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Abstract

The study of user mobility is to understand and analyse the movement of individuals in the

spatial and temporal domains. Mobility analytics and trip planning are two vital components of

user mobility that facilitate the end users with easy to access navigational support through the

urban spaces and beyond. Mobility context describes the situational factors that can influence

user mobility decisions. The context-awareness in mobility analytics and trip planning enables

a wide range of end users to make effective mobility decisions. With the ubiquity of urban

sensing technologies, various situational factors related to user mobility decisions can now be

collected at low cost and effort. This huge volume of data collected from heterogeneous data

sources can facilitate context-aware mobility analytics and trip planning through intelligent

analysis of mobility contexts, mobility context prediction, mobility context representation and

integration considering different user perspectives. In each chapter of this thesis such issues

are addressed through the development of case-specific solutions and real-world deployments.

Mobility analytics include prediction and analysis of many diverse mobility contexts. In this

thesis, we present several real-world user mobility scenarios to conduct intelligent contextual

analysis leveraging existing statistical methods. The factors related to user mobility decisions

are collected and fused from various publicly available open datasets. We also provide future

prediction of important mobility contexts which can be utilized for mobility decision making.

The performance of context prediction tasks can be affected by the imbalance in context

distribution. Another aspect of context prediction is that the knowledge from domain experts

can enhance the prediction performance however, it is very difficult to infer and incorporate

into mobility analytics applications. We present a number of data-driven solutions aiming to

address the imbalanced context distribution and domain knowledge incorporation problems



2

for mobility context prediction. Given an imbalanced dataset, we design and implement a

framework for context prediction leveraging existing data mining and sampling techniques.

Furthermore, we propose a technique for incorporating domain knowledge in feature weight

computation to enhance the task of mobility context prediction.

In this thesis, we address key issues related to trip planning. Mobility context inference is

a challenging problem in many real-world trip planning scenarios. We introduce a framework

that can fuse contextual information captured from heterogeneous data sources to infer mobility

contexts. In this work, we utilize public datasets to infer mobility contexts and compute trip

plans. We propose graph based context representation and query based adaptation techniques

on top of the existing methods to facilitate trip planning tasks. The effectiveness of trip plans

relies on the efficient integration of mobility contexts considering different user perspectives.

Given a contextual graph, we introduce a framework that can handle multiple user perspectives

concurrently to compute and recommend trip plans to the end user.

This thesis contains efficient techniques that can be employed in the area of urban mobility

especially, context-aware mobility analytics and trip planning. This research is built on top of

the existing predictive analytics and trip planning techniques to solve problems of contextual

analysis, prediction, context representation and integration in trip planning for real-world

scenarios. The contributions of this research enable data-driven decision support for traveling

smarter through urban spaces and beyond.



Chapter 1

Introduction

The users of urban spaces need to travel from one place to another for various reasons such

as work, leisure, and freight distribution. The study of user mobility describes this movement

of individuals which consists of sequences of trips using different modes of transports [2]. As

cities are becoming more and more complex day by day [3], the concerns over providing decision

support for user mobility are also growing [4, 5, 6, 7]. In response to growing concerns over

user mobility in many modern cities, we have witnessed worldwide growth of urban sensing

infrastructures [8] enabling us to capture user movement and various factors related to user

mobility in the cityscape [9, 10]. Context-awareness is the key to deliver effective user mobility

decision support as it allows us to analyse and predict various situational factors related to

user mobility and to compute tailored mobility solutions based on different user perspectives

[11, 12, 13]. Furthermore, it contributes to the application domain of urban computing [14,

15, 16] utilizing big spatial and temporal data [17, 18].

Mobility analytics arise from conducting intelligent analysis and prediction on associated

spatio-temporal factors [19, 20, 21] and diverse mobility contexts [22] that influence the users’

mobility decisions. The context-aware mobility contexts can better describe users situations

for making mobility decisions [16, 23]. Therefore, context-aware mobility analytics enables the

provision of intelligent analysis on mobility contexts [24] considering different user perspec-

tives. The success of many applications such as transport management and location recom-

mendation requires the discovery of valuable knowledge through extensive analysis of related

3
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Figure 1.1: Ubiquitous Data Sources Facilitating User Mobility Solutions.

factors [25, 26]. Figure 1.1 depicts various heterogeneous data sources from where important

mobility-associated factors for user mobility decisions can be collected and stored to be used

for context-aware user mobility analytics and mobility solution development. These data can

aid knowledge discovery which can further be used in future mobility context prediction. The

prediction of future mobility contexts [20, 25, 27] is necessary in many application areas for

providing seamless mobility decision support given the fact that the user mobility contexts

can change over time and situation. For example, an airport can be regarded as the first and

last impression of a city. Since a longer passenger wait time for a taxi ride can diminish the

satisfaction rating of an airport [26], the authorities try hard to maintain a higher customer

satisfaction rating by providing various mobility services such as easy and comfortable airport

transfer to the city using taxicabs. However, the demand-supply equilibrium of taxis is highly

dependent on the taxi drivers’ decisions to make airport trips. The ubiquitous data can help

with managing the mobility of airport users by detecting different mobility contexts (i.e. situa-

tions of the concurrent queues related to passengers and taxis) [28, 26]. The intelligent analysis
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and prediction [26] of different mobility contexts can help with making mobility decisions for

airport passengers and taxis [29] at different times of the day. The mobility context prediction

also can help airport authorities to alleviate possible chaos due to lack of taxis at the airport

by ensuring the demand-supply equilibrium of taxis.

Trip planning is an important component of user mobility which provides navigational

support to users by integrating trips using single or multiple transport modes [30, 31, 32, 33]

such as public transport, private car, taxi, Uber and active transport. Context-awareness in

trip planning provides the opportunity to integrate trips based on different user perspectives

[34, 35] of mobility contexts. Moreover, an effective trip plan must have the capability to

consider multiple mobility contexts simultaneously during the computation of trip plans [16].

For example, the list of recommended plans in active transport (i.e. walking) trip planning

may include mobility contexts such as distance and steepness of the routes simultaneously. The

effectiveness of recommended trip plans varies along with the variation in user perspectives of

these mobility contexts. The inferred contextual information collected from ubiquitous data

sources has the potential to aid user-specific trip planning [34]. Furthermore, the growing need

for efficient urban intelligence in user mobility has led us to conduct context-aware mobility

analytics and trip planning.

1.1 User Mobility and Motivating Scenario

User mobility is defined as the movement of individuals between two meaningful places [2]. For

example, the user mobility of ‘home to office’ and ‘office to home’ can be termed as user mobility

since both home and office are two meaningful places [22]. User mobility can be decomposed

into small segments called ‘trips’. Essentially, a sequence of trips connecting two arbitrary

places defines user mobility between two meaningful places [2]. Each trip is accomplished

using a mode of transport such as bike, car, taxi, public transport or walking. Let us consider

an example of user mobility between two meaningful places p1 and p5 which consists of a

sequence of inter-connected trips using different modes of transport. The selection of different

transport modes by a user can result in different route recommendations for user mobility

between p1 and p5. Three different routes from p1 to p5 are marked with three different line
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Figure 1.2: Example of User Mobility Options Connecting Several Trips.

styles as shown in Figure 1.2. Each of these routes has a different combination of transport

modes. The first two routes (i.e. black and brick red) integrate trips with public transport

modes and the corresponding sequences of transport modes from p1 to p5 are (walk, train,

bus, walk) and (bike, train, bus, bike), respectively. These two routes have some segments

in common, as seen between p2 and p4. The third route (black dashed) employs only car or

taxicab to travel between p1 and p5.

Trip planner systems facilitate user mobility by selecting and integrating several trips in the

trip plans [34, 36, 37]. Usually, a trip planner integrates trips on the basis of user preference

chosen from a predefined list of options which may include shortest time, shortest distance,

number of transport mode changes and the preferred mode of transport [16]. However, the

consideration of different user perspectives of mobility contexts during trip planning can signifi-

cantly improve the effectiveness of recommended trip plans. The reason is because different user

perspectives of mobility contexts in trip planning can better describe the user situation. This

enables a wider range of users to make appropriate mobility decisions. However, the diversity

of user perspectives provides a challenge to the current trip planning systems [26, 16, 13, 38].

Let us consider two scenarios to discuss two different users and their perspectives on mo-

bility contexts. We discuss how mobility contexts describe the situations of users and influence

the user mobility decisions. The first user is a person with limited mobility in a wheelchair,
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Figure 1.3: Example of Diverse Situational Factors and User Perspectives of Contexts.

and the second person is a taxicab driver. We can see from Figure 1.3 that the trip planning

for the first person may consider mobility contexts such as distance and accessibility of the

route. The accessibility of the route can be quantified by many external associated factors

such as steepness along the route [16], weather, and road crossings. This user may also prefer

information about other associated factors including ramps and lifts at the trip end location

to ensure comfortable mobility. The inference of accessibility from the associated factors is

vital for this user’s mobility decisions. However, the inference and integration of mobility con-

texts (i.e. accessibility, distance) in trip planning is challenging due to the diversity in user

perspectives about mobility contexts. Intelligent data fusion and computation can be applied

to address this challenge. In contrast, Figure 1.3 shows the trip plan that a taxicab driver

may consider for information about mobility contexts such as the likelihood and wait time

for getting a passenger. The prediction based techniques can be used to infer these mobility

contexts. Moreover, these mobility contexts can be influenced by many associated factors in-

cluding traffic congestion, weather [39], hotness of the passenger pick-up spots [40] and the

spatio-temporal trip lucrativeness [41]. Therefore, predicting the mobility contexts in the pres-

ence of many associated factors is an important task as they contain the potential to provide

better decision making about user trips.

Context-awareness in mobility analytics [42, 43] and trip planning [44, 45, 46, 16, 13, 38] has

gained significant attention in recent years especially in the field of urban computing. It requires
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dealing with large spatio-temporal complex datasets [47] which opens many research challenges

in the field to intelligent contextual analysis and mobility context prediction, representation

and integration in trip planning. The main objective of this work is to conduct intelligent

analysis and prediction of mobility contexts from large datasets. We are interested in designing

a model that can be used to process imbalanced mobility context datasets [26]. We examine

the process of domain knowledge incorporation [48, 49, 50] in context prediction tasks. We

also aim to represent and integrate mobility contexts based on user perspectives during trip

planning. Considering the diversity of user perspectives, we are interested in designing a

conceptual framework that can infer and represent mobility contexts to be integrated in trip

planning algorithms. The objective of our study also includes testing and evaluating our

developed models and techniques with real-world user mobility scenarios including airport

ground transport management [51] and active transport trip planning [16, 52].

1.2 Research Challenges

In this thesis, we aim to address key challenges related to context-aware user mobility ana-

lytics and trip planning. The rapid growth of urban sensing tools and techniques facilitates

the collection of diverse spatio-temporal factors associated to user mobility. This has the po-

tential to provide valuable information for making user mobility decisions. The ubiquity of

these associated factors and the heterogeneous nature of the data sources has raised various

research challenges [53] in areas such as the analysis of mobility contexts and their prediction,

representation and integration in user specific trip plans.

For intelligent analysis of mobility contexts, cross-domain data fusion is required since it

can better represent the effects of mobility-associated factors for user mobility management

and planning. However, it is challenging due to the diversity of applications [54]. In user

mobility applications, the mobility contexts and user perspectives of mobility contexts are also

diverse in nature. The context-aware mobility analytics consider different user perspectives

concurrently to provide intelligent analysis and context prediction. For example, the airport

ground transport managers send requisition to the taxi service providers by estimating the

taxi demand in a future time window. This is to ensure the seamless passenger mobility from
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the airport using taxis. However, the flawed manual estimation can lead to enormous queue

waiting times for passengers as well as taxis.

It is challenging to deal with such scenarios since it requires some key related issues to

be addressed. Different machine learning techniques can be used to predict future mobility

contexts (i.e. queue situations). The machine learning techniques are trained using historical

mobility context data for the prediction task. However, the predictive analytics suffer from

mobility context imbalance problem because some mobility contexts occur very infrequently

compared with others making the predictive analytics more challenging. Many researchers

have addressed this issue in different application areas [55] but they have not been adapted

to user mobility analytics where many parties with different perspectives can be involved in

a common user mobility scenario. Therefore, our aim is to design a common framework for

user mobility analytics which can provide intelligent analysis and prediction for enhanced user

mobility management and planning considering different user perspectives.

Some researchers have shown that the incorporation of knowledge from experts can improve

the prediction accuracy in many application areas [48, 49]. However, it is difficult in user

mobility scenario due to the presence of diverse mobility-associated factors. An investigation

on how expert knowledge can be inferred and incorporated into this problem domain is required.

We aim to investigate and model multiple associated factors for user mobility and to design

an approach to incorporate the inferred expert-like knowledge in mobility context prediction.

Another important component of user mobility is to provide effective trip plans to support

user navigation. However, the effectiveness of trip plans depends on appropriate consideration

of user mobility contexts. This is a challenging issue to deal with since there are many diverse

user perspectives. Several algorithmic approaches have been proposed to handle user-defined

contextual preferences but they mainly require a user to select a preference from pre-defined

list of preferences and hence cannot serve the purpose where the aim is to consider multiple

mobility contexts from a single user and different user perspectives of contexts during trip

planning. Trip planning also suffers from context sparsity requiring specific contexts to be

inferred before designing trip planning algorithms. The inferred contexts need to be represented

in such a manner to ensure efficiency of the trip planning task. Our aim is to design a model
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that can infer and represent sparse mobility contexts and provide context-aware trip planning

considering multiple mobility contexts of a user and different user perspectives of a specific

mobility context.

In summary, the core challenges in effective context-aware mobility analytics and trip plan-

ning are as follows:

• Fusion and representation of collected large mobility-associated factors from heteroge-

neous data sources.

• Providing intelligent analysis and prediction on mobility contexts.

• Incorporating expert knowledge for enhanced mobility context prediction.

• Inferring sparse mobility contexts from heterogeneous data sources.

• Representing inferred mobility contexts for efficient computation of trip plans.

• Handling user trip planning queries by considering multiple mobility contexts simultane-

ously and different user perspectives of a specific mobility context.

1.3 Research Questions

In order to overcome the research challenges, we define the following research questions (RQs)

to achieve context-aware mobility analytics and trip planning.

RQ-1. How to provide context-aware mobility analytics from heterogeneous large datasets?

This research question addresses the challenges related to data fusion, representation and con-

text imbalance for intelligent analysis and prediction of mobility contexts. The significance of

dealing with these issues is primarily to ensure that we can handle various datasets of mobility-

associated factors collected from heterogeneous data sources to provide context-aware mobility

analytics using a common approach.
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RQ-2. How to model different associated factors to improve the mobility context prediction

task?

This research question is designed to address the challenges related to modelling the associated

factors to enhance the mobility context prediction tasks in RQ-1. Specifically, the aim of this

research question is to investigate diverse associated factors and incorporate knowledge from

domain experts during mobility context prediction in different scenarios.

RQ-3. How to integrate multiple mobility contexts in context-aware trip planning?

The solutions from RQ-1 and RQ-2 can be used for prediction based mobility context infer-

ence. However, there are some mobility contexts which cannot be inferred using a prediction

based method. This research question addresses the issues regarding context sparsity and

multiple mobility context integration in trip planning considering different user perspectives.

The framework presented here provides fusion based inference of sparse mobility contexts. By

utilizing the inferred mobility contexts, a technique is developed that can consider different

user perspectives of a specific mobility context and integrate multiple mobility contexts during

the computation of context-aware trips.

1.4 Research Contributions

To address the aforementioned research questions, the contributions of this thesis are as follows:

1. Context-aware mobility analytics using heterogeneous data

To provide context-aware mobility analytics, large heterogeneous datasets of user mobility-

associated factors are required to be fused and analyzed. These datasets are also a great

source for inferring different mobility contexts. The prediction of future mobility con-

texts is very important for better user mobility management and planning. In this thesis,

we take airport ground transport management as a case scenario of user mobility where

different parties including passengers, taxi drivers, and ground transport managers are
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involved to ensure seamless airport ground transport operation. Another reason to choose

this scenario is that the user mobility situation at the airport is influenced by a diverse

set of associated factors and hence is a complex issue faced by almost every busy airport

in the world.

We use large publicly available datasets of associated factors to infer various mobility

contexts. We present a framework to predict future mobility contexts with imbalanced

distribution leveraging existing data mining and sampling techniques. We also conduct

intelligent analysis of mobility contexts to provide useful information to the parties in-

volved in our scenario.

2. Modelling associated factors for mobility context prediction

In relation to the first contribution, we further investigate various mobility-associated

factors and present a technique to model factors for mobility context prediction. Since

research has shown that the domain-specific knowledge can improve the prediction perfor-

mance, we develop and present a technique to extract and incorporate domain knowledge

in terms of feature weights for mobility context prediction. Specifically, we explore sim-

ilarity based data mining techniques (i.e. neighborhood based methods) to incorporate

domain knowledge during the mobility context prediction task. This technique is useful

for making mobility decisions.

3. Inferring and integrating mobility contexts in context-aware trip planning

There are various user perspectives of a specific mobility context that need to be consid-

ered during trip planning using active transport (i.e. walking, biking, wheeling). Some

mobility contexts are sparse in nature and the development of new technique is required

to infer them. Moreover, existing trip planners are not built to consider different user

perspectives for the same specific mobility context and hence cannot serve the purpose.

In this thesis, new algorithms are designed to tackle the above challenges. The new trip

planner presented here can satisfy the perspectives of a wide range of users using active

transport and can be extended to trip planning using other transport modes.



Thesis Organization 13

1.5 Thesis Organization

The organization of this thesis includes the following chapters as below:

• Chapter 2: Context-aware mobility analytics using heterogeneous data.

A framework for mobility context prediction is presented in this chapter illustrating

the problem of predicting imbalanced taxi and passenger queue contexts at the airport.

The solution presented here is in relation to RQ-1. The technique to infer mobility

contexts that are useful for airport transport managers, taxi drivers and passengers is

also presented. A number of intelligent analyses of mobility contexts are also highlighted.

Copyright/ credit/ reuse notice: The contents of this chapter have been taken and revised

as needed from our paper published as:

M.S. Rahaman, M. Hamilton, and F.D. Salim, Predicting Imbalanced Taxi and Passen-

ger Queue Contexts in Airport, In: proceedings of the 21st Pacific Asia Conference on

Information Systems, Langkawi, Malaysia, 16–20 July 2017, PACIS 2017 Proceedings.

172.

DOI: http://aisel.aisnet.org/pacis2017/172

c©2017 Association for Information Systems Electronic Library (AISeL).

• Chapter 3: Modelling associated factors for mobility context prediction.

In relation to RQ-2, this chapter presents the modelling of mobility-associated factors

for mobility context prediction. In addition to the scenario demonstrated in Chapter

2, we introduce another real-world scenario where the mobility of taxi drivers depends

on the queue wait times before a passenger pickup from airport. We predict different

situations of taxi and passenger queues along with the queue wait times for taxi drivers

by introducing a domain knowledge incorporation technique as the means of feature

weighting scores. Specifically, the similarity based data mining techniques are explored in

this chapter for incorporating domain knowledge for prediction of these mobility contexts.

Copyright/ credit/ reuse notice: The contents of this chapter were taken and revised as

needed from two of our papers published as:

http://aisel.aisnet.org/pacis2017/172
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M.S. Rahaman, M. Hamilton, and F.D. Salim, Queue Context Prediction Using Taxi

Driver Intelligence, In: proceedings 9th International Conference on Knowledge Capture,

35, Austin, Texas, United States, 4–6 December 2017.

DOI: http://dx.doi.org/10.1145/3148011.3154474

M.S. Rahaman, Y. Ren, M. Hamilton, and F.D. Salim, Neighborhood Identification

from Heterogeneous Contextual Features for Taxi Driver Queue Wait Time Prediction

at Airports, 2018 (Under review).

• Chapter 4: Inferring and integrating mobility contexts in trip planning.

In this chapter, new algorithms are presented in relation to the challenges stated in RQ-

3. The solutions associated with sparse mobility context inference and integration of

multiple mobility contexts considering different user perspectives during context-aware

trip planning are introduced. A real-world case study is illustrated where we consider

active transport trip planning. The developed techniques are deployed in several locations

around the world.

Copyright/ credit/ reuse notice: The contents of this chapter has taken and revised as

needed from two papers published as:

M.S. Rahaman, Y. Mei, M. Hamilton, and F.D. Salim, CAPRA: A Contour-based Ac-

cessible Path Routing Algorithm, In: Information Sciences, Volume: 385, pp. 157–173,

December 2016.

DOI: https://doi.org/10.1016/j.ins.2016.12.041

M.S. Rahaman, M. Hamilton, and F.D. Salim, CoAcT: A Framework for Context-Aware

Trip Planning Using Active Transport, In: Proceedings of the 16th IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom Work-

shops), Athens, Greece, March 2018.

c©2018 IEEE. Reprinted, with permission, from M.S. Rahaman, M. Hamilton, and F.D.

Salim, CoAcT: A Framework for Context-Aware Trip Planning Using Active Transport,

March 2018.

http://dx.doi.org/10.1145/3148011.3154474
https://doi.org/10.1016/j.ins.2016.12.041
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• Chapter 5: Conclusion.

This chapter concludes the thesis by summarizing the main contributions, key findings

and limitations of the proposed methods. In addition, the significance of this research

and potential future directions are also discussed.

In short, the succeeding core chapters (Chapter 2–4) of this thesis contribute to a number of

key research questions on context-aware mobility analytics and trip planning with a concluding

summary and future research directions. Note that the core chapters appear in a self-contained

and self-explanatory manner which includes real-world scenarios. Different contexts require

different types of reasoning. Therefore, the relevant contexts and content including discussions

on related work, developed models, datasets, experimental setups and evaluation metrics are

presented in each of these chapters separately.



Chapter 2

Context-aware Mobility Analytics

Using Heterogeneous Data

As discussed in Chapter 1, intelligent analysis and prediction of mobility context are important

for making mobility decisions. The proliferation of urban sensing technologies facilitates the

collection of large volumes of heterogeneous data related to user mobility. This can provide

mobility management and planning considering different user perspectives through intelligent

analytics. However, it requires cross-domain data fusion to better represent the effects of

mobility-associated factors. To predict different mobility contexts, prediction algorithms are

employed and trained using historical mobility context data. This requires dealing with im-

balanced context distribution problem since some mobility contexts are very infrequently oc-

curring as compared to the others. Many techniques have been reviewed to address this issue

in different application areas. In relation to research question (RQ-1), this chapter presents a

framework that integrates the solutions of the above issues to provide mobility analytics.

