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ABSTRACT 

 This project explores the use of deep learning to predict age based on pediatric hand X-Rays. 

Data from the Radiological Society of North America’s pediatric bone age challenge were used 

to train and evaluate a convolutional neural network. The project used InceptionV3, a CNN 

developed by Google, that was pre-trained on ImageNet, a popular online image dataset. Our 

fine-tuned version of InceptionV3 yielded an average error of less than 10 months between 

predicted and actual age. This project shows the effectiveness of deep learning in analyzing 

medical images and the potential for even greater improvements in the future. In addition to the 

technological and potential clinical benefits of these methods, this project will serve as a useful 

pedagogical tool for introducing the challenges and applications of deep learning to the Bryant 

community. 
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INTRODUCTION 

Deep learning is a new subset of machine learning that attempts to distinguish patterns in sounds, 

images, and other data by mimicking the layers of neurons that exist in the human brain. Deep 

learning allows Teslas to recognize pedestrians and allows Spotify to craft customized playlists. 

In the medical field, Computer Aided Diagnosis and medical image analysis have encountered 

some of their largest breakthroughs in recent years through deep learning. However, the 

emergence of deep learning was built up decades of progress in machine learning and artificial 

intelligence research. 

Machine Learning initially emerged in the 1960’s as the computer revolution was beginning. As 

soon as there were computers and large data sets to analyze, scientists were finding new ways to 

analyze them and predict outcomes. Kononenko (2001) describes the three initial branches of 

machine learning as (1) classical work in symbolic learning described by Hunt et al. in their book 

Experiments in Induction in 1996. (2)  statistical methods laid out in Learning Machines: 

Foundations of Trainable Pattern-Classifying Systems by Nils Nilsson in 1965, and (3) neural 

networks as shown in Principle of Neurodynamics. Perceptrons and the Theory of Brain 

Mechanisms by Rosenblatt in 1962. According to Kononenko, these were the 3 seminal books 

that established the field of machine learning, although it was not recognized at the time.  

With the continued development as machine learning as a field, applications began to emerge in 

medical image analysis. One technique that developed was the naive Bayesian Classifier. This 

was a statistical technique that was initially developed by Good in 1964, and then applied to 

medical images by Kononenko et al. (1993) where he found that in 5 out of 8 medical 

applications, Bayesian Classification outperformed all other algorithms. Symbolic learning, 
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which was pioneered by Hunt in 1966, was being applied to medical images from the very 

beginning by creating decision trees and rules for diagnosis and prognosis. Research in decision 

trees and rules became increasingly active after Quinlan (1979) created the Iterative 

Dichotomizer 3 algorithm (ID3). Shortly after, other researchers began applying this algorithm to 

the medical domain such as Kononenko (1993) where decision trees were used to try to diagnose 

thyroid diseases, rheumatology, and breast cancer recurrence. 

However, during this time there was little progress being made in the domain of neural networks 

until a seminal 1986 paper by Rumelhart, Hinton, and Williams called Learning Representations 

by back—propagating errors. While the idea of back-propagation had been around on paper 

since the 60's and implemented on a computer in 1970 (Linnainmaa), it had not been applied to 

neural networks until 1974 (Werbos) and still did not become widely known until that 1986 

paper that so clearly explained the technique and its utility. Back-propagation re-invigorated 

research in neural networks and very quickly started delivering results, such as the 1989 paper by 

LeCun et al out of Bell Labs that used back-prop neural networks to read handwritten zip codes. 

Back propagation neural networks in the 1990's were the direct predecessors of modern deep 

learning techniques and more sophisticated networks continued to be developed until  there was 

another large breakthrough in the field in 2012 with the publication of ImageNet Classification 

with Deep Convolutional Networks, by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. 

In this paper, the group explained the architecture of AlexNet: 5 convolutional layers, 3 fully 

connected layers, and a 1000-way softmax function, which kickstarted the field of deep learning. 

Once the field began to be established, just like with machine learning, deep learning algorithms 

quickly began to be applied to the medical domain. There has been a substantial explosion in 
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recent years, with 240 of 300 papers involving the application of deep learning to medical image 

analysis being published in 2016 or 2017 (Litjens et al., 2017). The application domain is 

incredibly diverse, including everything from the diagnosis of Alzheimer’s disease (Suk & Shen, 

2013) to the detection of diabetic retinopathy (Gulshan et al., 2016). 

This paper focuses on applying these technologies to predict pediatric bone age based on x-ray 

images. This paper provides a brief overview of the existing literature using deep learning for 

medical images and will subsequently describe our approach for achieving optimal accuracy for 

the target problem. 

