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Abstract

This research aims to investigate methods to solve many-objective (a multi-objective prob-

lem with three or more objectives) optimization problems. To achieve this, we propose

an algorithm combining user-preference and decomposition approaches. The main reasons

that decomposition-based evolutionary multi-objective optimization (EMO) methods are em-

ployed in this research are: firstly, they suffer less from the selection pressure issue in com-

parison to dominance ranking as they rely on decomposition methods such as Weighted-sum,

Tchebycheff and Penalty-based Boundary Intersection (PBI) to convert a multi-objective

problem into a set of single-objective problems. Secondly, decomposition approaches employ

a set of weight vectors which give us a reasonable control of solutions in the objective space.

As user-preference approaches alleviate the scalability issue of many-objective problems, they

are adopted in this research. User-preference methods can potentially save a considerable

amount of computational resources by searching on more desired regions rather than the

entire Pareto-optimal front. In this research, user-preference is defined in the form of one or

more reference points or directions. The proposed algorithm outperforms R-NSGA-II which

is one of popular dominance-based approaches on many-objective optimization problems.

Finding a diverse set of solutions is another major challenge for EMOs. The issue of so-

lution diversity is of greater importance when dealing with many-objective problems. In this

thesis, we propose an algorithm using a mechanism to update the weight vectors according to

feedback that quantifies the uniformity of the solutions in the objective space. Two existing

metrics and a newly developed metric are adopted as feedback mechanisms. These metrics

allow us to assess the contribution of each solution towards improving the overall uniformity

of the solution set in the objective space, and to use this information to update the weight

vectors adaptively so that the overall uniformity is maintained. The overarching is to iden-

tify sparse areas in the objective space, and move the solutions from the denser to sparse

areas. The newly developed metric uses the idea of electrostatic equilibrium to calculate the



direction in which each solution should move in order to improve the overall uniformity. As

we use decomposition methods in this research, the availability of weight vectors gives us an

explicit means of controlling the uniformity of solutions in the objective space.

Since existing metrics are neither sufficiently accurate nor scalable to measure the per-

formance of user-preference based EMO algorithms, we develop a new performance metric

to fill this gap. The proposed metric uses a composite front as a substitute for the Pareto-

optimal front then a preferred region is defined on the composite front. Performances of the

new metric are compared against a baseline which relies on knowledge of the Pareto-optimal

front. One of the key advantages of the proposed metric is that it does not depend on prior

knowledge of the Pareto-optimal front of a particular problem, which is most likely the case

in real-world situations.

2 (May 7, 2018)



Chapter 1

Introduction

1.1 Motivation

The term optimization refers to finding one or more optimal solutions which correspond

to the maximum or minimum values of one or more objectives [Schwefel, 1993; Ben-Tal

and Nemirovski, 2002; Gill et al., 1981]. Optimization techniques have been applied to many

problems such as engineering design and manufacturing industries [Coello et al., 1999]. There

are different types of optimization problems. When there is only one objective, it is called

single-objective optimization. The main goal of a single-objective optimization method is to

find the best solution which corresponds to the maximum or minimum value of the objective

function. When optimization involves more than one objective function and these objectives

tend to conflict with each other, it is called multi-objective optimization. Multi-objective

optimization problems are very important to both scientists and engineers as most real-

world problems could be considered as multi-objective [Deb, 2001; Coello et al., 2006]. Some

applications that use multi-objective optimization techniques are job scheduling [Xia and

Wu, 2005], manufacturing the shape of turbine blades and aeroplane wings [Hughes, 2007;

Takagi, 2001]. There are different methods used to solve optimization problems including

classical methods [Miettinen, 1999; Laumanns et al., 2006; Miettinen, 1999; Benson, 1978;

Keeney and Raiffa, 1993]. However, these methods are not effective to solve non-linear, non-

convex and multi-objective optimization problems [Deb, 2001; Schwefel, 1993]. Evolutionary

algorithms (EAs) [Back, 1996] are one of the alternatives to classical methods. EAs are

based on Darwin's theory of evolution where the selection pressure allows fitter individuals

to survive to the next generation. EAs evolve a population of potential solutions in successive

iterations of the algorithm to find a set of candidate solutions.



CHAPTER 1. INTRODUCTION

In recent years, there has been a growing interest in the area of many-objective optimiza-

tion [Hughes, 2005a]. That is a multi-objective optimization problem having three or more

objectives, which is the main focus of this research. However, the performance of evolutionary

multi-objective approaches degrades rapidly as the number of objectives increases [Ishibuchi

et al., 2008a;b]. There are several challenges that Evolutionary multi-objective Optimization

(EMO) algorithms are faced with when they are dealing with many-objective problems [Deb

et al., 2006]. Firstly, visualizing the Pareto-front when there are more than three objectives

is very difficult. It is challenging for the decision maker (DM) to get a visual sense of the

solutions accurately and to be able to select a preference. Another challenge is related to the

number of solutions required to approximate the Pareto-optimal front. In other words, the

number of solutions increases exponentially with respect to the number of objectives. Finally,

in the case of dominance-based approaches such as NSGA-II [Deb et al., 2002], SPEA [Zitzler

and Thiele, 1999] and MOGA [Fonseca and Fleming, 1993] when the number of objectives

increases, most of the solutions, even in the initial randomly generated population, are non-

dominated to each other. This suggests that none of the objective functions can be improved

in value without degrading some of the other objective values. As a result, there will not be

enough selection pressure to propel the solutions towards the Pareto-optimal front [Ishibuchi

et al., 2008b;a]. To overcome the scalability issue of Pareto dominance EMO approaches, we

propose to investigate the following two strategies:

1. Replacing dominance ranking by using decomposition techniques.

2. Confining the search space and focus on specific parts of the Pareto-optimal front

instead of finding the entire Pareto-optimal front, which helps to reduce the computa-

tional cost.

Decomposition strategies, which are borrowed from multi-criteria decision making [Hughes,

2005b], can alleviate the selection pressure problem imposed on dominance-based evolution-

ary algorithms. They convert a multi-objective problem into a set of single objective prob-

lems. In other words, since decomposition methods do not use dominance comparisons, they

are scalable to a greater number of objectives. Decomposition methods use different scalariz-

ing functions that assign a set of weights to the objective functions. When these scalarizing

functions are used in conjunction with population-based metaheuristics, they can solve the

resultant single objective problems with various weight values, resulting in obtaining so-

lutions on different parts of the Pareto front. This makes the decomposition-based EMO

algorithms less sensitive to the selection pressure issue. MOEA/D [Zhang and Li, 2007]

4 (May 7, 2018)



CHAPTER 1. INTRODUCTION

and MOGLS [Ishibuchi and Murata, 1998] are two popular EMO algorithms that eliminate

dominance ranking by employing scalarizing functions. One of the main reasons that we use

decomposition methods in this research is that they provide an explicit means of controlling

where a population converges by changing the weight vectors. This can also be used to

control the distribution of solutions directly.

Adopting user-preference based approaches, e.g. a reference point, is another promising

way of alleviating the scalability issue of EMO algorithms. Using a reference point allows us to

save considerable computational resources by focusing the search on more desirable regions

on the Pareto-optimal front instead of searching the entire Pareto-optimal front. In this

approach the user may have one or more existing solutions that were obtained through various

means and can be passed to the algorithm as a reference point(or points). For instance, in a

car-buying decision-making multi-objective problem, there are two conflicting objectives: cost

and comfort. A car with a price of $30, 000 and a comfort level of 60% can be passed to the

algorithm as a reference point. There are various types of user-preference methods including a

priori (where a user defines his/her preferences before the search process), interactive (where

a user defines his/her preferences during the search process), and a posteriori (where a user

defines his/her preferences after the search process) decision making. Some of the popular

user-preference based EMO algorithms are R-NSGA-II [Deb et al., 2006] which uses reference

points to incorporate the user preferences, RD-NSGA-II [Deb and Kumar, 2007b] which

uses reference direction for the same purpose, LBS-NSGA-II [Deb and Kumar, 2007a] which

uses a light beam approach to incorporate user preferences and PICEA [Wang et al., 2013]

which is an example of a posteriori decision making. Since applying scalarization techniques

to some extent alleviates the selection pressure issue of dominance-based approaches, and

utilizing user-preference information reduces computational cost, this research combines both

methods. In chapters 3 and 4, we develop user-preference decomposition based algorithms to

solve many-objective optimization problems. One of the main advantages of this combination

is that utilizing weight vectors of decomposition methods helps in handling user-preferences

by guiding solutions towards the preferred region.

MOEA/D, which is the basis of our proposed approaches in this thesis, has been tested

with two scalarizing functions: Tchebycheff and PBI. The Tchebycheff method works well

on both convex and non-convex Pareto-optimal fronts, but does not result in a very uniform

set of solutions on the Pareto-optimal front [Zhang and Li, 2007]. Penalty-based Boundary

Intersection (PBI) is a variation of Normal Boundary Intersection (NBI) [Das and Dennis,

1998] that uses a simple penalty method to eliminate the need for direct handling of NBI’s
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equality constraint. PBI generally produces more uniform solutions than Tchebycheff, but its

convergence can be affected by its penalty parameter (θ) which has not been well-studied. As

a result, chapter 5 of this thesis presents a sensitivity analysis of the PBI penalty parameter.

Finding uniformly distributed solutions in the objective space is a major challenge in

EMO. Two main difficulties of finding a uniform set of solutions on the Pareto front are as

follows:

1. An accurate metric is needed to measure the uniformity of solutions in the objective

space.

2. Most of the existing metrics measure the uniformity of the entire solution set, but

they are unable to rank the individuals in terms of their contributions to the overall

uniformity. In other words, most of the uniformity metrics face a credit assignment

problem.

Several metrics [Deb et al., 2002; Pettie and Ramachandran, 2002; Silverman, 1986; Huang

et al., 2005] have been proposed to address the uniformity issue. However, most of these

metrics are not scalable to many-objective optimization problems [Purshouse and Fleming,

2007; Hughes, 2005b]. Maintaining the diversity of solutions becomes even more difficult in

many-objective problems since the size of the search space grows exponentially. Therefore,

the accuracy of current metrics degrades severely in high dimensional spaces.

As previously mentioned, one of the main features of decomposition methods is controlling

the distribution of solutions by adjusting weight vectors. The following question arises when

dealing with decomposition methods: How to generate a set of weight vectors for a given

aggregation function in order to ensure a desired level of diversity among the solutions?

Some approaches [Tan et al., 2013; Qi et al., 2014; Ma et al., 2014] replace the weight

vector initialization method in MOEA/D (Simplex-lattice design) with a good lattice point

(GLP) and other complex weight vector initialization methods to generate uniform solutions.

However, most of those algorithms are not efficient in finding uniform solutions as they

either use sophisticated methods which can be computationally expensive or they rely on

the information of the Pareto-optimal front to generate a set of well distributed weight

vectors. Since the relationship between the weight space and the objective space is not

always linear, generating a uniform set of solutions from a uniform set of weight vectors is

not always possible. Relying on Pareto-optimal front information to engineer weight vectors

to obtain a uniform set of solutions is also not viable since this information is not always

available. As a result, there is a need for a mechanism during the course of optimization
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to maintain this unique relationship between the weight vectors and solutions in objective

space. In other words, weight vectors should be dynamically updated during the course of

optimization with the aim of generating a uniform set of solutions in the objective space.

To achieve this, in chapter 6 of this thesis a feedback mechanism is proposed. Some existing

metrics [Van Moffaert et al., 2014; Ong et al., 2012] have been used to measure the uniformity

of solutions and a new uniformity metric is also proposed.

Finally, since very few metrics exist [Veldhuizen and Lamont, 2000; Zitzler et al., 2003;

Veldhuizen, 1999a] to measure the performance of user-preference approaches accurately, in

chapter 7 we develop a metric to compare the performance of user preference-based algorithms

fairly. The main novelties of this metric compared to existing metrics are: 1) It measures

both convergence and diversity of the solutions in the preferred regions independent of any

parameters such as nadir points; and 2) it is scalable when the number of objectives increases

since it is independent of the knowledge of the Pareto-optimal front.

1.2 Research Objectives

This research will focus on addressing the following objectives:

1. To develop a novel method by combining the decomposition and user preference meth-

ods for better handling many objective optimization problems

2. To evaluate the effect of penalty parameters in PBI on the performance of user-

preference and non-user-preference EMO algorithms

3. To design a new technique to improve the uniformity of solutions in the preferred

region particularly when the shape of the Pareto-optimal front is complex or highly

non-linear. To investigate a mechanism which can find a diverse set of solutions without

the knowledge of the Pareto-optimal front

4. To define a new metric to evaluate the performance of different user-preference based

algorithms

The next section presents techniques which are developed to address these research ques-

tions.
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1.3 Methodology

Decomposition and user-preference are two main techniques adopted in this research to ad-

dress the objectives stated above. In this research, we make use of user preference information

through the form of reference points, which can be one of the existing solutions in the objec-

tive space. We use three different decomposition methods: Weighted-Sum [Miettinen, 1999],

Tchebycheff [Miettinen, 1999], Boundary Intersection [Das and Dennis, 1998], and Penalty-

based Boundary Intersection [Zhang and Li, 2007]. A set of multi-objective optimization

benchmark functions with different Pareto-optimal shapes are used to evaluate the perfor-

mance of the proposed algorithms. To measure the quality of solutions generated by the

proposed approaches, both convergence and diversity aspects have been measured simulta-

neously and separately. Since existing metrics used in the field are not designed specifically

to measure the quality of solutions in the preferred regions, the performance metrics take

user-preference information into account. To assess the capability of the proposed methods

in terms of finding optimal solutions, visualization tools have also been used. To determine

whether the results are significantly different, a non-parametric statistical test is run on the

results. In order to rank the algorithms, we used the Mann-Whitney-Wilcoxon (MWW) test

with a Bonferroni correction only when the null hypothesis of Kruskal-Wallis was rejected

under a 95% confidence interval.

1.4 Contributions

This thesis makes novel contributions to the field of EMO, particularly to many-objective

optimization. The core of these contributions is about combining decomposition methods

with user-preference models for solving many-objective optimization problems. In particular

the key contributions are as follows:

1. The development of scalable decomposition and user-preference based multi-objective

algorithms which can be applied to many-objective optimization problems. The pro-

posed algorithm is less susceptible to the selection pressure, focused in the preferred

region and converges on the Pareto-optimal front more rapidly.

2. The development of a more effective mechanism updating weight vectors and decoupling

the population size and number of objectives. This makes the proposed approach more

effective in higher numbers of objectives.
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3. The development of a sensitivity analysis of penalty parameter in PBI. In order to do

so, the effect of penalty parameter has been studied according to (a) the problems with

and without user-preference information; (b) the convergence and uniformity of the

solutions separately and simultaneously; and (c) the performance of the algorithm as

the number of objectives increases.

4. The development of a mechanism to maintain the uniformity of solutions in user-

preference based approaches by providing feedback from the behavior of solutions in the

objective space to weight vectors. Dynamically adapting the weight vectors according

to the solutions in the objective space during the course of optimization is the main

novelty of this approach. To achieve this, a new uniformity metric is proposed, and the

results are compared with those using existing metrics.

5. The development of a metric to measure the performance of user-preference based EMO

algorithms so that we can compare preference-based EMO algorithms more fairly. The

main idea has been borrowed from cardinality-based metrics. A composite front has

been formed to replace the Pareto-optimal front and the preferred regions have been

defined on it.

1.5 Overview of the Study and Organization

Chapter 2 first provides the basic definitions for multi-objective optimization with example

problems. Next, we present a review of classical methods and evolutionary algorithms to

solve multi-objective optimization problems. The literature review of decomposition and

user-preference based EMO approaches are also presented. Finally, the performance metrics

which are used in this thesis are described and reviewed.

In chapter 3, we propose a user-preference based evolutionary algorithm that relies on

decomposition strategies to convert a multi-objective problem into a set of single-objective

problems. The proposed approach is called R-MEAD. The use of a reference point allows the

algorithm to focus the search on more preferred regions, which can potentially save a con-

siderable amount of computational resources. Combining decomposition strategies with ref-

erence point approaches paves the way for the more effective optimization of many-objective

problems.

In chapter 4, we propose a user-preference based evolutionary multi-objective algorithm

that uses decomposition methods for solving many-objective problems. The newly proposed
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algorithm, R-MEAD2, improves the scalability of its previous version (R-MEAD) by adopt-

ing a Simplex-lattice design method for generating weight vectors. This makes the population

size independent from the dimension size of the objective space. R-MEAD2 uses a uniform

random number generator (RNG) to remove the coupling between dimension and the pop-

ulation size. It should be noted that a uniform set of weight vectors does not necessarily

map to a uniform set of solutions in the objective space, especially on highly non-linear and

complex Pareto-optimal fronts. This requires a feedback mechanism to adjust the weights in

order to obtain a set of uniform solutions, which is the main topic of chapter 6.

As indicated previously, MOEA/D relies on decomposition methods such as weighted-

sum, Tchebycheff and Penalty-based Boundary Intersection (PBI), to convert a multi-objective

problem into a set of single-objective problems. It has been argued that PBI can generate a

more uniform set of solutions than other decomposition methods. However, the main draw-

back of PBI is that it has a penalty parameter (θ) which needs to be specified by the user.

This penalty parameter can affect the convergence as well as the uniformity of solutions.

Chapter 5 provides a comprehensive analysis of PBI’s penalty parameter and its effect on

a user-preference algorithm (R-MEAD2), and a non-user-preference algorithm (MOEA/D)

has been conducted. Also in this chapter, the effect of θ on convergence, uniformity and the

combination of convergence and uniformity have been analyzed.

Since generating a uniform set of solutions turns out to be a challenging task for multi-

objective optimization problems, chapter 6 provides a strategy to tackle this. A feedback

mechanism is developed to assess the uniformity of solutions in the objective space dur-

ing the course of optimization. These feedback values are then used to dynamically adapt

weight vectors for better solution uniformity in the objective space. The proposed method

(UR-MEAD2) can adopt any uniformity metrics as a feedback mechanism. More specifi-

cally, adopted metrics are used to rank individuals in terms of their contributions towards

improving the overall solution uniformity.

In chapter 7, we propose a metric for evaluating the performance of user-preference based

EMO algorithms. It defines a preferred region based on the location of a user-supplied

reference point. This metric uses a composite front which is a type of reference set and is

used as a replacement for the Pareto-optimal front. This composite front is constructed by

extracting the non-dominated solutions from the merged solution sets of all algorithms that

are to be compared. A preferred region is then defined on the composite front based on

the location of a reference point. Once the preferred region is defined, existing evolutionary

multi-objective performance metrics can be applied with respect to that region.
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Literature Review

Since the late 1990s, the number of applications of multi-objective evolutionary algorithms

(MOEAs) has grown considerably. The main reason behind this increase is the success

of MOEAs in solving real-world problems. In recent years, many-objective optimization

has become more popular. However, only a limited number of many-objective real-world

applications exists since there is no efficient and effective technique to handle many-objective

optimization problems. In this thesis, we have developed some user-preference Evolutionary

Multi-objective Optimization algorithms (EMOs) which are able to solve many-objective

optimization problems effectively. Before we get into the details of the proposed algorithms

it is important to describe the background materials and literature related to the research

presented in this thesis. First, in Section 2.1, some key concepts involving multi-objective and

many-objective optimization are introduced. In Section 2.2, classical methods to solve multi-

objective optimization problems are presented with their shortcomings identified to justify

the use of Evolutionary Algorithms (EAs). Concepts of EAs with examples are described

briefly in Section 2.3.1. Next, in Section 2.4, we present how EMOs are developed. Some

issues that EMO algorithms are facing to solve many-objective optimization problems are also

illustrated. Section 2.5 presents techniques found in the literature in tackling these issues.

In this section, popular user-preference EMO algorithms are illustrated in detail. Finally in

Section 2.6, existing performance metrics for user-preference and non-user-preference EMO

algorithms in the literature are described.
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Figure 2.1: An example of a multi-objective optimization problem

2.1 Multi-objective Optimization

An optimization problem involving one objective is called a single-objective optimization.

The main goal of a single-objective optimization method is to find the best solution, which

corresponds to the maximum or minimum value of an objective function. When an opti-

mization involves more than one objective function and these objectives tend to conflict with

each other, it is called multi-objective optimization. In a multi-objective optimization prob-

lem due to the existence of conflicting objectives, there is often a set of trade-off solutions

which is referred to as a Pareto-optimal front. Assuming minimization, a multi-objective

optimization problem with m objectives can be described as the following [Deb, 2001]:

minimize F(x) = (f1(x), . . . , fm(x)) , (2.1)

where F(x) ∈ R
m is the objective vector and fi(x) is the ith objective function where

i ∈ {1, . . . ,m}. Each decision vector x ∈ R
n is defined as (x1, . . . , xn) where n is the number

of variables in the decision space.

Figure 2.1 shows an example of a multi-objective optimization problem, where one axis

shows the price of a car ranging from $3, 000 to $70, 000. The second axis shows the comfort
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level of a car ranging from 5% to 80%. If the cost is the only objective of this problem,

Solution 1 would be the optimal choice. As a result, there would be only one type of car on

the road and manufacturers would not produce any expensive cars. In the same scenario,

if comfort level is the only objective of this optimization problem, Solution 5 is the optimal

choice. However, various other solutions (2, 3, 4) between these two extreme solutions provide

a trade-off between comfort level and cost. As a result, none of these solutions can be said

to be better than the others with respect to both objectives. These solutions are called

non-dominated solutions and there is a set of such trade-off solutions. In Figure 2.1, all these

solutions are joined in a form of curve. These solutions which are mapped from the decision

spaced are called the Pareto-optimal front.

2.1.1 Dominance Relation

The dominance concept can be introduced to multi-objective optimization for comparison of

two solutions [Deb, 2001]. In a minimization problem, x1 dominates x2 which is denoted as

x1 ≺ x2 if:

∀i∃j (fi(x1) ≤ fi(x2) ∧ fj(x1) < fj(x2)) ,

where i, j ∈ {1, . . . ,m}.

Pareto-Optimal Set: A non-dominated set is a set of solutions where no members dom-

inate the others. A Pareto-optimal set is a non-dominated set where its members dominate

all other possible solutions in the search space.

Pareto-Optimal front: The mapping of all possible Pareto-optimal solutions into the

objective space form a curve (or surface) which is commonly referred to as a Pareto-optimal

front. A Pareto-optimal front is said to be convex if and only if the connecting line between

any two points on the Pareto-optimal front lies above it and non-convex otherwise.

2.1.2 Many-objective Optimization

In the past, most multi-objective problems have used two or three objectives. In recent liter-

ature, special attention has been given to problems with more objectives. A multi-objective

problem with more than three objectives is commonly referred to as a many-objective prob-

lem [Fleming et al., 2005]. In this thesis, we mainly focus on many-objective optimization

problems.

13 (May 7, 2018)



CHAPTER 2. LITERATURE REVIEW

2.2 Classical Methods to Solve Multi-objective Problems

Classical methods [Branke et al., 2008] mainly use user-defined procedures to convert a multi-

objective problem into a single objective problem. One of these methods is the weighted-

sum approach [Miettinen, 1999] which uses the weighted sum of objectives to convert a

multi-objective problem to a single-objective problem. The main drawback of the weighted-

sum approach is that it is not applicable to non-convex problems. ǫ-constraint [Haimes

et al., 1971] is one possible replacement for weighted-sum. This method keeps one of the

objectives and restricts the rest of the objectives within user-specified values. One of the

main disadvantages of this method is being dependent on ǫ vector. Another classical method

is Tchebycheff [Miettinen, 1999], which requires different weights for weighting objectives.

The Penalty-Based Boundary Intersection Approach (PBI) [Zhang and Li, 2007] is another

alternative to the weighted-sum approach. All three methods are explained in greater detail

below.

2.2.1 The Weighted-Sum Approach

The weighted-sum method is one of the simplest and best-known strategies used to convert

a multi-objective problem into a single-objective problem [Miettinen, 1999]. Although this

approach is simple and easy to apply, choosing a weight vector that results in finding a

solution near the user reference point is not straightforward. Choosing a weight value for each

objective depends on its relative importance in the context of the actual problem. Moreover,

in order to have a fair scaling of the objectives, they first need to be normalized [Deb, 2001].

A compound objective function is the sum of the weighted normalized objectives which is

defined as follows:

minimize gws =

m
∑

i=1

wifi(x) , (2.2)

where 0 ≤ wi ≤ 1, m is the number of objectives and wi is the weight value for the ith

objective function. It is customary to choose weights that add up to one. It has been proved

that for any Pareto-optimal solution x⋆ of a convex multi-objective problem, there exists a

positive weight vector, such that x⋆ is a solution to Equation (2.2) [Miettinen, 1999]. For any

given set of weight values, Equation (2.2) will form a hyperplane in R
m for which the location

is identified by the objective values which are subsequently dependent on the input vector x,

and the orientation of the plane is determined by the weight values wi. In the special case

of having two objectives, the gws will take the form of a straight line for which the slope is

14 (May 7, 2018)



CHAPTER 2. LITERATURE REVIEW

a

b

c

dPareto−optimal Front

Feasible Objective Space

O��

f1

f2

w2

w1

Figure 2.2: Illustration of the weighted-sum approach on a convex Pareto-optimal front.

determined by the weight vector as depicted in Figure 2.2. The effect of minimizing gws is

to push this line as close as possible to the Pareto-optimal front until a unique solution is

obtained. For example, in Figure 2.2 the solutions lie on the line ‘a’ and as they improve

during the evolution, they move in the feasible region towards the Pareto-optimal front until

an optimum solution (‘O’) is obtained. Lines ‘a’ through ‘d’ show how the improvement of

solutions will result in the movement on the line (hyperplane in higher dimensions) until

it becomes tangential to the Pareto-optimal front at point ‘O’. A major advantage of the

weighted-sum approach is its simplicity and effectiveness; however, it is less effective when

dealing with non-convex Pareto-optimal fronts [Deb, 2001].

2.2.2 The Tchebycheff Approach

The Tchebycheff method [Miettinen, 1999] is formulated as follows:

minimize (gtch(x,w, z⋆) = max{wi|fi(x)− z⋆i |}), (2.3)

where i ∈ {1, . . . ,m}, m is the number of objectives, z⋆ ∈ R
m is the ideal point, and

w = (w1, . . . , wm) is a weight vector, which is positive. As shown in Figure 2.3, for each

Pareto optimal point x⋆ which presented as black filled circle, there is at least a weight
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vector w (it is presented as an arrow in the figure) such that x⋆ is an optimal solution of

Equation (2.3). The effect of the weight vector is also depicted in Figure 2.3.

Pareto−optimal Front

Search Direction

A Sub−optimal Solution

f1

f2

w

Figure 2.3: Illustration of the Tchebycheff method.

2.2.3 The Penalty-Based Boundary Intersection Approach

The Penalty-Based Boundary Intersection Approach (PBI) [Zhang and Li, 2007] is an im-

proved version of a normal boundary intersection (NBI) [Das and Dennis, 1998]. Unlike

NBI, which can only handle equality constraints, PBI [Zhang and Li, 2007] can handle both

equality and inequality constraints. PBI is formulated as follows:

minimize gpbi(x,w, z⋆) = d1 + θd2, (2.4)

where d1 =
∥

∥(F(x)− z⋆)Tw)
∥

∥ / ‖w‖

and d2 = ‖F(x)− (z⋆ + d1w)‖ .

As shown in Figure 2.4, L is a line passing through z⋆ with the direction of w and p is

the projection of F(x) on L. The penalty parameter θ forces F(x) to be as close as possible

to L (penalizing d2).

The weighted-sum approach is the simplest and the most well known technique, which

works well on convex optimization problems. However, non-convex Pareto-optimal fronts

cannot be accurately approximated with this method [Deb, 2001]. The Tchebycheff method
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Figure 2.4: Illustration of the PBI method.

works well on both convex and non-convex Pareto-optimal fronts, but it does not result in

a uniform set of solutions on the Pareto-optimal front [Zhang and Li, 2007]. PBI generates

more uniform solutions compared to other decomposition methods. The Penalty parameter

in PBI, which is called θ, controls the uniformity of solutions to some extent. The convergence

of the solutions can be affected by this penalty parameter.

2.3 Metaheuristics Algorithms

Metaheuristics are strategies that guide the search process to find the near-optimal solu-

tions by exploring and exploiting the search space [Osman and Laporte, 1996]. Some of

the properties of a metaheuristic algorithm are [Blum and Roli, 2003]: 1) they are usually

non-deterministic and approximate; 2) they are not problem specific; 3) they use domain-

specific knowledge in the form of heuristics that are controlled by a meta-level strategy. Some

metaheuristics algorithms are introduced below.

2.3.1 Evolutionary Algorithms (EAs)

Evolutionary algorithms are one type of metaheuristics that use natural evolutionary prin-

ciples to guide the search process and construct the optimization procedure. Evolutionary

algorithms are an alternative approach to classical methods as they could overcome some

of the most common difficulties of classical methods, being: 1. convergence on an optimal
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solution is very dependent on choosing an initial solution; 2. classical methods are not effi-

cient in terms of handling parallel machines; and 3. classical methods are usually stuck in

suboptimal solutions. The common theory behind evolutionary algorithms is that, given the

population of individuals within a limited resource, competition for these resources causes

natural selection, or “survival of the fittest” [Eiben and Smith, 2008]. The process of choosing

better candidates for the next generation uses two operators: recombination and/or muta-

tion. Mutation is an operator which is applied to one individual and which generates one

new individual. Recombination is an operator which is applied to two or more individuals

and generates one or more new offspring individuals. Therefore, the process of executing

these two operators creates a set of new individuals (the offspring). The fitness values of

these individuals are evaluated and competed with the parent individuals. This process will

continue until individuals with sufficient quality are found.

There are two main forces in evolutionary systems according to Eiben and Smith [2008]:

1. Recombination and mutation can create necessary diversity in the population, which

facilitates novelty.

2. Selection increases the quality of solutions in the population.

The combination of these two forces improves an individual’s fitness values in the population.

If the evolution is optimizing a fitness function, the optimal value is getting closer and closer

over time. The main schema of an evolutionary algorithm can be defined as follows:

Algorithm 2.1: Evolutionary Algorithm

INITIALIZE population
EVALUATE each individual
while Termination Condition is Satisfied do

SELECT parents;
RECOMBINE pairs of parents;
MUTATE the resulting offspring;
EVALUATE new candidates;
SELECT individuals for the next generation

end while

Different types of EAs can be generated by defining various components, procedures and

operators. The most important components of an EA are: 1. Defining an individual; 2. Evalu-

ating fitness functions; 3. Population; 4. Parent Selection Mechanism; 5. Variation Operators
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and 6. Survivor Selection Mechanism. To create a runnable algorithm, each component

should be defined and its initial procedures should be specified.

2.3.2 Differential Evolution (DE)

Differential Evolution (DE) is another metaheuristic algorithm. Since we used it in our

proposed approaches in this thesis, we explain its main properties here. DE was firstly

introduced by Storn and Price [1997a]. It was a new heuristic approach for minimizing

possibly nonlinear and nondifferentiable continuous space functions [Storn and Price, 1997a].

Given the population of solution vectors, by adding perturbation vector p (Equation 2.6) to

an existing mutant vector x, a new mutant vector x′ (Equation 2.5) is generated,

x′ = p + x (2.5)

p = F (y − z) (2.6)

where p is the scaled vector difference of the other two y and z, which are randomly

chosen population members (their values should not be exactly the same). Scaling factor F

is a real number greater than zero. F controls the rate at which each population evolves.

Crossover operation which is used in DE is mainly the same as a regular crossover operation

that is used in evolutionary algorithms. However, crossover operator in DE has an extra

parameter which is called crossover probability (CR). CR ∈ [0, 1] specifies the chance that

for any position in the parents currently undergoing crossover, the allele of the first parent

will be included in the child.

In the main DE algorithm, population is like a list. This allows referencing to ith individ-

ual by its position i ∈ {1, . . . , µ}. The order of individuals in a population P = (x1, ...,xµ) is

not related to its fitness values. In an evolutionary cycle, firstly a mutant vector population

M = (v1, ...,vµ) is created, then for each mutant new vector vi three different vectors are

chosen from P , a base vector to be mutated and the other two vectors to define a perturba-

tion vector. After making a mutant vector, by applying crossover to vi and xi a trial vector

population T = 〈u1, ...,uµ〉 is created where ui is the result of applying crossover to xi and

vi. Finally, a deterministic selection is applied to each pair of individuals such as xi and ui .

xi will be selected in the next generation if and only if f(xi) 6 f(ui). In summary, there are

three parameters in DE: µ (population size), F scaling factor, CR crossover probability. Over
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the years, many variants of DE have been developed and published, each of which focuses

on different aspects of DE parameters [Storn and Price, 1997b; 1996; Storn, 1996] and [Das

and Suganthan, 2011] have done a survey on DE from different aspects including: major

variants, application to multi-objective, constrained, large scale, and uncertain optimization

problems.

The below table shows the brief description of differential evolution

Representation Real-valued vectors

Recombination Uniform crossover

Mutation Differential mutation

Parent selection Selection of the three different vectors

Survival selection Deterministic elitist replacement (parent vs. child)

2.4 Evolutionary Multi-objective Optimization (EMO) Algorithms

The history of EA approaches to multi-objective optimization begins with the vector-evaluated

genetic algorithm (VEGA) which is proposed by Schaffer [1985]. In this approach, the popu-

lation is first divided into sub-populations. Each sub-population receives a fitness value based

on the objective function. However, recombination and parent selection happens globally.

VEGA manages to approximate the Pareto front after a few generations. The main disad-

vantage of VEGA is that there is not enough diversity in the population. One alternative

solution to tackle this issue was proposed by Kursawe [1990]. In this approach, diversity is

maintained by using a niching strategy. In other words, they use an elimination of crowding

strategy to remove solutions which are close to each other. Below we describe some of the

popular EMO approaches.

2.4.1 Non-elitist Approaches

Generally speaking non-elitist approaches do not use any elite-preserving operator. The

multi-objective genetic algorithm (MOGA) which was proposed by Fonseca and Fleming

[1993] was one of the first non-elitist algorithms. MOGA uses genetic algorithms to solve

a multi-objective optimization problem. Decision maker (DM) inputs are also used as a

step in the evolutionary process. In other words, the interaction between DM and a genetic

algorithm leads to the selection of satisfactory solutions to the problem. The non-dominated

sorting genetic algorithm (NSGA), which is another none-elitist approach, was first proposed

by Srinivas and Deb [1994]. NSGA is similar to MOGA in many ways. However, the
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population is divided into a number of fronts, each with equal domination, for assigning

fitness. The procedure of the algorithm is as follows: Firstly, the algorithm searches for

individuals which have not been labeled as related to a previous front. Secondly, individuals

in the current front will be labeled and the front counter will be increased until all the

individuals have been labeled. The fitness of each individual in a front is calculated based

on the number of all solutions in the lower front. Solutions with the same rank are assigned

the same fitness value. Algorithm 2.2 explains non-dominated sorting.

Algorithm 2.2: Non-dominated sorting Algorithm

for each p ∈ P do
Sp=∅ // set of individuals p dominate
np = 0 // counter for number of individuals that dominate p
for each q ∈ P do
if p ≺ q then
Sp = Sp

⋃

{q}
else if q ≺ p then
np = np + 1

end if
end for
if np == 0 then
Prank = 0
F1 = F1

⋃

{p}
end if

end for
i = 1 // initialize the front counter
while Fi 6= ∅ do
Q = ∅ // set of individuals of the next front
for each p ∈ Fi do
for each q ∈ Sp do
nq = nq − 1
if nq = 0 then
qrank = i + 1
Q = Q

⋃

{q}
end if

end for
end for
i = i + 1
Fi = Q

end while
return Fi
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For each individual p, there are two variables: 1) np is the number of individuals that

dominate p and 2) Sp is the set of solutions which p dominates. prank indicates the dominated

front that p belongs to. In the above algorithm in line 11, p belongs to the first front and

in line 22, q belongs to the next front. A niched Pareto genetic algorithm (NPGA) was

first proposed by Horn et al. [1994]. The main modification in this algorithm concerned

tournament selection which was based on two criteria: firstly, dominance comparison and

secondly, the number of similar solutions already present in the new population.

2.4.2 Elitist Approaches

Although non-elitist approaches can perform well in a number of test problems, there are some

issues. Firstly, their performance is heavily dependent on choosing parameters. Secondly,

they can also potentially lose good solutions. Elitist approaches were developed to address

the issues of non-elitist approaches. NSGA-II [Deb et al., 2002] is an elitist approach which

uses the idea of non-dominated sorting. NSGA-II differs from NSGA in two main aspects:

1) Density Estimation. To estimate the density of each point in relation to other points,

crowding distance metric is defined. This metric indicates how far individuals are from each

other. To achieve this for each point, the average distance of two points on either side of

that point along each objective is calculated. This value is used to estimate the perimeter

of the cuboid which is formed by the nearest neighbours as the vertices. For the purpose of

calculating the crowding distance metric, individuals in the population should be sorted based

on the objective function value. The smaller the value of a crowding distance indicates that

the individual is in a dense area. 2) Crowded-Comparison Operator. This operator≺n directs

solutions towards diversity on the Pareto-optimal front in different stages of the algorithm.

Each individual has two attributes: (a) non-dominate rank (irank) and (b) crowding distance

(idistance). The operator is defined as below: i ≺n j if (irank < jrank) or (irank=(jrank and

idistance) > jdistance) If two solutions have different non-domination ranks, the lower rank

is preferred. If two solutions are in the same front, the one that is in a less dense area is

proffered. Strength Pareto evolutionary algorithm (SPEA-2) [Zitzler et al., 2001] and Pareto

achieved evolutionary strategy (PAES) [Knowles and Corne, 1999] are two other popular

elitist algorithms. They both use a fixed size archive. Non-dominated points which are

discovered during the search process are kept in the archive. The archive is updated based

on dominance information and the number of archive points close to a new solution.
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2.4.3 Decomposition-Based EMO Algorithms

Although elitist approaches remedy the issues raised by non-elitist approaches, they suffer

from the selection pressure issue and cannot scale well in higher objective space. In contrast,

decomposition approaches are less susceptible to the selection pressure problems and they

can solve many-objective optimization problems more effectively. Because of their highly

desirable properties, we have used decomposition-based approaches in this research to handle

many-objective optimization problems.

Decomposition approaches convert a multi-objective problem into a single-objective prob-

lem which is then optimized using an Evolutionary Algorithm. As mentioned before in sec-

tion 2.2, three widely used decomposition approaches are Weighted-Sum [Miettinen, 1999],

Tchebycheff [Miettinen, 1999] and Penalty-based boundary intersection (PBI) [Zhang and

Li, 2007]. Some popular decomposition-based EMO algorithms which combine evolutionary

algorithms with decomposition methods are described here:

MOGLS was first proposed by Ishibuchi and Murata [1998] and was improved by

Jaszkiewicz [2002]. In short, in each iteration a set of current solutions (CS) and the fit-

ness values of these solutions are maintained. An external population (EP) is used to store

non-dominated solutions. In MOGLS, two main parameters, K and S, are used. K deter-

mines the size of EP and S is the size of the current solution. For each individual which is

generated by genetic operations, a local search procedure is applied. When a pair of par-

ent solutions is selected to generate new solutions, the fitness function (Weighted-sum or

Tchebycheff) is utilized. A local search procedure is applied to new solutions to maximize

its fitness value.

MOEA/D uses a decomposition method to decompose a multi-objective optimization

problem into a number of single objective optimization problems. Then an EA is used

to solve these sub-problems simultaneously. Each individual is assigned to a sub-problem.

Based on the distance of sub-problem weight vectors, a neighborhood relationship among

all sub-problems is defined. As two neighbouring sub-problems have a close optimal solu-

tion to optimize a sub-problem its neighborhood information is used. Since MOEA/D relies

on the individuals’ neighborhoods rather than the whole population to generate new off-

spring, it benefits from a lower computational cost compared to its counterparts such as

MOGLS [Ishibuchi and Murata, 1998] and NSGA-II [Deb et al., 2002].

The general framework of MOEA/D is as follows:

An external population (EP) is used to store non-dominated solutions which are found
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during the search.

Algorithm 2.3: MOEA/D Algorithm

Initialize external Population to Null
Initialize Weight Vectors
while Exist a Weight Vector do

Calculate T closet weight vectors to each weight vector
end while
Generate Initial Population
zj = min16i6Nfj(x

i)
z = (z1, . . . , zm)T

while Termination Condition is Satisfied do
Generate new offspring by applying genetic operators using the neighborhood
information
Update the neighborhood for each sub-problem
Update EP

end while

During the time, MOEA/D has been studied and investigated from different aspects [Trivedi

et al., 2017] such as: weight vector generalization, computational resource allocation, handing

many-objective optimization, mating selection, replacement mechanism which we introduced

them briefly in this section.

Weight Vector Generalization

1. UMOEA/D was proposed by Tan et al. [2013]. It uses good lattice point design (GLP)

for weight vector initialization instead of simplex-lattice design. It has been shown

that UMOEA/D can generate more uniform solutions than MOEA/D due to the use of

GLP. Unlike simplex-lattice design, the use of GLP decouples the dependence between

the number of objectives and the population size. As a result, UMOEA/D is scalable

to a higher number of objectives.