We consider the taxi-passenger queue context prediction scenario at the airport. The

taxi and passenger queue contexts indicate various situations of queues related to taxis and

passengers (i.e. taxis are waiting for passengers, passengers are waiting for taxis, both are

waiting for each other, none is waiting). The queue contexts are good examples of mobility

contexts and the prediction of these queue contexts in a future time is very important for better

airport ground transport operations by considering different user perspectives including taxi

16
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drivers and air passengers. We choose this scenario to demonstrate that the queue contexts

are influenced by many diverse mobility-associated factors and to explain our developed a

framework to predict imbalanced queue contexts.

We begin with investigating different mobility-associated factors including time, frequency

of taxi trips, passenger arrivals and weather for queue context prediction. We predict the

queue contexts by following the detailed approach of our developed framework. Specifically,

we generate a queue context dataset by fusing three real-world datasets including taxi trip

logs, passenger arrivals and processing times, and weather condition at a major international

airport. The following sections of this chapter show a number of experimental results and

analyses to demonstrate our queue context prediction framework.

2.1 Motivation and Contribution

Taxis are considered to be the most convenient transportation option for passenger mobility

between the airport and the city. Hence the management of passenger and taxi queues plays

an important role in the running of an airport. Either taxis or passengers can experience

unexpected wait times for each other causing disruption and chaos for passengers and taxi

drivers at the airport if either queue becomes too long. A queue context describes who is

waiting in a given time window (i.e. taxi driver or passenger or both or none) [28]. Therefore,

predicting different queue contexts at different times of the day can help to improve the airport

satisfaction rating by providing timely taxi and passenger mobility management. This can help

the taxi drivers within the airport vicinity by providing timely information about the passenger

queues in different passenger terminals as well.

The queue context prediction at the airport is challenging for many reasons. First, the

formation nature of both taxi and passenger queues is dynamic and influenced by factors such

as flight arrivals, passenger processing, frequency of taxi trips and weather conditions. Second,

the queue contexts are imbalanced i.e. some of the queue contexts occur far less frequently

than other queue contexts. The problem of queue prediction in terms of wait time has been

studied in other applications by employing various machine learning algorithms [1, 56, 57].

However, the existing approaches are not sufficient to provide prediction and corresponding
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analyses of imbalanced queue contexts since there are several stakeholders involved with the

two simultaneously occurring queues at the airport. This is due to the fact that a single

technique serves the purpose of one party at a time. Therefore, the development of a common

framework is required to address all these integrated issues.

In this chapter, we develop a framework that provides step by step procedures to predict the

taxi and passenger queue contexts and provides contextual analysis on the prediction outcomes

considering different user perspectives. We also extract various factors and patterns from the

associated datasets fused for queue context prediction. Specifically, our framework employs a

suite of sampling and machine learning techniques to predict the imbalanced queue contexts

related to taxi and passenger queues. Our experiments with the dataset generated for the JFK

(John F. Kennedy) airport demonstrates the reasonableness of our developed framework. The

reason to choose the JFK airport for our experiment is that it is one of the busy airports in

the U.S. The taxi rank called the central taxi holding (CTH) area at the JFK is far away from

the passenger terminals. Any taxis planning for an airport passenger pickup job must join a

waiting queue at the CTH area before picking a passenger up. The taxi dispatch managers at

the JFK are responsible for dispatching taxis from this CTH based on the demand at several

passenger terminals [51]. Another airport in New York City is the LaGuardia airport. However,

this airport is not covered by the border control facility and hence no passenger arrival and

wait time information is available. Therefore, we take the JFK international airport as our

case location to prepare our dataset of taxi-passenger queue contexts at the airport. The

contributions of this chapter include the followings:

• Fusion of three real-world heterogeneous contextual datasets for the research of imbal-

anced mobility context prediction (i.e. taxi and passenger queue context prediction):

taxi trip data, airport passenger wait time data and weather condition data.

• Extraction and analysis of heterogeneous mobility associated factors and patterns from

the airport queue context dataset.

• Development of a framework to provide step by step procedures for queue context pre-

diction and analysis.
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Table 2.1: Description of Four Queue Contexts at Airport

Queue Contexts Description of Queue Contexts

TQ Only taxis are waiting in the queue (taxi rank)
for passengers.

PQ Only passengers are waiting in the queue (ter-
minal) for taxis.

TPQ Both taxis and passengers are concurrently wait-
ing in their respective queues for each other.

NoQ No taxis or passengers are waiting in their re-
spective queues.

2.2 Related Work

The airport provides the impression of a city and the air-passengers’ satisfaction about an

airport depend on the availability of taxis at the terminals. Several recent works analyze the

demand-supply equilibrium of airport taxicabs [58, 59]. However, both taxi drivers and the

passengers at the airports can experience long wait times [60, 61] in their respective queues

for many reasons such as flawed manual taxi demand estimation. Moreover, the taxi drivers’

decisions about making future airport trips are influenced by the current and speculated situa-

tions of these queues [29]. Hence it is important to analyze and predict the different situations

of both taxi and passenger queues at the airport for providing better mobility management of

taxis and passengers.

The queue contexts describe the existence of any one of the four states of taxi and passenger

queues [28] which include ‘taxi queue only’ (TQ), ‘passenger queue only’ (PQ), ‘both taxi and

passenger queues’ (TPQ) and ‘no queue’ (NoQ). Table 2.1, describes the four queue contexts

that are observed in the airport. The airport trips are lucrative for taxi drivers. However, the

presence of too many taxis exceeds the actual demand can cause long waiting times for taxi

drivers at the airport taxi rank. On the other hand, the lack of taxis at the taxi rank can cause

long passenger queues waiting for taxis.

Many researchers have investigated citywide taxi trips with a view to providing recommen-

dations for the taxi drivers and passengers. The recent works focus on finding profitable taxi

cruising routes for passenger pickup [62, 63, 64]. A profitable taxicab parking location analysis
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framework to help taxi drivers was proposed by [65] which utilizes the knowledge of passen-

gers’ mobility patterns and taxi drivers’ pick-up behaviors inferred from taxi GPS trajectories.

Taxi GPS trajectory data have been widely used to predict city-wide traffic conditions and to

analyze the behavior and movement patterns of the population [66, 67, 68, 69, 70, 71, 72]. The

frequency of city-wide taxi passenger pickup is predicted using machine learning techniques

and associated factors are investigated in [73]. A recommendation system for finding vacant

taxis and passengers is presented by [74]. A spatio-temporal factor analysis model to find

the best passenger pickup location is presented in [75]. The four factors considered by this

model include distance, wait time, fare, and cluster transition probability. However, airports

are often located in a designated area and supported by various transport modes. There is

another research project that aims to estimate the passenger waiting time before a taxi ride

by observing the behavior of vacant taxis [76]. A real-time taxi trip information system is

proposed in [77] where passengers are able to know their estimated trip time and fare before

their trip. A technique presented in [78] recommends pickup points to avail a taxi ride. The

pickup points within a specified distance are ranked based on potential wait time. A passenger

wait time prediction model from historical taxi trajectories is presented in [79]. The model is

built by considering the arrival and departure events of taxis at a given location. A context

aware system for spatio-temporal traffic prediction in different road segments is proposed in

[80]. A system for monitoring taxis at a pickup location by mining GPS trajectories is pre-

sented in [81]. It also provides real time information about any taxi stand and surrounding

traffic condition via RESTful web services. A taxi and passenger queue context detection

framework is presented by [28] which utilizes taxi traces and taxis’ mobile data terminal logs

in Singapore. However, these techniques are effective for citywide taxi operations and cannot

be applied directly to predict airport taxi or passenger queue contexts since the regulations for

airport taxi operation is different than the citywide taxi operation. In the airport, any taxi

must join the airport taxi rank queue and wait to be called by the ground transport manager

to pickup a passenger from the passenger terminal.

There are very few research papers that deal with managing airport taxi operations. In

[29], logistic regression is used to model the taxi drivers next pickup decision for an airport
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trip. The model uses binary decisions of airport pick-up or cruising for customers at the

end of each trip. Research projects related to the airport taxi operations mainly focus on

taxi queue modeling [58, 82] to direct taxi drivers to the terminal with passenger queues.

Airport taxi and passenger queue context prediction is different and challenging since queues

at airports form dynamically. Also, the airport taxi and passenger queue context data suffers

from the imbalanced queue context problem which compromises the learning and prediction

performance of prediction algorithms. Different sampling techniques can be used to deal with

this issue [55]. In the rest of this chapter, we introduce the formal problem definition and

develop a framework that illustrates the step by step procedures for queue context prediction

and analysis considering user perspectives.

2.3 The Queue Context Prediction Framework

2.3.1 Problem Definition

Let, CQ = {TQ,PQ, TPQ,NoQ} be the set of four possible queue contexts corresponding to

an hourly time window where TQ, PQ, TPQ, and NoQ indicate ‘taxi queue only’, ‘passenger

queue only’, ‘both taxi and passenger queues’ and ‘no queue’ queue contexts respectively. Let,

each sample instance (time slot), x in the training data be described by a d-dimensional vector

of attributes Rd and a queue context label c(x) ∈ CQ. Therefore, the instance x can be written

as 〈a1(x), a2(x), ..., ad(x), c(x)〉 where ai is the ith attribute of x and i = 1 to d. If f(.) is the

queue context prediction function then for a set of d-features corresponding to a query time

slot xq, f(.) predicts ĉ(xq) such as f(xq) : Rd → ĉ(xq) where ĉ(xq) is the predicted queue

context of the query time slot xq.

In this section, we present our developed queue context prediction framework. The frame-

work provides step by step procedures to be followed for heterogeneous data fusion, queue

context inference, and queue context prediction. The framework can also be used for intelli-

gent contextual analysis. The queue context prediction framework utilizes a set of classifier

and sampling techniques. To satisfy different user perspectives, the framework identifies the

best pairs of sampling techniques and prediction algorithms. There are three main compo-
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Figure 2.1: Queue Context Prediction Framework

nents of the queue context prediction framework known as i) data fusion, context inference

and preliminary analysis ii) queue context prediction and iii) user perspective based analysis.

The components of the framework are illustrated in Figure 2.1.
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2.3.2 Contextual Data Fusion, Context Inference and Preliminary Analysis

In this module, different contextual data such as time, taxi trips, passenger arrivals and weather

conditions are fused together and different queue contexts are inferred to generate the taxi

and passenger queue context dataset. An instance in the queue context dataset is an hourly

timewindow with a queue context label. A preliminary analysis is conducted to learn the

influence and patterns of different associated factors. In this study, we prepare the taxi queue

context dataset for the JFK (John F. Kennedy) airport by adapting a state of the art queue

context inference algorithm.

2.3.2.1 Contextual Data Fusion

Our framework fuses temporal information and three other real-world contextual datasets from

the New York City (NYC) and represents on the basis of hourly time windows. It facilitates to

capture the influence of extracted associated factors in our scenario. The fused datasets are: i)

the taxi trip log data, ii) the JFK airport passenger wait times data and iii) the JFK weather

condition data.

Taxi Trip Logs: This dataset is a real-world dataset from New York City containing taxi

trip logs. The NYC taxi trip dataset is available through the Taxi & Limousine Commission

[83]. In NYC, 13 thousand taxis generate 0.5 million trips on an average per day totaling 175

million trips per year. Each record in this dataset represents one taxi trip. A taxi trip record

is described by its start and end geo-location with corresponding time-stamps, trip distance,

passenger count, fare type and mount, tip amount, and taxi’s medallion number. Table 2.2

describes the fields for each record in the NYC taxi trip dataset. In this chapter, we process

all the taxi trips made during the year of 2013 in NYC.

Airport Passenger Wait Time Data The passenger wait time data is available through

the U.S. Customs & Border Protection 1. This dataset provides information about passenger

wait times at different U.S. airports. Additional features include hourly frequencies of flight

1http://awt.cbp.gov/
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Table 2.2: Fields in the NYC Taxi Trip Dataset

Fields Description

Medallion Taxi identification number.

Pickup date-time Start time and date of the trip.

Drop-off date-time End time and date of the trip.

Pickup lat/long Start location of the trip.

Drop-off lat/long End location of the trip.

Trip distance Distance traveled during the trip.

Rate type Type of fare (i.e., fixed or not).

Payment type How the payment was made.

Tip amount The amount of tips.

Passenger count Number of passengers in the trip.

and passenger arrivals with the numbers of passengers processed at the passenger processing

booths. It also provides the hourly passenger wait times at different terminals at the JFK

airport.

Weather Condition Data The weather condition data for JFK airport is collected from

Weather Underground 2. This dataset provides historical weather condition information in-

cluding precipitation, temperature, wind speed, dew point, weather events (e.g., normal, rain,

snow, rain-snow) and weather conditions (e.g., clear, overcast, mostly cloudy) at JFK.

2.3.2.2 Queue Context Inference

To infer the taxi and passenger queue contexts, it is required to estimate the taxi arrival rate

and job wait time in a given hourly time window. However, the taxi arrival rate and job

wait times cannot be estimated directly for all the taxi trips that start from the JFK airport.

The reason is because a large volume of empty taxis arrive anytime without any pre-booking

request. These trips with no passengers are not stored in the taxi trip dataset and the taxi

arrival times are unknown.

2http://www.wunderground.com
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To overcome this problem, we rely on the findings of survey results presented in recent

literature [65]. This research reveals that experienced drivers use their own expertise to choose

nearby parking places to wait for their next passenger pickup rather than cruising randomly

after a passenger drop-off. Motivated by this fact, we choose those taxi drivers who join the

airport taxi rank for their next passenger pickup after an earlier passenger drop-off at the

airport. Another reason to choose these taxis is that we know their arrival and departure

times to and from the passenger pickup queue. We assume that these trips are able to provide

insights about the average taxi waiting times in a time slot. We consider the trips that start or

end at the JFK airport for our experiments in this chapter. To separate these trips we consider

the latitude/longitude bounding box for the JFK airport given in [84]. For a given a time slot,

we design Algorithm 1 to separate the JFK airport trips.

Algorithm 1: Separating airport trips from trip dataset Tx[...]

Input: taxi trip dataset Tx[...], airport latitude/longitude bounding
box using (minLat,maxLat,minLong,maxLong)

Output: Airport taxi trip dataset Ax[...]
// Initialization

1 Ax[...]=NULL, minLat=minLat, maxLat=maxLat,
minLong=minLong, maxLong=maxLong;

2 function
separateAirportTrips(Tx[...],minLat,maxLat,minLong,maxLong)

3 foreach tx ∈ Tx[...] do
4 if minLat < tx·Trip end lat() < maxLat and

minLong < tx·Trip end long() < maxLong then
5 Ax[...]← tx;

// Separate tx from Tx and insert in to Ax

6 else
7 if minLat < tx·Trip start lat() < maxLat and

minLong < tx·Trip start long() < maxLong then
8 Ax[...]← tx;

// Separate tx from Tx and insert in to Ax

9 end

10 end
11 return Ax[...] ;

We also design two other algorithms to compute the hourly average taxi wait times and

the passenger pickup rates. These are used by the queue context inference algorithm to infer
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Algorithm 2: Computation of Hourly Average Wait Time

Input: An hourly time window of a day (ti, tj), Ax[...]
// ti and tj are the start and end time of the time window

Output: Hourly average taxi queue wait time τ̄
// Initialization

1 trip count = 0;
2 function hourlyAverageTaxiQueueWaitTimes(Ax[...],ti, tj)
3 foreach tx ∈ Ax[...] do
4 if ti < tx·Trip end dateT imes() < tj then
5 if minLat < tx·Next Trip startlat() < maxLat and

minLong < tx·Next Trip start long() < maxLong then
6 Tarr ← tx·Trip end dateT ime();
7 Tdep ← tx·Next trip start dateT ime();
8 w ← Tarr − Tdep;

// taxi queue wait time

9 trip count+ +;

10 end

11 end
12 return τ̄ ← sum(w)/trip count ;

Algorithm 3: Computation of Hourly Pickup Rate

Input: An hourly time window of a day (ti, tj), Ax[...]
// ti and tj are the start and end time of the time window

Output: Hourly passenger pickup rate ρ
// Initialization

1 pick count = 0;
2 function passengerPickupRate(Ax[...],ti, tj)
3 foreach tx ∈ Ax[...] do
4 if ti < tx·Trip start dateT imes() < tj then
5 pick count+ +;
6 end
7 return ρ← pick count/|(ti, tj)| ;
// |(ti, tj)|is the length of time window (ti, tj) in minutes

taxi-passenger queue contexts for any given hourly time window. For calculating the average

taxi queue wait times and passenger pickup rates we use Algorithms 2 and 3. First, an hourly

time window is selected. Then all the passenger drop-off times of the airport taxi trips within

that hour are stored to calculate the time difference with their next passenger pickup times.

Similarly, the hourly passenger pickup rate is calculated considering all the taxi trips that
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initiated from the airport within that hour. The taxi trips that only started from the airport

without a precedent airport drop-off are also considered in this case.

For queue context inference, we utilize the Queue Context Disambiguation (QCD) algorithm

proposed by [28] which performs well with the taxi GPS trip traces and taxi mobile data

terminal (MDT) log data and needs adaptation in our scenario where none of these are avaialble.

However, the QCD algorithm relies on two core assumptions. First, a time slot is labeled as

‘taxi queue only’ when the average waiting time (τ̄) of taxis is more than a waiting time

threshold (τ). This is not valid for the time slots during airport off-peak hours in our case.

Some of the drivers willingly join the taxi waiting queue during this time and wait for the

arrival of the first flight in the early morning. These drivers may experience long wait times

which do not constitute the existence of taxi queue context. We remove off-peak hours from

our dataset and set τ = 90 minutes for inferring the taxi queues. Second, a time slot is labeled

as the ‘passenger queue only’ when taxi arrival rate of empty taxis or overall passenger pickup

rate (ρ) is very high. The arrival rate indicates the number of taxi arrivals per minutes while

the pickup rate indicates the number of passenger pickups by taxis per minute. However, these

assumptions cannot be used directly in the scenario of an airport. The most common reason is

due to the large volume of empty taxis arriving anytime without any pre-booking request from

airport passengers. Moreover, a passenger queue also can occur for a low passenger pickup rate

if there is a shortage of taxis for a very high demand.

Unlike the QCD algorithm, we use a new threshold pickup rate which combines the upper

(ρ− up) and lower (ρ− low) bounds of the pickup rate. This new threshold labels a time slot

as ‘passenger queue only’ when ρ− up < ρ < ρ− low. Note that this assumption is not valid

for airport off-peak hours since there are very few or no passenger pickup events observed. We

arbitrarily set ρ− low = 2.5 and ρ− up = 8.0 to infer the corresponding queue context labels

for all the hourly timestamps except airport off-peak hours. In the final dataset, each record

represents a time stamp of one hour duration. A timestamp in this queue context dataset

is described by the extracted associated factors from the three real-world datasets discussed

below in Section 2.3.2.3 (Extraction of Associated Factors and Preliminary Analysis).
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Figure 2.2: Data Fusion and Extracted Features for the Queue Context Dataset

2.3.2.3 Extraction of Associated Factors and Preliminary Analysis

We extract various features to generate the queue context dataset by fusing three real-world

datasets and temporal information. Note that all these features correspond to the current hour

and we extract and compute the values of the similar features in the previous and next hours

as well. We also consider temporal features including the hour of the day, the day of the week,

and the week number of the year. In total each record is described by 44 features and one of

the four queue context labels. Figure 2.2 shows the steps to generate the final ‘queue context’

dataset. In data fusion stage, the daily and hourly aggregation is performed to ensure that

all the data points are computed under the same time window length. In feature engineering,

additional features including drop-off and pickup frequencies, pickup rates, and wait times are

calculated. The extracted features are summarized as below:
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Figure 2.3: (a) Proportion of Queue Contexts. (b)-(c) CDF of Taxi Wait Times and Passenger
Pickup Rate at the John F. Kennedy (JFK) airport.

• NYC taxi trip data: The extracted features include hourly taxi queue wait time, passenger

pickup and drop-off frequencies, and frequency of taxi trips that start subsequent to an

airport passenger drop-off.

• Passenger wait time data: The features include the frequency of hourly flight and passen-

ger arrivals, number of passenger processing booths and hourly average passenger wait

times at the passenger processing booths.

• Weather condition data: The features are hourly precipitation, temperature, dew point,

wind speed, weather events (i.e. rain, snow, normal), and different weather conditions

(i.e. clear, fog, cloud).

Further, we conduct a preliminary analysis to identify the proportions of different queue

contexts. From Figure 2.3(a), we can see that the proportion of NoQ context is very high

compared to other three while the proportion of TPQ is low. This may lead to poor prediction

performance. On the other hand, Figure 2.3(b) illustrates the cumulative distribution function

(CDF) of taxi queue wait times. We can see that some taxis wait in the queue for more than

one hour for 60% of the instances. Another analysis from Figure 2.3(c) shows that about 60%

cases the pickup rate (ρ) indicates an existence of passenger queues since passenger queues exist

when ρ− up < ρ < ρ− low. This is the reason why it is so important to provide an accurate

prediction for the taxi and passenger queue contexts for smooth running of the airport.
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Figure 2.4: Hourly Proportions of Four Queue Contexts From Midnight of a Day to Midnight
of the Next Day.

We also conduct an analysis from the perspective of time. Figure 2.4 shows the hourly

ratio of the four queue contexts. We can see that the ratio of TQ dominates the other three

queue contexts during the morning hours and PQ is the minority queue context during this

time. As we approach the afternoon, we can see that the PQ and NoQ become the majority

where TPQ is the minority context of all. We also note that the off-peak hours are dominated

by NoQ context. We also examine the three heat maps in Figure 2.5 that represent the hourly

taxi wait time, passenger pickup and passenger arrivals. Here, x-axis represents the days of the

year in 2013 and y-axis represent 24 hours of a day. In the heat maps, the red color indicates

higher values while blue color indicates lower values. From Figure 2.5(a), we can see that the

taxi drivers mostly wait longer roughly between 03:00 and 13:00. Figure 2.5(c) shows that

a large number of passengers arrive roughly between 11:00 and 22:00. This clearly indicates

that a major portion of the taxi drivers sit idle in the airport while waiting for a passenger.

Also, it is clear from Figure 2.5(b) that only a small portion of these taxi drivers are able

to pick a passenger between 05:00 and 09:00 in the morning. This clearly indicates the taxi

demand-supply imbalance in most of the occasions during the year of 2013 at the JFK airport.
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Figure 2.5: Heat Maps of Hourly a) Taxi Wait Times b) Passenger Pickup Frequency and c)
Passenger Arrivals at the John F. Kennedy (JFK) airport. Note: x-axis represents the days of
the year in 2013 and y-axis represents 24 hours of a day from midnight of a day to midnight of
the next day. For example, 50 in the x-axis corresponds to 50th day of the year of 2013 while
10 in the y-axis corresponds to 10:00 am.

