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Abstract

I present in detail the case for regarding black hole thermodynam-
ics as having a statistical-mechanical explanation in exact parallel with
the statistical-mechanical explanation believed to underly the thermody-
namics of other systems. (Here I presume that black holes are indeed
thermodynamic systems in the fullest sense; I review the evidence for that
conclusion in the prequel to this paper.) I focus on three lines of argument:
(i) zero-loop and one-loop calculations in quantum general relativity un-
derstood as a quantum field theory, using the path-integral formalism; (ii)
calculations in string theory of the leading-order terms, higher-derivative
corrections, and quantum corrections, in the black hole entropy formula
for extremal and near-extremal black holes; (iii) recovery of the quali-
tative and (in some cases) quantitative structure of black hole statistical
mechanics via the AdS/CFT correspondence. In each case I briefly review
the content of, and arguments for, the form of quantum gravity being used
(effective field theory; string theory; AdS/CFT) at a (relatively) introduc-
tory level: the paper is aimed at students and non-specialists and does not
presume advanced knowledge of quantum gravity.. My conclusion is that
the evidence for black hole statistical mechanics is as solid as we could
reasonably expect it to be in the absence of a directly-empirically-verified
theory of quantum gravity.

1 Introduction

In the last forty years, the evidence has become overwhelming that stationary
or near-stationary black holes behave, as far as any description by external ob-
servers is concerned, exactly like ordinary thermodynamic systems. (I review
this evidence in depth in Wallace (2017a), the prequel to this paper — henceforth
‘Part I’). Right from the outset — and before the discovery of Hawking radia-
tion (Hawking 1975), and the development of the membrane paradigm (Thorne,
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Price, and Macdonald 1986), really solidified the case for black hole thermody-
namics — it was conjectured that black hole thermodynamics has the same
ultimate justification as the rest of thermodynamics: in statistical mechanics.
In particular, if (in Planck units) one-quarter the surface area A of a black hole
really can be identified with entropy, there ought to be a space of microstates
of that black hole, all semiclassically indistinguishable, of dimension exp(A/4).

In the view of (most of) the theoretical physics community, this is no longer
a conjecture. Instead (it is widely said) a great deal of evidence has now been
collected in support of a black hole statistical mechanics (BHSM) underpinning
black hole thermodynamics. This evidence is of course not empirical (there is no
empirical evidence as yet for Hawking radiation, let alone for BHSM); rather, it
consists of reproductions of the semiclassical formulae for black hole entropy in
those partly-developed theories of quantum gravity which we currently possess,
to a precision that would be difficult or impossible to make sense of unless
those ‘partly-developed theories’ really were partial descriptions of a consistent
quantum theory of gravity that sufficed to ground black hole thermodynamics.

In this paper, I want to review this evidence, which to my eyes is extremely
convincing, for the benefit of the somewhat-sceptical non-specialist. Other re-
views exist, and indeed I drew heavily on them in writing this paper (see in par-
ticular Carlip (2008, 2014), Harlow (2016), Hartman (2015), Polchinski (2016))
but, as with the case for black hole thermodynamics, they tend to be focussed
on recent results and to assume that the reader is antecedently disposed to ac-
cept BHSM at face value. I confine my attention to physics outside the black
hole event horizon, and do not directly consider the so-called ‘information-loss
paradox’, although (as I argue in more detail in Wallace (2017d)) it is ultimately
the validity of a statistical-mechanical account of black holes that would make
information loss so paradoxical. For similar reasons, I do not discuss ‘hori-
zon complementarity’ or the ‘firewall paradox’; again, see Wallace (2017d) and
references therein for more on these topics.

The structure of the paper is as follows. In section 2 I review statistical me-
chanics and then consider what the general structure of a statistical-mechanical
theory of black holes would look like. In sections 3–5 I successively review the
evidence for BHSM coming from, respectively, general relativity as an effec-
tive field theory; string theory; the AdS/CFT correspondence. Section 6 is the
conclusion.

As with Part I, I adopt a level of mathematical rigor roughly the same as
that in the mainstream theoretical physics literature, and so fall short of the
fully-rigorous methods often found in foundational discussions. This seems to
me basically unavoidable for BHSM: the theories we are studying are not yet
fully articulated and so complete rigor is premature. Again as with Part I, I hope
that readers dissatisfied with this will at least take away some understanding of
why physicists themselves take BHSM so seriously.

I adopt units where G = k = c = ~ = 1 unless explicitly stated otherwise.
lp =

√
~G/c3 denotes the Planck length; note that in units where ~ = c = 1,

G = l2p.
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2 Black hole statistical mechanics: the general
program

Thermodynamics, in of itself, is a purely phenomenal theory: its postulates
are simply assumed, as are its equations of state and transport coefficients.
Statistical mechanics aims to provide a microphysical underpinning for ther-
modynamics, justifying its foundational postulates and permitting derivations
of its quantitative features from the microphysics of the system being studied.
(This does not exhaust its content, which also includes the analysis of complex
systems in contexts where ‘equilibrium’ is not a helpful concept.) To get clear
on what it means for black holes in particular to have a statistical-mechanical
description, it will be helpful to start by reviewing how such descriptions work
in general. (This is standard physics and I do not provide explicit references;
see any textbook account of statistical mechanics.)

2.1 A brief review of statistical mechanics

Much of the foundations of statistical mechanics is contested, but at least the fol-
lowing are clearly parts of statistical mechanics as used in calculational physics.
Firstly, the various irreversible features of thermodynamics are consequences of
unitary (or, for classical systems, Hamiltonian) dynamics, together with some
(often-tacit) assumptions about a system’s initial conditions and possibly some
probabilistic assumptions. In particular, the approach of a system to equilib-
rium is studied quantitatively in non-equilibrium statistical mechanics through
equations like the Boltzmann and Langevin equations, which are constructed
from the microphysics.

Secondly, the equilibrium equation of state is derived within statistical me-
chanics via a microphysical expression for the entropy, which makes the latter a
measure of the Hilbert-space dimension associated with an equilibrium system.
This can be done in two main ways: via the microcanonical ensemble, where
an equilibrium system is treated as being genuinely isolated from its environ-
ment and its thermodynamic energy is identified as its microphysical entropy,
or via the canonical ensemble, where the system is treated as being in ther-
mal contact with a very large reservoir at a fixed temperature and the system’s
thermodynamic entropy is a probabilistic average of its microphysical energies.

In more detail: given a quantum system with Hamiltonian Ĥ and, say, con-
served charge Q̂ and angular momentum Ĵ , we can define a subspace S(∆H ,∆Q,∆J)

of all joint eigenstates of these operators with eigenvalues for Ĥ, Q̂ and Ĵ ly-
ing in ∆H , ∆Q and ∆J respectively. Then the density of states N(E,Q, J) is
defined by the expression

N(E,Q, J)δUδQδJ = Dim S([E,E + δE], [Q,Q+ δQ], [J, J + δJ ]) (1)

where the quantities δE, δQ, δJ are large enough to include many eigenstates
but small compared with macroscopically relevant scales. In the microcanonical
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approach, the entropy is defined as the logarithm of the density of states,

S(E,Q, J) = lnN(E,Q, J) (2)

and the thermodynamic temperature is

T =

(
∂E

∂S

)
Q,J

(3)

while in the canonical approach, the most convenient starting point is the par-
tition function

Z(β,Q, J) =

∫
dE e−βEN(E,Q, J) ≡

∫
dE eS(E)−βE (4)

where β = 1/T is the inverse thermodynamic temperature, and the expected
energy and entropy can be calculated from the partition function by

〈E〉 = − d

dβ
(lnZ); SC = β〈E〉+ lnZ (5)

(where I write the canonical entropy as SC to distinguish it from the micro-
canonical entropy).

Under certain conditions, these two ensembles give the same results as one
another for the values of thermodynamic quantities like energy and entropy;
partly because the calculational methods will recur later, I briefly review those
conditions. In general, if we have an integral

I =

∫
dx e−f(x) (6)

where f has a minimum at x0 and increases steeply away from that maximum,
we can approximate the integral as

I ' e−f(x0)

∫
dx e−f

′′(x0)(x−x0)
2/2 =

e−f(x0)√
πf ′′(x0)

(7)

(this is the saddle-point method for evaluating such an integral). Applying this
method to the function f(E) = βE − S(E), and assuming it has its maximum
for fixed β at E = E0 we can evaluate

Z(β) ' eS(E0)−βE0√
πS′′(E0)

(8)

and, by the same method,

〈E〉 ' E0; Var(E) ' 1/S′′(E0) (9)

under the assumption that Var(E)� 〈E〉2. This can be understood physically
by the (exact) relation

CV =
∂〈E〉
∂T

=
Var(E)

T 2
(10)
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where CV is the (canonical) heat capacity at constant external parameters. So
the condition for the validity of these approximations is

(T/〈E〉)2CV � 1 (11)

and under that approximation we have

lnZ(β) ' S(〈E〉)− β〈E〉 − 1

2
ln(πCV ) (12)

from which follows SC(β) ' S(〈E〉)+ constant. So when the condition (11) is
met, we can work exchangeably with the canonical or microcanonical ensembles.
In this situation, the system is said to be at the thermodynamic limit. (This
must be distinguished from other, related uses of the term, such as to refer to
the infinite-volume limit.)

