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Abstract
This thesis is dedicated to the investigation, development, and optimization of catalysts and operating
conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim
of producing liquid fuel from solid biomass.

(Ni/Co)-MoS2/MgAl2O4 catalysts were prepared and tested for HDO activity in a pressurized
�xed bed reactor setup at 380-450 ◦C, 27 bar H2, ≤2200 ppm H2S, and times on stream of up to
220 h. Ethylene glycol (EG) was used in most experiments, representing the most reactive cellu-
losic fraction of biomass, but acetic acid, phenol, and cyclohexanol were also tested. This work was
coupled with density functional theory (DFT) calculations and advanced characterization (e.g. in-situ
X-ray absorption spectroscopy, XAS) to address the role of promotion and in�uence of H2O and H2S
on the catalysts at the atomic level. Several characterization techniques including N2-physisorption,
NH3-chemisorption, transmission electron microscopy (TEM), X-ray di�raction (XRD), Raman spec-
troscopy, and elemental analysis were employed to unravel the composition, morphology, and properties
of the prepared catalysts.

The MgAl2O4 support is shown to have a comparable concentration of acid sites as traditionally
applied γ-Al2O3, and to catalyze dehydration and coupling reactions, while the MoS2 phases catalyze
both cracking (giving C1 species: CH4, CO, and CO2) and HDO (giving C2 species: ethylene and
ethane) with a C2/C1 ratio of 1.1-1.5 at 400 ◦C and 550 ppm H2S. This ratio could be improved to ∼
2 with 2200 ppm H2S, while the presence of a promoter (Ni or Co) increased the activity and stability.
DFT calculations indicated that the promoting e�ect of H2S is caused by its ability to adsorb as SH
groups, which catalyze dehydration and hydrogenation reactions, at the catalyst active edges.

In-situ XAS in terms of extended X-ray absorption �ne structure (EXAFS) and X-ray absorption
near edge structure (XANES) was additionally used to study the initial catalyst activation (MoOx →
MoS2) at 400-450 ◦C by sul�dation in 10 % H2S/H2 and to demonstrate that the resulting active phase,
which was anchored to the support, was tolerant towards exposure to water at increasing H2O/H2S
ratios of 30-300 at 400-450 ◦C.

The prepared catalysts were shown to have good deoxygenation and hydrogenation activity, which
enabled a yield of 40-50 % ethane from ethylene glycol at 400 ◦C and a co-feed of 550 ppm H2S. 100
% conversion could be obtained for 172 h on stream at a high ethylene glycol residence time (at a feed
of 2 gEG/gcat/h), demonstrating the potential of promoted MoS2 based catalysts in HDO. Catalyst
deactivation occurred by carbon deposition, which could be removed in a simple reactivation process
(combustion and resul�dation). A kinetic analysis was performed based on experiments with ethylene
glycol, cyclohexanol, and phenol, and the results suggested that deoxygenation took place over active
sites from the MoS2 phase as well as over acid sites of the support, and that ethylene glycol strongly
inhibited the deoxygenation of cyclohexanol.

This thesis provides new insights into the HDO of reactive biomass derived oxygenates with MoS2
based catalysts showing high water tolerance and importance of promotion and H2S level during HDO.
These insights allow for further development of catalyst formulations and operating conditions for the
production of green fuels from biomass by catalytic fast hydropyrolysis or HDO of pyrolysis vapors.
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Resumé
Denne afhandling beskriver undersøgelsen, udviklingen og optimeringen af katalystorer og procesbetin-
gelser til katalytisk hydropyrolyse samt hydrodeoxygenering (HDO) af pyrolysegas med det overordnede
formål at producere �ydende bændstof fra fast biomasse.

(Ni/Co)-MoS2/MgAl2O4 katalysatorer er blevet fremstillet og testet for HDO aktivitet i en tryksat
reaktor med et pakket leje ved 380-450 ◦C, 27 bar H2, ≤2200 ppm H2S og driftstid på op til 220
timer. Ethylen glykol (EG) er brugt i �est forsøg som repræsentant for den mest reaktive cellulose-
a�edte del af biomasse, men der er også anvendt eddikesyre, phenol og cyklohexanol. Dette arbejde
er samkoblet med tætheds-funktional-teori (DFT) beregninger samt avancerede karakteriseringsmet-
oder (bl.a. in-situ Røntgen absorptions spektroskopi, XAS) for at undersøge ind�ydelsen af promoter
og indvirkningen af H2O og H2S på katalysatorerne på atomart niveau. Der er anvendt adskillige
karakteriseringsmetoder for at afdække katalysatorernes sammensætning, morfologi og egenskaber;
heriblandt N2-fysisorption, NH3-kemisorption, transmissions elektron mikroskopi (TEM), Røntgen dif-
fraktion (XRD), Raman spektroskopi og elementar analyse.

