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Highlights 

 A display name acquisition framework across social networks is presented. 

 The display names of a user contain the abundant information redundancies. 

 The information redundancies of display names are time-independent. 

 The display names are of great benefit to user identification across social sites. 
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Abstract:  

The display names from an individual across Online Social Networks (OSNs) always 

contain abundant information redundancies because most users tend to use one main 

name or similar names across OSNs to make them easier to remember or to build their 

online reputation. These information redundancies are of great benefit to information 

fusion across OSNs. In this paper, we aim to measure these information redundancies 

between different display names of the same individual. Based on the cross-site 

linking function of Foursquare, we first develop a distributed crawler to extract the 

display names that individuals used in Facebook, Twitter and Foursquare, respectively. 

We construct three display name datasets across three OSNs, and measure the 

information redundancies in three ways: length similarity, character similarity and 

letter distribution similarity. We also analyze the evolution of redundant information 

over time. Finally, we apply the measurement results to the user identification across 

OSNs. We find that 1) more than 45% of users tend to use the same display name 

across OSNs; 2) the display names of the same individual for different OSNs show 

high similarity; 3) the information redundancies of display names are 

time-independent; 4) the AUC values of user identification results only based on 

display names are more than 0.9 on three datasets. 

Keywords: online social network; information redundancies; display name; 

measurement and analysis 

1. Introduction 

Nowadays, online social networks (OSN), such as Facebook, Foursquare and Twitter, 

have been very popular communication tools in our daily life. We almost daily share 

our ideas, photos, reviews, and get the latest news on these sites. According to the 

statics
 
report [4], until April 2017, there are 1,968 million active users on Facebook, 

319 million active users on Twitter, 600 million active accounts on Instagram. There 

are also more than 50 million users on Foursquare [2]. However, no one social 

network is universal. The functionality of different popular social networks varies 
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differently, so an individual often joins various social networks for different purposes. 

Liu et al. [23] found that an individual joined 3.99 social networks on average. 

 The personal information on a single site is often incomplete. If we integrate 

these sites, a better profile of a user can be built. The information redundancies are of 

great benefit to information fusion across OSNs. In this paper, we mainly measure the 

information redundancies between the display names, which come from different 

social networks but belong to the same individual. To make our display names easier 

to remember[34] or to build our online reputation, we often has consistent behavior 

when selecting our display names on different social networks, which brings 

redundant information between our different display names, such as our commonly 

used strings, career or educational experiences etc. For instance, a user, whose display 

name is „San Francisco Dad‟ on Twitter, has display name „Bay Area Dad‟ on 

Foursquare, which both reflect his role in family as well as his location.  

 The existing works about redundant information mainly focus on username, 

which is different from display name. Vosecky et al.
 
[32] analyzed two users‟ 

similarity based on their profile information, including the similarity of two 

usernames based on the vector-based name matching algorithm. Perito et al.
 
[30]

 

estimated uniqueness of usernames by the entropy. Iofciu et al. [15] summarized the 

methods used for comparing two usernames, such as edit distance, Jaccard similarity, 

and the longest common subsequence. Liu
 

et al. [22] analyzed usernames 

characteristic including length, special character, numeric character, character input 

mode, character combine, English character similarity etc. Zafarani et al. [34] 

proposed presented a MOBIUS method to analyze the usernames that belong to the 

same individual. 

 However, the usernames are not always alphanumeric string in social networks, 

such as Foursquare and QQ
1
, the username is a numeric string and assigned by the site. 

In this situation, it has little information redundancies between the usernames. On the 

other hand, the user‟s display name, which is set by the user, is often alphanumeric 

string and also is obtained easily. The display names an individual selects for different 

OSN sites often also have redundant information, therefore we focus on the 

measurement and analysis on the display names across social networks. We make the 

following four main contributions. 

 Display Name Acquisition Framework on Cross-OSNs. Based on our previous 

work in display name [19, 20], we first adopt three real social network datasets for our 

measurement and analysis. Based on the cross-site linking function of Foursquare, we 

developed a distributed crawler to extract the display names individuals selected for 

Facebook, Twitter and Foursquare, respectively. In addition, we sampled a fraction of 

Foursquare users that are registered at different time instead of at random. It is helpful 

for evolution analysis. This is the foundation of measurement and analysis on display 

name. 

 Display Name Overview on Single OSN. We evaluate the size of dataset we 

obtained from each social network, and give an overview on three datasets, including 

                                                             
1
 QQ is a very popular instant messenger in China. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ratio of duplicate display names, length distribution, letter distribution, specific 

character distribution, numeric character distribution and percentage of the same 

display name, etc. Our observation indicates that 1) the duplication of display name is 

rare in social network, with the highest probability of 0.0045 that name appearing 

more than once. 2) The display name on different networks is completely accordant 

with the naming rules in length, specific and numeric character distribution. 3) The 

letter distribution of an individual display name is similar with his real name. 4) More 

than 45% of users tend to use the same display name across different social networks. 

 Display Name Attribute Analysis. We measure the display names‟ redundant 

information in three ways: the length similarity, the character similarity and the letter 

distribution similarity. We find that 1) there is no obvious difference between the 

display name lengths of the same individual. 2) The character similarity between a 

user‟s display names is very high. For example, for more than 76% of users, 

excluding those users who select the completely same display name, the length of 

longest common subsequence between his display names is more than half of the 

shortest length of his display names. 3) The letter distribution of display names is very 

similar. It should be mentioned that our measurements only consider the positive 

instances that two names are different.  

 Display Name Evolution over Time. We divide our real data into nine datasets 

based on the chronological order of registration, and demonstrate whether our 

measured display name attributes are relevant with the user registration time. Except 

in a period of time when Foursquare changed its privacy policy, the display name 

attributes are time-independent. These findings provide insights into individual 

identification across social networks.  

The structure of this paper is as follows. In Section 2, we present the related 

works. We describe the data acquisition process and then give an overview on our 

obtained datasets in Section 3. We detail the measurement on the display name in 

Section 4 and analyze data consistency as time evolution in Section 5. The cross-name 

discovery is presented in Section 6 and we apply the measurement results into user 

identification in Section 7. Finally we conclude this paper in Section 8.  