2.2 Statistical mechanics of black holes

As I discussed in Part I, self-gravitating systems have unusual thermodynamic
properties: in particular, the long-range forces that bind them tend to lead to
negative heat capacities. No such system can be in stable equilibrium with a
heat reservoir: an arbitrarily small fluctuation of heat from the reservoir to the
system will cool the system and so lead to further heat transfer, so that heat
will flow into the system without limit; an arbitrarily small initial fluctuation
in the opposite direction will have the opposite instability, with the system
heating up as it emits more and more heat. So this suggests that a strongly self-
gravitating system at equilibrium cannot normally be analysed by the canonical
distribution. And this follows formally from (10), which demonstrates that the
canonical heat capacity is always positive.

But the microcanonical distribution is in principle perfectly well defined for
a self-gravitating system in isolation — say, in a very large box with reflecting
walls. At equilibrium, that box will be filled with thermal radiation, and we
can think of the system as consisting of the self-gravitating system without
radiation, in equilibrium with that radiation. That in turn requires our box not
to be too large, else it will again be unstable; as we saw in Part I, for a black
hole in particular the mass of the radiation must be less than 1/4 the mass of
the black hole, which is compatible with extremely large boxes for astrophysical-
scale black holes.

As observed by York (1986), though, we can still use canonical-ensemble
methods to discuss a black hole if we place it in a sufficiently small box,
say a spherical box of radius r. The reason (specialising for convenience to
a Schwarzschild black hole) is that the local temperature of the black hole’s
Hawking radiation at distance r is given by T (r) = TH(M)/α(M, r), where
TH(M) = 1/8πM is the Hawking temperature at mass M , and α(M, r) =
(1−2M/r)−1/2 is the redshift at distance r. The boundary of the box will be at
equilibrium with the hole if it is at temperature T (r). Adding mass to the hole
decreases both TH(M) and α(M, r), and for a sufficiently small box the latter
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effect can dominate. Indeed, an elementary calculation gives

∂M

∂T
= 8πM2

(
r − 2M

3M − r

)
(13)

which is positive when r lies outside the Schwarzschild radius r = 2M but
inside the surface of last stable orbit r = 3M . So in this regime we can use the
canonical ensemble to describe the black hole. In the same regime

(T/M)2
∂M

∂T
=

(
1

8πM

)2(
r − 2M

3M − r

)
(14)

which will be � 1 for M � mp, so the conditions for equivalence of canonical
and microcanonical ensembles will be satisfied unless the box radius is extremely
close to 3M . (A slight subtlety is that for a box of finite size, the energy —
defined in terms of the boundary Hamiltonian on the box — deviates somewhat
from M , but not enough to invalidate this analysis. See York ibid for details.)

Whichever method we use to define BHSM, the basic premise will be that
a black hole of mass M , charge Q and angular momentum J is (or at any rate
can be understood as) a quantum-mechanical system with density of states

N(M,Q, J) = K expSTD(M,Q, J) (15)

where STD is the thermodynamic entropy of the black hole as calculated within
black hole thermodynamics (see Part I) and K is some constant such that lnK
is small compared to the area of a classical-scale black hole. If we assume the
Einstein field equations, STD is one-quarter the area of the event horizon; for a
Schwarzschild black hole in particular, we have

N(M, 0, 0) ∝ exp(4πM2). (16)

(Note that for a large box, where M can be treated as the energy, the parti-
tion function clearly diverges for this density of states, validating our previous
arguments.)

If so, a black hole would have a very large number of microscopic degrees
of freedom, none of which show up in the semiclassical description, and the
obvious question is: where are they located? The area formula for black hole
entropy is suggestive: if black hole entropy is proportional to area, it suggests
putting quantum degrees of freedom, one per every few Planck areas, on or near
the horizon (but outside it, else they could play no explanatory role in a black
hole’s thermodynamic behaviour). But we can do much better than this simple
heuristic. Specifically, we saw in Part I (following Thorne, Price, and Macdonald
1986) that the thermodynamics of black holes can be elegantly expressed via
the

Membrane paradigm: With respect to any semiclassical or thermodynami-
cal physical processes taking place outside the stretched horizon of a sta-
tionary or near-stationary black hole, that horizon may be treated as a
thermodynamical system (specifically, as a thin membrane of conducting
fluid) at or near thermal equilibrium.
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(Recall that the stretched horizon is a timelike surface approximately one Planck
length from the true horizon.) In particular, the stretched horizon is in ther-
mal equilibrium with the black hole atmosphere (the layer of Hawking radi-
ation largely trapped behind the angular-momentum potential barrier), at a
locally-measured temperature of order the Planck temperature. So to provide
a statistical-mechanical underpinning to BHT, we need to posit the

Quantum membrane paradigm (QMP): With respect to any physical pro-
cess taking place outside the stretched horizon of a stationary or near-
stationary black hole, that horizon may be treated as a quantum-mechanical
system at or near thermal equilibrium (as defined by the asymptotic
Hamiltonian), with density of states given approximately byN ∝ exp(STD).

(The reason for the “approximately” in this description is that some fraction
of the black hole’s entropy will be comprised of the atmosphere’s entropy; I
return to this point in section 3.4.) The quantum membrane paradigm was
originally proposed by Susskind, Thorlacius, and Uglum (1993) following related
proposals by ’t Hooft (1985), though the name is mine (‘complementarity’ is the
most common term used in the literature, but I avoid that term as it has other
connotations).

3 Low-energy quantum gravity

Already there is an interesting tension visible in BHSM. Reproducing the Bekenstein-
Hawking entropy requires a density of states so high as to imply that Planck-
scale physics is needed to understand those states. Yet the entropy formula itself
is derived within ordinary general relativity applied at quite large scales and it
is hard to see how its numerical value could be sensitive to the smallest-scale de-
tails of the quantum theory of gravity to which general relativity is presumably
an approximation.

We can get insight into this puzzle, as well as our first direct evidence for
BHSM, by considering quantum general relativity in the low-energy regime,
i. e. where the metric is treated quantum-mechanically but curvatures remain
low compared to Planck scales. Quantum gravity is reasonably well understood
in this regime via the path-integral formulation of quantum field theory and
the effective-field-theory method for understanding renormalisation; I begin by
reviewing these techniques. The account is realistically too terse for readers
completely unfamiliar with the subject but it should serve as a reminder to
readers with some previous acquaintance, and also to bridge the gap between
QFT as used in black hole thermodynamics and as seen in other areas of physics;
again, it is established physics and I omit original references. (For the full
picture, see, e. g. , Banks (2008), Duncan (2012), Srednicki (2007), or Zee (2003);
I give a more in-depth review of the concepts aimed at non-specialists in Wallace
(2017b).)
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3.1 Quantum field theory: a brief review

The central claims of QFT, in the ‘effective field theory’ form relevant for our
purposes, are:

1. The dynamics of the theory are expressed in terms of a collection of classi-
cal fields, and a classical action for those fields. Using a scalar field theory
on flat background spacetime with metric η as an example, a fairly general
action (on some spacetime region M) for such a field is given by

S[ϕ] =

∫
M

L(ϕ,∇ϕ) =

∫
M

(
1

2
η(∇ϕ,∇ϕ)−m2ϕ2 −

∞∑
n=2

λ2nϕ
2n

(2n)!
.

)
(17)

Time evolution is then given by the path integral :

〈φ1,Σ1|φ2,Σ2〉 =

∫ φ2

φ1

Dϕ exp(−iS[ϕ]) (18)

For the purposes of BHSM, it is more useful to analytically continue this
expression to imaginary values of time to obtain an expression for the
partition function:

Z(β) =

∫
β

Dϕ exp(−SE [ϕ]) (19)

where the β subscript indicates that the path integral is over paths periodic
in imaginary time with period β, and where SE is the Euclidean action,
obtained from S by analytic continuation. For field theories with a gauge
symmetry (in this context, this means: a transformation of the fields which
leaves invariant both the boundary conditions and the action) these path
integrals should in the first instance be taken only over equivalence classes
of gauge-equivalent fields; it is normally possible to recover a path integral
over all the fields, but often at the cost of introducing new auxiliary fields
and/or modifying the action.

2. These path integrals are in general formally divergent, unless regularised
by requiring the fields to vary on scales no smaller than some cutoff length
Λ. (This requirement can be imposed by, for instance, integrating over
only Fourier modes with frequencies < 1/Λ, or by putting the integral
on a lattice of spacing Λ.) This cutoff can be interpreted physically as a
limit to the domain in which the field theory is reliable; the term effective
field theory, often used to describe QFTs in modern physics, is intended
to convey that the theory is supposed to apply in certain regimes only and
is not a candidate for ‘fundamental’ physics.