Det vises, at MgAl2O4 bærermaterialet havde en koncentration af sure sites, som var sammenlignelig
med en traditional γ-Al2O3-bærer. Bærermaterialet katalyserer dehydrering og koblingsreaktioner,
mens MoS2 katalyserer både krakning (hvilket giver C1 specier: CH4, CO, and CO2) og HDO (hvilket
giver C2 specier: ethen and ethan) med et C2/C1 forhold på 1.1-1.5 ved 400 ◦C og 550 ppm H2S. Dette
forhold kunne forbedres til ∼ 2 med 2200 ppm H2S, mens tilstedeværelsen af en promoter (Ni eller Co)
øgede aktiviteten og stabiliteten. DFT beregninger indikerede, at den promoterende e�ekt fra H2S er
dets evne til at adsorbere som SH grupper, der katalyserer dehydrerings- og hydrogeneringsreaktioner,
på katalysatorens aktive kanter.

In-situ XAS i form af EXAFS og XANES blev ydermere anvendt for at undersøge den indlednings-
vise katalysatoraktivering (MoOx → MoS2) ved 400-450 ◦C ved sul�dering i 10 % H2S/H2 og for at
demonstrere at den resulterende aktive fase, som var knyttet til bærermaterialet, var modstandsdygtigt
over for vand ved stigende H2O/H2S forhold på 30-300 ved 400-450 ◦C.

Det blev vist, at de fremstillede katalysatorer havde god deoxygenerings- og hydrogenerings-aktivitet,
som gav et 40-50 % ethan-udbytte fra ethylen glykol ved 400 ◦C med 550 ppm H2S i føden. 100 % om-
sætning kunne opnås i 172 timer ved høj ethylen glykol opholdstid (ved en fødning af 2 gEG/gkat/time),
hvilket demostrerede promoterede MoS2 katalysatorers potentiale i HDO. Kula�ejring gav anledning
til katalysator deaktivering, hvoraf det opbyggede kul kunne fjernes i en simpel reaktiveringsproces
(afbrænding og gensul�dering). En kinetikanalyse er foretaget på basis af forsøg med ethylen glykol,
cyklohexanol samt phenol, og resultaterne indikerede, at deoxygenering foregik over aktive sites fra
MoS2 fasen samt over bærermaterialtets sure sites, og at ethylen glykol stærkt inhiberede deoxygener-
ing af cyklohexanol.

Denne afhandling giver nye indblik i HDO af reaktive biomasse-a�edte oxygenater med MoS2-
baserede katalysatorer; modstandsdygtighed over for vand og vigtigheden af promoter samt H2S niveau
under HDO. Disse indblik muliggør videre udvikling af katalysatorformuleringer og procesbetingelser
til produktion af grønne brændsler fra biomasse ved katalytisk hydropyrolyse og HDO af pyrolysegas.

ii



Preface and Acknowledgments

This work was conducted at the CHEC research center at The Department of Chemical and Biochemical
Engineering (KT) at DTU as part of the H2CAP project. The H2CAP project (1377-00025A), is funded
by Innovation Fund Denmark, which at the time of funding was called The Danish Council for Strategic
Research (The Programme Commission on Sustainable Energy and Environment). It would not have
been possible to present the current results without the help of many colleagues, whom I would like to
express my sincere gratitude towards.

My supervisors Anker Degn Jensen (DTU), Martin Høj (DTU), Jan-Dierk Grunwaldt (KIT), and
Jostein Gabrielsen (Haldor Topsøe) have guided me throughout this work in a dedicated manner, al-
lowing for me to strive towards the development of new knowledge and skills within this �eld of science.
Anker Degn Jensen and Martin Høj have always kept their door open, ready to engage in a scienti�c
discussion. Jan-Dierk Grunwaldt was always ready to provide insights into e.g. advanced characteriza-
tion techniques, and enabled catalyst characterization at KIT by several techniques. Jostein Gabrielsen
contributed with catalyst expertise as well as knowledge on industrial processes and commercial know-
how. All of my supervisors contributed to a professional and friendly work environment, and it has
been a true pleasure working with all of them.