2. Related works 

Over the past few years, researchers have studied many of the properties of various 

online social networks. Li et al. [21] measured the similarity of User Generated 

Content across Facebook, Twitter and Foursquare. Motoyama et al. [26] proposed a 

method for matching individuals based on user‟s profiles on Facebook and Myspace. 

Wang et al. [33] analyzed user activities across Facebook, Twitter, and Foursquare. 

Chen et al. [9] presented a holistic measurement on Foursquare based on its cross-site 

linking function. Ottoni et al. [29] studied the user behavior on Twitter and Pinterest, 

and found that the global patterns of use across the two sites differ significantly. These 

existing works give us a good view on cross-sites analysis. 

In this paper, we mainly measure display names across social networks. There are 

several similarity algorithms related to our works, such as Jaro distance [31][12] 

[16][10], Jaro-Winkler [24][8][18] [10] and TF-IDF algorithm [24][18][10], which are 
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always employed to compute the similarity of two usernames. Buccafurri et al. [8] 

also used Levenshtein, QGrams, Monge-Elkan and Soundex algorithm to compute the 

similarity of two usernames. Zafarani et al. [34] utilized Longest Common Substring, 

edit distance, Dynamic Time Warping distance, Jensen-Shannon divergence and 

n-gram algorithm etc. to compare usernames similarity. Liu et al. [22] proposed a 

similarity algorithm based on the Longest Common Substring. Jain et al. [16] adopted 

Cosine similarity to measure the similarity of two tweets. Hussain et al. [14] also 

introduced Cosine similarity into medications to identify and correct the misspelled 

drugs‟ names. A display name could be considered as a short string. We make some 

improvements based on the above basic algorithm for calculating the similarity of two 

display names. 

3. Data Collection and Overview 

3.1 Collection method 

To obtain the users‟ display names, we first need to know the social network sites that 

users have joined. There are several ways to obtain personal information across social 

networks, such as questionnaire survey, leaked data and web crawler. Liu et al. [23] 

conducted a survey and asked users to provide their information across social 

networks. Liu et al. [22] used the information disclosed in 2011. Zafarani et al. [34]
 

collected data by the account URL that users revealed on Google+, blog, forum, etc. 

However, the data obtained by questionnaire and disclosure is limited and costly. 

Currently, some social network sites support the cross-site linking function, which 

allows a user to link his accounts to other social network site, such as Foursquare, 

Google+, Pinterest. We choose Foursquare to obtain the user information because of 

its great popularity and unique numerical user ID. This ID is assigned in an ascending 

order. If we know the ID of a user, we can access his profile page with URL 

https://foursquare.com/user/ID.  

Fig.1 shows the public profile pages of two users on Foursquare. We can see their 

display names and cross-site links. One links his Twitter account, and the other links 

both Facebook account and Twitter account. These account links are user-authorized 

and have extremely high reliability. Based on this cross-site linking function, we 

could obtain an individual‟s display names on Foursquare, Facebook and Twitter, 

respectively.  

   

Fig.1 Two Foursquare user‟s public profile pages 

 Fig.2 illustrates our basic framework for data collection. We obtain the display 

names in three steps: 1) access a user‟s Foursquare profile page with the given ID via 

https://Foursquare.com/user/ID; 2) parse the obtained profile page to get the user‟s 

Foursquare display name, as well as Twitter link and Facebook link if this user has 
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revealed them publicly; 3) extract his corresponding display names on Facebook and 

Twitter by API, respectively. Finally we get three display names that this user selects 

for Foursquare, Facebook and Twitter, respectively.  

To access the Foursquare users‟ profile pages, we first need a number of 

Foursquare user IDs. Unlike Wang et al. [33] sampling a fraction of Foursquare IDs at 

random, we get a fraction of IDs in segmentation. To measure the display name 

evolution over time, we obtain the real data in two stages. In the first stage, we access 

the profile pages corresponding to the first 100,000 IDs. In the second stage, we 

extend the scale of user‟s IDs to1.3 million. To solve the limitation of request number 

from the same IP, we develop a distributed crawler, in which each sub-crawler is 

responsible for crawling a part of IDs. In total, 1.3 million Foursquare IDs are crawled 

during April and May in 2016 [19, 20]. 

User 
Foursquare ID

User Twitter URL

User Facebook URL

User Twitter 
Name

User Facebook 
Name

User Foursquare Name

D
a

ta
Se

t

Facebook API

Crawler

User Foursquare 
Profile

Parser

 

Fig.2 Data collection framework 

 The sizes of the real datasets we obtained are shown in Table 1. Overall, we 

successfully obtained 597,822 display names on Foursquare among 1.3 million IDs. 

The actual obtained ratio is only about 46%. This is mainly due to users‟ deactivated 

pages or privacy protection pages.  

Table 1. Display name collection statistics 

 Planed Obtained 

Foursquare 1,300,000 597,822 

Facebook 327,609 288,480 

Twitter 113,951 102,315 

Facebook-Twitter - 67,826 

As shown in Table 1, we actually obtain 102,315 display names on Twitter and 

288,480 display names on Facebook, respectively. The number of users, who have 
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revealed both Facebook and Twitter URLs, is 67,826. Specifically, we find that 54.80% 

of users have disclosed their Facebook URLs, and only 19.06% of users exposed their 

Twitter URLs. The former disclosed ratio is nearly three times of the latter [20]. We 

take a further analysis and find it is mainly caused by their popularity. The former 

number of active users is 5.47 times as the latter.  

3.2 Data overview 

 The dataset consisting of the display names obtained from Facebook is denoted 

by FB. Based on the same method, we could get the dataset TW and dataset FS. We 

first give an overview of the display names on three datasets.  

 Duplication of Display Name Unlike the username, the display name is not 

necessarily unique in social network. It is possible that one display name belongs to 

multiple different users. We count the appeared times of every display name on three 

datasets, respectively, and show the CCDF of appeared times in Fig.3. 