Hence it is very important from the perspective of passengers, taxi drivers and airport ground

transport managers to predict the queue contexts by analyzing various queue context features.

Furthermore, we analyze Pearson’s Correlation Coefficient between the hourly taxi queue

wait times and all other features of the context dataset. We observe a negative correlation

with total flight arrivals (-0.30), total passenger arrivals (-0.26), total flight processing booths

(-0.23), passenger pickup frequency in the previous hour (-0.49) and passenger pickup frequency

in the current hour (-0.44). This implies that the more the flights, passenger arrivals, passenger

processing booths and passenger pickup frequencies, the less the queue wait time for taxis.

2.3.3 Queue Context Prediction

The queue context prediction module of our developed framework is to provide prediction

on future queue context by identifying the best pair(s) of sampling technique and prediction

algorithm to satisfy different user perspectives. The queue context dataset suffers from the

queue context imbalance problem. The queue context prediction module overcome this problem

by applying various sampling techniques before employing a prediction algorithm from a suite

of classifiers. The sampling techniques applied in our experiments are as below:
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• Oversampling (OS) adjusts the class (i.e. queue context) distribution of a dataset by

increasing the number of minority classes.

• Under sampling (US) adjusts the class (i.e. queue context) distribution of a dataset by

decreasing the number of majority classes.

• Joint Sampling (JS) adjusts the class (i.e. queue context) distribution of a dataset by

simultaneously increasing and decreasing the number of minority and majority classes

respectively.

• No Sampling (NS) No adjustment of the class (i.e. queue context) distribution is per-

formed.

The sampled dataset is used to train the prediction algorithms. We use a (60%-40%) split

of the sampled dataset to train and test the prediction algorithms. To test the performance

of different prediction algorithms we employ a classifier suite. The classifier suite contains

7 algorithms which includes the näıve bayes (NB), decision tree (J48), random forest (RF),

decision table (DT), PART decision rule, support vector machine (SVM) and k-nearest neigh-

bor (k-NN). We use the Weka [85] implementation of these classifier. Note that we choose

k = 5, 10, 15, 20, 25 to consider different variants of the k-NN. Different evaluation metrics are

applied to find the best sampling technique and the best set of prediction algorithms. Finally,

we analyze the in-depth prediction performance from two user perspectives: the taxi drivers

and the airport passengers.

2.3.3.1 Identifying Sampling-Classifier Pair(s)

We evaluate different sampling and prediction techniques applied to our queue context dataset.

We begin with no sampling (NS) of the dataset. Then we employ under sampling (US), two

variants of joint sampling (JS1 and JS2) and oversampling (OS). Note that in our queue

context dataset, the ‘NoQ’ and ‘TPQ’ contexts are the majority and minority queue context

labels respectively along with two other queue context labels (i.e. ‘TQ’ and ‘PQ’) as illustrated

in Figure 1(a). In the under sampling stage, we randomly under sample all other queue contexts

up to the number of ‘TPQ’ context.
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Table 2.3: Performance Evaluation Under Different Sampling Techniques

NS US JS1 JS2 OS

Max Min Max Min Max Min Max Min Max Min

Accuracy(%) 74.12 50.05 80.34 25.88 84.51 49.72 85.71 55.09 96.96 62.62

Precision 0.74 0.25 0.81 0.38 0.85 0.58 0.86 0.67 0.97 0.63

Sensitivity 0.74 0.50 0.81 0.26 0.85 0.50 0.86 0.55 0.97 0.63

F-Score 0.73 0.33 0.81 0.18 0.84 0.41 0.86 0.52 0.97 0.60

AUC 0.90 0.50 0.95 0.51 0.97 0.67 0.97 0.70 0.99 0.86

AUPRC 0.81 0.35 0.88 0.25 0.92 0.46 0.93 0.50 0.99 0.66

During oversampling, we randomly select instances and repeat to increase their number

until it becomes equal to the ‘NoQ’. On the other hand, we oversample ‘TPQ’ and under

sample ‘NoQ’ and ‘PQ’ contexts up to the number of ‘TQ’ contexts in our first joint sampling

(JS1).In our second joint sampling (JS2), we under sample ‘NoQ’ and oversample ‘TQ’ and

‘TPQ’ contexts up to the number of ‘PQ’ contexts. Specifically, we pick one sampling technique

at a time for our dataset and employ our classifier suite. Then we evaluate these sampling

techniques under different performance metrics. The metrics include the predictive accuracy,

sensitivity, F-Score, area under the ROC curve (AUC), and the area under the precision-recall

curve (AUPRC). Specifically, we note the best metric score given by the classifier suite under

each sampling technique. Table 2.3 summarizes the maximum and minimum metric score

produced by our classifier suite under different sampling techniques.

First we observe the maximum predictive accuracy produced by our classifier suite under a

specific sampling technique. We can see from Table 2.3 that the oversampling (OS) produces

the maximum predictive accuracy over other sampling techniques. However, better prediction

accuracy cannot reflect a good performance in our case. The reason is that the large number of

majority queue context labels present in the dataset may degrade the prediction performance

of minority queue contexts. Therefore, we further analyze the sensitivity of the prediction

task. In binary classification, the sensitivity score tells us about how many relevant items are

selected. Let us assume, there are two classes called ‘positive’ and ‘negative’. The number

of positive instance classified as positive is called true positive (TP ) and number of positive

instances classified as negative is called false negative (FN). Then the sensitivity score is given
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by TP/(TP + FN). In this way, we will be able to know the weighted average of prediction

performance for minority classes. We can see from Table 2.3 that the oversampling (OS)

gives the maximum sensitivity score. We also analyze the performance from different user

perspectives. The F-score is the harmonic mean of sensitivity and precision where precision

is a measure of the amount of retrieved instances that are relevant. The other two are very

well-known in binary classification knows as the area under the ROC curve (AUC) and the

area under the precision-recall curve (AUPRC). The AUC plots the true positives against

false positives while the AUPRC plots the precision against the sensitivity. Table 2.3 shows

that our classifier suite produces peak performances under all the performance metrics when

oversampling is applied to the imbalanced data.

Next, we select the best classifiers from the classifier suite after applying the oversampling

technique and analyze the confusion matrix they produce. For selecting the best classifier

we rely on the AUPRC values in our research. First, we take a base classifier and observe

significance of the AUPRC score of other classifiers. Specifically we perform paired t-test with

a significance score of 0.05 between the AUPRC values of the base classifier and the other

classifiers. In next iterations, we remove the previous base classifier from the classifier suite

and choose a new base classifier that has the lowest AUPRC score. Note that we select this new

base classifier after removing those classifiers with insignificant AUPRC score if there is any.

After several iterations we get the support vector machine (SVM) and the Random Forest (RF)

as the best two classifiers from our classifier suite. Note that the RF uses an ensemble learning

technique that fits the training data into a number of decision tree classifiers to produce the

final prediction. On the other hand, the SVM uses an imaginary hyper plane to discriminate

between the training data to produce prediction for a query instance.

2.3.4 Evaluation and User Perspective Based Analysis

The evaluation metrics discussed above treat the queue context prediction as a binary class

problem which actually cannot provide the true picture of the prediction performance. There-

fore, we analyze the confusion matrices produced by the classifiers from a multi-perspective

point of view. To visualize the performance of these selected algorithms, the confusion matrices
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Table 2.4: Confusion Matrix-SVM

Predicted as ĉ(xq)

NoQ TQ PQ TPQ

A
ct

u
al

NoQ 1 0 0 0

TQ 0.05 0.95 0 0

PQ 0.07 0 0.93 0

TPQ 0 0 0 1

Table 2.5: Confusion Matrix-RF

Predicted as ĉ(xq)

NoQ TQ PQ TPQ

A
ct

u
al

NoQ 0.75 0.1 0.15 0

TQ 0.01 0.99 0 0

PQ 0.02 0 0.98 0

TPQ 0 0 0 1

for SVM and RF are illustrated in Tables 2.4 and 2.5 respectively. The airport taxi-passenger

queue manager is responsible for proper management of queue contexts related to taxi and

passenger at the airport by considering the perspectives of both taxi drivers and passengers.

To avoid long queues of taxis and passengers, the queue manager regulates incoming flow

of the taxis at the taxi rank based on the predicted queue context in a future time slot. The

taxi drivers are satisfied when they are able to avoid long queue wait times before a passenger

pickup. If any future time slot is predicted as ‘TQ’ or ‘NoQ’, no taxis should enter the taxi rank

area to avoid long queue wait times for taxis. Moreover, the ‘TQ’ and ‘NoQ’ contexts should

not be predicted as ‘PQ’ since in such cases more taxis will enter the taxi rank unnecessarily

and experience unwanted queue wait times. We can see from ‘blue’ filled cells of Tables 2.4

and 2.5 that the SVM performs better compared to the RF in this regard and there are no

actual ‘TQ’ and ‘NoQ’ instances which are classified as ‘PQ’ by the SVM in contrast to 15%

of ‘NoQ’ instances predicted as ‘PQ’ by the RF. On the other hand, the airport passengers

expect a taxi as soon as they arrive at the terminal curbside. Therefore, the ‘PQ’ instances
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should not be misclassified as it would restrict the taxi drivers from entering the airport taxi

rank and eventually, it would cause long queue wait times for passengers waiting for taxis. The

‘green’ filled cells of Tables 2.4 and 2.5 indicate that some ‘PQ’ contexts are mis-classified as

‘NoQ’. We can see that the prediction error produced by the RF (0.02) is lower compared to

the SVM (0.07). Given Tables 2.4 and 2.5, the airport manager could decide the number of

taxis required in a future time window more accurately to avoid unnecessary wait times for

both taxis and passengers. Note that the optimal decision making was out of scope for this

research.

2.4 Conclusion

In this chapter, we addressed the queue context prediction problem in the presence of im-

balanced queue contexts related to taxi and passenger at the airport. We integrated three

real-world datasets to study and analyze the problem of queue context prediction. We devel-

oped a framework that provides a step by step procedures to predict different contexts of the

queues that are important to manage passengers and taxis at the airport. Moreover, our queue

context prediction framework provides steps to identify the best prediction models and sam-

pling techniques. It also provides intelligent analysis considering two different points of views.

The experimental results show the effectiveness of our approach for queue context prediction

at a busy international airport. We observe that the Support Vector Machine (SVM) performs

better from the taxi drivers point of view while Random Forest shows better results from the

point of view of the airport passengers to predict different queue contexts in a given future time

stamp. The research presented in this chapter predicts four different queue contexts which can

be applied to any location not only airports but also shopping malls, ferry platforms.

There is further scope for improvement by providing the information about lengths of

queues in real time along with these queue contexts. The two thresholds used to calculate

the queue contexts were chosen arbitrarily. The selections of thresholds are sensitive and

need domain adaptation. The optimal thresholding was not considered for this thesis and

can be addressed by future research. In future, more contextual data sources such as local

events, traffic congestion can be incorporated with our queue context dataset. It would be
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interesting to study further the effects of other features extracted from these datasets. We

also plan to apply our approach to other airports when the data becomes available. For future

deployment, the taxi regulations would need to be considered carefully. For example, at JFK

airport, taxicabs are not allowed to pick-up passengers after a passenger drop-off at the airport

terminal curbside. The taxi driver must join the taxi rank queue before being called by the

passenger terminal. Moreover, the JFK airport maintains two types of queues (i.e. short and

long trip queues) for taxi drivers. The future research may investigate the influence of one

queue over another.

In summary, this chapter develops and presents a mobility context prediction framework

considering queue context as an example of user mobility context. Considering two different

user perspectives, we provide analysis of different prediction outcomes produced by selected

prediction techniques.



Chapter 3

Modelling Associated Factors for

Mobility Context Prediction

Previously in Chapter 1, we identified mobility-associated factors which can the making of mo-

bility decisions. In relation to RQ-2, this chapter presents the modelling of mobility-associated

factors since they enhance the performance of prediction algorithms. This is achieved through

the identification and incorporation of expert-like knowledge by modelling the heterogeneous

mobility-associated factors from the historical data. Specifically, a scheme is introduced by

combining the expert-like knowledge and probability theory to estimate the weights (i.e. im-

portance scores) of heterogeneous mobility-associated factors selected for predicting a specific

mobility context.

We consider two mobility context prediction scenarios. The first scenario is about taxi-

passenger queue context prediction at the airport where, taxi and passenger queue contexts

indicate various situations of two concurrently occurring queues related to taxis and passengers.

The second scenario is to predict taxi drivers’ queue wait times at the airport taxi rank. An

instance in the wait time dataset is labelled with numeric target scores of queue wait times. The

reason for choosing these two scenarios is to develop a way of predicting both categorical and

numerical mobility contexts for real scenarios which are influenced by many diverse mobility-

associated factors. To demonstrate the reasonableness of our technique for enhancing the

mobility context prediction task, we conduct our experiments on two target mobility contexts:

38
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queue context and queue wait time. Specifically, we incorporate our technique with different

neighborhood-based prediction methods. For our experiments, we utilize the queue context

dataset presented previously in Chapter 2. We conduct feature engineering to extract more

features. We also construct a dataset for queue wait time by replacing the target label (i.e.

queue context) of the queue context dataset with hourly queue wait time. The process of

calculating the hourly queue wait time was described in Algorithm 2. This chapter highlights

our motivation and contributions by explaining how we model mobility-associated factors to

develop our feature importance score calculation scheme for mobility context prediction.

3.1 Motivation and Contribution

As discussed is Chapter 2, taxis are regarded as a convenient mode of transport for transfer

between the airport and the city. Taxis and passengers at the airport must join respective

queues for each other and wait their turn before being served. The efficient management of the

passenger and the taxi queues plays an important role in the smooth running of an airport.

It creates disruption and chaos for passengers and taxi drivers at the airport if either queue

becomes too long. The passengers may remain in long queues waiting for taxis when there is

a shortage of taxis at the airport taxi ranks. On the other hand, long queue wait times at

the taxi rank may influence taxi drivers’ decisions about not making an airport trip in future.

Long taxi queues also cause traffic congestion and wasted land use while taxis wait for pickup

jobs at the airport.

Prior knowledge about which queue (i.e. taxi, passenger, both, or none) is going to experi-

ence unusual waiting time in a future time window could provide timely management of these

two concurrent queues. So it is a very important mobility context to predict different queue

contexts related to taxi and passenger queues. It is also important to provide prediction on

the queue wait times of taxi drivers so that they can better plan their airport trips. Queue

wait time is an important mobility context for taxi drivers. However, it is challenging to esti-

mate the taxi-passenger queue contexts and queue wait time for taxis at the airport taxi rank

since these situations are highly affected by many heterogeneous mobility-associated factors

including the weather, and the dynamic taxi, passenger and flight arrivals.
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Figure 3.1: Taxis Waiting at The Central Taxi Holding Area at the JFK International Airport
in New York City (left). The drivers experience different waiting times on two Mondays over
two different weeks of May 2013 (top right). The Density Map (bottom right) shows the
variation of wait times w.r.t. current passenger pickup frequency.

Figure 3.1 (above left) shows the taxis waiting at the central taxi holding area at the JFK

international airport in New York City. The JFK airport is one of the busy airports in the

U.S. All the taxis must enter and join the queue in this area and await their turn before being

called from a passenger terminal for passenger pickup job. However, the drivers of these taxis

experience different wait times while waiting in the taxi rank. Figure 3.1 (top right) also shows

a comparison of average queue wait times for two different Mondays in April 2013. We can

see that the wait times varies throughout the day. Also, the variation in densities of the taxi

drivers’ queue wait times with respect to current passenger pickup frequency is well scattered

as illustrated with a 2- dimensional density plot in Figure 3.1 (bottom right). We can see a

highly dense area with larger current pickup frequency results in low queue wait times while it

is not sufficient to conclude that a low pickup frequency always results in a higher wait times

as some highlighted dense areas can also be seen for low passenger pickups. This indicates

that it is an important and complex problem to identify the importance of related contextual

features for taxi driver queue wait time and taxi-passenger queue context prediction.



Motivation and Contribution 41

The problem of queue context and queue wait time prediction has been studied in many ap-

plication areas [26, 86], and various machine learning techniques have been examined by [56, 1].

A recent attempt on queue wait time prediction is based on k nearest neighbor-based method

(kNN) [1] which utilizes only three temporal factors. However, no existing research investigates

the effectiveness of using a large number of external heterogeneous mobility-associated factors

as mentioned above, which in reality have direct influence on mobility contexts such as the

queue wait times of taxis and taxi-passenger queue contexts. For example, the bad weather

may cause big demands of taxis, and the delayed flight arrivals may cause long taxi or passen-

ger queues. The dynamic and heterogeneous nature of these factors makes the prediction of

different mobility contexts at the airport complex. Moreover, it is known that the prediction

accuracy of kNN methods is dominated by the identified neighborhood and proper selection

of factors [87]. We have found that an improvement in the quality of identified neighborhood

can further improve the prediction accuracy [88].

In this chapter, we re-investigate the queue context prediction scenario presented in Chapter

2 and solve the taxi drivers’ queue wait time prediction problem. We model mobility-associated

factors for enhanced prediction performance using neighborhood-based methods. Our objective

is to model heterogeneous mobility-associated factors in the identification of quality neighbors

and hence improve the prediction performance by addressing the following problem:

How to identify a dense quality neighborhood for kNN-based methods to predict taxi-passenger

queue contexts and taxi queue wait times by considering heterogeneous factors, e.g. time,

weather, flight information and taxi trips?

We begin by providing a summary of related literature followed by the development of

methodologies and experiments. Using two scenarios, we model heterogeneous contextual fea-

tures and incorporate taxi driver intelligence with probability theory to develop a feature

weighting scheme to identify dense quality neighborhood for mobility contexts (i.e. queue

context and queue wait time) prediction. The experiment results demonstrate that the mod-

elling of heterogeneous contextual features together with the drivers’ intelligence can improve
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the quality of the identified neighborhood, thus significantly boosting the prediction accuracy.

The contributions of this chapter are as follows:

• Extraction, and analysis of heterogeneous mobility-associated factors and patterns related

to taxi-passenger queue contexts and taxi queue wait times.

• Identifying factors that can influence the problem of taxi-passenger queue contexts and

taxi queue wait times predictions.

• Inferring expert-like knowledge by investigating passenger pickup decisions of taxi drivers.

• Modelling mobility-associated factors to propose a weighting scheme that identifies dense

high quality neighborhoods for mobility context prediction using kNN-based methods.

3.2 Related Work

Mobility context prediction requires extraction and analysis of different features and pattern

associated with user mobility. A number of research papers aim to extract and analyze different

mobility-associated factors to provide timely information for user mobility decision support.

Aiming to provide location recommendation, a probabilistic analysis of spatio-temporal factors

is presented in [65]. A smart city application for location recommendation is presented in

[79] where the authors investigate factors such as wait time and events from historical taxi

trajectories. Another spatio-temporal factor analysis model is developed by [75] which aims to

provide mobility decision support for the taxi drivers. A pickup location recommendation for

taxi users using multiple feature set is proposed in [78]. Feature extraction from user movement

trajectories to estimate the transportation modes during users’ mobility is presented in [89].

The authors consider both handcrafted feature engineering and automated feature engineering

using deep neural network. The feature extraction from trajectory data is conducted for driver

risk profiling in [90]. The article also provides a spatio-temporal analysis of extracted features.

A model to find and analyze interesting and unexpected patterns from taxi trajectories is

proposed by [91]. Aiming to detect and describe the mobility of vehicles, urban traffic patterns

are analyzed using taxi trajectories in [92]. Another data driven model to analyze taxi drivers’
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airport pick-up decisions is presented by [29]. The authors extract and analyse various spatio-

temporal and external factors. A city-wide bicycle mobility has been analyzed by [93]. The

spatio-temporal pattern of urban shared bicycle mobility is discussed in [94].

There are several papers which discuss research conducted for detecting and predicting

queue context and queue wait times in various means and different application areas [56, 1, 95,

96, 97, 98, 99, 100, 101, 102, 103, 104]. In [101], a model for estimating crowd density using

deep convolutional neural network is proposed. Another crowd density estimation technique

is proposed in [102] which utilizes bluetooth-based sensing with mobile phones. A traffic

congestion forecasting technique based on the changes in driving behavior is proposed in [103].

Another prediction model for traffic congestion during special event is presented in [104]. The

first research paper on predicting a user’s residence time using a non-linear time series analysis

is proposed by Scellato et al [105]. The residence time is the time spent by the user when they

visit their most important locations. Wu et al [81] have developed a system which continuously

monitors each taxi stand and takes account of the numbers of taxis queuing and passing the

taxi stand, as well as the traffic conditions in the area around the stand. Zhang et al [56] have

recommended sensing the fuel consumption of taxi drivers with a view to minimizing queues

at petrol stations and ultimately predicting strategic placement of petrol stations. Qi et al

[106] have considered the passenger wait times at taxi ranks with a view to discovering the

flow of people through the city and optimizing the transportation network as a whole. On the

passenger side, Anwar et al [58] have also considered passenger movement through an airport,

with a view to sending taxis this information for the demand so they can service the longest

queue first. The “OpenStreetCab” app of Salinikov et al [107] provides users with information

on the cheapest available cab in the city with a view to providing competition to Uber and

demonstrates how yellow taxis can provide a cheaper option to UberX using publicly available

data. It provides an example of how big datasets that become public can improve urban

services for consumers. In our application we consider this in relation to integrating weather

and taxi data.

The nearest neighbor regression is an effective machine learning approach for prediction

on a numeric scale in various applications. This is because of it’s simple implementation and
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performance guarantees [108]. It also has shown its effectiveness in shop queue wait time

prediction [1]. However, neighborhood identification is still a challenging area for nearest

neighbor regression. Various approaches have been adopted such as distance weighting [109,

110, 111] of nearest neighbors. Feature weighting has shown its effectiveness in regard to

increased prediction performance in many application domain [112, 113, 114, 49, 115, 116]. In

[1], feature importance score is calculated by building a linear regression model. This approach

is effective with incomplete and non-uniform data. Another feature weighted distance measure

for k-NN is proposed in [117]. It is based on the mutual information between a feature and the

class value. The mutual neighborhood information is used to boost the performance of nearest

neighbor classification by [118]. In [119], a categorization framework for feature weighting

approaches is proposed. A brief survey is conducted which refers to the use of ’domain-specific

information’ for feature weighting.

Although the nearest neighbor regression has been used effectively in real-world wait time

prediction application with a small number of features[1], taxi driver queue wait time prediction

at the airport using nearest neighbor regression is a challenging issue. This is because of the

presence of various heterogeneous contexts such as weather, flight arrival, and flight processing.

