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Social relationships characterize the interactions that occur within social species and may have an
important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model
for collective motion in which interactions are mediated by an empirically motivated scale-free topology
that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model
is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered
state, while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient
external noise. Our results challenge the previously accepted equivalence between the static Vicsek model
and the equilibrium XY model on the network of connections, and point towards a possible equivalence
with models exhibiting a different symmetry.
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Collective motion in living and complex systems [1],
where simple interactions between constituent entities
produce striking spatiotemporal patterns on scales larger
than the entities themselves, are commonplace. Some of the
examples that best highlight the emergence of such patterns
are found in animal motion [2,3], where the animals
collectively exhibit some of the most spectacular and
fascinating sights in nature. These include flocks of birds
turning in unison or migrating in well-ordered formation,
shoals of fish splitting and reforming as they outmaneuver a
predator, seasonal migratory herds of large herbivores, etc.
The challenge of understanding how hundreds or thou-

sands of organisms move together and give rise to such
intriguing collective responses in the absence of any
apparent leader or driving field has attracted the attention
of the scientific community for a long time. Significant
progress in understanding how some of these features
come about has been achieved through the development
of relatively simple models of self-propelled particles
(SPP). In SPP models, the complex dynamics of individuals
within a group are simplified to those of particles that move
with given velocities and experience flocking interactions
within a local interaction zone, combined with random
fluctuations due to intrinsic or environmental factors. In the
celebrated Vicsek model [4], these interactions consist of
the alignment of the velocity of an SPP with the average
velocity of some of its neighbors. Perfect alignment is,
however, impeded by the addition of a noise term that
mimics, for instance, the difficulties in gathering and
processing the surrounding information. The success of
the model lies in the production of a phase transition as a
function of noise intensity, η, separating an ordered or
polarized (flocking) phase at η ≤ ηc, where particles travel

in a common direction, from a disordered phase for η > ηc,
where particles behave as uncorrelated persistent random
walkers [5,6]. This is particularly fruitful due to the
analogies that can be drawn between the self-organization
of herds of moving animals and standard phase transitions
observed in condensed matter [1,7].
The main assumption of the Vicsek and other similar

models of collective motion [8,9] is that particles tend to
orient their velocity parallel to the average velocity in a
local neighborhood, independently of their identity. This
kind of interaction rule leaves aside, however, the important
fact that real interactions between moving animals can be
more intricate. One source of complication can be the
presence of social interactions [10] between the group
members, which can lead, in the framework of the Vicsek
model, to a tendency to align one’s velocity with that of
individuals with which one has strong social ties, but that
might be separated by a relatively long Euclidean distance.
The presence of such social interactions, naturally repre-
sented in terms of social networks [11], has been observed
in mammals [12–14] and fish [15,16], and has even been
studied in the context of schooling fish [17].
The impact of social interactions given in terms of

networks has already been considered in the context of
collective motion and the Vicsek model [18–23], but, to the
best of our knowledge, an in-depth study is still lacking.
Here, we focus on the effects of the topological hetero-
geneity observed in certain animal social networks [24,25],
which can be represented by a degree distribution PðkÞ,
defined as the probability that a randomly chosen individ-
ual is connected to k other individuals, showing a scale-free
signature [26] of the form PðkÞ ∼ k−γd . We study the
behavior of the Vicsek model when applied to complex
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networks with varying heterogeneity (a varying degree
exponent γd), generated using the uncorrelated configura-
tion model (UCM) [27]. In this setting, each particle’s
neighbors always remain the same. As a consequence, it is
usually assumed that, in this limit, the Vicsek model must
be equivalent to the equilibrium XY model of ferromag-
netism defined on the network of connections (see, e.g.,
Refs. [4,5,28]). The XY model has been theoretically and
numerically analyzed in scale-free networks under various
conditions [29–31]. By means of extensive numerical
simulations, we show that on static scale-free networks
the Vicsek and the XY models exhibit different critical
behavior. Furthermore, our simulations are compatible with
the behavior reported for the nonequilibrium majority-vote
model with noise applied to complex networks [32].
We consider a version of the Vicsek model in which

interactions are mediated by a static complex network, with
links representing social interactions. A social network
can be fully represented in terms of its adjacency matrix aij
[11], with value aij ¼ 1, if individuals i and j are socially
connected, while aij ¼ 0 otherwise. By considering an
ordering dynamics based on social interactions alone, we
disregard spatial position, and thus the SPPs are uniquely
specified in terms of their velocity viðtÞ, assumed to be
normalized: jviðtÞj ¼ v0. We fix v0 ¼ 1. We consider
velocities in two dimension, fully determined by the
angle θiðtÞ they form with, say, the x axis, i.e., viðtÞ ¼
fcos θiðtÞ; sin θiðtÞg. With the original definition of the
model [5], velocities are synchronously updated via the rule

