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ABSTRACT 

 
Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of 

many systems and processes. It is therefore an important parameter to characterize such flows. In the context of 

nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics 

and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed 

tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation 

transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume 

fractions, the aim of this paper is to present several techniques developed for this purpose. 

 

 

1. INTRODUCTION 
 

The volume fraction is one of the most important parameters used to characterize multiphase 

flow and consequently on system performance prediction. 

 

Considered one of the options for the measurement of volume fractions in multiphase flows, 

the gamma-ray densitometry is a noninvasive technique and has been investigated and 

developed by many researches and professionals [1]. Some of the other advantages of the 

gamma-ray attenuation technique are listed below: 

 

1. Relatively inexpensive 

2. Relatively simple 

3. Generally reliable 

4. Usually portable 

5. May be used with two-phase and three-phase flows 

6. Applicable to a wide range of systems due to availability of different gamma-ray 

energies suitable for different test section material and test fluids 

 

For the material volume fractions (MVF) prediction [2], artificial intelligence techniques, 

especially artificial neural network (ANN) [3] have been applied. The main characteristic of 

ANN is the ability of learning by examples (training set). 

 

The aim of this paper is to present some gamma-ray densitometry techniques for volume 

fraction measurements. For this, differences in the type of experiment (tube vertically or 
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horizontally, for example) were not considered, so the focus was on technical analysis itself, 

from the following elements: experimental, artificial intelligence, Monte Carlo N-Particle 

(MCNP) [4] and dual modality densitometry (DMD). One criterion was that the articles had to 

have at least two of these elements. 

 

 

2. GAMMA-RAY DENSITOMETRY TECHNIQUES 
 

Each section will be devoted to an article, comprising the elements, in the scope of the 

techniques which is the object of this work. 

 

2.1 Experiment and artificial intelligence 
 

The elements discussed in this section are from the article “Void fraction prediction in two-

phase flows independent of the liquid phase density changes” from E. Nazemi et al [5]. 

 

In this work, all the experiments were carried out in static conditions. The experiments were 

conducted with pipe vertically. As main pipe, a pyrex-glass pipe was used. For modeling the 

annular regime, two phase separator pipes (PVC films with thickness of 0.40 mm) with various 

diameters were used. A 2 mCi Cs-137(6 62 keV) source, collimated in order to make a narrow 

beam passing through the center of the pipe, and a measurement time of 600 s were chosen 

because of the static nature of the experiment. Two NaI detectors were used, one as 

transmission detector and another as the scattering detector. The experimental setup is shown 

in Figure 1. 

 

 

 
 

Figure 1: (a) Experimental setup [5]. (b) Schematic view of experimental setup [5]. 

 

 

They were used as liquid phases, at the temperature of 20 oC, gasoline, kerosene, gasoil, 

lubricant oil, and water with the densities of 0.735, 0.795, 0.826, 0.852, and 0.980 gcm-3, 

respectively. The air was used as the material of the gas phase. The void fractions of 0, 20, 30, 

40, 50, 60, and 70 percentages, were tested for each liquid phase (totally 35 tests).  

 

In this paper, the authors also use multi-layer perceptron (MLP) networks [6]. The simplified 

overview of the proposed MLP model is shown in Figure 2, where the inputs are registered 
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counts in transmission and scattering detectors and the output is air percentage independent of 

the liquid phase density change. 

 

 

 
 

Figure 2: Architecture for the proposed MLP model [5]. 
 

 

The data set required for training the network is achieved using the experimental. The number 

of samples for training and testing data are 25 (about 72%) and 10 (about 28%) respectively. 

MATLAB 8.1.0.604 software was used for training the ANN model. Table 1 shows the 

specification of the suggested ANN model being used in this study. 

 

 

Table 1: Specification of the proposed ANN model [5] 

 

 
 

 

The Table 2 and the Table 3 show the predicted air percentage by ANN model. It can be seen 

that the ANN model is close to the experimental result.  
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Table 2: The data used for training the network and predicted percentage [5] 

 

 
 

 

Table 3: The data used for testing the network and predicted percentage [5] 

 

 
 

 

2.2 Neural networks based on dual modality densitometry (DMD) 
 

The elements discussed in this section are from the article “Determination of Gas and Water 

Volume Fraction in Oil Water Gas Pipe Flow Using Neural Networks Based on Dual Modality 

Densitometry,” from C. Jing et al [7]. 
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In this paper, the authors developed models of dual modality densitometry (DMD) that can be 

used for measuring the gas volume fraction (GVF) and water volume fraction (WVF) in oil 

water gas pipe flow. 

 

For this, the computer simulation models were defined by using GEANT4 software [8]. A 

simulation geometry constructed by Geant4 shows in Figure 3. 

 

 

 
 

Figure 3: A simplified measurement geometry [7]. 
 

 

40mm x 40mm NaI detectors were used. Oil is cetene (molecular formula C16H34) instead of 

crude oil, gas is methane (molecular formula CH4) instead of natural gas. Source energy of 

59.5keV of radiation were used. The numbers of simulation event are 100,000. The flow in 

pipe is the mixture of oil, water and gas. The intensities of transmitted radiation and scattered 

radiation decayed by different mixture matter were recorded by Geant4. The simulation data 

was used to train and test the radial basis function neural networks. 