 
Fig.3. CCDF of display name appeared times 

From Fig.3, we can see that all three probabilities of appeared times more than 1 

are less than 0.045. In other words, the duplication of name is rare in social network. 

The probability of appeared times more than 1 in FS dataset reaches the biggest value 

with 0.045. In TW dataset and FB dataset, the probabilities are about 0.025 and 0.016, 

respectively. From Table 1, we can see the size of the FS dataset is much larger than 

the sizes of the other two datasets, so the probability of duplication of name in FS 

dataset is relatively higher. We also further analyze the users‟ naming habit, and find 

the individuals prefer to select their real names or similar names as their display 

names in Facebook, but they are relatively free to choose a display name for Twitter. 

Some commonly used display names appear frequently in TW dataset, so the 

probability of duplication of name in TW dataset is slightly higher than in FB dataset. 

Length Distribution We all know that different social networks have different 

rules on the length of display names. Is there significant difference in the length of the 

display names? By computing the length of display names on each social network, we 

show their length distribution in Fig.4. 
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The length distribution of display name is quite similar. On three social networks, 

the lengths of display names are concentrated from 10 to 16. On Facebook, 

Foursquare and Twitter, the percentages of length distribution in this interval are 

51.3%, 70.9%, 60.78%, respectively. From Fig.4, we can see 1) the distribution on 

Twitter is more uniform, its maximum length is just 20. 2) On Facebook, the display 

names less than 6 in length are rare. Its distribution shape just likes a peak, the left 

side is steep, and the right is gentle. 3) On Foursquare, the distribution exhibits an 

obvious peak.  

  

Fig.4. Length distribution of display name on three datasets 

We display the detailed length information in Table 2. The average length of 

display names on Facebook is the largest, and the maximum length of display names 

on Facebook is much larger than on Twitter. This is just because Twitter has limitation 

on the maximum length (20) of display name, while Facebook and Foursquare do not 

have. 

Table 2. Display Name Length Statistics 

 Avg. Length  Min. Length Max. Length 

FB 14.54 2 70 

FS 12.93 1 111 

TW 11.68 1 20 

 

 Letter Distribution To compare the letter distribution of display names on 

different sites, we calculate the frequency of each letter in display names, and 

compare the obtained display names with the commonly used names in life. These 

real names are collected from the data hall [1] and named as common dataset. 

Fig.5 presents the percentages of 26 letters on FB, FS, TW, and common datasets, 

respectively. Letters „e‟ and „l‟ appear more frequently in common dataset, and the 
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percentages of other letters on four datasets are very similar. The higher percentages 

are followed by „a‟,‟e‟,‟n‟,‟i‟,‟r‟,‟o‟,‟l‟,‟s‟,‟t‟, and ‟m‟, accounting for about 70.4%, 

71.21%, 65.63%, 75.67% of all characters on FB, FS, TW, common datasets 

respectively. We observe that the letter distribution of display names in three social 

networks is similar to in real life, and the letter distribution on FB, FS, and TW are 

almost completely consistent [20].  

 

Fig.5. Letter Distribution Comparison with Real Names 

 Special Character Distribution Different from names in real life, the display 

names on social networks often contain special characters. We compute the 

percentage of each special character. As shown in Fig.6, we find that the special 

characters used in Twitter display names are more massive and diverse than in other 

two networks. In the Twitter, some special characters, including „.‟, „-„, „_‟, „'‟, „!‟, „(„, 

„)‟, „#‟, „*‟, „,‟, ‟:‟ and „@‟ etc., appear frequently. Their frequency accounts for 0.94% 

of all characters. In the Foursquare, the proportion of special characters only accounts 

for 0.41%. These characters mainly include ‟.‟, „-„, „?‟, „'‟, „_‟, „&‟, „@‟, „)‟ and „,‟. In 

the Facebook, there are only three characters emerged, ‟-„, „.‟, and ‟‟‟, accounting for 

0.29%. This is consistent with the naming rule on the corresponding site. Facebook 

only allows users to use the three special characters '-', '.', and ''' in their display names, 

while Twitter and Foursquare have no restrictions on the use of special characters.  
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Fig.6. Special Character Distribution Comparison among Different Datasets 

The Twitter and the Foursquare allow users to use any character. Therefore, 

except the character mentioned above, the display name also contain many unreadable 

characters. For example the display names “Donny (σ`▽´)-σ” and “✩✩ Dav 

Yaginuma ✩✩” are legal in the Twitter and Foursquare, but illegal in the Facebook. 

Therefore, it would be better to neglect these unreadable characters when comparing 

display names on Twitter and Facebook, or on Foursquare and Facebook. 

 Numeric Character Distribution In addition, we also count the numeric 

character distribution in all display names, the results are shown in Fig.7. We find that 

1) there are no numeric character in Facebook display names, because the site 

prohibits the numbers from appearing in display name. 2) The Twitter display names 

have higher rate than the Foursquare display names. 3) The most frequency numeric is 

“0”, “1” and “2” both in the Twitter and Foursquare display names.  

 Although some online social networks allow users to use numbers and special 

characters in display name, the users still rarely use them in their display names with 

the using rate less than 1%. 

 

Fig.7. Numeric Character Distribution Comparison among different datasets 

 Ratio of Same Display Name We combine two display names that the same 

individual uses in two different sites as a pair and construct three datasets. These 

datasets are denoted by FB-TW, FS-TW, and FB-FS, respectively.  

 

Fig.8. Ratio of Same Name on Different Datasets 

Some individuals usually use the same name in multiple social networks to avoid 

memory trouble. It is also a good way for us to maintain our personal image on the 
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Web. We calculate the percentages of the same display names in three datasets, 

respectively. We ignore the letter case when we count the same display names. The 

results are illustrated in Fig.8. The percentages on FB-TW, FS-TW, and FB-FS are 

47.84%, 45.84%, 63.68%, respectively. Liu et al [23] have found that 59% of 

individuals prefer to use the same username. For display name, we reach the similar 

conclusion that more than 45% individuals prefer to use the same display name across 

the social networks [20]. 