Hendrik Kramer, Simon Brædder Lindahl, and Mads Lysgaard Andersen, conducted their B.Sc.
theses under my supervision and contributed signi�cantly to the experimental work. They all learned
that experimental research requires many hours in the lab, and I am thankful for their e�orts. Former
and current technicians Anders Tiedje and Anders Kjersgaard have assisted the maintenance of the
continuous �ow reactor setup among many other tasks. The DTU KT workshop has performed various
modi�cations on the experimental �ow reactor setup.

Abhijeet Gaur (KIT) and Tim Prüÿmann (KIT) took part in a beamtime at the Swiss Light Source
(SLS) synchrotron together with Martin Høj, where the catalyst structure was studied with in-situ

XAS under operating conditions. Abhijeet Gaur also performed the subsequent XAS data treatment
(EXAFS, XANES, MES), which signi�cantly aided the understanding of the employed catalyst systems.

Del�na Garcia Pintos (Stanford University) has performed DFT calculations used in this work,
allowing for detailed insights into the catalyst structure. Felix Studt (Stanford University and KIT)
provided useful insights into the calculations, and aided the discussions during project meetings. Paul
Sprenger, Alexey Boubnov, and Dmitry, Doronkin (KIT) have aided characterization work performed
at KIT. From Haldor Topsøe, Jostein Gabrielsen, Nadia Luciw Ammitzbøll, Lars Frøsig Østergaard,
and Lars Kürstein have helped in the analysis of various samples. Thomas Willum Hansen (DTU CEN)
conducted transmission electron microscopy (TEM) studies allowing for visualization of prepared and
spent catalyst samples.

Finally, I have had so many good, fun, and valuable moments together with my colleagues; both
in the lab, on the bowling lane, during lunch, and on the go during casual encounters in the hall-way.

iii



I am thankful that those of my colleagues who worked in the pilot hall tolerated my desire to keep the
windows closed, even during humid summer days with >35 ◦C, in order to avoid process �uctuations.

And just like there is always room for a bottle of beer in the jar of life, there has been time in-
between the many hours in the lab to hang out with my friends and family, whom I want to thank
for always bearing with me and my urge to do lab work in weekends and to put experiments �rst
on many occasions. My greatest gratitude in this regard goes to my wonderful husband, Mads, who
has supported me all the way and has shown great patience during numerous monologues on catalytic
hydrogeoxygenation and experimental issues of any kind.

- Thank you -

iv



Publications and Conference

Contributions

Articles submitted to peer-reviewed journals

Trine M. H. Dabros, Magnus Z. Stummann, Martin Høj, Peter A. Jensen, Jan-Dierk Grunwaldt, Jostein
Gabrielsen, Peter M. Mortensen, Anker D. Jensen, "Transportation Fuels from Biomass Fast Pyrolysis,

Catalytic Hydrodeoxygenation, and Catalytic Fast Hydropyrolysis". Submitted to Progress in Energy

and Combustion Science in September 2017.

Trine M. H. Dabros, Abhijeet Gaur, Del�na G. Pintos, Paul Sprenger, Martin Høj, Thomas W. Hansen,
Felix Studt, Jostein Gabrielsen, Jan-Dierk Grunwaldt, Anker D. Jensen, "In�uence of H2O and H2S

on the Composition, Activity, and Stability of Sul�ded Mo, CoMo, and NiMo Supported on MgAl2O4

for Hydrodeoxygenation of Ethylene Glycol". Accepted by Applied Catalysis A: General in December
2017.

Articles in preparation

Trine M. H. Dabros, Mads L. Andersen, Simon B. Lindahl, Thomas W. Hansen, Martin Høj, Jostein
Gabrielsen, Jan-Dierk Grunwaldt, Anker D. Jensen, "Hydrodeoxygenation of Pyrolysis Vapor Model

Compounds over Sul�ded NiMo/MgAl2O4". To be submitted, 2018.