Many features can be extracted from these heterogeneous contexts. Since these features are

heterogeneous in nature, the identification of relationships between those and the queue wait

time is a complex task. Therefore, it is required to identify the influence of these features in

queue wait time prediction considering their heterogeneity.

Research has shown that the use of expert knowledge is able to increase the prediction

accuracy [48]. Also the expert drivers use their expertise to go to a place for passenger pickup

rather than cruising randomly [74]. We take this note and use the taxi drivers’ intelligent

moves for feature weighting to predict taxi queue wait time using nearest neighbor regression.

3.3 Datasets

For experiment setup and analysis, we use two datasets that represent two mobility context

scenarios (i.e. queue context and queue wait time) at the airport.
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The Queue Context Dataset: We utilize the queue context dataset used in Chapter 2 and

presented in [26] which was generated to examine different queue contexts at the JFK airport

during the year of 2013.Each instance in this dataset is a time slot of one hour in duration

and described by a feature vector of 44 elements. The features can be categorized under four

types:

• Temporal includes hour of the day, day of the week.

• Taxi includes number of passenger pickups, number of passenger drop-off, number of

pickups with a precedent airport drop-offs which the driver makes and the average queue

wait times of taxis.

• Passenger includes number of flights, number of passengers, number of flight processing

booths, average passenger waiting time.

• Weather includes precipitation, wind speed, temperature, dew point, humidity, weather

conditions.

Note that all these features correspond to the current hour of the day. The queue con-

text dataset also contains the same features for the previous and next hourly time window for

passenger and weather related features except average passenger waiting time. Also the taxi

related features are available only for the previous hourly time window together with current

hourly time window since these feature values are not available in the next hourly time window.

In this research, we compute and include one additional feature against each available feature

in the queue context dataset. These additional features are calculated by taking any feature

and computing the deviation from its mean feature score. The final dataset has a total of 66

features for queue context prediction.

The Queue Wait Time Dataset: We utilize the same queue context dataset presented in

Chapter 2. However, we extract hourly queue wait time for taxis which is the target score

for our prediction task. The developed technique for hourly queue wait time calculation is

given by Algorithm 2. To construct the queue wait time dataset, we replace the target label
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(i.e. queue context) of queue context dataset with the hourly queue wait time. In this way

the feature hourly queue wait time becomes the target score for prediction task. In the final

dataset, each record describes an hourly time stamp totaling 8760 data points during the year

of 2013.

3.4 Neighborhood Identification Using Feature Weight Score

for Mobility Context Prediction

In this section, we present a technique to enhance the queue context prediction using neighbor-

hood based methods. We model associated factors for expert-like knowledge acquisition to be

used for feature weight calculation. Note that we use the similar technique for feature weigh

calculation in both of our scenarios but with a little variation in factor modelling. We show

that even with a variation in factor modelling, the developed technique enhances the mobility

context prediction performance. Table 3.1 lists the notations used in this chapter.

Table 3.1: List of Notations

Notation Description

Ti An hourly time window.
TQ An hourly query time window.
w(Ti) Queue wait time during Ti.
w(TQ) Predicted queue wait time during TQ
Fc Set of contextual features.
d(TQ, Ti) Distance between TQ and Ti.
aj The jth contextual feature.
ωj Weight of jth feature.
DI Driver Intelligence.
MI Mutual information.
I(aj ;w(Ti)|DI) Driver intelligence-biased MI.
TDID Temporal Driver intelligence Deviation(TDID)
I(aj ; c(Ti)|TDID) TDID-biased MI
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Figure 3.2: (a) Cumulative Density Function of Taxi Wait Times and (b) Taxi Wait Times,
(c) Frequency of Passenger Pick-up, (d) Frequency of Passenger Drop-off

3.4.1 Scenario 1: Queue Wait Time Prediction

Let, Ti be an hourly time window. In our taxi queue wait time dataset, each instance Ti is

described by a set of contextual features Fc. The hourly taxi queue wait time during Ti is

denoted as w(Ti) which is the taxi drivers’ average time spent in the queue from the time

of arrival during Ti until the next passenger pickup. Given a query time window TQ and

corresponding set of contextual features Fc, we predict the hourly taxi queue wait time as:

(TQ, Fc)→ w(TQ).

We aim to find the quality dense neighborhood for nearest neighbor regression. We also

provide a comprehensive analysis on the relationship between contextual features and the

queue wait times is conducted. Based on the analysis, we introduce the driver intelligence-

biased weighting scheme to improve the quality of identified neighborhood, so as to improve

the accuracy of queue wait time prediction.

3.4.1.1 Contextual Analysis

We first conduct a preliminary analysis on taxi queue wait time from the perspective of time.

We observe the hourly and daily patterns of the taxi queue wait times, taxis’ passenger pickup

and drop-off frequencies, passenger arrivals, and passenger wait times. Figure 3.2 (a) - (d) and
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Figure 3.3: (a) Frequency of Passenger Pickup After Subsequent Passenger Drop-off by a Taxi,
(b) Density of Zero Passenger Pickups After subsequent Passenger Drop-offs by a Taxi, (c)
Frequency of Passenger Arrivals, (d) Passenger Wait Times.

Figure 3.3 (a) - (d) show the hourly patterns along with the Empirical Cumulative Distribution

Function (ECDF) of taxi queue wait times. The ECDF in Figure 3.2(a) shows that 80% of

the data points have wait time equal or below 90 minutes. Figure 3.2(b) shows the hourly

patterns for normalized taxi queue wait times. We can see that the highest wait times are

observed during 04:00 am and 09:00 am. Figure 3.2(c) and (d) show the hourly patterns in

passenger pickup and drop-off by taxis. A spike is observed during 15:00 pm for passenger

drop-off and after that it reduces till mid-night. The reason may be due to the high volume

of departing flights in the afternoon. On the other hand, two clear spikes are observed for

passenger pickup frequencies: one appears at 07:00 am in the morning while the other starts

at 15:00 pm and continues until mid-night. We also observe the hourly frequency of taxi trips

started from JFK after a subsequent passenger drop-off at JFK in Figure 3.3(a). It is observed

that a large number of taxis decide to pickup their next fare from the airport between 13:00

pm and 19:00 pm. Figure 3.3(b) shows the density of taxis where they decide to leave the

airport after a passenger drop-off. The hours between 01:00 am and 03:00 am share almost

all of the densities. This is expected because these hours are the off-peak hours at JFK. We

also observe from Figure 3.3(c) that the passenger arrivals maintain a similar trend line to the
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Figure 3.4: Contextual Analysis of Taxi Wait Times with Daily Patterns of (a) Taxi Wait
Times, (b) Frequency of Passenger Pick-up, (c) Frequency of Passenger Drop-off, (d) Frequency
of Passenger Pickup After Subsequent Passenger Drop-off by a Taxi (e) Frequency of Passenger
Arrivals, (f) Passenger Wait Times.

passenger pickup frequency. However, a difference of an hour is observed in the rise and fall

of the spikes. Figure 3.3(d) shows the hourly average passenger wait times. We can observe

almost a similar trend in wait times throughout the day except a sharp rise from 03:00 am

when the flights start to arrive.

Figure 3.4 illustrates the daily patterns for different extracted features. Specifically, Figure

3.4(a) shows that taxi wait times follow a uniform trend during the week except Sunday. Figure

3.4(b) shows a decreasing trend in passenger pickup from Saturday to Friday while maximum

passenger drop-offs are observed during Saturdays (Figure 3.4(c)). The maximum number of

taxi drivers deciding to pickup their next fare from the airport occurs during Saturdays (Figure

3.4(d)). Figure 3.4(e) and (f) show the daily pattern for passenger arrivals and passenger wait

times. Similar trends are observed throughout the week for both.

Furthermore, we analyze correlation statistics (Table 3.2) between the hourly taxi queue

wait times and all the other features extracted from three heterogeneous contextual datasets,

including passenger, trip, and weather. We compute the Pearson’s Correlation Coefficient to

measure the relationship between wait times and the other features. Specifically, a negative

correlation is observed with total flight arrivals in the previous hour, total passenger arrivals

in the previous hour, total flight processing booths in the previous hour, passenger pickup
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Table 3.2: Pearson’s Correlations between Average Queue Wait Times and all the Contextual
Features Extracted From Three Heterogeneous Contextual Datasets, sorted by Passenger, Trip,
and Weather.

Contexts Features Correlation
P

a
ss

en
g
er

Total passenger in previous hour -0.26
Total passenger in current hour -0.09
Total passenger in next hour +0.13
Total flights in previous hour -0.30
Total flights in current hour -0.13
Total flights in next hour +0.10
Total booths in previous hour -0.23
Total booths in current hour -0.05
Total booths in next hour +0.16
Average passenger waiting in previous hour -0.15
Average passenger Waiting in current hour -0.06
Average passenger Waiting in next hour +0.12

T
ri

p

Passenger pickup frequency in previous hour -0.49
Passenger pickup frequency in current hour -0.44
Passenger pickup frequency in next hour -0.21
Passenger drop-off frequency in current hour +0.12
Drop and pick frequency in current hour -0.07

W
ea

th
er

Temperature (◦C) in previous hour -0.02
Temperature (◦C) in current hour +0.01
Temperature (◦C) in next hour +0.03
Dew point in previous hour -0.01
Dew Point in current hour -0.01
Dew Point in next hour -0.01
Wind speed(Kmph) in previous hour -0.03
Wind speed(Kmph) in current hour -0.01
Wind speed(Kmph) in next hour +0.02
Precipitation(mm) in previous hour -0.05
Precipitation(mm) in current hour -0.04
Precipitation(mm) in next hour -0.04
Snow in current hour +0.03
Rain in current hour -0.08

frequency in the previous hour and passenger pickup frequency in the current hour. This

implies that the more flights, passengers, passenger processing booths and passenger pickup

frequencies, the less the taxi queue wait time.
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Table 3.3: Statistically Significant Features Computed From Time Contexts and the Three
Heterogeneous Contextual Datasets, including Passenger, Trip, and Weather.

Contexts Features 95%CI
T

im
e Day of the week (-0.00593, -0.00241)

Hour of the day (0.005447, 0.006999)
Week number of the year (-0.00099, -0.00049)

P
as

se
n

ge
r Total passenger in current hour (-0.12461, -0.06930)

Total passenger in next hour (0.012649, 0.06580)
Average passenger waiting in current hour (-0.22139, -0.13371)
Average passenger waiting in next hour (0.019088, 0.105692)

T
ri

p Passenger pickup frequency in previous hour (-0.32382, -0.25338)
Passenger pickup frequency in current hour (-0.46570, -0.38555)
Passenger drop-off frequency in current hour (0.265628, 0.344074)

W
ea

th
er Temperature in previous hour (-0.68603, -0.45740)

Temperature in next hour (0.488688, 0.714952)
Precipitation in previous hour (-0.34068, -0.11975)
Precipitation in next hour (-0.24090, -0.01995)

3.4.1.2 Feature Selection

We perform a feature selection to enhance the prediction performance. For this purpose, we

build a multiple regression model to predict the queue wait times. If Ŷ is the target score, we

write the multiple regression model using n number of features as follows:

Ŷ = β1a1 + β2a2 + β3a3 + ...+ βnan (3.1)

Here, ai is the ith feature and βi is corresponding feature coefficient of ai; i = 1, 2, 3, ..., n.

Then we investigate the importance of each features to the research problem. For simplicity, we

randomly select a subset of n = 15 features and build the regression model. Then we examine

the coefficients of all these features within the model by using a 95% confidence interval.

Specifically, we examine if 0 is within this interval. If so, it indicates that the coefficient can

have a value of 0 thus the feature has no or less effect to predict the target score (queue wait

times). We consider such features as unimportant. In every iteration, we leave one unimportant

feature out and include a new one for next round. Finally, we find a total of 14 statistically

significant features as shown in Table 3.3 which are and associated with the queue wait times.

We consider the features from the time context as well along with passenger, trip, and weather.
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Table 3.4: Driver Intelligence (DI)-biased Mutual Information

Contexts Features I(aj ;w(Ti)|DI)

T
im

e Day of the week 0.050
Hour of the day 0.829
Week number of the year 0.094

P
as

se
n

ge
r Total passenger in current hour 0.400

Total passenger in next hour 0.348
Average passenger waiting in current hour 0.108
Average passenger waiting in next hour 0.109

T
ri

p Passenger pickup frequency in previous hour 0.228
Passenger pickup frequency in current hour 0.385
Passenger drop-off frequency in current hour 0.696

W
ea

th
er Temperature(◦C) in previous hour 0.058

Temperature(◦C) in next hour 0.049
Precipitation(mm) in previous hour 0.003
Precipitation(mm) in current hour 0.004

3.4.1.3 Feature Weight Calculation Scheme

In this section, we calculate feature weights for queue wait time prediction. The recent liter-

ature [74] shows that the experienced drivers prefer not to randomly cruise after a passenger

drop-off. Instead, they usually go to the place they know well for picking up new passengers.

We assume that this is also applicable in our scenario. Motivated by this fact, we consider

the hourly frequency of taxi trips that are initiated from the airport vicinity after a precedent

passenger drop-off at the airport. We call this frequency the Drivers’ Intelligence (DI).

The mutual information is a measure of the mutual dependence between two random vari-

ables. Therefore, we can calculate the amount of mutual dependence between the queue wait

time and all other features available in our queue wait time dataset after feature selection.

Specifically, we calculate the conditional mutual information where we use the drivers’ intelli-

gence as a condition. We call this mutual information as the driver intelligence-biased mutual

information. We calculate the driver intelligence-biased mutual information as follows:

I(aj ;w(Ti)|DI) = −
∑

aj ,w(Ti),DI

p(aj , w(Ti)) log
p(aj , w(Ti)|DI)

p(aj |DI)p(w(Ti)|DI)
(3.2)

Here, aj is any contextual feature; w(Ti) is the target (taxi queue wait time) and DI is

the drivers’ intelligence. Table 3.4 lists the corresponding driver intelligence-biased mutual
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information scores for different features. In the next step, we normalize these scores of driver

intelligence-biased mutual information between 0 and 1 to be used as feature weights ωj . Here,

ωj is the feature weight of jth feature.

3.4.1.4 Formulation of k-NN Methods

Given a set of training samples, we formulate the problem of predicting a corresponding target

score using k-NN regression. Each sample Ti in the training data is described by a d-dimensional

vector of contextual features and a target score w(Ti) as follows:

〈a1(Ti), a2(Ti), a3(Ti), ..., ad(Ti), w(Ti)〉,

To predict the target score of query instance TQ, the distances between TQ and all the

training samples Ti are calculated as follows:

d(TQ, Ti) =

√√√√ d∑
j=1

[aj(TQ)− aj(Ti)]2, (3.3)

where aj ∈ Fc is the jth contextual feature of Ti and TQ; j = 1, 2, 3, ..., d.

Note that the basic k-NN regression treats each feature equally during this distance cal-

culation. However, the contribution of each feature can be taken into account by rewriting

Eq. 3.6 as follows:

d(TQ, Ti) =

√√√√ d∑
j=1

ωj ∗ [aj(TQ)− aj(Ti)]2, (3.4)

where, ωj is the weight of jth feature.

Next, the k-nearest neighbors are identified by TQ by sorting the values of d(TQ, Ti) in

ascending order. If TNN = {TNN
1 , TNN

2 , TNN
3 , ..., TNN

k } be the set of k-nearest neighbors of

TQ. If w(TNN
i ) is the target score of TNN

i , the predicted target score w(TQ) of the query

instance TQ is calculated by averaging the target scores of k-Nearest Neighbors as follows:

w(TQ) =
k∑

i=1

w(TNN
i /k) (3.5)

Note that the key here is to estimate the weights in Eq. 3.4 for each features appropriately

so as to get a better neighborhood for higher prediction accuracy.
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3.4.1.5 Experiments and Results

To evaluate the effectiveness of the proposed driver intelligence biased weighting scheme, we

designed two sets of experiments:

1. Taxi Queue Wait Time Prediction: We predict the taxi queue wait time and compare

with several weighting methods, including

• Baseline ([1]): The baseline Nearest Neighbor Estimation (NNE) approach employs

a regression based optimization for feature weighting. It considers only three at-

tributes for queue wait time prediction (time of the day, day of the week, and week

number of the year), and weights the features based on the co-efficients obtained

from a linear regression model.

• LR-trained weights: Unlike the Baseline ([1]), all 14 significant contextual features

from Table 3.3 are considered. Then the feature weights are calculated by normal-

izing the co-efficients obtained from a trained linear regression (LR) model which

are to be used for the Nearest Neighbor Estimation.

• Equal weights: In this approach, all 14 significant contextual features from Table

3.3 are considered with equal weights for the Nearest Neighbor Estimation.

• MI-based Weights: The MI (Mutual Information)-based weights includes all the

significant contextual features from Table 3.3. Then the pure mutual information

between each feature and the target (taxi queue wait time) is calculated and normal-

ized between 0 and 1 to be used as feature weights for Nearest Neighbor Estimation.

• DI-biased weights: The DI (Driver Intelligence)-biased feature weighting is the pro-

posed weighting scheme of contextual features. The scores for each features obtained

from Eq. 3.2 are normalized to be used as feature weights for Nearest Neighbor Es-

timation.

2. Neighborhood Density/Quality : we evaluate and compare the density and quality of neigh-

borhood between the baseline and our proposed approach.
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Figure 3.5: Percentage of Median Prediction Errors Using Various Feature Weighting Tech-
niques for Varying k-values Between 1 and 15. This shows that the driver intelligence-biased
feature weighting scheme gives the least amount of median errors.

We use a random 30-40-30 split to conduct our experiments with different feature weighting

schemes for Nearest Neighbor Estimation. The first part contains 30% of the samples which

were used for feature selection and feature importance calculation. The second part contains

40% of the instances which were used for training purpose, and the third part contains 30% of

the instances which were used to test the performance of Nearest Neighbor Estimation. For

performance evaluation, we consider the median and mean prediction errors for different k

values between 1 and 15.

Queue Wait Time Prediction: Figure 3.5 shows the comparison of median prediction errors

among all the methods. The comparison of mean prediction errors among all the methods is
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Figure 3.6: Percentage Mean Prediction Errors Using Various Feature Weighting Techniques
for Varying k-values Between 1 and 15. This shows that the driver intelligence-biased feature
weighting scheme gives the least amount of mean errors.

shown in Figure 3.6. We can see that the proposed feature weighting method DI-biased weights

and its three variants (LR-trained weights, Equal weights and MI-based weights) outperform

the Baseline ([1]) for different k values between 1 and 15 since they produce less prediction

errors.

Next, we examine the statistical significance of this improvement. Specifically, a paired

t-test is conducted to examine whether the improvement in prediction errors is statistically

significant when comparing with Baseline ([1]). A paired t-test can determine whether the

mean differences between two sets of paired samples differs from 0. The mean difference 0

indicates that the paired samples are similar. In our case, the first sample is the prediction

errors produced by the Baseline ([1]) approach while the second sample is set in turn for the
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Table 3.5: Paired t-Test of Prediction Errors Between Different Feature Weighting Techniques.
This shows that the DI-biased weighting scheme provides the most significant improvement
compared to other techniques.

Methods Metrics t p

LR-trained weight vs Baseline ([1]) median 08.25 <0.001
mean 09.04 <0.001

Equal weights vs Baseline ([1]) median 14.46 <0.001
mean 17.97 <0.001

MI-based weights vs Baseline ([1]) median 09.63 <0.001
mean 06.54 <0.001

DI-biased weights vs Baseline ([1]) median 17.89 <0.001
mean 21.41 <0.001

DI-biased weights vs LR-trained weights median 05.33 <0.001
mean 07.21 <0.001

DI-biased weights vs Equal weights median 04.39 <0.001
mean 04.03 <0.001

DI-biased weights vs MI-based weights median 05.30 <0.001
mean 07.55 <0.001

prediction errors produced by the LR-trained weights, Equal weights and MI-based weights.

Note that the pair-wise prediction errors are taken in to consideration for varying k-values

between 1 and 15. Table 3.5 lists the statistics obtained from the paired t-test. We can see

that the improvement in terms of prediction errors are statistically significant between the pro-

posed method DI-biased weights (including its variants) and the Baseline ([1]) since the values

of t-test statistics (t) differ significantly from 0 and p values < 0.001 on this small sample size

of 15 supports about this significance.

Neighborhood Analysis: Here, we analyze the ECDFs (empirical cumulative distribution

function) and the densities of inter neighborNN(p, q) distances where p = 1 to 14, q = p+1. We

compare LR-trained weights, Equal weights, MI-based weights and DI-biased weights with the

Baseline ([1]) feature weighting approach. Figure 3.7 shows the ECDFs of distances between

consecutive neighbors. From the plotted ECDFs, we can see that there are some jumps in

the ECDFs for the Baseline ([1]) approach, which means that the subsequent neighbors are

not dense which results in a sparse neighborhood. On the other hand, the ECDFs for all

of the other four approaches show smooth trend lines which imply the existence of a dense

quality neighborhood. We also can see that our DI-biased weights shows the most smoothness

compared to the rest.
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Figure 3.7: Empirical Cumulative Distribution Functions (ECDFs) of Inter Neighbor Distances:
Comparison Among LR-trained weights, Equal weights, MI-based weights, DI-biased weights
and the Baseline ([1]).

Also the density plots of inter neighbor distances support our claim. We can see that there

is mostly one peak in density plots for LR-trained weights, Equal weights, MI-based weights and
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Figure 3.8: Densities of Inter Neighbor Distances: Comparison Among LR-trained weights,
Equal weights, MI-based weights, DI-biased weights and the Baseline ([1]).

DI-biased weights as shown in Figure 3.8. This trend also remains the same when we consider

the two furthest neighbors 14 and 15. On the contrary, we can see that there are more than

one peak in first four density plots for the Baseline ([1]) approach. As it moves towards the
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Figure 3.9: Empirical Cumulative Distribution Functions (ECDFs) of Inter Neighbor Distances
Using DI-biased weights Showing the Improvements Achieved for Increasing k.

furthest nearest neighbors, we can see a long tail in the density distributions. This implies a

sparse neighborhood using the baseline approach. From the density plots, we also can see that

the proposed approach DI-biased weights is able to achieve the most dense neighborhood.

Next, we examine the robustness of our approach DI-biased weights. Specifically, we exam-

ine the changes of inter-neighbor distances with the change in k values. We plot the ECDFs

and densities of all the distances between two consecutive neighbors using DI-biased weights

only. From Figure 3.9, we can see that the first two nearest neighbors are the least dense

compared to the next two, and so on. However, as we increase the size of the neighborhood,

a more dense distance between two furthest neighbors is seen. This indicates that DI-biased

weights is able to find the dense neighborhood when we increase the value of k.
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Figure 3.10: Density of Inter Neighbor Distances Using DI-biased weights Showing the Im-
provements Achieved for Increasing k.