2. More recently, Ma et al. [2014] proposed MOEA/D-UDM which replaces the ini-

tialization method of weight vector and the original Tchebycheff decomposition ap-

proach in MOEA/D. For weight vector initialization, MOEA/D-UDM combines the

simplex-lattice design with a transformation method proposed in [Fang and Wang,

1993] and [Fang and Lin, 2003] to obtain uniformly distributed Pareto-optimal solu-

tions over PF, then a uniform decomposition measurement [Ning et al., 2011] is used to

select a uniform set of weight vectors. A Modified Tchybecheff (M − TCH) [Jain and

Deb, 2013] which is defined as M−TCH(x,w, z∗) = maxMi=1

∣

∣

∣fi(x)−z∗i

∣

∣

∣ /wi is adopted in
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MOEA/D-UDM. It has been shown that MOEAD/UDM outperforms MOEA/D and

UMOEA/D in terms of both diversity and convergence.

3. MACE-gD [Giagkiozis et al., 2014] is based on generalized decomposition (gD) [Gi-

agkiozis et al., 2013a] and the Cross Entropy method (CE) [Rubinstein, 1999]. Gener-

alized decomposition (gD) is used to select weight vectors to satisfy the distribution of

solutions on Pareto-optimal solutions along PF. CE is used as the main optimization

algorithm. In MACE-gD the geometry of Pareto front should be made available before

the search process and a method to generate distribution along geometry based on the

DM requirement should be available as well.

Computational Resource Allocation

1. Bi-criterion Evolution(BCE) [Li et al., 2015] is another decomposition-based EMO that

attempts to maintain the diversity of solutions. BCE uses two populations, namely PC

(Pareto Criterion) and NPC (Non-Pareto Criterion), where NPC guides the search

towards the optimal front while PC mainly focuses on maintaining the diversity of

solutions by exploring undeveloped or not well-developed regions in the objective space.

These two populations communicate with each other and use the suitable individuals

generated by either of them.

2. MOEA/D with the adaptive weight vector adjustment (MOEA/D-AWA) was pro-

posed by Qi et al. [2014]. It uses a new weight vector initialization method with adaptive

weight vector adjustment. MOEA/D-AWA initializes the weight vectors based on the

geometric relationship between weight vectors and solutions under the Tchebycheff de-

composition. To update the weight vectors, MOEA/D-AWA uses an elite population

which introduces new sub-problems into the sparse regions of the search space. It has

been shown that MOEA/D-AWA can outperform MOEA/D [Qi et al., 2014].

3. Pareto-adaptive weight vectors (paλ)(paλ-MOEA/D) [Jain and Deb, 2014] was inspired

by the idea of e-dominance to divide the objective space into different hyper boxes based

on the geometry information of Pareto front. paλ has two features; first it is based on

the Mixture Uniform Design (MUD) and can generate an arbitrary number of weight

vectors for any number of objectives. Secondly, since paλ uses the Hypervolume metric,

it is able to maintain diversity and convergence better than NSGA-II and MOEA/D.
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Handing Many-objective optimization

1. DBEA which is proposed by Asafuddoula et al. [2015] uses reference directions to guide

the search process. Sampling points are used to generate reference directions, similar to

that of NSGA-III [Deb and Jain, 2014]. To maintain the diversity and convergence of

solutions, two distance measures have been used. One distance is measured along the

reference direction to control the convergence. The second measures the perpendicular

distance from the solution to the reference direction and is used to maintain the diversity

of solutions. To handle constraint optimization problems, adaptive ǫ level-based schema

are adopted. In the proposed approach, the number of the reference directions is the

same as the population size. Where a problem with a complex Pareto-optimal front

is needed to maintain convergence and diversity properly, a large number of reference

directions is required and consequently a large number of individuals is needed. This

may not be cost-effective or practical.

2. RVEA [Cheng et al., 2016] is another decomposition-based EMO algorithm that uses

reference vectors inspired by ideas from MOEA/D-M2M [Liu et al., 2014] to balance

between convergence and diversity. The main idea behind RVEA is to use the reference

vector to divide the objective space to some sub-spaces. In each sub-space, Angle-

Penalized Distance (APD) is used to measure the closeness of solutions to the ideal point

and reference vectors can be used to measure diversity or satisfaction of preferences.

To maintain the uniformity of solutions in the objective space, reference vectors have

been adapted based on the distribution of candidate solutions in the objective space.

3. [Deb and Jain, 2014] proposed a reference-point-based many-objective evolutionary

algorithm NSGA-III which is based on the NSGA-II framework but with the significant

changes in its selection operator. Diversity and uniformity in NSGA-III are maintained

by providing and adapting well distributed reference points. NSGA-III applied to

many-objective problems up to 15 objectives and its performance compared with two

versions of MOEA/D.

Mating Selection and Replacement Mechanism

1. MOEA/D-STM was proposed by Li et al. [2014]. It uses a stable matching model (STM)

to coordinate the selection process in MOEA/D. In MOEA/D-STM, sub-problems and

solutions are expressed as two sets of agents. Each sub-problem agent ranks all solutions

and prefers the solution to have a better aggregation function value. Each solution
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agent ranks sub-problems based on its distance to the direction vector of sub-problems

and prefers sub-problems with the lowest distance. This assignment can balance the

diversity and convergence of a search.

2. MOEA/D-STM2L which is the extended version of MOEA/D-STM is proposed by Wu

et al. [2015]. The proposed algorithm added another level to improve diversity of so-

lutions. In other words, the first level is used of match a solution to one of its most

preferred subproblems and the second level is used to match the solutions to the re-

maining subproblems. Experimental results show that MOEA/D-STM2L outperforms

other state-of-the-art variants of MOEA/D as well as MOEA/D-STM.

2.5 Integrating Preferences in EMO Algorithms

There are three ways of involving a decision maker (DM) in an optimization process [Van Veld-

huizen and Lamont, 2000]: The specification of preference can be done before the optimization

process (a priori), during the optimization process (interactive) and after optimization pro-

cess (a posteriori). These preference mechanisms were originally introduced in multi-Criteria

decision making [Gandibleux, 2006]. Most EMOs can be referred to as a posteriori approach

as they try to find a well distributed set of solutions on the Pareto-optimal front before

allowing a decision maker to look at solutions and choose the most preferable solutions. In

this research, we consider (a priori) approach. In other words, a decision maker can provide

his/her preference(s) before the optimization process as a reference point and a reference

point can be one of the existing solutions. It might not always be practical for the user to

specify his/her exact preference(s). However, we assume that the user has an approximate

idea about the objective space. Integrating the DM to the search process saves considerable

computational resources by focusing on more desirable regions of DM’s interest.

2.5.1 a priori Methods

In this section, we describe some of the EMO algorithms which incorporate the preference

information prior to the optimization process. Since a priori methods are used in this thesis

to propose new approaches, our literature has mainly focused on these methods. In this thesis,

we have categorized a priori algorithms to three main categories based on the techniques

that they used to incorporate the preference information: 1) Goal attainment 2) Reference

Point Based 3) Light Beam Based.
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Some popular approaches in Goal attainment are described below. Goal Programming,

which is proposed by Deb [1998], is one of the first attempts to apply EMO approaches to

classical goal programming [Ignizio, 1976]. The ability of an EA to find multiple solutions

makes it possible to simultaneously minimize the deviations from individual goals, which

eliminates the need for a user-defined weight vector. The effectiveness of this evolutionary

approach to goal programming has been verified empirically using several test problems as

well as a real-world engineering design problem [Deb, 1998]. In this approach, the empha-

sis was mainly on goal satisfaction and the algorithm does not try to find Pareto-optimal

solutions close to the supplied goal. Since a DM needs to supply his/her goals before the

optimization process, this approach is categorized as a a priori method.

The guided multi-objective evolutionary algorithm (G-MOEA), proposed by Branke

et al. [2001], is another a priori method user needs to specify the linear trade-off between

objectives before the search begin. For example, in a two-objective problem the decision

maker has to specify how many units of the first objectives he/she is willing to trade for

one unit of the second objective. G-MOEA then uses this trade-off information to guide the

search towards the more desired regions of the Pareto-optimal front. Although G-MOEA is

more flexible and intuitive than other approaches, it is not always an easy task for the decision

maker to specify the trade-off between objectives, especially for many-objective problems.

Biased-Sharing, which was proposed by Deb [2003], applies the biased sharing technique

to NSGA [Srinivas and Deb, 1994] where the biased Pareto-optimal solutions are generated

on a desired region. To achieve this the user needs to assign weights to objectives before

the optimization process. An objective with a higher priority takes a higher weight value.

The main disadvantage of this technique is that it cannot find solutions on a compromise

region where all objectives are of similar importance to the decision maker. Branke and Deb

[2005] improved the idea of biased sharing and compared its performance with G-MOEA.

They proposed a biased crowding distance in NSGA-II which has more flexibility than biased

sharing in terms of finding solutions within the region of interest.

Some popular approaches in Reference Point Based Algorithms are described below.

Deb et al. [2006] proposed a method that integrated use-preference information with

NSGA-II [Deb et al., 2002]. The new method which was called R-NSGA-II requires the

decision maker to provide one or more reference points at the beginning of the search process.

In R-NSGA-II, a modified version of the crowding distance operator [Deb et al., 2002] pref-

erence distance was used to favour the solutions which are closer to the reference point(s).

To compute the preference distance, the Euclidean distances of all solutions to the reference
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point(s) are calculated and the solutions with lower distances are ranked higher. To maintain

the diversity of solutions in the desired regions, an extra parameter ǫ was introduced. In this

thesis, the performance of the proposed approach has been compared with R-NSGA-II. In

short, the following changes have been applied to NSGA-II.

Step 1: The solution closest to the reference point should be found and assigned the rank one.

To achieve this, the Euclidean distance between each solution and the reference point(s)

are calculated and sorted.

Step 2: Solutions with the smaller crowding distance should be preferred. To achieve this, for

each reference point the lowest rank calculated in the previous step is assigned as the

crowding distance to a solution. This means that solutions closest to the reference

point(s) receive lowest crowding distance values.

Step 3: To maintain diversity of solutions a ǫ parameter is used. To do this, the sum of

normalized differences in objective values for all solutions is calculated. Those which

have the value of ǫ or less have been grouped. From each group a random solution will

be picked up and the rest of the members will be assigned a large number to remain in

the race.

Wickramasinghe and Li [2009] integrated reference points and light beams with particle

swarm optimization (PSO). The new approach (Preference-based NSPSO), which is based

on a distance metric, changes the position of particles based on the user supplied information

to find the preferred regions. This distance-metric based method was compared with another

user-preference based EMO (Dominance-based reference point NSPSO) [Wickramasinghe and

Li, 2008] which uses dominance-based comparison. It was shown that the distance metric

approach performed better than NSPSO.

The proposed approach provides different options for DM in terms of directing solutions

to desired regions. For example, if the user wants to choose several non-dominated solutions

in step 4, the proposed approach can display solutions which have a next best achievement

function value or use clustering the current populations. The main drawback of this approach

is that visualizing the Pareto-optimal front for DM beyond three objectives is difficult.

r-MOEA/D-STM [Li et al., 2014] is the user preference version of MOEA/D-STM [Li

et al., 2014]. In this approach a decision maker provides his/her preferences as reference

points (r). It is widely accepted that using preferences in MOEAs potentially reduces the

computational cost and drives the search direction to particular areas. In this study, reference
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points are used in both feasible and infeasible regions, it has been shown that r-MOEA/D-

STM is able to provide solutions close to the reference points where there are two or three

objectives. It should be noted that the performance of r-MOEA/D-STM has not been mea-

sured on complicated Pareto-optimal shapes and many-objective problems.

Light Beam Based Algorithms are another type of a priori user-preference methods

which are very similar to reference point based algorithms. However, a light beam is passed

to the optimizer rather than a reference point. One of the popular light beam algorithms is

(LBS-NSGA-II) which is proposed by Deb and Kumar [2007a]. They applied light beam

search to NSGA-II. The decision maker provides aspiration, reservation and a preference

threshold for each objective and the procedure can be continued until a single preferred

solution is obtained. To control the density of solutions, the parameter ǫ is used. A decision

maker can choose more than one light beam so more than one set of preferred regions can be

found simultaneously. It has been shown that the proposed approach can find solutions on the

Pareto-optimal front up to three-objective problems, and solutions can converge satisfactorily

if there are more objectives. Another light beam approach is Distance Metric which

is proposed by Wickramasinghe and Li [2009]. They integrated light beams with particle

swarm optimization (PSO). The new approach changes the position of particles based on the

user-supplied information to find the preferred region. Distance metric was compared with

another user-preference based EMO (NSPSO) [Wickramasinghe and Li, 2008] which uses a

dominance-based comparison and it was shown that the distance metric approach performed

better than NSPSO.

2.5.2 a posteriori Methods

In this section we describe some of the EMO algorithms which incorporate the preference

information after the optimization process.

Preference-inspired coevolutionary algorithm PICEA [Wang et al., 2013] is based on a

posterior decision making process which provides both proximal and diverse representation

of the entire front to the decision maker. It coevolves a population of solutions with pref-

erence concepts. Solution can be awarded good fitness values if they perform well against

preferences.

In Weighted Stress Function Method (WFSM) [Ferreira et al., 2007], firstly a

Pareto-optimal set is generated, then a methodology is used to consider the preference of a

decision maker by selecting a single solution or a region of the Pareto frontier. In other words,
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the search and decision processes are sequential. The main idea behind this method is that

the best solution that satisfies the preference of the user must have the following properties:

1) the solution must be a non-dominated solution and belong to the Pareto front; 2) the ideal

objective vector should be considered by the search process. For instance, where the aim

is to maximize the criteria, the optimization of each criteria corresponds to the maximum

value for that criterion. However, in the case of a multi-objective optimization problem, the

importance of each criterion will induce a stress (pressure) for searching for solutions that

maximize each of the criteria. For example, if there are two criteria f1 and f2, γw1 and γw2

are two stresses which belong to a solution and are associated to each corresponding criterion

f1 and f2. w1 and w2 are weights associated with each criterion. It should be noted that the

proposed method works well on convex and non-convex Pareto fronts but it is not suitable

for problems with discontinuous Pareto fronts.

2.5.3 Interactive Methods

In this section we describe some of the EMO algorithms which incorporate preference infor-

mation during the optimization process.

PBEA [Thiele et al., 2009] is developed based on an indicator-based evolutionary algo-

rithm (IBEA) [Zitzler and Künzli, 2004]. The idea of interactive user-preference has been

combined with PBEA and the new approach is called Preference-Based Evolutionary

Algorithm (PBEA). The main steps are described below:

Step1 Initialization: By using PBEA, the approximation of a Pareto-optimal set is generated.

A small set of solutions is displayed to a DM for evaluation.

Step2: Reference Point: DM specifies a reference point which indicates a desirable value for

the objective function.

Step3: Local Approximation: Here, the reference point information is used in the PBEA algo-

rithm to generate the local approximation of the Pareto-optimal set.

Step4: Reference Point Projection: Non-dominated solutions generated in the previous step

received the smallest value for the achievement function.

Step5: Termination: If DM found most preferable solutions as a good estimate, he/she can

stop the search. Otherwise, DM can continue to search by starting from step 1.
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RD-NSGA-II, which is proposed by Deb and Kumar [2007b], applies reference direction

to NSGA-II. In this approach, one or more reference directions can be obtained by the user in

the objective space in each iteration. A number of representative points along the reference

direction will be generated. A set of solutions corresponding to these representative points are

obtained by using EMO strategies. A single solution which is obtained by utility function is

used for further analysis. This procedure will continue until there is no further improvement.

In UTAGMS [Greco et al., 2008], the decision maker provides his/her preferences by using

a set of pairwise comparisons based on the reference alternative which is a subset of AR ⊆ A.

A preference model is built based on the additive value functions. This model is used to

define two rankings in the set A: 1) a necessary ranking for any two members of set A such

as a and b if, and only if, a is preferred to b for all compatible value functions; 2) possible

ranking holds for this set if, and only if, a is preferred to b for at least one compatible value

function. UTAGMS is an interactive approach as it used progressive pairwise comparisons

to increase the subset AR. Where no preference information is provided, a necessarily weak

preference creates a weak dominance relation and a possibly weak relation is a complete

relation.

The preference information can be specified directly or indirectly. If it is specified directly,

values of some parameters are used in the preference model. This direct preference infor-

mation is used in the traditional aggregation paradigm based on which aggregation model is

constructed. This preference is then applied to set A to rank alternatives. Indirect preference

information is used in a regression paradigm based on the historic preference on the subset of

alternatives. Then a consistent aggregation model which comes from this indirect informa-

tion is applied to set A to rank alternatives. This indirect preference information provided

by DM is a good reason for involving DM in the loop of optimization and to incorporate

his/her responses.

In the Interactive Hybrid Approach [Klamroth and Miettinen, 2008], a rough ap-

proximation of a non-dominate set is first generated. To provide an efficient overview of

non-dominated solutions for users, a piecewise-linear approximation tool is used. The main

involvement of a decision maker is to check the accuracy of this approximation in various

ways: 1) bounding number of solutions are generated or any error in the approximation;

2) refining the approximation where DM can learn about the problem by studying the ap-

proximation. This gives an opportunity to DM to direct the search to the best non-dominated

solution without comparing a lot of solutions at a time; 3) locating the most satisfactory re-

gion by specifying the least acceptable values in the form of a reference point. Since the
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number of optimization problems to be solved during the whole solution process can stay

relatively small, this approach is not computationally expensive.

It should be noted that the there are some shortcoming with mentioned decomposition

and user-preference based evolutionary algorithms. Those which are proposed in couple of

years ago did not take into account the uniformity of solutions and they mainly focused on

the convergence of solutions. More recent algorithms try to produce uniform solutions in the

objective space by generating uniform weight vectors. However, this cannot be generalized

to all algorithms as there is not always a direct relationship between weight vectors and

solutions in the objective space. Recently, some approaches try to produce a uniform set of

solutions in the objective space by adopting the weight vectors. However, the effect of weight

vector adoption has not been measured during the optimization process. In this thesis, we

proposed a user-preference based decomposition method which produces uniform solutions in

the objective space by adopting the weight vectors and the effect of adoption is measured and

take into account during the optimization process. Since the user-preference information has

been adopted simultaneously with weight vectors, it can solve many-objective optimization

problems efficiently.

2.6 Performance Metrics in EMO

This section gives an overview of some widely used metrics for evaluating multi-objective

evolutionary algorithms.

The performance of EMO algorithms is typically measured by the following two aspects:

1) closeness of the solutions to the Pareto-optimal front (convergence); 2) the diversity and

the spread of the solutions. A property which is sometimes overlooked is that the metric

should measure the performance of a set of algorithms without relying on knowledge of the

Pareto-optimal front. This problem becomes more serious when the Pareto-optimal front is

unknown, which is most often the case in many real-world problems. In the remainder of

this section, we review some existing performance metrics for EMO algorithms. The major

classifications of metrics presented in this section are adopted from [Okabe et al., 2003].

2.6.1 Cardinality-Based Metrics

These metrics measure the performance of various algorithms by counting the total number

of non-dominated solutions found by each algorithm [Veldhuizen, 1999a; Veldhuizen and

Lamont, 2000]. However, producing a large number of non-dominated solutions does not
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necessarily make an algorithm better than another. For example, an algorithm may have

only one solution that dominates all the solutions of another algorithm. In order to alleviate

this problem, many cardinality-based approaches rely on a reference set and measure the

contribution from each algorithm with respect to that reference set [Veldhuizen, 1999a; van

Veldhuizen and Lamont, 1999; Zitzler, 1999; Czyzak and Jaszkiewicz, 1998; Hansen and

Jaszkiewicz, 1998].

There are many different ways of constructing a reference set. For example, a reference

set may be formed by aggregating all known solutions to a problem by various means, or

by merging the solution sets that are generated by a set of algorithms that are to be com-

pared [Mohan and Mehrotra, 2011]. These reference sets may contain all possible solutions,

or just the non-dominated solutions. It should be noted that the ranking of a set of algo-

rithms may change depending on the choice of the reference set [Mohan and Mehrotra, 2011].

The reference set used in this chapter is formed by taking the non-dominated solutions from

the merged solution sets of several algorithms.

2.6.1.1 Set Convergence Metric

This metric is used to measure the relative convergence of two solution sets with respect

to each other [Zitzler and Thiele, 1999]. Let A, and B be the solution sets of two different

algorithms. C(A,B) is calculated as follows:

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
, (2.7)

If C(A,B) = 1 then A dominates all members of B, and if C(A,B) = 0, none of the solutions

from B are dominated by A. The result of C metric is not always reliable. For instance,

there are cases where the surfaces covered by two fronts are equal, but one front is closer to

the Pareto-optimal front than the other.

2.6.1.2 Convergence Difference of Two Sets

This metric, which is called D metric [Zitzler, 1999], is an improved version of the C metric.

Let A and B be the solution sets of two different algorithms. Then D(A,B) is the size of the

region which is only dominated by solutions in A, and D(B,A) is the size of the region which

is only dominated by solutions in B. For a maximization problem if D(A,B) < D(B,A),

then it is concluded that B dominates A.
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Neither C and D metrics measure the diversity and spread of the solutions. Additionally,

these two metrics are not efficient when comparing more than two algorithms. Another

major drawback of these two metrics is that they become increasingly inaccurate as the

number of objectives increases. The values for C(A,B) converge to C(B,A) as the number

of objectives increases. This is because most of the solutions in many-objective problems

are non-dominated to each other. Therefore, the areas covered by the two sets of solutions

become equal.

2.6.2 Distance-Based Metrics

Generational Distance(GD) [Veldhuizen, 1999a] is a metric widely used to measure the con-

vergence of EMO algorithms by calculating the average closest distances of obtained solutions

to the Pareto-optimal front. More precisely, the GD value is calculated in the following way.

Let Q be the obtained solution set and P ∗ a set of non-dominated solutions on the Pareto-

optimal front. Then,

GD(Q,P ∗) =

∑

v∈Q d(v, P ∗)

|Q|
(2.8)

where |Q| is the number of solutions in Q, and d(v, P ∗) is the closest Euclidean distance

from each point v to a point in P ∗. Since GD is calculated based on the Pareto-optimal

front, it gives an accurate measure for the convergence of an algorithm. However, GD does

not measure the diversity and spread of the solutions on the Pareto-optimal front. Another

disadvantage of GD is that it becomes difficult to calculate when dealing with many-objective

problems. For a reasonable sampling of the Pareto-optimal front, a large number of points

are required, which makes the calculation of GD computationally expensive. It should be

noted that GD cannot be applied without the existence of a reference front such as the

Pareto-optimal front.

Inverted Generational Distance (IGD) [Zitzler et al., 2003] is an improved version of

GD that takes both diversity and convergence of solutions into account. However unlike

GD, which calculates the average closest distance of solutions to the Pareto-optimal front, it

calculates the average closest distance of sample points on the Pareto-optimal front to the

obtained solutions. Therefore,

IGD(P ∗, Q) =

∑

v∈P ∗ d(v,Q)

|P ∗|
. (2.9)

A major advantage of IGD is that it can measure both convergence and diversity of the
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solutions simultaneously. Similar to GD, IGD becomes exponentially expensive as the number

of objectives increases.

2.6.3 Volume-Based Metrics

Hypervolume Metric (HV) [Veldhuizen, 1999a; Zitzler and Thiele, 1998] is a metric which

measures the volume between all solutions in an obtained non-dominated set and a nadir

point. A nadir point is a vector of the worst objective function values obtained by the

solution set. To calculate the HV value, a set of hypercubes (ci) is constructed by taking

a solution i and the nadir point as its diagonal corners. Finally, the HV value is the total

volume of the hypercubes.

HV = volume





|Q|
⋃

i=1

ci



 , (2.10)

where Q is the solution set. Higher HV values indicate a better convergence and diversity of

solutions on the Pareto-optimal front. A major advantage of HV is that it does not depend

on knowledge of the Pareto-optimal front and its disadvantage is that HV value depends on

the estimation of the nadir point.

2.6.4 User-Preference Performance Metrics in EMO

All of the metrics discussed so far were designed to measure the performance of EMO algo-

rithms that approximate the entire Pareto-optimal front. There has been limited work on

developing metrics for comparing user-preference based EMO algorithms.

To the best of our knowledge, Wickramasinghe et al. [Wickramasinghe et al., 2010] were

the first to propose a metric for comparing user-preference based EMO algorithms. This

metric works by combining the solution sets of all algorithms that need to be compared.

Then, the closest solution to the ideal point is used as the center of a hypercube that defines

a preferred region. Figure 2.5 shows how a preferred region is defined for two different

reference points. The size of the preferred region is determined by a parameter, δ, which is

half the edge length of the hypercube. Finally, for each of the algorithms, HV is calculated

with respect to a nadir point for all the solutions that fall within the preferred region. To

calculate the nadir point, this metric uses the solutions from all algorithms inside the preferred

region. The choice of the ideal point is the origin of the coordinate system for minimization

problems.

An advantage of this metric is that it does not require knowledge of the Pareto-optimal
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Figure 2.5: An example to depict the deficiency of the metric proposed in [Wickramasinghe
et al., 2010].

front. However, the major drawback of this metric is its dependency on the location of the

ideal point. This may cause misleading results when the reference point is biased towards

one objective more than others. This misleading result is shown in Figure 2.5. As it be seen

from the figure solutions, which are generated for the reference point A, converge on the

Pareto-optimal front with a minimum distance to the reference point. In other words, they

are fairly good solutions and the algorithm performs reasonably well. However, the proposed

metric does not indicate this results due to the a bad choice of the ideal point which causes

many high quality solutions to fall outside the preferred region. This shows that the results

of this metric can be sensitive depending on the location of the reference point.

In chapter 7 of this thesis, we have developed a metric to measure the performance of

user-preference based approaches without being dependent in any ideal/nadir point. The

proposed metric is independent of the knowledge of the Pareto-optimal front, measure both

convergence and diversity of solutions in the objective space and scale well as the number of

objectives increases.
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2.7 Summary

In this chapter, multi-objective optimization, dominance relation and many-objective opti-

mization have been described. Since adopting EAs is one of the promising approaches to solve

multi-objective optimization problems, basic functionality of EAs and the process of using

them have been presented. Two main types of EA approaches to solve EMOs are described

which are dominance-based and decomposition-based. It has been observed that dominance-

based approaches are not very effective to solve many-objective optimization problems and

decomposition-based EMO approaches are more promising in this regard. It has been also

seen in the literature that user-preference approaches can solve many-objective optimization

problems more effectively than non-user preference based approaches. As a result, there are

great advantages for combining these two approaches. In the next chapter, we have developed

a method that combines decomposition and user-preference methods. To discover whether

this combination is effective in solving many-objective optimization problems, in chapter 4

a user-preference based decomposition approach has been proposed and its performance has

been evaluated. Some of the existing works which attempted to maintain the uniformity of

solutions in the objective space by adjusting the weight vectors during the course of optimiza-

tion are reviewed. It has been found that there is a lack of a systematic way to adapt weight

vectors which leads us to propose a new strategy for adapting weight vectors in chapter 6.

Definitions of some widely used multi-objective metrics are presented. However, there is a

lack of an effective metric to evaluate the performance of user-preference based approaches.

Therefore, in chapter 7 a new metric for this purpose has been proposed.
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Chapter 3

Applying User Preferences on

Decomposition Methods

3.1 Introduction

In chapter 1 we raised the idea of combining decomposition methods and user-preference ap-

proaches. Decomposition methods alleviate selection pressure problems of dominance-based

evolutionary algorithms. User-preference approaches reduce the computational cost by fo-

cusing the search on the preferred region of Pareto-optimal front. In this chapter, we propose

a multi-objective optimization algorithm that integrates the user-preference with decompo-

sition based EMO algorithms in order to provide a mechanism for tackling many-objective

problems more effectively. In particular, the proposed algorithm has four major advantages:

1) Less susceptible to the selection pressure problem resulting from the use of dominance

comparisons, by using a decomposition based method; 2) More computationally efficient by

searching the regions which are preferred by the decision maker; 3) Faster convergence to the

Pareto-optimal front; 4) Better scalability to higher objective spaces.

This chapter is organized as follows. The proposed algorithm is described in Section 3.2.

The experimental results are presented and analyzed in Section 3.3 and finally, Section 3.5

concludes the chapter.

In this section we describe the details of a reference point based evolutionary multi-

objective optimization problem through decomposition, which we refer to as the R-MEAD

algorithm. As mentioned in Section 3.1, we seek to design an algorithm that scales better

when the number of objectives increases. Therefore, instead of tackling a multi-objective
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Figure 3.1: This figure shows the effect of updating the weight vectors in moving the
solutions closer to the desired region.

problem directly, we first decompose it into a set of single-objective problems using a de-

composition strategy such as weighted-sum or Tchebycheff. However, unlike decomposition

methods such as MOGLS [Ishibuchi and Murata, 1998] and MOEA/D [Zhang and Li, 2007]

where a set of weight vectors is generated to cover the entire Pareto-optimal front, we gener-

ate a smaller set of weight vectors just to find a number of solutions close to the user-supplied

reference. Theoretically, if we manage to find a suitable weight vector, it is possible to find

a solution close to the reference point. However, finding an appropriate weight vector that

resulting in a solution close to the reference point is not trivial. To solve this problem, we

initially select a sub-optimum weight vector and adapt it in the course of evolution until it

results in a solution as close as possible to the user-provided reference point as well as to the

Pareto-optimal front.

Figure 3.1 shows how updating the weight vector might result in solutions closer to the
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user’s desired region. Region B in Figure 3.1 shows the desired region close to the reference

point that we wish to find. Regions A and C show several solutions which are obtained

on the Pareto-optimal front far from B (the desired region). The white solid arrows show

the effect of updating the weight vectors. Note that the optimization of the population and

the weight vectors happen simultaneously and as a result, the sub-optimal solutions which

are shown in a white circle in Figure 3.1 might move directly towards the desired region

on the Pareto-optimal front. However, if the individuals converge to any other location on

the Pareto-optimal curve, the adaptation of the weight vector will move them closer to the

desired region.

3.2 R-MEAD

Algorithm 3.1 shows the details of this process. The major stages of the algorithm are

outlined as follow:

Step 1 - Initialization

An initial population is randomly initialized within the lower and upper boundaries and eval-

uated for a limited number of iterations of an evolutionary algorithm with a predetermined

decomposition method. Once the population is evolved, all of the objectives are evaluated

and the results are stored in PF matrix (Algorithm 3.1 lines 1-4). It should be noted that

each individual in the population is associated with only one weight vector which is later

used to decompose the problem. The size of this initial population is determined by size1.

Step 2 - Finding the base weight vectors

At this stage, for each of the reference points provided by the user, the closest point in the

objective space (PF) is found by using Euclidean distance. The corresponding weight vector

of the closest point to each reference point is chosen as the base weight vector around which

a set of new weight vectors is generated. The number and the spread of weight vectors are

determined by the size2 and radius variables respectively (Algorithm 3.1 lines 6-10). Since

the number of individuals and the weight vectors are equal, the variable size2 is practically

the population size.
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Algorithm 3.1: R-MEAD

1 Inputs:
size1 : the initial population size
size2 : number of solutions to be generated close to the reference point
radius: determines the size of the solution region close to the reference point
m : number of objectives
n : number of dimensions
nref : number of provided reference points
RF : A nref ×m dimensional matrix of reference points with each row representing a single reference point.
dm : the decomposition method (weighted-sum or Tchebycheff)
F (x) : the objective function

2

3 Variables:
IW : A size1×m dimensional matrix of the initial weight vectors
Wi : A size2×m dimensional matrix of weight vectors for the ith reference point.
BW : A nref ×m dimensional matrix of best weight vectors for reference points

4

1. P ← rand(lbounds, ubounds, size1, n)

2. IW ← init weight(size1)

3. evolve(P, F (x), IW, dm)

4. PF ← evaluate(P, F (x))
5. step← radius/size2
6. for i← 1 to nref do
7. ind← min ind(euclid dist(PF , RF [i,:]))

8. BW [i,:] ← IW [ind,:]

9. Wi ← init weight(size2, raduis, BW [i,:])

10. end for
11. P ← rand(lbounds, ubounds, size2× nref , n)

12. while stop criteria not met do
13. evolve(P, F (x))
14. PF ← evaluate(P, W, dm)

15. for j ← 1 to nref do
16. dist← euclid dist(PF , RF [i,:])

17. best index← min ind(dist)
18. worst index← max ind(dist)
19. direction←Wj

[best index,:]
−Wj

[worst index,:]

20. update weight(Wj , direction, step)
21. end for
22. end while

Step 3 - Evolving the population

Here the population is evolved and the weight vectors associated with each reference point

are updated in a round-robin fashion until a termination criteria is met (Algorithm 3.1 lines

12-22).

Step 3.1 - Updating weights

At this stage, the Euclidean distance of each reference point to its corresponding solutions

in the population is calculated. In order to find the direction in which the weights should

be updated, the best and the worst weights that correspond to the closest and the farthest

points to the reference points are found. Next, an updated direction is calculated based on
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the best and the worst weight vectors (Algorithm 3.1 line 19). Once the updated direction

is determined the weights are updated by moving them in the gradient direction with the

amount determined by the step variable (Algorithm 3.1 line 20). This process is repeated for

all weight vectors associated with each reference point.

It should be noted that unlike MOEA/D, our algorithm does not form a neighborhood

for each individual. Instead, the evolutionary optimizer relies on the entire population to

create new offspring. This eliminates the need to calculate the Euclidean distances between

all weight vectors to form the neighborhoods. Because we only need to find a limited set

of solutions near the user-supplied reference point rather than forming the entire frontier,

the population size that we use is smaller than MOEA/D, which makes R-MEAD more

computationally effective.

3.3 Experimental Settings

In this section we report the performance of our algorithm on a set of benchmark problems

including ZDT1-ZDT4 and ZDT6 from the ZDT test suite [Zitzler et al., 2000] for two-

objective problems and DTLZ1-DTLZ2 functions from DTLZ test suite [Deb et al., 2001] for

three-objective problems using the Tchebycheff and the weighted-sum approaches.

3.3.1 Parameter Settings

The initial population size (size1) is set to 100 and 250 for the two-objective and three-

objective problems respectively and the algorithm is executed for 10 iterations in order to

generate the base weight vectors (See Algorithm 3.1). In the second stage of the optimiza-

tion, the population size (size2) is set to 30 and 60 for two and three-objective problems

respectively. We consistently used 450 iterations for the two-objective problems and 600 for

the three-objective problems. The radius is set to 0.02 for the weighted-sum and 0.05 for

the Tchebycheff approaches. The performance of the algorithm is not sensitive to the radius

value and its sole purpose is to allow the users to adjust the size of the regions they wish to

cover near the reference points. Since the way weight vectors are used in the Tchebycheff

and the weighted-sum approaches is different, we chose the radius value such that both ap-

proaches cover a region with relatively equal sizes. The optimizer we used in our framework

is a simple implementation of Differential Evolution [Storn and Price, 1995].
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3.4 Analysis of Results

3.4.1 Benchmark Results

For all the benchmark problems we used two reference points in the infeasible and the feasible

regions where one is closer to the Pareto-optimal front and the other one is farther away from

it. On ZDT1, the reference points (0.3, 0.4) and (0.8, 0.2) were used. Figure 3.2(a) shows the

promising result of our algorithm on this function. On ZDT2 the reference points (0.8, 0.3)

and (0.5, 0.9) were used. Figure 3.2(b) shows that our algorithm managed to find a reasonable

region on the Pareto-optimal front and close to the reference points. Our reference points

for ZDT3 were (0.15, 0.40) and (0.75,−0.20). Figure 3.2(c) illustrates our results on this

function. On ZDT4 (0.2, 0.4) and (0.5, 0.4) were our reference points. Figure 3.2(d) shows

the results on ZDT4 where a set of solutions were found on the Pareto-optimal front close

to the reference points. We chose (0.9, 0.3) and (0.5, 0.7) as reference points for ZDT6.

Figure 3.2(e) shows that we get excellent results for this function.

On DTLZ1 (0.2, 0.4, 0.9) and (0.2, 0.2, 0.5) are our reference points. We have chosen

(0.2, 0.5, 0.6) and (0.7, 0.8, 0.5) as reference points for DTLZ2. These points were chosen in

feasible and infeasible regions with various distances from the Pareto-optimal front. It can

be seen from Figures 3.4(a) and 3.4(b) that the R-MEAD algorithm also managed to find

suitable regions for the three-objective problems. Overall, it can be seen from Figures 3.2

and 3.4 that the R-MEAD algorithm managed to find the desired regions as close as possible

to the reference points on the Pareto-optimal front. The algorithm works consistently for

the reference points in both feasible and infeasible regions.

3.4.2 Comparison between Weighted-Sum and Tchebycheff

In this section, instead of Tchebycheff we used weighted-sum as the decomposition method

and ran the algorithm with the same reference points. In all test functions we stopped the

algorithm after 450 generations. The results of the algorithm on test functions illustrate

the weighted-sum approach does not work properly for non-convex Pareto-optimal fronts.

Figure 3.3 shows the performance of the algorithm using the weighted-sum decomposition

method on two-objective problems. For ZDT2, ZDT3 and ZDT6 with non-convex Pareto-

optimal fronts, the weighted-sum method could not find nicely distributed solutions close

to the reference points on the Pareto-optimal front, as shown in Figures 3.3(b), 3.3(c) and

3.3(e). In contrast, the functions with a convex Pareto-optimal front such as ZDT1 and
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Figure 3.2: Experimental results on ZDT1-ZDT4, ZDT6 benchmark functions using
Tchebycheff decomposition.
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Figure 3.3: Experimental results of R-MEAD on ZDT1-ZDT4 and ZDT6 benchmark
functions using weighted-sum decomposition.
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(a) DTLZ1

(b) DTLZ2

Figure 3.4: Experimental results of R-MEAD on DTLZ1 and DTLZ2 benchmark functions
using Tchebycheff decomposition.
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ZDT4, gave similar results to those of the Tchebycheff method, as shown in Figures 3.3(a)

and 3.3(d).

3.4.3 Faster Convergence to the Pareto-optimal front

In Section 3.1, we mentioned that one of the difficulties faced by EMO algorithms in solving

many-objective problems is the exponential increase in the number of solutions required to

approximate the Pareto-optimal front as the number of objectives increases. It has been

suggested that a reference point based approach allows a more focused search and elimi-

nates the need to approximate the entire Pareto-front [Wickramasinghe and Li, 2008]. This

approach can result in significant computational savings, especially in high dimensional ob-

jective spaces. In this section, we attempt to show this potential saving more quantitatively

through experimentation.

We used Generational Distance (GD) [Veldhuizen, 1999b] to measure the closeness of a

solution front (PFsol) to the Pareto-optimal front (PFtrue). For GD formula please refer to

equation 2.8 in chapter 2. We used a p value of 2 in our experiments.

Since we use Tchebycheff decomposition method in both R-MEAD and MOEA/D, they

result in a similar spread of solutions in the regions they cover. This allows us to exclude the

spread and focus solely on the convergence in our comparison. Additionally, in order to have

a fair comparison, we consistently used the same value for the variable n in both R-MEAD

and MOEA/D. Unlike dominance-based approaches where the first front is usually used to

calculate the GD value, we set n to the population size in order to capture the convergence

behavior of the entire population.

For our experiments we used a two-objective and a three-objective version of DTLZ1

function. In order to analyze the sensitivity of the algorithms to the population size, we used

20, 50 and 100 population sizes for two-objective. For three-objective we used 60 and 250 as

the population sizes. The total number of fitness evaluations was set to 2.5×104 and 7.5×104

for the two-objective and the three-objective DTLZ1 respectively. Figure 3.5 shows how fast

the GD value decreases through the course of evolution. Each point on the convergence

plot is the average of 25 independent runs. It can be seen from Figure 3.5 that when an

equal population size is used, R-MEAD consistently has a lower GD value than MOEA/D

on both two-objective and three-objective DTLZ1. The fact that the error bars for the same

population sizes do not overlap shows that R-MEAD algorithm converges significantly faster

than MOEA/D. Figure 3.5(a), shows that the best results are achieved by R-MEAD with
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population sizes of 50 and 100 respectively.

On the 3-objective DTLZ1, Figure 3.5(b) shows that there is a more significant difference

between the convergence speed of MOEA/D and R-MEAD compared to that of the two-

objective DTLZ1. R-MEAD managed to obtain a similar convergence accuracy compared

to MOEA/D with significantly fewer fitness evaluations from around 2 × 104 to 3.5 × 104

depending on the population size. The increased ‘gap’ in the convergence speed from a

two-objective problem to a 3-objective problem suggests that a considerable amount of com-

putational resources can be saved using a reference point based approach, especially when

dealing with many-objective problems. It should be noted that although in the case of R-

MEAD we have not taken the closeness to the reference point into account, the experiments

that we conducted in Section 3.4.1 have shown that a region close to the reference point can

be formed using around 3.6× 104 fitness evaluations which are far fewer than 7.5× 104 that

we used in this section. By looking at Figure 3.5(b) we can see that R-MEAD has a much

lower GD value, around 3.6 × 104 which shows that not only that it converged faster than

MOEA/D but also managed to find a suitable region close to the reference point.