3. The effect of changing the cutoff from Λ to some Λ′ is to rescale the infi-
nite number of coefficients that specify the theory’s Lagrangian (m2 and
λ4, λ6, . . . , for my scalar-field example). This transformation is known as
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the renormalisation group. In general, renormalisation group flow affects
the values of all coefficients in the action, even those initially equal to
zero; for this reason, it is strictly speaking necessary to work with the
most general Lagrangian compatible with a theory’s symmetries.

4. Some, but not all, field theories have non-trivial fixed points in the space
of coefficients, to which the coefficients tend under renormalisation-group
flow in the limit of longer and longer cutoffs. If a theory has a nontrivial
fixed point, the precise value of the cutoff is irrelevant for physics on scales
long compared to the cutoff, and we can formally understand the theory
as defined on all lengthscales. In the absence of a fixed point (or if the
only fixed point corresponds to an interaction-free theory) then the cutoff
is directly relevant to the phenomenology.

5. The coefficients can be divided into two categories on dimensional-analysis
grounds: a finite collection of renormalisable coefficients, and an infinite
number of non-renormalisable coefficients. For physical processes on a
scale L � Λ, the effects of the nonrenormalisable coefficients (at least as
calculated in perturbation theory) is suppressed by some positive power
of (Λ/L). As such, on such scales the nonrenormalisable coefficients can
typically be disregarded; physically significant results are expressible in
terms of the renormalisable coefficients. To a first approximation, a QFT
has a nontrivial fixed point iff it has renormalisable coefficients corre-
sponding to interactions. To a somewhat better approximation, having
such coefficients is at least a necessary condition for a fixed point: both
scalar field theory and quantum electrodynamics are suspected of hav-
ing no non-trivial fixed points even though they are renormalisable in the
power-counting sense. Even this better approximation is not a rigorous
result: the existence of delicate cancellations in the renormalisation pro-
cess could in theory lead to a fixed point even in this case (this is known
as asymptotic safety (Weinberg 1979) though there are at present no un-
contentious empirically-relevant examples).

6. Practical calculations in QFT normally involve perturbation theory, where
the solutions are found from perturbation around exactly-solvable cases.
In the case of scalar field theory, for instance, if we restrict attention to
renormalisable terms then the theory is specified by a mass m and an
interaction strength λ4. The case λ4 = 0 corresponds to a free theory, for
which the path integral can be evaluated exactly. We might then expect
to be able to express the path integral as a power series in λ4, consist-
ing of successive correction terms to the free-theory predictions. If this
is attempted, though, the “successive correction terms” turn out to be
very large, invalidating the assumptions of perturbation theory. Instead,
the power series has to be expressed in terms of the renormalised coeffi-
cients mren, λren4 , which include finite (and cutoff-dependent) corrections.
(Indeed, it is these renormalised coefficients which are measured empiri-
cally; the ‘bare’ coefficients in the original Lagrangian are not empirically
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accessible.)

7. We can approximate the path integral for Z(β), in particular, by saddle-
point methods: if the Euclidean action has a single minimum at ϕ = ϕ0,
we can write ϕ = ϕ0 + δϕ and expand it as

S[ϕ] = S[ϕ0] + S2[δϕ] + higher terms (20)

to obtain

lnZ = SE(ϕ0) +

∫
β

Dδϕ exp(−S2[δϕ]) + higher terms. (21)

(Essentially this method is also used in most other applications of pertur-
bation theory to QFT.) In non-gravitational contexts, the term SE(ϕ0)
in (21) can be disregarded (it is normally zero and in any case can be
absorbed into the normalisation of the path integral). The path integral
is quadratic in the perturbation δϕ and can be interpreted as the contri-
bution of a gas of free particles to the partition function. (For reasons
originating in the Feynman-diagram techniques used to evaluate path in-
tegrals, these two stages of approximation are known as ‘zero-loop’ and
‘one-loop’ approximations to Z, respectively.) The higher-order terms
represent successive corrections from interactions between the particles.

3.2 General relativity from an effective-field-theory view-
point

The classical action of vacuum general relativity (suppressing the cosmological
constant for simplicity) is the Einstein-Hilbert action:

SE−H [g] =

∫
M

√
−g 1

8πG
R (22)

where R is the scalar curvature and I have restored Newton’s constant G. (In
this section I follow the normalisation conventions of Demers, Lafrance, and
Myers (1995).) Regarded as an action defining a QFT, this action is non-
renormalisable, which at one point was the usual answer given as to why quantiz-
ing gravity by QFT methods was impossible. But from the effective-field-theory
viewpoint there is nothing problematic about gravity being non-renormalisable;
it simply points to1 a breakdown of the theory at a lengthscale ∼

√
G ≡ lp.

(Indeed, the standard result that nonrenormalisable interactions are extremely
weak at energies far below their cutoff can be seen as offering an explanation, of
sorts, for the weakness of the gravitational force.) From this viewpoint (which
is standard in most of theoretical physics, and which I adopt hereafter) the

1Points to, but does not entail, because of the possibility of asymptotic safety. The
asymptotic-safety program in quantum gravity, which lies beyond the scope of this paper,
aims to demonstrate the consistency of QFT versions of general relativity at arbitrarily high
energies (see Reuter and Saueressig (2012) for a review).
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‘problem’ of quantum gravity arises not whenever we try to combine quantum
mechanics and general relativity, but only when we try to do so in regimes where
the energy scales approach Planck scales (i. e. , in the early Universe and near the
singularities within black holes — and at the stretched horizon of a black hole, if
we describe the physics from the perspective of a fiducial observer). Indeed, the
low-energy version of quantum gravity obtained by treating general relativity
as an effective field theory arguably even has (admittedly crude) observational
support, since it is the theoretical basis for calculations of the quantum fluctua-
tions in the early Universe that are believed to be the origin of the fluctuations
in the cosmic background radiation (see, e. g. , Weinberg (2008, pp.470-474)).
For a review of this effective-field-theory understanding of quantum gravity, see,
e. g. , Burgess (2004).

(At this point it will be helpful to establish some terminology. By ‘low-energy
quantum gravity’ I mean general relativity, regarded as an effective field theory
and applied only when the energy scales are far below the Planck scale. By ‘full
quantum gravity’ I mean some finite, cutoff-free theory valid even in Planck-
scale regimes, which reduces to low-energy quantum gravity in appropriately
limited regimes.)

The Einstein-Hilbert action alone is not quite suitable for constructing low-
energy quantum gravity, for two reasons. Firstly, we have seen that QFT re-
quires us to consider the most general action for a given field’s symmetries, so
we need to add to the scalar curvature term all other diffeomorphism-invariant
terms expressible in terms of the metric. This leads to an action of form

S[g] =

∫
M

√
−g
(

1

8πG
R+

α

4π
R2 +

θ

4π
RabR

ab +
γ

4π
RabcdR

abcd + · · ·
)
. (23)

Successive terms in this expansion have their effects on the physics at lengthscale
L suppressed by ever-higher powers of Λ/L. (In some versions of full quantum
gravity, supersymmetry means that some of these terms vanish, but there will
always be infinitely many left.)

Secondly, since the curvature depends on second derivatives of the metric,
the classical equations of motion are obtained from variations that leave the
metric and its normal derivative invariant on the boundary, whereas the path
integral boundary condition does not involve normal derivatives. This can be
resolved by adding a boundary term to the action (the form of which is fixed
by the ‘bulk’ part of the action): in the case of the Einstein-Hilbert action, for
instance, the boundary term is proportional to the extrinsic curvature of the
metric at the boundary.

3.3 Statistical mechanics of black holes

With these modifications made, let’s consider (in general relativity coupled to
some matter field ϕ, and following Gibbons and Hawking (1977) and Gibbons,
Hawking, and Perry (1978)) evaluating the partition function of a system en-
closed within a (spherically-symmetric) box of surface area Abox, at inverse
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temperature β. To do so by saddle-point methods (and no better method is
currently available) we need to find the extrema of the action, and one obvious
extremum is given by flat space, with matter fields vanishing and g equal to
the Minkowski metric. The value of the action at this extremum is zero (by
construction: this is our convention for normalising the path integral), so the
contribution to the partition function from this extremum, to one-loop order,
has form

lnZflat(β) =

∫
β

DδgDϕ exp(−S2,0[δg, ϕ]) (24)

where S2,0 is the second functional derivative of the action evaluated at empty
flat space. This has a fairly straightforward interpretation as the partition
function of a gas of thermal particles: the quanta associated with the matter
field, and the gravitons associated with metric fluctuations.

(There is one technical subtlety: both in this case and generically, the ex-
trema of the action are not minima of the action because sufficiently rapid
conformal fluctuations of the metric will decrease the action, which would seem
to invalidate the use of saddle-point methods. The original applications of the
path integral (Gibbons, Hawking, and Perry 1978) dealt with this problem for-
mally by rotating the contour of integration over those modes, and there is
considerable evidence (Hartle and Schleich 1987, Schleich 1987 that this rota-
tion is justified by considerations of gauge-invariance, but the matter remains
somewhat obscure.)