From the overview of the obtained data, we can conclude that the display names 

are closely related to the social network‟s naming rule. The character distribution of 

the display names is similar with the real names and more than 45% of users usually 

use the same display name in several social network sites [20]. 

4. Data analysis 

 The display name is a literal sign or mark which is used for identifying an 

individual on an OSN site and is not necessarily unique. In order to make their own 

display names easy to be identified, most users choose some unique letters as part of 

their display names, such as their nicknames, hobbies, favorite words or numbers etc. 

An application [6] that aims to help a user generate his Twitter display name, just 

imitates his psychological characteristics when he is selecting his display name. Thus, 

the display names an individual selects for different social network sites might contain 

some redundant information. In this section, we further measure and analyze the 

redundant information in three ways, including length similarity, character similarity 

and letter distribution similarity.  

We conduct the display name analysis on datasets FB-TW, FB-FS and FS-TW, 

respectively. To make our analysis more reliable and convincing, we construct three 

negative datasets named negFB-TW, negFB-FS and negFS-TW. For negFB-TW, we 

take display names of one FB and one TW account of different users to build 80% 

negative instances. For the rest 20%, we take display name pairs which share either 

surname or given name. We employ the similar method to generate the negative 

instances in FB-FS and FS-TW. 

4.1 Length Similarity 

Based on our previous works [19, 20], we conduct a detailed measurement and 

analysis on the length difference and length ratio of the display names. 

 Length difference We assume that name1 and name2 are two display names of an 

individual. The length difference of name1 and name2 is expressed by Eq. (1). The 

results are shown in Fig.9 (a).  

Δ𝐿𝑒𝑛𝑛𝑎𝑚𝑒 = 𝑎𝑏𝑠⁡(𝑙𝑒𝑛(𝑛𝑎𝑚𝑒1) − 𝑙𝑒𝑛(𝑛𝑎𝑚𝑒2)) (1) 

From Fig.9(a), we can see that most display name pairs has length difference  

less than 20. More than 90% of the negative instances have length difference larger 

than 0, while less than 50% of the positive instance with value larger than 0. This is 

mainly due to the fact that more than 45% individuals use the same display names on 

different social networks [20]. For further observation, we remove these positive 

instances which two display names are completely same, and repeat the above 
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measurement. The results are shown in Fig.9(b). 

Fig.9(b) show that the CCDF curves based on positive and negative datasets are 

very close, and the curves of positive datasets are just slightly higher than negative 

datasets. That is to say, regardless of the same display name pairs, the same user‟s 

display name length difference is slightly larger than two random users‟ in general. 

Besides, the curves on FB-TW, FB-FS, FS-TW are almost completely coincide. This 

means the length difference have no significant correlation with the social networks. 

 

   

(a) with same name-pairs                 (b) without same name-pairs 

Fig.9. The length difference distribution of the display names 

 Length ratio Length ratio is the ratio of the length of short display name to the 

length of long display name and is expressed by Eq.(2). The length ratio ranges from 

0 to 1.  

𝑅𝑎𝑡𝑖𝑜𝑙𝑒𝑛 =
min⁡(𝑙𝑒𝑛(𝑛𝑎𝑚𝑒1), 𝑙𝑒𝑛(𝑛𝑎𝑚𝑒2))

max⁡(𝑙𝑒𝑛(𝑛𝑎𝑚𝑒1), 𝑙𝑒𝑛(𝑛𝑎𝑚𝑒2))
 (2) 

The smaller is the length ratio, the larger is the length difference. The value of 1 

indicates these two display names have the same length. 

 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.10. Distribution of Name Length Ratio on three Datasets 

 We remove the same display name pairs from our datasets, and calculate the 

length ratio on FB-TW, FB-FS, FS-TW and the corresponding negative datasets. We 

divide the value space of length ratio into 11 slots, [0-0.1), [0.1-0.2), ... , [0.9-1.0),1.0. 

The results of percentage on each slot are illustrated in Fig.10. We can see the length 

ratio distribution is similar between the positive instances and the negative instances, 

centering from 0.5 to 0.8. On FB-FS, 83.65% of the instances‟ length ratio is over 0.5. 
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On negFB-FS, there also have 79.09% cases which length ratios are over 0.5. The 

similar patterns can be found on the other four datasets. We can easily reach the 

conclusion that length ratio of the positive instance has no significant difference with 

the length ratio of the negative instance.  

4.2 Character Similarity 

 Two display names from different social networks are two special strings. Each 

string is composed of 1-3 words. Thus, we can combine the characteristics of string 

and name to measure the character similarity. In this subsection, we present five 

attributes based on the longest common substrings, the longest common subsequences, 

and edit distance. 

 Length of LCS/Short Length The longest common substring problem [25] is to 

find the longest string that is a substring of two strings. It is a good metric to measure 

the similarity of two different strings. We define this metric as the ratio of the length 

of the longest common string to the minimum length between two strings. Its value 

ranges from 0 to 1. The greater the value is, the more similar two display names are. 

Assume two display names are name1 and name2, respectively. This metric is 

expressed by Eq. (3). 

