Protective masks and 
gas filters. Protective 

suits. 

Protective masks and 
gas filters. Protective 

suits. 

Protective masks and 
gas filters. Protective 

suits. 

Penetration Skin Skin Skin 
 

 

 

 


	Declaration
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Publications and Conferences
	Journals
	Conferences

	List of Abbreviations and Acronyms
	Abstract
	1 Introduction
	1.1 Background
	1.2 Research question
	1.3 Aim and objectives
	1.4 Significance of research
	1.5  Dissertation overview

	2 Theoretical Background and Literature Review
	2.1 Introduction
	2.2 Chemical protection
	2.3 Chemical warfare agents
	2.4 Classification of chemical warfare agents
	2.4.1 Blister/Vesicant agents
	2.4.2 Nerve agents
	2.4.3 Choking agents
	2.4.4 Asphyxiants/Blood agents
	2.4.5 Behaviour agents/Vomiting agents

	2.5 Chemicals used in war zones for chemical resistance analysis
	2.6 Lower and higher level protective suits
	2.7 Chemical protection by Fluoro-compounds
	2.8 Chemical protection by Polyurethane
	2.9 Chemical protection by nanocoating
	2.10 Superhydrophobic surface
	2.10.1 The theory of superhydrophobic surface
	2.10.2 Surface tension
	2.10.2.1 Young’s theory
	2.10.2.2 Wenzel’s theory
	2.10.2.3 Cassie Baxter’s theory
	2.10.2.4 Transition between Cassie and Wenzel States


	2.11 Application of the superhydrophobic coating
	2.12 Top-down approaches
	2.12.1 Lithography
	2.12.2 Plasma technology
	2.12.3 Templation
	2.12.4 Sublimation

	2.13 Bottom-up approaches
	2.13.1 Sol-gel method
	2.13.2 Chemical deposition
	2.13.3 Colloidal assemble
	2.13.4 Layer-by-layer deposition
	2.13.5 Covalent layer-by-layer assembly
	2.13.6 Electrospinning

	2.14 Textile materials
	2.15 Summary

	3 Materials, Methodology and measurements
	3.1 Materials
	3.1.1 Materials specification

	3.2 Methodology
	3.2.1 Scouring
	3.2.2 Pad batch methods
	3.2.3 Knife edge coating
	3.2.4 Drying and curing

	3.3 Measurements and characterization
	3.3.1 Thickness and GSM measurement
	3.3.2 Water contact angle measurements
	3.3.3 FTIR spectroscopy
	3.3.4 Scanning electron microscope
	3.3.5 Crocking fastness test
	3.3.6 Laundering fastness test
	3.3.7  Air permeability test
	3.3.8 Pilling resistance test
	3.3.9 Fabric stiffness test
	3.3.10 UV irradiation resistance test
	3.3.11 Thermal and water resistance test (Sweating Guarded Hotplate)
	3.3.12  Water vapour resistance test
	3.3.13  Moisture management properties (MMT)
	3.3.14 Grab test
	3.3.15 Hydrostatic pressure test
	3.3.16 Water repellency test
	3.3.17 Oil repellency test
	3.3.18 Aqueous liquids repellency test
	3.3.19  Chemical resistance test
	3.3.20 Soil release stain test


	4 Chemical and water protective surface on cotton fabrics by pad-knife-pad coating of wpu-pdms-tms
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Materials
	4.2.2 Pad-Knife-Pad coating

	4.3 Results and discussion
	4.3.1 FTIR spectra
	4.3.2 SEM images
	4.3.3 Durability of coating after laundering and crocking fastness
	4.3.4 Water repellency
	4.3.5 Hydrostatic pressure
	4.3.6 Oil repellency
	4.3.7 Mechanical properties
	4.3.8 Aqueous liquid repellency
	4.3.9 Chemical resistance
	4.3.10 Air permeability
	4.3.11 Ultraviolet resistance

	4.4 Summary

	5 Coating of TPU-PDMS-TMS on cotton fabrics for versatile protection
	5.1  Introduction
	5.2 Experimental
	5.2.1 Materials
	5.2.2 Methods

	5.3 Results and discussion
	5.3.1 Characterizations
	5.3.1.1 FTIR spectra
	5.3.1.2 SEM photos

	5.3.2 Versatile protection
	5.3.2.1 Water contact angle
	5.3.2.2 Water repellency
	5.3.2.3 Oil repellency
	5.3.2.4 Aqueous liquid repellency
	5.3.2.5 Chemical resistances

	5.3.3 Comfort
	5.3.3.1 Air permeability
	5.3.3.2 Water vapour resistance and permeability
	5.3.3.3 Thermal resistance
	5.3.3.4 Moisture management properties


	5.4 Summary

	6 Durable superomniphobic surface on cotton fabrics via coating of silicone rubber and fluoro-polymers
	6.1 Introduction
	6.2 Experimental
	6.2.1 Materials
	6.2.2 Methods

	6.3 Results and discussion
	6.3.1 Characterization
	6.3.1.1 Morphology of fabrics
	6.3.1.2 Thickness
	6.3.1.3 Handle
	6.3.1.4 FTIR spectra

	6.3.2 Protection
	6.3.2.1 Water contact angle
	6.3.2.2 Water repellency and air permeability
	6.3.2.3 Aqueous liquid repellency
	6.3.2.4 Oil repellency
	6.3.2.5 Chemical resistance
	6.3.2.6 Soil resistance

	6.3.3 Comfort

	6.4 Summary

	7 Comparative Study of IMP Technology, pad-knife COATING and Laminated Membrane Fabrics
	7.1 Introduction
	7.2 Experimental
	7.2.1 Materials
	7.2.2 Preparation of Fabrics

	7.3 Result and discussion
	7.3.1 Morphology of fabrics
	7.3.2 FTIR spectra
	7.3.3 Superhydrophobicity and durability
	7.3.4 Aqueous liquid repellency
	7.3.5 Oil repellency
	7.3.6 Chemical resistance
	7.3.7 Air permeability, water repellency and hydrostatic pressure

	7.4 Summary

	8 Conclusion and future research
	8.1 Summary
	8.2 Scope and limitations
	8.3 Recommendation for future research work

	9 References
	10 Appendices
	1 Blister /Vesicant Agents
	2 Nerve Agents
	3 Choking agents
	4 Asphyxiants/ Blood agents
	5 Behaviour Agents/Vomiting agents