But this is not the only extremum of the action. It is also extremised if
the metric inside our surface is the (Euclidean analytic continuation of the)
Schwarzschild black hole, with mass given by M = β/8π. So there is an ad-
ditional contribution ZH(β) to the partition function, given to one-loop order
by

lnZH(β) = SE(gM , 0) +

∫
β

DδgDϕ exp(−S2,M [δg, ϕ]) (25)

where gM is the metric for the mass-M Euclidean black hole, and S2,M is the
second-order variation of the action around the extremum (g = gM , ϕ = 0).

The obvious temptation is to interpret this term as the contribution to the
entropy due to the state space of a mass-M black hole. But there are subtleties in
doing so. In Gibbons and Hawking’s original calculations the surface of the box
was taken at lying at a radius far larger than the Schwarzschild radius 2M , and
we have seen that the canonical ensemble is not well-defined in this situation.
This shows up formally in a family of non-conformal fluctuations that decrease
the Euclidean action, again invalidating the use of the saddle-point method.
Gibbons, Hawking, and Perry (1978) resolve this formally by further contour
deformations, and justify this conceptually by interpreting Z not as the true
partition function but as an analytic continuation of it from which the density
of states can be recovered. But this approach was and is somewhat contentious;
see in particular Gross, Perry, and Yaffe (1982) for an alternative interpretation
of this term as the instanton controlling nucleation of black holes in ‘hot flat
space’.
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In my view the clearest physical way to understand what is going on is to
follow York (1986) in considering a much smaller value of Abox. (An alternative
developed in Brown et al (1990) is to construct a path integral for the micro-
canonical ensemble.) As we have seen, if the box surface lies within the surface
of last stable orbit, the canonical ensemble is well-defined and (for large black
holes) the thermodynamic limit obtains. Interpreting the path integral in this
context and evaluating it to zero order, we get for the Schwarzschild black hole

SH ≡
(
β

d

dβ

)
lnZH(β) =

A
4G

(26)

where A = β2/4π is the horizon area of a Schwarzschild black hole of mass
M = β/8π.

Some observations:

1. Most obviously and most importantly, this is exactly the classical formula
for black hole entropy, for a black hole at the temperature of the ensemble.
The statistical-mechanical calculation agrees with the phenomenological
results exactly.

2. For black holes much more massive than the Planck length, and temper-
atures much lower than the Planck temperature, this entropy is much
larger than the entropy Sflat of flat space. So we are justified in neglect-
ing the Zflat contribution to the entropy, and restricting attention to the
black-hole component of the partition function.

3. The area Abox of the bounding box does not appear in the expression
for entropy. So the microscopic degrees of freedom of the black hole, to
zero-loop order, are localised at the horizon.

I have described these results for the Schwarzschild black hole, but they are
quite general. Evaluating the path integral for black holes that are charged
and/or rotating again recovers SH = A/4. Further, recall (from part I) that
Wald (1993) has used Noether’s theorem to construct an expression for the en-
tropy of black holes in generalisations of the Einstein-Hilbert action to arbitrary
diffeomorphism-covariant actions. For instance (Demers, Lafrance, and Myers
1995) the entropy of a charged, non-rotating black hole under the generalised
action (23) is (neglecting the higher-order terms not shown)

SH =
A
4G
− 8πuθ + 16π(1− 2u)γ (27)

where u = r−/r+ is the ratio of inner to outer event-horizon radius and parametrises
the charge-to-mass ratio of the black hole. As Wald demonstrates, the zero-loop
statistical-mechanical entropy is provably equal to the Noether-charge entropy,
despite their completely different conceptual origin: one as a semiclassical ap-
proximation to a count of states in quantum gravity, the other as a theorem in
differential geometry.
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3.4 Beyond the zero-loop approximation

Just as in the flat-space case, the one-loop term in the expression (25) for the
black hole partition function has a natural interpretation in terms of the gas
of thermal quanta in the black hole’s vicinity — which, for a black hole, is
its thermal atmosphere of Hawking-radiation particles. For a sufficiently large
box (in the microcanonical ensemble, i. e. finessing or ignoring the questions of
convergence discussed above) a large part of the entropy of this gas is just the
entropy of an ordinary hot gas far from the hole, and is not naturally included
in the hole’s own entropy; for this reason it is conventional to normalise black
hole entropy relative to flat-space entropy, so that we subtract off the entropy
of a flat-space gas of quanta in the box.

On this convention, we nonetheless get a large contribution from the one-
loop term. Indeed, naively we get an infinite contribution: quanta can be placed
arbitrarily close to the horizon, and so formally an arbitrarily large amount of
entropy can be stored there. But this is unphysical: according to the effective-
field-theory way of understanding QFTs, some cutoff around the Planck length
needs to be imposed to regularise the theory. For black holes, this corresponds
to assuming that the field-theoretic degrees of freedom exist only outside the
stretched horizon (whereas the degrees of freedom identified by the zero-loop
calculation live at that horizon). Nonetheless, we might naturally expect large,
and cutoff-dependent, additional contributions to the entropy from the one-loop
term, potentially conflicting with the value of the entropy deduced from black
hole thermodynamics. (Small additional contributions, corresponding to the
entropy of ordinary matter a moderate distance from the black hole, might not
be problematic; it is the divergent contribution that threatens BHSM.)

This calculation has been explicitly performed (for a free massive scalar
field on a charged, unrotating black hole background) by Demers, Lafrance, and
Myers (1995). Neglecting the small non-divergent terms, they find a one-loop
correction equal to

∆S =
A
4

B

12π
+

(2− 3u)A

180
. (28)

Here A and B are divergently large constants whose exact value depends on the
scheme used to cut off the matter-field path integral. In Demers et al ’s scheme,
for instance,

A = ln

(
4µ2 +m2

m2

)
+ 2 ln

(
µ2 +m2

3µ2 +m2

)
(29)

where m is the scalar field mass and µ is a mass cutoff: µ ∼ 1/Λ in the notation
of section 3.1. (I show the precise form of A more to demonstrate its complexity
than anything else.) So the entropy of the black hole, to one-loop order, is

S =
A
4

(
1

G
+

B

12π

)
− 8πuθ + 16π(1− 2u)γ +

(2− 3u)A

180
(30)

which seems sharply divergent from the phenomenological prediction (27).
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But recall that the empirically-relevant values of the physical constants
G, θ, γ are not the bare values that appear in the action, but the renormalised
values. To one-loop order, these values are given by

1

Gren
=

1

G
+

B

12π

θren = θ −A/1440π

γren = γ +A/1440π (31)

whereA, B are the divergently large constants mentioned above. If we re-express
the statistical-mechanical value for the entropy in terms of these renormalised
constants, we get

SH =
A

4Gren
− 8πuθren + 16π(1− 2u)γren. (32)

which is exactly the Noether-charge entropy expressed in terms of the renor-
malised coefficients. The only effect of the divergent one-loop terms is to renor-
malise the constants in the action.

I want to stress the non-triviality of this result (which was originally con-
jectured by Susskind and Uglum (1994) ahead of detailed calculations, and has
been reproduced in various other contexts by, e. g. , Solodukhin (1995), Larsen
and Wilczek (1996)). The form of the renormalisation of G, θ and γ follows
from considering perturbations around flat spacetime, and involves no input
from black hole physics. And yet it is exactly the required value to reproduce
the thermodynamic entropy. This is unmysterious if black hole entropy really
does have a statistical-mechanical origin, and if the path-integral approach to
quantum gravity is broadly on the right lines. If not, it is inexplicable.

The non-divergent part of the one-loop factor can also be evaluated explicitly
(see, e. g. , Fursaev (1995, Sen (2013)). It produces corrections to the entropy
of form

∆Sq = C lnM (33)

where C is a dimensionless factor depending on the black hole charge/mass
and angular momentum/mass ratios and on the number of massless particles
(for the Schwarzschild black hole in the absence of matter, for instance, C =
199/45). Since these factors are smaller than the area term in the entropy by a
factor lnM/M — or about 10−36 for astrophysical-scale black holes — they are
negligible in the classical limit; as we will see, though, they provide an important
precision test of quantum gravity.

3.5 Black hole pair creation

Before leaving the low-energy regime, let’s consider one more piece of evi-
dence for the statistical-mechanical interpretation of black hole entropy: the
quantum-mechanical creation of pairs of charged black holes in a strong electric
field. As Schwinger (1951) observed, if an electric field is sufficiently strong the
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particle-free vacuum is unstable against the spontaneous appearance of matter-
antimatter pairs of charged particles: the mass-energy cost of creating them is
lower than the reduction in the energy of the field due to the charged particles’
own fields. Quantitatively, and to zero-loop order (here I follow Carlip (2014,
section 5.8)) the creation rate for charge-e, mass-m particles with N internal
states in a field E is

W ∼ N α2|E|2

π2
exp−em2/|eE|. (34)

(This Schwinger effect lacks direct experimental confirmation because of the
extreme strength of the fields required, but is a prediction of very-well-confirmed
physics.)

If black holes are ordinary statistical-mechanical systems, their rate of cre-
ation through the Schwinger process should exceed the production rate of ordi-
nary particles of the same mass and charge by a factor expSH , where SH is the
black-hole entropy. This calculation can be done explicitly in the semiclassical
approximation within the path-integral approach (the first calculation was by
Garfinkle, Giddings, and Strominger (1994); see Carlip (2014, section 5.8) for
further references). Exactly the expected result is obtained.