𝑆𝑖𝑚𝑙𝑐𝑠 =
𝑙𝑒𝑛(𝑙𝑐𝑠(𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2))

min⁡(𝑙𝑒𝑛(𝑛𝑎𝑚𝑒1), 𝑙𝑒𝑛(𝑛𝑎𝑚𝑒2))
 (3) 

For example, name1 is “JingLee”, name2 is “j1nglee”.  We first convert two 

names to lower case, respectively. The longest common substring of two names is 

“nglee”, and its length is 5. The minimum length of two names is 7. The metric Simlcs 

is 0.7143 (= 5/7). Zafarani
 
[34] and Iofciu [15] also use the longest common substring 

when calculating the similarity of usernames. However they used the average length 

of usernames to standardize the LCS. 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.11. Distribution of Sim𝑙𝑐𝑠 on three Datasets 

Similar to the length ratio, we divide the value space of Simlcs into 11 slots. Based 

on Eq.(3), we calculate Simlcs of every pair of display names on three positive datasets 

and the corresponding negative datasets, respectively. The distributions of Simlcs are 

illustrated in Fig.11. The left side is the negative instance and right side is the positive 

instance. Generally, the Simlcs values of the negative instances are concentrated at 

range [0, 0.2], and its proportion is larger than 91%. However, the values of the 

positive instances are distributed in each slot, and most positive instances are located 
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in [0.5, 1], with the proportions more than 64%, 64%, 74% on three datasets, 

respectively. By contrast, there are only less than 2% negative instances whose Simlcs 

values are larger than 0.5. In other words, the Simlcs value of the positive instances in 

most cases is bigger than the value of the negative instance. In FB-FS and FS-TW, 

there are over 26% instances whose Simlcs values are 1.0 and over 20% instances on 

the FB-FS. However, on the negative datasets, there is no instance whose Simlcs value 

is equal to 1.0. Thus, it is clear that the users have their own fixed naming habit, 

rather than completely random selecting. 

 Length of LCSequence/Short Length The longest common subsequence 

problem [13] is to find the longest subsequence common to two sequences, also can 

be used for measuring the similarity  between two strings. Unlike the longest 

common substring, the longest common subsequence is not required to occupy 

consecutive positions within the original sequences. Take <”Jeffrey Donenfeld”, 

“Jeffzilla Don”> for instance. Its longest common subsequence is 'Jeff Don', while its 

longest common substring is „Jeff‟. Similar to the metric Simlcs, we measure and 

analyze the ratio of the longest common subsequence length to the minimum name 

length, and this metric is expressed by Eq.(4). 

𝑆𝑖𝑚𝑙𝑐𝑠𝑒𝑞 =
𝑙𝑒𝑛(𝑙𝑐𝑠𝑒𝑞(𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2))

min⁡(𝑙𝑒𝑛(𝑛𝑎𝑚𝑒1), 𝑙𝑒𝑛(𝑛𝑎𝑚𝑒2))
 (4) 

The measurement results are shown in Fig.12. We easily see that the values of 97% 

of negative instances are under 0.5. However, it is a very common case that the value 

of positive instance is greater than 0.5 on three datasets, accounting for more than 77% 

on FB-TW, 76% on FS-TW and 87% on FB-FS, respectively.  

We make a further analysis on the positive instances. The percentages of positive 

instances with Simlcseq value 1.0 are 40% on FB-TW, 45% on FS-TW, 52% on FB-FS, 

respectively, but the corresponding percentages on metric Simlcs are 26%, 28% and 

20%, respectively. The gaps of two metrics are all greater than 14% on three datasets. 

This is mainly because many users would like to form a new display name by 

abbreviating their display names currently used. From the above analysis, we easily 

reach a conclusion that the metric Simlcseq is very helpful to determine whether two 

display names belong to the same individual or not. 

 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.12. Distribution of Sim𝑙𝑐𝑠𝑒𝑞 on three Datasets 

 No. of common words /No. of short name words The difference between name 

and ordinary string is that name can be divided into first name, last name or even 
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middle name. Assume two display names are name1 and name2, respectively. Each 

name contains several words. We consider the number of the common words between 

two names, and is expressed by Eq.(5).  

𝑆𝑖𝑚𝑤𝑜𝑟𝑑 =
𝑐𝑜𝑚𝑚𝑜𝑛𝑤𝑜𝑟𝑑(𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2)

min⁡(𝑤𝑜𝑟𝑑(𝑛𝑎𝑚𝑒1),𝑤𝑜𝑟𝑑(𝑛𝑎𝑚𝑒2))
 (5) 

where commonword(name1, name2) counts the number of the common words between 

name1and name2; word(name) count the number of words contained in name. 

 We illustrate the results in Fig.13. The values of all negative instances are 0, that 

is, there is no common word in the negative instances. However, nearly 50% of 

positive instances also have no common word between two display names, but it still 

has 30%, 27%, and 42% of positive instances with value 1.0 on three datasets, 

respectively. It should be mentioned that we remove these positive instances with two 

same names from three datasets. The Simword values of all these instances are 1.0. 

Besides, there are more than 20% of positive instances with value 0.5. The cases arise 

mainly because individual omitted first name or last name. 

 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.13. Distribution of Sim𝑤𝑜𝑟𝑑 on three Datasets 

Edit Distance/Longest Length: The edit distance [27] reflects the difference 

between two strings by counting the minimum number of operations required to 

transform one string to the other. It is a commonly used metric to evaluate the 

difference of two strings. 

The edit distance of two names relates to the name length. In our previous works 

[19, 20], we introduce the name length to this metric and express it by Eq.(6). The 

smaller the value is, the larger the similarity is. 

𝑆𝑖𝑚𝑒𝑑𝑖𝑡 =
𝑒𝑑𝑖𝑡(𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2)

max⁡(𝑙𝑒𝑛(𝑛𝑎𝑚𝑒1), 𝑙𝑒𝑛(𝑛𝑎𝑚𝑒2))
 (6) 

 

 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.14. Distribution of Sim𝑒𝑑𝑖𝑡 on three Datasets 
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We also show its distribution in Fig.14. The values of all negative instances are 

larger than 0.5. Conversely, the values of most positive instances is smaller than 0.5 

with  percentages 54.36%, 53.90%, and 72.68% on three datasets, respectively. That 

is, if the edit distance of two display names is less than half of the longest name length, 

these two display names belong to the same individual with high probability. 

Max of Best Match: Normally, a user‟s display name always consists of several 

parts, such as first name, middle name, last name, or other title. However, not 

everyone writes all parts, some omit the middle name, some omit last name, or even 

reverse the first name and last name. In this situation, if we just compare the name as 

a whole, it will neglect the name‟s identical part. Therefore, we consider the max of 

best part match based on the longest common substring. 