θiðtþ 1Þ ¼ Θ
�
viðtÞ þ

XN
j¼1

aijvjðtÞ
�
þ ηξiðtÞ; ð1Þ

where N is the network size, Θ½V� represents the angle
described by vector V, ξiðtÞ is random noise uniformly
distributed within the interval ½−π; π�, and η ∈ ½0; 1� is a
parameter that reflects the noise strength. Note that η ¼ 1 is
the maximum possible noise, since it corresponds to a
completely disordered system.
The phase transition between ordered and disordered

states in the Vicsek model is determined by the temporal
evolution of an order parameter ϕηðtÞ, defined as [4]

ϕηðtÞ ¼
1

N

����
XN
i¼1

viðtÞ
����: ð2Þ

From here, one defines the average order parameter
hϕηi ¼ limT→∞ð1=TÞ

R
T
0 ϕηðtÞdt and the susceptibility χη ¼

N½hϕ2
ηi − hϕηi2�, which close to the critical point behave as

hϕηi ∼ ðηc − ηÞβ and χη ∼ jηc − ηj−γ , respectively, defining
the critical exponents β and γ, in analogy with the ferromag-
netic phase transition [7].
The model defined by Eq. (1) does not admit a feasible

analytical treatment for general networks [33]. We can,
however, solve it in the fully connected case. To proceed,

it is convenient to write the order parameter in the
alternative form:

ϕηðtÞ ¼
1

N

XN
i¼1

cos ½θiðtÞ − θ̄ðtÞ�; ð3Þ

where θ̄ðtÞ ¼ Θ½PN
i¼1 viðtÞ�. Equation (3) can be shown to

be exactly equal to Eq. (2); see the Supplemental Material
[34]. For a fully connected network, the Vicsek model can
be solved starting from Eq. (3) (see Supplemental Material
[34]), obtaining the result that the system is ordered for
any η < 1. In the vicinity of this point, expansions of the
solution lead to hϕηi ∼ 1 − η and χη ∼ const, leading to the
critical exponents β ¼ 1, γ ¼ 0.
In the case of sparse networks, it is usually assumed that,

when the particles are immobile and the network of
connections is sufficiently dense, the Vicsek model can be
mapped to the equilibrium XY model [5], where the
temperature T is a function of the noise intensity η, fulfilling
the limits T → 0 for η → 0, and T → ∞ for η → 1. The XY
model applied to networks can be solved within an annealed
network approximation, obtaining a critical temperature
Tc ¼ Jhk2i=½2hki� [29], where J is the coupling constant
of the XY Hamiltonian. That is, for scale-free networks with
γd > 3, there is a true transition at a finite critical temper-
ature, while for γd ≤ 3, there is no transition and the system
is always ordered for any finite T. These results have been
confirmed by numerical simulations on heterogeneous [31]
and homogeneous [35] networks.
In order to check the validity of the mapping to the XY

model, we performed numerical simulations of the Vicsek
model on UCM networks with different values of γd and a
minimum degree of m ¼ 3 [27]. The order parameter, hϕηi,
is computed by averaging over 50000 time steps, after letting
the system initially relax for 10000 time steps. Figure. 1
(inset) shows a plot of the average order parameter as a
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FIG. 1. Inset: Average order parameter as a function of the
noise intensity η for different values of the degree exponent γd in
UCM networks of size N ¼ 106. Main: The order parameter as a
function of η for different values of the network size N. The sets
of plots correspond to γd ¼ 2.1 (right) and γd ¼ 3.5 (left).
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function of η, computed in networks of size N ¼ 106 with
different degree exponents. Figure 1 (main) illustrates the
effects of system size for two different values of γd. From
this figure it is apparent that for small γd the effective
threshold depends strongly on N. In order to explore size
effects in greater detail, we proceed to compute the effective
threshold by looking at the dynamic susceptibility:

χNðηÞ ¼ N
hϕ2

ηi − hϕηi2
hϕηi

; ð4Þ

which is customarily used to detect phase transitions in
complex networks [36,37]. The effective critical point,
ηcðNÞ, will be given, for a given network size N, by the
position of the maximum of the dynamic susceptibility
χNðηÞ. The critical point in the thermodynamic limit
N → ∞ can be obtained by applying a finite-size scaling
hypothesis [38] of the form