4 Full quantum gravity

Low-energy quantum gravity provides a remarkably precise statistical-mechanical
reconstruction of black hole thermodynamics, and in doing so provides strong
support both for BHSM and for its own validity as a low-energy approxima-
tion. Yet it cannot be the whole story, because it is only an effective field
theory; from here on I consider the more speculative realm of finite, cutoff-free
quantum gravity.

4.1 High-energy and low-energy features of black hole en-
tropy

If QMP is correct, then the degrees of freedom counted by black hole entropy are
Planckian-scale: they are localised on a stretched horizon ∼ 1 Planck distance
from the true horizon; they are at Planck-scale redshifts compared to infinity;
their local temperature is Planckian; there is one degree of freedom per Planck
area. So it is perhaps surprising that a low-energy theory of quantum gravity —
effective-field-theory general relativity — should succeed in giving a statistical-
mechanical account of black hole entropy. The surprise can be lessened by
remembering that black hole thermodynamics was derived in the low-energy
regime too, but it is still somewhat mysterious.

The key to the mystery (cf Susskind and Uglum (1994)) is to note that black
hole entropy is S = A/4G, where G is the renormalised gravitational constant,
so that Planck-scale physics shows up in the entropy via the renormalisation
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process. So low-energy physics constrains the functional form of black hole en-
tropy, but its numerical value is determined by Planck-scale physics just as are
the numerical coefficients of effective field theories. From this perspective, it is
perhaps unsurprising that the leading-order term in the path-integral expression
for the partition function is a ‘classical’ term with no straightforward interpre-
tation in terms of quantum degrees of freedom (unlike the one-loop correction,
which has a fairly transparent quantum interpretation).

This does not undermine the support that low-energy quantum gravity pro-
vides for BHSM: the formula for the partition function is derived microphysically
via state counting, after all. But it does mean that any insight into the nature
of the microphysical degrees of freedom of a black hole requires a full quantum
theory of gravity: that is, a finite theory that reduces to effective field theory
in the appropriate regime. So far as I can see it also means that any otherwise-
satisfactory theory of full quantum gravity will automatically reproduce the
black hole entropy formulae (assuming, that is, that BHSM is correct and the
low-energy results are not a bizarre numerical coincidence). So if we possessed
multiple theories of full quantum gravity, we could not use their ability to re-
produce black hole entropy as a method of selecting between them: failure so to
reproduce the entropy would have to mean a more general failure to reproduce
low-energy quantum gravity.

At present, though, we have zero theories of full quantum gravity, at least if
we require (a) that the theory is at least as cleanly-stated and well-understood as
classical general relativity or quantum field theory; (b) that the theory demon-
strably reproduces the low-energy limit. What we have are research programs
which have partially elucidated hoped-for theories for which we lack a fully ex-
plicit statement and understanding. If we were to calculate black hole entropy
(or other features of black-hole thermodynamics) using statistical-mechanical
methods within one such research program and got the ‘wrong’ answer, we could
reach one of two conclusions: either black hole statistical mechanics is false and
there is some non-statistical underpinning for black hole thermodynamics, or
else our research program has not succeeded in identifying a viable quantum
theory of gravity. Conversely, success in reproducing the entropy would provide
(inconclusive) support both for BHSM and for the research program itself. (Not,
to be sure, that the quantum theory of gravity promised by that research pro-
gram is correct, but simply that there is such a theory and that it is empirically
adequate for low-energy physics.)

To keep the scope of this article manageable, I will consider only one quan-
tum theory of gravity: string theory, the locus of the bulk of work both on
quantum gravity in general and on black-hole statistical mechanics in partic-
ular. (For consideration of BHSM from the point of view of other quantum
theories of gravity, see Carlip (2008) and references therein.) String theory is
a large and complex subject, and reasons of space (and, frankly, of my own
expertise) mean that my account will necessarily be somewhat less detailed and
explicit from here on.

17



4.2 A lightning review of string theory

As a starting point for understanding string theory, recall how perturbation
theory works for conventional QFT. There, we consider quantum states that
can be reasonably-well-approximated as excitations around some classical state,
describable by classical fields on a classical spacetime. The excitations are point-
like and can be understood as particles; the bulk (though by no means all) of
the phenomenology of QFT can be understood in terms of those excitations and
their interactions with one another.

In a sense, ‘string theory’ is less a theory, more a hypothesis about the
perturbation theory of quantum gravity. Specifically, string theory makes what
we might call the

Stringy excitation hypothesis (SEH): quantum gravity has states that can
be approximated as classical (as in QFT) but where the spectrum of el-
ementary excitations around those states include extended (stringy) ob-
jects.

A startling amount follows from SEH (here I largely follow Tong (2009)):

1. Because a string can itself be excited in a great many ways, the spectrum
of internal states of the string is very rich, and differently-excited strings
can be considered, on lengthscales large compared to the string length,
as different species of particles. In particular, one excitation of the string
behaves exactly as does the graviton of effective-field-theory general rel-
ativity; another describes a scalar particle, the dilaton. As such, if SEH
holds then pointlike excitations are redundant: all elementary excitations
can be thought of as extended.

2. The finite size of strings means that they naturally regulate the ultravi-
olet infinities of point-particle scattering: string-string scattering theory
appears to be (though has not been rigorously proved to be) finite to all
orders in perturbation theory.

3. Only certain classical states are compatible with the existence of stringy
excitations. In particular, the classical spacetime around which a per-
turbative string theory is built must satisfy the Einstein field equations,
or more precisely, must satisfy an equation which is Einstein’s equation
to first order but has higher-curvature corrections. (And in turn, in the
low-curvature regime we can model the classical metric as built up of
string excitations, just as a classical electromagnetic field can be built up
from quantum excitations of the electromagnetic vacuum.) More gener-
ally, from the interaction structure of the string we can read off the action
of the classical solution, and thereby obtain a low-energy effective field
theory (which must include at least general relativity) from the string
action.

4. Stringy excitations are only possible if the string moves in a quite high
number of dimensions: ten, for the supersymmetric strings generally con-
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sidered in modern string theory. But a lower-dimensional theory can be
obtained by (a) supposing that some of those dimensions are compact;
(b) considering the low-energy regime where excitations of the string in
the compact directions can be neglected. This lets us extract from string
theory a wide variety of low-dimensional effective field theories.

5. Between the large number of different ways to compactify higher-dimensional
space, and the existence of several different versions of stringy excitations,
string theory is capable of underpinning an extremely large number of
lower-dimensional field theories, defined on spacetimes of varying dimen-
sion and containing varying numbers and kinds of fields. This number is
tamed somewhat by the existence of surprising dualities, that allow dif-
ferent kinds of excitations around different backgrounds to be regarded as
redescriptions of one another, but it remains very large.

6. The average value of the background dilaton field acts as a kind of coupling
constant for string-string interactions occurring on that background. As
such, the coupling constant can be thought of as varying from solution
to solution. In particular, string perturbation theory is expected to be
valid in regions where the dilaton field is small; where it is large, string
perturbation theory, and perhaps the very description of quantum gravity
in terms of stringy excitations, becomes untrustworthy.

Because of string theory’s essentially perturbative nature, my statement in the
last section (that string theory is a quantum theory of gravity) is not quite
correct. It is, rather, a tool which, if SEH is correct, allows us to study some
features of quantum gravity in the perturbative regime. To this date, we lack a
fully satisfactory theory which is to string theory as QFT is to the perturbative
scattering theory of particle physics (though AdS/CFT duality, discussed in
section 5, is a partial answer to this problem).

4.3 Extremal black holes in string theory

Prima facie, string methods do not seem well suited to black hole statistical me-
chanics. Perturbative methods work in weakly coupled regimes, and a black hole
— which semiclassically is a region where gravity becomes so strong as to form
an event horizon, and quantum-mechanically is a very-strongly-coupled compos-
ite system — scarcely counts as a ‘weakly-coupled regime’. And in general this
is correct: for most black holes, and in particular for astrophysically-relevant
examples like the Kerr and Schwarzschild solutions, there is no known way to
calculate their statistical-mechanical properties through string-theoretic meth-
ods. However, for certain very special cases — certain sorts of extremal black
holes, rather more progress can be made.

I digress briefly to explain the significance of extremal black holes to BHSM.
A stationary black hole in four spacetime dimensions, classically, is described by
its mass M , its angular momentum J , and its charge Q, but not all values of M ,
J and Q determine a black hole. For sufficiently large values of J and/or Q (for
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a given mass), the Kerr-Newman solution to the Einstein equations describes
not a black hole but a naked singularity: specifically, a black hole is present
only if

J2

M2
+Q2 ≤M2. (35)

So it is normally assumed that only the region in solution space satisfying this
inequality is physical. Points on the edge of this region — points that exactly
saturate the inequality — are called extremal black holes. In higher dimen-
sions, more numbers are required to specify a black hole’s charge and angular
momentum, but the same basic story applies.