3.5 Chapter Summary

In this chapter, we propose a user-preference based evolutionary algorithm that relies on

decomposition strategies to convert a multi-objective problem into a set of single-objective

problems. The use of a reference point allows the algorithm to focus the search on more

preferred regions which can potentially save considerable computational resources. The algo-

rithm that is proposed dynamically adapts the weight vectors and is able to converge close to

the preferred regions. Combining decomposition strategies with reference point approaches

paves the way for more effective optimization of many-objective problems. The use of a

decomposition method alleviates the selection pressure problem associated with dominance-

based approaches while a reference point allows a more focused search. The experimental

results show that the proposed algorithm is capable of finding solutions close to the reference

points specified by a decision maker. Moreover, our results show that high quality solutions

can be obtained using less computational effort compared to a state-of-the-art decomposition

based evolutionary multi-objective algorithm. In this chapter, we have presented a very sim-

ple way of updating the weight vectors. In the next chapter, we investigate the effectiveness

of adapting the weight vectors when dealing with many-objective problems with complex

non-convex Pareto-optimal fronts.
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Figure 3.5: Convergence of Generational Distance measure for R-MEAD and MOEA/D
on two-objective and three-objective DTLZ1.

50 (May 7, 2018)



Chapter 4

A User-preference Based Method

for Solving Many Objective

Problems

4.1 Introduction

In chapter 3, we showed that combining user-preference and decomposition methods is a

promising strategy to tackle the selection pressure issue of dominance approaches, especially

in the case of many-objective optimization problems. However, the proposed approach (R-

MEAD) only applies to two and three-objectives, and not more than that. In this chapter, we

want to extend R-MEAD to allow it to work for many-objective problems. The main difficulty

to achieve this lies in initializing a set of weight vectors. As weight vector initialization

in R-MEAD inherited the simplex-lattice design method from MOEA/D, the number of

sample points is governed by the dimensionality of the problem. In this chapter, we aim

to develop an algorithm called R-MEAD2 which resolves this issue of R-MEAD. In short,

R-MEAD2 extends R-MEAD in the following aspects: 1) A new method for initializing the

weight vector is used which makes R-MEAD2 scalable and applicable to many-objective

optimization problems. This method decouples the population size from the number of

objectives. 2) A uniform random number generator (ie., RNG) is used to simplify the update

mechanism of weight vector and make it more efficient. 3) The performance of R-MEAD2

is compared with the-state-of-the-art R-NSGA-II [Deb et al., 2006]. Recently, an algorithm

called UMOEA/D [Tan et al., 2013] has been proposed which detaches the population size
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from the number of objectives. It replaces the simplex-lattice design with the good lattice

point (GLP) [Fang and Wang, 1993]. In Section 4.3.1, we will show that when the number

of objectives exceeds eight, a simple uniform random number generator(RNG), which is

a commonly used technique in various programming languages, produces more uniformly

distributed solutions than GLP according to a measure called centered L2-discrepancy [Fang

and Lin, 2003]. R-MEAD2 replaces the simplex-lattice design with a uniform random number

generator (RNG). Another improvement of R-MEAD2 over R-MEAD relates to updating

weight vectors. In R-MEAD2, a simple hill climber is used to generate mutants based on

a uniform distribution to maintain the uniformity of the weight vectors. In each iteration,

a set of new weight vectors are generated based on a uniform distribution within a certain

region around the best weight vector that is found so far and the process is repeated until

the weights converge to a solution. Finally, R-MEAD2 with two well-known decomposition

methods, namely PBI and Tchebycheff are compared with R-NSGA-II [Deb et al., 2006] to

show the advantage of decomposition-based approaches over dominance based approaches.

The remainder of this chapter is organized as follows. The proposed algorithm is described

in section 4.2. Section 4.3 contains the experimental results and comparison between R-

NSGA-II and R-MEAD2. The chapter is concluded in Section 4.4.

4.2 Proposed approach (R-MEAD2)

This section describes the R-MEAD2 algorithm which is a reference point based evolutionary

algorithm that uses decomposition methods for solving many-objective optimization prob-

lems.

The population size of algorithms such as MOEA/D and R-MEAD that rely on a simplex-

lattice design grows dramatically as the number of objectives increases. More precisely, the

weight values w1, w2, . . . , wm are chosen from the set { 0
H
, 1
H
,...,H

H } where H is a parameter

chosen by the user. Therefore, the number of these vectors and consequently the population

size is calculated by the following formula: (H+m−1
m−1 ). Table 4.1 shows how the population

size grows with number of objectives when the simplex-lattice design is used to generate the

Table 4.1: R-MEAD pop-size for different objectives (H = 10).

# Objs (m) 4 5 6 7 8 9 10

Pop-size 286 1001 3003 8008 19448 43758 92378
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weight vectors. As can be seen, most of these population sizes are not commonly used in

evolutionary algorithms.

To remove the coupling between the population size and the number of objectives,

UMOEA/D [Tan et al., 2013] replaced the simplex-lattice design with the good lattice point

(GLP) in MOEA/D [Zhang and Li, 2007] for generating the weight vectors. However, as

shown in Section 4.3.1, GLP does not necessarily have a better uniformity as compared to

a uniform random number generator (RNG) when the number of objectives exceeds eight.

Additionally, using RNG for generating the weight vectors also removes the coupling between

the population size and the number of objectives. This allows the user to pick any suitable

population size irrespective of the number of objectives.

4.2.1 The R-MEAD2 Algorithm

In the proposed decomposition-based user-preference approach in order to guide the solutions

towards the desired region, the weight vectors should be dynamically updated so that the

solutions can converge in the direction of the reference point, and ideally on the Pareto-

optimal front. To achieve this effect each solution is assigned to a weight vector which is

updated in the course of optimization.

Figure 4.1 shows how the weights are updated during the optimization. On the left

the black squares denote the solutions at some iteration t. The gray squares represent the

solutions after running an iteration of the evolutionary optimizer. The arrows show the

updated direction which is determined by the weight vectors associated with each individual.

At this stage the weight vector associated with the closest solution to the reference point is

marked as the best weight vector (wb). Once the best weight vector is identified, a set of

new weight vectors is generated using RNG within a region centered around the best weight

vector. This forms a hypercube in an m dimensional space and the size of the region is

determined by parameter r which is the edge size of hypercube. The weight vectors w1 and

w2 are generated with a uniform distribution around wb as shown in the box at the center

of Figure 4.1. Next, these weights are assigned back to the solutions that were obtained in

the last iteration. Finally, the solutions are optimized with the newly assigned weights. This

process is shown on the right-hand side of Figure 4.1. As can be seen, the new solutions

marked by ‘⋆’ gradually converge within a confined region in the direction of the reference

point.

Algorithm 4.1 shows the details of the proposed method. The main steps are outlined

53 (May 7, 2018)



CHAPTER 4. A USER-PREFERENCE BASED METHOD FOR SOLVING MANY OBJECTIVE

PROBLEMS

below:

Best
Weight

Best
Weight

Preferred

Region

Reference Point

Pareto−optimal Front

Weight Vectors

Newly Generated

Pareto−optimal Front

Reference Point

Preferred

Region

f1

f2

w1

w1

w2

wb

wb w2

f2

f1

wb

⋆

⋆

⋆

Iteration t Iteration t+ 1

rr

Figure 4.1: Illustration how weight vectors are updated in RMEAD-2

Step 1 - Initialization

The initial population is created, and the weight vectors are initialized using rng and

init weights functions respectively (lines 1-2). The initial weight vectors are generated

using RNG over the entire space of weight vectors in order to increase the probability of

finding a good initial weight vector. Also the weights are normalized so that the components

of a weight vector add up to one.

Step 2 - Main Evolutionary Cycle

The population is evolved and the weight vectors are updated until a stopping criterion is

met (lines 3-10).

Step 2.1 - Evolving the Population

The population is evolved to find better solutions. The evolve function first uses a decom-

position method as specified by the dm variable to convert the multi-objective problem F(x)

to a set of single-objective problems similar to MOEA/D [Zhang and Li, 2007]. Then it ap-

plies several genetic operations in order to evolve the population (lines 4). Finally, the new
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Algorithm 4.1: R-MEAD2

1 Inputs:
popsize: the initial population size.
r : determines the size of the preferred region.
m : number of objectives.
n : number of decision variables.
dm : the decomposition method (Tchebycheff or PBI).
R : the reference point.
F(x) : the objective function.

2

3 Variables:
P : population of individuals (popsize× n).
W : matrix of weight vectors (popsize×m).
PF : solution set (popsize×m).

4

1. P← rng(lbounds, ubounds, popsize , n)
2. W← init weights(popsize, m)

3. while stop criteria not met do
4. P← evolve(P, F(x), W, dm)

5. PF← evaluate(P, F(x))
6. d← euclid dist(PF, R)

7. best← min ind(d)
8. wb ←W[best, :]
9. W← uniform(popsize, r, wb)

10. end while

population is evaluated using the original objective function F(x) to find a set of solutions

(PF) in the objective space (line 5).

Step 2.2 - Updating weights

In order to update the weight vectors, the best weight vector which is associated to the

solution with the shortest Euclidean distance to the reference point, has to be found. The

euclid dist function calculates the distance of all solutions to the reference point R. Then

the min ind function finds the index of the closest solution to the reference point which

matches the index of the best weight vector. The closest solution helps the solutions to

converge in the direction of reference points. Finally, the uniform function uses RNG to

generate a set of uniform weight vectors around the best weight vector wb (lines 7-9). The

process repeats from Step 2.1.
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Table 4.2: The average CD2 value of 25 independent runs for two initialization methods:
A uniform random number generator(RNG), and Good lattice point (GLP) for different
objectives. Those leading to statistically significantly lower CD2 values (at a significant
level of 5% according to Mann-Whitney-Wilcoxon (MWW) test) over others are high-
lighted in bold

# Objectives
Sample Sizes

50 100 250 500 1000 5000
RNG GLP RNG GLP RNG GLP RNG GLP RNG GLP RNG GLP

4 2.74 2.71 2.73 2.73 2.75 2.74 2.75 2.75 2.75 2.75 2.75 2.75
5 2.99 2.94 2.97 2.96 2.98 2.97 2.98 2.98 2.98 2.98 2.98 2.98
6 3.21 3.19 3.23 3.22 3.24 3.22 3.23 3.23 3.22 3.23 3.23 3.22
7 3.48 3.47 3.51 3.50 3.50 3.49 3.49 3.50 3.50 3.50 3.50 3.50
8 3.82 3.76 3.78 3.81 3.78 3.81 3.78 3.81 3.80 3.79 3.79 3.79
9 4.12 4.14 4.12 4.15 4.11 4.14 4.11 4.14 4.10 4.14 4.11 4.11
10 4.48 4.48 4.47 4.54 4.46 4.50 4.46 4.50 4.45 4.50 4.45 4.45
11 4.91 4.92 4.86 4.94 4.83 4.89 4.82 4.90 4.83 4.89 4.82 4.87
12 5.33 5.43 5.27 5.41 5.24 5.32 5.23 5.32 5.24 5.31 5.22 5.30
13 5.83 6.01 5.73 5.94 5.68 5.69 5.69 5.79 5.67 5.78 5.66 5.75
14 6.46 6.70 6.30 6.58 6.16 6.17 3.16 6.23 6.15 6.29 6.14 6.23
15 6.97 7.50 6.80 7.33 6.73 6.86 6.69 6.71 6.66 6.76 6.64 6.76

4.3 Experimental Results and Analysis

This section includes three main experimental settings. Firstly, the uniformity of GLP and

RNG is compared to measure which method is more suitable for many-objective problems.

Secondly, the convergence behavior of weight vectors on different reference points are ana-

lyzed. Finally, based on the parameter setting in section 4.3.2 the performance of R-MEAD2

using Tchebycheff and PBI on DTLZ1-DTLZ6 benchmark problems is compared with R-

NSGA-II. All algorithms are tested on problems with 4 to 10 objectives.

4.3.1 RNG vs GLP

In order to compare the performance RNG and GLP, we use a discrepancy measure called

centered L2-discrepancy (CD2) [Fang and Lin, 2003]. Since we are interested in the unifor-

mity of sample points, a lower value of CD2 implies better uniformity. Let P be a n ×m

matrix of sample points where the sample point xi = (xi1, . . . , xim) is the ith row vector in

matrix P, and m is the dimensionality of the sample points that, in this context, matches the

number of objectives. Centered L2-discrepancy [Fang and Lin, 2003] is defined as follows:
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Table 4.2 contains CD2 values for RNG and GLP using different sample sizes and di-

mensions (number of objectives m). As can be seen, for all population sizes (50-5000) when

the number of objectives grows beyond eight, RNG is consistently better than GLP. For

typical population sizes such as 100, 250, and 500 which are commonly used for solving

many-objective problems, RNG is better when the number of objectives is more than seven.

Table 4.2 shows that in the case of fewer objectives (less than eight) when the population size

is relatively small, then GLP can be beneficial. GLP can be useful when solving problems

with expensive objective function evaluation where a small population size is more practi-

cal. It is easy to see that when a small number of sample points are allowed, then a more

systematic approach such as GLP might be advantageous. However, when the number of

sample points grow, GLP and RNG may perform similarly. This behavior can be observed

in table 4.2 when the sample size is 1000 and 5000. It is clear that in most cases, both RNG

and GLP have similar CD2 values.

4.3.2 Parameter Settings and Performance Metrics

We used the population size of 200 for 4-7 objective problems, 300 for 8-objectives and

350 for 9 and 10-objective problems. A single reference point is used for all test problems

(fi = 0.25, i ∈ {1, . . . ,m}). In R-MEAD2-Te and R-MEAD2-PBI the parameter r which

determines the size of the preferred region is set to 2, and in R-NSGA-II the parameter ǫ is

set to 0.002. It should be noted that r parameter can be varied based on the preference of

the user.

To compare the performances of R-MEAD2-PBI, R-MEAD2-Te and R-NSGA-II we have

adopted inverted generational distance (IGD) [Zitzler et al., 2003] that measures both con-

vergence and diversity of solutions. The calculation of IGD is based on the average closest

distances between sample points on the Pareto-optimal front and the obtained solutions. We

used 10m sample points for four, five, six and seven objective problems and 5m for eight,

nine and ten objective problems, where m is the number of objectives. It should be noted
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that because of memory limitations, fewer samples points were generated to approximate

the Pareto-optimal front for problems having more than seven objectives. For IGD formula,

please refer to equation 2.9 in Chapter 2. Since all algorithms used in this study are user-

preference based, we only consider the solutions that fall within a desired region. The desired

region is a hypersphere with radius ρ around the sample point on the Pareto-optimal front

which is closest to the reference point. For all experiments in this study the parameter ρ is

set to 2.

4.3.3 Weight Vector Convergence

Figure 4.2 shows the convergence behavior of weight vectors for both PBI and Tchebycheff

on DTLZ1 using two different reference points. As it can be seen the weight values fluctuate

at the beginning of the search, but they gradually stabilize and converge to a fixed value

towards the end of a run. Depending on the position of a reference point which is shown

as R for the purpose of this experiment, weight vectors converge to different values. For

example, when R = (0.25, 0.25) which is near the center of the Pareto-optimal front, both

weight values converge to a value close to 0.5. However, when the reference point is biased

towards a particular objective (e.g. R = (0.2, 0.5)) the weight values differ as it can be seen

in Figures 4.2(c) and 4.2(d).

4.3.4 Numerical Results

In this section we compare the performance of R-MEAD2 based on two decomposition meth-

ods Tchebycheff and PBI (abbreviated as R-MEAD2-Te and R-MEAD2-PBI respectively)

with R-NSGA-II which is a dominance-based approach.

To test the significance of the obtained results we used the non-parametric Kruskal-Wallis

one-way ANOVA [Sheskin, 2003] to detect if there is any significant difference between the

performance of the three algorithms. The null and alternative hypotheses for Kruskal-Wallis

are as follow:

H0 : all samples come from the same distribution.

Ha : at least one sample comes from a different distribution.

In order to rank the algorithms, we used Mann-Whitney-Wilcoxon (MWW) test with Bon-

ferroni correction only when the null hypothesis of Kruskal-Wallis was rejected under 95%
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(a) DTLZ1 R-MEAD2-PBI R = (0.25, 0.25)
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(b) DTLZ1 R-MEAD2-Te R = (0.25, 0.25)
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(c) DTLZ1 R-MEAD2-PBI R = (0.2, 0.5)
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(d) DTLZ1 R-MEAD2-Te R = (0.2, 0.5)

Figure 4.2: Weight vector convergence behavior on 2-obj DTLZ1 using PBI and Tcheby-
cheff. Objective-1 is shown by ‘+’ and objective-2 by ‘O’.

confidence interval. Bonferroni correction is a simple technique for controlling the family-

wise error rate [Sheskin, 2003]. Family-wise error rate is the accumulation of type I errors

when more than one pair-wise comparison is used to rank a set of results. Under Bonferroni

correction, in order to achieve an overall significance level of α, the pair-wise tests should be

performed with a significance level of α′ = α
h , where h is the number of pair-wise compar-

isons which is three in this study. For our experiments, the significance level of Kruskal-Wallis

was set to 5%, and for pair-wise MWW tests a significance level of 1.67% was used, which

results in an overall significant level of approximately 5%. Table 4.3 contains the median

for 25 independent runs of the three algorithms. The last three columns show the p-value

for three MWW pair-wise tests and the column labeled ‘K-W’ contains the p-value for the

Kruskal-Wallis ANOVA test.
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Table 4.3 shows IGD results for all three algorithms. It can be observed that the differ-

ence between algorithms is significant for all functions and over all numbers of objectives. So

in all cases MWW test is used and the best performing algorithm is shown in bold. If the

performance of two algorithms are statistically similar, both entries are shown in bold. The

table shows that in general a decomposition approach is superior to the dominance-based

approach, R-NSGA-II. For the sake of clarity we have summarized the comparison between

R-NSGA-II and both versions of R-MEAD2 in table 4.4. From a total of 42 experiments,

R-MEAD2-Te outperforms R-NSGA-II on 37 functions and ties on 2, and R-MEAD2-PBI

outperforms R-NSGA-II on 35 functions and ties on 2. By looking back at table 4.3 we can

see that R-NSGA-II outperforms R-MEAD-PBI on DTLZ1 when the number of objectives

is less than 9. However, R-NSGA-II on DTLZ1 with 9 and 10 objectives, is outperformed

by R-MEAD-PBI. Although R-NSGA-II in some objectives of DTLZ1 and DTLZ6 performs

better than R-MEAD-PBI and R-MEAD-TE, in other test problems (DTLZ2-DTLZ5) R-

NSGA-II is outperformed by both versions of R-MEAD. It should be noted that IGD takes

both convergence and diversity of solutions into account. Therefore, we can conclude that

decomposition methods generally perform better than R-NSGA-II in terms of both conver-

gence and diversity on most many-objective problems. Finally, by comparing the results of

R-MEAD2-PBI and R-MEAD2-Te we can see that both decomposition methods have very

similar performance, but the PBI version performs slightly better than Tchebycheff on 24

functions but less well on 18 functions.

4.4 Chapter Summary

In this chapter, a user-preference based evolutionary multi-objective algorithm is proposed

that uses decomposition methods for solving many-objective problems. Decomposition tech-

niques that are widely used in multi-objective evolutionary optimization require a set of

evenly distributed weight vectors to generate a diverse set of solutions on the Pareto-optimal

front. The newly proposed algorithm, R-MEAD2, improves the scalability of its previous

version, R-MEAD, which uses a simplex-lattice design method for generating weight vectors.

That makes the population size dependent on the dimension size of the objective space. R-

MEAD2 uses a uniform random number generator to remove the coupling between dimension

and the population size. In this chapter, we show that a uniform random number genera-

tor is simple and able to generate evenly distributed points in a high dimensional space.

Our comparative study shows that R-MEAD2 outperforms the dominance-based method
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R-NSGA-II on many-objective problems. Since our experimental results suggest that both

PBI and Tchebycheff preform similarly, in the next chapter we will investigate further the

effect of penalty parameter (θ) in PBI and for different types of problems which (θ) is more

suitable.
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Table 4.3: Columns 3-5 show IGD values on DTLZ1-DTLZ6 test problems. Columns 7-9
show the p-value for three MWW pair-wise tests.

R-MEAD2-PBI R-MEAD2-PBI R-MEAD2-Te
Func. # Obj R-MEAD2-PBI R-MEAD2-Te R-NSGA-II K-W vs vs vs

R-NSGA-II R-NSGA-II R-NSGA-II

DTLZ1

4 2.7179e-02 2.0047e-02 2.6913e-02 2.37e-12 2.77e-12 4.43e-01 9.73e-11
5 1.5969e-02 1.3061e-02 1.3489e-02 1.89e-12 2.77e-12 9.73e-11 1.99e-01
6 1.9221e-03 1.4998e-03 1.5202e-03 8.51e-13 2.77e-12 9.73e-11 2.02e-02
7 5.7668e-03 4.9279e-03 5.1213e-03 4.82e-13 2.77e-12 9.73e-11 4.50e-03
8 1.0997e-02 8.7635e-03 1.0280e-02 1.10e-13 2.77e-12 1.05e-04 9.73e-11
9 8.2376e-03 6.0180e-03 8.7701e-03 4.43e-14 2.77e-12 1.10e-05 9.73e-11
10 1.3500e-02 1.0895e-02 1.5834e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11

DTLZ2

4 8.0403e-03 8.6697e-03 2.2126e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11
5 4.4710e-03 4.9080e-03 9.1054e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
6 4.8012e-04 5.0287e-04 7.2498e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11
7 1.1177e-03 1.4606e-03 1.6713e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
8 1.7828e-03 2.1404e-03 2.7116e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
9 9.8180e-04 1.0688e-03 1.4740e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
10 1.8515e-03 2.0637e-03 2.5305e-03 3.74e-16 2.77e-12 9.72e-11 9.72e-11

DTLZ3

4 7.1956e-03 9.1197e-03 2.2122e-02 1.04e-15 4.27e-11 7.54e-10 9.73e-11
5 4.2700e-03 5.8662e-03 9.1130e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
6 1.1976e-03 4.6246e-04 7.2545e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11
7 1.2094e-03 1.3654e-03 1.6704e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
8 1.7592e-03 2.5105e-03 2.7037e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
9 9.9098e-04 1.1612e-03 1.4536e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
10 1.8656e-03 2.4228e-03 2.5326e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11

DTLZ4

4 8.2896e-03 1.0301e-02 2.2212e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11
5 4.2842e-03 8.5091e-03 9.1201e-03 1.46e-15 2.77e-12 9.73e-11 2.64e-09
6 4.1579e-04 7.0932e-04 8.3514e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11
7 1.0711e-03 1.6623e-03 2.0305e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
8 1.6788e-03 2.6767e-03 2.9353e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
9 1.1728e-03 1.3986e-03 1.5749e-03 3.74e-16 2.77e-12 9.73e-11 9.73e-11
10 1.7495e-03 2.4007e-03 2.6921e-03 4.40e-16 4.43e-12 1.38e-10 9.73e-11

DTLZ5

4 1.6671e-02 1.6204e-02 1.7121e-02 3.74e-16 2.77e-12 9.73e-11 9.73e-11
5 5.8838e-03 5.7738e-03 5.9900e-03 9.53e-13 2.77e-12 5.51e-08 5.51e-08
6 1.8945e-03 1.7910e-03 1.9025e-03 1.46e-15 2.77e-12 2.64e-09 9.73e-11
7 6.4055e-04 6.2722e-04 6.4189e-04 5.11e-15 2.77e-12 5.51e-08 9.73e-11
8 9.6134e-04 9.1614e-04 9.6588e-04 3.74e-16 2.77e-12 9.73e-11 9.73e-11
9 8.1450e-04 7.9596e-04 8.1874e-04 1.46e-15 2.77e-12 2.64e-09 9.73e-11
10 7.2022e-04 6.7489e-04 7.2718e-04 1.46e-15 2.77e-12 2.64e-09 9.73e-11

DTLZ6

4 1.6829e-02 1.6831e-02 1.7129e-02 2.89e-11 2.77e-12 8.85e-07 8.85e-07
5 5.8428e-03 5.7819e-03 5.9870e-03 3.42e-09 2.77e-12 4.50e-03 1.10e-05
6 1.8867e-03 1.9213e-03 1.9077e-03 1.59e-14 2.77e-12 8.85e-07 9.73e-11
7 6.3685e-04 6.6313e-04 6.4248e-04 4.43e-14 2.77e-12 1.10e-05 9.73e-11
8 9.5918e-04 9.2020e-04 9.6915e-04 1.46e-15 2.77e-12 2.64e-09 9.73e-11
9 8.1404e-04 8.2422e-04 8.2033e-04 5.11e-15 2.77e-12 5.51e-08 9.73e-11
10 6.6082e-04 6.2611e-04 6.7947e-04 1.33e-12 4.43e-12 5.07e-02 9.73e-11

Table 4.4: R-NSGA-II’s number of wins, loses and ties against R-MEAD2-Te and R-
MEAD2-PBI.

R-MEAD2-Te R-MEAD2-PBI

Wins Loses Ties Wins Loses Ties

R-NSGA-II 3 37 2 5 35 2

62 (May 7, 2018)



Chapter 5

Sensitivity Analysis of the Penalty

Parameter in PBI

5.1 Introduction

In the previous chapter, we concluded that there is a need for testing PBI with a wide variety

of penalty parameters to be able to compare PBI and Tchebycheff accurately. There have

been very few studies analyzing the systematic sensitivity of PBI [Ishibuchi et al., 2013b]

and in particular on the performance of MOEA/D which is basis of our proposed approaches

in this thesis. Ishibuchi et al. [2013a] studied the effect of various aggregation functions on

MOEA/D based on a range of Knapsack problems. In another study, Sato [2014] proposed

Inverted Penalty-based Boundary Intersection (IPBI) which is an extension of PBI. Similar

to PBI, IPBI retains the penalty parameter, but it uses the nadir point instead of the ideal

point. The drawback of the both these studies is that they are mostly based on a specific

problem type, Knapsack problem and they did not study the effect of the penalty parameter

of PBI on convergence and uniformity separately.

Although the penalty parameter of PBI can have a significant effect on the convergence

and the uniformity of the solution set, this has not been studied in a systematic way par-

ticularly for user-preference based algorithms such as R-MEAD2 [Mohammadi et al., 2014]

which is an aggregation-based method and can be used with PBI. The aim of this chapter is

to study the effect of the penalty parameter of PBI (θ) from the following aspects: 1) The in-

fluence of θ on problems with and without having user-preference information; 2) The impact

of θ on convergence and uniformity of solutions separately and simultaneously; and 3) The
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relationship between θ and the number of objectives. In particular, we use MOEA/D [Zhang

and Li, 2007] and R-MEAD2 [Mohammadi et al., 2014] to study the effect of the penalty

parameter of PBI (θ) on uniformity and convergence. We also investigate the relationship

between the number of objectives and the optimal value of θ. We have adopted Generational

Distance (GD) [Veldhuizen, 1999a] as a measure of convergence, L2-discrepancy [Fang and

Lin, 2003] as a measure of uniformity, and Inverted Generational Distance (IGD) [Zitzler

et al., 2003] as a measure that simultaneously captures both convergence and uniformity. We

have also used the DTLZ benchmark suite [Deb et al., 2001] on functions with two to ten

objectives for this study.

The rest of this chapter is organized as follows: In section 5.2 gives a brief description of

parameter settings, and the performance metrics used in this chapter. section 5.2 contains

the analysis and discussion of the results and section 5.4 concludes this chapter.

5.2 Experimental Design

This section contains the parameter settings of the algorithms, and the benchmark problems

that we used for our experiments.

5.2.1 Parameter Settings

To analyze the effect of PBI’s penalty parameter (θ), we used R-MEAD2 [Mohammadi et al.,

2014] as a user-preference aggregation-based EMO, and MOEA/D [Zhang and Li, 2007] as a

decomposition-based Evolutionary multi-objective Optimization (EMO) which does not use

any user-preference information. For both algorithms, the population size was set to 200, and

the maximum number of iterations was limited to 100. The performance of both algorithms

was tested on DTLZ1-DTLZ6 benchmark problems from the DTLZ benchmark suite [Deb

et al., 2001] using two, four, six, eight, and ten objectives. Each problem instance (a function

with a particular number of objectives) was solved with both R-MEAD2 and MOEA/D using

the following θ values: {0, 0.1, 1, 5, 10, 50, 500}. The reference point used for R-MEAD2 is

xi = 0.25, i ∈ {1, . . . ,m}, and the radius parameter of R-MEAD2, which determines the size

of preferred regions was set to 1.

5.2.2 Performance Metrics

In order to study the effect of θ on convergence behavior, and solution uniformity of MOEA/D

and R-MEAD2 the following metrics are used:
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1. Generational Distance (GD) [Veldhuizen, 1999a]

is a metric which can be used to measure the convergence of EMO algorithms. It

calculates the average closest distances of obtained solutions to the Pareto-optimal

front. For GD formula, please refer to equation 2.8 in chapter 2.

2. L2-discrepancy [Fang and Lin, 2003]

is one of the most popular metrics used to measure the uniformity of solutions. Since we

are interested in the uniformity of solutions, lower values of L2 imply better uniformity.

3. Inverted Generational Distance (IGD) [Zitzler et al., 2003]

is a metric that takes both diversity and convergence of solutions into account. It

calculates the average closest distance of sample points on the Pareto-optimal front to

the obtained solutions. For IGD formula, please refer to equation 2.9 in chapter 2.

5.3 Analysis and Discussion

In this section, the penalty parameter of PBI (θ) is analyzed from the following points of

view:

• The effect of θ on convergence as measured by GD;

• The effect of θ on uniformity as measured by L2-discrepancy;

• The effect of θ on both convergence and uniformity as measured by IGD;

• The relative performances of MOEA/D and R/MEAD2 with respect to different values

of θ;

• The relationship between θ and the number of objectives.

Tables B.1-B.61 in Appendix B contains the experimental results of MOEA/D and R-

MEAD2 on DTLZ1-DTLZ6 functions for various number of objectives and θ values. For

m = 6 the values are omitted from the table for the sake of space. The performance of

each algorithm is measured using the three metrics explained in Section 5.2.2. For each

function with a given number of objectives, the best performing θ is highlighted. The size of

tables B.1-B.6 makes analysis of the results prohibitive. For this reason, the information in

this table is summarized in tables II-V. Most of the analysis in this chapter uses statistical

1tables have been placed at the appendix B for smoother follow of the content.
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ranking of the results in order to summarize the detailed information in tables B.1-B.6 into

a series of ordinal numbers that highlight the major trends in the data. Although no formal

statistical tests are used, statistical ranking is a reliable technique that forms the basis of all

non-parametric statistical methods [Sheskin, 2003].

One relatively obvious trend that can be seen in tables B.1-B.6 is that, in general, larger θ

values will result in lower L2-discrepancy values, which implies better uniformity of solutions.

Theoretically, as θ increases, PBI more closely resembles NBI which has better uniformity.

Unlike L2-discrepancy, the relationship between IGD, GD and θ cannot be clearly seen. For

a better understanding about the effect of θ on uniformity and convergence, we calculated

the Spearman correlation coefficient (ρ) [Sheskin, 2003] between θ and the results based on

each metric separately. Spearman correlation is a nonparametric method that can measure

nonlinear correlation between two variables. It is formulated as

ρ = 1−
6
∑

d2i
n(n2 − 1)

(5.1)

where d is the pairwise distances of the ranks of the variables xi and yi. n is the number of

samples.

The experimental results on 6 functions (DTLZ1-DTLZ6) with a different number of

objectives ({2, 4, 6, 8, 10}) resulted in 30 different correlation coefficients. Basic descriptive

statistics for these 30 values of ρ are reported in table II. We can see that the results of

table II is consistent with our observation on the relationship between θ and L2-discrepancy.

Large negative values indicate a strong negative correlation between θ and the respective

metrics i.e., a larger θ value will result in lower values for the metrics (lower values means

better performance). We can see that the mean and median ρ for GD and IGD are relatively

close to zero, especially for GD. We know that both uniformity and convergence affect the

IGD values; therefore, we expect that the ρ values for IGD will be influenced by large negative

values of ρ on L2-discrepancy. We can see that in most cases the reported value for IGD is

between the values reported for GD and L2-discrepancy.

In order to get a better insight into the relationship between convergence and θ, we

counted the number of times that each θ value outperformed other θ values. This frequency

information is reported in table III. The trend that we observed earlier for L2 is also reflected

here, with larger θ values having a higher success rate than others. With respect to conver-

gence, we can see that for MOEA/D the success rate drops as θ increases. For R-MEAD2

the trend is not very clear but we can see that R-MEAD2 has a tendency towards larger
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Table II: Spearman correlation coefficients (ρ) of θ with respect to different metrics (de-
scriptive statistics of 30 functions (DTLZ1-DTLZ6, number of objectives {2, 4, 6, 8, 10}).

MOEA/D R-MEAD2

Stats IGD GD L2 IGD GD L2

Min -0.96 -0.96 -1.00 -0.98 -0.90 -1.00
Median -0.32 -0.08 -0.89 -0.63 -0.14 -0.96
Max +0.84 +0.91 -0.39 +0.70 +0.96 +0.13
Mean -0.26 +0.02 -0.85 -0.45 -0.06 -0.90
Std +0.51 +0.60 +0.17 +0.53 +0.62 +0.23

Table III: Success frequency of various θ values. Using IGD,GD and L2 metrics on
MOEA/D and R-MEAD2

MOEA/D R-MEAD2

θ IGD GD L2 IGD GD L2

0 3 13 1 2 6 0
0.1 8 7 2 7 9 0
1.0 6 5 0 3 4 0
5.0 3 3 2 5 7 1
10 7 2 3 1 0 2
50 1 0 8 1 1 3
500 2 1 14 10 2 25

θ values relative to MOEA/D. We hypothesize that, in general, R-MEAD2 has a tendency

to higher θ values compared with MOEA/D on the same problem with the same number

of objectives. On one hand, Ishibuchi et al. [2013a] suggested higher values of θ can have

a detrimental effect on convergence but on the other study by Mohammadi et al. [2012]

suggested that inclusion of user-preference information may help the convergence rate by

confining the search to the regions that are of interest to a decision maker. Considering these

two observations together suggests that R-MEAD2 which uses preference information has a

relatively faster convergence than MOEA/D. Therefore, a slight increase in the θ value can

improve its uniformity without dramatically affecting the convergence behavior. We spec-

ulate that this is the reason behind R-MEAD2’s tendency towards larger θ values relative

to MOEA/D (Table III). However, the results in table III are not sufficient to reach such

a conclusion. Therefore, we calculated the difference in the index of the best performing θ
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between R-MEAD2 and MOEA/D. More specifically, the θ values are assigned an index in

the range {1, . . . , 7} in ascending order of θ values. Then, the difference between the index

of the entry with the lowest value of a given metric is calculated. For instance, in the case

of two-objective DTLZ2, R-MEAD2 attains its best GD value when θ equals 0.1 (index=2).

Similarly, MOEA/D attains its best GD value when θ equals 0 (index=1). The difference

between these two indices is presented in Table IV. With respect to tables B.1-B.6 this

difference, which is denoted by ∆, tells us how much the θ value of a highlighted entry of

R-MEAD2 is larger or smaller than the θ of MOEA/D. Positive numbers indicate that the

best performing θ of R-MEAD2 is larger than the best performing θ of MOEA/D. Negative

numbers show the opposite, and zero means that the best performing θ of R-MEAD2 and

MOEA/D are equal.

Table IV contains the sum of ∆ values for different functions and number of objectives

reported for IGD, GD, and L2-discrepancy. It shows that the values are predominantly

positive, which suggests that R-MEAD2 tends towards larger θ values compared to MOEA/D

tested on the same function. The total sum of all ∆ values on all functions and number of

objectives (m) are 20, 18, and 26 for IGD, GD, and L2-discrepancy, which confirms that R-

MEAD2’s bias towards larger θ values. Figure 5.1(a) shows a bar chart for sums of ∆ values

for different numbers of objectives based on the GD metric. We can see that the difference

between the best performing θ of R-MEAD2 and MOEA/D is larger for fewer objectives.

However, as the number of objectives increases, so the difference between the best performing

θ of the two algorithms vanishes. This suggests that as the number of objectives increases,

R-MEAD2 and MOEA/D exhibit similar convergent behavior.
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Table IV: Differences between indices of
best performing θ values of MOEA/D and
R-MEAD2.

m Function IGD GD L2

2 DTLZ1 0 0 -1
DTLZ2 2 1 1
DTLZ3 0 0 0
DTLZ4 1 0 5
DTLZ5 0 0 0
DTLZ6 0 5 5

Sum – 3 6 10

4 DTLZ1 0 0 5
DTLZ2 0 1 1
DTLZ3 1 -1 0
DTLZ4 1 3 0
DTLZ5 1 2 -2
DTLZ6 4 -1 0

Sum – 7 4 4

6 DTLZ1 1 1 0
DTLZ2 2 2 0
DTLZ3 1 1 1
DTLZ4 -3 3 -3
DTLZ5 0 0 3
DTLZ6 0 -3 0

Sum – 1 4 1

8 DTLZ1 1 1 2
DTLZ2 2 0 3
DTLZ3 -3 -2 2
DTLZ4 5 3 0
DTLZ5 1 0 1
DTLZ6 3 1 2

Sum – 9 3 10

10 DTLZ1 -1 -1 0
DTLZ2 2 1 0
DTLZ3 2 2 0
DTLZ4 -1 0 0
DTLZ5 -1 0 0
DTLZ6 -1 -1 1

Sum – 0 1 1

Total – 20 18 26

Table V: Differences between indices of
the best performing θ values of IGD and
GD, as well as IGD and L2-discrepancy.

MOEA/D R-MEAD2

Function # Objs ΓGD ΓL2
ΓGD ΓL2

DTLZ1 2 0 4 0 3
4 0 0 0 5
6 0 5 0 4
8 0 4 0 5
10 0 5 0 6

Sum – 0 18 0 23

DTLZ2 2 4 1 5 0
4 4 -1 3 0
6 4 1 4 0
8 4 -1 6 0
10 3 2 4 0

Sum – 19 2 22 0

DTLZ3 2 0 0 0 0
4 0 3 2 3
6 0 3 0 3
8 1 -1 0 4
10 0 2 0 0

Sum – 1 7 2 10

DTLZ4 2 3 -3 4 1
4 2 3 0 2
6 6 0 0 0
8 1 5 3 0
10 1 2 0 3

Sum – 13 7 7 6

DTLZ5 2 0 0 0 0
4 1 5 0 3
6 0 3 0 6
8 0 5 1 5
10 1 4 0 5

Sum – 2 17 1 19

DTLZ6 2 3 -3 -2 2
4 1 3 6 -1
6 1 2 4 2
8 1 1 3 0
10 0 3 0 5

Sum – 6 6 11 8
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So far, we have seen that θ can significantly affect the convergence and the uniformity of

solutions. Here, we use the technique of index differences that we used previously to study

the relationship between convergence and uniformity in different functions. The analysis

for this part revolves around the difference in the index of best performing θ values as

measured by IGD and GD, as well as by IGD and L2-discrepancy. This difference that we

call Γ measures the degree to which IGD is affected by either the convergence or uniformity

measures. Table V contains the sum of Γ values on various objectives and functions. The

results are recorded separately for MOEA/D and R-MEAD2. The quantity ΓGD measures

the difference between the index of the best performing θ on IGD and GD. Positive values

mean that the best performing θ for IGD is larger than the best performing θ for GD.

Similarly, the quantity ΓL2 measures the difference between the index of the best performing

θ on L2 and IGD. Positive values mean that the best performing θ for IGD is smaller than

the best performing θ for L2. Generally speaking, we expect to see an inverse effect between

uniformity and convergence as θ increases. Therefore, observing a positive value for both

ΓGD and ΓL2 means that the best performing θ for IGD lies between those of GD and

L2 which validates our expectation about the inverse relationship between uniformity and

convergence. We can see from table V that the values are predominantly positive. Spearman

correlation coefficient between ΓL2 and ΓGD based on the reported sums are -0.81 and -0.94

for MOEA/D and R-MEAD2 respectively. This suggests a clear inverse relationship between

convergence and uniformity. The information in table V enables us to identify the dominant

factor affecting the overall performance of MOEA/D and R-MEAD2. Observing a small

value (close to zero) for ΓGD suggests that the dominant factor is convergence, while a small

value for ΓL2 suggests that the dominant factor is uniformity. It is notable that the number of

objectives does not affect the dominance level of either measures. Table V clearly shows that

the balance between convergence and uniformity is different for each function. On functions

DTLZ1, DTLZ3, and DTLZ5 convergence is the dominant factor. However, On DTLZ2 and

to some extent on DTLZ4, uniformity is the dominant factor. On DTLZ6, convergence and

uniformity are of equal importance. It is interesting to note that on multi-modal functions

(DTLZ1 and DTLZ3), convergence is the dominant factor. This is intuitive, because the

existence of local optima makes convergence more difficult. As mentioned in Section 5.2,

a small θ value allows the solutions to move around the search space more freely by being

able to deviate from their respective reference lines. This strategy may allow the solutions

to escape local optima of multi-modal problems.

Finally, we briefly investigate the relationship between θ values and the number of ob-
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jectives. To do this a set of scatter plots are constructed that show the trend between θ

and m for MOEA/D and R-MEAD2. Each point on the plots represent the best performing

θ for each function. To avoid the points from overlapping, a random Gaussian noise has

been added (Jittering technique [J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A.