Furthermore, from the density plots in Figure 3.10, we can see that the furthest two neigh-

bors are more dense compared to the closest two. This implies that the DI-biased weights

approach shows its robustness in identifying dense neighborhood with any neighborhood size

between 1 and 15 in this study with taxi queue wait time dataset.

We also examine the relationship between the identified neighborhood and the taxi queue

wait time prediction. Specifically, a K-S (Kolmogorov-Smirnov) test is deployed. The K-S

test measures the difference between ECDFs of distances among identified neighborhoods by

applying the DI-biased weights and Baseline ([1]) method respectively in terms of D-value

which is the maximum difference between these two. We examine the corresponding p-values
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Table 3.6: Relationships Between the Identified Neighborhood and the Taxi Queue Wait Time
Prediction Errors Using K-S (Kolmogorov-Smirnov) Test which Shows the Existence of Corre-
lations.

ECDF s of dis-
tances between
NN(p, q)

D
(K-S
Test)

p k d error
(Me-
dian)

d error
(Mean)

Correlation
[D, d error(Median)]

Correlation
[D, d error(Mean)]

(1,2) 0.50 <0.001 2 0.017 0.017

(2,3) 0.46 <0.001 3 0.010 0.013

(3,4) 0.55 <0.001 4 0.012 0.011

(4,5) 0.45 <0.001 5 0.007 0.010

(5,6) 0.47 <0.001 6 0.015 0.014

(6,7) 0.46 <0.001 7 0.014 0.011

(7,8) 0.45 <0.001 8 0.014 0.012 0.484 0.393

(8,9) 0.50 <0.001 9 0.011 0.012

(9,10) 0.47 <0.001 10 0.014 0.011

(10,11) 0.47 <0.001 11 0.014 0.011

(11,12) 0.48 <0.001 12 0.013 0.010

(12,13) 0.47 <0.001 13 0.011 0.010

(13,14) 0.48 <0.001 14 0.010 0.009

(14,15) 0.45 <0.001 15 0.009 0.009

to know the statistical significance of this difference. As shown in Table. 3.6, the D-value is

around 0.45 and p-value < 0.001, which means the neighborhoods are statistically different

for different k-values and the difference would be statistically as large or larger than the ob-

served ones. Then, let d error(Median) and d error(Mean) denote the improvement shown

by the DI-biased weights method over the Baseline ([1]) method in terms of median and mean

of prediction errors respectively for different k-values. Finally, the correlation between the

corresponding D-values and the prediction errors (d error(Median) and d error(Mean)) are

measured to show the relationship between the improvement in dense quality neighborhood

and the improvement of prediction accuracy. As shown in the last two columns of Table 3.6,

the Pearson correlation scores of 0.484 (with median) and 0.393 (with mean) are obtained

which is a positive correlation. It indicates that the improvement in terms of dense quality

neighborhood is correlated with the improvement in terms of prediction accuracy.

In total, the experiment results demonstrate that the heterogeneous contextual factors

together with the driver intelligence (DI) can improve the quality of identified neighborhood

significantly, which leads to a significant improvement in taxi queue wait time prediction.
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3.4.2 Scenario 2: Queue Context Prediction

Let Ti be an instance which represents the current hourly time window in the queue context

dataset. Each instance Ti is described by a set of contextual features and a queue context c(Ti).

Given a query time window TQ which represents the next hourly time window and correspond-

ing set of features Fc, we predict the taxi-passenger queue contexts as: (TQ, Fc) → ĉ(TQ)

where ĉ(TQ) is the predicted queue context. We aim to perform feature selection and compute

feature weight for good quality neighborhood calculation. We begin with the formulation of

kNN methods. Then we present our technique for feature weight calculation and experimental

results. The prediction steps are described in the following subsections.

3.4.2.1 Formulation of k-NN Methods

Let each sample Ti in the queue context dataset is described by a d-dimensional vector of

relevant features and a target context label: 〈a1(Ti), a2(Ti), a3(Ti), ..., ad(Ti), c(Ti)〉 where, c(Ti)

is the queue context label and c(Ti) ∈ {TQ,PQ, TPQ,NoQ}.

To predict the target queue context for any query instance TQ, the distances between TQ

and all the training samples Ti denoted as d(TQ, Ti) are calculated as follows:

d(TQ, Ti) =

√√√√ d∑
j=1

[aj(TQ)− aj(Ti)]2 (3.6)

where aj ∈ Fc is the jth contextual feature of Ti. and Ti:

Unlike the basic k-NN method which treats each feature equally during this distance cal-

culation, the contribution of each feature can be taken into account by multiplying with the

feature importance score. If ωj is the feature importance score of jth feature, we rewrite the

Eq. 3.6 as follows:

d(TQ, Ti) =

√√√√ d∑
j=1

ωj ∗ [aj(TQ)− aj(Ti)]2 (3.7)

Next, the k-nearest neighbors of TQ are selected by observing the values of d(TQ, Ti) and

sorting them in ascending order. Let us assume {TNN = TNN
1 , TNN

2 , TNN
3 , ..., TNN

k } is the set
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of k-nearest neighbors of TQ based on k smallest d(TQ, Ti). The predicted target score ĉ(TQ)

of the query instance TQ is calculated by applying majority voting technique within the target

context labels of k-nearest neighbors as follows:

ĉ(TQ) = arg max

k∑
i=1

δ(c, c(TNN
i )) (3.8)

Note that the key is to compute the appropriate feature importance score in Eq. 3.7 to

achieve a higher prediction accuracy through identification of good quality neighborhood of

size k.

3.4.2.2 Feature Weight Calculation Scheme

In this section, we calculate the feature importance score for queue context prediction. To do

so, we compute the driver intelligence by following the process described in Section 3.4.1.3.

Then we calculate deviation of this ‘driver intelligence’ from the hourly mean frequency for

each hour. We call this number as the ‘Temporal Drivers-intelligence Deviation’ (TDID).

Note that we calculate the hourly ‘driver intelligence’ deviation for each instance in the queue

context dataset. Then we employ the notion of mutual information to calculate the feature

importance score. The mutual information is a measure of the mutual dependence between two

random variables. In this research, we use the TDID as a conditional variable for calculating

TDID-biased mutual information between any feature and the queue context. We calculate

the TDID-biased mutual information, I(aj ; c(Ti)|TDID) as:

I(aj ; c(Ti)|TDID) = −
∑

aj ,c(Ti),TDID

p(aj , c(Ti)) log
p(aj , c(Ti)|TDID)

p(aj |TDID)p(c(Ti)|TDID)
(3.9)

Here, aj is the jth queue context feature and c(Ti) is the taxi-passenger queue context

and TDID is the temporal driver-intelligence deviation. Next, we normalize these values of

I(aj ; c(Ti)|TDID) to be used as feature importance score.
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Figure 3.11: Accuracy (%) vs Number of Features

3.4.2.3 Experiments and Results: Feature Selection

As we extract more features by computing the deviations of all feature values from its hourly

mean along with the current features of the queue context dataset [26], it is necessary to check

the relevancy of all features. The reason is that the use of all these features may degrade

the prediction performance significantly due to the inclusion of some irrelevant and redundant

features. Therefore, to build an accurate model, it is required to identify the relevant features

from this large feature set of 66 features. The automatic feature selection techniques are

considered as an effective tool in this scenario. We use a well known automatic feature selection

technique called Recursive Feature Elimination (RFE) [120]. In each iteration of REF, a

Random Forest algorithm is employed and the model is evaluated. All possible subsets of the

features are considered. Figure 3.11 shows that a subset of 27 features produces the maximum

accuracy (76.58%).

Next, we take this subset of 27 features and check for feature redundancy. Specifically

we examine if this subset contains attributes that are highly correlated with each other. To

remove this problem we generate and analyze a correlation matrix between all 27 attributes.

Then the highly correlated attributes are identified based on a cut-off threshold. We remove
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Figure 3.12: Feature Importance Scores Based on TDID-biased Mutual Information

9 queue context features with an absolute correlation of 0.75 or higher and obtain 18 relevant

features for the queue context prediction. These 9 features include normalized passenger pickup

frequency, total booths, and total passenger corresponds to the current hourly time window;

normalized slotwise avg waiting, drop and pick frequency, total booths, and total passenger

corresponds to the previous hourly time window; and normalized total passenger, and total

booths corresponds to the next hourly time window. Then we apply the recursive feature

elimination technique again within the dataset of 18 features to confirm that no more feature

is selected to be removed and the maximum accuracy of 76% is obtained using the subset of

all of those 18 features. Since this feature reduction shows no significant change in prediction

accuracy, we keep both of the datasets with 18 and 27 features respectively for the purpose

of comparison. We apply our feature importance calculation technique in both datasets and

observe the prediction performance.

3.4.2.4 Experiments and Results: Feature Weight Calculation

After feature selection, we calculate the feature importance scores for each feature in the queue

context dataset by normalizing the values of I(aj ; c(Ti)|TDID) between 0 and 1. Figure 3.12

illustrates the feature importance scores for our dataset with 18 features. We perform the
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Figure 3.13: Comparison of Error Rates (%)

same for our another dataset with 27 features. Then we use these normalized scores during

the distance calculation of k-NN methods. Note that the features listed in Figure 3.12 that

end with a ‘N’ correspond to the features with normalized values while the features that end

with a ‘D’ represent the deviation of that feature from the hourly mean values.

3.4.2.5 Analyzing Prediction Performance

In this phase, we apply different k-NN methods to both our datasets with 27 and 18 features

respectively. For the experiment, we use 10-fold cross validation mechanism to test the perfor-

mance of k-NN methods. Specifically, we compare the prediction performance by observing the

error rates between traditional k-NN method and the k-NN (w/TDID) method. Note that the

traditional k-NN methods considers each features with similar importance. Unlike traditional

k-NN, the k-NN (w/TDID) incorporates the temporal driver-intelligence deviation (TDID) as

feature importance scores during distance calculation for neighborhood selection. We do this

comparison of the prediction error for varying k-values between 1 and 25. Figure 3.13 illus-

trates the error rates of different techniques. For clarification we denote the traditional k-NN

methods as k-NN27 and k-NN18 when applied to our datasets of 27 and 18 features respec-

tively. Similarly the k-NN27 (w/TDID) and k-NN18 (w/TDID) stand for the k-NN methods

with temporal driver-intelligence deviation (TDID) based feature importance score.

We can see from Figure 3.13 that the the k-NN27 (w/TDID) and k-NN18 (w/TDID)

produce less error rates compare to k-NN27 and k-NN18. This implies that the use of temporal
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Table 3.7: Results Obtained From Paired t-Test

Paired t-test Between k-NN Methods {a,b} p-value 95% CI

{k-NN18, k-NN18 (w/TDID)} 3.31e-10 (0.028, 0.043)
{k-NN27, k-NN18 (w/TDID)} 1.184e-10 (0.028, 0.041)
{k-NN18, k-NN27 (w/TDID)} 2.333e-09 (0.020, 0.031)
{k-NN27, k-NN27 (w/TDID)} 5.719e-11 ( 0.020, 0.029)
{k-NN27 (w/TDID), k-NN18 (w/TDID)} 0.001466 (0.004, 0.016)

driver-intelligence deviation (TDID) based feature importance scores with the neighborhood-

based methods can select good quality neighborhood thus lower the error rates. We also can

see that the k-NN18 (w/TDID) produces the error rate which is smallest among these four for

almost all k values. This implies that the k-NN method perform better in our scenario when

applied to the dataset with reduced features.

Next, we examine the significance of this improvement of using the TDID-based feature

importance scores with the neighborhood based methods. We conduct a paired t-test. The

paired t-test examine and determine the statistical evidence that the mean difference between

paired observations is significantly different. A mean difference of 0 implies no difference. We

perform the paired t-test for all the error rates obtained for varying k-values. Let, a and b

represent two matrices that contain the error rates for different k-values between 1 and 25 for

two different methods say, k-NN18 and k-NN18 (w/TDID). The paired t-test (a,b) returns an

interval of differences for a given confidence interval (CI). We can see from Table 3.7 that this

difference in error rate reduction is significant with a 95% CI since the value 0 is outside these

intervals. We also can see that the k-NN18 (w/TDID) shows the most significant improvement

compare to others. The lower p-values (p < 0.05) also strengthen the claim.

3.5 Conclusion

This chapter focused on the problem of queue context and queue wait time prediction at the

airport by using neighborhood based methods. Specifically, we investigated a large number of

heterogeneous mobility-associated factors related to the mobility of taxi drivers and passengers

of the JFK airport in New York City, including time of day, week, month, taxi trips to and
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from the airport, flight arrival times and passenger numbers as well as features related to

weather conditions. To conduct this research, we utilized two real-world mobility context

datasets: taxi-passenger queue context dataset and taxi queue wait time dataset which were

generated by fusing three real-world datasets: taxi trip data, airport passenger arrival data

and weather condition data. We also conducted a comprehensive analysis on the associated

factors. Then, we devised methods to select relevant factors and introduce a feature weighting

scheme leveraging taxi driver intelligence to identify dense quality neighbors for k-NN based

methods.

The experimental results show that our feature weighting scheme enhanced the performance

of the state-of-the-art k-NN model for mobility context prediction. We also can see from the

results of paired t-test with 95% confidence level that the improvement in obtained results is

statistically significant compared to baselines. Furthermore, the results obtained from inter-

neighbor distance analysis demonstrate that our method identified dense neighborhoods for

varying neighborhood sizes, which was also the reason for this significant improvement in

prediction accuracy. Our research suggests that such results obtained for the mobility context

prediction can help taxi drivers’ decision in terms of making an airport trip or not. Also,

passengers can seek alternative transport if a long queue is forecasted. Overall, our approach

has the potential for practical implementation as shown by the experiments with real-world

datasets. This could help the taxi drivers decide to make an airport passenger pickup after a

precedent airport passenger drop-off thus reducing their queue wait times at the airport taxi

rank.

However, the results obtained from this research are restricted to prediction and cannot

provide optimal decision-making solutions, which require other types of modelling. Future

research can address the problem of optimal decision making for taxi drivers by analyzing

their personalized objectives. As for any predictive analytics technique, the performance of

our approach also depends on and requires appropriate domain adaptation. We inferred expert-

like knowledge by combining historical mobility context data and the probability theory for

the calculation of feature weights. We deployed our techniques during distance calculation of

k-NN based methods only in our experiments. In future, another validation experiment with
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our technique could be performed when the similar kind of mobility context datasets become

available.

In summary, this chapter demonstrated the modelling of heterogeneous mobility-associated

factors for expert-like knowledge acquisition to enhance the performance of mobility context

prediction task by calculating and assigning appropriate feature weights.



Chapter 4

Inferring and Integrating Mobility

Contexts in Trip Planning

In Chapter 1, we discussed context-aware trip planning and the different user perspectives of a

context for trip plan recommendation. Inferring sparse mobility contexts from heterogeneous

data sources and integrating multiple contexts into the trip plans can be challenging problems

for effective trip planning. In relation to RQ-3, this chapter summarizes the existing literature

to develop a conceptual framework for providing different steps and procedures of context-aware

trip planning. The steps include contextual data collection, fusion, inference, representation

and integration into trip planning. Moreover, we develop several algorithms to address the

multi-context integration problem in context-aware trip planning where the main goal is to

consider different user-perspectives of a mobility context and integrate them into trip planning.

To demonstrate the reasonableness of our developed technique, we consider an active transport

trip planning scenario with real-world deployment. We also present the experimental results

to illustrate the effectiveness of our developed methodology.

4.1 Motivation and Contribution

Active transport trips refer to the collection of non-motorized forms of transport options such

as manual wheelchair, pedal bike, push scooter and walking. These are important to user

71



Motivation and Contribution 72

mobility because the trips using active transport require active human effort and able to bring

long term benefits. The urban planner are interested because increasing active transport usage

can lower the traffic congestion and reduce greenhouse emissions. Policy makers all around the

world are calling for rapid increases in active transport usage in daily travelling. To promote

the active transport usage, many exclusive services are provided to active transport users

such as dedicated bike lanes and walking trails. Also, the health professionals, recommend

active transport to increase independent mobility for different age groups by making them

flexible physically, mentally and socially [121, 122]. However, the adaptation of active transport

modes requires many situational factors to be considered. For instance, a user’s trip from one

place to another can be influenced by various factors which may include quietness, steepness,

and congestion along the route. Physical barriers such as stairs, ramps, closures can directly

influence the preferences of some active transport users for planning and making their trips.

Most importantly, these factors vary among travellers. Therefore, the active transport trip

planning should consider these diverse situations known as trip contexts for computing traveller

specific trip plans. One of the challenges faced by the active transport trip planners includes

designing a unified framework to collect, fuse, infer and represent contextual information for

the computation of trip plans according to user preferences.

Another motivation is that the world’s population is ageing and people aged 65 and above

is increasing at a high rate. According to World Banks report [123], Australia has 15% of

their total population aged 65 and over in 2014 whereas in United States, Singapore and

Portugal this rate is 14%, 11% and 19% respectively. Globally, within the older population

group, persons aged 80 years or over account for 14% of the total population in 2013. This is

projected to reach 19% in 2050 which is equivalent to 392 million persons aged 80 years or over

by 2050 [124]. So, it is becoming more and more important to consider the special needs of

this increasingly large number of people when developing public services for them. Among the

various special needs of elderly people, mobility needs are becoming more important as more

people retire from driving, and thus require improved trip planner options which may combine

accessible public transport and walking routes to meet their mobility needs. For example,

they will require mobility to access health care services, various social activities, shopping,
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and simply maintain community connections. However, there are many perceived barriers

which limit the usual mobility requirements of elderly people and those with special needs. Of

these barriers, accessibility issues are considered the most important as highlighted in [125].

A review in [126] shows that public transport has a significant influence on access to various

health services for elderly people and those who stop driving their own vehicles. Other research

points out that special consideration must be given while constructing or upgrading road and

footpath infrastructure [127], for instance, as this can impact on pedestrians who use a cane,

guide dog or wheelchair. It is important to meet everyone’s mobility needs so that they do

not become isolated from society [128]. Although there has been improvement in aspects of

public transport and civil engineering to improve accessibility, the following research question

still remains:

“Which is the most accessible route to take between two points-of-interest (POIs) within

walking distance?”

By point-of-interest, we mean a place where a trip starts or finishes (e.g. home, hospital,

public transport station, or community place). The proliferation of mobile technologies and

navigation services can help to provide solutions to this question. It has now become easier

to go from one place to another by using various navigation devices. Route recommendation

systems that are available compute choices of routes from a list of recommendations based on

various criteria such as shortest route and fastest route. Although these systems are built to

help people to be mobile, they cannot always satisfy every type of user. For example, a person

with a manual wheel chair, who may be querying a route recommender system to travel between

two locations, may not be satisfied with the outcome of their query. He may be directed to a

path which is inaccessible or too steep and risky for him. This happens as the recommender

only considers paths that are shortest and fastest. But, for this special user, route accessibility

is the main key factor that needs to be considered. Moreover, recommendations for a route

based on accessibility needs depend on the person’s physical capability. For a daily commute,

it may be considered less necessary to use a recommender system since the user would be well

aware of the environment. However, the situation is different when the user wants to visit a new

or unknown place. It is particularly necessary to design an accessible path recommendation
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for the elderly people and people with special needs to fit their physical abilities.

Route accessibility is very difficult to model as there are many factors that can affect the

accessibility of a route. Of them, the most influential factor is the gradient of the route. To be

specific, people with a wheelchair can comfortably wheel themselves up a specific gradient but

not beyond a slope of one-in-fourteen [129]. The United Nations has also provided a design

manual for a barrier free environment for people with mobility problems[130]. How to give

a route recommendation that is accessible for a wheelchair is a challenge, since there are so

many possibilities that can happen along the path. For example, a very smooth route can be

rendered inaccessible by a very sharp rise in gradient over a very small portion of the route. On

the other hand, there may have several routes with a gentle rise in gradient in several portions

but all of them could be accessible because this rise is below a certain margin. The challenge

is to pick the best route from all the latter options. The existing path planning algorithms try

to minimize the total travel distance or travel time. However, there is no measure defined for

evaluating the accessibility of a path either. In the accessible path routing problem, there are

the following challenges: First, the current network graph used for trip planning does not take

into account the slope of the paths, and thus does not support the accessibility optimization.

Second, there is no measure for evaluating the accessibility of the path. Third, there is no

algorithm proposed for the accessible path routing.

To address the above challenges, this chapter presents a unified framework called context-

aware active transport trip planning (CoAcT). We also propose technique to integrate multiple

contexts (i.e. accessibility and distance) in trip plans considering different user-perspectives of

a context. We demonstrate our developed techniques using a number of real-world deployments

and experiments. Specifically, the contribution of this chapter is listed as follows:

• A unified framework to collect, fuse, infer and represent contextual information for pro-

viding context-aware trip planning.

• A Contour-based graph generation and query-based adaptation scheme is proposed to

represent the slope of the paths in the graph with the aid of contour lines;
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• Two metrics, total vertical distance and maximal slope, are defined for evaluating the

accessibility of a path;

• A Multi-Objective A* search algorithm is designed for minimizing the total distance,

total vertical distance and maximal slope;

• A diverse set of trade-off paths is provided, including the shortest path. The users can

choose the most suitable path according to their own perspective of contexts (i.e. distance

and accesibility ).

4.2 Related Work

Some researchers focus on identifying different mobility aspects for the elderly and the people

with special needs. Another direction of research focuses on different techniques for collecting

information on physical accessibility barriers along the path whereas a number of researchers

consider different parameters for calculating the score of a path. Also, there is another direction

of research where the aim is to develop systems for mobility assistance.

4.2.1 Mobility Aspects for the Elderly and People with Special Needs

Several surveys have been conducted to identify the mobility aspects and accessibility barriers

for the elderly and people with special needs [131, 132, 133, 38, 134]. A spatial analysis of

accessibility of train stations and access to their surroundings for elderly passengers is presented

in [131], where the authors leveraged data from State Government organizations and conducted

a field survey of seven railway stations in Perth, Western Australia. The data collected from the

survey identified the trip purposes and attitudes towards accessibility for the elderly travelers.