Abhijeet Gaur, Trine M. H. Dabros, Martin Høj, Alexey Boubnov, Tim Prüÿmann, Felix Studt, Anker
D. Jensen, Jan-Dierk Grunwaldt, "In-situ XAS Study at Multiple Edges Combined with Modulation

Excitation Spectroscopy for Detecting In�uences of H2O and H2S on HDO Catalysts". To be submitted,
2018.

Other documents

Trine M. H. Arndal, "Safety and operation manual for: SLS in-situ EXAFS setup". September 2016. A
safety and instruction manual for operation of an experimental capillary reactor setup used for in-situ
XAS analysis.

Trine M. H. Arndal, "Creating and using calibration �les for GC-FID (Shimadzu GCMS-QP2010 Plus,

lab 037/229)". February 2017. A software instruction manual for quanti�cation of GC-FID signals.

v



Conference contributions

presenting author, *corresponding author

Posters

Trine M. H. Arndal, Martin Høj, Peter A. Jensen, Lasse R. Clausen, Jan-Dierk Grunwaldt, Jostein
Gabrielsen, Felix Studt, Anker D. Jensen*, "H2CAP - Hydrogen Assisted Catalytic Biomass Pyrolysis

for Green Fuels". Presented at Sustain DTU, 2014, Kgs. Lyngby, Denmark.

Trine M. H. Arndal, Martin Høj, Magnus Z. Stummann, Peter A. Jensen, Lasse R. Clausen, Jan-Dierk
Grunwaldt, Jostein Gabrielsen, Del�na Pintos, Felix Studt, Anker D. Jensen*, "H2CAP - Hydrogen

Assisted Catalytic Biomass Pyrolysis for Green Fuels". Presented at Sustain DTU, 2015, Kgs. Lyngby,
Denmark. This presentation was awarded with a poster award at Sustain DTU. This poster was also
presented at the 2nd ProBioRe�ne workshop, 2015, Johor Bahru, Malaysia.

Trine M. H. Arndal, Martin Høj , Del�na G. Pintos, Felix Studt, Jan-Dierk Grunwaldt, Jostein Gabri-
elsen, Anker D. Jensen*, "Catalytic Hydrodeoxygenation of Biomass Pyrolysis Vapor Model Compounds

over Molybdenum Sul�de Catalysts: In�uence of Support, H2S and Water". Presented at the 16th In-
ternational Congress on Catalysis, 2016, Beijing, China.

Orals

Trine M. H. Arndal, Martin Høj, Del�na G. Pintos, Felix Studt, Jan-Dierk Grunwaldt, Jostein Gabri-
elsen, Anker D. Jensen*, "Catalytic Hydrodeoxygenation of Biomass Pyrolysis Vapor Model Compounds

over Molybdenum Sul�de Catalysts: In�uence of Support, H2S and Water". Presented at the 17th Nor-
dic Symposium on Catalysis, 2016, Lund, Sweden.

Trine M. H. Arndal, Martin Høj, Abhijeet Gaur, Tim Prüÿmann, Del�na G. Pintos, Felix Studt,
Jostein Gabrielsen, Jan-Dierk Grunwaldt, Anker D. Jensen*, "In�uence of Promoter, H2O and H2S

on the Hydrodeoxygenation of Biomass Pyrolysis Vapor over MoS2 Catalysts". Presented at the 25th

North American Catalysis Society Meeting, 2017, Denver, United States of America.

Trine M. H. Arndal, Martin Høj, Abhijeet Gaur, Tim Prüÿmann, Del�na G. Pintos, Felix Studt,
Jostein Gabrielsen, Jan-Dierk Grunwaldt, Thomas W. Hansen, Anker D. Jensen*, "In�uence of Pro-

moter, H2O and H2S on the Hydrodeoxygenation of Biomass Pyrolysis Vapor over MoS2 Catalysts".
Presented at the 13th European Congress on Catalysis, 2017, Florence, Italy.