If a charged and/or spinning black hole decays via Hawking radiation, that
radiation preferentially includes particles with that sign of charge and angular
momentum; however, depending on the details of the particle spectrum, it is
often the case that Hawking radiation decreases M more quickly than the other
parameters, so that evaporating black holes decay towards extremality. (This
is particularly clear for a strongly charged black hole in our universe: there
are no massless charged particles in the Standard Model, and massive particles
are strongly suppressed in Hawking radiation compared to massless particle,
so Hawking radiation tends to increase |Q/M |.) And as black holes tend to
extremality their surface gravity, and hence their Hawking temperature, ap-
proaches zero, so that a black hole will cool arbitrarily close to extremality but
not beyond it. Extremal black holes thus play the role of ground states in black
hole thermodynamics.

It is a truism of statistical mechanics that systems in their ground state (or
very close to it) are much easier to analyse than systems at a finite temperature,
and so if we are looking for a statistical-mechanical account of black holes, we
might well expect extremal black holes to be a good place to start. And indeed,
for at least a large class of extremal black holes in string theory it is possible to
use a rather remarkable trick, first developed by Strominger and Vafa (1996),
to calculate their statistical-mechanical properties explicitly.

The details of the trick are well beyond the scope of this paper, but the
basic idea is as follows. We can characterise the extremal black hole we are
considering by its charges and angular momentum (there may be several charges,
as we are potentially considering black holes in the presence of multiple long-
range fields). In the weak-coupling regime (where the dilaton field is small)
the lowest-energy state with those charges and angular momentum will be some
composite of strings which string perturbation theory is well suited to describe,
and whose microcanonical entropy (i. e. , the dimension of the lowest-energy
subspace of Hilbert space) can be calculated fairly straightforwardly. As we
turn up the value of the dilaton field, in general we would expect that entropy
to change. But in certain special cases it is a topological invariant whose value
will remain constant under smooth variation of the dilaton field. Eventually we
will have turned it up so much that the system forms a black hole. By now the
perturbative description in terms of stringy excitations is hopelessly unreliable
— but the entropy has remained unchanged. The result can then be compared
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to the thermodynamic entropy; if it does not match, something is badly wrong
either with string theory or with BHSM.

But of course, it does match. Since Strominger and Vafa’s original paper, a
great deal of work has been done to calculate the statistical-mechanical entropy
of extremal black holes, to increasingly high accuracy and in an increasingly
large collection of models, via string theory, and in every case the match to
the entropy calculated by low-energy methods is perfect. I shall not attempt
to summarise this work (see Mandal and Sen (2010) and references therein for
details) but will give one illustrative example.

The example is a charged, rotating black hole in five spacetime dimensions,
obtained by compactifying a certain version of string theory (to be precise, it’s
type-IIB superstring theory compactified on K3×S1). This theory is described,
in low energies, by a five-dimensional action coupling the metric, a scalar dilaton
field, some two-form fields that are analogs of the electromagnetic field, and
a variable number nv of vector fields (the value of nv depends on how the
compactification is carried out). To lowest order the gravitational part of the
action is the Einstein-Hilbert action, but there are higher-order terms. Black
hole solutions, the analogs of the Kerr-Newman solution, exist for this theory
and are parametrised by the mass M , the angular momentum J , and by three
charges that are normally written as Q1, Q5, and N . (They are usually called
BMPV black holes, after Breckenridge, Myers, Peet, and Vafa (1997)). As with
the Kerr-Newman solution, there is an extremal surface in the space of such
solutions beyond which naked singularities form; the extremal black holes have
nonzero entropy but zero temperature, and can be characterised by J,Q1, Q5, N ,
with M given as a function of these.

The area of a BMPV black hole is

A = 8π(Q1Q5N − J2) (36)

and so the entropy to leading order is A/4 = 2π(Q1Q5N − J2). But as we
have seen, this entropy receives corrections from two sources: higher-derivative
corrections, due to higher-order terms in the gravitational action, and quantum
corrections, due to the logarithmic-in-A terms in the entropy of the black hole
thermal atmosphere. The former can be calculated by Wald’s method, the latter
by QFT, and the resulting entropy, to highest sub-leading order in each term
and for sufficiently large rotating black holes, is

S = 2π(Q1Q5N − J2)(1 + 3/2N)− 1

12
(nv − 3) ln(Q1Q5N − J2). (37)

This fairly complicated expression is reproduced, exactly, by string-theoretic
calculations: Strominger and Vafa reproduced the leading-order term in the
nonrotating limit; Breckenridge et al (ibid) extended it to rotating black holes;
Castro and Murthy (2009) worked out the higher-derivative terms; Sen (2011)
worked out the logarithmic term.

(As a point of interest, loop quantum gravity can reproduce the leading-order
terms in the entropy expression for general black holes (i. e. , not just extremal
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ones) but seems to get the sub-leading quantum corrections wrong for at least
the Schwarzschild black hole; see Sen (2013) for discussion.)

4.4 Perturbations of extremal black holes

If a (nonrotating) extremal BMPS black hole absorbs a small amount of un-
charged mass δM , it will be perturbed away from equilibrium and acquire
a temperature. Horowitz and Strominger (1996) calculated the leading-order
change in entropy in this process both via string-theoretic perturbation theory
and via the area definition, δS = δA/4; they match exactly.

More dramatically, Maldacena and Strominger (1997) calculated the emis-
sion spectrum of a close-to-extremal black hole in string theory, using ordinary
statistical-mechanical methods. The result — grey-body factors and all — ex-
actly matches the known emission spectrum of that black hole as calculated in
ordinary QFT on curved spacetime, even while the form of the calculation is
wildly different in the two cases — the first proceeds via statistical mechan-
ics of stringy excitations, the latter by solving the Klein-Gordon equation on a
black-hole spacetime. (Apart from supporting BHSM, this provides fairly strong
evidence that black hole evaporation is a unitary process; see Wallace (2017d,
section 4.1) for further discussion.)

5 AdS/CFT duality

String theory exactly reproduces the statistical-mechanical description of a large
class of extremal and near-extremal black holes, allowing us to derive by statistical-
mechanical methods the highly complicated expressions for black hole entropy
and evaporation rates that can be derived semiclassically via QFT on curved
spacetime, It is pretty difficult to explain this reproduction without accepting
that (a) black hole entropy has a statistical-mechanical origin; (b) string theory
provides an ultraviolet completion of low-energy quantum general relativity in
at least the regimes appropriate to those black holes.

The string-theoretic analysis of extremal black holes was also a major moti-
vation and precursor for the conjectured duality (Maldacena 1998, Gubser, Kle-
banov, and Polyakov 1998, Witten 1998) between quantum gravity on anti-de
Sitter (AdS) space and conformal quantum field theory (CFT) on the boundary
of that space (indeed, in current presentations, the leading-order terms in those
calculations are normally reinterpreted in terms of that duality.) But AdS/CFT
duality provides evidence for BHSM that goes well beyond the extremal case;
in this section I give a brief introduction to AdS/CFT and then consider, in
sequence, the evidence for AdS/CFT itself and the evidence it provides for
BHSM.

For more details on AdS/CFT see review articles by Aharony et al (1999),
Harlow (2016), Hartman (2015), and Kaplan (2016) (my account here is based
on these sources, especially Harlow and Kaplan). For philosophical discussion,
see, e. g. , De Haro, Mayerson, and Butterfield (2016) or Teh (2013).
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5.1 Preamble: a note about boundary conditions

Recall from section 4.1: in this paper, ‘low-energy quantum gravity’ means
general relativity, regarded as an effective field theory and applied only when
the energy scales are far below the Planck scale; ‘full quantum gravity’ is any
finite theory which reduces to low-energy quantum gravity in appropriately lim-
ited regimes. To understand AdS/CFT duality, we also need to consider the
boundary conditions for low-energy quantum gravity. Consider, in particular, a
perturbative regime of low-energy quantum gravity, consisting of perturbations
around some classical solution to the field equations on the manifold Σ × R,
where the slices Σ × {x} are Cauchy surfaces for each x. If Σ is non-compact,
then for the theory to be well-defined we will need to require the perturbations
to satisfy certain boundary conditions (normally requiring the perturbations to
decay faster than some power of spatial distance; the details will not matter
here). This can be reexpressed, and extended beyond the perturbative regime,
by interpreting it as a condition on the metrics which are integrated over in the
path integral. To say that a given sector of low-energy quantum gravity is (e.g.)
defined on ‘asymptotically Minkowski spacetime’ is to say that the path integral
satisfies the boundary conditions obtained by considering perturbations around
some classical solution that is asymptotically Minkowskian. Note that this is
compatible with the path integral being evaluated over solutions of different
interior topologies: it is only a constraint on the boundary, not on the interior.

Boundary conditions are also central to understanding the symmetries of
a quantum-gravity theory. Recall that classical gravity has the full diffeomor-
phism group as symmetries, and that this extends to path-integral quantum
gravity via the invariance of the action in the path integral. We can divide
these diffeomorphisms into three categories:

1. Those which vanish at the boundary. These correspond to pure gauge
redundancy, and act trivially on the Hilbert space of the theory.