This research found that accessibility at the train station and surrounding areas is affected

by route directness, facility and service quality at station, mixed land use, and intermodal

connectivity. The researchers calculated accessibility indices for train stations and surroundings

by combining elderly patronage rates and identifying variables that affect accessibility. They

classified the data into three types of elderly passengers: those who walk and ride, park and ride

and those who take the bus and ride, since the main form of public transport in Perth is bus.
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However, the research did not consider the route accessibility that can have an impact on the

elderly and passengers with special needs and influence their attitudes towards their patronage

of public transport in a major way. The research in [132] presented a way to determine the

accessibility of public transport and evaluate the service quality by analyzing pervasive mobility

data. The authors in [133] conducted a survey to learn about the opportunities and barriers

associated with ridesharing from an elderly person’s point of view. Some research also focuses

on blind passengers’ travel needs. An interview with a group of blind and deaf-blind public

transport users revealed that they are primarily concerned with independence and safety [38].

In [134], the routing behaviour of pedestrians in an indoor environment is investigated by

evaluating responses to active RFID and QR-code based route navigation systems for blind

people. Such systems were also evaluated in [135], which recognized that all of these systems

must work in an integrated manner to achieve desired accessibility outcomes for the individuals

concerned.

4.2.2 Crowdsourcing as a Tool for Data Collection and Route

Recommendation

Several studies have collected data on accessibility barriers along a path through crowdsourcing

[136, 137, 138, 139, 140, 141, 142, 143, 144]. Crowdsourcing has been widely used for accessibil-

ity data collection in general as well as for pedestrian navigation. An accessibility information

sharing platform for people with disabilities was explained in [136], which aimed to provide

disabled people with a suitable path to their destination. The authors in [137] proposed and

onlined crowdsourcing techniques with the Google Street View application to identify the bus-

stop landmark locations and improve the accessibility of blind riders. Crowdsourcing was also

used to collect information on stop identification landmarks in [38]. A platform for collabo-

rative accessibility map generation was proposed in [138]. The system allowed users to add

photos of the side walk accessibility barriers and comment on them. The authors in [139] de-

signed a system which they call mPASS to collect indoor and outdoor accessibility data as well

as analyse many outdoor accessibility requirements. The system crowdsourced notifications

about a possible accessibility barrier (such as stairs for example) to alert other users of the
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system to be aware but it may also need to be confirmed. By considering the user preferences

and specific needs, the system aimed to provide personalized paths for users. It stores the

user profiles based on their needs and preferences, which are then updated by allowing the

users to select their choices (neutral, like, dislike and avoid) against a specific accessibility

barrier. A route recommendation system based on crowdsourced data was presented in [140],

where the authors quantified the human perceptions of quietness; happiness and beauty to

recommend paths. Crowdsourcing was also used to select a small set of paths from a large

set of recommendations. A crowd-driven turn-by-turn path selection technique was proposed

in [141], where the authors collect live traffic information through crowdsourcing and then

ruled out the less important paths. Crowd perceptions about routing directions were collected

through a series of routing questions. The research also proposed a strategy to select the most

important set of routing questions. A route recommender system based on crowd-voting data

from social media was introduced in [142]. The aim was to suggest the most pleasurable route

for urban walking rather than recommending a route based on time/distance. A crowd-aided

mobile platform for user safety perception management was presented in [143]. The authors

also extended their work by finding the safest route between two locations in [144], leveraging

the data collected through their mobile crowdsourced platform. Though crowdsourcing is an

effective tool for data acquisition, it can suffer from various issues such as trust, missing data,

incorrect data, etc. Another model to estimate the probability of a crash on any road as a

function of the traffic volume, road characteristics, and environmental conditions is presented

in [145]. To compute the safest route between two locations, the authors employed Dijkstra

routing algorithm.

4.2.3 Measuring Route Scores

Several authors have defined a walkability score for a pedestrian route or a specific location

[146, 147, 148, 149, 150, 151, 152, 12]. A model for measuring walking accessibility towards

public transport terminals was presented in [146] by introducing the concept of equivalent

walking distance. The equivalent walking distance is the sum of the actual walking distance

plus other factors along the route (crossing, ascending steps, conflict points), the values of



Related Work 78

which are measured by calculating the trade-off of that factor with respect to the actual

walking distance. “Walkscore” is a publicly available system which provides a score for the

walk and a transit score for a specific address [147]. It uses the distance of local amenities

and transit facilities from an address to assign the score. A map route ranking method that

considers environmental factors is presented in [148]. The direction and elevation services

are used to select and rank the routes recommended by the Google Maps application [149].

However, this approach did not consider a context aware route search and the routes generated

from Google Maps are based on shortest distance or minimum time and no on accessibility

issues. Another model for recommending a walking route was proposed in [150]. Routes were

generated by combining the A* algorithm and genetic algorithms and were evaluated against

safety, amenity and walkability criteria. In the system, the user was required to enter the

weights for each of these criteria to define the objective functions for each route. However, the

safety was a qualitative measure and users might find it difficult to assign weights for different

parameters. RouteCheckr [151] is a Dijkstra-based client/server architecture which aims to

provide personalized routing to mobility impaired users. The system is based on multimodal

annotation of geo-data. Users can rank their choices and then, based on the multi-criteria

cost associated with each route, the best route is presented. The problem with the weighted

sum approach is that all the parameters are required to be converted to a common scale. A

traffic aware real-time route recommendation system was proposed in [152]. A combination of

Dijkstra and A* algorithms was used to recommend the best route based on shortest time. The

technique employed the real-time and historical taxi data. A bi-criteria optimization algorithm

for urban navigation was proposed by [12]. The aim was to provide a set of paths that shows

trade-off between distance and safety.

4.2.4 Mobility Assistance

A significant amount of mobility assistance can be made available to aid different groups of

users. Considering the concept that blind travelers navigate through a place based on some

landmarks, a braille-based application was developed by [38] that provides information on bus

and bus-stop landmarks. It can become a problem if the landmark is not available due to any
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construction work. A train station navigation application for blind passengers was presented

in [153] where descriptions of the station were stored at different levels of the tree structure:

overview, floors, platforms and places of interest (POIs). The system starts with a basic

overview of the station, i.e., how many floors the station has and how they are numbered with

respect to the ground. The user can travel floor by floor and can have various descriptions

about the POIs. M3I is an interactive platform for pedestrian navigation in both indoor and

outdoor environments [154]. The platform incorporates speech and gesture recognition for

navigation support. A rich overview of mobility assistance systems for elderly or mobility

impaired persons was presented in [155], where the authors also explain the current status and

usability of such systems.

Current literature does not provide a unified framework for context-aware trip planning.

Also, these research works aim to integrate a single mobility context by achieving one objective

such as minimising distance, optimising safety, or increasing accessibility of the path. Moreover,

it is a complex issue to combine and integrate multiple mobility contexts concurrently to

compute and provide trip plans. Also, the topographical information which is one of the most

influential factors in accessibility based trip planning is not considered in current research

works. In the next sections, we present a unified active transport trip planning framework that

combines contour information from topographical map data with road network data to model

path accessibility. Additionally, we integrate two mobility contexts (i.e. the distance and the

accessibility) concurrently considering different user-perspectives of a context during trip plan

computation.

4.3 The CoAcT Framework

In this section, we present a unified framework called context aware active transport (CoAcT)

which is designed to compute and provide trip plans based on a user query. The framework has

two main components: i) contextual data collection and ii) fusion and query processor. This

framework summarizes the existing solutions of single context trip planning and presents the

concept of multi-context trip planning. In this chapter, we present a multi-context integration

technique for trip plan computation which can be incorporated in the ‘fusion and query pro-
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Figure 4.1: Overview of the CoAcT Framework for Context Aware Active Transport Trip
Planning

cessor’ module of the CoAcT framework. The core modules of CoAcT framework are shown

in Figure 4.1.

4.3.1 Contextual Data Collection

The contextual data collection component collects and stores contextual data from heteroge-

neous data sources. As shown in Figure 4.1, the road network data is collected and stored in the

cloud. The other mobility associated data from different heterogeneous sources are collected

and stored into another cloud storage over time. The data associated with user mobility may

include steepness, user ratings, live updates and information about physical barriers such as

ramp, stairs corresponding to a specific geo location along the roads. In the next phase, these

data are fused together to quantify the accessibility of a route.

4.3.2 Fusion and Query Processing

A user initiates a trip query by specifying from and to locations and trip context(s) to be

considered for trip planning. These locations are usually geo-coded and hence converted into
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geo-coordinates. Then based on the context(s) specified in the user query, a context selection

query is generated and sent to the context cloud. The contextual data returned by the query is

overlaid on to the road network data. This contextual information is assigned to corresponding

units of roads called road segments. Then a search boundary is constructed by the route calcu-

lation module to limit the search space based on some parameter (i.e. user defined maximum

walk-able distance). Based on the search boundary, a contextual graph is retrieved from the

cloud which is used by the route calculation module. This module contains an algorithm suite

consisting of different routing algorithms. The idea of using an algorithm suite is evident from

the fact that there are different algorithms that serve different purposes taking various context

information into account. Then a routing algorithm is employed from the algorithm suite to

calculate the suitable paths based on the user specified trip contexts. The resultant trip plans

are presented to the user in response to their queries. The response can include a map repre-

sentation of additional information related to the trip plans such as contextual distribution of

surroundings.

4.4 Context-aware Trip Planning

In this section, we present contour-based accessible path routing as an example of context-aware

trip planning utilizing our CoAcT framework. We describe the process of data preprocessing

and trip query handling in the following sections by presenting two scenarios of context inte-

gration in trip plan computation. In the first scenario, we compute trip plans based on a single

context only. The second scenario integrates, computes and provides trip plans considering

multiple contexts.

4.4.1 Data Preprocessing: Contour-based Graph Generation

Many of the papers discussed in Section 4.2 consider the road network as a representation of a

graph where the road intersections are considered as the nodes of the graph. In an intersection,

multiple roads cross each other. A road segment is referred to an edge between two nodes in

the road network. It is different from a road or a street. For example, the Queen Street, an
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Figure 4.2: Google Map of an area in Melbourne City, Australia.

area in Melbourne City, Australia is divided into several road segments as shown in Figure

4.2. A road segment of Queen Street can be seen between Lonsdale Street and Little Bourke

Street. Another road segment is the portion of Queen Street between Little Bourke Street and

Bourke Street.

Finding the shortest path between two locations in the road network is a commonly en-

countered problem in trip planning and tourist trip design. Here, a path is a sequence of

nodes in the road network connecting with road segments. Dijkstra [156] and A* [157] search

algorithms, and their variants [158, 159, 160, 161, 162] are mostly used to find the shortest

path in terms of distance or travel time. There is no doubt about the effectiveness of such

algorithms. However, this approach to representing the road network has a major drawback

because the accessibility of one route segment might not always give a true reflection of the

accessibility if the route segment is only the connection between two road crossings. It could

happen that a route segment with a good accessibility rating may contain a very small portion

which is wheelchair inaccessible due to a steep slope or steps. In this chapter, we consider this

issue to be very important. That is, a road segment can have a number of different slopes in

between corners and intersections. For example, the road segment AB has two different slopes,

one upward from A (elevation of 60m) to C (elevation of 75m), and the other downward from
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Figure 4.3: A contour map showing road segment AB with two different slopes.

C to B (elevation of 60m) as shown in Figure 4.3. The road network is a planar graph, only

considering the latitude and longitude values. Therefore, the accessibility of AB given by the

road network (the elevation difference between A and B) will be much different from its actual

accessibility (the elevation difference between C and A, and C and B).

In practice, it is a challenging problem to identify the exact geographical locations of the

turning points between the slopes in a road segment (the exact location of the point C in Figure

4.3 for example). Therefore, in this chapter, a contour-based graph generation technique is

developed to approximate the locations of such turning points. Specifically, a new graph is

generated by overlaying the contour lines on the road network, and adding new nodes at the

cross-sections between the contour lines and the road segments. The contour lines are imaginary

lines on the geographical surface connecting points with similar elevation score. The contour

lines can be drawn for any elevation value on the earth’s surface. Figure 4.3 can be considered

as an illustration of a partial contour map of Melbourne, Australia, in which the grey curve

lines on the map are contour lines. This contour map is an example of 5 meter contour

interval which can be generated using the Open Street Map application, Srtm2Osm [163] for

any location on the earth. The Srtm2Osm is a tool which can generate the contour lines from

the digital elevation model provided by the Shuttle Radar Topography Mission (SRTM) [164].
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The tool writes contours as OSM ways into an OSM file. It can be seen that there are many

crossing points between the contour lines and the road segments on the map. We include these

crossing points as nodes with our road network graph.

In Figure 4.3, we can see that there is only one contour line that intersects road segment AB

at point C. Therefore, we add C to the road segment AB. After combining the road network

and the contour lines, the nodes in the graph are defined as the union set of the intersections

of the roads with the crossing points of other roads and other contour lines. As a result, there

are more nodes and edges in the newly generated graph than the original one. For example,

the original road segment AB is divided into two smaller segments AC and BC. The operations

(i.e., intersection and union) which are required for the contour-based graph generation can

be seen to be similar to the ll intersects and pp plus operators respectively as described by

Güting et al. in [165]. The pp plus operator outputs the union of two point objects. It scans

and merges the point sequences from two point objects into a new points object. Given two

line objects L1 and L2, the ll intersects operator outputs whether they intersect or not. The

output is true if both objects have no segments in common but at least one common point

which is an intersection point but not a meeting point. Note that the elevation interval is an

important parameter, since it determines both the accuracy of the turning point approximation

and the number of new points added, and thus the size of the newly generated graph.

Each node in the contour-based graph, has a latitude and a longitude value given by the

road network. In addition, the elevation value can be obtained by the Google Elevation API

[166]. Therefore, the contour-based graph can be seen as a 3-D graph, where each node can be

featured with the 3-dimensional vector (latitude, longitude, elevation). With the contour-based

graph, one can calculate the elevation differences in different segments of a path much more

accurately than by using only the pure road network.

In the proposed contour-based accessible path routing system, the contour-based graph is

generated in the data preprocessing phase and stored in an XML file. First, the road network

is extracted from Open Street Map (OSM), and contour data is extracted using Srtm2Osm.

Then JOSM is used to merge the contour line data and OSM road network data. The JOSM

is also used to identify the crossing points of the contour lines and the road segments. The
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Algorithm 4: Data preprocessing: contour-based graph generation

1 Extract the contour lines using Srtm2Osm [163];
2 Extract the road network using Open Street Map [167];
3 Combine the road network and the contour lines using JOSM [168];
4 Identify the crossing points between the contour lines and streets;
5 Generate the contour-based graph by adding the new crossing points and edges;
6 Generate the XML file for the contour-based graph using JOSM;

JOSM is a cross-platform OSM editor. The details of the data preprocessing are described in

Algorithm 4.

4.4.2 Query-Based Adaptation

The generated network graph only consists of the intersection points between the road segments

and between the road segments and the contour lines. On the other hand, the query points

(starting and ending points of the trip) can be anywhere on the map, and thus are highly likely

to be outside the network graph. It is necessary to include the query points into the graph in

real time. Intuitively, a trip must start and end somewhere in the middle of a street. Therefore,

a scheme is proposed which is illustrated in Figure 4.4 and can be summarized as follows:

1. Identify the existing edge on the graph that is closest to the query point;

2. Remove the edge, and add an edge from the query point to each of the two end-nodes of

the edge.

Figure 4.4: An Example of Including a Query Point into the Network Graph.
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Figure 4.5: An Example of Gradient Calculation. Given a 1 meter rise, the gradients of three
lines: AB1, AB2, and AB3 can be calculated by dividing each rise: O1B1, O2B2, and O3B3 by
the respective runs: AO1, AO2, and AO3 of 14, 24 and 33 meters.

We can see from Figure 4.4 that given a query point O, the closest edge AB is first identified

and removed. Then, the two edges AO and BO are added to the network graph. The above

procedure is applied to both the starting and ending point of the trip.

4.5 Single Context Trip Planning

In single context trip planning, only one mobility context is considered during trip plan compu-

tation. This section describes two case studies of active transport trip planning using CoAcT

framework and their real-world deployments considering steepness rating of the route as a

mobility context for persons with limited mobility.

4.5.1 Steepness Rating of the Route

As discussed in Section 4.4.1, we use Algorithm 4 to collect, store and fuse road network data

[167] with universal contour data [164] and represent it as a road network graph. Each edge of

this graph represents a road segment with a respective steepness rating. The steepness ratings

of different route segments are calculated according to the longitudinal grades for footpaths,

walkways and bikeways [169]. These grades state that the construction should consider the

maximum gradient a person with limited mobility can raise themselves comfortably is 1:14 (i.e.

1 meter in vertical rise to 14 meters of horizontal run) and a landing is required every 9 meters

for them to rest or change direction. If the footpath is flatter than 1:33 (i.e. 1 meter in vertical

rise to more than 33 meters of horizontal run), no landings are required. Figure 4.5 shows 1
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meter vertical rises to three different horizontal runs of 14 meters, 24 meters and 33 meters

from A to B1, B2 and B3 respectively. We evaluate all the edges (road segments) of our road

network graph based on these three ratios of rises to runs for assigning edge weights. If the

gradient of a road segment is flatter than 1:33, it is considered to be an ideal road segment

and assigns a steepness rating of 1. If the gradient is between 1:24 and 1:33, the road segment

(i.e. the equivalent edge in the road network graph) is assigned with a steepness rating of 2. If

the gradient is between 1:14 and 1:24, the steepness rating of the road segment is 3 and if the

gradient is steeper than 1:14, the road segment is considered inaccessible and the equivalent

accessibility rating is∞. We use the Google elevation API [166] to find the steepness of a road

segment. Later gradients of the edges are calculated and the road segment is assigned with

equivalent steepness rating.

Note that we follow two different approaches to construct road segments. In approach 1, we

consider the intersections of roads as nodes in the road network graph and the corresponding

edges are the road segments. In approach 2, we consider intersections of roads and intersections

between road and contour overlay as nodes in the road network graph and the corresponding

edges are the road segments. Since the road network graph is complete with all the edges (road

segment) with steepness ratings, the CoAcT framework is ready to handle a trip planning

query. The query processing starts with the CoAcT query processor receiving a user query

for trip planning between two locations. In our case studies, the trip queries are between two

places where one is a public transport (train) stop and another POI is a restaurant or home

location. The reason for choosing public transport is evident from the fact that the usage of

public transport incurs some unavoidable portions of active transport i.e. walking to complete

a journey. The start/destination locations specified by the trip query are geo-coded and need

to be converted into geo-coordinates. For this purpose, the CoAcT framework uses the Google

Geocoding API [170] that converts geo-coded locations to corresponding geo-coordinates.

4.5.2 Route Planning

At this stage, a route planning algorithm is employed to calculate the best route in terms

of steepness from the road network graph. In this paper we use the A* algorithm [157] to
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compute our routes. Specifically we apply A* algorithm on three occasions. First, we apply

the traditional A* algorithm which computes the shortest path in terms of distance. We

denote this deployment as A*(Distance). Next we apply the the A* algorithm considering

road segments between two road cross-sections and denote it as A*(Steepness-road network)

approach 1. Then we apply the A* algorithm considering road segments between one road cross-

section and one road-contour cross section and denote it as A*(Steepness-contour) approach 2.

Finally, we show all the routes on a Google map along with the Google route to illustrate the

effectiveness of this real-world deployment.

The computed route is presented to the traveller with relevant information about the com-

puted route. To reduce the search space of the routing algorithm, a search boundary is con-

structed. We initially consider a circular bounding area where the start/destination locations

are considered as two ends of the diameter of the bounding circle. This approach may lead to a

poor result since there may exist a node just outside the bounding area adjacent to origin and

destination locations through which a less steep route can be suggested. At the same time it is

not appropriate to search the entire road network. So, a parameter d is used that controls the

diameter D′ and hence the bounding area. The parameter d is tuned based on the maximum

walk-able distance set by a user. The diameter of the circle is extended in both directions so

that it remains within the maximum walking distance. If D(s, t) is the distance between a

point of interest (POI) and a preferred public transport stop, the diameter of the bounding

circle is given by, D′ = D(s, t) + d.

4.5.3 Experimental Studies

In the first case study, the suburb of Rosanna, a suburb in the north-east region of the city of

Melbourne, Australia, is chosen. In another case study, we choose Heidelberg, another suburb

in the north-east region of the city of Melbourne, Australia. The reason for choosing these two

location is that these suburban areas are located in steep contours and hence provide good

examples for active transport trip planning which considers the steepness of the route as a

mobility context .
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Figure 4.6: Accessibility Distribution of Surroundings in Rosanna, Melbourne, Australia

4.5.3.1 Case Study-1: Rosanna

For the first case study at Rosanna, we choose Rosanna train station and Waiora Road Medi-

cal Service as start and destination locations respectively. First, we compute the accessibility

status of the surroundings connecting these two locations. For this, we refer to the steepness

ratings defined in this article following the standard of building code of Australia [169]. Figure

4.6 shows the accessibility distribution of the surrounding bounding area between Rosanna

train station and Waiora Road Medical Service considering the steepness ratings. We can

see that some road segments are marked with red color which indicates that these segments

of roads are too steep for a person with limited mobility and hence considered inaccessible.

On the other hand the road segments marked with green color are completely accessible ac-

cording to the steepness rating. We also can see that some segments are labelled with blue

color. These road segments are acceptable with perhaps a small compromise in regards to

comfort level, while road segments labelled with yellow color are more difficult compared to

blue segments but somewhat walk-able. Then we apply the A*(Distance), A*(Steepness-road

network) and A*(Steepness-contour) to provide a comparison of steepness of different routes
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Figure 4.7: Steepness Context Aware Trip Planning in Rosanna, Melbourne, Australia

between the start/destination locations. Figure 4.7 shows the routes on the Google map given

by A*(Distance), A*(Steepness-road network), A*(Steepness-contour) and Google.

4.5.3.2 Case Study-2: Heidelberg

For the case study at Heidelberg, we choose Heidelberg train station and Coconut Lagoon

restaurant as start and destination locations respectively. First, we compute the accessibility

status of the surroundings connecting these two locations. For this, we refer to the steepness

ratings defined in this article following the standard of building code of Australia [169]. Figure

4.8 shows the accessibility distribution of the surrounding bounding area between Heidelberg

railway station and Coconut Lagoon restaurant considering the steepness ratings. We can see

that the road segments surrounding Heidelberg train station and within maximum walk-able

distance are mostly inaccessible. Trip planning must consider this case so that a route with

lowest inaccessible segment can be provided. Next we apply the A* search algorithm to find

the least steep route between our start/destination locations. Figure 4.9 shows all four routes

computed by A* (Distance), A* (Steepness-road network), A* (Steepness-contour) and Google.
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Figure 4.8: Accessibility Distribution of Surroundings in Heidelberg, Melbourne, Australia

Figure 4.9: Steepness Context Aware Trip Planning in Heidelberg, Melbourne, Australia



Single Context Trip Planning 92

4.5.4 Discussion of Results

In this section, we discuss different evaluation criteria of the routes produced by A* (Distance),

A* (Steepness-road network), A* (Steepness-contour) and Google. We show a comparison of

route length and the length of the total inaccessible road segments along a computed route.