vi



Nomenclature

Abbreviations
ACI Acid catalyzed reactions
AVG Average
CAN Cyclohexane
CEN Cyclohexene
CN Coordination number
CRA Cracking
CUS Coordinatively unsaturated site
Cyc Cyclohexanol
db Dry basis
DCO Decarboxylation and/or decarbonylation
DDO Direct deoxygenation
DFT Density functional theory
DMDS Dimethyl disul�de
DME Demethylation
DMO Demethoxylation
DOD Degree of deoxygenation
EG Ethylene glycol
ETA Ethane
ETY Ethylene
EXAFS Extended X-ray absorption �ne structure
FCC Fluid catalytic cracking
FID Flame ionization detector
FT Fourier Transform
g gas
GC Gas chromatography
GGA Generalized gradient approximation
GHG Greenhouse gas
HAADF-STEM High-angle annular dark-�eld scanning TEM
HAc Acetic acid
HCR Hydrocracking
HDM Hydrodemetallization
HDN Hydrodenitrogenation
HDO Hydrodeoxygenation
HDS Hydrodesulfurization

vii



HHV Higher heating value
HYD Hydrogenation
ICP-OES Inductively coupled plasma optical spectroscopy
IR Infrared
LCA Life cycle assessment
LCF Linear combination �tting
LHSV Liquid hourly space velocity
MES Modulation excitation spectroscopy
MFC Mass �ow controller
MS Mass spectrometry
MSE Mean square error
MT Methyl transfer
NMR Nuclear Magnetic Resonance
Phe Phenol
QEXAFS Quick-EXAFS
s solid
SA Surface area
SNG Synthetic natural gas
SP Setpoint
SSA Speci�c surface area
STM Scanning tunnelling microscopy
STY Space time yield
TCD Thermal conductivity detector
TEM Transmission electron microscopy
TOF Turnover frequency
TOS Time on stream
TPD Temperature programmed desorption
V Valve
WGS Water gas shift
WHSV Weight hourly space velocity
XAFS X-ray absorption �ne structure
XANES X-ray absorption near edge structure
XAS X-ray absorption spectroscopy
XRD X-ray di�raction

Symbols
∆E0 Energy shift
∆H Enthalpy of reaction
∆R Change in path length (XAS)
A GC-FID peak area
Cbalance Carbon balance
Ci Concentration of compound i
Cp Heat capacity
CWP Weisz-Prater coe�cient
De E�ective di�usion coe�cient

viii



DK Knudsen di�usion coe�cient
dp Particle diameter
DAB Di�usion coe�cient for compound A in B
Ea Activation energy
F Molar �ow rate
fobj Objective function
K Equilibrium constant
k Rate constant
k′ Lumped rate constant
kc Mass transfer coe�cient
L Length
m Mass
Mw Molar mass
MAB Combined molar mass for compounds A and B (for Fuller-Giddings correlation)
P Total pressure
p Partial pressure
pf/l Pressure drop per length through packed bed
Ql Liquid Volumetric �ow rate
R Bond length (XAS) -OR- aliphatic/aromatic group -OR- ideal gas constant
r Reaction rate
rp Particle radius
rpore Pore radius
rreactor Reactor radius
Re′ Modi�ed Reynolds number
Rep Modi�ed Reynolds number for packed bed
S2
0 Amplitude reduction factor
Sc Schmidt number
Sh′ Modi�ed Sherwood number
T Temperature
t Time
Tb Boiling point
Tc Critical temperature
U Linear gas velocity
v Volumetric �ow rate
W Catalyst mass in packed bed
X Conversion
Y Yield
y Molar (or volumetric) fraction

Superscript
m Reaction order
n Reaction order
o Reaction order
p Reaction order

ix



Subscript
A Reactant/compound
B Reactant/compound
b Bulk
C Carbon
cat Catalyst
exp Measured, from experiment
g Gas
i Compound or reaction
l Liquid
model Calculated, from model
out Outlet
p Particle
ref Reference
s Catalyst surface
0 Initial/feed

Greek
η Dynamic viscosity
ηe� E�ectiveness factor
γ Shape factor
νC,e�,i E�ective number of carbon atoms (in GC-FID) in compound i
νC,non Number of non-contributing carbon atoms (in GC-FID) in compound i
νC,i Number of carbon atoms in compound i
Φ Thiele modulus
φ Packed bed void fraction
φc Catalyst porosity
ρ Density
ρb Bulk density of packed bed
ρc Density of catalyst
σ2 Debye-Waller factor
σ Constriction factor∑