Tukey, 1983]). The solid line is the line of best fit based on linear regression, and the dashed

line represents a locally-weighted polynomial regression (LOWESS) [Cleveland, 1979]. The

fan-out effect visible in Figure 5.1(b) and the presence of outliers in Figure 5.1(c) suggest a

lack of homoscedasticity of variances, which makes the resultant regression lines unreliable.

Therefore, we conclude that there is no major relationship between θ and the number of

objectives based on our experimental results.

5.4 Chapter Summary

This chapter is dedicated to a comprehensive analysis of PBI penalty parameter (θ), and

its effect on a user-preference algorithm (R-MEAD2) and a non-user-preference algorithm

(MOEA/D). Unlike previous studies that only rely on Hypervolume as their performance

measure, we study the effect of θ on convergence, uniformity, and the combination of conver-

gence and uniformity independently. The experimental results suggest that user-preference

algorithms consistently perform better with a relatively larger θ value compared to their

non-user-preference counterparts. The results also suggest that with some problems, such as

multi-modal functions, convergence is the dominant factor the overall performance, where a

smaller θ is preferable. Conversely, in some other problems, a larger θ is suggested where

uniformity is the dominant factor. Finally, we briefly investigate the relationship between θ

and the number of objectives. The findings of this sensitivity analysis study have been used

to develop feedback mechanism which is the topic of our next chapter. In other words, after

this study we can estimate which penalty parameter (θ) is more suitable for each type of

problem.
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Figure 5.1: Relationship between θ and number of objectives. In (b) and (c) the solid line
is the line of best fit and the dashed line is (LOWESS)
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Chapter 6

Feedback Mechanism for

Decomposition-Based Evolutionary

Many-Objective Optimization

6.1 Introduction

In this chapter, we use two existing metrics called Overlapping Hypervolume (OHV) [Van Mof-

faert et al., 2014] and Potential Energy (PE) [Ong et al., 2012]. Since the computational

complexity of these two metrics is relatively low, the calculation of potential energy is not

affected by the shape of boundary and it agrees with human perception of global uniformity,

they turn out to be a suitable choice for this work. A new uniformity metric is also proposed

called Potential Energy with direction vector (PEV). It should be noted that the proposed

feedback mechanism approach can be applied to both user-preference and non-user preference

decomposition algorithms. Since the focus of this chapter is on many-objective problems,

the proposed feedback mechanism will be only applied here to show that a user-preference

approach can be used to reduce the computational cost. As a result, the proposed approach

called UR-MEAD2, should satisfy the preference of a user as well as uniformity of solutions.

The main contributions of this work can be summarized as follows: 1) Two existing mea-

sures are used as a feedback mechanism: Overlapping Hypervolume (OHV) [Van Moffaert

et al., 2014] and Potential Energy (PE) [Ong et al., 2012]. These two metrics have been modi-

fied in a way that ranks each individual in terms of its contribution towards improving overall

uniformity. 2) A new uniformity metric is also proposed, called Potential Energy with direc-
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tion vector (PEV). PEV can measure the contribution that each solution makes to improve

or degrade uniformity. This feature of PEV provides some gradient information to the algo-

rithm in order to update weight vectors in a meaningful way. 3) Unlike existing studies which

only use the modified version of Tchebycheff as a decomposition method to somehow remedy

the non-linearity relationship between weight vectors and solutions, our proposed approach

(UR-MEAD2) can work with any decomposition methods such as Weighted-Sum [Miettinen,

1999], Boundary Intersection [Das and Dennis, 1998], Penalty-based Boundary Intersection

(PBI) [Zhang and Li, 2007]. 4) The performance of decomposition methods (Tchebycheff

and PBI with different penalty factors) under each feedback mechanism method is com-

pared. The experimental results show that Tchebycheff which uses our proposed uniformity

metric (PEV) as a feedback mechanism has the best performance. 5) The performance of

UR-MEAD2 is compared with a state-of-the-art (R-NSGA-II [Deb et al., 2006]).

The rest of this chapter is organized as follows. The proposed feedback mechanism

algorithm is described in section 6.2. Section 6.3 discusses the experimental results. Finally

Section 6.4 summarizes the research findings.

6.2 Proposed Approach UR-MEAD2

This section describes UR-MEAD2 algorithms which use three different feedback mechanisms

to find a uniform set of solutions in the preferred region of the Pareto-front in the objective

space.

A wide range of decomposition algorithms has been proposed with an attempt to improve

the uniformity of solutions in the objective space [Tan et al., 2013; Qi et al., 2014; Ma et al.,

2014]. These methods are based on the hypothesis that a uniform set of weight vectors

will result in a uniform set of solutions in the objective space. However, depending on the

decomposition method and the complexity of the Pareto optimal front, this assumption is

not always true. Indeed, even for very simple Pareto fronts, we have shown in chapter 4 in

table 4.2 a uniform random number generator can perform better than sophisticated methods

such as good lattice point, especially on many-objective problems. As it can be observed from

the table a range population size from small to large for all dimensions have been used. It

is therefore imperative to devise algorithms that are first able to ascertain the uniformity

of the solutions during the course of optimization, and then adopt more appropriate weight

vectors to maximize the uniformity of the solutions.

Decomposition-based EMO algorithms are appealing for our purpose in the sense that
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the dynamic adjustment of weights gives us the flexibility to direct the solutions in order to

maximize uniformity. However, without knowing the effect of each weight on the solution

uniformity in the objective space, it is difficult to adjust the weights in a meaningful way. The

problem with existing metrics is that they mainly measure the uniformity of solutions globally

but they cannot rank each individual based on its contribution with respect to the entire

population uniformity. It is clear that for an efficient optimization of weights to maximize the

overall uniformity, we need some form of gradient information that tells us the direction in

which the solutions should move in order to improve the uniformity. Unfortunately, a fully-

fledged optimization of the weights is very costly due to the need for repeated evaluation of

the solution set. It is clear that even a random walk requires the evaluation of multiple sets

of weight vectors in order to find a set that improves the uniformity. To evaluate each set

of weight vector, at least one iteration of optimizing the multi-objective problem is needed,

which makes the process computationally expensive. To avoid this problem, we propose

to use Overlapping Hypervolume (OHV) [Van Moffaert et al., 2014] and Potential Energy

(PE) [Ong et al., 2012] metrics to detect the sparse areas of the objective space and bias

the search in order to fill those areas (Sections 6.2.1 and 6.2.2). In other words, the weight

associated with each solution is influenced by the weight associated with the solution in the

most sparse area. The overall effect of this behavior is to force the solutions to move from

dense areas to sparser areas of the objective space. Finally, we propose an improved version

of the PE metric which gives us the exact direction in which a solution should move in order

to improve uniformity (Section 6.2.3).

6.2.1 Overlapping Hypervolume

Overlapping Hypervolume can be used to measure the sparsity around a solution and use

it as feedback to update the weights associated with the solutions, in order to move them

from denser areas to sparser areas. OHV measures percentage of overlap and the unique

hypervolume of two solutions in the objective space. This is formulated as follows:
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Figure 6.1: Illustration of the overlapping Hypervolume method.

OHV(si, sj) =
Voverlap

Vtotal
, (6.1)

Voverlap =
m
∏

k=1

|rk −min{sik, sjk}|, (6.2)

Vi =
m
∏

k=1

|rk − sik|, (6.3)

Vj =
m
∏

k=1

|rk − sjk|, (6.4)

Vtotal = Vi + Vj − Voverlap, (6.5)

where r = (r1, · · · , rm) is a reference point in objective space, and m is the number of

objectives. Figure 6.1 shows how OHV measures the percentage of overlap between two

solutions s1 = (s11, s12) and s2 = (s21, s22) in the objective space. The calculations for this

particular example are as follows:
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Voverlap = |r1 −min{s11, s21}|×

|r2 −min{s12, s22}| (6.6)

V1 = |(s11 − r1) · (s12 − r2)| (6.7)

V2 = |(s21 − r1) · (s22 − r2)| (6.8)

It is clear that a smaller OHV value indicates better uniformity. If OHV equals one, it

means two solutions are situated on top of each other. The overall Overlapping Hypervolume

for a set of points is calculated as follows:

UOHV
i =

µ
∑

j=1,j 6=i

OHV(si, sj), (6.9)

where si and sj) are two solutions and µ is total number of points.

6.2.2 Potential Energy

Potential Energy (PE) was first introduced by Saff and Kuijlaars [1997] and was improved

in [Ong et al., 2012]. It is defined as the energy stored in a body because of its relative

position in a repulsive field with respect to its neighbors. In our proposed approach, we use

this metric as feedback function. The average value of PE is assigned to its lowest when the

points are placed as far as possible from each other. The potential energy between ith and

jth point is formulated as follows:

PE(si, sj) =
θ

θ + ‖si − sj‖
, (6.10)

where ‖si−sj‖ is the Euclidean distance between ith and jth solutions, and θ is an arbitrary

constant to prevent division by zero in the formula when ‖si − sj‖ = 0.

As the uniformity of points improves, the PE value decreases. The overall average po-

tential energy for a set of points is calculated as follows:

∑µ
i=1

∑

j∈Ni
PE(si, sj)

µ|Ni|
, (6.11)

where µ is the total number of points, Ni is a set that defines the neighborhood of the ith

solution, and |Ni| is the cardinality of the set. Assuming that k = |Ni|, it is clear that the
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Figure 6.2: Illustration of the Potential Energy (PE) method.

PE of the ith point is calculated based on its k-nearest neighbors. The neighborhood of the

ith point is defined to be the points which are within rc + δr distance from si. The distance

rc between µ points in a region with the area of a is calculated as
√

a
µ . The details about

why this is the case can be found in Saff and Kuijlaars [1997]. θ is set to 3r2c such that PE

always lies between 0 and 1. It should be noted that δr is not a control parameter and is

not set by the user. Figure 6.2(a) shows the point of interest for PE calculation, including

its kth nearest neighbor and the rest of the points in the field.

The main motivation to use PE is to identify sparse areas in the solution space and update

the weight vectors in order to move the solutions from the denser areas to more sparse areas.

The problem with Equation (6.11) is that it gives an overall measure of the uniformity but is

not suitable of our purpose. To alleviate this problem, for a solution i, the sparsity around
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it is estimated by aggregating its potential energy with respect to all other solutions in its

neighborhood:

UPE
i =

∑

j∈Ni

PE(si, sj), (6.12)

where Ni is a set that defines the neighborhood of the ith solution. The solution with the

smallest UPE
i is considered to be in a sparse area relative to other solutions.

6.2.3 Potential Energy with Direction Vector

Potential Energy with Direction Vector (PEV) is an improved version of potential energy.

Physically speaking, two charged particles exert forces of equal magnitude on each other, the

direction of which is determined by the nature of the charged particles. Opposite charges

produce an attractive force while similar charges produce a repulsive force along the straight

line connecting the two charges. The force on each charge is calculated by Coulomb’s law

which is defined as F = keq1q2
r2

, where ke is the Coulomb’s constant, q1 is the quantity of the

first charge, q2 is the quantity of the second charge, and r is the distance between the two.

If the net force on a particle is non-zero, it will accelerate in the direction of the net force. A

set of charged particles is said to be in static equilibrium if the vectorial sum of all the forces

on each particle is zero. In a system this is equilibrium, all objects stay as far as possible

from each other.

Before a system enters equilibrium, all particles of the system move along a trajectory

which is determined by the direction of the net force on it over time. In this chapter, we are

inspired by this observation on the equilibrium state. Here, we assume that the solutions

have unit charges of the same type. Therefore, the force that two particles exert on each

other is only a function of their relative distance. The net force (vectorial sum of all the

forces) for each solution is denoted by e. This vector defines the direction that each solution

should move in the objective space until all solutions are as far as possible from each other.

It is clear that, the solutions are bounded in the feasible region, and once they converge on

the Pareto-optimal front, their movement is constrained by the shape of the Pareto-optimal

surface. PEV is formulated as follows:

PEV(si, sj) =
θ

θ + ‖si − sj‖
êi,j , (6.13)
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UPEV
i =

µ
∑

j=i,j 6=i

PEV(si, sj), (6.14)

where êij is a unit vector that is based on sj and points in the direction of straight line

connecting si and sj point away from si. The parameter θ is defined in the same way as PE

was defined. Figure 6.2(b) shows the forces exerted on a point of interest and the net force

exerted on it. An advantage of PEV is that its direction vector can be added to the weight

vector that guides the solutions close to the reference point; this combines the improvement

on uniformity and closeness to the reference point into a single step.

6.2.4 The UR-MEAD2 Algorithm

As previously mentioned, to generate a uniform set of solutions in the preferred region, the

weight vectors should be updated to guide the solution towards the region of interest and

to maximize the uniformity of the solutions. To guide solutions into the region of interest,

the weight vector of the closest solution to the reference point is used to control the conver-

gence direction of the solutions. To maintain the uniformity, a feedback mechanism based

on OHV, PE or PEV is used to measure individual contributions to improving uniformity.

Algorithm 6.1 shows the high-level structure of the UR-MEAD2 algorithm. First, the popu-

lation of individuals (P) is uniformly initialized within the upper (x) and the lower bounds

(x), and the weight vectors are also initialized using the init weight function (lines 6-10).

The initial population is then evaluated using the objective functions (F) to get the initial

solution set (S). Lines 12-52 form the main evolutionary cycle, in which the population of

solution is optimized, and the weight vectors are adapted to maintain uniformity and to guide

the solution towards the region of interest.

In the main evolutionary cycle, first the weight vector of the solution with the minimum

Euclidean distance to the reference point (r) is identified. On line 14 the distance of each

solution from the reference point is calculated and returned by the euclid dist function.

Then the index of the closest solution is found using the min ind function which is then used

to extract the ith row of the weight matrix (W). The extracted vector (w⋆
r )1 is then used

to guide the solutions towards the reference point. On lines 20-48, before the optimization

process the feedback mechanism that is selected by the user is checked, and the weight vectors

1The subscript ‘r’ denotes the weight vector(s) that are generated to guide the solutions towards the
reference point. In Algorithms 6.2-6.4, the subscript ‘u’ denotes the weight vector(s) used to improve the
uniformity of the solutions.
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Figure 6.3: Illustration of how the weight vectors are updated when PE and OHV are used
in the proposed approach (UR-MEAD2). The updating of the weights alternates between
the uniformity measure and the closeness to the reference point. w⋆

u refers to weight
vector of the solution that has the best PE or OHV value, and w⋆

r is the weight vector of
the solution closest to the reference point.

are updated in order to maximize the uniformity of the solutions in the objective space. This

is done by a series of feedback functions (FDBK OHV, FDBK PE, or FDBK PEV). It should be noted

that when OHV or PE are active, first a set of weight vectors (Wr) are generated around

w⋆
r and an iteration of optimization is executed to guide the solutions towards the region of

interest. The weight vectors are then updated using the corresponding feedback mechanism,

and the population is optimized with respect to improving the uniformity. It should be

noted that the frequency of updating the weight vectors is controlled by two parameters,

α and β. Updating the weight vectors for improving uniformity occurs every α iterations,

and updating the weight vectors to move the solutions closer to the preferred region occurs

exactly β iterations after the updating of the weights to improve the uniformity (lines 22-30
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for OHV and lines 34-42 for PE). This requires that 0 < β < α. This alternating process for

OHV and PE is depicted in Figure 6.3. The squares, stars and circles denote solutions at

successive iteration steps, and the arrows show the update direction which is based on the

weight vectors associated with the individuals. It can be seen that a set of weight vectors

is randomly first generated around the weight vector of the solution in the most sparse area

(w⋆
u). The new weights are generated with either FDBK OHV or FDBK PE to move the solutions

from the denser areas to sparser areas. Then, the solution with the closest distance to the

reference point is identified and a new set of weight vectors is generated around its weight

vector (w⋆
r ). This step guides the solutions towards the reference point.

Unlike OHV and PE, the PEV method can update the weights to simultaneously improve

the uniformity of the solutions and guide them towards the region of interest. For this reason,

the FDBK PEV takes w⋆
r as input rather than a set of uniformly generated weights around it

(Wr). For this reason the only frequency parameter needed by PEV is α. Next, the feedback

functions based on OHV, PE and PEV are explained, which are shown in Algorithms 6.2-6.4

respectively.

6.2.4.1 OHV

In Algorithm 6.2, the matrix M contains the individual OHV values for every pair of solutions,

i.e., Mij = OHV(si, sj). Next, the values of M should be aggregated to associate a scalar value

to each solution as an indication of its contribution to the overall uniformity. To do this,

the OHV values of a solution si with every other solution sj is added up and assigned to si

(Equation (6.9). In Algorithm 6.2, this is done on line 14 using a vectorized implementation.

The product 1⊤µM gives the column sum of the matrix M. Finally, on lines 14-20, the weight

vector of the solution with the smallest aggregated OHV value (w⋆
u) is used to generate a

new set of weight vectors (W) for the next optimization cycle.

6.2.4.2 PE

The feedback mechanism of PE is similar to that of OHV except that it forms a neighborhood

for each solution. This is done by using the NBHD function that returns a binary matrix Θ.

The ith column of Θ contains the neighborhood information of the ith solution. If Θij = 1,

then the jth solution is inside the neighborhood of i. Therefore, the Hadamard product

(entry-wise product) of M and Θ excludes the values that do not belong to the neighborhood

of a solution. Similar to OHV, the product 1⊤µ (M ◦Θ) aggregates the PE values for each
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Figure 6.4: Illustration of updating weight vectors based on direction vector and closeness
to the reference point in UR-MEAD2 (PEV). wd refers to direction vector (analogous
to the net virtual force exerted on each solution by all other solutions), w⋆

r refers to the
weight vector of the closest solution to the reference point, and w is the vectorial sum of
wd and w⋆

r .

solution (Equation (6.12)). Finally, on lines 16-22, the weight vector of the solution with

smallest aggregated PE value (w⋆
u) is used to generate a new set of weight vectors (W) for

the next optimization cycle.

It was mentioned in Section 6.2.3 that in electrostatics, charged particles on a conductive

surface flow until an equilibrium is reached. We take the net force vector on each parti-

cle (solution) to be the direction in which each particle should move in order to reach an

electrostatic equilibrium. In Algorithm 6.4, each row of M represents the net force on each

solution. In other words, the ith row (Mi•) of M is the net force on that all other particles

(solutions) exert on the ith particle (solution)2. This is calculated using the PEV based on

2The symbol ‘•’ references all the rows or columns in a matrix, i.e., Mi• refers to the ith row of M, and
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Equation (6.13). Finally, the new weight vector of the ith solution is taken to be the vec-

torial sum of the net force exerted on it (Mi•) and the weight of the solution closest to the

reference point (w⋆
r ). This has the effect of accounting for both uniformity and convergence

of the solutions in the region of interest. The product on line 14 results in a µ ×m matrix

in which each row is a copy of w⋆
r . This is because 1µ is a µ-dimensional column vector and

w⋆
r is an m-dimensional row vector.

6.2.4.3 PEV

Figure 6.4 shows the update process for UR-MEAD2 based on PEV. The figure shows the

current weight vector of each solution and the net force exerted on each solution. The weight

vector of the closest solution to the reference point is marked as w⋆
r . The vectorial sum

of the net force and w⋆
r for each solution is marked as W which is then used in the next

optimization cycle. It should be noted that in PEV, the solutions are simultaneously guided

towards the sparse area and the preferred regions. In PE and OHV when some weights are

generated around the best weight vector (whether in terms of uniformity or closeness to the

reference point), they will be randomly assigned to solutions. However, in PEV the weight

vector of each solution is systematically updated to account for both uniformity and closeness

to the reference point directions.

6.3 Experimental Results and Analysis

In this section, we first study the effect of using a feedback mechanism to maintain uniformity

of solutions in the preferred regions and compare its performance with two existing user-

preference algorithms, namely R-NSGA-II [Deb et al., 2006] and R-MEAD2 [Mohammadi

et al., 2014]. The performance of different feedback mechanisms is then compared. Finally,

the efficacy of our proposed feedback mechanism under different decomposition methods, i.e.,

Tchebycheff and PBI, is investigated.

6.3.1 Parameter Settings and Performance Metrics

Our experimental results are based on two widely used benchmark suites: DTLZ [Deb et al.,

2001] and WFG [Huband et al., 2005]. These benchmarks are chosen to test the proposed

algorithm on problems with different Pareto-optimal shapes and in particular, the WFG suite

contains functions with convex, disconnected, and mixed Pareto-optimal sets.

M•j refers to the jth column of M.
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A single reference point (fi = 0.25, i ∈ {1, . . . ,m}) is used for all test problems . All the

algorithms are tested on problems with 4 to 10 objectives. In UR-MEAD2 and R-MEAD2,

the r parameter which determines the size of preferred region is set to 2 and in R-NSGA-II the

ǫ parameter is set to 0.002 which is suggested by the authors of R-NSGA-II [Deb et al., 2006]

algorithm. It should be noted that r parameter in the proposed approach can be assigned to

any number.The population size of all algorithms is set to 200. In order to compare the per-

formance of R-MEAD2, UR-MEAD2 and R-NSGA-II, Hypervolume (HV) [Van Veldhuizen,

1999; Van Veldhuizen and Lamont, 1998] and Inverted Generational Distance (IGD) [Zitzler

et al., 2003] are adopted in this chapter. For an accurate calculation of IGD, 20m, 10m, and

7m points are sampled on the Pareto-optimal front for 4-6 objective, 7-8 objective, and 9-10

objective problems respectively, where m is number of objectives. Since all algorithms used

in this study are user-preference based, only the solutions inside the desired region are con-

sidered. This desired region is a hypersphere with radius ρ around a so-called mid-point on

the Pareto-optimal front. The mid-point is defined as the point closest to the reference point

on the Pareto-optimal front. We used Tchebycheff and PBI as decomposition methods to

run the proposed algorithms. To adjust the penalty parameter in PBI, we used the findings

of chapter 5. The parameter ρ is set to 0.2 in order to form a preferred region of a reasonable

size close to the reference point. Both IGD and HV values are calculated. Summarized ttable

results are presented in this chapter and complete table results are presented in Appendix C.

Since results of both HV and IGD present a similar trend, in this section for the purpose of

discussing the different types of experiments, HV is chosen.

6.3.2 The Effect of Using a Feedback Mechanism

Tables C.1-C.4 in Appendix C contain the HV values obtained by the proposed UR-MEAD2

algorithm, R-NSGA-II, and R-MEAD2 on the DTLZ and WFG benchmark problems. To

establish the efficacy of UR-MEAD2, two separate statistical tests are conducted. First, all

variants of UR-MEAD2 are compared with R-MEAD2 (baseline) using a series of pair-wise

Wilcoxon rank-sum tests with a 95% confidence interval. Since the difference between R-

MEAD2 and UR-MEAD2 is the updated mechanism of the weight vectors, this test can tell us

whether the feedback mechanism of UR-MEAD2 is effective. The symbols ‘↑’ and ‘↓’ indicate

that UR-MEAD2 performs significantly better and worse than R-MEAD2 respectively. The

symbol ‘≈’ indicates that both algorithms are statistically similar.

In the second statistical test, all algorithms including a state-of-the-art are compared to
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find the best performing algorithm across all benchmark problems. To do so, the Kruskal-

Wallis one-way ANOVA [Sheskin, 2003] is used to test for any significant difference between

the algorithms. If such a difference is detected, a series of pair-wise Wilcoxon rank-sum tests

with Holm p-value correction [Sheskin, 2003] is used to find the best performing algorithm3.

Finally, all algorithms which are not significantly outperformed by any other algorithm are

marked in bold. The rejection of the null hypothesis for all statistical tests is based on

α = 0.05.

Tables C.1-C.4 in Appendix C clearly show that all UR-MEAD2 variants outperform

R-MEAD2 which does not have any feedback mechanism to update the weight vectors and

improve uniformity. For better clarity, the win/tie/loss counts are included at the bottom

of each table that summarizes the results. The reported counts clearly show the dominance

of UR-MEAD2 (with OHV, PE, and PEV) over R-MEAD2 on both the DTLZ and WFG

benchmark suites. It is notable, that the same trend continues for both the Tchebycheff and

PBI decomposition methods. The comparison with R-NSGA-II also indicates the superiority

of a feedback mechanism for adjusting the weight vectors.

Table 6.1 contains the total number of highlights for all algorithms across all benchmark

suites. It clearly shows that UR-MEAD2 with PEV is the overall best performer. We can

also see that the good performance of UR-MEAD2-PEV is consistent on the WFG problems

which have complex Pareto-optimal fronts. The better performance of PEV compared with

other feedback mechanisms such as OHV and PE is due to an explicit use of a direction

vector that allows us to update the weight vectors in a meaningful way. Unlike PEV, OHV

and PE randomly generate a set of solutions around the weight vector of the solution residing

in the most sparse area of the objective space, whereas the PEV method uses the net force

on each solution to obtain relevant gradient information for updating each individual weight.

The effectiveness of such a feedback mechanism is reflected in the presented experimental

results.

6.3.3 The Effect of Decomposition Methods on PEV

In this section, we investigate the effect of Tchebycheff and PBI with different θ values on

the performance of PEV feedback mechanism that was proposed in Section 6.2.4.3.

The summarized results in table 6.1 suggest that PEV with Tchebycheff generally per-

3Holm correction is a simple technique for controlling the family-wise error rate. When more than one
pair-wise comparisons are used to rank a set of results. Family-wise error rate is an accumulation of type I
errors.
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forms better than PBI. We can also see that PBI with θ = 0 performs better than PBI

with θ = 5. However, the comparison of decomposition methods based on table 6.1 is not

reliable due to effect that other algorithms such as R-NSGA-II or R-MEAD2 may have on

the overall rankings. For this reason, we conducted an independent comparison between the

performance of various decomposition methods on PEV, the HV results of which are reported

in tables C.5 and C.6 in Appendix C for DTLZ and WFG respectively. The statistical test

is based on a series of Wilcoxon rank-sum tests with Holm correction similar to the multiple

comparison in the previous section. The total number of highlights for each algorithm is

reported at the bottom of each table. These tables are summarized in table 6.3.

The result summary clearly indicates the superiority of Tchebycheff over PBI when it

is used with the PEV feedback mechanism. This is contrary to the conventional view that

the solutions obtained by PBI should be more uniformly distributed than those of Tcheby-

cheff [Zhang and Li, 2007; Das and Dennis, 1998]. This is because PBI has a mechanism to

force the convergence of solutions along a set of reference lines defined by the weight vectors,

whereas Tchebycheff lacks such a mechanism. In this chapter, we have demonstrated that

this shortcoming of Tchebycheff can be alleviated by using PEV as the guiding principle for

improving the uniformity of solutions. This explains the better performance of Tchebycheff

over that of PBI. With respect to PBI, we know that a larger θ value penalizes d2 and forces

the solutions to move towards the optimal front along the provided reference lines. It has

been shown that larger θ values result in better uniformity of solutions [Mohammadi et al.,

2015]. However, a strict constraint (i.e., a larger θ) to force the solutions to converge along the

reference lines may conflict with PEV’s updated mechanism of the weight vectors. In other

words, in the presence of a feedback mechanism such as PEV which accounts for improving

the uniformity of solutions, enforcing yet another uniformity constraint may deteriorate the

overall performance. This is why PBI with θ = 0 performs better than PBI with θ = 5

when PEV is used. Since the choice of an optimal θ value is problem dependent and may

require extensive experimentation, Tchebycheff with a feedback mechanism to account for

the uniformity of solutions is recommended.
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Algorithm 6.1: (S,P)←UR-MEAD2(F(·),r,x,x,n,m,µ,r,v,dm)

1 Inputs:
µ : the population size.
r : determines the size of the preferred region.
m : number of objectives.
n : number of decision variables.
dm : the decomposition method (Tchebycheff or PBI).
v : version of the algorithm (OHV|PE|PEV).
α : update frequency of weights for uniformity
β : update frequency of weights for user-preference
r : the reference point.
x1×n : upper-bounds of the decision variables.
x1×n : lower-bounds of the decision variables.
F(x) : the objective function.

2

3 Variables:
Pµ×n : population of individuals.
Wµ×m: matrix of weight vectors.
Sµ×m : solution set.

4

66 P← rand(µ, n,x,x); c = 1;
88 W← init weights(µ,m);

1010 S← F(P);
1212 while stop criteria not met do
1414 d← euclid dist(S, r);
1616 i← min ind(d);
1818 w⋆

r ←Wi•;
2020 if v = ‘OHV’ then
2222 if (c mod α) = β ∨ c = 1 then
2424 Wr ← uniform(µ, r,w⋆

r);

2626 P← optimize(P, F(x), Wr, dm);
2828 if (c mod α) = 0 then
3030 W← FDBK OHV(S,W);

3232 else if v = ‘PE’ then
3434 if (c mod α) = β ∨ c = 1 then
3636 Wr ← uniform(µ, r,w⋆

r);

3838 P← optimize(P, F(x), Wr, dm);
4040 if (c mod α) = 0 then
4242 W← FDBK PE(S,W)

4444 else if v = ‘PEV’ then
4646 if (c mod α) = 0 then
4848 W← FDBK PEV(S,w⋆

r);

5050 P← optimize(P,W,F(·), dm);
5252 S← F(P); c = c + 1;

5454 return (S,P);
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Algorithm 6.2: W←FDBK OHV(S,W)

1 Inputs:
Sµ×m : solution set.
Wµ×m : matrix of weight vectors.

2

3 Variables:
Mµ×µ : matrix of OHV values for all pairs of solutions.
1µ×1 : a column vector of ones with size µ.

4

66 M← 0µ×µ;
88 for i← 1→ µ do

1010 for j ← i + 1→ µ do
1212 Mi,j ←Mj,i ← OHV(Si•,Sj•);

1414 m← 1⊤µM;

1616 i← min ind(m);
1818 w⋆

u ←Wi•;
2020 W← uniform(µ, r,w⋆

u);
2222 return W;

Algorithm 6.3: W←FDBK PE(S,W)

1 Inputs:
Sµ×m : solution set.
Wµ×m : matrix of weight vectors.

2

3 Variables:
Mµ×µ : matrix of PE values for all pairs of solutions.
1µ×1 : a column vector of ones with size µ.
Θµ×µ : binary matrix of neighborhood calculations.

4

66 M← 0µ×µ;
88 for i← 1→ µ do

1010 for j ← i→ µ do
1212 Mi,j ←Mj,i ← PE(Si•,Sj•);

1414 Θ← NBHD(S);

1616 m← 1⊤µ (M ◦Θ);

1818 i← min ind(m);
2020 w⋆

u ←Wi•;
2222 W← uniform(µ, r,w⋆

u);
2424 return W;

89 (May 7, 2018)



CHAPTER 6. FEEDBACK MECHANISM FOR DECOMPOSITION-BASED EVOLUTIONARY

MANY-OBJECTIVE OPTIMIZATION

Algorithm 6.4: W←FDBK PEV(S,w⋆
r )

1 Inputs:
Sµ×m : solution set.
w⋆

r : m-dimensional weight vector of the solution closest to r.
2

3 Variables:
Mµ×m : matrix of PEV vectors.
Wµ×m: matrix of weight vectors.
1µ×1 : a column vector of ones with size µ.

4

66 M← 0µ×m;
88 for i← 1→ µ do

1010 for j ← i→ µ do
1212 Mi• ←Mi• + PEV(Si•,Sj•);

1414 Wu ← 1µw
⋆
r ;

1616 W←M + Wu;
1818 return W;

Table 6.1: Number of times each algorithm has the best performance as compared to other
algorithms(HV results).

PBI

Func. Algorithm Tchebycheff θ = 5 θ = 0

DTLZ

UR-MEAD2-OHV 3 2 –
UR-MEAD2-PE 6 1 –
UR-MEAD2-PEV 30 14 22
R-MEAD2 3 3 –
R-NSGA-II 0 1 –

WFG

UR-MEAD2-OHV 1 2 –
UR-MEAD2-PE 14 1 –
UR-MEAD2-PEV 38 19 34
R-MEAD2 4 0 –
R-NSGA-II 7 8 –
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Table 6.2: Number of times each algorithm has the best performance as compared to other
algorithms.(IGD results)

PBI

Func. Algorithm Tchebycheff θ = 5 θ = 0

DTLZ

UR-MEAD2-OHV 3 0 –
UR-MEAD2-PE 3 3 –
UR-MEAD2-PEV 36 17 22
R-MEAD2 0 0 –
R-NSGA-II 0 0 –

WFG

UR-MEAD2-OHV 5 3 –
UR-MEAD2-PE 8 5 –
UR-MEAD2-PEV 49 9 47
R-MEAD2 2 0 –
R-NSGA-II 10 11 –
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Table 6.3: Number of times UR-MEAD2-PEV has the best performance in different de-
composition methods(HV Values)

PBI

Func. Algorithm Tchebycheff θ = 5 θ = 0

DTLZ UR-MEAD2-PEV 27 5 10

WFG UR-MEAD2-PEV 34 8 21

Table 6.4: Number of times UR-MEAD2-PEV has the best performance in different de-
composition methods(IGD Values)

PBI

Func. Algorithm Tchebycheff θ = 5 θ = 0

DTLZ UR-MEAD2-PEV 20 10 14

WFG UR-MEAD2-PEV 41 2 23

6.3.4 Behavior of UR-MEAD2 without reference point

In this section, the performance of UR-MEAD2 without using any preference information has

been investigated. To do this, UR-MEAD2 with PEV has been chosen. In order to ignore

the effect of reference point in UR-MEAD2 with PEV, w⋆
r vector has been removed and wd

is the only vector uses during the optimization process. Figures 6.5(a) and 6.5(b) show the

convergence behavior of UR-MEAD2 (with PEV) on DTLZ1 and DTLZ2 respectively. In

this experiment, Tchebycheff is used as decomposition method. As can be observed, most

solutions have been converged relatively diversely on the entire Pareto front. Figures 6.6(a)

and 6.6(b) show the objective value plots of UR-MEAD2 (with PEV) on DTLZ2 and WFG7

for 10 objectives. In this experiment, PBI is used as decomposition method. It can be

observed that the objective values varied between zero and one which indicates the reasonable

coverage of Pareto front by solutions.

6.3.5 Sensitivity analysis of UR-MEAD2 to weight vector update frequency

Giagkiozis et al. [2013b] suggested that the adaptation of the weight vectors is ill-advised

and can affect the convergence rate of decomposition-based EMO algorithms. In their study,

they used only Generational Distance (GD) as their measure of performance, which does not

take the uniformity of the solutions into account. It is conceivable that the adaptation of the

weights may have some detrimental effect on the convergence rate; however, the improvement
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Figure 6.5: Convergence of solutions on 3-objective DTLZ1 and DTLZ2 using UR-
MEAD2 with Tchebycheff.
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Figure 6.6: Objective value plots on 10-objective DTLZ2 and WFG7 using UR-MEAD2
with PBI.
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one can gain in terms of diversity may result in a better overall performance as measured by

IGD and/or HV (see the following discussion and table 6.5). It should also be noted that

the incorporation of user-preference can improve the convergence behavior of the algorithm

by focusing the search on a smaller region rather than the entire Pareto front [Mohammadi

et al., 2012]. This can compensate for the potentially slower convergence due to adaptation

of the weight vectors.

In this section, we study the sensitivity of UR-MEAD2 to the frequency of updating the

weight vectors. A set of parameters is added to the UR-MEAD2 algorithm to control the

frequency of updating the weight vectors. For PE and OHV there are two control parameters

α and β, which control the frequency of updating the weights for closeness to reference point

and uniformity of the solutions respectively. For PEV only one control parameter (α) is

needed because both uniformity and closeness to the reference point are handled in a single

step. Table 6.5 contains the experimental results of UR-MEAD2 (with Tchebycheff) using

various values for α and β on two selected functions. The values of α and β are chosen to

ensure an equal spacing between adaptation of the weights. It should be noted that lower

values of the frequency parameters result in a higher adaptation frequency. The experiments

are based on three frequency levels to resemble low, medium, and high frequencies.

To investigate the effect of different frequency levels, the low and medium frequency levels

are compared with the high level which is the baseline, where the adaptation occurs at every

iteration. To ensure statistical significance, a series of pair-wise Wilcoxon rank-sum tests

with a 95% confidence interval is used. The symbols ‘↑’ and ‘↓’ indicate that the baseline

performs significantly better and worse than the other cases respectively. The symbol ‘≈’

indicates that both cases are statistically similar. Table 6.5 clearly shows that by decreasing

the adaptation frequency of the weights the overall performance of the algorithm drops. This

suggests that the degradation in performance as suggested by Giagkiozis et al. [2013b] may

not be very severe and the incorporation of preference information can easily compensate for

it, while the adaptation mechanism improves the uniformity of the solutions.

6.4 Chapter Summary

In this chapter, we have proposed several mechanisms that allow us to assess the contribution

of each solution towards improving the overall uniformity of the solution set, and use this

information to update the weight vectors dynamically such that the overall uniformity is

maintained. The general idea is to identify the sparse areas of the objective space, and move
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the solutions from denser areas to more sparse areas. The proposed approach UR-MEAD2

uses three uniformity metrics to measure the uniformity of solutions in objective space.

These metrics are: Overlapping Hypervolume (OHV), Potential Energy (PE), and Potential

Energy with Direction Vector (PEV). OHV and PE are two existing metrics which have been

modified to fit the purpose of this chapter and PEV is proposed in this chapter. PEV uses

the idea of electrostatic equilibrium to calculate the direction in which each solution should

move in order to improve the overall uniformity. The experimental results suggest that the

proposed algorithm outperforms the state of-the-art algorithm on a wide range of benchmark

problems with complex Pareto-optimal fronts.
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Table 6.5: HV values of UR-MEAD2 with TE using different frequency parameters of
updating weight vectors.

Frequencies

High Medium Low
Alg. Func # Obj α = 1 α = 5 α = 30

PEV DTLZ1

4 10.33e-02 10.24e-02≈ 5.21e-02↓

5 9.98e-02 7.91e-02↓ 10.22e-03↓

6 1.29e-02 0.52e-02↓ 4.21e-03↓

7 0.80e-02 0.32e-02↓ 12.88e-03↓

8 2.76e-01 2.01e-01≈ 8.01e-03↓

9 3.25e-01 2.15e-01↓ 12.09e-03↓

10 2.36e-02 1.00e-02↓ 10.04e-03↓

PEV DTLZ5

4 16.80e-02 14.39e-02↓ 10.09e-03↓

5 12.95e-02 10.98e-02↓ 11.30e-03↓

6 8.00e-02 6.78e-02↓ 10.31e-03↓

7 4.60e-02 3.26e-02↓ 6.03e-03↓

8 14.25e-02 13.81e-02↓ 9.17e-03↓

9 14.38e-03 12.18e-02↓ 12.10e-03↓

10 15.10e-02 14.01e-02↓ 11.29e-02↓

win/tie/loss counts 0/2/12 0/0/14

Alg. Func # Obj α = 2, β = 1 α = 10, β = 5 α = 60, β = 30

PE DTLZ1

4 8.12e-02 7.98e-02≈ 7.38e-03↓

5 9.92e-02 8.90e-02↓ 14.00e-03↓

6 1.01e-02 0.45e-02↓ 9.89e-03↓

7 1.26e-02 0.95e-02↓ 16.90e-03↓

8 1.31e-02 0.89e-02↓ 4.56e-03↓

9 1.33e-02 0.95e-02↓ 11.03e-03↓

10 1.59e-02 0.51e-02↓ 9.20e-03↓

PE DTLZ5

4 11.11e-02 11.26e-02≈ 9.42e-03↓

5 8.36e-02 6.91e-02↓ 7.22e-03↓

6 7.37e-02 7.41e-02↑ 11.98e-03↓

7 8.68e-02 7.31e-02↓ 6.30e-03↓

8 13.87e-03 11.29e-03↓ 10.41e-04↓

9 6.62e-02 5.22e-02↓ 13.60e-03↓

10 16.53e-02 14.91e-02↓ 11.99e-03↓

win/tie/loss counts 1/2/11 0/0/14

OHV DTLZ1

4 7.65e-02 7.41e-02≈ 4.39e-03↓

5 9.74e-02 8.78e-02↓ 22.71e-03↓

6 1.02e-02 0.50e-02↓ 10.13e-03↓

7 1.18e-02 0.91e-02↓ 14.04e-03↓

8 1.31e-02 1.00e-02↓ 7.02e-03↓

9 1.42e-02 1.05e-02↓ 10.99e-03↓

10 1.58e-02 1.12e-02↓ 8.01e-03↓

OHV DTLZ5

4 10.43e-02 10.03e-02≈ 8.61e-03↓

5 7.67e-02 5.58e-02↓ 9.61e-03↓

6 6.81e-02 5.88e-02↓ 8.40e-03↓

7 9.26e-02 8.02e-02↓ 7.21e-03↓

8 18.47e-02 16.36e-02↓ 10.33e-03↓

9 4.57e-02 3.07e-02↓ 8.78e-03↓

10 7.61e-02 6.09e-02↓ 9.18e-03↓

win/tie/loss counts 0/2/12 0/0/14
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Chapter 7

A Novel Performance Metric for

User-preference based Algorithms

7.1 Introduction

The previous chapters proposed several user-preference based evolutionary multi-objective

and many-objective algorithms (R-MEAD, R-MEAD2 and UR-MEAD2) and their perfor-

mances have been compared with other existing works. Despite the growing interest in

developing user-preference based algorithms, very few performance measures have been de-

veloped to facilitate a fair comparison of such algorithms. As a result, in this chapter we

develop a metric to evaluate the performance of use-preference based algorithms.