2. Those which do not preserve the boundary conditions. These are not
represented as transformations at all on the Hilbert space.

3. Those which preserve the boundary conditions but are non-vanishing.
These correspond to physical transformations on the system (more pre-
cisely: each equivalence class of boundary-preserving diffeomorphisms that
differ by a pure-gauge-redundancy diffeomorphism represents a physical
transformation) and are represented as nontrivial symmetry transforma-
tions on the Hilbert space of the theory. (In the classical limit, they
correspond to ADM energy, momentum and the like for asymptotically-
Minkowskian boundary conditions.)

In some cosmological contexts — in particular, for quantum gravity on a com-
pact spatial manifold — there are no boundary conditions, and all diffeomor-
phisms are pure gauge redundancies. (The ‘problem of time’ has its sharpest
statement in this context, in which it is difficult to write down any gauge-
invariant observables at all.) But for black holes, boundary conditions are
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natural as the hole is normally considered as living in some larger spacetime
and the boundary conditions idealise ways in which it can be embedded into
such a spacetime; in this context, the physical symmetries can be understood as
translating, boosting (etc) the black hole relative to other distant bodies. (See
Wallace (2017c) and Greaves and Wallace (2014) for more discussion on this
point.) For AdS/CFT, the relevant boundary condition is for metrics which
asymptote to n-dimensional anti-de Sitter spacetime, AdSn. This is a max-
imally homogeneous spacetime which solves the Einstein field equations with
negative cosmological constant and no matter.

The discussion so far has concerned only low-energy quantum gravity, but
it is usually assumed (and I will assume it here) that the symmetries of a
completion of low-energy quantum gravity include (at least) the symmetries
of the low-energy theory identified above. (This is in effect to say that in such
theories the diffeomorphism symmetry is not anomalously broken.)

5.2 Stating the AdS/CFT conjecture

In its purest and most general form, the AdS/CFT conjecture can be stated as
follows:

Any full quantum theory of gravity with asymptotically AdSn+2

boundary conditions can be reinterpreted as a conformal quantum
field theory on the boundary Sn ×R of AdSn+2, and vice versa.

To explain ‘reinterpreted as’ in this statement, it helps to conceive of the quan-
tum gravity theory and the CFT as distinct theories and then see how they are
to be identified:

• There is a preferred 1:1 map that identifies the Hilbert spaces of the the-
ories.

• The global symmetries of the CFT are exactly the asymptotic symmetries
of the QG theory, and the generators of symmetry transformations can be
identified. (For n > 1, the symmetry group in both cases is SO(n, 2), for
n = 1, it is an infinite-dimensional group.)

• In particular, the Hamiltonians of the respective theories can be identified,
and hence so can their partition functions, and hence all their equilibrium
thermodynamic properties.

• The field operators of the CFT can be defined as (rescaled) limits of field
operators of the QG theory as their radial coordinate is taken to infinity.
In particular, the limit of the metric tensor of the QG theory is the CFT
stress-energy tensor.

• The generating function of the CFT can be expressed in terms of the
partition function of the QG theory.
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5.3 Clarifying the AdS/CFT conjecture

I now consider three questions each of whose answers (while in each case not
entirely uncontentious) hopefully makes clear just how AdS/CFT duality is
supposed to function and how it fits into our physics more generally.

Duality or emergence? It is natural to think of AdS/CFT correspondence
as a relation between two already-understood theories. But we do not
possess any non-perturbative, finite description of a QG theory, except
via the AdS/CFT correspondence itself. So it is at least a live option to
suppose that the right non-perturbative description of a QG theory just is
the appropriate CFT, and that there is no independent non-perturbative
description. From this perspective we could restate the AdS/CFT con-
jecture as: any conformal field theory on the boundary of AdSn has a
low-energy perturbative regime that can be described by low-energy QG
on AdSn, and conversely, any consistent and finite theory that has such
a low-energy perturbative description is (interpretable as) a CFT on the
boundary of AdSn. (This statement should make clear that the conjecture
remains highly nontrivial on this interpretation.)

Universe or box? The universe we live in is not AdS spacetime, even approx-
imately (in particular, our universe has positive cosmological constant),
and AdS spacetimes are poorly suited for cosmology: they have timelike
boundaries, and so require boundary conditions at all times. For this rea-
son, it is generally better to think of the QG theory on asymptotically AdS
spacetime not as a model for an entire cosmology, but just as a covariant
idealisation for QG in a system confined to a box. The AdS spacetime is
then no more physical than the ‘periodic boundary condition’ boxes used
in elementary QFT.

Specific or general? AdS/CFT duality was first discovered Maldacena (1998)
in the context of string theory, as a duality between type IIB string theory
on AdS5 × S5 and supersymmetric SU(N) gauge theory on the bound-
ary of AdS5 (call this Maldacena duality) and all other concretely known
cases are also string theory/supersymmetric gauge theory dualities. (In
each case the ‘string theory’ is characterised only perturbatively and it
remains possible that the boundary gauge theory is the appropriate non-
perturbative description of the string theory.) But AdS/CFT duality in
general makes sense for, and can be argued for, in any quantum theory of
gravity, and does not rely on particular features of string theory. (See in
particular Kaplan (2016) for a review of AdS/CFT from this perspective.)

5.4 Why accept AdS/CFT?

The AdS/CFT conjecture is a conjecture about the mathematical equivalence
of two classes of theories, and so ‘evidence’ for it is evidence for a mathematical
equivalence, not empirical evidence. Ideally, that ‘evidence’ would consist of
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a rigorous proof of the duality, but at present we lack a completely rigorous
statement of AdS/CFT, let along a proof. There is, however, a great deal of
mathematical evidence falling short of proof, which has convinced the great ma-
jority of the physics community that the conjecture is correct. Some illustrative
examples include:

1. Longstanding arguments due to ’t Hooft (1974) suggest strongly that in
the large-N limit, SU(N) gauge theory behaves like a string theory; con-
versely, Maldacena’s original argument for AdS/CFT duality proceeds in
part through demonstrating explicitly that in a certain limit, the string
theory he considers behaves like a conformal gauge field theory. (The ‘con-
jecture’ is now that these equivalences hold non-perturbatively and away
from the limiting cases.)

2. Given a finite field theory on AdS, we can explicitly construct field opera-
tors on its boundary from the limits of the AdS fields and verify that they
satisfy the conditions for a CFT. If (and only if) the UV-finite field theory
is diffeomorphism-invariant and includes a metric field, the constructed
CFT will have a conserved stress-energy tensor and thus a well-defined
covariant dynamics.

(By physics standards this might seem to constitute a proof of the AdS/CFT
conjecture, at least for the AdS → CFT direction. The fly in the oint-
ment is that all known quantum field theories of gravity are effective field
theories, well-defined only up to some cutoff, and so only partially specify
a CFT. The conjecture is then that any short-distance completion of the
QG theory will be reinterpretable as a completion of the partially-specified
CFT.)

3. Conversely, we can give explicit CFT descriptions of at least some AdS
quantum states: specifically, those corresponding to multiparticle pertur-
bations of the AdS vacuum where the particle density is low compared to
the Planck density. These constructions are valid only perturbatively and
it remains obscure how to give a CFT specification of strongly coupled
states of the interior.

4. Much of the power of the AdS/CFT correspondence is that strong-field
regimes on the AdS side correspond to weak-field regimes on the CFT
side and vice versa, which means that calculations that are easy on one
side are usually intractable on the other. But there are nonetheless many
examples of quantities which can be calculated explicitly both on the AdS
and the CFT sides of the duality and which match exactly — and, just
as importantly, no known cases where these calculations give inconsistent
answers. In one particularly striking example from Maldacena duality
(which I borrow from Conlon (2016, pp.120-122)), a certain quantity —
the anomalous dimension of the ‘Konishi operator’ can be calculated via
perturbation theory on both sides of the duality.
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The calculation has been done to five-loop order both in string theory on
AdS5 × S5 and in the associated conformal field theory in the large-N
limit (Bajnok et al 2010, Balog and Hegedus 2010, Eden et al 2012). The
calculations look completely different but the result, in either case, is

γK(a) = 3a− 3a2 +
21

4
a3 −

(
39

4
− 9

4
ζ(3) +

45

8
ζ(5)

)
a4

+

(
237

16
− 81

16
ζ(3)2 +

27

4
ζ(3)− 135

16
ζ(5) +

945

32
ζ(7)

)
a5 (38)

where ζ is the Riemann zeta function and a is the appropriate coupling
constant. It is hard, to put it mildly, to believe that it is just a coincidence
that this complicated expression is obtained by two completely different
calculational methods in the absence of a duality between the underlying
theories. (I invite a sceptic to discuss terms for a bet on whether the
six-loop calculations, as and when they are done, continue to match!)

Reasons like these seem to give pretty good grounds to provisionally accep
the AdS/CFT conjecture and ask what it tells us about black hole statistical
mechanics and black hole evaporation. And indeed — as we shall see — the
impressive consistency of the story that it tells is itself further reason to take
the correspondence seriously.