v Sum of atomic di�usion volumes
τ Tortuosity
Θi Feed �ow ratio of compound i

x



Contents

Abstract i

Resumé ii

Preface and Acknowledgments iii

Publications and Conference Contributions v

Nomenclature xi

Contents xiv

1 Outline 1

2 Introduction and Background 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Properties of Fast Pyrolysis Bio-oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Aspects of Bio-oil Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Catalytic Hydrodeoxygenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Reactions, Reactivity, and Reaction Mechanisms . . . . . . . . . . . . . . . . . 11
2.3.2 Bio-oil Upgrading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3.1 Sul�des . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3.1.1 Role of Promotion . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3.2 Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3.3 Reduced Transition Metals . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3.3.1 Noble Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3.3.2 Non-noble Metals . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3.4 Phosphides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3.5 Alternative Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Role of Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Choice and In�uence of Operating Conditions . . . . . . . . . . . . . . . . . . . 35

2.3.5.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5.2 Residence Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5.3 Hydrogen Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.6 Catalyst Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.6.1 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



CONTENTS

2.3.6.2 Carbon Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.6.3 Regeneration and Activity Control . . . . . . . . . . . . . . . . . . . . 40

2.3.7 Kinetic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.8 Perspectives of HDO as Upgrading Technique for Condensed Bio-oil . . . . . . 43

2.4 Combined Biomass Fast Pyrolysis and Catalytic Product
Upgrading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Perspectives of Fast Pyrolysis with Ex-situ and In-situ Hydrodeoxygenation . . 46

2.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Experimental Work 51

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.1 Setup Modi�cations and Material Selection . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.3 Liquid feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.4 Gas feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.5 Product Separation, Collection, and Analysis . . . . . . . . . . . . . . . . . . . 57

3.2 Catalyst Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Catalyst Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Elemental Analysis and Morphology . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 NH3-TPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.4 XAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.5 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Catalytic Activity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Experimental Results Not Covered by this Thesis . . . . . . . . . . . . . . . . . . . . . 65

4 In�uence of Promotion and Loading 67

In�uence of Promotion and Loading on the Hydrodeoxygenation of Ethylene

Glycol over Sul�ded NiMo and CoMo Catalysts Supported on MgAl2O4 . . 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 XRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 NH3-TPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Activity of MgAl2O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 NiMo and CoMo Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.4.1 In�uence of Loading and Choice of Promoter . . . . . . . . . . . . . . 72
4.2.4.2 In�uence of Varying H2S Feed Concentration . . . . . . . . . . . . . . 77
4.2.4.3 In�uence of Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.4.4 In�uence of Residence Time . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.5 Spent Catalyst Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



CONTENTS

5 In�uence of H2O and H2S 85

In�uence of H2O and H2S on the Composition, Activity, and Stability of Sul�ded

Mo, CoMo, and NiMo Supported on MgAl2O4 for Hydrodeoxygenation of

Ethylene Glycol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 DFT Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Conversion of Ethylene Glycol over Promoted and Unpromoted

MoS2/MgAl2O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2.1 Overall Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2.2 Carbon Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2.3 Role of Promotion and H2S in the C2/C1 Selectivity and Stability . . 91
5.2.2.4 Role of H2S in Primary Alcohol Hydrodeoxygenation . . . . . . . . . . 92

5.2.2.4.1 Reproducibility of Stabilizing E�ect of H2S . . . . . . . . . . 93
5.2.3 Spent Catalyst Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.4 Characterization of Active Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.4.1 Oxide Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.4.2 Oxide to Sul�de Conversion during Sul�dation . . . . . . . . . . . . . 98
5.2.4.3 Sul�de Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.4.4 Stability against Varying H2O/H2S . . . . . . . . . . . . . . . . . . . 102

5.2.5 Target Sul�de Phase for Hydrodeoxygenation at Elevated Temperature . . . . . 103
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Kinetics, Deactivation, and Reactivation 105

Hydrodeoxygenation of Pyrolysis Vapor Model Compounds over Sul�ded

NiMo/MgAl2O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Hydrodeoxygenation of Acetic Acid . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Hydrodeoxygenation of Ethylene glycol, Phenol, and Cyclohexanol . . . . . . . 107