A metric which has been recently developed by Wickramasinghe et al. [Wickramasinghe

et al., 2010] is specifically designed for comparing user-preference based EMO algorithms.

However, a major drawback of this metric is that its results can be misleading, depending

on the choice of the reference point (ch.2 section 2.6.4). An ideal metric for user-preference

based algorithms should have the following properties:

1. Form a preferred region closest to the reference point provided by the user;

2. Measure both convergence and diversity of the solutions with respect to the preferred

region;

3. Be independent of knowledge of Pareto-optimal front for its calculation and;

4. Scale as well as the number of objectives increases.
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Although many performance metrics have been proposed for comparing EMO algorithms,

none of them is suitable to evaluate user-preference based EMO algorithms by satisfying all

four properties.

The proposed metric in this chapter borrows the idea of a reference set [Mohan and

Mehrotra, 2011] from cardinality-based metrics to form a composite front that acts as a

replacement for the Pareto-optimal front. This composite front is then used to define a

preferred region based on the location of a user-supplied reference point. Once the preferred

region is defined, existing EMO metrics can be applied to the preferred region.

The chapter is organized in the following way. Section 7.2 describes the details of the

proposed metric. Experimental results and their analysis are presented in Section 7.3, and

Section 7.4 concludes the chapter.

7.2 Proposed Metric (UPCF)

In this section, we propose a metric to evaluate the performance of user-preference based

multi-objective evolutionary algorithms.

In a nutshell, the proposed metric which hereafter is called user-preference metric based

on a composite front (UPCF), merges the solution set of all algorithms and uses the non-

dominated solutions of the merged solution sets as a replacement for the Pareto-optimal

front. This so-called composite front is a type of reference set commonly used in several

cardinality-based metrics. The composite front is then used to form a preferred region based

on the position of a reference point provided by the decision maker. Finally, the performance

of each algorithm is measured by calculating IGD or HV for solutions of each algorithm

which are within the preferred region. UPCF can be coupled with either IGD or HV. In this

chapter both these popular techniques are used for the sake of comparison. Measuring both

convergence and diversity of the solution set makes both IGD and HV desirable candidates

for this new metric. The following details the procedure for applying UPCF:

Step 1 - Generating a Composite Front

The solution set of all the algorithms to be compared are merged, and all non-dominated

solutions from this merged set are placed in another set called the composite front. In

Figure 7.1, squares and circles show the solution sets for two different user-preference based

algorithms. The solutions shown as black squares form the composite front, and the solutions

shown as gray circles are those dominated by at least one solution in the composite front.
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Figure 7.1: An example of a composite front which is used to define a preferred region.

Step 2 - Generating a Preferred Region For Each Reference Point

To define the preferred region, the Euclidean distances between all the solutions in the

composite front and a reference point is calculated. The solution with the least distance to

the reference point is then identified. This point is called mid-point as shown in Figure 7.1.

Finally, the solutions within r distance of the mid-point are considered to be in the preferred

region. The parameter r is specified by the user, which determines the size of the preferred

region. In real-world applications where objectives do not have the same units, objectives

should be normalized otherwise the parameter r will not be meaningful.

Step 3 - Calculating IGD and HV

IGD and HV are calculated based on the solutions inside the preferred region. To calculate

the IGD values, instead of using sample points on the Pareto-optimal front, the solutions

in the composite front are used. The IGD based on the composite front is abbreviated as

IGD-CF while HV based on the composite front is abbreviated as HV-CF.

A major advantage of UPCF is that it can be applied to situations where the Pareto-

optimal front is unknown. This property has significant implications for the scalability and

computational cost of the metric. For example, many distance-based approaches, such as GD
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Table 7.1: Nadir points for two and three-objective test problems

Test problem Nadir Point

ZDT1 (0.87, 0.30)
ZDT2 (1.00, 0.60)
ZDT3 (0.85, 1.00)
ZDT4 (1.00, 28.59)
ZDT6 (1.00, 2.77)

DTLZ1 (2.00, 1.03, 2.00)
DTLZ2 (0.37, 0.37, 1.00)
DTLZ3 (0.85, 1.00, 1.00)
DTLZ4 (1.00, 1.00, 0.96)
DTLZ5 (0.48, 0.48, 1.00)
DTLZ6 (0.43, 0.43, 1.00)

and IGD, require a set of sample points on the Pareto-optimal front. For small problems with

only two or three-objectives, it is easy to generate a set of points on the Pareto-optimal front.

However, as the number of objectives increases, the cost of this process grows exponentially.

In addition to the computational cost of sampling the Pareto-optimal front, for many real-

world problems the Pareto-optimal front is either very difficult to generate or is completely

unknown.

7.3 Simulation Results

In order to evaluate the effectiveness of the proposed metric, we compared it with IGD metric

based on the true Pareto-optimal front which is liked a based-line for our comparison and

we called it IGD-OF. Since IGD-OF uses Pareto-optimal front information, it can be pretty

reliable to be used as based-line. R-NSGA-II [Deb et al., 2006], R-MEAD-Te [Mohammadi

et al., 2012], and R-MEAD-Ws [Mohammadi et al., 2012] are used to run the proposed

metrics on them. R-NSGA-II is a modified version of the popular NSGA-II [Deb et al., 2002]

algorithm that can handle multiple reference points. R-MEAD-Te and R-MEAD-Ws are

two user-preference based algorithms which are based on the MOEA/D algorithm [Zhang

and Li, 2007]. R-MEAD-Te and R-MEAD-Ws rely on the Tchebycheff [Miettinen, 1999] and

Weighted-Sum [Miettinen, 1999] decomposition methods respectively, to convert a multi-

objective optimization problem into a single-objective problem. To evaluate the performance

of UPCF on many-objective problems, it has been tested on R-MEAD2-TE, UR-MEAD2-

PEV(TE) and R-NSGA-II.
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Table 7.2: Nadir points for 3,5 and 7 objective test problems

Test problem #obj Nadir Point

DTLZ1
5 (4.75, 5.47, 5.71, 7.25, 0.52)
7 (15.41, 19.48, 16.74, 16.99, 12.54, 16.02, 16.81)
10 (9.25, 10.29, 12.32, 7.03, 9.10, 10.39, 9.83, 9.08, 9.96, 0.63)

DTLZ2
5 (1.58, 1.30, 1.12, 1.20, 1.27)
7 (0.63, 0.68, 1.19, 1.12, 1.33, 1.17, 1.38)
10 (0.53, 0.83, 0.51, 1.17, 1.06, 1.35, 1.15, 1.32, 1.09, 1.08)

DTLZ3
5 (1.03, 0.50, 1.32, 1.06, 1.19)
7 (5.46, 1.70, 9.84, 8.83, 1.90, 9.58, 5.15)
10 (4.61, 7.00, 5.52, 4.11, 6.22, 3.80, 2.78, 8.91, 9.60, 11.97)

DTLZ4
5 (1.00, 1.00, 1.00, 1.00, 1.01)
7 (1.02, 1.05, 1.04, 1.05, 1.03, 1.01, 1.03)
10 (1.07, 1.01, 1.04, 1.02, 1.03, 1.06, 1.03, 1.06, 1.00, 1.04)

DTLZ5
5 (0.26, 0.29, 0.36, 0.65, 1.33)
7 (0.23, 0.29, 0.40, 0.33, 0.51, 0.65, 1.37)
10 (0.24, 0.20, 0.21, 0.25, 0.37, 0.29, 0.32, 0.59, 0.74, 1.82)

DTLZ6
5 (0.55, 0.54, 0.70, 1.14, 2.44)
7 (0.54, 0.44, 0.43, 0.68, 0.75, 1.16, 3.72)
10 (0.41, 0.28, 0.37, 0.26, 0.52, 0.57, 0.83, 1.00, 1.12, 3.14)

To understand whether UPCF coupled with IGD-CF and HV-CF is an accurate metric

to measure the performance of a user-preference based algorithm, their results have been

compared with our based-line IGD-OF. In addition to IGD-CF and HV-CF, the average

number of solutions that each algorithm contributes to the composite front (NS-CF) is also

reported for further analysis.

The benchmark problems used in this chapter are ZDT1-ZDT4 and ZDT6 functions for

two-objective problems, and DTLZ1-DTLZ6 functions for three and many-objective prob-

lems. We used (0.7, 0.2) and (0.2, 0.2, 0.6) as reference points for two-objective and three-

objective test problems respectively. A different reference point (0.2, 0.4, 0.9) was used for

DTLZ1 since the point (0.2, 0.2, 0.6) is located on its Pareto-optimal front. A single refer-

ence point (fi = 0.25 ∈ 1, ...,m) is used for 5,7 and 10 objectives. The population size for

two-objective test problems was set to 50. The number of iterations in each run is 150 for

ZDT1 and ZDT2, 300 for ZDT3, and 500 for ZDT4 and ZDT6.

The population size is set to 200 for three, five and seven-objective problems. For ten

objective problems the population size is set to 350. The number of iterations in each run is

200 for DTLZ1, DTLZ2, DTLZ5 and DTLZ6, and 400 for DTLZ3 and DTLZ4.
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To specify the size of the preferred region on the composite front and the Pareto-optimal

front, parameter r (see Section 7.2) is set to 0.1 for all test problems. The ǫ parameter of

R-NSGA-II is set to 0.001 for two-objective problems and 0.002 for three and many-objective

problems. The radius parameter of R-MEAD-Te and R-MEAD-Ws, which can be used to

control the size of the preferred region, is set to 0.05 and 0.02 for Tchebycheff and Weighted-

Sum approaches respectively. The initial population size is set to 100 and 250 for two and

three-objective problems respectively. The nadir point used by HV-CF is calculated by taking

the worst objective value for each of the objective functions from all solutions generated by

all three algorithms in 25 independent runs. Table 7.1 shows the nadir points calculated

for two and three-objective problems and table 7.2 shows nadir points for many-objective

problems.

Tables 7.3 and 7.4 show the mean and the standard deviation for 25 independent runs

of R-NSGA-II, R-MEAD-Te and R-MEAD-Ws using four different performance measures.

As mentioned previously, IGD-OF is not part of the proposed metric and is solely used as a

baseline against which other algorithms are compared. The last three columns are the results

of t-test (p-values) using a 95% confidence interval.
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Table 7.3: Results on the two-objective test problems. The mean, p-value and standard deviation of 25 independent runs
are reported. The statistical significance results are based on the t-test using a 95% confidence interval.

R-MEAD-Te R-MEAD-Te R-MEAD-Ws
Func. Metric R-MEAD-Te R-MEAD-Ws R-NSGA-II vs vs vs

R-NSGA-II R-MEAD-Ws R-NSGA-II

ZDT1
HV-CF 2.67e-02 (6.10e-03) 3.66e-02 (8.56e-04) 2.70e-02 (2.20e-03) 8.30e-01 4.79e-08 1.84e-16
IGD-CF 5.70e-03 (1.43e-02) 4.31e-04 (2.70e-04) 2.50e-03 (1.00e-03) 2.74e-01 2.57e-09 1.24e-11
NS-CF 3.96e+01 (1.21e+01) 3.68e+01 (3.60e+00) 4.95e+01 (9.18e-01) 4.44e-04 3.24e-01 2.32e-15
IGD-OF 5.60e-03 (1.02e-02) 7.44e-04 (3.28e-04) 3.50e-03 (7.06e-04) 3.18e-01 2.81e-02 2.99e-14

ZDT2
HV-CF 5.81e-02 (1.20e-03) 0.00e+00 (0.00e+00) 5.16e-02 (1.13e-02) 9.20e-03 1.88e-42 8.45e-18
IGD-CF 3.60e-03 (1.30e-03) 1.04e-01 (1.23e-02) 1.05e-02 (2.42e-02) 6.60e-03 6.61e-23 4.42e-17
NS-CF 4.75e+01 (3.51e+00) 0.00e+00 (0.00e+00) 2.77e+01 (1.61e+01) 3.93e-06 6.61e-29 8.90e-09
IGD-OF 1.00e-03 (1.01e-04) 2.80e-02 (7.08e-18) 3.60e-03 (5.10e-03) 1.60e-09 5.40e-60 3.18e-18

ZDT3
HV-CF 1.12e-01 (1.33e-01) 7.77e-02 (1.12e-01) 3.16e-02 (6.64e-02) 2.83e-02 1.39e-01 1.34e-01
IGD-CF 3.12e-01 (7.46e-01) 3.12e-01 (7.47e-01) 3.11e-01 (7.29e-01) 8.49e-01 6.67e-01 9.13e-01
NS-CF 2.15e+01 (2.40e+01) 2.20e+01(2.53e+01) 4.80e+00 (9.46e+00) 9.50e-03 9.40e-01 1.02e-02
IGD-OF 1.74e-01 (4.84e-02) 1.80e-01 (4.42e-02) 1.78e-01 (6.04e-02) 8.65e-01 9.77e-01 8.80e-01

ZDT4
HV-CF 9.63e+00 (1.17e-01) 0.00e+00 (0.00e+00) 9.48e+00 (6.57e-01) 3.40e-01 1.06e-47 1.43e-29
IGD-CF 7.20e-04 (6.49e-04) 8.96e-02 (1.23e-02) 1.00e-03 (7.42e-04) 1.56e-01 1.38e-22 1.30e-22
NS-CF 3.32e+01 (1.34e+01) 0.00e+00 (0.00e+00) 3.26e+01 (1.96e+01) 9.32e-01 6.94e-12 1.62e-08
IGD-OF 2.60e-03 (1.34e-04) 5.42e-02 (2.83e-17) 2.60e-03 (1.00e-03) 8.67e-01 9.70e-64 8.66e-43

ZDT6
HV-CF 4.22e-01 (1.95e-02) 0.00e+00 (0.00e+00) 2.94e-01 (2.32e-01) 1.01e-02 9.06e-34 1.54e-06
IGD-CF 8.50e-04 (1.10e-03) 1.23e-01 (4.50e-03) 4.81e-02 (5.97e-02) 6.46e-04 4.51e-34 9.71e-07
NS-CF 5.00e+01 (0.00e+00) 0.00e+00 (0.00e+00) 2.68e+00 (3.92e+00) 1.02e-27 0.00e+00 2.30e-03
IGD-OF 4.40e-03 (1.80e-03) 9.86e-02 (5.67e-17) 3.94e-02 (4.54e-02) 7.86e-04 3.40e-43 9.78e-07
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STable 7.4: Results on the three-objective test problems. The mean, p-value and standard deviation of 25 independent runs
are reported. The statistical significance results are based on the t-test using a 95% confidence interval.

R-MEAD-Te R-MEAD-Te R-MEAD-Ws
Func. Metric R-MEAD-Te R-MEAD-Ws R-NSGA-II vs vs vs

R-NSGA-II R-MEAD-Ws R-NSGA-II

DTLZ1
HV-CF 7.33e-01 (9.98e-01) 0.00e+00 (0.00e+00) 1.93e+00 (7.18e-02) 4.00e-06 1.20e-03 5.12e-36
IGD-CF 4.69e-02 (5.52e-02) 6.46e-02 (4.57e-02) 1.20e-03 (2.70e-03) 2.90e-04 2.00e-03 1.63e-07
NS-CF 3.94e+01 (6.77e+01) 0.00e+00 (0.00e+00) 1.70e+02 (5.98e+01) 4.27e-07 7.70e-03 3.28e-13
IGD-OF 4.12e-02 (2.73e-02) 6.12e-02 (1.42e-17) 4.20e-03 (1.20e-03) 6.54e-07 1.20e-03 9.25e-42

DTLZ2
HV-CF 5.06e-04 (1.01e-04) 0.00e+00 (0.00e+00) 4.28e-04 (1.07e-05) 7.45e-04 1.06e-18 3.46e-04
IGD-CF 1.46e-04 (1.65e-05) 5.12e-02 (3.60e-04) 8.83e-04 (3.73e-05) 7.97e-32 1.85e-53 2.36e-53
NS-CF 1.82e+02 (5.34e+00) 0.00e+00 (0.00e+00) 2.00e+02 (0.00e+00) 1.04e-14 1.61e-38 0.00e+00
IGD-OF 2.10e-03 (4.42e-05) 5.94e-02 (0.00e+00) 3.00e-03 (3.96e-05) 7.11e-03 1.95e-76 2.01e-77

DTLZ3
HV-CF 2.11e-02 (1.94e-02) 0.00e+00 (0.00e+00) 3.74e-02 (3.28e-04) 3.08e-04 1.42e-05 4.44e-51
IGD-CF 3.22e-02 (3.49e-02) 6.12e-02 (1.00e-02) 7.64e-04 (8.05e-04) 1.79e-04 1.25e-05 5.22e-02
NS-CF 8.94e+01 (9.51e+01) 0.00e+00 (0.00e+00) 2.00e+02 (0.00e+00) 5.39e-06 8.82e-05 0.00e+00
IGD-OF 2.85e-02 (2.80e-02) 5.94e-02 (0.00e+00) 3.10e-03 (2.48e-04) 1.46e-04 1.11e-05 2.70e-58

DTLZ4
HV-CF 2.02e-02 (1.57e-02) 0.00e+00 (0.00e+00) 2.97e-02 (1.80e-03) 5.70e-03 1.10e-06 4.24e-31
IGD-CF 2.69e-02 (3.36e-02) 6.09e-02 (9.00e-03) 8.95e-04 (8.83e-04) 8.82e-04 1.07e-06 4.32e-21
NS-CF 8.74e+01 (8.45e+01) 0.00e+00 (0.00e+00) 2.00e+02 (6.24e-01) 7.24e-07 2.67e-05 7.43e-62
IGD-OF 2.42e-02 (2.70e-02) 5.94e-02 (0.00e+00) 3.00e-03 (1.16e-04) 6.31e-04 2.90e-66 9.50e-07

DTLZ5
HV-CF 2.90e-03 (4.86e-04) 0.00e+00 (0.00e+00) 4.00e-03 (3.60e-05) 4.00e-11 1.86e-02 8.82e-51
IGD-CF 2.03e-04 (3.31e-05) 5.79e-02 (1.90e-03) 4.92e-05 (5.45e-06) 1.22e-18 2.32e-37 2.58e-37
NS-CF 1.33e+02 (1.96e+01) 0.00e+00 (0.00e+00) 1.66e+02 (2.33e+00) 1.25e-08 8.61e-22 3.19e-46
IGD-OF 2.16e-04 (3.70e-05) 2.76e-02 (7.08e-18) 3.12e-05 (5.39e-06) 9.09e-19 1.39e-07 9.75e-91

DTLZ6
HV-CF 1.50e-03 (2.63e-05) 0.00e+00 (0.00e+00) 2.00e-03 (8.13e-06) 4.24e-32 1.13e-43 4.49e-59
IGD-CF 1.77e-04 (2.86e-05) 5.02e-02 (1.35e-04) 3.92e-05 (4.46e-06) 8.28e-19 1.63e-63 1.99e-63
NS-CF 2.00e+02 (0.00e+00) 0.00e+00 (0.00e+00) 1.98e+02 (2.14e+00) 9.06e-06 0.00e+00 6.75e-49
IGD-OF 2.77e-04 (2.19e-05) 2.76e-02 (7.08e-18) 3.42e-05 (9.85e-06) 7.20e-26 5.06e-76 1.84e-84
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7.3.1 Two-Objective Test Problems

The ZDT1 test problem has a convex Pareto-optimal front. Table 7.3 shows the result of R-

NSGA-II, R-MEAD-Te and R-MEAD-Ws on this test problem. The results of the statistical

test show that R-NSGA-II and R-MEAD-Te are not significantly different using the HV-CF,

IGD-OF and IGD-CF measures. However, we can significantly distinguish the performance

of R-MEAD-Ws from R-NSGA-II and R-MEAD-Te. Results of IGD-CF and HV-CF are

consistent with IGD-OF, which suggests that R-MEAD-Ws performs significantly better

than the other two algorithms. However, this conclusion is different when NS-CF is used.

Figures 7.2(a), 7.2(b), and 7.2(c) also show this behavior.

The next test problem is ZDT2, which has a non-convex Pareto-optimal front. According

to p-values in table 7.3, all three methods are significantly different. The results of all three

measures are consistent with IGD-OF, which suggests that R-MEAD-Te outperforms the

other two algorithms. Figures 7.2(d), 7.2(f) and 7.2(e) visually confirm the results generated

by the metrics. On ZDT3, the only measure which is consistent with IGD-OF is IGD-CF.

The test results of IGD-CF and IGD-OF show that no algorithm performs significantly better

than any other. However, the conclusion is different when HV-CF and NS-CF measures are

used. On the ZDT4 function, the results of all three measures are consistent with IGD-

OF. The t-test shows that R-MEAD-Te and R-NSGA-II exhibit similar performances, and

both algorithms outperform R-MEAD-Ws. ZDT6 test problem has a concave Pareto-optimal

front. As with ZDT4, all three measures are consistent with IGD-OF which suggests that

R-MEAD-Te performs significantly better than the other algorithms. Figures 7.2(j), 7.2(k),

and 7.2(l) also confirm those numerical results.

7.3.2 Three-Objective Test Problems

According to the t-test results shown in table 7.4, all algorithms are statistically distin-

guishable. Except for NS-CF on DTLZ2 and DTLZ6, all other measures are consistent with

IGD-OF on all functions. It can be seen from table 7.4 that R-NSGA-II outperforms other al-

gorithms on almost all functions. It is interesting to note that R-MEAD-Ws fails to converge

on all functions. Consequently the HV-CF and NS-CF for R-MEAD-Ws are consistently

zero for all functions. Figure 7.3 shows the performance of all three algorithms on the two

selected functions.

106 (May 7, 2018)



CHAPTER 7. A NOVEL PERFORMANCE METRIC FOR USER-PREFERENCE BASED

ALGORITHMS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Preferred Region

Obtained Soloutions

( 0.7 , 0.2 )

(a) ZDT1-R-MEAD-Te

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Preferred Region

Obtained Solutions

(0.7,0.2)

(b) ZDT1-RNSGA-II

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Preferred Region

Obtained Solutions

(0.7,0.2)

(c) ZDT1-R-MEAD-Ws

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Preferred Region

Obtained Solutions

(0.7,0.2)

(d) ZDT2-R-MEAD-Te

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Preferred Region

Obtained Solutions

( 0.7 , 0.2 )

(e) ZDT2-RNSGA-II

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Preferred Region

( 0.7, 0.2 )

(f) ZDT2-R-MEAD-Ws
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Figure 7.2: Results on ZDT1, ZDT2, ZDT4 and ZDT6 functions using R-NSGA-II, R-
MEAD-Te and R-MEAD-Ws. Preferred region on Pareto-optimal front is shown in light
blue color and solutions found by each algorithm in the region are shown in red.
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(c) DTLZ1-RMEAD-Ws
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(f) DTLZ2-RMEAD-Ws

Figure 7.3: Results on DTLZ1 and DTLZ2 functions using R-MEAD-Te, R-MEAD-Ws
and R-NSGA-II. Preferred region on Pareto-optimal front is shown in light blue color and
solutions found by each algorithm in the region are shown in red.109 (May 7, 2018)
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7.3.3 Many-objective Test Problems

Tables 7.5, 7.6 and 7.7 show the median of R-MEAD2-TE, UR-MEAD2-PEV(TE) and R-

NSGA-II for five, seven and ten objective problems. To test the significance of the obtained

results we used the non-parametric Kruskal-Wallis one-way ANOVA [Sheskin, 2003]. In order

to rank the algorithms, Mann-Whitney-Wilcoxon (MWW) test with Bonferroni correction

is used only when the null hypothesis of Kruskal-Wallis was rejected under 95% confidence

interval. Description and usage of Bonferroni correction and Kruskal-Wallis can be found in

chapter 4 According to Kruskal-Wall and pair-wise MWW tests in tables 7.5, 7.6 and 7.7,all

three algorithms are significantly different. To be efficient in terms of space, the p-values are

not reported.

7.3.4 Result Analysis

Results of tables 7.3 and 7.4 are summarized in table 7.8. As can be observed IGD-CF

is consistent with IGD-OF in most cases. HV-CF and NS-CF are in the second and third

positions respectively. However a different trend can be seen from table 7.9 which is the

summarized of tables 7.5 , 7.6 and 7.7. Based on table 7.9 HV-CF is consistent with

IGD-OF in most cases. IGD-CF and NS-CF are second and third respectively. To explain

this trend, it should be noted that where there are only two or three-objectives the composite

front is fairly close to the actual Pareto-optimal front, so applying IGD on the composite

front or Pareto-optimal front will be very similar. As a result, IGD-CF is very similar to

IGD-OF. However, in the case of a large number of objectives (5, 7 and 10) where the

Pareto-optimal front is more complex, it is likely that composite front is not very accurate.

Therefore, HV-CF offers a more reliable performance measure where there is a higher number

of objectives.

It can be seen from tables 7.8 and 7.9 that a cardinality-based approach is less reliable

than HV-CF and IGD-CF. The results tend to be worse when dealing with many-objective

problems. As the number of objectives increases, a greater portion of the solutions becomes

non-dominated, causing different algorithms to make a very close or even identical contribu-

tion to the composite front. This makes cardinality-based approaches less accurate as the

number of objectives increases and may lead to an incorrect conclusion.

In this chapter the maximum number of objectives which are used to run the experiments

was 10 due to memory limitation for calculating IGD-OF. It should be noted that calculating

IGD-OF for larger numbers of objectives needs a huge memory which might not be accessible

in a normal PC and it is very slow process. However, as mentioned earlier the proposed metric
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Table 7.5: Results on the 5-objective test problems. The median of 25 independent runs
are reported.

Func. Metric R-MEAD2-Te UR-MEAD2-PEV R-NSGA-II
(TE)

DTLZ1
HV-CF 4.70e+02 4.47e+02 3.10e+02
IGD-CF 3.04e-03 3.16e-03 1.11e-02
NS-CF 2.00e+02 2.00e+02 0.00e+00

IGD-OF 1.31e-02 1.06e-02 1.34e-02

DTLZ2
HV-CF 9.73e-01 10.93e-1 4.17e-01
IGD-CF 1.04e-02 1.67e-02 2.40e-02
NS-CF 1.29e+02 1.88e+02 2.00e+02

IGD-OF 4.91e-03 3.85e-03 9.10e-03

DTLZ3
HV-CF 1.27e-01 5.38e-02 1.49e-02
IGD-CF 9.29e-03 1.84e-02 2.27e-02
NS-CF 1.61e+02 9.60e+01 2.00e+02

IGD-OF 5.87e-03 2.89e-03 9.11e-03

DTLZ4
HV-CF 5.97e-02 6.44e-03 5.48e-02
IGD-CF 2.49e-02 1.51e-02 2.87e-02
NS-CF 1.31e+02 1.66e+02 2.00e+02

IGD-OF 8.51e-03 6.98e-03 9.12e-03

DTLZ5
HV-CF 9.23e-07 2.18e-06 8.70e-09
IGD-CF 4.87e-04 1.46e-03 7.40e-03
NS-CF 1.96e+02 2.00e+02 1.99e+02

IGD-OF 5.77e-03 4.78e-03 5.99e-03

DTLZ6
HV-CF 2.13e-02 4.40e-02 3.54e-02
IGD-CF 4.93e-03 4.35e-03 1.09e-03
NS-CF 1.88e+02 1.74e+02 1.98e+02

IGD-OF 5.78e-03 4.73e-03 5.98e-03
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Table 7.6: Results on the 7-objective test problems. The median of 25 independent runs
are reported.

Func. Metric R-MEAD2-Te UR-MEAD2-PEV R-NSGA-II
(TE)

DTLZ1
HV-CF 2.80e+08 2.80e+08 2.63e+08
IGD-CF 1.97e-03 3.92e-03 1.67e-02
NS-CF 2.00e+02 2.00e+02 2.60e+00

IGD-OF 4.93e-03 4.06e-03 5.12e-03

DTLZ2
HV-CF 1.05e-01 1.67e-02 3.68e-02
IGD-CF 2.05e-02 1.19e-02 2.53e-02
NS-CF 1.07e+02 1.39e+02 2.00e+02

IGD-OF 1.46e-03 1.18e-03 1.67e-03

DTLZ3
HV-CF 5.53e+04 7.37e+00 3.64e+04
IGD-CF 1.74e-02 4.47e-01 2.73e-02
NS-CF 1.31e+02 0.00e+00 2.00e+02

IGD-OF 1.37e-03 5.20e-03 1.67e-03

DTLZ4
HV-CF 5.39e-05 6.72e-02 2.71e-02
IGD-CF 3.26e-02 3.00e-02 3.14e-02
NS-CF 5.55e+01 9.43e+01 2.00e+02

IGD-OF 1.66e-03 1.22e-03 2.03e-03

DTLZ5
HV-CF 3.98e-06 6.49e-06 5.59e-06
IGD-CF 2.37e-03 1.65e-03 8.57e-03
NS-CF 2.00e+02 1.90e+02 1.96e+02

IGD-OF 6.27e-04 5.05e-04 6.41e-04

DTLZ6
HV-CF 4.47e-03 9.24e-02 1.20e-02
IGD-CF 6.18e-03 5.73e-03 1.14e-02
NS-CF 1.76e+02 1.76e+02 1.99e+02

IGD-OF 6.63e-04 6.09e-04 6.42e-04
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Table 7.7: Results on the 10-objective test problems. The median of 25 independent runs
are reported.

Func. Metric R-MEAD2-Te UR-MEAD2-PEV R-NSGA-II
(TE)

DTLZ1
HV-CF 4.05e+08 5.85e+08 2.24e+08
IGD-CF 2.40e-03 5.47e-03 2.71e-02
NS-CF 2.00e+02 1.90e+02 5.60e-01

IGD-OF 1.09e-02 1.06e-02 1.58e-02

DTLZ2
HV-CF 2.11e-02 4.49e-03 7.62e-03
IGD-CF 2.06e-02 1.13e-02 2.27e-02
NS-CF 8.60e+01 1.93e+02 2.00e+02

IGD-OF 2.06e-03 6.37e-04 2.53e-03

DTLZ3
HV-CF 2.45e+07 5.08e+07 2.70e+07
IGD-CF 2.62e-02 6.54e-01 2.72e-02
NS-CF 9.00e+01 0.00e+00 2.00e+02

IGD-OF 2.42e-03 1.33e-03 2.53e-03

DTLZ4
HV-CF 4.38e-02 8.57e-02 4.51e-02
IGD-CF 4.92e-02 4.52e-02 2.77e-02
NS-CF 1.20e+01 5.42e+01 2.00e+02

IGD-OF 2.40e-03 2.02e-03 2.69e-03

DTLZ5
HV-CF 2.34e-07 1.70e-07 1.23e-07
IGD-CF 1.53e-03 3.55e-03 9.60e-03
NS-CF 1.93e+02 2.00e+02 2.00e+02

IGD-OF 6.75e-04 6.53e-04 7.27e-04

DTLZ6
HV-CF 7.85e-05 1.94e-04 4.45e-04
IGD-CF 7.61e-03 6.47e-03 1.54e-02
NS-CF 1.73e+02 1.65e+02 2.00e+02

IGD-OF 6.26e-04 5.60e-04 6.79e-04
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does not have these limitations and it can be easily run for more than 10 objectives such as

15 and 20. Based on the experimental results, HV-CF is more reliable performance measure

than the other two metrics, especially for higher numbers of objectives. Therefore, HV-CF

can be a reasonable replacements for IGD metric in case of higher number of objectives since

HV-CF uses less computational cost and has a faster process.

Table 7.8: Consistency of each measure with IGD-OF (IGD based on Pareto-optimal
front) for two and three-objective problems is shown in below table. (X: consistent, ×:
inconsistent).

Function IGD-CF HV-CF NS-CF

ZDT1 X X ×
ZDT2 X X X

ZDT3 X × ×
ZDT4 X X X

ZDT6 X X X

DTLZ1 X X X

DTLZ2 X X ×
DTLZ3 X X X

DTLZ4 X X X

DTLZ5 X X X

DTLZ6 X X ×

Total 11 10 7

7.4 Chapter Summary

In this chapter, we proposed a metric for evaluating the performance of user-preference based

evolutionary multi-objective algorithms by defining a preferred region based on the location

of a user-supplied reference point. This metric uses a composite front which is a type of

reference set and is used as a replacement for the Pareto-optimal front. This composite front

is constructed by extracting the non-dominated solutions from the merged solution sets of

all algorithms that are to be compared. A preferred region is then defined on the composite

front based on the location of a reference point. Once the preferred region is defined, existing

evolutionary multi-objective performance metrics can be applied with respect to the preferred

region. In this chapter the performance of a cardinality-based metric, a distance-based metric,

and a volume-based metric were compared against a baseline which relies on knowledge of the

Pareto-optimal front. The experimental results show that the distance-based and the volume-
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Table 7.9: Consistency of each measure with IGD-OF (IGD based on Pareto-optimal
front) for 5,7 and 10-objective problems is shown in below table. (X: consistent, ×:
inconsistent).

# Obj Function IGD-CF HV-CF NS-CF

5 obj

DTLZ1 × X X

DTLZ2 × X ×
DTLZ3 X × ×
DTLZ4 X X ×
DTLZ5 × X X

DTLZ6 × X ×

7 obj

DTLZ1 × X X

DTLZ2 X × ×
DTLZ3 X X ×
DTLZ4 X X ×
DTLZ5 × X ×
DTLZ6 X X ×

10 obj

DTLZ1 × X ×
DTLZ2 X × ×
DTLZ3 X X ×
DTLZ4 × X ×
DTLZ5 × × X

DTLZ6 X × ×

Total 9 13 4

based metrics are consistent with the baseline, showing meaningful comparisons. However,

the cardinality-based approach shows some inconsistencies and is not suitable for comparing

the algorithms.
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Conclusion

This thesis has been dedicated to examining and developing methods to solve many-objective

optimization problems. This was achieved by combing two methods, i.e., decomposition

and user preference-based methods. 1) Firstly, user preference which focuses the search

space on the desired regions provided by the decision makers. This allows a considerable

saving in computational resources; 2) Secondly, decomposition which increases the selection

pressure to move the population towards the Pareto-optimal front and alleviate the selection

pressure issue of dominance-based approaches. As an initial investigation, we developed a

user-preference decomposition algorithm which was effective in solving problems with two

and three-objectives. The promising results motivated us to extend the algorithm to solve

many-objective problems. The major challenge was to generate and initialize weight vectors

for a larger number of objectives with low computational costs. This challenge was resolved

by removing the dependence between population size and the number of objectives. The

results clearly indicate that the proposed methods can solve many-objective optimization

problems effectively. Further investigation showed that the proposed algorithm did not work

well on many-objective problems with non-linear or with complex Pareto-optimal fronts.

To overcome this weakness, weight vectors were adapted dynamically during the course of

optimization based on the position of solutions in the objective space. It has been shown

empirically that the proposed dynamic adaptation outperforms R-NSGA-II which is one

of popular dominance-based approaches on many-objective optimization problems. Finally,

since there was not an accurate and reliable user-preference EMO metric to measure the

performance of our proposed algorithms without relying on the knowledge of Pareto-optima,

we developed a user-preference performance metric.
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The reminder of this chapter is organized in two sections: 1) in Section 8.1, the research

objectives which were outlined in chapter 1 are revisited along with our findings; 2) in

Section 8.2, several future works are described and discussed.

8.1 Research Objectives Revisited

1. To develop a novel method by combining the decomposition and user pref-

erence methods for better handling many-objective optimization problems.

In Chapter 3, we proposed a preference-based evolutionary multi-objective optimization

through decomposition. The proposed approach, R-MEAD, has the following benefits:

(a) Using decomposition we can convert a multi-objective problem into a single-

objective which is not susceptible to the selection pressure problem common to

dominance-based approaches.

(b) Using the reference point allows a search to focus on the desired regions which

can potentially save a considerable amount of computational resources.

R-MEAD has been evaluated using two decomposition approaches, Tchebycheff and

Weighted-sum. Experimental results showed that the Tchebycheff approach performs

better than the Weighted-sum especially when dealing with non-convex problems.

It has also been shown that R-MEAD results in a faster convergence compared to

MOEA/D, especially when the number of objectives increases. It might sounds unfair

to compare a user-preference algorithm with non-user preference algorithm. However,

the reason for comparison was to show the effect of adopting preference information in

saving computational resources.

In chapter 4, we improved R-MEAD (developed in chapter 3) in the following ways:

(a) Unlike R-MEAD, in R-MEAD2 the population size and the number of objectives

are decoupled and the increased number of objectives does not cause a growth in

population size. Consequently, we can conclude that R-MEAD2 is better suited

for solving many-objective problems.

(b) R-MEAD2 uses a simple random number generator (RNG) to initialize the weight

vectors. The results of centered L2-discrepancy showed that RNG can generate

more uniform weights than good lattice point (GLP) when the number of objec-

tives grows beyond seven with a typical sample size of 100, 250 and 500. For other
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sample sizes (50, 1000 and 5000) RNG can produce points with lower discrepancy

than GLP when the number of objectives goes beyond eight.

(c) R-MEAD2 is less susceptible to the selection pressure issue compared to dominance-

based approaches such as R-NSGA-II. The experimental results showed that both

versions of R-MEAD2 (Tchebycheff and PBI) outperform R-NSGA-II over a range

of many-objective problems.

From the experimental results, it was observed that the performance of PBI and

Tchebycheff appeared to be very similar. However, a stronger conclusion requires fur-

ther investigation on penalty parameter in PBI as we run our experiments with only

one theta value (θ=5). This was investigated in chapter 5.

Another observation from experimental results is that a uniform set of weight vectors

does not necessarily map to a uniform set of solutions in the objective space, especially

on highly non-linear and complex Pareto-optimal fronts. This requires a feedback

mechanism to adjust the weights in order to obtain a set of uniform solutions, which

was investigated in chapter 6.

2. To evaluate the effect of penalty parameters in PBI on the performance of

user-preference and non-user preference EMO algorithms.

In chapter 5, the effect of the penalty parameter of PBI was analyzed from various

aspects, and the following findings were achieved:

(a) A larger θ generally improves the uniformity, but it often has a detrimental effect

on convergence, especially with MOEA/D.

(b) User-preference based approaches such as R-MEAD2 perform better in terms of

both uniformity and convergence with higher θ values compared to EMO ap-

proaches that do not use any user-preference information, such as MOEA/D.

(c) On some problems, such as multi-modal functions, convergence is the dominant

factor where smaller θ values are suggested.

(d) On most uni-modal problems, uniformity is the dominant factor, therefore a larger

θ is suggested.

(e) There is no strong relationship between the number of objectives and θ.
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The overall observation based on the findings of this chapter is that there is no unique

θ value that works well on different types of problems with different number of objec-

tives. Although R-MEAD2 showed noticeable tendency towards larger θ values than

MOEA/D, the exact value of θ that works well on different problems varies from case

to case. An implicit assumption of this chapter was that the effect of θ on uniformity

and convergence does not change over the course of optimization.

3. To improve the uniformity of solutions in the preferred region particularly

when the shape of the Pareto-optimal front is complex or highly non-linear.

To investigate a mechanism which can find a diverse set of solutions without

relying on the information of a Pareto-optimal front.

In chapter 6, we proposed a method to improve the uniformity of solutions generated by

many-objective decomposition-based EMO algorithms. The proposed method uses a

mechanism to update the weight vectors of decomposition-based algorithms according

to a feedback that quantifies the uniformity of the solutions in the objective space. In

addition, the weights are updated in parallel to move the solutions towards a region of

interest which is specified by a decision maker through a reference point.

The feedback mechanism adapted to quantify the uniformity/discrepancy of solutions

in the objective space are: Overlapping Hypervolume (OHV), Potential Energy (PE)

and Potential Energy with Direction Vector (PEV). Among these, OHV and PE are

two existing metrics which have been modified to fit the purpose of this research.

In particular, the main idea revolves around the identification of sparse regions in the

objective space and updating the weight vectors to move the solutions from denser areas

to more sparse areas. These methods are stochastic in nature and do not estimate the

gradient base on which the weight vectors should be updated. Unlike OHV and PE,

PEV is based on a vectorized implementation of PE in which the solution set is treated

as a set of charged particles which strive to reach static equilibrium. In PEV, the

gradient information to update each weight vector is calculated based on the virtual

net force that is exerted on each solution (particle) from all other solutions.

The experimental results showed that UR-MEAD2 (using OHV, PE, and PEV) can

perform better than their counterparts with no feedback mechanism (R-MEAD2 and

R-NSGA-II). One of our findings was that PEV had the best performance among

three feedback mechanisms, which could be attributed to the use of accurate gradient

information for updating the weight vectors. The performance of PEV with respect
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to various decomposition methods was analyzed and studied. The analysis showed

that PEV is most compatible with Tchebycheff. We realized that Tchebycheff’s lack

of control on uniformity is effectively compensated by PEV, making it superior to

PBI. With respect to PBI, we have also realized that PEV generally works better

when its penalty value is smaller. Overall, the proposed framework allows effective

integration of user preference while maintaining uniformity on complex Pareto fronts.