We also present a metric called the inaccessibility index which combines the length of the route

and the length of inaccessible road segments along that route. Let, D(s, t) be the length of

shortest route between start location s and destination location t, l(i) be the length of the ith

inaccessible segment, then the inaccessibility index of a route r, denoted as Ir is defined as

follows:

Ir =

∑k
i=1 l(i)

D(s, t)
(4.1)

We also compute the average velocity along the routes. We use Tobler’s hiking [171] function

to do so. If V is the average velocity then, Toblers function is written as follows:

V = 6e−3.5|
dh
dx

+0.05| (4.2)

Here, dh
dx is the slope of any route segment, dh is the change in elevation between start and

end point and dx is the length of route segment. If V = 5km/h for any route then the route

is considered as an idle walking surface in practical.

In Rosanna, the routes suggested by Google and A* (Distance) go through Lower Plenty

Road and Invermay Grove. It seems a promising suggestion considering shortest distance

(Figure 4.7). But a closer look at Figure 4.6 shows that the a large portion of the included

road segments are inaccessible which implies that these routes are no good considering the

steepness context. On the other hand, routes computed by A* (Steepness-road network) and

A* (Steepness-contour) avoid the inaccessible road segments while constructing the routes.

Hence, the total lengths of inaccessible road segments produced by A* (Steepness-road network)

and A* (Steepness-contour) are 0 in contrast with 281m and 260m produced by A*(Distance)

and A*(Steepness-road network). Also, the inaccessibility index of the routes produced by A*

(Distance) and Google is much higher compared to the routes produced by A* (Steepness-road
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network) and A*(Steepness-contour). The routes computed from A* (Steepness-road network)

and A* (Steepness-contour) have a length of 1519 m and 2248 m respectively compared to

the route lengths of 1037 m and 1100 m produced by A* (Distance) and Google. However,

this amount of distance is needed to compensate to find the most accessible trip route from

Rosanna to Waiora Road Medical Service. Table 4.1 lists different evaluation metrics for the

routes in Rosanna and Heidelberg. We can see from Table 4.1 that the A* (Steepness-contour)

route requires less effort to travel compared to other alternatives since the highest average

velocity (4.687 m/s) can be achieved by following this route.

Table 4.1: Summary of Evaluation Metrics for Four Different Routes

Route Features A*(Distance) A*(road) A*(contour) Google

Case Study-1

Inaccessible segments (m) 281 0 0 260
Route length (m) 1037 1519 2248 1100
Inaccessibility index 0.271 0 0 0.251
Avg. walking velocity (m/s) 4.227 4.512 4.687 4.327

Case Study-2

Inaccessible segments 465.77 128.35 128.35 465.77
Route length (m) 888 1213 1800 888
Inaccessibility index 0.525 0.145 0.145 0.525
Avg. walking velocity (m/s) 4.549 4.684 4.731 4.549

Figures 4.8 and 4.9 show that all of the four roads suggested in Heidelberg go through some

inaccessible roads segments. The reason is that there is no complete accessible route found

within the maximum walk-able distance but we can see from Table 4.1 that the routes produced

by the A* (Steepness-road network) and A* (Steepness-contour) have lower inaccessibility

index and smaller total inaccessible road segments compared to A* (Distance) and Google.

However, these the travellers need to travel longer distance if choose these roads compared

to A* (Distance) and Google. Table 4.1 also shows that the computed average velocity of A*

(Steepness-road network) and A* (Steepness-contour) are 4.684 m/s and 4.731 m/s respectively

which are better than that of A* (Distance) and Google (both are 4.549 m/s).
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4.6 Multiple Context Trip Planning and User Perspectives

In this section we present an algorithm to integrate multiple contexts (i.e. distance and acces-

sibility) concurrently during trip plan computation. We model path accessibility in terms of

path elevation and optimise two objectives of the paths: the distance and the accessibility. In

summary our contributions are as follows:

• We optimise the accessibility along with the distance for the first time. No existing

literature has addressed this issue before.

• For solving the problem, we develop a new multi-objective A* search algorithm known

as Contour-based Accessible Path Routing Algorithm (CAPRA), more particularly the

admissible heuristic functions for all the objectives, so that we can guarantee to obtain

all the Pareto-optimal solutions in query time.

• We propose a new graph model that contains both the distance information and the

elevation information for the A* search.

As discussed in the data preprocessing phase, the contour line is adopted to generate a new

contour-based graph so that the elevation difference of each road segment can be evaluated

more precisely. We have developed two new accessibility metrics: the vertical distance and

maximal slope based on the contour graph to evaluate the accessibility of a path. Finally, we

have designed a multi-objective A* search algorithm to find the best trade-off paths in terms

of both distance and accessibility.

4.6.1 Accessibility Evaluation of Paths

The accessibility metrics of a path are derived from classical physics. In particular, assuming

that the user keeps the same velocity while travelling along the path, the following two factors

are closely relevant to the accessibility of a path: (1) the total energy consumed and (2) the

maximal force needed to climb up the slopes along the path.
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Figure 4.10: An Example of Moving Up a Slope of Incline α from A to B.

To facilitate this description, we take an example of a slope from point A to B in Figure

4.10, where a wheelchair user with gravity G is climbing up the slope whose steepness is α with

a constant velocity v.

According to the relationship between work and mechanical energy, when moving up a

slope from point A to B, we have

WAB = TMEB − TMEA, (4.3)

where W is the energy consumed (work done) by the user for climbing from A to B (the

elevation of B is higher than that of A), and TMEA and TMEB are the total mechanical

energy of the user at points A and B, respectively. It is known that the total mechanical

energy is the sum of the kinetic energy KE and the potential energy PE. Then,

TMEA = KEA + PEA =
1

2
mv2 +GzA, (4.4)

TMEB = KEB + PEB =
1

2
mv2 +GzB, (4.5)

WAB = TMEB − TMEA = G(zB − zA), (4.6)

where m is the mass of the user, v is the velocity of the user, which stays the same during the

climbing, G is the gravity of the user, and zA and zB are the respective elevation of points A

and B so that |zB − zA| is the vertical distance between point A and B.
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On the other hand, if α is the steepness of the slope, the driving force needed for climbing

up the slope from A to B while maintaining the velocity is as follows:

FAB = G · sinα = G · |BO|
|AB|

, (4.7)

Similarly, when moving down from a higher point C to a lower point D, the two objectives

are as follows:

WCD = G(zC − zD), (4.8)

FCD = G · |CO|
|CD|

. (4.9)

Note that |AB| and |CD| are not straightforward in practice. Therefore, they are replaced

by |AO| and |OD|, respectively, and sinα is replaced by tanα accordingly. Since α is always

less than 90 degrees, minimizing sinα is equivalent to minimizing tanα.

Then, given a path represented by a sequence of nodes P = (v0, v1, . . . , vn), the total energy

consumed W (P ) and the maximal force F (P ) needed to climb up and moving down all the

slopes along the path are calculated as follows:

W (P ) =
n∑

i=1

Wvi−1vi , (4.10)

F (P ) = max
i∈{1,...,n}

{Fvi−1vi}, (4.11)

where Wvi−1vi = G · |zvi − zvi−1 |, and Fvi−1vi = G · |zvi−zvi−1 |
d(vi−1,vi)

in which d(vi−1, vi) is the

horizontal distance of path segment between vi−1 and vi and |zvi−zvi−1 | is the vertical distance

between nodes vi and vi−1.

Given that the gravity G of the user is a constant, and −π/2 ≤ α ≤ π/2, Eqs. (4.10) and

(4.11) can be simplified to:

W (P ) =
n∑

i=1

|zvi − zvi−1 |, (4.12)

F (P ) = max
i∈{1,...,n}

{ |zvi − zvi−1 |
d(vi−1, vi)

}
. (4.13)

Therefore, Eq. (4.12) illustrates the relationship between energy consumption and vertical

distance travelled either up or down between successive points along the path. Note that
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the total energy consumption for traveling along a path is related to the sum of the vertical

distances along the path. So, minimizing the total vertical distance during accessible path

planning will reduce the total energy consumption. Eq. (4.13) shows the greatest force required

to move up or down the biggest elevation difference. Here, the required maximal driving force

for moving up or down a slope is related to the vertical distance and the length of the slope.

The elevation difference between start and end point of a slope is crucial. A longer path

segment requires less travelling force compared to a shorter path segment with similar vertical

distance. Also people may want to choose a path which is the shortest of all.

4.6.2 Path Routing Based on Distance and Accessibility

When an elderly user or person with special needs is planning to travel along a path from a

source to a destination on the map, both the distance and accessibility are critical factors to

consider. To be specific, we assume the user would prefer the path with shorter distance and

higher accessibility. However, in practice, the distance and accessibility may be in conflict with

each other. In this case, one should provide a set of trade-off paths, which are termed the

Pareto-optimal paths, instead of one single global optimal path. The three objectives to be

minimized in the accessible path routing can be described as follows:

min
P
f1(P ) =

n∑
i=1

d(vi−1, vi), (4.14)

min
P
f2(P ) = W (P ) =

n∑
i=1

|zvi − zvi−1 |, (4.15)

min
P
f3(P ) = F (P ) = max

i∈{1,...,n}

{ |zvi − zvi−1 |
d(vi−1, vi)

}
, (4.16)

where, f1(P ) is the total horizontal distance of P , f2(P ) is the total vertical distance of P ,

and f3(P ) is the maximal slope of P , and W (P ) and F (P ) are defined in Eqs. (4.12) and

(4.13) respectively. Note that f2(P ) is consistent with the energy consumed for moving up and

moving down all the slopes. f3(P ) is standing for the maximal force needed.

Given two paths P1 and P2, P1 is said to dominate P2 if and only if all the objective

values of P1 are no worse than those of P2, and there is at least one objective for which P1

has a better value than P2. We denote P1 ≺ P2 for P1 dominating P2. A path P ∗ is said to
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be Pareto-optimal, if and only if there is no other path that dominates P ∗. The goal of this

problem is to find all the possible Pareto-optimal paths.

In this chapter, the multi-objective A* search algorithm is employed to find the Pareto-

optimal paths. Specifically, the framework of the multi-objective A* search algorithm proposed

in [172] is adopted here. The framework is described in Algorithm 5. Two sets of labels OPEN

and GOAL are defined where OPEN is initialized with the source nodes and the algorithm

steps through all nodes identifying non-dominated nodes which are stored in GOAL.

Once the target or destination node is reached, the elements in GOAL and OPEN are

updated by removing the elements that are dominated by the new label. The search process

stops when OPEN becomes empty, and all the paths have been obtained by the backtracking

procedure Backtrack(GOAL). Further details of the multi-objective A* search algorithm can

be found in [172]. The multi-objective A* algorithm requires the followings to be satisfied:

1. the costs ~c(u, v) of all the edges (u, v) ∈ E must be non-negative;

2. the heuristic function is admissible, i.e., it never overestimates the actual minimal cost

of reaching the goal.

Therefore, to design a multi-objective A* search algorithm for minimizing the objectives

shown in Eqs. (4.14)–(4.16), we must design the cost functions ~c(u, v) and the heuristic func-

tions Heuristic(v, t,G) that satisfy the above two requirements. From Eqs. (4.14), (4.15),

and (4.16), we set ~c(u, v) and Heuristic(v, t,G) as follows:

c1(u, v) = d(u, v), h1(v) = d(v, t),

c2(u, v) = |zv − zu|, h2(v) = |zt − zv|,

c3(u, v) = max

{
|zv − zu|
d(u, v)

− g3(u), 0

}
, h3(v) = 0,

~c(u, v)← (c1(u, v), c2(u, v), c3(u, v)),

Heuristic(v, t,G)← (h1(v), h2(v), h3(v)).
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Algorithm 5: The framework of multi-objective A* search algorithm.

Input: The graph G, source node s and target node t
Output: A set of trade-off paths P = {P1, . . . , Pm}
// Initialization

1 foreach v ∈ G do ~gcl(v)← ∅, ~gop(v)← ∅;
2 GOAL← ∅, OPEN ← ∅;
3 OPEN ← OPEN ∪ (s, ∅,~0,~h(s)), ~gop(s)← ~gop(s) ∪~0;
// Search

4 while OPEN is not empty do

5 L(u) := (u,pred(u), ~g(u),~h(u))← Extract(OPEN);
6 OPEN ← OPEN \ L(u);
7 ~gop(u)← ~gop(u) \ ~g(u), ~gcl(u)← ~gcl(u) ∪ ~g(u);
8 if u = t then
9 Add L(u) into GOAL, and remove from GOAL the elements with dominated

~g(·);
10 Remove from OPEN the elements whose ~f(·) := ~g(·) + ~h(·) are dominated by

~g(u);

11 else
12 foreach v ∈ N (u) do
13 if Adding (u, v) forms a cycle then continue;
14 ~g(v)← ~g(u) + ~c(u, v); // update ~g(v)

15 ~h(v)← Heuristic(v, t,G); // calculate ~h(v)

16 L(v) := (v, L(u), ~g(v),~h(v));
17 if v is a new node then
18 OPEN ← OPEN ∪ L(v), ~gop(v)← ~gop(v) ∪ ~g(v);
19 else
20 if ~g(v) is non-dominated by any ~g ∈ ~gop(v) ∪ ~gcl(v) then
21 Remove from ~gcl(v) and ~gop(v) the elements whose ~g(·) are dominated

by ~g(v);
22 OPEN ← OPEN ∪ L(v), ~gop(v)← ~gop(v) ∪ ~g(v);

23 end

24 end

25 end

26 end
27 return P← Backtrack(GOAL);

28 end

First, we note that ∀(u, v) ∈ E, ci(u, v) ≥ 0, i = 1, 2, 3. Then, for the total distance f1,

the heuristic h1(v) is admissible under the assumption of triangular inequality. For the total
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vertical distance f2, for any other point v′ 6= v and v′ 6= t, we have

|zt − zv| ≤ |zv′ − zv|+ |zt − zv′ |.

That is, h2(v) ≤ c2(v, v′) + h2(v
′). Therefore, h2(v) is admissible.

Finally, since c3(u, v) ≥ 0, h3(v) = 0 is clearly admissible. In fact, since it is difficult to

predict the maximal slope from any point to the target, we set h3(v) = 0 to reduce the A*

search in terms of f3 to the Dijkstra algorithm. The function g3(·) is naturally defined by A*.

That is, g3(s) = 0, where s is the source node, and for any edge (u, v), g3(v) = g3(u) + c3(u, v)

In addition, since the function Extract(OPEN) can return any elements with non-dominated

~f(·), we choose the one with the shortest estimated distance f1(·) so as to reach the target

node as soon as possible and reduce the search space.

4.6.3 Experimental Studies

For the experimental studies, case studies are conducted for various hilly cities in the world,

including San Francisco (USA), Lisbon (Portugal) and Singapore. These cities are good ex-

amples of the experimental studies as they are built on slopes which means that moving up

and down hills usually occurs in these cities. In addition, different city layouts are taken into

account and we selected four random trips for our experiment. We selected San Francisco

because the streets are normally laid out as a grid system. For historical reasons, such rectan-

gular city blocks are not common in many European and Asian cities. Therefore, we selected

Lisbon and Singapore as the representatives of hilly cities with more complex city layouts.

There is no existing algorithm which takes the elevation into account for path computation.

Since we have designed CAPRA to employ the multi-objective A∗ search to find the paths, it

is guaranteed to find the shortest path and there is no need to compare with other shortest

path finding algorithms. Here, we only compare CAPRA with the path produced by Google

Directions API [173] to show its reasonableness in reality.

In the preprocessing phase, the contour interval is set to 5m. The reason behind the

selection of such a small contour interval is that it allows us to obtain even small changes in

elevation. Once the contour interval is selected, the corresponding contour-based road network
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Figure 4.11: San Francisco, USA: The paths from 817 Lombard St to 1132 Union St. The solid
path is obtained by Google Directions, and the dashed paths are obtained by CAPRA.

graph is generated and stored in the memory. For each test scenario, both CAPRA and Google

Directions API are applied and the paths obtained by them are compared in terms of the three

accessibility measures, i.e., horizontal distance, vertical distance and maximal slope defined

in Eqs. (4.14), (4.15), and (4.16) respectively. To evaluate the efficacy of our contour based

graph generation technique, the accessibility measure values for both CAPRA and Google

Directions API paths are also calculated without considering the contours and compared with

the obtained accessibility measure values of CAPRA from contour-based graph built with the

contour interval of 5m. Specifically, to calculate the accessibility measure values of a path in

the later case, the path is first divided into 10m-long small segments. Then, for each segment,

the vertical distance and slope are calculated. Finally, the total vertical distance of the path

is obtained by summing up all the vertical distances and the maximal slope of the path is

obtained by selecting the maximal segmental slope. Although these are still not true values,

they are good approximations by choosing a sufficiently small segment length.

4.6.3.1 Case Study-1 in San Francisco, USA

Figure 4.11 gives an example from 817 Lombard St (point A) to 1132 Union St (point B), San

Francisco, USA. We selected this path because the path mainly consists of upward slopes and

the elevation of point B is higher than point A.
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Table 4.2: The accessibility measure values of the paths obtained by Google Directions and
CAPRA in the scenario are shown in Fig. 4.11. “Distance”, “Vertical” and “Slope” stand for
the total horizontal distance, total vertical distance W (P ), and maximal slope F (P ), respec-
tively. There is no accessibility measure value for Google from the 5m contour interval network
graph, since the path is obtained by the Google API.

Path Considering 5m Contour interval Considering 10m-long road segment

Distance(m) Vertical(m) Slope Distance(m) Vertical(m) Slope

Google - - - 623 72.7 0.23
CAPRA1 623 73.0 0.23 623 72.7 0.23
CAPRA2 688 78.6 0.21 688 78.3 0.22
CAPRA3 943 82.2 0.14 943 82.2 0.15

There are four paths from A to B shown in the figure. The solid path is the shortest path

found by the Google Directions. The three dashed paths are the trade-off paths obtained by

our new algorithm CAPRA. One can see that the first path CAPRA1 (brown dashed) obtained

by CAPRA is the same as the one obtained by Google Directions. In addition, CAPRA has

provided two other paths CAPRA2 and CAPRA3 (purple and green dashed respectively).

A comparison summary of cost-benefit between distance and accessibility measure values

of the paths obtained from 5m-interval contour based network graph and 10m-long segment

based network graph are given in Table 4.2. We can see that the CAPRA1 does not provide

the best accessibility score in terms of slope. On the other hand, the CAPRA2 path has better

slope score, but longer distance and vertical distance compared to CAPRA1. The CAPRA2

also provides shorter distance compared to the CAPRA3 but pays more in terms of slope.

Therefore, the paths are non-dominated to each other. Users can choose the best path based

on their distance and accessibility requirements.

We also can see that the accessibility measure values of the paths obtained by CAPRA

from the contour based network graph is very close to the corresponding values from 10m-long

segment based network graph. This implies that a contour interval of 5m is sufficient to build

an accurate contour-based network graph. In addition, while increasing the length of the path,

the maximal slope decreases from 0.23 to 0.15.

Next, we examine the elevation changes along the paths given in Fig. 4.11. The CAPRA3

path has many more segments than the other paths due to the much larger horizontal distance
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(a) Google (b) CAPRA1

(c) CAPRA2 (d) CAPRA3

Figure 4.12: The Elevation (in meters) Changes Along the Paths Given in Fig. 4.11.

as can be seen from Figure 4.12. However, it achieved a much smoother slope (evidenced by

the maximal slope of 0.15) by choosing the longer distance to travel.

4.6.3.2 Case Study-2 in San Francisco, USA

Fig. 4.13 shows another scenario from 1260 Green St (point A) to 1398 Lombard St (point B),

San Francisco, USA, but with mainly downward slopes and the elevation of point B is much

lower than point A. In this scenario, CAPRA obtained four different paths. CAPRA3 (green

dashed) is the same as that obtained by Google Directions. It should be noted that CAPRA

managed to obtain two shorter paths CAPRA 1 and CAPRA 2 (red and purple dashed) than

Google Directions, but with larger vertical distance and maximal slope.

Figure 4.13: San Francisco, USA: The paths from 1260 Green St to 1398 Lombard St. The
solid path is obtained by Google Directions, and the dashed paths are obtained by CAPRA.
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Table 4.3: The accessibility measure values of the paths obtained by Google Directions and
CAPRA in the scenario shown in Fig. 4.13. “Distance”, “Vertical” and “Slope” stand for the
total horizontal distance, total vertical distance W (P ), and maximal slope F (P ), respectively.
There is no accessibility measure value for Google from 5m contour interval network graph,
since the path is obtained by Google API.

Path Considering 5m Contour interval Considering 10m-long road segment

Distance(m) Vertical(m) Slope Distance(m) Vertical(m) Slope

Google - - - 787 43.9 0.15
CAPRA1 730 55.6 0.19 730 55.6 0.21
CAPRA2 772 47.4 0.14 772 47.6 0.15
CAPRA3 787 43.6 0.14 787 43.9 0.15
CAPRA4 997 43.6 0.09 997 43.9 0.09

Table 4.3 shows a comparison summary of cost-benefit between distance and accessibility

measure values of the paths obtained by Google Directions and CAPRA in the second scenario

shown in Fig. 4.13. It can be seen that when the length of the path increases, the vertical

distance and maximal slope tend to decrease. This way, the users can choose the most suitable

path based on their own preferences in terms of distance and accessibility.

Fig. 4.14 gives the elevation changes for the paths shown in Fig. 4.13. It can be seen that

for the path obtained by Google Directions and the first three paths obtained by CAPRA,

the downward slopes are concentrated in the first half of the path (and the end of the path

for CAPRA2). In contrast, the slopes are more uniformly distributed throughout the path for

CAPRA4, which leads to a much smoother path overall.

(a) Google (b) CAPRA1

(c) CAPRA2 (d) CAPRA3

(e) CAPRA4

Figure 4.14: The Downhill Elevation (in meters) Changes Along the Paths Given in Fig. 4.13.
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Figure 4.15: Lisbon, Portugal: The paths from Rua São Boaventura 182 to Travessa Horta
21. The solid path is obtained by Google Directions, and the dashed paths are obtained by
CAPRA.