Suppose s1 and s2 are two strings. The similarity of s1 and s2 is expressed by 

Eq.(7). 

𝑆𝑖𝑚𝑠𝑡𝑟 =
𝑙𝑒𝑛(𝑙𝑐𝑠(𝑠1, 𝑠2))

(𝑙𝑒𝑛(𝑠1) + 𝑙𝑒𝑛(𝑠2))/2
 (7) 

Suppose name1 and name2 are two display names. The detailed implementation 

steps of Max of Best Match of name1 and name2 are shown as follows. 

Step 1: Segment the two names into words, respectively, and get two name arrays 

Arr1 and Arr2; 

Step 2: Calculate similarity of each word in Arr1 with word in Arr2 based on 

Eq.(7), and get a similarity matrix A; 

Step 3: Find the largest value in matrix A, and this value is the max of best match. 

 

For example, if an individual‟s name in Facebook is „David J. Whelan‟, and in 

Twitter called „Dave Whelan‟, we first segment them and get two arrays, [„David‟, „J.‟, 

„Whelan‟] and [„Dave‟, „Whelan‟]. Then we calculate the similarity by Eq.(7), and get 

the similarity matrix as shown in Table3.  

Table 3. Overview of similarity matrix 

 David J.  Whelan 

Dave 0.667 0.0 0.2 

Whelan 0.182 0.0 1.0 

 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 
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Fig.15 Distribution of max of best match on three Datasets 

Find the largest value 1.0, and the maximum value 1.0 is the metric we want, max 

of best match. Fig.15 shows our measurement results on max of best match. 

 From Fig.15, we can see that most of the metric values on the positive instances 

are 1.0, with percentage of 53.43%, 50.37%, 80% on FB-TW, FS-TW, FB-FS 

respectively. That is, more than half of the users always use the same name part across 

social network sites. Besides, the percentage of FB-FS datasets with metric value 1.0 

is higher than other two datasets. This mainly because most users always select the 

display names similar to their real names on Facebook and Foursquare. There are also 

about 20% of positive instances whose values are in [0.5, 0.9] on FB-TW and FS-TW. 

These users do not use the completely same name part but make some changes on 

their first names, or last names, or middle names, when they select the display names 

for the different social networks. While on the negative instance, most metric values 

are below 0.5. There is a great difference between the distribution of positive 

instances and negative instances, which is helpful to improve user identifiability on 

social network. 

4.3 Letter Distribution Similarity 

 The letter distribution presents the occurrence probability of each letter in a 

display name. Two identical display names have the same distribution of letters. 

However, for two similar display names, their letter distribution is also similar. For 

example, name “gate man” and name “man gate” have same letter distribution. The 

quantity of letters is so large that we cannot consider all language letters. For 

simplicity, we only consider twenty-six English letters. We measure these letter 

distributions based on Jensen-Shannon distance, Cosine similarity and Jaccard 

similarity, respectively. 

  

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.16 Distribution of Sim𝑗𝑐 on three Datasets 

  Jensen-Shannon Similarity Jensen-Shannon distance [11], which is an 

improvement on Kullback–Leibler distance [17], is used to calculate the difference 

between two probability distributions. Its value ranges from 0 to 1. We use JS distance 

to measure letter distribution difference between two display names.  The smaller the 

distance is, the greater the similarity between two distributions is. Assume P and Q 

are the letter distributions of display name name1 and name2, respectively. The JS 

similarity of name name1 and name2 is expressed by Eq.(8). 
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𝑆𝑖𝑚𝐽𝑆 = 1 −
1

2
(𝐾𝐿(𝑃||𝑀) + 𝐾𝐿(𝑄||𝑀))⁡ 

⁡⁡⁡⁡⁡⁡M =
1

2
(P+Q),  KL(P||Q) = ∑ 𝑃𝑖 ∙ log

𝑃𝑖

𝑄𝑖

|𝑃|
𝑖=1  

(8) 

where pi is the occurrence probability of the i
th

 character. 

To avoid the situation that the logarithm does not make sense, we use a very low 

value 𝑒 to smooth for the letters whose probability is zero. In this paper, we set the e 

to 2.2204460492503131e
-16

. The measurement results are illustrated in Fig.16. 

 For the negative instances, the SimJS values are concentrated on the lower interval, 

and show a trend of rising first and then decreasing in [0.0,0.7], while for the positive 

instances, their SimJS values focus on the higher interval, and show an increasing trend 

in [0.1,0.8]. On FB-TW and FS-TW‟s positive instances, there are 5%, 6% of the 

instances with values less than 0.1. SimJS values less than 0.1, indicate that the letters‟ 

distributions of two display names are almost completely different. This is mainly due 

to the fact that the display names a user selected for different social networks are in 

different languages. For example, a user whose display name is 'デーブミナナスス

ーー' on the Twitter, has a display name 'Dave Mianowski' on the Facebook. Although 

these two display names have same meaning, the letters in the two display names are 

completely different. In data preprocessing, we first translate names into the same 

language using the machine translation software. From Fig.16, we also easily find that 

the percentage of the positive instances with values larger than 0.8 is about 45%, 

while the percentage of the negative instances is less than 2%. Obviously, two display 

names with SimJS value larger than 0.8 belong to the same user with high probability. 

Cosine Similarity The cosine distance is mainly used to measure the similarity 

between two vectors. After calculating the frequency of each letter in the display 

name, we get two vectors and then we express their similarity by Eq.(9). The larger 

the value is, the more similar two vectors are. 

𝑆𝑖𝑚𝑐𝑜𝑠 = 1 − cos(P||𝑄)⁡ 

 

cos(P||𝑄) =
∑ (𝑃𝑖 × 𝑄𝑖)
𝑛
𝑖=1

√∑ (𝑃𝑖)2
𝑛
𝑖=1 × √∑ (𝑄𝑖)2

𝑛
𝑖=1

 

(9) 

where P is the frequency vector of letters in name1, and Q is the frequency vector of 

letters in name2.⁡𝑃𝑖, 𝑄𝑖⁡is the frequency of 𝑖𝑡ℎ letter in name1 and name2 respectively. 