After investigating the effect of the new weight vector adaption method on UR-MEAD2

without a reference point, we found that the proposed feedback mechanisms are capable

of generating the uniform set of solutions for non-user preference approaches as well.

4. To define a metric to evaluate the performance of different user-preference

based algorithms.

In chapter 7, a metric (UPCF) is proposed for measuring the performance of user-

preference based EMO algorithms. UPCF works by combining the solution sets of

the algorithms that are to be compared and extracting the non-dominated solutions

into a composite front which is then used to define a preferred region based on the

location of a user-supplied reference point. Once the preferred region is defined, we

used IGD (IGD-CF), HV (HV-CF) and the cardinality-based approach (NS-CF) to

measure the convergence and diversity of the solution set of each algorithm. Composite

front can be used as a replacement of Pareto-optimal front. To ensure the effectiveness

of our proposed metric, we compared it with a baseline metric (IGD-OF) that used the

Pareto-optimal front information. We found that IGD-CF and HV-CF are consistent

with IGD-OF, but NS-CF shows some inconsistency. These inconsistencies tend to be

magnified when dealing with problems with a higher number of objectives.

Another important lesson we learned was that HV-CF has the best consistency with

IGD-OF in case of the large number of objectives. We speculate that this behavior

is due to easy convergence of algorithms on the Pareto-optimal front due to the small

number of objectives. In other words, the composite front happens to closely resemble

a desired portion of the Pareto-optimal front. However, this is not the case when the al-

gorithm cannot fully converge, particularly in higher numbers of objectives. Therefore,

HV-CF becomes the more reliable performance measure.
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8.2 Future Research

This research is mainly dedicated to solving many-objective problems by integrating user-

preference and decomposition methods. Several algorithms have been developed for this

purpose. However, there are more aspects and areas which can be investigated in the future.

• In chapter 5, a comprehensive analysis of PBI penalty parameter (θ), and its ef-

fect on a user-preference algorithm (R-MEAD2) and a non-user-preference algorithm

(MOEA/D) has been conducted. However, we did not investigate the effect of adapting

θ during the course of optimization. Adaptation of θ is appealing from two different

viewpoints. Firstly, the optimum θ is problem dependent. Secondly, the effect of θ on

convergence and uniformity may vary during the course of optimization.

• In chapter 6, a feedback mechanism is proposed to maintain the uniformity of solutions

in the objective space. Three different metrics are used as a feedback mechanism.

This chapter was mainly dedicated to adjusting the weight vectors to improve the

uniformity of solutions in the objective space. It is worthwhile investigating the effect

of other factors to the uniformity of solutions in the objective space such as distribution

of solutions in the decision space, speed of convergence and optimization algorithm

parameters.

• In chapter 7, a metric (UPCF) is proposed to measure the performance of user-

preference based EMO algorithms. UPCF uses a composite front as the replacement

of Pareto-optimal front. Composite front is a combination of non-dominated solutions

from algorithms which need to be compared. The current composite front might not

be accurate enough where there are problems with complex and non-linear Pareto-

optimal front shapes. As a result, there is a need to investigate the development of

more accurate ways of generating composite fronts which can express the features of

the Pareto-optimal front during the course of optimization.

• In this thesis, we are mainly focused on a priori and a posteriori user-preference ap-

proaches, so there is a great potential to apply interactive approaches to developed

frameworks in the particular algorithms developed in chapter 6. Since the weight

vectors are updated dynamically, incorporation of interactive preference information

into the optimization loop will boost the performance of the algorithm dramatically.

Additionally, decision makers can have a much better understanding of solutions in
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the objective space and this helps them to choose their preferred regions with greater

accuracy.

• Applying our developed methods to real-world applications is another area for future

investigation, particularly problems that use interactive optimization process. Stewart

et al. [2008] introduced several interactive many-objective real-world applications. If a

many-objective user-preference algorithm uses a suitable visualization schema, it can

benefit significantly as an interactive optimization process for real world problems.
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Appendix A

Multi-objective Optimization Test

Problems

In this section, we present a brief overview of three widely used multi-objective test functions

namely, ZDT [Zitzler et al., 2000], DTLZ Deb et al. [2001] and WFG Huband et al. [2005].

These test suites provide a common platform for researchers to evaluate their algorithms on

problems with a range of pre-defined characteristics.

1. ZDT Test Suite

ZDT functions were firstly introduced by Zitzler et al. [2000]. These functions are de-

signed based on the features of Pareto-optimal fronts which may cause difficulties for an

EMO to find diverse Pareto-optimal solutions. These features include convexity or non-

convexity, discreteness and non-uniformity. For each of these features a corresponding

test function is constructed. ZDT test functions are restricted to two-objective. Ta-

ble A.1 shows ZDT suites with their Pareto front shapes as well as the number of

decision variables (N). xi ∈ [0, 1] in case of all ZDT functions except ZDT4 where

xi ∈ [−5, 5] and x1 ∈ [0, 1]. ZDT1 to ZDT3 are simple two-objective problems with one

global optimal front. However, ZDT4 is multi-modal with many local Pareto-fronts.

2. DTLZ Test Suite

DTLZ functions were proposed by Deb et al. [2001]. The main difference between

DTLZ and ZDT functions is that DTLZ functions are scalable. Three approaches

are used to design DTLZ test problems. The first approach uses a mostly-translated

single-objective function. In the second approach, the procedure is constructed with the
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Table A.1: Features of ZDT Test Problems

Functions Features N

ZDT1 convex 30
ZDT2 concave 30
ZDT3 convex and disconnected 30
ZDT4 convex 10
ZDT6 concave 10

Table A.2: Features of DTLZ Test Problems

Functions Features N

DTLZ1 linear,multi-modal M+4
DTLZ2 concave,uni-modal M+9
DTLZ3 concave,multi-modal M+9
DTLZ4 concave,uni-modal M+9
DTLZ5 concave,uni-modal M+9
DTLZ6 concave,uni-modal M+9

assumption of the mathematical formula of a Pareto-optimal front. The third approach

is constructed with the assumption that the shape of the search space is a rectangular

hype-box. In DTLZ test problems, all decision variables are xi ∈ [0, 1]. Table A.2

illustrates the properties of these functions.

3. WFG Test Suite

WFG problems were proposed by Huband et al. [2005]. They cover a wide variety

of Pareto-optimal geometries such as convex, concave, mixed convex/concave, linear,

degenerated and disconnected. WFG functions use vector of x which is associated with

an underlying problem to define fitness space. x is driven from the vector of working

parameters z. Unlike the previous test suites, WFG Toolkits allow the designer to

control the complexity. In other words, designers are able to build scalable problems

which are both non-separable and multi-modal.

To build a test problem, designers can determine the geometry of fitness shape by se-

lecting several shape functions and they can facilitate the creation of transition vectors

by employing a number of transformation functions which can be summarized in three

main steps: 1) specify value for underlying formalism; 2)specify the shape function, and

3) specify transition vectors. Shape function specifies the nature of the Pareto-optimal

front and map parameter with domain [0,1] to [0,1]. Different types of Pareto-optimal
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fronts are included: linear, convex, concave, mixed convex/concave and disconnected.

Transformation function map the input parameters with domain [0,1] to [0,1]. Transfor-

mation functions are included Bias:Polynomial, Bias:Flat Region, Bias:Parameter De-

pendent, Shift:Linear Shift:Deceptive, Shift:Multi-modal, Reduction: Weighted-Sum,

Reduction: non-separable. Properties of WFG1-WFG9 functions are described in ta-

ble A.3.

Table A.3: Features of WFG Test Problems

Functions Features

WFG1 convex, mixed, uni-modal
WFG2 convex, disconnected, uni-modal
WFG3 linear, degenerate, multi-modal
WFG4 concave, multi-modal
WFG5 concave, deceptive
WFG6 concave, uni-modal
WFG7 concave, uni-modal
WFG8 concave, uni-modal
WFG9 concave, multi-modal, deceptive
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Table B.1: IGD,GD and L2 values on DTLZ1 test problems. The mean and STD of 25 independent runs are reported.

MOEA/D R-MEAD2

Function, m θ IGD GD L2 IGD GD L2

DTLZ1, m = 2 0 4.07e-2(1.42e-17) 2.97e-2(1.42e-17) 4.85e-27(1.43e-45) 1.74e-2(3.76e-03) 3.39e-2(2.01e-02) 1.50e-01(1.25e-01)
0.1 3.82e-2(2.12e-17) 2.96e-2(7.08e-18) 2.86e-27(1.43e-45) 1.71e-2(4.17e-03) 2.54e-2(1.81e-03) 1.50e-01(1.25e-01)
1.0 1.06e+1(8.80e+00) 7.50e+0(6.21e+00) 4.80e-28(1.43e-45) 1.80e-2(1.04e-03) 4.12e-2(9.07e-03) 4.14e-02(3.45e-08)
5.0 1.04e+1(8.67e+00) 7.38e+0(6.13e+00) 1.66e-28(1.43e-45) 1.73e-2(1.18e-03) 4.03e-2(5.26e-03) 2.82e-04(2.35e-11)
10 3.88e-2(1.42e-17) 3.07e-2(1.06e-17) 5.50e-30(1.46e-42) 1.78e-2(1.69e-03) 3.79e-2(6.33e-03) 1.75e-06(1.46e-06)
50 3.86e-2(2.12e-17) 3.01e-2(1.77e-17) 5.06e-30(1.46e-42) 1.80e-2(1.50e-03) 3.97e-2(8.93e-03) 2.91e-06(2.42e-06)
500 3.88e-2(1.42e-17) 3.07e-2(1.42e-17) 1.27e-29(2.93e-42) 1.78e-2(1.76e-03) 3.76e-2(6.32e-03) 3.16e-06(2.64e-06)

DTLZ1, m = 4 0 2.25e-2(3.54e-18) 2.42e-2(3.54e-18) 1.16e-10(0.00e+00) 3.69e-2(9.98e-03) 3.87e-2(9.76e-03) 3.38e-01(2.81e-01)
0.1 1.93e-2(3.54e-18) 2.06e-2(7.08e-18) 3.41e-15(8.05e-31) 3.14e-2(9.33e-03) 3.27e-2(9.44e-03) 1.89e-02(1.58e-02)
1.0 3.30e-2(7.08e-18) 3.44e-2(1.42e-17) 5.41e-11(1.98e-26) 3.35e-2(5.47e-05) 3.49e-2(1.07e-05) 2.71e-10(2.74e-10)
5.0 2.95e-2(1.42e-17) 3.08e-2(7.08e-18) 1.96e-11(6.60e-27) 3.33e-2(2.64e-03) 3.36e-2(2.85e-03) 3.81e-11(3.17e-11)
10 2.93e-2(1.42e-17) 3.08e-2(7.08e-18) 3.66e-11(1.32e-26) 3.25e-2(1.15e-03) 3.39e-2(1.22e-03) 4.51e-11(2.42e-11)
50 2.95e-2(7.08e-18) 3.07e-2(1.42e-17) 5.21e-12(0.00e+00) 3.24e-2(1.13e-03) 3.38e-2(1.23e-03) 1.19e-11(3.28e-12)
500 2.95e-2(1.42e-17) 3.08e-2(7.08e-18) 1.13e-11(0.00e+00) 3.22e-2(1.40e-03) 3.37e-2(1.42e-03) 8.49e-12(5.49e-12)

DTLZ1, m = 6 0 1.54e-3(4.43e-19) 3.14e-2(3.14e-2) 8.09e-04(2.21e-19) 2.42e-3(6.05e-04) 3.84e-2(5.92e-3) 4.29e-01(3.32e-01)
0.1 1.39e-3(0.00e+00) 2.73e-2(1.06e-17) 2.74e-06(0.00e+00) 2.18e-3(6.27e-04) 3.84e-2(5.23e-3) 2.67e-01(2.22e-01)
1.0 2.05e-3(8.85e-19) 4.33e-2(7.08e-18) 3.89e-08(2.70e-23) 2.07e-3(8.64e-06) 3.33e-2(1.90e-4) 2.77e-08(4.82e-09)
5.0 1.97e-3(4.43e-19) 6.08e-2(2.53e-9) 1.39e-08(6.75e-24) 2.14e-3(4.96e-05) 4.90e-2(1.03e-3) 2.03e-08(5.13e-09)
10 1.96e-3(4.43e-19) 6.08e-2(3.74e-8) 9.77e-09(3.38e-24) 2.14e-3(5.70e-05) 4.26e-2(1.10e-3) 1.95e-08(6.04e-09)
50 1.95e-3(1.11e-18) 4.12e-2(0.00e+0) 9.44e-09(0.00e+00) 2.15e-3(5.68e-05) 4.26e-2(7.89e-4) 2.45e-09(1.94e-10)
500 1.95e-3(4.43e-19) 6.08e-2(2.19e-10) 9.17e-09(1.69e-24) 2.15e-3(6.59e-05) 4.25e-2(9.48e-4) 2.39e-09(2.14e-10)

DTLZ1, m = 8 0 8.78e-3(1.77e-18) 2.36e-2(1.06e-17) 2.30e-02(3.54e-18) 1.39e-2(3.04e-03) 5.20e-01(3.07e-01)
0.1 8.97e-3(4.43e-18) 2.47e-2(7.08e-18) 9.09e-05(6.33e-25) 1.06e-2(2.83e-03) 3.08e-2(1.14e-03) 1.50e-01(1.25e-01)
1.0 1.13e-2(0.00e+00) 3.86e-2(7.08e-18) 1.89e-06(2.16e-22) 1.14e-2(6.24e-05) 3.93e-2(3.68e-04) 2.97e-06(7.42e-08)
5.0 1.11e-2(0.00e+00) 3.80e-2(2.12e-17) 1.29e-06(0.00e+00) 1.14e-2(1.31e-04) 3.88e-2(4.63e-04) 2.74e-06(2.25e-07)
10 1.09e-2((0.00e+0) 3.78e-2(2.12e-17) 5.77e-07(3.24e-22) 1.15e-2(1.44e-04) 3.88e-2(4.84e-04) 2.71e-06(2.51e-07)
50 1.09e-2(1.77e-18) 3.75e-2(2.12e-17) 7.13e-07(0.00e+00) 1.15e-2(1.31e-04) 3.82e-2(6.90e-05) 1.17e-06(1.56e-06)
500 1.10e-2(1.77e-18) 3.78e-2(0.00e+00) 1.16e-06(6.48e-22) 1.15e-2(2.20e-04) 3.82e-2(2.40e-04) 1.08e-06(2.08e-06)

DTLZ1, m = 10 0 1.16e-2(1.77e-18) 3.54e-2(1.42e-17) 1.37e-01(5.67e-17) 1.58e-2(1.87e-03) 1.42e-1(4.93e-02) 3.13e-01(8.10e-02)
0.1 1.10e-2(7.08e-18) 3.20e-2(1.42e-17) 1.82e-05(6.92e-21) 1.58e-2(1.02e-03) 1.42e-1(4.93e-02) 2.98e-05(1.17e-05)
1.0 1.28e-2(1.77e-18) 3.64e-2(0.00e+00) 4.61e-05(1.06e-25) 1.58e-2(1.02e-03) 1.42e-1(4.93e-02) 2.84e-05(3.57e-06)
5.0 1.36e-2(5.31e-18) 3.82e-2(2.12e-17) 2.61e-05(1.04e-20) 1.58e-2(2.12e-03) 1.42e-1(4.93e-02) 2.75e-05(2.05e-06)
10 1.24e-2(7.08e-18) 3.56e-2(1.42e-17) 3.26e-10(1.58e-25) 1.58e-2(1.02e-03) 1.42e-1(4.93e-02) 2.48e-05(2.85e-06)
50 1.25e-2(0.00e+00) 3.55e-2(2.12e-17) 2.90e-10(0.00e+00) 1.58e-2(1.02e-03) 1.42e-1(4.93e-02) 2.32e-05(2.37e-06)
500 1.24e-2(1.77e-18) 3.53e-2(2.12e-17) 2.74e-10(1.58e-25) 1.58e-2(1.01e-03) 1.42e-1(4.93e-02) 2.21e-05(1.27e-06)
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Table B.2: IGD,GD and L2 values on DTLZ2 test problems. The mean and STD of 25 independent runs are reported.

MOEA/D R-MEAD2

Function, m θ IGD GD L2 IGD GD L2

DTLZ2, m = 2 0 4.63e-2(7.31e-18) 8.16e-4(0.00e+00) 3.76e-86(2.55e-111) 1.00e-3(1.57e-11) 6.49e-2(1.49e-09) 2.50e-01(0.00e+00)
0.1 4.63e-2(1.42e-17) 8.16e-4(1.77e-18) 3.76e-86(2.55e-111) 8.62e-4(1.73e-04) 1.02e-2(4.34e-03) 1.50e-01(1.25e-01)
1.0 1.48e-3(0.00e+00) 8.31e-4(3.32e-19) 3.39e-90(6.79e-111) 2.89e-4(1.27e-04) 2.25e-2(2.17e-03) 1.22e-04(1.02e-04)
5.0 1.51e-3(2.21e-19) 8.51e-4(4.43e-19) 9.15e-94(2.17e-109) 3.05e-4(1.58e-04) 3.61e-2(1.53e-03) 7.16e-08(2.70e-09)
10 1.29e-3(0.00e+00) 5.46e-3(3.32e-19) 2.74e-94(1.30e-108) 2.98e-4(1.20e-04) 2.28e-2(8.07e-04) 6.33e-08(3.61e-09)
50 1.75e-3(6.64e-19) 1.76e-3(1.76e-03) 1.31e-96(1.82e-102) 2.87e-4(1.35e-04) 2.13e-2(2.56e-03) 6.09e-08(5.07e-09)
500 1.40e-3(6.64e-19) 8.61e-3(2.21e-19) 9.15e-96(2.17e-109) 2.86e-4(1.36e-04) 2.11e-2(2.77e-03) 6.01e-08(7.01e-09)

DTLZ2, m = 4 0 2.63e-2(1.06e-17) 8.16e-2(1.77e-18) 3.76e-55(2.55e-111) 3.89e-2(5.08e-03) 5.12e-2(3.25e-03) 4.37e-01(1.56e-01)
0.1 2.82e-2(1.06e-17) 7.07e-2(2.83e-17) 4.17e-56(7.08e-18) 3.93e-2(3.08e-04) 7.30e-2(5.45e-03) 3.62e-01(2.50e-01)
1.0 2.65e-2(7.08e-18) 1.07e-2(2.83e-17) 1.18e-58(0.00e+00) 3.42e-2(7.42e-04) 6.01e-2(7.85e-03) 3.63e-01(2.49e-01)
5.0 7.02e-3(0.00e+00) 1.57e-2(7.08e-18) 2.55e-59(8.46e-76) 1.73e-2(5.88e-03) 2.78e-2(1.12e-03) 7.67e-05(5.60e-09)
10 7.39e-3(8.85e-19) 1.46e-2(7.08e-18) 2.38e-59(1.32e-77) 1.70e-2(5.96e-03) 3.75e-2(1.19e-03) 6.55e-09(5.46e-10)
50 7.53e-3(0.00e+00) 1.61e-2(7.08e-18) 9.51e-60(2.26e-75) 1.71e-2(5.80e-03) 3.81e-2(1.12e-03) 5.46e-09(4.55e-10)
500 6.87e-3(8.85e-19) 1.42e-2(8.85e-18) 2.90e-59(1.35e-74) 1.68e-2(6.24e-03) 3.66e-2(1.31e-03) 5.31e-09(4.42e-10)

DTLZ2, m = 6 0 1.17e-3(7.36e-05) 4.80e-2(1.19e-9) 5.17e-01(2.22e-01) 1.23e-3(2.29e-19) 4.80e-2(3.17e-10) 5.17e-01(2.22e-01)
0.1 1.19e-3(4.75e-05) 4.80e-2(6.34e-10) 5.87e-01(1.35e-01) 1.23e-3(2.29e-19) 4.80e-2(2.74e-9) 6.94e-01(1.68e-16)
1.0 1.20e-3(4.16e-05) 4.80e-2(1.03e-10) 5.94e-01(1.25e-01) 1.23e-3(0.00e+00) 4.79e-2(2.36e-3) 5.17e-01(2.22e-01)
5.0 8.09e-4(3.36e-04) 6.20e-2(1.94e-2) 1.92e-03(1.60e-03) 4.41e-4(0.00e+00) 5.72e-2(7.89e-3) 1.25e-02(1.57e-04)
10 7.97e-4(3.51e-04) 6.09e-2(2.08e-2) 1.88e-03(1.57e-03) 4.44e-4(0.00e+00) 5.57e-2(9.86e-3) 2.67e-02(2.99e-04)
50 8.08e-4(3.37e-04) 6.26e-2(1.86e-2) 1.85e-03(1.54e-03) 4.29e-4(0.00e+00) 6.44e-2(1.64e-2) 1.82e-03(1.52e-05)
500 8.01e-4(3.46e-04) 6.07e-2(2.10e-2) 1.85e-03(1.54e-03) 4.25e-4(1.14e-19) 6.19e-2(1.95e-2) 1.81e-03(1.53e-05)

DTLZ2, m = 8 0 4.57e-3(4.78e-04) 5.41e-2(1.98e-03) 6.84e-01(1.02e-01) 4.66e-3(3.68e-04) 5.41e-2(1.98e-03) 6.30e-01(2.58e-01)
0.1 4.50e-3(5.62e-04) 5.41e-2(1.98e-03) 6.16e-01(1.88e-01) 4.66e-3(3.68e-04) 5.41e-2(1.98e-03) 6.16e-01(1.87e-01)
1.0 4.57e-3(4.78e-04) 5.41e-2(1.98e-03) 6.84e-01(1.02e-01) 4.66e-3(3.68e-04) 5.41e-2(1.98e-03) 6.84e-01(1.02e-01)
5.0 2.65e-3(6.68e-04) 8.21e-2(5.30e-03) 1.88e-03(1.57e-03) 2.85e-3(3.32e-04) 8.00e-2(5.21e-03) 8.11e-03(6.39e-33)
10 2.62e-3(7.00e-04) 8.25e-2(4.75e-03) 1.89e-03(1.57e-03) 2.82e-3(3.71e-04) 7.73e-2(8.58e-03) 7.20e-03(8.99e-36)
50 2.64e-3(6.79e-04) 8.13e-2(6.27e-03) 1.88e-03(1.56e-03) 2.70e-3(6.06e-04) 7.49e-2(1.80e-03) 1.89e-03(1.57e-03)
500 2.69e-3(6.12e-04) 8.35e-2(3.55e-03) 1.97e-03(1.64e-03) 2.68e-3(6.30e-04) 7.27e-2(4.50e-03) 1.09e-03(1.58e-03)

DTLZ2, m = 10 0 1.11e-3(0.00e+00) 5.73e-2(4.78e-03) 4.86e-01(4.05e-01) 1.40e-3(4.96e-11) 6.78e-2(2.61e-09) 6.82e-01(1.60e-01)
0.1 1.25e-3(0.00e+00) 5.73e-2(4.78e-03) 4.82e-01(3.13e-01) 1.39e-3(6.64e-06) 5.44e-2(1.39e-03) 6.82e-01(1.60e-01)
1.0 1.20e-3(0.00e+00) 5.73e-2(4.78e-03) 4.80e-01(2.15e-01) 1.39e-3(6.64e-06) 6.44e-2(1.39e-03) 7.42e-02(8.50e-02)
5.0 6.12e-4(1.14e-19) 5.04e-2(4.20e-03) 3.84e-01(3.20e-01) 7.38e-4(9.19e-05) 6.14e-2(6.21e-03) 2.50e-03(3.02e-04)
10 6.20e-4(1.14e-19) 6.84e-2(4.03e-03) 3.80e-01(3.20e-01) 7.36e-4(9.14e-05) 6.25e-2(4.91e-03) 7.30e-04(8.68e-05)
50 6.28e-4(1.14e-19) 6.55e-2(3.79e-03) 1.06e-05(8.37e-06) 6.22e-4(1.67e-04) 6.63e-2(1.19e-03) 1.05e-05(8.71e-06)
500 6.24e-4(1.14e-19) 6.55e-2(3.79e-03) 1.06e-05(8.87e-06) 6.22e-4(1.66e-04) 6.61e-2(1.21e-03) 1.05e-05(8.71e-06)
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Table B.3: IGD,GD and L2 values on DTLZ3 test problems. The mean and STD of 25 independent runs are reported.

MOEA/D R-MEAD2

Function, m θ IGD GD L2 IGD GD L2

DTLZ3, m = 2 0 3.30e-2(1.55e-03) 9.49e-2(9.21e-03) 4.33e-01(2.28e-01) 9.38e-4(2.26e-04) 6.67e-2(4.83e-03) 2.50e-01(1.42e-16)
0.1 5.54e-2(2.33e-02) 1.51e-1(5.32e-02) 2.50e-01(1.18e-01) 1.10e-3(6.97e-05) 1.04e-1(5.97e-03) 2.50e-01(2.78e-15)
1.0 4.55e-2(1.82e-02) 1.05e-1(7.29e-02) 1.21e-01(1.08e-01) 1.69e-3(1.86e-04) 1.17e-1(3.95e-02) 2.10e-01(1.78e-15)
5.0 6.61e-2(2.41e-02) 1.34e-1(6.59e-02) 6.51e-02(1.16e-02) 8.56e-4(1.78e-04) 5.99e-2(4.42e-03) 1.99e-03(7.15e-05)
10 4.27e-2(8.92e-03) 8.16e-2(8.16e-03) 4.78e-02(2.01e-02) 1.71e-3(9.18e-04) 9.38e-2(7.41e-03) 1.78e-03(6.76e-05)
50 5.53e-2(6.83e-03) 1.10e-1(2.75e-02) 2.22e-02(1.06e-02) 8.93e-4(2.96e-04) 3.56e-2(3.46e-03) 1.61e-03(5.88e-05)
500 2.63e-2(2.12e-02) 4.50e-2(3.57e-03) 5.21e-03(1.05e-03) 6.89e-4(1.21e-04) 1.36e-2(9.64e-03) 1.38e-03(1.15e-01)

DTLZ3, m = 4 0 9.29e-2(6.87e-02) 1.65e-1(1.32e-02) 5.51e+01(1.88e-01) 3.86e-2(7.84e-04) 2.35e-1(2.20e-02) 5.62e-01(3.59e-02)
0.1 6.03e-2(2.79e-02) 1.01e-1(5.25e-02) 1.13e+01(1.14e-01) 3.86e-2(7.84e-04) 6.53e-2(2.04e-03) 5.62e-01(4.87e-02)
1.0 2.24e-2(1.88e-03) 3.23e-2(3.54e-03) 4.46e-01(1.46e-01) 4.05e-2(6.11e-03) 7.39e-2(2.36e-03) 5.62e-01(5.10e-02)
5.0 2.70e-2(1.50e-02) 4.48e-2(2.00e-03) 1.54e-01(1.29e-01) 3.55e-2(4.64e-03) 7.48e-2(2.07e-03) 3.28e-01(9.55e-02)
10 2.72e-2(1.55e-02) 4.34e-2(2.31e-03) 1.25e-01(1.05e-01) 3.92e-2(4.85e-03) 7.48e-2(2.18e-03) 1.91e-01(5.78e-02)
50 3.96e-2(3.33e-03) 6.61e-2(1.10e-03) 8.84e-02(7.36e-02) 4.10e-2(4.41e-03) 7.48e-2(2.06e-03) 1.11e-01(3.93e-02)
500 3.65e-2(6.50e-04) 6.08e-2(4.35e-03) 8.84e-02(7.36e-02) 4.69e-2(2.22e-03) 1.05e-1(6.30e-02) 2.31e-02(1.85e-03)

DTLZ3, m = 6 0 1.86e-3(3.65e-04) 8.22e-2(2.11e-2) 6.94e-01(2.77e-02) 1.77e-3(6.48e-04) 8.91e-2(5.06e-2) 6.94e-01(2.19e-02)
0.1 2.08e-3(1.03e-03) 1.08e-1(7.44e-2) 6.94e-01(3.85e-01) 1.78e-3(6.50e-04) 9.68e-2(5.94e-2) 6.94e-01(1.18e-02)
1.0 1.22e-3(2.67e-05) 4.86e-2(2.29e-4) 6.60e-01(4.32e-02) 1.61e-3(4.50e-04) 6.91e-2(2.52e-2) 4.07e-01(1.59e-02)
5.0 1.24e-3(7.14e-06) 4.86e-2(2.28e-4) 5.33e-01(2.01e-01) 9.45e-4(3.83e-04) 4.67e-2(2.67e-3) 6.15e-02(3.39e-03)
10 1.34e-3(1.14e-04) 5.33e-2(5.72e-3) 5.20e-01(1.55e-01) 1.88e-3(6.88e-04) 1.21e-1(3.12e-2) 8.84e-03(7.36e-04)
50 1.30e-3(5.56e-05) 7.72e-2(2.43e-2) 1.56e-01(1.58e-01) 1.28e-3(5.48e-04) 7.68e-2(2.37e-2) 7.54e-03(3.01e-04)
500 1.34e-3(1.32e-06) 7.90e-2(2.17e-2) 2.90e-01(3.33e-01) 9.91e-4(4.16e-04) 7.71e-2(2.44e-2) 7.26e-03(6.05e-04)

DTLZ3, m = 8 0 1.35e-2(7.86e-03) 2.43e-1(1.51e-02) 5.62e-01(3.13e-03) 1.74e-2(1.55e-02) 3.19e-1(2.73e-02) 7.65e-01(2.19e-02)
0.1 1.37e-2(7.99e-03) 2.46e-1(1.53e-02) 4.78e-01(2.37e-02) 6.98e-3(1.64e-03) 1.37e-1(3.03e-02) 7.62e-01(4.01e-02)
1.0 1.01e-2(2.30e-03) 1.82e-1(5.65e-02) 3.78e-01(4.63e-03) 1.13e-3(5.83e-03) 1.02e-1(1.18e-02) 7.50e-01(1.91e-02)
5.0 9.23e-3(1.46e-03) 1.49e-1(2.77e-02) 2.94e-01(3.43e-02) 9.56e-3(9.38e-04) 1.65e-1(2.68e-02) 5.62e-01(1.57e-02)
10 6.02e-3(1.49e-03) 9.23e-2(2.63e-03) 1.33e-01(1.12e-02) 7.80e-3(2.94e-03) 1.36e-1(6.24e-02) 3.72e-01(2.00e-02)
50 6.01e-3(1.42e-03) 9.24e-2(2.56e-03) 1.52e-01(9.93e-03) 8.23e-2(2.18e-03) 2.05e-1(4.19e-02) 1.22e-01(6.39e-03)
500 7.35e-3(2.70e-04) 1.15e-1(3.28e-03) 1.50e-01(8.76e-03) 8.95e-2(2.90e-03) 2.28e-1(5.30e-02) 7.64e-02(7.15e-03)

DTLZ3, m = 10 0 2.99e-2(6.50e-03) 5.97e-1(1.46e-01) 4.14e+01(3.20e+01) 8.16e-3(3.26e-03) 1.45e-1(6.42e-02) 9.35e-01(8.03e-02)
0.1 1.25e-2(6.21e-03) 2.51e-1(1.40e-01) 8.10e-01(1.20e-01) 8.06e-3(3.15e-03) 1.52e-1(4.96e-02) 8.19e-01(9.13e-02)
1.0 7.43e-3(1.26e-04) 1.49e-1(1.87e-02) 7.99e-01(5.12e-02) 7.23e-3(4.22e-05) 1.44e-1(1.70e-02) 7.59e-01(9.10e-02)
5.0 6.18e-3(1.33e-03) 1.24e-1(4.23e-02) 7.65e-01(9.10e-02) 6.11e-3(1.44e-03) 1.23e-1(4.40e-02) 7.39e-01(7.54e-02)
10 6.06e-3(1.48e-03) 1.22e-1(4.49e-02) 7.55e-01(7.20e-02) 6.06e-3(1.50e-03) 1.22e-1(4.53e-02) 7.25e-01(5.17e-02)
50 6.06e-3(1.48e-03) 1.22e-1(4.49e-02) 6.34e-01(3.20e-02) 6.19e-3(1.36e-03) 1.24e-1(4.27e-02) 8.09e-02(2.34e-02)
500 6.06e-3(1.48e-03) 1.24e-1(7.67e-04) 6.14e-01(3.10e-02) 6.04e-3(1.40e-03) 1.02e-1(2.71e-02) 6.33e-02(4.11e-03)
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Table B.4: IGD,GD and L2 values on DTLZ4 test problems. The mean and STD of 25 independent runs are reported.

MOEA/D R-MEAD2

Function, m θ IGD GD L2 IGD GD L2

DTLZ4, m = 2 0 1.00e-1(2.93e-17) 9.95e-2(1.03e-09) 2.50e-01(0.00e+00) 1.00e-3(3.27e-13) 9.95e-2(3.26e-11) 2.50e-01(0.00e+00)
0.1 4.63e-2(0.00e+00) 5.98e-2(4.95e-03) 1.50e-01(1.25e-01) 7.85e-4(2.68e-04) 5.99e-2(4.95e-03) 1.50e-01(1.25e-01)
1.0 8.61e-4(2.29e-19) 5.99e-2(4.96e-03) 1.50e-01(1.25e-01) 6.51e-4(4.36e-04) 6.95e-2(3.75e-03) 1.50e-01(1.25e-01)
5.0 1.28e-3(2.29e-19) 5.99e-2(4.94e-03) 1.50e-01(1.25e-01) 6.49e-4(4.39e-04) 6.92e-2(3.79e-03) 1.50e-01(1.25e-01)
10 8.51e-4(2.29e-19) 5.99e-2(4.96e-03) 1.50e-01(1.25e-01) 6.48e-4(4.40e-04) 6.91e-2(3.80e-03) 1.50e-01(1.25e-01)
50 1.02e-3(2.29e-19) 5.99e-2(4.95e-03) 1.50e-01(1.25e-01) 6.46e-4(4.42e-04) 6.87e-2(3.85e-03) 1.49e-01(1.12e-01)
500 1.01e-3(2.29e-19) 5.99e-2(4.96e-03) 1.50e-01(1.25e-01) 6.55e-4(4.32e-04) 6.99e-2(3.70e-03) 1.45e-01(2.45e-01)

DTLZ4, m = 4 0 3.75e-2(9.32e-03) 3.29e-2(1.81e-02) 3.38e-01(2.81e-01) 4.36e-2(7.06e-03) 7.52e-2(1.09e-03) 5.40e-01(1.12e-01)
0.1 4.50e-2(2.87e-11) 7.74e-2(4.94e-11) 5.63e-01(0.00e+00) 4.36e-2(7.06e-03) 7.54e-2(1.13e-03) 5.40e-01(1.12e-01)
1.0 1.50e-2(8.29e-10) 1.03e-1(3.19e-03) 5.62e-01(2.56e-15) 4.43e-2(3.26e-03) 6.30e-2(1.80e-03) 3.62e-01(2.50e-01)
5.0 1.57e-2(7.93e-03) 3.32e-2(1.83e-03) 2.98e-04(1.73e-04) 1.57e-2(9.51e-03) 3.08e-2(1.06e-03) 3.75e-02(3.13e-02)
10 1.57e-2(7.92e-03) 3.39e-2(1.74e-03) 2.94e-04(2.45e-04) 1.74e-2(6.45e-03) 3.81e-2(1.25e-03) 2.43e-05(3.03e-05)
50 1.57e-2(8.02e-03) 3.39e-2(1.80e-03) 2.76e-04(2.30e-04) 1.71e-2(6.18e-03) 3.72e-2(1.34e-03) 1.89e-05(1.57e-05)
500 1.58e-2(7.82e-03) 3.39e-2(1.75e-03) 2.76e-04(2.30e-04) 1.69e-2(6.42e-03) 3.70e-2(1.35e-03) 3.43e-05(2.86e-05)

DTLZ4, m = 6 0 1.35e-3(2.52e-04) 5.48e-2(3.15e-2) 4.17e-01(3.47e-01) 1.45e-3(5.36e-12) 7.36e-2(2.72e-10) 6.94e-01(0.00e+00)
0.1 1.30e-3(1.87e-04) 8.81e-2(1.49e-2) 4.28e-01(3.33e-01) 1.45e-3(3.76e-12) 7.36e-2(1.91e-10) 6.94e-01(0.00e+00)
1.0 1.45e-3(2.26e-12) 8.15e-2(9.83e-3) 3.94e-01(2.47e-14) 1.45e-3(3.10e-14) 7.85e-2(6.06e-3) 6.94e-01(1.14e-14)
5.0 8.42e-3(3.04e-04) 5.72e-2(3.07e-2) 3.17e-02(3.25e-03) 6.61e-4(2.27e-04) 1.03e-2(3.80e-2) 1.67e-02(1.39e-02)
10 8.52e-3(4.16e-04) 5.84e-2(2.93e-2) 3.17e-02(1.71e-02) 7.46e-4(1.21e-04) 6.89e-2(9.25e-3) 2.78e-02(1.06e-17)
50 8.52e-3(2.04e-04) 7.78e-2(5.01e-3) 3.17e-02(3.25e-03) 8.71e-4(3.93e-04) 6.34e-2(2.30e-2) 2.06e-02(1.72e-02)
500 8.53e-4(4.15e-04) 6.28e-2(2.38e-2) 2.06e-02(1.71e-02) 8.78e-4(3.83e-04) 5.80e-2(2.10e-4) 2.06e-02(1.71e-02)

DTLZ4, m = 8 0 4.32e-3(7.86e-04) 4.88e-2(2.65e-03) 5.66e-01(3.75e-01) 4.96e-3(3.28e-11) 8.03e-2(5.31e-10) 7.66e-01(0.00e+00)
0.1 3.95e-3(5.14e-11) 6.14e-1(6.67e-02) 5.49e-01(2.71e-01) 4.96e-3(1.95e-11) 8.03e-2(3.17e-10) 7.66e-01(0.00e+00)
1.0 4.95e-3(2.34e-11) 1.16e-1(4.52e-02) 4.66e-01(1.02e-13) 4.96e-3(1.22e-11) 1.16e-1(4.44e-02) 7.66e-01(5.05e-14)
5.0 4.81e-3(1.43e-03) 6.45e-1(1.97e-02) 4.66e-01(3.75e-01) 3.12e-3(5.83e-04) 5.06e-2(1.47e-03) 9.25e-02(0.00e+00)
10 4.64e-3(1.64e-03) 6.43e-1(2.00e-02) 4.59e-01(3.83e-01) 3.23e-3(4.93e-05) 5.53e-2(8.21e-03) 8.37e-02(3.91e-02)
50 4.29e-3(1.09e-03) 6.66e-1(1.38e-02) 4.45e-02(2.74e-02) 3.17e-3(3.07e-04) 5.53e-2(2.53e-04) 7.50e-02(1.90e-16)
500 4.76e-3(9.14e-04) 5.29e-1(1.27e-02) 4.39e-02(3.66e-02) 3.03e-3(7.92e-04) 6.23e-2(1.17e-03) 6.73e-02(3.99e-03)

DTLZ4, m = 10 0 4.45e-3(6.30e-04) 7.98e-2(1.94e-03) 6.30e-01(2.25e-01) 4.25e-3(1.46e-11) 7.64e-2(2.74e-10) 8.10e-01(0.00e+00)
0.1 4.95e-3(8.43e-11) 7.64e-2(1.50e-09) 8.10e-01(0.00e+00) 4.25e-3(6.71e-11) 7.72e-2(1.08e-03) 8.10e-01(0.00e+00)
1.0 4.95e-3(1.43e-12) 1.70e-1(1.17e-02) 8.10e-01(2.19e-04) 4.25e-3(3.11e-11) 7.94e-2(3.73e-03) 8.10e-01(3.36e-14)
5.0 3.78e-3(1.47e-03) 6.69e-2(9.82e-03) 5.22e-01(3.60e-01) 2.56e-3(8.71e-04) 6.58e-2(1.32e-03) 5.22e-01(3.60e-01)
10 2.19e-3(4.83e-04) 6.85e-2(2.58e-03) 7.00e-02(2.50e-02) 2.89e-3(1.69e-04) 7.32e-2(5.72e-03) 1.48e-01(3.50e-02)
50 2.87e-3(7.74e-04) 7.60e-2(1.20e-03) 7.00e-02(2.50e-02) 2.72e-3(5.34e-04) 6.90e-2(2.62e-03) 1.32e-01(3.50e-02)
500 2.23e-3(4.57e-19) 7.03e-2(2.16e-03) 5.80e-02(4.00e-02) 3.07e-3(3.20e-04) 6.96e-2(1.65e-03) 8.80e-02(6.00e-02)
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Table B.5: IGD,GD and L2 values on DTLZ5 test problems. The mean and STD of 25 independent runs are reported.