 

In this paper radial basis function (RBF) neural network was used, since it can be trained very 

quickly because the algorithm uses a fixed Gaussian function. A RBF neural network 

architecture used for predicting GVF and WVF is shown in Figure 4. The input layer consists 

of registered counts in transmission and scattering detectors. The output layer is the GVF and 

WVF predicted. The hidden layer nodes are called RBF units. 

 

 

 
 

Figure 4: A architecture of a RBF neural network [7]. 
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The Figure 5 is the comparison of the predicting GVF to true GVF and the predicting WVF to 

true WVF. It can be seen that the predicting GVF fit true GVF well and the predicting WVF 

has some errors to true WVF. This is because of the linear attenuation coefficient of gas is 

small, so when GVF changes, the detected transmitted and scattered radiation intensities 

change too. The Table 4 shows the statistical results in the course of trying to predict GVF and 

WVF. Although the errors between true WVF and the predicting WVF emerge, the mean 

square error (MSE) is lower. 

 

 

 
 

Figure 5 The comparison of the predicting GVF to true GVF and WVF to true WVF [7]. 

 

 

Table 4: The statistical results of predicting GVF and WVF [7] 

 

 
 

 

2.3 Artificial intelligence and MCNP 

 

The elements discussed in this section are from the article “Prediction of volume fractions in 

three-phase flows using nuclear tachnique and artificial neural network,” from C. M. Salgado 

et al [9]. 

 

In this work, the Monte Carlo N-Particle eXtended (MCNP-X) [4], has been used. MCNP-X 

code was used to simulate gamma-rays scattering and absorption from a radiation source in 

annular, stratified and homogeneous regimes in an oil-water-gas pipeline. By the use of MCNP-

X simulations, it was possible to generate a data set for training the ANN. 

 

A fan bean geometry has been used for de source and three different NaI(Tl) detectors, in all 

simulations. It were used two collimated (angle bean 6.7o) gamma-rays point sources (121 keV 

– 152Eu; 356 keV – 133Ba). A steel tube ANSI316 composes a test section with 1 mm thickness 

and 18 cm of internal diameter. The measurement system is shown in Figure 6. 
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Figure 6: Simulated system [9]. 

 

 

In all studies, salty water was used (4% of NaCl); the gaseous phase was substitute by air and 

the patrol was assumed as hydrocarbon (C5H10). 

 

The models for the different flow regimes are shown in Figure 7. 

 

 

 
 

Figure 7: Regime models [9]. 

 

 

For the ANN, 3-layer feed-forward multilayer perceptron [3] has been used. To training the 

algorithm, it was used the back-propagation algorithm [10]. So, MCNP-X [11] has been used 

in order to generate the training set, in the training phase. 

 

For different combinations of volume fractions were made 64 simulations, in order to generate 

the ANN training (52 simulations), test (6 simulations) and production (6 simulations) sets. 

The test set was used to evaluate the neural network generalization; the production set was used 

for a final test, after ANN training in order to test the ANN in the working phase. 
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The prediction for the test set of the annular, stratified and homogeneous regimes are shown in 

Figure 8, Figure 9 and Figure 10, respectively, indicating that the ANN could adequately 

predict volume fractions. Note that only two phases are used as ANN output. The third phase 

is obtained by complement. 

 

The results obtained for the production set on annular, stratified and homogeneous regimes are 

presented in Table 5, Table 6 and Table 7, respectively. 

 

 

 
 

Figure 8: Results obtained for the test set on annular regime [9]: a) air; b) water. 
 

 

 
 

Figure 9: Results obtained for the test set on stratified regime [9]: a) air; b) water. 
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Figure 10: Results obtained for the test set on homogeneous regime [9]: a) air; b) water. 
 

 

Table 5: ANN prediction for the production set on annular regime [9] 

 

 
 

 

Table 6: ANN prediction for the production set on stratified regime [9] 

 

 
 

 

Table 7: ANN prediction for the production set on homogeneous regime 
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Note that some larger errors can be observed. The use of a more adequate (more complete) 

training and test sets, as well as other detection schemes should be investigated, in order to 

increase the performance, minimizing such errors. 

 

 

3. CONCLUSIONS 
 

The techniques presented are of great value because they are not invasive. However, we can 

see some intrinsic characteristics of each technique, i.e. when dealing with complexity, models 

of DMD stands out and their predicting results show that WVF has some errors. 

 

To improve the results, in second technique presented, a continuous recalibration during the 

measuring of void fraction, to eliminate the errors caused by the variations of fluid properties, 

is necessary. Therefore, this is a disadvantage of the technique used. 

 

An advantage on the use of MCNP is that it plays a very important role in data generation for 

ANN training. The ANN can eliminate problems associated with availability of radioactive 

sources, detectors and representative test section of each flow regime, in the initial phase of the 

project. 
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