5.5 Phase transitions in bulk and boundary

Black holes can exist in AdS space just as in Minkowski space (more carefully:
black holes can have AdS boundary conditions as well as asymptotically-flat
boundary conditions). When their Schwarzschild radius is small compared to
the effective radius of the space, they are pretty much identical to asymptotically
Minkowski black holes, though they differ somewhat at larger sizes. The stan-
dard arguments for black hole thermodynamics (the area theorem, reversible
interactions, Hawking radiation, etc) go across mutatis mutandis and recover
the same formula for entropy as in the Minkowski case: to leading order and
in G = 1 units, the entropy is 1/4 of the horizon area, with corrections due to
higher-order terms in the gravitational Lagrangian.

I mentioned in section 5.2 that AdS space functions as a box, and indeed
the thermodynamics of an AdS black hole is qualitatively the same as for a
Minkowski black hole in a box. Small black holes are thermodynamically unsta-
ble and will radiate away; sufficiently large black holes are thermodynamically
stable, both if the space is taken as isolated and if it is coupled to an external
heat reservoir (though the criterion for ‘sufficiently large’ is more demanding
in the latter case). There is therefore a phase transition — the Hawking-Page
transition (Hawking and Page 1983) — as the energy of the box is increased:
at low energies, the equilibrium state is a gas of gravitons and matter particles
(and strings, if the stringy excitation hypothesis is correct); at high energies, it
is a single large black hole. And the functional dependence of entropy on energy
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has a different, known, form in each phase. At high energies, in particular, the
entropy of an n-dimensional black hole scales as Md−2.

If black hole thermodynamics does have a statistical-mechanical underpin-
ning, then (since the statistical mechanics of bulk and boundary theories are
identical) we should expect to see this phase transition, and this functional
form of the entropy, in the CFT description. And indeed we do. The CFTs
that (seem to) correspond to realistic quantum theories of gravity are non-
Abelian gauge theories, and interpreted that way, the Hawking-Page transi-
tion is a confinement-deconfinement transition. At high energies, non-Abelian
gauge theories can be approximated as free-field theories, and so the high-energy
regime can be treated as a radiation gas, with S ∝ Md−2 just as in the bulk
description. At low energies, color confinement shifts the gauge theory into
a regime of strongly coupled color singlets. In general, the complexity of the
theory in this strong-coupling regime makes it impossible to calculate the quan-
titative details of this phase transition, but the qualititative picture is fairly
well understood (see in particular Aharony et al (2004)) and matches the bulk
description very accurately.

5.6 Quantitative results from AdS3/CFT2

In some cases, we can do better than simply reproducing the qualitative fea-
tures of black hole thermodynamics. Quantum gravity on AdS3 is dual to a
two-dimensional conformal field theory, and the latter is fairly well understood
(partly because the conformal group in two dimensions is much larger than in
three or more dimensions and so constrains the theory more sharply). In par-
ticular, 2-dimensional CFTs can be characterised by their central charge c (a
parameter which inter alia parametrises the way in which the representation
of the 2D conformal group in the CFT is a projective representation) and the
celebrated Cardy formula (Cardy 1986) gives the partition function of a general
2D CFT on a circle of unit radius, in the high-temperature limit, as a function
of c:

Z(β) = eπ
2c/3β . (39)

(See Harlow (2016, section 6.4) for more details.) Since the central charge just
depends on the theory’s symmetry structure, it can be calculated on the AdS
side; if the result is plugged into the Cardy formula and the entropy calculated,
the partition function of the CFT is precisely what the partition function of the
quantum-gravity theory would have to be if the thermodynamic description of
the black hole had a statistical-mechanical basis; in particular, the Bekenstein-
Hawking entropy formula is recovered exactly. This would again be an inexpli-
cable coincidence unless (a) there really is a duality between quantum gravity on
AdS3 and some CFT on its boundary, and (b) black holes really are statistical-
mechanical systems. (Furthermore, the temperature below which the Cardy
formula fails matches the temperature of the Hawking/Page phase transition,
although it cannot be calculated precisely with present methods.)

These results can be extended. A large class of extremal black holes (even in

28



asymptotically-Minkowski space) can be approximated, close to their horizon,
by AdS×K for some compact K. Applying the correspondence to this region,
we can again recover the central charge, plug it into the Cardy formula, and
compare the result to the black hole’s thermodynamic entropy; in each case, the
match is exact. (Indeed, the Strominger-Vafa calculations in string theory can
be reinterpreted via the AdS/CFT correspondence as proceeding in this way,
as observed by Strominger (1998).) This description even gives some (rather
heuristic) insight as to the nature of the microscopic degrees of freedom counted
by black hole entropy: they live in a conformal field theory at the ‘boundary’ of
the near-horizon region, i. e. on the stretched horizon, in support of QMP. Other
aspects of sections 4.3–4.4’s discussion can also be reinterpreted via AdS/CFT,
in particular the Maldacena-Strominger results on decay rates of near-extremal
black holes; see Hartman (2015, sections 12-13) for further discussion.

The ‘large class of extremal black holes’ discussed above does not include
physically realistic black holes in our universe. However, the Kerr/CFT cor-
respondence (Guica et al 2009) appears to extend the basic idea (a duality
between the near-horizon region of an extremal black hole and a conformal field
theory on the boundary of that region) to extremal Kerr black holes in four
dimensions. The mathematical and physical basis of this extended correspon-
dence is distinctly less clear than conventional AdS/CFT, but calculations have
again achieved precise quantitative agreement with the thermodynamic proper-
ties of these black holes as calculated semiclassically (cf Bredberg et al (2011)
and references therein). Since there are astrophysical black holes that can be
approximated pretty well as extremal Kerr black holes, this is tantalisingly close
to reproducing the statistical mechanics of directly-observed black holes. Fur-
thermore, there is calculational evidence that the Kerr/CFT correspondence
extends to non-extremal Kerr black holes — that is, to basically all astrophys-
ical black holes! — although the conceptual basis of this extension is far from
clear. The Kerr/CFT correspondence is cutting-edge theoretical physics and
it would be premature to review it further in an article of this kind, but it is
clearly an exciting development. (For an introduction, see Bredberg et al, ibid ;
for a detailed and up-to-date review, see Compere (2017).)

6 Conclusions

In practice, the hard acid that dissolves scepticism is the ability to
calculate.

Joseph Conlon, Why String Theory? 2

Black hole entropy can be calculated:

1. In differential geometry, through the First Law of Black Hole thermody-
namics (in Wald’s extended form);

2Conlon (2016, p.6)
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2. To one-loop order in low-energy quantum gravity, through the path inte-
gral formalism;

3. In string theory, for a large class of extremal black holes;

4. Via the AdS/CFT correspondence, qualitatively in the general case and
quantitatively in a number of cases.

Whenever the calculation is done by two or more methods, exact agreement is
obtained, including in many cases not merely the functional form (‘entropy is
proportional to area’) or the leading-order result (‘entropy=area/4’), but the
complicated, detailed subleading-order corrections to the area formula.

It is logically possible that this is all a trick of the light. Nothing I have
discussed here makes it impossible that low-energy quantum gravity is hopelessly
ill-defined or has nothing to do with semiclassical physics; that no theory of
quantum gravity satisfies the stringy excitation hypothesis; that the AdS/CFT
conjecture is false; that black hole thermodynamics has no statistical-mechanical
underpinning.

But ‘logically possible’ is not the same as ‘remotely plausible’. It is not
remotely plausible that all of this is a massive coincidence. And while it can-
not be ruled out logically that there is some baroque alternative explanation,
overwhelmingly the most natural explanation is: black hole thermodynamics is
underpinned by statistical mechanics just like any other thermodynamics; gen-
eral relativity can be analysed by QFT at low energies just like any other field
theory, and its quantum statistical mechanics thus reproduces black hole en-
tropy; at least some consistent high-energy completion of effective-field-theory
gravity satisfies the stringy excitation hypothesis, and so string theory likewise
reproduces the statistical-mechanical results; the AdS/CFT conjecture is true,
so that black hole statistical mechanics is dual to the statistical mechanics of a
conformal field theory in at least some important cases.

Philosophers of science distinguish between the context of discovery where
theories are invented, and the context of justification where they are tested.
Quantum gravity remains firmly in the context of discovery: we are a long way
from a cleanly-formulated theory which reproduces all the predictions of sub-
Planck-level physics, and even further from one which makes novel and testable
predictions that transcend the low-energy regime. So any arguments in this
field are necessarily somewhat tentative. But as tentative hypotheses go, the
hypothesis that black holes are statistical-mechanical systems seems as solid as
any other result we have in quantum gravity, and more solid than most.

And this leads to a notorious paradox. If black holes are ordinary statistical-
mechanical systems obeying unitary quantum mechanics, that strongly suggests
that their radiation and eventual evaporation likewise has a fully unitary descrip-
tion. But the calculations of Hawking radiation in QFT — the very calculations
which got the field of black hole thermodynamics and statistical mechanics off
the ground — describe a radiative process that appears strongly non-unitary. I
discuss the conceptual structue this information loss paradox, within the frame-
work for BHSM developed above, in Wallace (2017d).
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