For clearly explaining the frequency vector of letters in a display name, we take the 

name „mangate‟ for instance. its frequency vector is [2,0,0,0,1,0,1,0,0, 

0,0,0,1,1,0,0 ,0,0,0,1,0,0,0,0,0,0].  
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(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.17 Distribution of Sim𝑐𝑜𝑠 on three Datasets 

Fig.17 shows the measurement results. From Fig.17, we find that the cosine 

similarity distribution is very similar with the Jensen-Shannon similarity distribution. 

The percentages of the positive instances with values larger than 0.8 are 51% on 

FB-TW, 50% on FS-TW and 65% on FB-FS, respectively, while the percentage of 

negative datasets is less than 2%. 

Jaccard similarity Jaccard similarity [28] is used to compare the similarity of 

two sets. It is the ratio of the size of the intersection to the size of union of two sets. 

We consider the letters in a display name as a set and calculate the Jaccard similarity 

by Eq.(10). Fig.18 illustrates the results of Jaccard Similarity. 

𝑆𝑖𝑚𝑗𝑎𝑐 =
𝑙𝑒𝑛(𝑠𝑒𝑡(𝑛𝑎𝑚𝑒1) ∩ 𝑠𝑒𝑡(𝑛𝑎𝑚𝑒2))

𝑙𝑒𝑛(𝑠𝑒𝑡(𝑛𝑎𝑚𝑒1) ∪ 𝑠𝑒𝑡(𝑛𝑎𝑚𝑒2))
⁡ 

where set(name) is the set of letters in the name. 

(10) 

 

(a) FB-TW 

 

(b) FS-TW 

 

(c) FB-FS 

Fig.18 Distribution of Sim𝑗𝑎𝑐 on three Datasets  

The Jaccard similarity values of negative instances mainly concentrate on the 

lower interval and are less than 0.5. For the positive datasets, the value distributions 

are more uniform. It should be noticed that we remove the positive instances with two 

same display names, but the values of the positive instances are still much larger than 

the values of the negative instances on average.  

5. Evolution analysis 

In the above analysis, we only consider a single snapshot of the social network, 

neglecting an important aspect of these social networks, viz: their evolution over time. 

The social network continuously evolves in response to many factors, such as the 

underlying social dynamics. Will these factors affect his behavior when a user selects 
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the display names for different social networks? The redundant information between 

two display names is consistent over time? In this subsection, we focus on the 

evolution analysis on the above attributions. 

 In Foursquare, the user ID is assigned in an ascending order. That is, the larger 

the user ID is, the later the registration time of this user account is. To obtain multiple 

snapshot of Foursquare, we divide the total ID into nine chunks, and crawl a part of 

IDs on each chunk. The Foursquare ID ranges of nine chunks are [0-100,000], 

[10,000,000-10,150,000], [20,000,000-20,150,000], [30,000,000-30,150,000], 

[40,000,000-40,150,000], [50,000,000-50,150,000], [60,000,000-60,150,000], 

[70,000,000-70,150,000], [80,000,000-80,150,000], respectively. After repeat the data 

collection described in section 2.1, we obtain 3 datasets based on each chunk, and 

totally 27 datasets on all chunks. For the sake of convenience, the nine datasets across 

Facebook and Twitter are denoted by FB-TWi (i=0,1,…,8). Similarly, we have 

datasets FB-FSi (i=0,1,…,8) and FS-TWi (i=0,1,…,8).  

We first calculate the percentage of the positive instances with the duplicate 

display names on 27 datasets, respectively. The results are shown in Table 5. 

From table 5, we can find, the size of the datasets we obtained for each chunk is 

continually decreasing. As the time goes on, fewer and fewer Foursquare users 

simultaneously reveal their Facebook and Twitter accounts. The percentages of the 

duplicate display names also decrease gradually. With the development of Internet, 

increasing people pay attention to privacy protection and make their profile only open 

to their friends, not everyone on the Internet.  

Table 5.  the ratio of the duplicate display names 

 
FB-TW FS-TW FB-FS 

size % size % size % 

0 26062 63.86% 37470 60.81% 36358 75.59% 

1 10426 39.64% 14711 41.17% 52277 61.01% 

2 6555 37.80% 10196 39.71% 31598 62.23% 

3 6733 38.13% 9650 33.10% 35532 49.32% 

4 4158 38.91% 7694 37.21% 21040 63.72% 

5 4516 38.22% 7056 38.00% 29757 64.90% 

6 4375 37.26% 7305 36.56% 33096 65.24% 

7 3092 38.62% 5069 36.93% 27732 66.94% 

8 1909 38.66% 3164 36.09% 21090 67.87% 

   

5.1 Evolution analysis on name length 
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Fig.19. evolution analysis on length similarity 

Table 6.  the percentage of user with only first name (%) 

Dataset 0 1 2 3 4 5 6 7 8 

FB-FS 
FS 14.75 4.31 5.11 39.24 4.32 3.62 5.08 3.17 3.38 

FB 0.10 1.29 0.99 0.52 1.39 1.18 1.07 1.30 1.39 

FS-TW 
FS 8.73 5.18 5.65 30.11 5.24 5.35 6.73 4.94 5.74 

TW 49.14 44.98 44.62 36.74 45.33 45.78 48.32 49.42 51.14 

FB-TW 
FB 0.03 0.64 0.56 0.34 0.75 0.79 0.66 0.37 1.11 

TW 51.27 43.33 42.56 41.00 43.46 44.70 46.56 45.94 49.02 

The evolution analysis results are illustrated in Fig.19. The curves on different 

datasets are very close except on FS-TW3 and FB-FS3. We make a further analysis on 

FS-TW3 and FB-FS3. It is mainly due to the Foursquare changes its privacy policy on 

Jan. 28
th

, 2013 [3], when the number of its registered users reaches 30 million. The 

main change is that the users would see the complete first and last names on the 

profile page. Before that time, the Foursquare sometimes shows the user‟s full name 

and sometimes shows his first name and the initial of last name (“John Smith” vs. 