4.6.3.3 Case Study in Lisbon, Portugal

Fig. 4.15 shows a scenario from Rua São Boaventura 182 (point A) to Travessa Horta 21 (point

B), Lisbon, Portugal. We selected this area of Lisbon because it is no longer a simple grid-like

road network and is therefore more complex than that in San Francisco. The road network

partly consists of some parallel streets (e.g., R. Vinha) which increases multiple routing pos-

sibilities. It can be seen that CAPRA obtained seven different paths in this scenario, none of

which was the same as the Google path. A shortcut path CAPRA1 (brown dashed) was found,

and the second path CAPRA2 (green dashed) was very similar to the Google path (turn right

at a parallel street). In order to reduce the slope, two longer paths CAPRA6 and CAPRA7

(light and deep blue dashed) were also obtained, which have much reduced maximal slope. In

this case, the irregular roads were employed as well.

Next, we summarize the cost-benefit between distance and accessibility measure values of

the paths obtained by Google Directions and CAPRA in the scenario shown in Fig. 4.15.
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Table 4.4: The accessibility measure values of the paths obtained by Google Directions and
CAPRA in the scenario shown in Fig. 4.15. “Distance”, “Vertical” and “Slope” stand for the
total horizontal distance, total vertical distance W (P ), and maximal slope F (P ), respectively.
There is no accessibility measure value for Google from 5m contour interval network graph,
since the path is obtained by Google API.

Path Considering 5m Contour interval Considering 10m-long road segment

Distance(m) Vertical(m) Slope Distance(m) Vertical(m) Slope

Google - - - 464 31.6 0.19
CAPRA1 376 36.8 0.18 376 35.4 0.23
CAPRA2 463 32.1 0.18 463 31.5 0.19
CAPRA3 568 51.7 0.17 568 50.4 0.20
CAPRA4 575 45.7 0.17 575 45.3 0.20
CAPRA5 601 37.7 0.17 601 36.6 0.19
CAPRA6 613 44.7 0.13 613 43.1 0.14
CAPRA7 720 36.8 0.13 720 36.2 0.14

The CAPRA2 path has very similar distance and accessibility measure values to the Google

path, due to the similar structure as shown in Table 4.4. For the paths obtained by CAPRA,

although the value of the maximal slope for the paths from 5m contour interval is slightly

higher than the 10m-long road segment one, the partial order is still consistent (i.e., a larger

estimated value still leads to a larger real value). Therefore, one can still find the correct

relative position of the paths on the Pareto front which is the set of Pareto optimal outcomes.

It means that a CAPRA user is still able to choose a Pareto-optimal path which suits him/her

best.

Fig. 4.16 gives the elevation changes over the paths given in Fig. 4.15. It can be seen

that the vertical motions of the paths can be quite different from each other. For example, the

first half of the Google path is relatively flat (slightly upward), while the CAPRA6 path keeps

falling down until the last 15% of the path, and then goes up to reach the destination. They

are trade-off paths and thus it is hard to tell which elevation change is better unless we look

at elevation changes of each segment separately.
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(a) Google (b) CAPRA1

(c) CAPRA2 (d) CAPRA3

(e) CAPRA4 (f) CAPRA5

(g) CAPRA6 (h) CAPRA7

Figure 4.16: The Elevation (in meters) Change Along the Paths Given in Fig. 4.15.

4.6.3.4 Bukit Timah, Singapore

Fig. 4.17 shows a scenario from 23 Victoria Park Rd (point A) to 21 Duke’s Rd (point B),

Singapore. We selected this place because the roads in Singapore are very hilly and do not

follow a grid. In this case, only two paths were obtained by CAPRA. The first path CAPRA

1 (brown dashed) is same as the Google path.

Figure 4.17: Singapore: The paths from 23 Victoria Park Rd to 21 Duke’s Rd. The solid path
is obtained by Google Directions, and the dashed paths are obtained by CAPRA.
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Table 4.5: The accessibility measure values of the paths obtained by Google Directions and
CAPRA in the scenario shown in Fig. 4.17. “Distance”, “Vertical” and “Slope” stand for the
total horizontal distance, total vertical distance W (P ), and maximal slope F (P ), respectively.
There is no accessibility measure value for Google from 5m contour interval network graph,
since the path is obtained by Google API.

Path Considering 5m Contour interval Considering 10m-long road segment

Distance(m) Vertical(m) Slope Distance(m) Vertical(m) Slope

Google - - - 1444 30.7 0.06
CAPRA1 1444 28.8 0.06 1444 30.7 0.06
CAPRA2 1595 29.4 0.05 1595 31.7 0.05

Table 4.5 shows the cost-benefit between distance and accessibility measure values of the

paths obtained by Google Directions and CAPRA in the scenario shown in Fig. 4.17. As in the

other scenarios, CAPRA managed to reach a smoother slope at the cost of a longer distance.

Fig. 4.18 gives the elevation change through the paths given in Fig. 4.17. In this case, the

elevation change of the three paths are similar to each other. This is because their directions

are roughly the same, and a major portion of the paths are parallel to each other.

(a) Google (b) CAPRA1

(c) CAPRA2

Figure 4.18: The Elevation (in meters) Change Along the Paths Given in Fig. 4.17.

4.6.4 Discussion

Overall, the results for all the above case studies show that CAPRA is able to provide a wide

range of reasonably good paths in terms of both vertical distance W (P ) and slope F (P ),

including the optimal path in terms of distance. In most of the cases, CAPRA can obtain the

Google path, or the paths with the same measure values as the Google path. In addition, the
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Table 4.6: Summary of the Four Scenarios.

Case Study Total Nodes Total Edges Trade-off Paths

San Francisco-1 33,122 2,963 3
San Francisco-2 33,122 2,963 4

Lisbon 10,411 2,515 7
Bukit Timah 16,177 1,870 2

trade-off paths with larger horizontal distances but smoother slopes are obtained as well. The

estimated values of the CAPRA paths obtained from 5m contour intervals are close to their

equivalent values obtained from 10m-long small road segments, which verifies the accuracy of

the contour-based graph generation.

From the summary of cost-benefit analysis in Table 4.2-4.5, it can be seen that CAPRA

can achieve a good trade-off between path length and accessibility (i.e., vertical distance and

maximal slope). This way, the CAPRA users can choose the most suitable path based on their

own preferences and accessibility requirements.

We note that there may be other physical accessibility barriers (i.e., stairs, ramps, traffic

and road conditions) that can influence the accessibility of a walking path. For example, a path

with an accessible elevation score may have a segment with stairs that cannot be traversed by

people with wheelchairs. In this chapter, we assume that those physical accessibility barriers

are handled with care.

Table 4.6 summarizes the four test scenarios used in this research to illustrate the cor-

responding number of nodes, edges and trade-off paths. We further note the computation

complexity for calculating the Pareto-optimal trade-off paths. The worst-case time complexity

of the adopted MOA* framework is O(db), where d is the length of the longest non-dominated

path, and b is the branching factor, i.e. the number of neighbours of each node in the graph.

This computation complexity is no more than the traditional MOA* presented in [172]. The

search space is an issue for the multi-objective framework since the function Extract(OPEN)

can return any elements with non-dominated ~f(·). Therefore, we choose the element with the

shortest estimated distance f1(·) so as to reach the target node as soon as possible. In this way

our adopted multi-objective framework is able to reduce the search space. The experiments
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showed that our system can provide results in query time (< 1 seconds) on normal machine

configuration (4GB RAM, Windows 7 OS, Intel Core-i7 CPU with 3.40 GHz clock speed) for

all the test scenarios.

4.7 Conclusion

This chapter presented a framework called CoAcT for context aware trip planning using active

transport. Our framework was able to provide unified solutions for providing trip plans based

on a user query by integrating single or multiple trip contexts. The conceptual framework

illustrated the procedures of collecting, integrating and managing contextual data from different

data sources to plan context aware active transport trips. We also presented several real-world

deployments of of trip planning to demonstrate the reasonableness of the CoAcT framework.

The deployment showed that the framework can compute routes which aid the persons with

limited mobility.

In order to serve the elderly and disabled people and those with special needs, we defined

walking path accessibility considering the elevation of the path. A new contour-based path

planning system called CAPRA was developed in this chapter. This new algorithm considered

the accessibility of the path as well as the horizontal distance. The paths constructed may well

serve healthy commuters while travelling, bike-riding, roller-skating as alternative routes with

more gentle slopes.

We have demonstrated our CAPRA in four different hilly environments where the path

elevation could be very steep and problematic for a person in a wheelchair. The experimental

studies on several representative hilly cities in the world showed that CAPRA can provide not

only the standard shortest path which is the same as that provided by Google Directions or

an A* algorithm, but also other alternatives which may be longer but have smoother slopes.

Our new algorithm can give the users a wider range of options to choose from. The users may

not necessarily be elderly people or disabled but could instead, be bike riders or rollerbladers

or people pushing prams. In fact, anyone who might prefer to know about alternate routes to

their required destination for a variety of preferences. We have explained our three preferences,

but other preferences based on user needs could also be implemented in the future.
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The main contribution of this chapter is a generalized solution to the problem of multi-

context integration in trip planning. We have shown how to consider distance and accessibility

together to compute trip plans. We have discussed the process of route accessibility quantifi-

cation using slope and total vertical distance along the route. Note that these quantification

techniques are not fit for all solutions. Therefore, other types of quantification techniques are

required if other contexts such as weather, safety and congestion are needed to be integrated

into the trip plans. We believe that there might be several ways to speed up the route com-

putation algorithm. For example, to reduce the search space and speed up the algorithm, we

could return the shortest distance element until a complete path to the destination is found.

From then on, we could return the element with the smallest vertical distance f2 until a path to

the destination with smaller f2 is found. Then we could switch to returning the element with

smallest f3 until a path with smaller f3 is found, then switch back to f1 and so on. This way,

we would make sure to successively decrease the limits for f1, f2, and f3. Moreover, to know

whether a proposed route is “good” or “acceptable” to the user is a complex and challenging

task. Also, having more options may not necessarily be good for users. A personalized user-

path mapping technique can be adapted to solve this problem. If we could know the specific

requirement of a user, we could sort out the best path among the set of recommended paths.

The future research also may include experiments with real users to study the user experience

regarding our technique.

In summary, this chapter introduced an active transport trip planning framework called

CoAcT. The contributions of the chapter include a new contour-based graph generation for

path planning. We have developed new accessibility measures for routes and have designed

a multi-objective A* path routing algorithm to satisfy different user perspectives of mobility

contexts.
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Conclusion

In this section, we summarise the implications for practice, draw overall conclusions, and

offer recommendations for further research. Mobility analytics and trip planning are two

vital components of user mobility. We considered context-awareness in mobility analytics

and trip planning, and investigated various mobility context scenarios to understand different

situational factors that influence user mobility decisions. We leveraged the ubiquity of urban

sensing technologies to collect and integrate data various situational factors. We performed

context-aware mobility analytics and trip planning to facilitate a wide range of end users to

make effective mobility decisions.

The core chapters of this thesis addressed key research challenges related to context-aware

mobility analytics and trip planning which includes intelligent analysis of mobility contexts,

mobility context prediction, representation and integration considering different user perspec-

tives. Three research questions were constructed and we researched, developed and analysed

specific solutions to these research issues. Specifically, we devised frameworks and efficient

algorithms to provide intelligent contextual analysis and predict mobility contexts. In this

thesis, we also presented techniques to incorporate expert-like knowledge for mobility context

prediction and provide methods to consider different user perspectives of a context during

context-aware trip planning. We highlighted different case-specific solutions and real-world de-

ployment scenarios to illustrate the reasonableness of our solutions for context-aware mobility

analytics and trip planning.

112
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The first research question (RQ-1) was answered in Chapter 2 where we presented a new

framework to provide step by step procedures for developing mobility context prediction given

a future time stamp. We presented a complex taxi-passenger queue context prediction sce-

nario at the airport as an example of mobility context prediction tasks. A real-world queue

context dataset was generated for our experiments by fusing heterogeneous datasets includ-

ing taxi trip logs, passenger arrivals and processing times, and weather conditions at a major

international airport (JFK international airport, New York City). We investigated different

mobility-associated factors including time, trip frequency of taxis, frequency of passenger ar-

rivals and weather conditions since these factors have influence on the occurrence of different

queue contexts. Using our framework, we predicted different queue contexts related to taxis

and passengers which are of imbalanced distribution. We also provided analysis on the queue

context prediction from different user perspectives. To predict the imbalanced taxi and pas-

senger queue contexts, our framework used a suite of existing sampling and machine learning

techniques. We observed that the Support Vector Machine and Random Forest delivered the

top prediction performances when oversampling was employed for our queue context dataset.

We also noted that the Support Vector Machine outperformed Random Forest when the taxi

drivers point of view was considered. Random Forest exhibited better results compared to the

Support Vector Machine from the airport passengers’ points of view during our queue context

prediction experiments.

To address the second research question (RQ-2), we developed a new technique to incor-

porate expert-like knowledge in mobility context prediction by modelling mobility associated

factors from historical data. Specifically, a feature weighting scheme based on conditional mu-

tual information was introduced in Chapter 3 to combine the expert-like knowledge and the

probability theory for feature weight estimation (i.e. importance score computation). We con-

sidered two mobility context prediction scenarios. The both of the mobility context scenarios

was influenced by many diverse factors associated with user mobility. The mobility context

was considered as a categorical label of taxi-passenger queue contexts at the airport. In the

second scenario, the mobility context was a numeric target score of queue wait times for the

taxi drivers waiting at the airport taxi rank. We employed neighborhood based algorithms for
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mobility context prediction in our experiments and to test our methodology. The experimen-

tal results showed that our developed feature weighting scheme could identify a good quality

neighborhood and thus can improve the prediction outcomes both for categorical as well as

numerical mobility contexts. We showed the statistical significance of this improvement in

terms of confidence interval of paired t-test.

In Chapter 4, we addressed the third research question (RQ-3) and studied the problem

of mobility context inference and integration based of user perspectives in an active transport

trip planning scenario. We introduced a conceptual framework called CoAcT that summarized

the existing approaches related to context-aware trip planning. This framework provided a

list of key procedures to be followed for context-aware trip planning including contextual data

collection, fusion, context inference, representation and integration considering diverse user

perspectives of a context. We designed an algorithm to infer a sparse mobility context provided

by accessibility conditions. We overlaid contour information into road network data. We also

presented a graph representation of context that allowed us to access the context information for

trip plan computation in near real time. As part of the trip planning module of our framework,

we utilized the A* algorithm to provide trip planning considering one single mobility context

at a time. Aiming to incorporate multiple mobility contexts and to consider diverse user

perspectives of contexts in trip planning, we developed a multi-objective A* algorithm. Our

framework and algorithms were tested with real-world scenarios in several cities around the

world. The experimental results showed the practicality and effectiveness of our developed

approaches.

The contribution of this thesis on context-aware mobility analytics and trip planning can

be summarized as follows:

• Fusion and representation of mobility-associated factors collected from large heteroge-

neous data sources.

• Intelligent analysis and prediction of mobility contexts and associated factors.

• Incorporation of expert knowledge into neighborhood based methods for enhancing the

mobility context prediction.
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• Inference of sparse mobility contexts from heterogeneous data sources for facilitating the

task of trip planning.

• A new graph representation technique for inferred mobility contexts to accelerate the

computation of efficient trip plans.

• Effective approach to answer user’s trip planning queries by considering multiple mobility

contexts simultaneously, given the variety of different user perspectives.

5.1 Limitations and Future Directions of Research

The frameworks and algorithms presented in this thesis can be used for problem-specific

context-aware mobility analytics and trip planning. This research is built on top of the exist-

ing machine learning tools and techniques to solve problems regarding mobility context infer-

ence, prediction and integration in trip planning considering different user perspectives. The

proposed techniques outperform related baselines in terms of performance or reasonableness,

however, there remains scope for improvement in these approaches. Here we briefly discuss the

limitations of our study and recommend some directions for future research.

In chapter 2, we developed and emphasized context-aware mobility analytics using spatio-

tempotal mobility associated factors. In this the era of big data, the spatio-temporal contextual

information is mainly collected through autonomous loggers from heterogeneous data sources.

These autonomous loggers may be prone to machine error which was ignored in this research.

We conducted mobility analytics with an airport taxi-passenger queue context dataset which

was generated by fusing several real-world heterogeneous datasets of mobility associated fac-

tors. We did not perform experiments with other datasets as these kinds of mobility context

datasets were not publicly available. Our generated dataset served our purpose since the oc-

currences of the mobility associated factors fused in our dataset were dynamic in nature (i.e.

changed over time and various external factors) which made it complex for experiments. Also,

the data collected had different sampling rates and representations which posed challenges

during data fusion and representation. We fused and represented various mobility factors

associated with hourly time windows to achieve our goal for mobility analytics. We believe
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this can be adapted for future datasets as they become available. However, investigation for

advanced techniques for heterogeneous data fusion and representation remains a direction of

future research in effective user mobility analytics using heterogeneous data. The queue con-

text prediction framework presented in this thesis does not provide the relative queue lengths.

Future research would enable the measurement of queues and their lengths in real time. The

values used for two thresholds to infer the queue contexts were arbitrary. Future research may

address the optimal thresholding. For the deployment, the taxi regulations at the JFK were

taken into consideration. The taxi regulations of other places need to be considered carefully

for future deployments.

In chapter 3, we inferred expert-like knowledge from historical mobility context data. We

also presented a technique to combine the inferred expert-like knowledge and the probability

theory for the calculation of feature weight scores to be used by the prediction algorithms.

The results obtained from this research are restricted to prediction only and do not provide

optimum decision-making solutions. For providing optimum decision-making, other types of

modelling may be required. Future research could address this problem of providing optimal

decision-making for taxi drivers by considering their personalized objectives. The performance

of predictive analytics techniques is usually domain specific. Therefore, appropriate domain

adaptation is required for the analytics techniques adopted from other domains into the mo-

bility analytics with big spatio-temporal data. Given the fact that the neighborhood-based

prediction algorithms are suitable for many real-world problems, we only employed k-NN

based methods in our experiments to test our developed techniques. The value of k varied

between 1 and 15. We did not conduct experiments with any other prediction algorithms. The

related literature has shown that incorporating expert like knowledge can enhance prediction

performance. Hence, we believe that our technique will also be adaptable to other prediction

methods. However, further research is recommended to study how our technique can be in-

tegrated into other prediction algorithms by identifying the required adaptation parameters

and adjustments. Also, further validation of our technique would be found by performing

experiments with other datasets when the similar kinds of mobility context datasets become

available.
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In Chapter 4, we presented context-aware trip planning which considers topographical

information to infer route accessibility. However, there may be other physical accessibility

barriers present that may need to be taken into account. For example, the walk accessibility

of a path may be affected by stairs, high curbs and busy intersections. We assumed that the

physical barriers along the routes were handled accordingly. In future, a matrix such as the

SAW criteria [150] and walkability score [147] could be incorporated with our approach to help

disabled and elderly people check whether their route is affected by any physical accessibility

barriers. The integration of such data can also be achieved through crowdsourcing, as some of

these hazards are not permanent, but temporarily constructed for road maintenance or build-

ing construction. For the purpose of real-time data collection, the crowdsourcing platform

described in [143] could be used. The R-Q based method proposed in [141] is able to provide

an answer to the routing queries related to traffic conditions. Also, it can be adapted with

our model to provide live updates about the busyness of a road. In this regard, the urban

data from pedestrian sensors could be utilized with the crowdsourcing platform. Also, user

profiles could be incorporated to satisfy individual requirements. The data collected through

crowdsourcing can be used for providing context-aware mobility decisions since the information

contains actual user perceptions. However, it is challenging to ensure the data quality of such

crowd-generated context information. Our proposed technique can handle multiple mobility

contexts concurrently during trip planning; however, we tested with only two mobility contexts

(i.e. distance and accessibility). We have not investigated any further implications for con-

current consideration of more mobility contexts. Future research could address these issues.

Note that the quantification technique used for calculating route accessibility is not fit for all

solutions. Therefore, different types of quantification techniques may be required to integrate

other contexts such as weather and congestion. To know whether a proposed route may be

“good” or “acceptable” to the users is still a challenging issue. The user-path mapping and

personalized path sorting could be addressed in future by considering user-specific preference

levels. The future research may include real user study to examine the user experience re-

garding our technique. Future research could be conducted to speed up the route computation

algorithm.
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In conclusion, the contributions of this thesis include the development of several frameworks

and algorithms for context-aware mobility analytics and trip planning. The significance of this

research is to provide comprehensive support in mobility decision making for the users of urban

spaces. The techniques developed can be deployed in real-world scenarios and can aid a wide

range of users. The potential impact of our research include reduction of disruption that occurs

due to the inefficiency in manual mobility context estimation at the airports. This thesis also

presents new techniques for integrating multiple perspectives of mobility contexts in the trip

planning process. A new context-aware trip planner is introduced which will also benefit elderly

commuters and those with limited mobility to travel more conveniently around the city and

beyond.
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[154] R. Wasinger, C. Stahl, and A. Krüger. M3I in a Pedestrian Navigation & Exploration

System. In Human-Computer Interaction with Mobile Devices and Services, pages 481–

485. Springer, 2003. [Cited on page 79]

[155] B. Krieg-Brückner, C. Mandel, C. Budelmann, B. Gersdorf, and A.B. Mart́ınez. Indoor

and Outdoor Mobility Assistance. In Ambient Assisted Living, pages 33–52. Springer,

2015. [Cited on page 79]

[156] E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische math-

ematik, 1(1):269–271, 1959. [Cited on page 82]

[157] P.E. Hart, N.J. Nilsson, and B. Raphael. A Formal Basis For The Heuristic Determina-

tion of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,

4(2):100–107, 1968. [Cited on pages 82 and 87]

[158] M. Valtorta. A Result on The Computational Complexity of Heuristic Estimates for the

A* Algorithm. Information Sciences, 34(1):47–59, 1984. [Cited on page 82]



BIBLIOGRAPHY 140

[159] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster

and Simpler Hierarchical Routing in Road Networks. In Experimental Algorithms, pages

319–333. Springer, 2008. [Cited on page 82]

[160] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering

Route Planning Algorithms. In Algorithmics of Large and Complex Networks, pages

117–139. Springer, 2009. [Cited on page 82]

[161] Y. Disser, M. Müller-Hannemann, and M. Schnee. Multi-criteria Shortest Paths in Time-

dependent Train Networks. In Experimental Algorithms, pages 347–361. Springer, 2008.

[Cited on page 82]

[162] L. Mandow and J.L.P. De La Cruz. Multiobjective A* Search with Consistent Heuristics.

Journal of the ACM (JACM), 57(5), 2010. [Cited on page 82]

[163] OpenStreetMap. OpenStreetMap, Srtm2Osm. http://wiki.openstreetmap.org/wiki/

Srtm2Osm. Last Accessed: 26-Feb-2015. [Cited on pages 83 and 85]

[164] NASA. Shuttle Radar Topography Mission (SRTM). http://srtm.usgs.gov/. Last Ac-

cessed: 26-Feb-2015. [Cited on pages 83 and 86]
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