RELATED WORK 

Because many of the first major strides in the field of deep learning were with large sets of 2D 

images like ImageNet, it was a natural progression to apply these existing networks to similar 

problems in the medical field. Instead of classifying cats or dogs or flowers, the networks are 

now classifying chest x-rays as lateral or frontal for example (Rajkomar et al. 2016). Image 

classification simply takes an input, in this case one or multiple images that constitute an exam 

and produces a single output or diagnosis. According to Litjens et al., early on there were 2 

major strategies. (1) using a pretrained network that was developed by someone else or (2) 

manually fine-tuning a pre-trained network on medical data. Both strategies have been used 

widely because of their relative ease of use. They simply needed to run new data sets through 

existing networks and hope it would provide good results. While the pediatric bone age problem 

is a regression problem not a classification problem, much of the principles and processes still 

apply, with the only changes being the final layers of the network. 
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A 2017 paper by Spampinato et al. corroborated the findings of Menegola et al. that specifically 

designed and trained networks will have better results than pre-trained ones. Spampinato et al. 

used several different networks to assess bone age, including GoogLeNet, OxfordNet and 

OverFeat. They found that fine-tuning the existing networks to more closely apply to the 

problem domain resulted in a 30% boost in performance; however, they also created a CNN 

architecture from scratch called BoNet, which in the end yielded the best results. They found that 

while many “off the shelf” networks are effective, custom CNN’s can be the most effective with 

sufficient data and technical expertise. 

A paper by Lakhani and Sundaram (2017) took a similar approach, using existing networks to a 

different domain. They looked at detecting tuberculosis in chest radiographs also using existing 

networks such as AlexNet and GoogLeNet, two famous and powerful CNN’s. They used both 

trained and untrained versions of the network. The trained versions had previously been trained 

on the ImageNet dataset while the others had not; however, all the networks were still trained on 

a subset of the chest radiographs. Even so, the pre-trained networks had better accuracy, as 

shown in the figure below. This paper lends credence to similar findings that including large 

amount of non-medical images can also be helpful in getting accurate results (Bar et al. 2015).  

  Figure 1 – AUC Test Dataset (Lakhani and Sundaram 2017) 
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In the examples above, the existing networks were trained on at least some medical data; 

however, there have been some papers that showed promising results even when the network 

was only trained on non-medical data. This was shown in Bar et al’s paper (2015) where they 

looked at pathology in chest radiographs using the Decaf pre-trained CNN, which is a slightly 

modified version of a CNN developed by Krizhevsky et al. in 2012. They trained this CNN on 

the famous ImageNet dataset and then applied the network to 433 chest x-rays that were 

examined and labeled by radiologists. The network achieved around 90% accuracy when 

attempting to detect various types of pathology such as right pleural effusions and cardiomegaly, 

an impressive accuracy for networks not trained on medical data.  

There has been success in many different medical domains using many different techniques. If 

there is sufficient data, resources, and technical expertise, then creating custom network 

architectures is likely to yield the most accurate results. However, in the absence of those things 

using an existing network can also show promise. Even here there is freedom to use networks 

that were pre-trained on non-medical images, or those that were not.  

The current literature on applying deep learning to medical image analysis explains the multitude 

of techniques and application of this technology. Deep learning algorithms have already been 

applied to many different body parts and data types. It has become clear that convolutional 

neural networks are the technology of choice for most classification problems, and regression 

problems which are similar. It has also become clear that through the recent years, large strides 

have been made towards optimizing well known CNN architectures, and that using existing and 

well tested networks can provide sufficiently accurate results. 
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OUR APPROACH 

In this section, we will discuss the various steps, methods, and approaches used to gain an 

understanding of convolutional neural networks and how to apply them to pediatric hand x-rays 

as well as techniques to achieve optimal accuracy.  

After conducting our literature review, it became clear that the most feasible approach was to 

leverage an existing CNN that was already proven to be effective at image recognition. We also 

planned to leverage the additional accuracy and reduced training costs of transfer learning. As a 

result, we chose a pre-trained version of InceptionV3, a CNN developed by Google that placed 

highly in ImageNet competitions at the time it was developed. 

Dataset 

The training dataset consisted of 12,611 pediatric hand x-rays ranging from 1 month to 228 

months old. The set consisted of both genders and a mixture of left and right hands, although the 

majority were left handed. All the images were provided by the Radiological Society of North 

America, acquired from Stanford Children’s Hospital and Colorado Children’s Hospital and 

were labelled with corresponding skeletal ages. A test set of 200 labelled images was also 

provided by RSNA. 

Pre-processing 

The provided images were of varying dimensions and needed to be resized to 299x299, the input 

size of InceptionV3. To preserve the aspect ratio of the original images, either horizontal or 

vertical padding was added to all images. In addition, the input images needed to be represented 
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as colored images due to expectations of the InceptionV3 architecture, despite the original 

images being greyscale. 