ηcðNÞ ¼ ηc − aN−1=ν; ð5Þ
where ν is another characteristic critical exponent [36,39].
The height of the peak of the dynamic susceptibility, χpeakN ,
also scales with N, adopting the form [36,37]

χpeakN ∼ NðβþγÞ=ν: ð6Þ
In Fig. 2 we plot the dynamic susceptibility χNðηÞ for
networks with different values of the degree exponent γd. As
can be seen from the figure, for γd > 2.5, the location of the
peak of the susceptibility appears to tend to a constant value
smaller than 1. In contrast, for γd < 2.5, this location shifts
to larger values of η as N increases. We proceed to estimate
the critical point in the thermodynamic limit by applying a
nonlinear fit to the position of the peak, ηcðNÞ, as a function
of N, according to Eq. (5); see Fig. 3 and Table I.
From these results, it is apparent that, for γd > 2.50, the

critical point ηc tends to a constant value of less than 1,

while for γd ≤ 2.50, the critical point tends to 1 in the
thermodynamic limit. Therefore, in this latter case, the
order-disorder transition characteristic of the model is
suppressed, and the system is fully ordered for any η<1
in sufficiently large networks. In contrast, for γd > 2.50,
there is a true order-disorder transition, which is preserved
even in the limit of infinite network size. While the
exponent ν is difficult to estimate due to statistical
fluctuations in the nonlinear fitting procedure, the exponent
δ≡ ðβ þ γÞ=ν, controlling the growth of the dynamic
susceptibility peak, can be reliably computed; see Fig. 3
and Table I. The exponents obtained are again compatible
with a radical difference in behavior between γd ≥ 2.50, for
which we obtain δ≃ 0.75, and γd < 2.50, where δ is an
increasing function of γd.
The numerical results obtained for heterogeneous scale-

free networks provide a clear picture: when dealing with
networks, the Vicsek model cannot be directly mapped to
the XY model. The main evidence of this incompatibility
comes from the behavior of the critical point. For the XY
model, one expects a finite critical temperature (i.e.,
ηc < 1) for γd > 3, and an infinite critical temperature
(i.e., ηc ¼ 1), or in other words, no phase transition, for
γd < 3. Meanwhile, when applied to networks, the Vicsek
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FIG. 2. Numerical dynamic susceptibility as a function of noise
amplitude η in UCM networks of different size. The groups of
functions for different N correspond to the values of γd (from left
to right): 3.50, 2.75, 2.50, and 2.10.

TABLE I. Critical point and exponent δ for the Vicsek model in
scale-free networks with different degree exponent.

γd 2.10 2.25 2.40 2.50 2.75 3.50

ηc 0.99(1) 1.00(5) 1.00(5) 1.00(1) 0.71(1) 0.61(1)
δ 0.574(3) 0.63(1) 0.71(1) 0.74(2) 0.77(3) 0.75(1)
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FIG. 3. Finite size scaling analysis of the position of the
susceptibility peak, according to Eq. (5) for small (a) and large
(b) values of the degree exponent γd. The critical points, in the
thermodynamic limit, are given Table I. (c) Scaling of the peak of
susceptibility with network size for different values of γd. The
associated exponents χpeakn ∼ Nδ, with δ ¼ ðβ þ γÞ=ν, are given in
Table I.
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model only produces a true order-disorder transition for
degree exponents larger than γd ¼ 5=2. Experimental
characterizations of the degree exponent in groups of
social animals (despite the conceivable difficulties associ-
ated with measuring it and the fact that it probably varies
depending on the behavioral test chosen) provide γd values
within the range 1–3.5 [24,25]. It is also obvious that the
thermodynamic limit cannot be achieved in experiments.
Nevertheless, our results could have important conse-
quences for the resilience of the ordered phase observed
in different species, according to the heterogeneity of their
social contact distribution. Strongly heterogeneous net-
works show a resilient ordered phase for the whole range of
disorder values, while low heterogeneity leads to a more
fragile ordered phase that can be destroyed by a sufficient
amount of external noise.
In order to shed some light on the behavior observed, we