MOEA/D R-MEAD2

Function, m θ IGD GD L2 IGD GD L2

DTLZ5, m = 2 0 4.27e-2(7.15e-12) 5.35e-2(6.00e-12) 3.76e-09(2.55e-11) 4.27e-4(7.24e-14) 5.35e-2(6.08e-12) 3.76e-09(2.55e-11)
0.1 4.27e-2(8.43e-12) 5.35e-2(6.73e-12) 3.76e-09(2.55e-11) 4.27e-4(1.75e-13) 5.35e-2(1.19e-11) 3.76e-09(2.55e-11)
1.0 4.27e-2(7.88e-12) 5.35e-2(8.45e-12) 3.76e-09(2.55e-11) 4.27e-4(2.89e-14) 5.35e-2(3.10e-12) 3.76e-09(2.55e-11)
5.0 4.27e-2(1.94e-12) 5.35e-2(3.19e-12) 3.76e-09(2.55e-11) 4.27e-4(3.62e-14) 5.35e-2(5.50e-12) 3.76e-09(2.55e-11)
10 4.27e-2(9.66e-12) 5.35e-2(5.20e-12) 3.76e-09(2.55e-11) 4.27e-4(3.17e-13) 5.35e-2(6.54e-12) 3.76e-09(2.55e-11)
50 4.27e-2(1.65e-11) 5.35e-2(8.71e-12) 3.76e-09(2.55e-11) 4.27e-4(2.79e-14) 5.35e-2(7.08e-12) 3.76e-09(2.55e-11)
500 4.27e-2(3.50e-12) 5.35e-2(1.62e-12) 3.76e-09(2.55e-11) 4.27e-4(6.47e-14) 5.35e-2(1.17e-11) 3.76e-09(2.55e-11)

DTLZ5, m = 4 0 1.72e-2(2.12e-04) 3.25e-2(4.05e-04) 3.38e-01(2.81e-01) 1.73e-2(3.60e-12) 3.32e-2(6.64e-12) 3.20e-07(1.73e-08)
0.1 1.71e-2(3.08e-04) 3.25e-2(5.89e-04) 5.63e-01(0.00e+00) 1.73e-2(4.12e-06) 3.32e-2(7.87e-06) 4.20e-08(1.17e-09)
1.0 1.73e-2(9.78e-05) 3.31e-2(1.87e-04) 5.62e-01(2.56e-15) 1.71e-2(9.75e-05) 3.31e-2(1.86e-04) 3.34e-08(9.93e-09)
5.0 1.71e-2(1.79e-04) 3.26e-2(3.41e-04) 2.08e-04(1.73e-04) 1.71e-2(1.40e-04) 3.31e-2(2.66e-04) 3.15e-08(7.25e-09)
10 1.71e-2(2.62e-04) 3.26e-2(4.98e-04) 2.94e-04(2.45e-04) 1.71e-2(1.52e-04) 3.31e-2(2.88e-04) 2.79e-08(9.41e-09)
50 1.71e-2(2.66e-04) 3.26e-2(5.06e-04) 2.76e-04(2.30e-04) 1.71e-2(1.74e-04) 3.31e-2(3.29e-04) 2.80e-08(2.85e-09)
500 1.71e-2(2.64e-04) 3.26e-2(5.02e-04) 2.76e-04(2.30e-04) 1.71e-2(1.74e-04) 3.31e-2(3.28e-04) 1.07e-07(7.42e-08)

DTLZ5, m = 6 0 1.57e-3(2.25e-03) 2.74e-2(4.30e-2) 1.00e-06(4.63e-07) 1.06e-3(2.74e-03) 2.75e-2(4.29e-2) 1.04e-06(8.70e-07)
0.1 2.51e-3(5.35e-04) 4.80e-2(1.02e-2) 1.05e-06(8.73e-07) 1.68e-3(7.36e-04) 4.84e-2(9.78e-3) 1.04e-06(8.70e-07)
1.0 1.92e-3(9.85e-06) 3.67e-2(1.88e-4) 2.20e-18(5.08e-19) 1.81e-3(1.76e-05) 3.67e-2(1.72e-4) 2.16e-08(4.92e-09)
5.0 1.91e-3(1.49e-05) 3.65e-2(2.86e-4) 2.12e-18(4.69e-19) 1.80e-3(1.24e-05) 3.66e-2(2.19e-4) 1.92e-08(2.15e-09)
10 1.91e-3(1.83e-05) 3.64e-2(3.51e-4) 2.12e-18(5.87e-19) 1.80e-3(1.10e-05) 3.66e-2(2.23e-4) 1.90e-08(3.14e-09)
50 1.91e-3(1.64e-05) 3.65e-2(3.13e-4) 2.12e-18(6.45e-19) 1.80e-3(1.49e-05) 3.65e-2(2.77e-4) 1.04e-08(4.16e-09)
500 1.90e-3(1.95e-05) 3.64e-2(3.64e-2) 2.35e-18(9.34e-19) 1.80e-3(1.16e-05) 3.65e-2(2.49e-4) 1.94e-09(4.49e-10)

DTLZ5, m = 8 0 9.63e-4(1.29e-05) 4.05e-2(5.43e-04) 1.39e-08(1.66e-08) 9.63e-4(1.27e-05) 4.05e-2(5.35e-04) 1.16e-08(1.38e-08)
0.1 9.63e-4(1.26e-05) 4.05e-2(5.32e-04) 1.89e-09(1.52e-09) 9.53e-4(3.75e-06) 4.05e-2(5.04e-04) 8.29e-08(3.20e-10)
1.0 9.72e-4(4.67e-06) 4.09e-2(1.95e-04) 1.88e-09(1.37e-12) 9.75e-4(2.18e-06) 4.09e-2(1.56e-04) 9.69e-08(6.53e-11)
5.0 9.73e-4(9.02e-06) 4.09e-2(3.76e-04) 1.84e-09(5.10e-10) 9.74e-4(8.50e-06) 4.09e-2(3.53e-04) 1.86e-09(6.91e-10)
10 9.71e-4(1.23e-05) 4.08e-2(5.15e-04) 1.86e-09(7.50e-10) 9.73e-4(8.81e-06) 4.09e-2(3.67e-04) 1.73e-09(7.03e-10)
50 9.70e-4(9.41e-06) 4.08e-2(3.93e-04) 1.21e-09(2.25e-10) 9.72e-4(9.25e-06) 4.09e-2(3.85e-04) 1.35e-09(5.02e-10)
500 9.69e-4(1.11e-05) 4.07e-2(4.62e-04) 1.30e-09(1.71e-10) 9.70e-4(9.28e-06) 4.08e-2(3.87e-04) 1.18e-09(2.53e-10)

DTLZ5, m = 10 0 1.27e-3(5.33e-04) 8.80e-2(3.24e-02) 1.65e-04(5.70e-04) 1.32e-3(5.50e-04) 8.61e-2(3.08e-03) 9.84e-04(1.89e-06)
0.1 6.85e-3(4.59e-05) 5.06e-2(3.19e-03) 8.31e-04(6.80e-04) 7.25e-4(5.04e-05) 5.05e-2(3.21e-03) 8.40e-04(6.88e-04)
1.0 6.88e-4(4.06e-06) 5.06e-2(4.82e-04) 1.66e-05(4.20e-06) 7.32e-4(4.80e-06) 5.07e-2(4.83e-03) 1.63e-05(4.63e-06)
5.0 6.88e-4(7.32e-06) 5.06e-2(3.16e-04) 8.69e-06(3.40e-06) 7.29e-4(4.85e-06) 5.07e-2(3.46e-03) 8.89e-06(3.14e-06)
10 6.88e-4(5.24e-06) 5.06e-2(2.61e-04) 8.04e-06(2.15e-06) 7.28e-4(2.25e-06) 5.07e-2(3.13e-03) 8.15e-06(2.03e-06)
50 6.88e-4(6.31e-06) 5.06e-2(3.09e-04) 5.86e-06(6.65e-07) 7.28e-4(5.54e-06) 5.07e-2(3.14e-03) 5.93e-06(5.86e-07)
500 6.88e-4(9.34e-06) 5.06e-2(3.87e-04) 5.77e-06(6.76e-07) 7.18e-4(4.16e-06) 5.07e-2(2.71e-03) 4.07e-06(3.01e-07)
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Table B.6: IGD,GD and L2 values on DTLZ6 test problems. The mean and STD of 25 independent runs are reported.

MOEA/D R-MEAD2

Function, m θ IGD GD L2 IGD GD L2

DTLZ6, m = 2 0 4.24e-2(4.29e-04) 5.32e-2(2.49e-04) 3.76e-09(1.10e-10) 4.24e-4(3.69e-06) 5.63e-2(2.13e-04) 3.76e-06(1.10e-10)
0.1 4.26e-2(1.45e-04) 5.32e-2(8.24e-05) 3.76e-09(1.08e-10) 4.30e-4(1.82e-05) 5.54e-2(1.97e-03) 3.76e-06(3.54e-10)
1.0 4.27e-2(7.08e-18) 5.32e-2(7.08e-18) 3.76e-09(2.55e-11) 4.40e-4(4.35e-06) 5.39e-2(5.28e-04) 3.76e-06(1.10e-10)
5.0 4.23e-2(4.08e-04) 5.32e-2(1.58e-04) 3.76e-09(3.25e-11) 4.26e-4(1.79e-07) 5.34e-2(8.43e-05) 3.76e-06(1.10e-10)
10 4.24e-2(3.33e-04) 5.32e-2(1.16e-04) 3.76e-09(3.41e-11) 4.26e-4(1.66e-19) 5.35e-2(7.08e-18) 3.76e-06(2.55e-11)
50 4.27e-2(1.41e-05) 5.32e-2(1.98e-04) 3.76e-09(3.96e-10) 4.26e-4(3.26e-07) 5.33e-2(1.06e-04) 3.75e-06(1.09e-10)
500 4.27e-2(2.45e-06) 5.32e-2(2.06e-04) 3.76e-09(5.38e-10) 4.27e-4(1.13e-06) 5.34e-2(2.69e-04) 3.77e-06(2.92e-10)

DTLZ6, m = 4 0 1.73e-2(1.06e-17) 3.35e-2(1.19e-17) 9.02e-03(7.28e-39) 1.77e-2(6.95e-05) 3.29e-2(1.29e-04) 4.29e-03(1.03e-03)
0.1 1.73e-2(5.19e-05) 3.33e-2(6.15e-04) 7.04e-03(8.48e-37) 1.77e-2(7.22e-05) 3.29e-2(1.35e-04) 3.66e-03(1.19e-03)
1.0 1.72e-2(4.60e-05) 3.35e-2(8.54e-05) 1.72e-03(1.09e-38) 1.77e-2(1.62e-05) 3.30e-2(3.34e-05) 3.57e-03(1.64e-03)
5.0 1.74e-2(4.55e-04) 3.35e-2(8.54e-04) 1.92e-03(1.60e-32) 1.77e-2(4.62e-04) 3.34e-2(8.66e-04) 3.51e-03(3.01e-03)
10 1.75e-2(5.18e-04) 3.35e-2(9.74e-04) 7.67e-03(6.39e-32) 1.77e-2(5.44e-04) 3.34e-2(1.02e-03) 2.54e-03(1.29e-03)
50 1.75e-2(5.89e-04) 3.35e-2(1.11e-03) 1.71e-03(1.42e-31) 1.76e-2(6.07e-04) 3.35e-2(1.14e-03) 1.73e-03(1.45e-03)
500 1.75e-2(6.96e-04) 3.35e-2(1.31e-03) 2.57e-03(2.14e-31) 1.75e-2(6.52e-04) 3.35e-2(1.22e-03) 2.40e-03(2.00e-03)

DTLZ6, m = 6 0 2.02e-2(6.90e-03) 1.95e-1(1.32e-1) 3.22e-06(1.56e-06) 1.14e-2(7.98e-03) 2.85e-2(1.32e-1) 6.59e-08(5.76e-09)
0.1 2.72e-3(6.65e-04) 5.20e-2(1.27e-2) 3.12e-06(6.76e-06) 2.95e-3(9.54e-04) 5.26e-2(1.32e-2) 4.99e-08(1.66e-09)
1.0 1.96e-3(3.36e-05) 3.83e-2(3.17e-4) 4.38e-05(3.52e-05) 1.92e-3(5.15e-05) 3.87e-2(7.31e-4) 3.64e-08(2.72e-09)
5.0 1.91e-3(3.65e-06) 3.60e-2(6.99e-5) 1.02e-08(6.64e-09) 1.82e-3(2.31e-05) 3.66e-2(7.31e-5) 4.36e-09(1.20e-10)
10 1.90e-3(1.25e-05) 3.64e-2(2.39e-4) 7.99e-09(3.92e-09) 1.80e-3(8.20e-06) 3.64e-2(2.53e-4) 4.31e-09(1.26e-10)
50 1.90e-3(2.29e-19) 3.63e-2(2.70e-4) 3.82e-09(1.30e-09) 1.80e-3(2.13e-06) 3.64e-2(1.79e-4) 4.28e-09(3.42e-10)
500 1.90e-3(9.03e-06) 3.64e-2(1.73e-4) 3.43e-09(1.79e-09) 1.80e-3(1.03e-06) 3.64e-2(1.89e-4) 3.28e-09(1.97e-10)

DTLZ6, m = 8 0 4.20e-3(2.69e-03) 1.77e-1(1.13e-01) 1.73e-08(1.10e-09) 6.40e-3(4.52e-03) 2.71e-1(1.88e-01) 1.24e-007(8.67e-8)
0.1 9.76e-4(2.16e-06) 4.10e-2(8.78e-05) 1.78e-09(1.00e-09) 9.80e-4(5.30e-06) 4.15e-2(1.69e-04) 6.87e-08(4.61e-09)
1.0 9.85e-4(2.83e-06) 4.08e-2(1.16e-04) 1.18e-08(4.44e-09) 9.84e-4(7.93e-06) 4.14e-2(3.25e-04) 1.27e-08(1.30e-08)
5.0 9.70e-4(1.17e-05) 4.08e-2(4.87e-04) 1.65e-09(1.21e-09) 9.76e-4(1.08e-05) 4.10e-2(4.45e-04) 1.23e-09(8.37e-10)
10 9.70e-4(8.36e-06) 4.08e-2(3.52e-04) 3.37e-10(2.50e-10) 9.76e-4(1.37e-05) 4.10e-2(5.72e-04) 5.41e-10(4.00e-10)
50 9.71e-4(1.19e-05) 4.08e-2(4.95e-04) 3.37e-10(1.97e-10) 9.76e-4(1.42e-05) 4.10e-2(5.94e-04) 3.85e-10(3.00e-10)
500 9.71e-4(1.29e-05) 4.08e-2(5.38e-04) 3.37e-10(1.84e-10) 9.75e-4(1.39e-05) 4.10e-2(5.80e-04) 3.60e-10(2.87e-10)

DTLZ6, m = 10 0 1.37e-3(6.12e-04) 9.49e-2(3.57e-03) 1.39e-04(1.16e-04) 1.57e-3(7.23e-04) 1.02e-1(3.82e-02) 9.77e-04(8.12e-04)
0.1 6.98e-4(5.26e-05) 5.40e-2(3.97e-03) 5.24e-04(4.16e-04) 6.23e-4(7.10e-05) 5.08e-2(4.68e-03) 8.22e-04(6.72e-04)
1.0 6.97e-4(3.73e-06) 5.17e-2(8.49e-4) 1.22e-04(2.50e-05) 7.29e-4(1.11e-05) 5.27e-2(1.35e-03) 1.04e-04(6.67e-05)
5.0 7.84e-4(4.08e-06) 5.17e-2(1.04e-03) 3.83e-06(9.24e-07) 7.09e-4(3.80e-06) 5.29e-2(2.51e-04) 2.95e-06(2.02e-06)
10 7.84e-4(2.70e-07) 5.18e-2(8.12e-04) 2.88e-06(1.21e-06) 7.01e-4(1.28e-05) 5.11e-2(1.59e-03) 2.44e-06(1.74e-06)
50 7.85e-4(1.65e-06) 5.18e-2(4.41e-04) 1.54e-06(7.73e-07) 7.10e-4(3.08e-06) 5.15e-2(4.59e-04) 1.70e-06(7.17e-07)
500 7.84e-4(2.40e-06) 5.17e-2(6.48e-04) 1.66e-06(3.14e-07) 7.15e-4(1.39e-06) 5.13e-2(6.68e-04) 1.32e-06(8.24e-07)
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.1: HV values for PBI decomposition method on DTLZ1-DTLZ6 test problems.
The parameter θ = 5 unless specified. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV PEV (θ=0)

DTLZ1

4 8.90e-03 1.16e-02 8.03e-02↑ 9.26e-02↑ 10.16e-02↑ 10.28e-02↑

5 1.00e-02 1.19e-02 9.64e-02↑ 9.52e-02↑ 0.17e-02↓ 0.34e-02↓

6 8.91e-02 1.31e-02 2.09e-02↑ 1.31e-02≈ 4.11e-02↑ 9.82e-02↑

7 5.40e-03 0.40e-02 1.21e-02↑ 1.21e-02↑ 2.23e-02↑ 0.16e-02↑

8 3.19e-03 1.51e-02 2.33e-02↑ 2.33e-02↑ 2.22e-02↑ 2.21e-02↑

9 7.53e-03 1.66e-02 2.45e-02↑ 2.46e-02↑ 3.15e-02↑ 3.13e-02↑

10 1.75e-02 0.98e-02 1.60e-02↑ 1.60e-02↑ 1.98e-02↑ 2.21e-02↑

DTLZ2

4 80.90e-04 71.11e-03 15.35e-02↑ 11.83e-02↑ 33.33e-02↑ 33.31e-02↑

5 12.41e-02 9.38e-02 14.15e-02↑ 13.52e-02↑ 10.0e-02↑ 14.64e-02↑

6 11.56e-02 6.64e-02 7.38e-02↑ 13.52e-02↑ 15.0e-02↑ 16.10e-02↑

7 10.71e-03 71.53e-03 12.82e-02↑ 13.93e-02↑ 1.51e-02↓ 17.71e-02↑

8 10.04e-03 79.70e-03 12.02e-02↑ 19.48e-02↑ 20.21e-02↑ 19.48e-02↑

9 92.17e-03 10.03e-02 12.27e-02↑ 13.92e-02↑ 29.31e-02↑ 40.92e-02↑

10 80.38e-3 28.41e-02 11.34e-02↓ 23.57e-02↓ 28.41e-02≈ 45.01e-02↑

DTLZ3

4 80.90e-03 10.01e-02 12.02e-02↑ 12.30e-02↑ 37.34e-02↑ 36.44e-02↑

5 12.39e-03 14.56e-03 9.44e-02↑ 9.63e-02↑ 10.32e-02↑ 10.49e-02↑

6 11.37e-03 5.37e-03 12.02e-02↑ 12.30e-02↑ 14.62e-02↑ 14.33e-02↑

7 11.41e-03 3.73e02 7.27e-02↑ 8.81e-02↑ 9.36e-02↑ 10.22e-02↑

8 10.70e-03 1.23e-02 5.37e-02↑ 6.33e-02↑ 9.21e-02↑ 8.33e-02↑

9 5.09e-03 7.69e-03 7.43e-02↓ 9.75e-02↑ 9.83e-02↑ 10.03e-02↑

10 7.88e-03 6.01e-03 4.24e-02↑ 5.23e-02↑ 5.38e-02↑ 6.66e-02↑

DTLZ4

4 13.58e-03 10.36e-02 11.75e-02↑ 12.37e-02↑ 37.38e-02↑ 37.31e-02↑

5 15.39e-03 10.44e-02 14.64e-02↑ 17.25e-02↑ 18.06e-02↑ 24.64e-02↑

6 11.62e-03 14.01e-03 16.10e-02↑ 15.66e-02↑ 16.13e-02↑ 44.05e-03↑

7 15.27e-03 10.33e-02 11.71e-02↑ 10.33e-02≈ 15.31e-02↑ 17.82e-02↑

8 11.79e-03 10.99e-02 19.48e-02↑ 19.48e-02↑ 20.27e-02↑ 37.20e-02↑

9 11.17e-03 6.03e-03 21.43e-02↑ 6.03e-02≈ 25.30e-02↑ 30.92e-02↑

10 10.00e-03 5.93e-03 23.57e-02↑ 12.48e-02↑ 14.46e-02↑ 64.49e-02↑

DTLZ5

4 13.37e-03 29.43e-03 11.90e-02↑ 12.17e-02↑ 16.75e-02↑ 15.88e-02↑

5 12.90e-03 37.99e-03 11.15e-02↑ 11.23e-02↑ 12.27e-02↑ 12.73e-02↑

6 12.95e-03 73.92e-02 11.06e-02↓ 10.98e-02↓ 70.14e-02↓ 70.26e-02↓

7 13.35e-03 9.57e-02 11.87e-02↑ 12.32e-02↑ 13.72e-02↑ 13.71e-02↑

8 14.01e-03 3.46e-02 12.60e-02↑ 12.84e-02↑ 13.77e-02↑ 13.25e-02↑

9 14.87e-03 12.56e-02 13.94e-02↑ 13.88e-02↑ 13.95e-02↑ 10.76e-02↓

10 15.98e-03 1.36e-02 13.87e-02↑ 13.89e-02↑ 14.08e-02↑ 14.10e-02↑

DTLZ6

4 5.83e-02 2.05e-02 6.85e-02↑ 7.06e-02↑ 8.11e-02↑ 9.17e-02↑

5 10.07e-03 2.71e-02 5.70e-02↑ 6.54e-02↑ 7.19e-02↑ 7.16e-02↑

6 12.93e-03 6.38e-03 9.83e-02↑ 8.90e-02↑ 10.15e-02↑ 10.17e-02↑

7 13.29e-03 12.19e-02 8.44e-02↓ 10.06e-03↓ 10.26e-02↓ 10.22e-08↓

8 7.62e-03 19.31e-02 11.71e-02↓ 12.69e-02↓ 13.20e-02↓ 13.86e-02↓

9 14.01e-02 3.29e-02 11.44e-02↑ 10.98e-02↑ 12.28e-02↑ 13.44e-02↑

10 7.58e-02 5.68e-03 8.10e-02↑ 7.19e-02↑ 9.01e-02↑ 10.05e-02↑

win/tie/loss counts 37/0/5 35/3/4 36/1/5 37/0/5
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.2: HV values for Tchebycheff decomposition method on DTLZ1-DTLZ6 test prob-
lems. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV

DTLZ1

4 80.90e-03 1.41e-02 7.65e-02↑ 8.12e-02↑ 10.33e-02↑

5 1.00e-02 1.54e-02 9.74e-02↑ 9.92e-02↑ 9.98e-02↑

6 8.91e-03 1.73e-02 1.02e-02↓ 1.01e-02↓ 1.29e-02↓

7 5.40e-03 1.09e-02 1.18e-02↑ 1.26e-02↑ 0.80e-02↓

8 3.97e-03 2.05e-02 1.31e-02↓ 1.31e-02↓ 2.76e-01↑

9 5.53e-03 1.33e-02 1.42e-02↑ 1.33e-02≈ 3.25e-01↑

10 8.97e-03 0.79e-02 1.58e-02↑ 1.59e-02↑ 2.36e-02↑

DTLZ2

4 8.90e-03 5.58e-03 12.13e-02↑ 19.13e-02↑ 34.17e-02↑

5 2.41e-03 5.18e-03 12.60e-02↑ 12.49e-02↑ 5.00e-02↑

6 11.56e-03 26.92e-03 13.41e-02↑ 13.74e-02↑ 17.05e-02↑

7 10.71e-04 67.09e-04 13.87e-02↑ 15.09e-02↑ 18.56e-02↑

8 10.04e-04 18.11e-03 15.21e-02↑ 18.04e-02↑ 18.64e-02↑

9 92.17e-03 26.03e-03 14.01e-02↑ 18.20e-02↑ 20.19e-02↑

10 25.94e-04 36.31e-03 17.90e-02↑ 15.62e-02↑ 25.94e-02↑

DTLZ3

4 80.90e-04 5.58e-03 5.87e-02↑ 11.53e-02↑ 10.96e-02↑

5 12.39e-04 51.18e-03 0.87e-02↑ 7.62e-02↑ 10.61e-02↑

6 11.37e-04 26.92e-03 2.34e-02↑ 8.48e-02↑ 15.84e-02↑

7 11.41e-04 6.09e-03 7.23e-03↓ 10.23e-03↓ 11.34e-02↑

8 10.70e-04 18.11e-03 10.87e-02↑ 18.58e-02↑ 24.80e-02↑

9 95.09e-04 26.03e-03 6.72e-02↑ 1.52e-02↑ 14.85e-02↑

10 63.56e-03 36.31e-03 4.45e-02↑ 7.71e-02↑ 6.76e-02↑

DTLZ4

4 13.58e-03 88.45e-03 2.46e-02↑ 2.66e-02↑ 3.11e-02↑

5 15.39e-03 95.40e-03 4.04e-02↑ 6.48e-02↑ 8.38e-02↑

6 11.62e-03 1.20e-02 14.94e-02↑ 17.64e-02↑ 34.35e-02↑

7 15.27e-03 1.33e-03 14.74e-02↑ 19.03e-02↑ 18.14e-02↑

8 11.79e-03 1.65e-02 1.70e-02↑ 1.65e-02≈ 6.90e-02↑

9 11.17e-03 4.25e-02 9.75e-02↑ 7.18e-02↑ 10.66e-02↑

10 19.67e-03 7.87e02 20.49e-02↑ 22.23e-02↑ 0.25e-01↑

DTLZ5

4 13.37e-03 17.02e-03 10.43e-02↑ 11.11e-02↑ 16.80e-02↑

5 12.90e-03 3.44e-02 7.67e-02↑ 8.36e-02↑ 12.95e-02↑

6 12.95e-03 1.05e-02 6.81e-02↑ 7.37e-02↑ 8.00e-02↑

7 13.35e-03 15.47e-02 9.26e-02↓ 8.68e-02↓ 4.60e-02↓

8 14.01e-03 1.00e-02 18.47e-02↑ 13.87e-03↓ 14.25e-02↑

9 14.87e-03 3.39e-02 4.57e-02↑ 6.62e-02↑ 14.38e-02↑

10 15.98e-03 6.07e-02 7.61e-02↑ 16.53e-02↑ 15.10e-02↑

DTLZ6

4 5.83e-03 2.71e-02 3.65e-03↓ 9.29e-02↑ 10.10e-02↑

5 10.07e-03 11.95e-02 10.65e-02↓ 10.82e-03↓ 11.54e-02↓

6 12.93e-03 8.75e-02 8.98e-02↑ 9.27e-02↑ 10.35e-02↑

7 13.29e-03 6.74e-02 5.35e-02↓ 7.06e-02↑ 11.14e-02↑

8 2.62e-02 6.40e-02 36.69e-02↑ 6.40e-02≈ 11.21e-02↑

9 14.01e-03 3.37e-02 9.01e-02↑ 27.15e-02↑ 10.95e-02↑

10 27.58e-03 15.18e-02 15.08e-02↑ 20.40e-02↑ 20.48e-02↑

win/tie/loss counts 35/0/7 33/3/6 38/0/4
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.3: HV values for PBI decomposition method on WFG1-WFG9 test problems.
The parameter θ = 5 unless specified. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV PEV (θ=0)

WFG1

4 17.14e-03 13.29e-03 13.52e-02↑ 13.61e-02↑ 15.40e-02↑ 16.36e-02↑

5 20.44e-03 20.30e-03 22.97e-02↑ 18.30e-02↓ 10.57e-02↓ 21.03e-02↓

6 26.05e-03 24.70e-03 25.07e-02↑ 23.72e-02↓ 25.55e-02↑ 25.35e-02↑

7 37.02e-03 27.59e-03 27.92e-02↑ 27.16e-02↓ 28.62e-02↑ 28.35e-02↑

8 31.90e-03 30.21e-03 10.30e-02↑ 10.25e-02↑ 10.36e-02↑ 11.17e-02↑

9 34.49e-03 31.89e-03 32.01e-02↑ 32.06e-02↑ 32.94e-02↑ 29.05e-02↓

10 31.23e-03 33.13e-03 33.21e-02↑ 33.15e-02↑ 34.05e-02↑ 35.05e-02↑

WFG2

4 58.19e-03 3.59e-03 0.73e-02↑ 2.65e-02↑ 2.92e-02↑ 2.84e-02↑

5 7.00e-03 3.83e-03 6.12e-02↑ 2.39e-02↑ 6.34e-02↑ 5.53e-02↑

6 10.30e-02 13.64e-03 13.72e-02↑ 11.38e-02↑ 10.84e-02↑ 1.03e-01↑

7 18.71e-02 9.15e-03 7.15e-03↓ 4.97e-03↓ 0.16e-03↓ 2.47e-02↑

8 4.95e-03 5.52e-03 0.55e-02↑ 9.13e-02↑ 0.38e-02↑ 3.97e-02↑

9 21.24e-03 5.38e-03 1.06e-02↑ 1.51e-02↑ 2.32e-02↑ 7.91e-02↑

10 15.37e-02 7.54e-02 6.51e-02↓ 7.46e-02↓ 7.41e-02↓ 8.01e-02↑

WFG3

4 1.16e-02 5.74e-02 6.01e-02↑ 12.80e-02↑ 31.85e-02↑ 9.62e-01↑

5 11.59e-03 7.80e-02 4.28e-02↓ 6.09e-02↓ 10.16e-02↓ 9.05e-02↑

6 13.82e-02 12.64e-03 11.21e-02↑ 12.16e-02↑ 15.54e-02↑ 15.76e-02↑

7 8.84e-03 5.05e-03 1.20e-02↑ 4.25e-02↑ 5.12e-02↑ 6.05e-02↑

8 1.25e-03 3.52e-03 8.90e-03↑ 7.95e-02↑ 6.93e-02↑ 10.13e-02↑

9 9.66e-02 11.57e-03 8.61e-02↑ 12.97e-02↑ 17.05e-02↑ 10.17e-02↑

10 30.55e-02 9.60e-02 10.01e-02↑ 9.60e-02≈ 12.10e-02↑ 3.94e-01↑

WFG4

4 4.39e-02 3.60e-02 3.90e-02↑ 4.21e-02↑ 9.83e-02↑ 9.02e-02↑

5 10.92e-03 1.00e-03 1.81e-02↑ 8.59e-02↑ 9.29e-02↑ 8.34e-02↑

6 23.37e-03 4.19e-03 0.79e-02↑ 4.18e-02↑ 6.46e-02↑ 6.01e-02↑

7 32.78e-03 17.60e-03 1.08e-02↑ 6.03e-02↑ 7.90e-02 ↑ 8.81e-02↑

8 2.85e-03 7.69e-03 2.36e-02↑ 7.69e-02↑ 8.14e-02↑ 9.01e-02↑

9 1.66e-03 3.76e-03 5.01e-02↑ 3.76e-02↑ 4.25e-02↑ 4.21e-02↑

10 4.40e-02 1.26e-03 4.02e-02↑ 1.23e-02↑ 3.33e-02↑ 4.01e-02↑

WFG5

4 12.60e-02 5.77e-02 3.39e-02↓ 5.20e-02↓ 7.22e-02↓ 6.35e-02↑

5 2.57e-03 2.32e-02 5.41e-02↑ 8.16e-02↑ 11.25e-02↑ 10.36e-02↑

6 4.44e-02 4.58e-02 5.21e-02↑ 2.90e-02↓ 9.11e-02↑ 1.86e-01↑

7 4.58e-01 3.96e-02 6.16e-02↑ 8.85e-02↑ 0.16e-01↑ 9.12e-01↑

8 4.14e-012 2.60e-02 5.47e-02↑ 2.65e-02↑ 1.11e-02↓ 12.14e-02↑

9 1.46e-02 6.0e-03 7.01e-02↑ 6.18e-02↑ 8.59e-02↑ 8.39e-02↑

10 1.41e-02 2.64e-02 2.90e-02↑ 3.21e-02↑ 4.33e-02↑ 4.01e-02↑

WFG6

4 5.52e-03 6.39e-03 7.40e-02↑ 8.20e-02↑ 10.16e-02↑ 11.32e-02↑

5 6.14e-03 2.64e-03 2.90e-02↑ 3.42e-02↑ 2.22e-02↑ 2.20e-02↑

6 1.90e-02 0.06e-03 0.26e-02↑ 0.28e-02↑ 0.40e-02↑ 0.36e-02↑

7 4.80e-02 1.41e-03 1.01e-02↑ 2.18e-02↑ 4.24e-02↑ 4.00e-02↑

8 12.56e-02 2.83e-03 3.02e-02↑ 4.07e-02↑ 9.15e-02↑ 9.20e-02↑

9 5.22e-02 5.00e-02 8.33e-02↑ 5.00e-02≈ 6.63e-02↑ 6.90e-02↑

10 4.35e-02 7.22e-02 8.09e-02↑ 15.43e-02↑ 15.50e-02↑ 10.00e-02↑

WFG7

4 11.06e-02 6.39e-02 9.41e-02↑ 10.81e-02↑ 10.54e-02↑ 15.91e-02↑

5 23.64e-03 4.64e-02 5.24e-02↑ 5.13e-02↑ 10.80e-02↑ 16.65e-02↑
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.3: HV values for PBI decomposition method on WFG1-WFG9 test problems.
The parameter θ = 5 unless specified. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV PEV (θ=0)

6 5.72e-02 2.30e-02 2.49e-02↑ 3.98e-02↑ 6.80e-02↑ 6.31e-02↑

7 22.16e-01 9.41e-02 10.24e-02↑ 25.01e-02↑ 10.15e-02↑ 40.75e-02↑

8 1.57e-02 2.83e-02 3.23e-02↑ 3.81e-02↑ 4.68e-02↑ 5.02e-02↑

9 3.94e-02 5.00e-02 10.01e-02↑ 12.59e-02↑ 10.20e-02↑ 17.45e-02↑

10 3.59e-02 1.22e-02 1.40e-02↑ 2.93e-02↑ 3.26e-02↑ 4.76e-02↑

WFG8

4 14.11e-02 6.39e-02 9.21e-02↑ 10.63e-02↑ 11.05e-02↑ 12.01e-02↑

5 32.40e-03 4.01e-02 4.34e-02↑ 5.13e-02↑ 6.99e-02↑ 7.08e-02↑

6 2.60e-03 1.41e-02 2.01e-02↑ 1.51e-02↑ 2.13e-02↑ 3.01e-02↑

7 14.07e-03 1.26e-02 2.31e-02↑ 5.27e-02↑ 7.21e-02↑ 7.02e-02↑

8 6.90e-02 2.41e-02 3.36e-02↑ 8.39e-02↑ 10.18e-02↑ 12.39e-02↑

9 7.59e-02 3.33e-02 8.00e-02↑ 3.323e-02↓ 8.82e-02↑ 9.01e-02↑

10 3.67e-03 3.36e-02 2.01e02↓ 2.33e-02↓ 2.49e-02↓ 3.01e-02↑

WFG9

4 4.41e-03 6.05e-03 1.09e-02↑ 1.94e-02↑ 2.45e-02↑ 3.53e-02↑

5 16.59e-03 1.18e-03 1.39e-02↑ 3.02e-02↑ 6.14e-02↑ 6.26e-02↑

6 1.14e-03 5.24e-03 1.71e-02↑ 2.28e-02↑ 2.33e-02↑ 3.60e-02↑

7 6.40e-03 3.89e-03 2.12e-02↑ 2.52e-02↑ 10.92e-02↑ 3.91e-02↑

8 15.24e-03 10.44e-03 8.88e-02↑ 9.43e-02↑ 8.40e-02↑ 9.32e-02↑

9 5.33e-03 7.29e-03 6.39e-02↑ 7.21e-02↑ 8.48e-02↑ 8.58e-02↑

10 3.06e-03 2.10e-03 4.21e-02↑ 5.02e-02↑ 8.07e-02↑ 8.09e-02↑

win/tie/loss counts 59/0/4 51/2/10 56/0/7 60/0/3
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.4: HV values for Tchebycheff decomposition method on WFG1-WFG9 test prob-
lems. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV

WFG1

4 17.14e-03 16.46e-02 10.29e-02↓ 19.29e-02↑ 20.88e-02↑

5 20.44e-03 66.92e-02 33.87e-02↓ 34.69e-02↓ 77.18e-02↑

6 26.05e-03 2.76e-02 5.19e-02↑ 2.76e-02≈ 6.55e-02↑

7 37.02e-03 11.83e-02 12.45e-02↑ 14.36e-02↑ 15.81e-02↑

8 31.90e-03 44.16e-02 40.14e-02↓ 66.85e-02↑ 61.32e-02↑

9 34.49e-03 9.27e-02 13.91e-02↑ 14.39e-02↑ 14.45e-02↑

10 50.63e-03 38.46e-02 39.57e-02↑ 47.24e-02↑ 47.11e-02↑

WFG2

4 58.19e-03 14.23e-02 19.29e-02↑ 20.41e-02↑ 21.41e-02↑

5 7.00e-03 16.37e-02 20.27e-02↑ 29.94e-02↑ 30.97e-02↑

6 80.30e-02 65.87e-02 54.28e-02↓ 14.16e-02↓ 20.84e-02↓

7 8.71e-02 8.48e-02 9.31e-02↑ 7.31e-02↓ 10.57e-02↑

8 4.95e-02 5.76e-02 7.69e-02↑ 5.08e-02↓ 9.20e-03↑

9 2.24e-02 2.89e-02 3.36e-02↑ 3.59e-02↑ 8.32e-02↑

10 15.37e-02 17.65e-02 28.49e-02↑ 29.04e-02↑ 30.84e-02↑

WFG3

4 1.166e-02 37.38e-03 18.29e-02↓ 20.65e-02↓ 22.50e-03↓

5 11.59e-03 16.36e-03 16.36e-02≈ 28.79e-02↑ 15.30e-02↑

6 13.82e-02 7.39e-02 7.39e-02≈ 3.71e-02↓ 3.86e-02↓

7 3.84e-02 6.89e-02 5.45e-02↓ 4.26e-02↓ 7.48e-02↑

8 1.25e-03 2.70e-03 3.76e-02↑ 4.10e-03↑ 11.27e-03↑

9 9.66e-02 3.50e-02 4.59e-02↑ 3.51e-02↑ 10.22e-02↑

10 30.55e-02 31.69e-02 33.19e-02↑ 57.36e-02↑ 50.11e-02↑

WFG4

4 4.39e-02 1.17e-02 4.81e-02↑ 19.11e-02↑ 10.48e-02↑

5 2.92e-02 3.20e-02 3.54e-02↑ 3.66e-02↑ 9.65e-02↑

6 3.37e-02 4.07e-02 4.17e-02↑ 5.75e-02↑ 8.83e-02↑

7 3.78e-02 2.17e-02 2.17e-02≈ 8.35e-02↑ 8.34e-02↑

8 2.85e-02 3.56e-02 3.73e-02↑ 5.80e-02↑ 5.10e-02↑

9 1.66e-02 2.34e-02 2.98e-02↑ 2.70e-02↑ 5.15e-02↑

10 7.40e-02 10.46e-02 11.01e-02↑ 11.03e-02↑ 12.56e-02↑

WFG5

4 10.60e-02 11.19e-02 12.18e-02↑ 12.73e-02↑ 13.56e-02↑

5 2.57e-02 3.59e-02 5.61e-02↑ 8.37e-02↑ 10.46e-02↑

6 4.44e-02 5.95e-02 6.01e-02↑ 3.38e-02↓ 6.19e-02↑

7 4.58e-02 5.80e-02 6.54e-02↑ 5.80e-02≈ 8.06e-02↑

8 14.14e-02 10.70e-02 15.98e-02↑ 12.26e-02↑ 13.22e-02↑

9 11.46e-03 17.62e-03 12.85e-03↓ 12.26e-03↓ 13.55e-02↓

10 1.41e-02 3.83e-02 4.01e-02↑ 10.77e-02↑ 9.17e-02↑

WFG6

4 5.52e-02 9.61e-02 10.00-e02↑ 2.10e-02↑ 11.91e-02↑

5 6.14e-02 9.20e-02 10.45e-02↑ 9.57e-02↑ 10.39e-02↑

6 11.90e-02 1.61e-02 8.49e-02↑ 2.06e-02↑ 9.95e-02↑

7 14.80e-02 11.31e-02 10.49e-02↓ 6.36e-02↓ 15.19e-02↑

8 12.56e-02 10.02e-02 8.99e-02↓ 7.33e-02↓ 10.19e-02↑

9 9.22e-02 9.82e-02 9.88e-02↑ 37.34e-02↑ 36.76e-02↑

10 4.35e-02 5.66e-02 5.66e-02≈ 14.08e-02↑ 10.39e-02↑

WFG7

4 11.06e-02 8.33e-02 10.38e-02↑ 10.39e-02↑ 10.61e-02↑

5 3.64e-02 2.98e-02 7.19e-02↑ 9.21e-02↑ 9.22e-02↑
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.4: HV values for Tchebycheff decomposition method on WFG1-WFG9 test prob-
lems. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV

6 5.72e-02 6.88e-02 7.01e-02↑ 9.15e-02↑ 8.80e-02↑

7 2.16e-02 3.05e-02 4.29e-02↑ 3.38e-02↑ 4.52e-02↑

8 9.57e-02 1.62e-02 4.71e-02↑ 6.89e-02↑ 3.94e-02↑

9 3.94e-02 2.38e-02 3.15e-02↑ 2.91e-02↑ 7.72e-02↑

10 3.59e-02 4.45e-02 4.98e-02↑ 4.46e-02↑ 5.01e-02↑

WFG8

4 14.11e-02 9.98e-02 10.39e-02↑ 13.62e-02↑ 10.12e-02↑

5 3.04e-02 2.03e-02 2.03e-02≈ 3.18e-02↑ 6.59e-02↑

6 2.60e-02 2.04e-02 2.10e-02↑ 2.49e-02↑ 3.36e-02↑

7 4.07e-02 5.68e-02 4.02e-02↓ 3.38e-02↓ 4.39e-02↓

8 6.90e-02 7.03e-02 8.19e0-2↑ 17.59e-02↑ 10.34e-02↑

9 7.59e-02 5.89e-02 7.36e-02↑ 6.06e-02↑ 7.77e-02↑

10 3.67e-02 4.19e-02 10.87e-02↑ 7.00e-02↑ 11.82e-02↑

WFG9

4 4.41e-02 6.58e-02 3.44e-02↓ 2.99e-02↓ 5.45e-02↓

5 6.59e-02 1.27e-02 3.12e-02↑ 4.21e-02↑ 5.65e-02↑

6 1.14e-02 2.04e-02 2.88e-02↑ 3.20e-02↑ 8.62e-02↑

7 6.40e-02 10.12e-02 8.99e-02↓ 6.64e-02↓ 10.45e-02↑

8 5.24e-02 7.69e-02 7.69e-02≈ 7.35e-02↓ 10.35e-02↑

9 5.33e-02 6.05e-02 6.15e-02↑ 7.40e-02↑ 6.31e-02↑

10 3.06e-02 4.14e-02 7.87e-02↑ 8.67e-02↑ 8.65e-02↑

win/tie/loss counts 45/6/12 46/2/15 57/0/6
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APPENDIX C. HYPERVOLUME AND IGD RESULTS FOR UR-MEAD2 METHOD

Table C.5: HV values for Tchebycheff and PBI (PEV variant) on DTLZ.he median of
25 independent runs is reported

UR-MEAD2

Func. # Obj PBI (θ=5) PBI (θ=0) TE

DTLZ1

4 10.16e-02 10.28e-02 10.33e-02
5 0.17e-02 0.34e-02 9.98e-02
6 4.11e-02 9.82e-02 1.29e-02
7 2.23e-02 0.16e-02 0.80e-02
8 2.22e-02 2.21e-02 2.76e-01
9 3.15e-02 3.13e-02 3.25e-01
10 1.98e-02 2.21e-02 2.36e-02

DTLZ2

4 33.33e-02 33.31e-02 34.17e-02
5 10.0e-02 14.64e-02 5.00e-02
6 15.0e-02 16.10e-02 17.05e-02
7 1.51e-02 17.71e-02 18.56e-02
8 20.21e-02 19.48e-02 18.64e-02
9 29.31e-02 40.92e-02 20.19e-02
10 28.41e-02 45.01e-02 25.94e-02

DTLZ3

4 37.34e-02 36.44e-02 10.96e-02
5 10.32e-02 10.49e-02 10.61e-02
6 14.62e-02 14.33e-02 15.84e-02
7 9.36e-02 10.22e-02 11.34e-02
8 9.21e-02 8.33e-02 24.80e-02
9 9.83e-02 10.03e-02 14.85e-02
10 5.38e-02 6.66e-02 6.76e-02

DTLZ4

4 37.38e-02 37.31e-02 3.11e-02
5 18.06e-02 24.64e-02 8.38e-02
6 16.13e-02 44.05e-03 34.35e-02
7 15.31e-02 17.82e-02 18.14e-02
8 20.27e-02 37.20e-02 6.90e-02
9 25.30e-02 30.92e-02 10.66e-02
10 14.46e-02 64.49e-02 0.25e-01

DTLZ5

4 16.75e-02 15.88e-02 16.80e-02
5 12.27e-02 12.73e-02 12.95e-02
6 70.14e-02 70.26e-02 8.00e-02
7 13.72e-02 13.71e-02 4.60e-02
8 13.77e-02 13.25e-02 14.25e-02
9 13.95e-02 10.76e-02 14.38e-02
10 14.08e-02 14.10e-02 15.10e-02

DTLZ6

4 8.11e-02 9.17e-02 10.10e-02
5 7.19e-02 7.16e-02 11.54e-02
6 10.15e-02 10.17e-02 10.35e-02
7 10.26e-02 10.22e-08 11.14e-02
8 13.20e-02 13.86e-02 11.21e-02
9 12.28e-02 13.44e-02 10.95e-02
10 9.01e-02 10.05e-02 20.48e-02↑

Total highlights 5 10 27
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Table C.6: HV values for Tchebycheff and PBI (PEV variant) on WFG test problems.
The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj PBI (θ=5) PBI (θ=0) TE

WFG1

4 15.40e-02 16.36e-02 20.88e-02

5 10.57e-02 21.03e-02 77.18e-02

6 25.55e-02 25.35e-02 6.55e-02

7 28.62e-02 28.35e-02 15.81e-02

8 10.36e-02 11.17e-02 61.32e-02

9 32.94e-02 29.05e-02 14.45e-02

10 34.05e-02 35.05e-02 47.11e-02

WFG2

4 2.92e-02 2.84e-02 21.41e-02

5 6.34e-02 5.53e-02 30.97e-02

6 10.84e-02 1.03e-01 20.84e-02

7 0.16e-03 2.47e-02 10.57e-02

8 0.38e-02 3.97e-02 9.20e-03

9 2.32e-02 7.91e-02 8.32e-02

10 7.41e-02 8.01e-02 30.84e-02

WFG3

4 31.85e-02 9.62e-01 22.50e-03

5 10.16e-02 9.05e-02 15.30e-02

6 15.54e-02 15.76e-02 3.86e-02

7 5.12e-02 6.05e-02 7.48e-02

8 6.93e-02 10.13e-02 11.27e-03

9 17.05e-02 10.17e-02 10.22e-02

10 12.10e-02 3.94e-01 50.11e-02

WFG4

4 9.83e-02 9.02e-02 10.48e-02

5 9.29e-02 8.34e-02 9.65e-02

6 6.46e-02 6.01e-02 8.83e-02

7 7.90e-02 8.81e-02 8.34e-02

8 8.14e-02 9.01e-02 5.10e-02

9 4.25e-02 4.21e-02 5.15e-02

10 3.33e-02 4.01e-02 12.56e-02

WFG5

4 7.22e-02 6.35e-02 13.56e-02

5 11.25e-02 10.36e-02 10.46e-02

6 9.11e-02 1.86e-01 6.19e-02

7 0.16e-01 9.12e-01 8.06e-02

8 1.11e-02 12.14e-02 13.22e-02

9 8.59e-02 8.39e-02 13.55e-02

10 4.33e-02 4.01e-02 9.17e-02

WFG6

4 10.16e-02 11.32e-02 11.91e-02

5 2.22e-02 2.20e-02 10.39e-02

6 0.40e-02 0.36e-02 9.95e-02

7 4.24e-02 4.00e-02 15.19e-02

8 9.15e-02 9.20e-02 10.19e-02

9 6.63e-02 6.90e-02 36.76e-02

10 15.50e-02 10.00e-02 10.39e-02

WFG7

4 10.54e-02 15.91e-02 10.61e-02

5 10.80e-02 16.65e-02 9.22e-02
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Table C.6: HV values for Tchebycheff and PBI (PEV variant) on WFG test problems.
The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj PBI (θ=5) PBI (θ=0) TE

6 6.80e-02 6.31e-02 8.80e-02

7 10.15e-02 40.75e-02 4.52e-02

8 4.68e-02 5.02e-02 3.94e-02

9 10.20e-02 17.45e-02 7.72e-02

10 3.26e-02 4.76e-02 5.01e-02

WFG8

4 11.05e-02 12.01e-02 10.12e-02

5 6.99e-02 7.08e-02 6.59e-02

6 2.13e-02 3.01e-02 3.36e-02

7 7.21e-02 7.02e-02 4.39e-02

8 10.18e-02 12.39e-02 10.34e-02

9 8.82e-02 9.01e-02 7.77e-02

10 2.49e-02 3.01e-02 11.82e-02

WFG9

4 2.45e-02 3.53e-02 5.45e-02

5 6.14e-02 6.26e-02 5.65e-02

6 2.33e-02 3.60e-02 8.62e-02

7 10.92e-02 3.91e-02 10.45e-02

8 8.40e-02 9.32e-02 10.35e-02

9 8.48e-02 8.58e-02 6.31e-02

10 8.07e-02 8.09e-02 8.65e-02

Total highlights 8 21 34
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Table C.7: IGD values for PBI decomposition method on DTLZ1-DTLZ6 test problems.
The parameter θ = 5 unless specified. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV PEV (θ=0)

DTLZ1

4 2.69e-02 2.72e-02 2.38e-02↑ 2.46e-02↑ 1.66e-02↑ 2.07e-02↑

5 1.38e-02 1.63e-02 1.55e-02↑ 1.60e-02↑ 1.36e-02↑ 1.45e-02↑

6 1.58e-03 1.99e-03 1.63e-03↑ 1.66e-03↑ 1.19e-03↑ 1.58e-03↑

7 5.12e-03 5.77e-03 5.03e-03↑ 5.08e-03↑ 5.23e-03↑ 4.06e-03↑

8 1.02e-02 1.10e-02 1.11e-02↓ 1.12e-02↓ 1.00e-02↑ 1.08e-02↑

9 8.77e-03 8.24e-03 6.49e-03↑ 6.51e-03↑ 3.30e-03↑ 6.35e-03↑

10 1.58e-02 1.35e-02 1.18e-02↑ 1.18e-02↑ 1.23e-02↑ 1.16e-02↑

DTLZ2

4 2.21e-02 8.05e-03 4.63e-03↑ 6.03e-03↑ 5.48e-03↑ 4.27e-03↑

5 9.10e-03 4.47e-03 3.22e-03↑ 3.08e-03↑ 3.46e-03↑ 1.85e-03↑

6 7.24e-04 4.80e-04 7.89e-04↓ 6.46e-04↓ 3.23e-04↑ 1.68e-04↑

7 1.67e-03 1.12e-03 1.01e-03↑ 1.36e-03↓ 1.71e-03↓ 8.58e-04↑

8 2.71e-03 1.79e-03 1.22e-03↑ 2.22e-03↓ 2.22e-03↓ 1.08e-03↑

9 1.47e-03 9.82e-04 3.72e-04↑ 3.72e-04↑ 4.54e-04↑ 1.00e-04↑

10 2.53e-03 1.86e-03 9.21e-04↑ 1.39e-03↑ 1.40e-03↑ 5.97e-04↑

DTLZ3

4 2.25e-02 7.26e-03 6.13e-03↑ 6.09e-03↑ 9.41e-03↓ 3.38e-03↑

5 9.11e-03 4.27e-03 3.48e-03↑ 3.48e-03↑ 2.47e-03↑ 3.54e-03↑

6 7.25e-04 1.20e-03 1.05e-03↑ 1.04e-03↑ 1.30e-03↓ 1.13e-03↑

7 1.67e-03 1.21e-03 1.10e-03↑ 1.29e-03↓ 4.24e-03↓ 1.07e-03↑

8 2.70e-03 1.76e-03 1.45e-03↑ 1.28e-03↑ 1.09e-03↑ 1.27e-03↑

9 1.49e-03 9.97e-04 6.29e-04↑ 5.76e-04↑ 3.13e-04↑ 6.69e-04↑

10 2.53e-03 1.87e-03 1.26e-03↑ 1.26e-03↑ 1.05e-03↑ 1.23e-03↑

DTLZ4

4 2.22e-02 8.29e-03 6.50e-03↑ 5.78e-03↑ 6.50e-03↑ 6.50e-03↑

5 9.12e-03 4.28e-03 3.79e-03↑ 3.29e-03↑ 3.79e-03↑ 3.79e-03↑

6 8.35e-04 4.16e-04 3.45e-04↑ 4.08e-04↑ 3.40e-04↑ 3.55e-04↑

7 2.03e-03 1.07e-03 1.21e-03↓ 1.94e-03↓ 1.21e-03↓ 1.05e-03↑

8 2.93e-03 1.68e-03 1.56e-03↑ 1.56e-03↑ 1.56e-03↑ 1.07e-03↑

9 1.57e-03 1.17e-03 1.13e-03↑ 1.13e-03↑ 1.13e-03↑ 1.06e-03↑

10 2.69e-03 1.75e-03 1.25e-03↑ 1.19e-03↑ 1.25e-03↑ 1.10e-03↑

DTLZ5

4 1.71e-02 1.67e-02 1.52e-02↑ 1.52e-02↑ 1.53e-02↑ 1.50e-02↑

5 5.99e-03 5.88e-03 4.99e-03↑ 4.98e-03↑ 4.94e-03↑ 4.90e-03↑

6 1.90e-03 1.89e-03 1.65e-03↑ 1.66e-03↑ 1.57e-03↑ 1.59e-03↑

7 6.41e-04 6.41e-04 6.46e-04↓ 6.32e-04↑ 5.09e-04↑ 5.24e-04↑

8 9.65e-04 9.61e-04 9.58e-04↑ 9.57e-04↑ 9.28e-04↑ 9.44e-04↑

9 8.18e-04 8.14e-04 7.27e-04↑ 7.27e-04↑ 7.03e-04↑ 7.22e-04↑

10 7.27e-04 7.20e-04 7.12e-04↑ 7.12e-04↑ 6.60e-04↑ 7.03e-04↑

DTLZ6

4 1.71e-02 1.68e-02 1.59e-02↑ 1.56e-02↑ 1.53e-02↑ 1.48e-02↑

5 6.18e-03 6.12e-03 5.39e-03↑ 5.38e-03↑ 5.21e-03↑ 4.96e-03↑

6 1.90e-03 1.89e-03 1.89e-03≈ 1.99e-03↓ 1.80e-03↑ 1.85e-03↑

7 6.42e-04 6.37e-04 6.32e-04↑ 5.89e-04↑ 5.29e-04↑ 5.85e-04↑

8 9.69e-04 9.59e-04 9.57e-04↑ 9.49e-04↑ 9.54e-04↑ 9.39e-04↑

9 8.20e-04 8.14e-04 8.19e-04↓ 8.08e-04↑ 8.30e-04↓ 8.02e-04↑

10 6.81e-04 6.79e-04 6.32e-04↑ 6.25e-04↑ 6.27e-04↑ 6.12e-04↑

win/tie/loss counts 36/1/5 35/0/7 35/0/7 42/0/0
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Table C.8: IGD values for Tchebycheff decomposition method on DTLZ1-DTLZ6 test
problems. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV

DTLZ1

4 2.69e-02 2.00e-02 1.29e-02↑ 1.86e-02↑ 1.56e-02↑

5 1.34e-02 1.31e-02 1.27e-02↑ 1.16e-02↑ 1.06e-02↑

6 1.52e-03 1.50e-03 2.14e-03↓ 2.19e-03↓ 1.26e-03↓

7 5.12e-03 4.93e-03 3.50e-03↑ 4.81e-03↑ 4.06e-03↑

8 1.02e-02 8.76e-03 1.17e-03↑ 1.18e-03↑ 1.03e-03↑

9 8.77e-03 6.02e-03 5.81e-03↑ 5.89e-03↑ 5.44e-03↑

10 1.58e-02 1.09e-02 1.30e-02↓ 1.03e-02↑ 1.06e-02↑

DTLZ2

4 2.21e-02 8.67e-03 6.31e-03↑ 5.08e-03↑ 7.38e-03↑

5 9.10e-03 4.91e-03 3.67e-03↑ 3.54e-03↑ 3.85e-03↑

6 7.24e-04 5.03e-04 3.32e-04↑ 3.36e-04↑ 3.23e-04↑

7 1.67e-03 1.46e-03 1.53e-03↓ 1.55e-03↓ 1.18e-03↑

8 2.71e-03 2.15e-03 1.52e-03↑ 1.19e-03↑ 1.13e-03↑

9 1.47e-03 1.07e-03 1.08e-03↓ 1.05e-03↑ 1.02e-03↑

10 2.53e-03 2.06e-03 1.08e-03↑ 1.16e-03↑ 6.37e-04↑

DTLZ3

4 2.21e-02 9.12e-03 5.96e-03↑ 5.84e-03↑ 5.96e-03↑

5 9.11e-03 5.87e-03 3.54e-03↑ 3.54e-03↑ 2.89e-03↑

6 7.25e-04 4.62e-04 5.70e-04↓ 4.56e-04↑ 3.03e-04↑

7 1.67e-03 1.37e-03 1.15e-03↑ 2.74e-03↓ 5.20e-03↑

8 2.70e-03 2.51e-03 2.15e-03↑ 3.19e-03↓ 3.45e-03↓

9 1.45e-03 1.16e-03 1.12e-03↑ 1.16e-03≈ 1.06e-03↑

10 2.53e-03 2.42e-03 1.72e-03↑ 1.24e-03↑ 1.33e-03↑

DTLZ4

4 2.22e-02 1.03e-02 1.03e-02≈ 1.01e-02↑ 8.92e-03↑

5 9.12e-03 8.51e-03 7.77e-03↑ 7.54e-03↑ 6.98e-03↑

6 8.35e-04 7.09e-04 3.41e-04↑ 3.20e-04↑ 3.08e-04↑

7 2.03e-03 1.66e-03 2.06e-03↓ 1.96e-03↓ 1.22e-03↑

8 2.93e-03 2.68e-03 1.72e-03↑ 1.11e-03↑ 1.03e-03↑

9 1.57e-03 1.40e-03 1.27e-03↑ 1.22e-03↑ 1.10e-03↑

10 2.69e-03 2.40e-03 2.11e-03↑ 2.12e-03↑ 2.02e-03↑

DTLZ5

4 1.71e-02 1.62e-02 1.53e-02↑ 1.61e-02↑ 1.45e-02↑

5 5.99e-03 5.77e-03 4.89e-03↑ 4.95e-03↑ 4.78e-03↑

6 1.90e-03 1.79e-03 1.75e-03↑ 1.70e-03↑ 1.52e-03↑

7 6.41e-04 6.27e-04 6.13e-04↑ 3.09e-04↑ 5.05e-04↑

8 9.65e-04 9.16e-04 7.78e-04↑ 9.13e-04↑ 7.14e-04↑

9 8.18e-04 7.96e-04 7.24e-04↑ 8.12e-04↓ 7.45e-04↑

10 7.27e-04 6.75e-04 6.65e-04↑ 6.58e-04↑ 6.53e-04↑

DTLZ6

4 1.71e-02 1.68e-02 1.62e-02↑ 3.41e-02↓ 1.37e-02↑

5 5.98e-03 5.78e-03 5.02e-03↑ 5.72e-03↑ 4.73e-03↑

6 1.90e-03 1.92e-03 1.88e-03↑ 1.89e-03↑ 1.08e-03↑

7 6.42e-04 6.63e-04 7.62e-04↓ 6.25e-04↑ 6.09e-04↑

8 9.69e-04 9.20e-04 9.14e-04↑ 9.06e-04↑ 9.02e-04↑

9 8.20e-04 8.24e-04 8.12e-04↑ 8.14e-04↑ 7.98e-04↑

10 6.79e-04 6.26e-04 6.34e-04↓ 6.15e-04↑ 5.60e-04↑

win/tie/loss counts 34/1/7 34/1/7 40/0/2
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Table C.9: IGD values for PBI decomposition method on WFG1-WFG9 test problems.
The parameter θ = 5 unless specified. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV PEV (θ=0)

WFG1

4 2.76e-02 2.75e-02 2.74e-02↑ 2.73e-02↑ 2.73e-02↑ 2.72e-02↑

5 6.48e-03 6.47e-03 6.46e-03↑ 6.45e-03↑ 6.44e-03↑ 6.42e-03↑

6 1.53e-03 1.52e-03 1.51e-03↑ 1.51e-03↑ 1.50e-03↑ 1.49e-03↑

7 2.92e-03 2.80e-03 2.80e-03≈ 2.80e-03≈ 2.79e-03↑ 2.78e-03↑

8 5.34e-03 5.34e-03 5.33e-03↑ 5.32e-03↑ 5.31e-03↑ 5.30e-03↑

9 2.28e-03 2.39e-03 2.28e-03↑ 2.28e-03↑ 2.28e-03↑ 2.27e-03↑

10 2.17e-03 2.28e-03 2.17e-03↑ 2.17e-03↑ 2.17e-03↑ 2.16e-03↑

WFG2

4 1.37e-01 1.41e-01 1.41e-01≈ 1.39e-01↑ 1.39e-01↑ 1.37e-01↑

5 1.56e-02 1.60e-02 1.60e-02≈ 1.60e-02≈ 1.59e-02↑ 1.56e-02↑

6 2.30e-02 2.36e-02 2.29e-02↑ 2.29e-02↑ 2.28e-02↑ 2.27e-02↑

7 8.46e-03 8.68e-03 8.45e-03↑ 8.44e-03↑ 8.43e-03↑ 8.42e-03↑

8 3.05e-03 3.13e-03 3.13e-03≈ 3.12e-03↑ 3.11e-03↑ 3.05e-03↑

9 8.02e-03 8.23e-03 8.02e-03↑ 8.02e-03↑ 8.02e-03↑ 8.09e-03↑

10 8.12e-03 8.33e-03 8.11e-03↑ 8.11e-03↑ 8.10e-03↑ 8.09e-03↑

WFG3

4 1.20e-01 1.34e-01 1.20e-01↑ 1.20e-01↑ 1.19e-01↑ 1.18e-01↑

5 6.23e-02 6.83e-02 6.22e-02↑ 6.21e-02↑ 6.20e-02↑ 6.19e-02↑

6 3.45e-02 3.81e-02 3.44e-02↑ 3.45e-02↑ 3.45e-02↑ 3.43e-02↑

7 1.11e-01 1.23e-01 1.10e-01↑ 1.09e-01↑ 1.08e-01↑ 1.07e-01↑

8 1.03e-01 9.18e-02 9.17e-02↑ 9.18e-02↑ 9.11e-02↑ 8.27e-02↑

9 1.97e-01 2.19e-01 1.96e-01↑ 1.95e-01↑ 1.94e-01↑ 1.93e-01↑

10 1.69e-01 1.89e-01 1.68e-01↑ 1.67e-01↑ 1.66e-01↑ 1.65e-01↑

WFG4

4 3.15e-02 3.18e-02 3.12e-02↑ 3.08e-02↑ 3.11e-02↑ 3.10e-02↑

5 9.40e-03 9.43e-03 9.42e-03↑ 9.41e-03↑ 9.41e-03↑ 9.40e-03↑

6 1.50e-02 1.50e-02 1.49e-02↑ 1.48e-02↑ 1.47e-02↑ 1.45e-02↑

7 6.64e-03 6.63e-03 6.63e-03≈ 6.62e-03↑ 6.62e-03↑ 6.64e-03↓

8 3.03e-03 3.05e-03 3.01e-03↑ 3.01e-03↑ 3.02e-03↑ 3.01e-03↑

9 5.96e-03 5.87e-03 5.87e-03≈ 5.86e-03↑ 5.85e-03↑ 5.83e-03↑

10 3.37e-03 3.32e-03 3.32e-03≈ 3.31e-03↑ 3.30e-03↑ 3.29e-03↑

WFG5

4 4.84e-02 4.85e-02 4.88e-02↓ 5.60e-02↓ 4.81e-02↑ 5.91e-02↓

5 2.10e-02 2.10e-02 2.10e-02≈ 2.08e-02↑ 2.09e-02↑ 1.95e-03↑

6 4.38e-02 4.38e-02 4.37e-02↑ 4.36e-02↑ 4.36e-02↑ 4.34e-03↑

7 2.38e-02 2.38e-02 2.37e-02↑ 2.36e-02↑ 2.35e-02↑ 2.11e-02↑

8 1.27e-02 1.60e-02 1.26e-02↑ 1.26e-02↑ 1.25e-02↑ 1.24e-02↑

9 2.77e-02 2.77e-02 2.76e-02↑ 2.75e-02↑ 2.74e-02↑ 2.74e-02↑

10 1.74e-02 1.74e-02 1.73e-02↑ 1.73e-02↑ 1.72e-02↑ 1.71e-02↑

WFG6

4 9.95e-02 1.33e-01 1.23e-01↑ 1.33e-01≈ 1.27e-01↑ 1.23e-01↑

5 3.64e-02 4.06e-02 3.05e-02↑ 3.06e-02↑ 3.03e-02↑ 3.06e-02↑

6 6.52e-02 7.42e-02 6.42e-02↑ 6.41e-02↑ 6.39e-02↑ 6.37e-02↑

7 3.42e-02 3.69e-02 3.29e-02↑ 3.29e-02↑ 3.28e-02↑ 3.29e-02↑

8 1.76e-02 2.15e-02 1.93e-02↑ 1.97e-02↑ 1.90e-02↑ 1.87e-02↑

9 3.66e-02 3.89e-02 3.89e-02≈ 3.89e-02≈ 3.88e-02↑ 3.87e-02↑

10 2.22e-02 2.34e-02 2.16e-02↑ 2.15e-02↑ 2.14e-02↑ 2.13e-02↑

WFG7

4 4.75e-02 4.76e-02 4.75e-02↑ 4.75e-02↑ 4.75e-02↑ 4.71e-02↑

5 1.55e-02 1.56e-02 1.55e-02↑ 1.55e-02↑ 1.53e-02↑ 1.55e-02↑
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6 2.73e-02 2.73e-02 2.72e-02↑ 2.72e-02↑ 2.71e-02↑ 2.70e-02↑

7 1.33e-02 1.33e-02 1.33e-02≈ 1.33e-02↑ 1.32e-02↑ 1.31e-02↑

8 6.65e-03 6.67e-03 6.64e-03↑ 6.62e-03↑ 6.61e-03↑ 6.60e-03↑

9 1.41e-02 1.42e-02 1.42e-02≈ 1.42e-02≈ 1.41e-02↑ 1.42e-02≈

10 8.63e-03 8.67e-03 8.67e-03≈ 8.67e-03≈ 8.68e-03↓ 8.66e-03↑

WFG8

4 9.17e-02 1.07e-01 1.08e-01↓ 1.01e-01↑ 1.07e-01≈ 1.09e-01↓

5 3.44e-02 3.91e-02 3.42e-02↑ 3.41e-02↑ 3.41e-02↑ 3.40e-02↑

6 6.46e-02 7.22e-02 6.32e-02↑ 7.31e-02↓ 7.33e-02↓ 7.30e-02↓

7 3.27e-02 3.60e-02 3.58e-02↑ 3.60e-02≈ 3.57e-02↑ 3.56e-02↑

8 1.66e-02 1.81e-02 1.61e-02↑ 1.61e-02↑ 1.60e-02↑ 1.59e-02↑

9 3.54e-02 3.81e-02 3.41e-02↑ 3.41e-02↑ 3.40e-02↑ 3.39e-02↑

10 2.16e-02 2.30e-02 2.10e-02↑ 2.09e-02↑ 2.08e-02↑ 2.07e-02↑

WFG9

4 3.01e-02 3.05e-02 3.05e-02≈ 3.32e-02↓ 3.00e-02↑ 3.00e-02↑

5 1.19e-02 8.81e-03 8.90e-03↓ 8.95e-03↓ 8.73e-03↑ 8.70e-03↑

6 2.26e-02 1.38e-02 1.37e-02↑ 1.37e-02↑ 1.36e-02↑ 1.27e-02↑

7 1.40e-02 5.95e-03 5.96e-03↓ 6.14e-03↓ 5.94e-03↑ 5.15e-03↑

8 8.49e-03 2.67e-03 1.67e-03↑ 1.67e-03↑ 1.66e-03↑ 1.63e-03↑

9 2.00e-02 5.06e-03 5.05e-03↑ 5.06e-03≈ 5.04e-03↑ 5.01e-03↑

10 1.33e-02 2.81e-03 2.73e-03↑ 2.72e-03↑ 2.70e-03↑ 2.12e-03↑

win/tie/loss counts 46/13/4 50/8/5 60/1/2 58/1/4
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Table C.10: IGD values for Tchebycheff decomposition method on WFG1-WFG9 test
problems. The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj R-NSGA-II R-MEAD2 OHV PE PEV

WFG1

4 2.76e-02 3.04e-02 2.71e-02↑ 2.73e-03↑ 2.70e-02↑

5 6.48e-03 7.20e-03 6.46e-03↑ 6.47e-02↑ 6.43e-03↑

6 1.53e-03 1.67e-03 1.51e-03↑ 1.52e-03↑ 1.50e-03↑

7 2.92e-03 2.80e-03 2.87e-03↓ 2.84e-03↓ 2.80e-03≈

8 5.34e-03 5.59e-03 5.28e-03↑ 5.30e-03↑ 5.25e-03↑

9 2.28e-03 2.36e-03 2.39e-03↓ 2.54e-03↓ 2.29e-03↑

10 2.17e-03 2.23e-03 2.16e-03↑ 2.14e-03↑ 2.10e-03↑

WFG2

4 1.37e-01 1.45e-01 1.33e-01↑ 1.32e-01↑ 1.31e-01↑

5 1.56e-02 1.85e-02 1.50e-02↑ 1.45e-02↑ 1.39e-02↑

6 2.30e-02 2.67e-02 2.25e-02↑ 2.24e-02↑ 2.23e-02↑

7 8.46e-03 9.14e-03 8.40e-03↑ 8.39e-02↑ 8.36e-03↑

8 3.05e-03 3.61e-03 3.02e-03↑ 3.02e-03↑ 3.03e-03↑

9 8.02e-03 9.09e-03 9.08e-03↑ 9.26e-02↓ 8.01e-03↓

10 8.12e-03 8.95e-03 8.11e-03↑ 8.10e-03↑ 8.09e-03↑

WFG3

4 1.18e-01 1.30e-01 1.18e-01↑ 1.15e-01↑ 1.11e-01↑

5 6.23e-02 7.85e-02 6.21e-02↑ 6.20e-02↑ 6.13e-02↑

6 3.43e-02 4.19e-02 3.42e-02↑ 3.40e-02↑ 3.39e-02↑

7 1.11e-01 1.25e-01 1.10e-01↑ 1.09e-01↑ 1.04e-01↑

8 1.03e-01 8.27e-02 8.24e-02↑ 8.22e-02↑ 8.12e-02↑

9 1.97e-01 2.33e-01 1.92e-01↑ 1.91e-02↑ 1.90e-01↑

10 1.69e-01 1.95e-01 1.65e-01↑ 1.64e-01↑ 1.62e-01↑

WFG4

4 3.15e-02 3.22e-02 3.10e-02↑ 3.09e-02↑ 3.25e-02↓

5 9.40e-03 9.65e-03 9.40e-03↑ 9.40e-03↑ 9.40e-03↑

6 1.50e-02 1.56e-02 1.49e-02↑ 1.47e-02↑ 1.41e-02↑

7 6.64e-03 7.02e-03 6.60e-03↑ 6.55e-03↑ 6.53e-03↑

8 3.03e-03 3.23e-03 3.03e-03↑ 3.02e-03↑ 2.95e-03↑

9 5.96e-03 1.93e-02 5.95e-03↑ 5.92e-03↑ 5.90e-03↑

10 3.37e-03 1.73e-02 3.31e-03↑ 3.31e-03↑ 3.31e-02↑

WFG5

4 4.84e-02 6.20e-02 4.80e-02↑ 4.47e-01↑ 4.49e-02↑

5 2.10e-02 2.42e-02 2.04e-02↑ 2.04e-02↑ 2.01e-02↑

6 4.38e-02 6.27e-03 4.27e-03↑ 4.27e-03↑ 4.28e-02↑

7 2.38e-02 2.71e-02 2.37e-02↑ 2.36e-02↑ 2.35e-02↑

8 1.27e-02 1.37e-02 1.31e-02↑ 1.29e-02↑ 1.29e-02↑

9 2.77e-02 3.12e-02 2.75e-02↑ 2.75e-02↑ 2.70e-02↑

10 1.74e-02 1.86e-02 1.71e-02↑ 2.70e-02↓ 1.66e-02↑

WFG6

4 9.85e-02 1.07e-01 1.05e-01↑ 3.47e-01↓ 9.88e-02↑

5 3.64e-02 4.04e-02 4.15e-03↓ 4.15e-03↓ 3.68e-03↑

6 6.52e-02 7.36e-02 7.27e-03↑ 6.92e-03↑ 6.86e-03↑

7 3.42e-02 3.60e-02 3.60e-02≈ 3.59e-02↑ 3.44e-02↑

8 1.73e-02 1.84e-02 1.64e-02↑ 1.62e-02↑ 1.55e-02↑

9 3.66e-02 3.85e-02 3.59e-02↑ 3.58e-02↑ 3.08e-02↑

10 2.22e-02 2.32e-02 2.21e-02↑ 2.18e-02↑ 2.13e-02↑

WFG7

4 4.75e-02 4.82e-02 4.10e-02↑ 4.17e-02↑ 4.10e-02↑

5 1.55e-02 1.60e-02 1.50e-02↑ 1.51e-02↑ 1.48e-02↑
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6 2.73e-02 2.90e-02 2.70e-02↑ 2.67e-03↑ 2.60e-02↑

7 1.33e-02 1.41e-02 1.32e-02↑ 3.33e-02↑ 1.30e-02↑

8 6.65e-03 7.26e-03 6.38e-03↑ 6.34e-02↑ 6.29e-03↑

9 1.41e-02 1.55e-02 1.40e-02↑ 1.39e-02↑ 1.39e-02↑

10 8.63e-03 9.76e-03 8.62e-03↑ 8.61e-03↑ 8.60e-03↑

WFG8

4 9.17e-02 9.99e-02 9.90e-02↑ 9.47e-02↑ 9.52e-02↑

5 3.44e-02 3.87e-02 3.43e-02↑ 3.40e-02↑ 3.39e-02↑

6 6.46e-02 6.27e-03 6.37e-03↓ 6.34e-02↓ 6.32e-02↓

7 3.27e-02 3.47e-02 3.27e-02↑ 3.26e-02↑ 3.25e-02↑

8 1.66e-02 1.78e-02 1.79e-02↓ 1.76e-02↑ 1.69e-02↑

9 3.54e-02 3.75e-02 3.81e-02↓ 3.75e-02≈ 3.60e-02↑

10 2.16e-02 2.26e-02 2.26e-02≈ 2.11e-02↑ 2.08e-02↑

WFG9

4 3.01e-02 5.94e-02 3.06e-02↑ 3.07e-02↑ 3.06e-02↑

5 1.19e-02 2.34e-02 2.84e-03↑ 9.53e-03↑ 9.13e-03↑

6 2.26e-02 6.27e-02 1.79e-02↑ 1.58e-02↑ 1.50e-02↑

7 1.40e-02 2.90e-02 7.44e-03↑ 7.41e-03↑ 7.17e-03↑

8 8.49e-03 1.46e-02 8.46e-03↑ 7.77e-03↑ 3.11e-03↑

9 2.00e-02 3.49e-02 1.55e-02↑ 1.70e-02↑ 1.40e-02↑

10 1.33e-02 1.96e-02 1.02e-02↑ 1.03e-02↑ 5.47e-03↑

win/tie/loss counts 55/2/6 55/1/7 59/1/3
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Table C.11: IGD values for Tchebycheff and PBI (PEV variant) on WFG test problems.
The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj PBI (θ=5) PBI (θ=0) TE

WFG1

4 2.73e-02 2.72e-02 2.70e-02

5 6.44e-03 6.42e-03 6.43e-03

6 1.50e-03 1.49e-03 1.50e-03

7 2.79e-03 2.78e-03 2.80e-03

8 5.31e-03 5.30e-03 5.25e-03

9 2.28e-03 2.27e-03 2.29e-03

10 2.17e-03 2.16e-03 2.10e-03

WFG2

4 1.39e-01 1.37e-01 1.31e-01

5 1.59e-02 1.56e-02 1.39e-02

6 2.28e-02 2.27e-02 2.23e-02

7 8.43e-03 8.42e-03 8.36e-03

8 3.11e-03 3.05e-03 3.03e-03

9 8.02e-03 8.09e-03 8.01e-03

10 8.10e-03 8.09e-03 8.09e-03

WFG3

4 1.19e-01 1.18e-01 1.11e-01

5 6.20e-02 6.19e-02 6.13e-02

6 3.45e-02 3.43e-02 3.39e-02

7 1.08e-01 1.07e-01 1.04e-01

8 9.11e-02 8.27e-02 8.12e-02

9 1.94e-01 1.93e-01 1.90e-01

10 1.66e-01 1.65e-01 1.62e-01

WFG4

4 3.11e-02 3.10e-02 3.25e-02

5 9.41e-03 9.40e-03 9.40e-03

6 1.47e-02 1.45e-02 1.41e-02

7 6.62e-03 6.64e-03 6.53e-03

8 3.02e-03 3.01e-03 2.95e-03

9 5.85e-03 5.83e-03 5.90e-03

10 3.30e-03 3.29e-03 3.31e-02

WFG5

4 4.81e-02 5.91e-02 4.49e-02

5 2.09e-02 1.95e-03 2.01e-02

6 4.36e-02 4.34e-03 4.28e-02

7 2.35e-02 2.11e-02 2.35e-02

8 1.25e-02 1.24e-02 1.29e-02

9 2.74e-02 2.74e-02 2.70e-02

10 1.72e-02 1.71e-02 1.66e-02

WFG6

4 1.27e-01 1.23e-01 9.88e-02

5 3.03e-02 3.06e-02 3.68e-03

6 6.39e-02 6.37e-02 6.86e-03

7 3.28e-02 3.29e-02 3.44e-02

8 1.90e-02 1.87e-02 1.55e-02

9 3.88e-02 3.87e-02 3.08e-02

10 2.14e-02 2.13e-02 2.13e-02

WFG7

4 4.75e-02 4.71e-02 4.10e-02

5 1.53e-02 1.55e-02 1.48e-02
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6 2.71e-02 2.70e-02 2.60e-02

7 1.32e-02 1.31e-02 1.30e-02

8 6.61e-03 6.60e-03 6.29e-03

9 1.41e-02 1.42e-02 1.39e-02

10 8.68e-03 8.66e-03 8.60e-03

WFG8

4 1.07e-01 1.09e-01 9.52e-02

5 3.41e-02 3.40e-02 3.39e-02

6 7.33e-02 7.30e-02 6.32e-02

7 3.57e-02 3.56e-02 3.25e-02

8 1.60e-02 1.59e-02 1.69e-02

9 3.40e-02 3.39e-02 3.60e-02

10 2.08e-02 2.07e-02 2.08e-02

WFG9

4 3.00e-02 3.00e-02 3.06e-02

5 8.73e-03 8.70e-03 9.13e-03

6 1.36e-02 1.27e-02 1.50e-02

7 5.94e-03 5.15e-03 7.17e-03

8 1.66e-03 1.63e-03 3.11e-03

9 5.04e-03 5.01e-03 1.40e-02

10 2.70e-03 2.12e-03 5.47e-03

Total highlights 2 23 41
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Table C.12: IGD values for Tchebycheff and PBI (PEV variant) on DTLZ test problems.
The median of 25 independent runs is reported.

UR-MEAD2

Func. # Obj PBI (θ=5) PBI (θ=0) TE

DTLZ1

4 1.66e-02 2.07e-02 1.56e-02
5 1.36e-02 1.45e-02 1.06e-02
6 1.09e-03 1.48e-03 1.26e-03
7 5.23e-03 4.06e-03 4.06e-03
8 1.00e-02 1.08e-02 1.03e-03
9 3.30e-03 6.35e-03 5.44e-03
10 1.23e-02 1.16e-02 1.06e-2

DTLZ2

4 5.48e-03 4.27e-03 7.38e-03
5 3.46e-03 1.85e-03 3.85e-03
6 3.23e-04 1.68e-04 3.23e-04
7 1.71e-03 8.58e-04 1.18e-03
8 2.22e-03 1.08e-03 1.13e-03
9 4.54e-04 1.00e-04 1.03e-03
10 1.40e-03 5.97e-04 6.37e-04

DTLZ3

4 9.41e-03 3.38e-03 5.96e-03
5 2.47e-03 3.54e-03 2.89e-03
6 1.30e-03 1.13e-03 3.03e-04
7 4.24e-03 1.07e-03 5.20e-03
8 1.09e-03 1.27e-03 3.45e-03
9 3.13e-04 6.69e-04 1.06e-03
10 1.05e-03 1.23e-03 1.33e-03

DTLZ4

4 6.50e-03 6.50e-03 8.92e-03
5 3.79e-03 3.79e-03 6.98e-03
6 3.40e-04 3.55e-04 3.08e-04
7 1.21e-03 1.05e-03 1.22e-03
8 1.56e-03 1.07e-03 1.03e-03
9 1.13e-03 1.06e-03 1.10e-03
10 1.25e-03 1.10e-03 2.02e-03

DTLZ5

4 1.53e-02 1.50e-2 1.45e-02
5 4.94e-03 4.90e-03 4.78e-03
6 1.57e-03 1.59e-03 1.52e-03
7 5.09e-04 5.24e-04 5.05e-04
8 9.28e-04 9.44e-04 7.14e-04
9 7.03e-04 7.22e-04 7.45e-04
10 6.60e-04 7.03e-04 6.53e-04

DTLZ6

4 1.53e-02 1.48e-02 1.37e-02
5 5.21e-03 4.96e-03 4.73e-03
6 1.80e-03 1.85e-03 1.08e-03
7 5.29e-04 5.85e-04 6.09e-04
8 9.54e-04 9.39e-04 9.02e-04
9 8.30e-04 8.02e-04 7.98e-04
10 6.27e-04 6.12e-04 5.60e-04

Total highlights 10 14 20
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