During various training cycles, data augmentation was also used in an attempt to prevent 

overfitting and improve generalization. 90-degree rotation, vertical and horizontal flipping, and 

height and width shifts were all employed with varying degrees of success. Overall, data 

augmentation did not prove effective in increasing accuracy. Instead, loss plateaued after only 15 

epochs, perhaps reaching but not crossing a local minimum. In addition, accuracy was 

substantially worse at similar levels of training without augmentation. 

Evaluation 

All the results reported were tested against the provided test set of 200 images that was 

completely independent from the training set. All versions of the model were trained against the 

entirety of the training set. 

The effectiveness of the model was determined by the mean absolute error of the predictions 

compared to the actual labels. The difference between actual and predicted was measured and 

averaged across all inputs in the test set. 

Implementation Details 

This project was done using Python, Tensorflow, and Keras using either custom code, pre-

trained models, or other public libraries. All training and testing was done with a quad core 

3GHZ CPU, 16 GB of RAM and an Nvidia GTX 1080 GPU with 8GB of VRAM. 
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 RESULTS 

Performance of the InceptionV3 network was recorded after scoring the test set with various 

parameters. Overall, the lowest average error of 9.71 months was achieved with 120 epochs of 

training data, no augmentation, and using the adam optimizer as displayed in Table 1. During 

testing, we found that after more than 120 epochs, loss was continuing to minimize; however, 

average error began to rise, likely indicating overfitting on the training set.  

Also shown in Table 1 was the ineffectiveness of data augmentation, resulting in a more than 2x 

increase in average error after 5 epochs of training and a 3x increase in error after 30 epochs. 

Even after nearly 30 epochs of training, loss remained plateaued at around 32.00. 

Additionally, we achieved the best results using the adam optimizer. It is not clear exactly why 

adam yielded better results than rmsprop, however, both were very effective due to their adaptive 

learning rate. 

The results shown in Table 1 also display the ineffectiveness of transfer learning for hand x-rays. 

Theoretically, transfer learning allows for a reduction in training time and better defense against 

over-training by exposing the network to a variety of images before fine-tuning it on the desired 

target set. By using a version of InceptionV3 that was pre-trained on ImageNet, we were 

expecting to reap those benefits; however, after testing, the results showed that there was no 

noticeable difference in average error from the model between weights from training on 

ImageNet and randomized weights.  
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  Training 

(epochs) 
Augmentation Optimizer Results 

Weights 

ImageNet 30 0 rmsprop 11.69 

ImageNet 90 0 rmsprop 10.99 

ImageNet 120 0 rmsprop 10.12 

ImageNet 120 0 adam 9.71 

ImageNet 150 0 adam 10.1 

Random 0 0 rmsprop 132.35 

ImageNet 0 0 rmsprop 126.95 

Random 5 0 rmsprop 16.04 

ImageNet 5 0 rmsprop 16.3 

Random 5 1 rmsprop 35.55 

ImageNet 5 1 rmsprop 38.2 

ImageNet 30 1 rmsprop 32.09 

Table 1 – Performance Results from InceptionV3 based on Mean Absolute Error 

DISCUSSION 

In this paper we used deep learning and convolutional neural networks to effectively predict the 

bone age of pediatric hand x-rays. We trained InceptionV3 on over 12,000 images provided by 

the Radiological Society of North America and received a respectable average error of 9.71 

months. Throughout this process we also discovered some additional insights about applying 

CNNs to medical imaging problems. 

 Transfer learning using ImageNet and InceptionV3 does not appear to be effective in 

increasing accuracy. It is possible that this could be the result of some underlying piece 
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of InceptionV3's architecture or a problem with the ImageNet dataset specifically when 

being applied to x-rays. Our lack of success here does not definitively mean transfer 

learning is ineffective. It is possible that ImageNet was simply too foreign from the target 

dataset to learn anything transferable, and if instead Inception was pre-trained on 

unrelated x-ray images then transfer learning could have been effective. However, this 

result does appear to contradict a substantial portion of the literature that has shown the 

effectiveness on non-medical transfer learning being applied to 2D medical images (Bar 

et al. 2015).  

 Data augmentation did not have the desired effects of increased accuracy and 

generalization. In our limited tests we found that data augmentation increased training 

times and decreased accuracy. After 5 epochs data augmentation yielded an average error 

twice and large and after 30 epochs an error nearly 3 times as large with a loss that had 

plateaued. It is possible that we reached a local minimum and could have eventually 

improved given enough training time, but we were unable to test this hypothesis.  

 CNN's display incredible potential for medical imaging analysis. Our simple approach of 

using existing architectures and making few changes throughout the pipeline already 

yielded excellent results. With time and more sophisticated techniques deep learning will 

prove to be an exceptionally powerful tool for radiologists. 

In addition to the above findings, this paper will serve as a pedagogical tool for the Bryant 

community to learn more about an incredibly powerful emerging technology. 
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