put forward the following hypothesis: given that in net-
works, the dimensionality of the order parameter appears to
be irrelevant (for example, the Ising and XY models share
the same scaling of the critical point and the same critical
exponents [29]), we conjecture that a model analogous to
the Vicsek model, but with a scalar order parameter, might
also share the same behavior as the Vicsek model in
heterogeneous networks. In this way, we consider the
majority-vote model [19], in which spin variables on the
vertices of a network update their state taking the value of
the majority of their nearest neighbors. This state is
randomly flipped with a probability f, which plays a
similar role to the noise strength η, but takes a maximum
value fmax ¼ 1=2 [40]. On a fully connected graph, the
majority-vote model shows a critical point fc ¼ 1=2,
which in the Vicsek case translates to ηc ¼ 1 with expo-
nents β ¼ 1 and γ ¼ 0, see the Supplemental Material
[34]. Meanwhile, in heterogeneous networks with a
power-law degree distribution, a threshold fc ¼ 1=2−ffiffiffiffiffiffiffiffiffiffiffiffiðπ=8Þp ½hki=ðhk3=2iÞ� has recently been reported [32].
This threshold shows a transition from fc < 1=2 for
γd > 5=2 to fc ¼ 1=2 for γd < 5=2 in the thermodynamic
limit: in full agreement with the observations of the Vicsek
model applied to networks. Moreover, above the threshold
degree exponent, γd ¼ 5=2, the value of the exponent
ðβ þ γÞ=ν≃ 0.75 is also in agreement with the mean-field
values of the majority-vote mode: β ¼ 1=2, γ ¼ 1, ν ¼ 2
[41]. In order to confirm the equivalence of the majority-
vote and Vicsek models on heterogeneous networks, we
have performed additional extensive simulations of the
latter for a range of different degree exponents on UCM
networks. The results obtained are described in the
Supplemental Material [34]. From our simulations, we
confirm the results in Ref. [32] regarding a threshold
fc → 1=2 in the thermodynamic limit for γd < 5=2, while
fc < 1=2 for γd > 5=2. The estimation of the exponent δ
for the growth of the dynamical susceptibility peak with
network size, Eq. (6), leads to the results δ ¼ 0.57ð1Þ for

γd ¼ 2.10, δ ¼ 0.61ð1Þ for γd ¼ 2.25, δ ¼ 0.67ð2Þ for
γd ¼ 2.40, and δ ¼ 0.78ð2Þ for γd ¼ 2.75. The excellent
agreement of these exponents, compared with the ones for
the Vicsek model reported in Table I, confirm our hypoth-
esis regarding the equivalence of Vicsek and majority-vote
model on complex networks.
We finally focus on the hierarchy of the order of the

nodes of different degree in the Vicsek model, and compute
a degree-restricted order parameter defined as

ϕηðt; kÞ ¼
1

Nk

X
i∈Vk

cos ½θiðtÞ − θ̄ðtÞ�; ð7Þ

where Vk is the set of nodes with degree k, and Nk is the
number of such nodes. From this expression, a time-
independent order parameter hϕηðkÞi is defined by means
of an appropriate time average over a large time window, T.
In Fig. 4, we plot the restricted order parameter as a
function of k. As can be seen, there is apparently a
hierarchy in the order of the systems, with low-degree
nodes being more disordered than high-degree nodes. This
can be explained by the larger number of connections of
high degree nodes, which average velocities over a larger
ensemble than low-degree nodes do, and are therefore less
susceptible to the influence of the external noise. This effect
can be interpreted as high degree nodes playing the role of
leaders, which can keep the network ordered even close
to the maximum possible value of disorder when they are
large enough (i.e., for small values of γd).
In conclusion, we have studied numerically the Vicsek

model applied to complex scale-free networks with a
degree distribution PðkÞ ∼ k−γd . By means of extensive
numerical simulations, we observe that the nature of the
possible order-disorder transition exhibited by the model
depends on the level of heterogeneity of the network, as
given by the value of the degree exponent γd. For γd > 2.5,
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equal to the peak of the dynamic susceptibility; solid symbols
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there is a true transition, located at ηcðγdÞ, which increases
with decreasing γd. Meanwhile, for γd < 2=5, we obtain a
critical point in the thermodynamic limit equal to 1,
indicating the lack of a true critical transition. These results
indicate that flocking dynamics in scale-free social net-
works is more robust against noise effects in the case of
high network heterogeneity (i.e., small γd). These numeri-
cal results are in disagreement with the validity of direct
mapping of the Vicsek model to the equilibrium XY model
on the network of connections, which is usually assumed
to be valid. Nonetheless, our results do appear to be in
agreement with those of the nonequilibrium majority-vote
model on complex networks, which can be considered as a
variation of the Vicsek model with reduced symmetry of
the order parameter. Our work highlights the role of the
effects of social topology in flocking dynamics and opens
up intriguing questions regarding the role of symmetries in
dynamical processes on networks. Deeper research effort is
necessary to further our understanding of both questions.
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