“John S.”). 

This change has a great impact on the user‟s display name. In order to avoid long 

full names displayed, the user only presents his first name. Table 6 shows the 

percentage of only presenting his first name in display name on FB-FS, FS-TW and 

FB-TW. We find that the users corresponding to chunk3 have higher percentage of 

user with only first name on Foursquare. 

5.2 Evolution Analysis on Character Similarity and Letter Distribution  

 We also make the evolution analysis on the character similarity and letter 

distributions. These attributes are consistent on most datasets except on the datasets 

containing the Foursquare users corresponding to chunk3, which caused by the rules 

change on Foursquare. That is, these attributes remain unchanged over time. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

 

(m) 

 

(n) 

 

(o) 

Fig.20. evolution analysis on character similarity. (a-c): 𝑆𝑖𝑚𝑙𝑐𝑠 similarity, (d-f):⁡𝑆𝑖𝑚𝑙𝑐𝑠𝑒𝑞 

similarity, (g-i):⁡𝑆𝑖𝑚𝑤𝑜𝑟𝑑 similarity, (j-l):⁡𝑆𝑖𝑚𝑒𝑑𝑖𝑡 similarity, (m-o):max of best match 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

(h) 

 

(i) 

 

(j) 

Fig.21. evolution analysis on character distribution. (a-c): 𝑆𝑖𝑚𝑗𝑠 similarity, (d-f):⁡𝑆𝑖𝑚𝑐𝑜𝑠 

similarity, (g-i):⁡𝑆𝑖𝑚𝑗𝑎𝑐 similarity 

6. Discovery 

 Through above analysis, we conclude: 

(1) More than 45% of users tend to use the same display name in different OSNs. 

This is mainly because the users have limited memory and the needs of maintaining 

their personal image and reputation on different social network sites[20]. The 

information contained in the display name can make people associate with this person 

or related product. It is particularly important for stars or people in the marketing. 

(2) The display names of an individual selected for the different social networks 

have no fixed lengths. Except the duplicate names, which has same length, the length 

of the display names always vary greatly. For two display names, even if generated by 

two individuals, the length difference may be the same as an individual generated. 

(3) For the positive instances, the character similarity is striking, although two 

names are not exactly same. Specifically as follows:  

 For more than 64% of the positive instances, the length of the longest 

common substring is more than half of the shorter name length. Moreover, 

there are 20% of the users whose one name is fully contained in the other 

name;  

 there are about 76% of users whose length of longest common subsequence 

is more than half of his shorter name length;  

 27% or more of users have the same surname or last name;  

 There are 53% of positive instances whose edit distance is less than half of 

his longer name length;  

 As for the best match of the positive instances, the values of more than 50% 

of users are 1.0. 

A user usually selects different names in different OSNs for the purpose of 
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privacy. However, if the display names of a user are completely irrelevant, he can 

hardly remember them clearly. Actually, most individuals just change part of their real 

names, and retain some of the basic information. This information tends to make the 

display names of a user having high character similarity. 

(4) The letter distributions of the positive instance are very similar.  

 The Jensen-Shannon similarity of more than 45% of positive instances are 

larger than 0.8;  

 The positive instances whose Cosine distance are over 0.8 also account more 

than 50%;  

 The Jaccard similarities of more than 47% of positive instances are over 0.5. 

On the contrary, the corresponding percentage of the negative instances is 

only 2%.  

The alphabet distribution reflects the user preference for specific letter. Some 

letter can also reflect a user's country or region to a certain extent. For example, 

Zafarani et al. [34] mentioned that the frequency of using letter “x” in Chinese name 

is higher than other countries or regions. Therefore, the closer the letter distribution of 

two display names is, the more likely the two names belong to the same user. 

(5)  The evolutionary analysis results show that the above attributes remain 

unchanged over time. 

(6) The similarity of two display names from Facebook and Foursquare is 

generally more striking. This is mainly due to the user tend to choose his display 

name closer to his real name on these two social networks. 

7. Application 

We apply the measurement results to the user identification across social 

networks. The user identification is a fundamental problem of information fusion. 

Assume two given display names from two different social networks, the user 

identification problem is to determine whether these two display names belong to the 

same individual or not.  

 

(a) FB-TW 

 

(b) FS-TW 
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(c) FB-FS 

Fig.22. user identification performance based on display names 

Based on the datasets and features described in the previous section, several 

supervised machine learning models are introduced for user identification. We use 

eight classifiers including Gaussian Naïve Bayes (GaussianNB), Bernoulli Naïve 

Bayes (BernoulliNB), Logistic Regression, Logistic Regression with builtin 

Cross-Validation (LogisticRegressionCV), Support Vector Machine (SVM), Decision 

Tree, Random Forest, and Maximum Entropy Model to train the identification model, 

respectively. The first seven classifiers could be achieved through the implementation 

provided by scikit-learn [5], and the Maximum Entropy Model is achieved by Zhang's 

maxent toolkit [7]. All parameters of these classifiers are default. For each classifier 

and dataset, we perform 10 runs, and then report the average of the results. The 

identification results on three datasets are illustrated in Fig.22, and the corresponding 

AUC value of every classifier is also list in the legend. 

 The identification results show these classifiers could achieve good precision on 

three datasets, especially SVM and Maxent with all AUC values more than 0.9 on 

three datasets. This indicates that these suitable features we measured and analyzed 

above are capable to identify user across OSN sites effectively. 

8. Conclusion 

A display name is a name that an individual chooses shown to other avatars on an 

OSN site. By comparing the display names from the same users and the different 

users, we know that the character similarity and the letter distribution similarity of the 

positive instances are very high. The results of our measurements demonstrate that the 

same individual on different OSNs tends to use the same display names or similar 

display names. We final apply the measurement results to identify a user across social 

networks and the results proved that the presented attributes are very helpful for 

identifying whether accounts belong to the same individual or not based on their 

display names. 
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