6.2.2.1 Reaction Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2.2 Conversion of Ethylene Glycol . . . . . . . . . . . . . . . . . . . . . . 109
6.2.2.3 Product yields from Ethylene Glycol Conversion . . . . . . . . . . . . 111
6.2.2.4 Kinetics of Ethylene Glycol Hydrodeoxygenation . . . . . . . . . . . . 112
6.2.2.5 Phenol Reactivity in the Presence of Ethylene Glycol . . . . . . . . . 116
6.2.2.6 Conversion and Product Yields from Cyclohexanol Conversion . . . . 117
6.2.2.7 Kinetics of Cyclohexanol Hydrodeoxygenation . . . . . . . . . . . . . 118

6.2.3 Catalyst Deactivation and Regeneration . . . . . . . . . . . . . . . . . . . . . . 119
6.2.3.1 Origin of Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.3.2 Reactivation by Oxidation and Resul�dation . . . . . . . . . . . . . . 123
6.2.3.3 Activity of Reactivated Catalyst . . . . . . . . . . . . . . . . . . . . . 124

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions and Outlook 129

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xiii



CONTENTS

Bibliography 132

Appendices 154

A In-situ XAS Setup and Data Treatment Details 155

B DFT: Computational Details 158

C Silica Degradation in Experiments with Ethylene Glycol, H2, and H2S 159

D Temperature Pro�le during HDO 161

E Phase Distribution in S1 and Liquid Collection 162

F N2-Physisorption of MgAl2O4 165

G Mass Balance in the POC Setup 166

G.1 Reliability of Liquid Feed and Liquid Product Flow . . . . . . . . . . . . . . . . . . . . 169
G.2 Reliability of GC-FID/MS Quanti�cation . . . . . . . . . . . . . . . . . . . . . . . . . 170
G.3 Extended Gas Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

G.3.1 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
G.3.2 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

H Appendices for Chapter 5 175

H.1 Results from Catalytic Activity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
H.2 Raman Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
H.3 TEM analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
H.4 EXAFS Fitting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

I Kinetic Models 186

I.1 Ethylene Glycol Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
I.2 Cyclohexanol Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

I.2.1 Note on By-product Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
I.3 Evaluation of Assumptions for Kinetic Models . . . . . . . . . . . . . . . . . . . . . . . 191

I.3.1 Excess Hydrogen and Constant Volumetric Flow Rate . . . . . . . . . . . . . . 191
I.3.2 Plug Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
I.3.3 Constant Pressure Across Packed Bed . . . . . . . . . . . . . . . . . . . . . . . 193
I.3.4 Isothermal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

I.4 Evaluation of Mass Transfer Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . 194
I.4.1 External Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
I.4.2 Internal Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
I.4.3 E�ectiveness Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

I.5 Equilibrium Composition during Phenol HDO . . . . . . . . . . . . . . . . . . . . . . . 198

J Catalyst Reactivation by Oxidation and Resul�dation 199

xiv



1 | Outline

This thesis is based on original research work with the following structure:

� Chapter 2 gives a comprehensive review of catalytic hydrodeoxygenation (HDO) of fast pyrolysis
oil and model compounds and discusses the potential of coupling fast pyrolysis and catalytic HDO
for sustainable production of liquid carbon based fuels. This chapter is basically composed by a
re-print of all sections of the submitted review article "Transportation Fuels from Biomass Fast

Pyrolysis, Catalytic Hydrodeoxygenation, and Catalytic Fast Hydropyrolysis" that were written
by Trine M. H. Dabros, who was also the main author of this work. Sections written by Magnus
Z. Stummann (on fast pyrolysis) and by Martin Høj (on catalytic hydropyrolysis) were omitted or
in some cases shortened and modi�ed to target chapter 2 towards HDO. The remaining authors
for this article (Peter A. Jensen, Jan-Dierk Grunwaldt, Jostein Gabrielsen, Peter M. Mortensen,
Anker D. Jensen) contributed to the discussion and proof reading.

� Chapter 3 describes the experimental equipment and procedures employed at DTU, KIT, PSI-
SLS, and in collaboration with Haldor Topsøe A/S. It is an expansion of the "Experimental"
section in the accepted article "In�uence of H2O and H2S on the Composition, Activity, and

Stability of Sul�ded Mo, CoMo, and NiMo Supported on MgAl2O4 for Hydrodeoxygenation of

Ethylene Glycol". In chapter 3, the description of the experimental setup used for catalytic
activity tests may be read in addition to the original description [1].

� Chapter 4 presents the results from catalytic activity tests performed on the pure MgAl2O4

support and supported Ni-MoS2 and Co-MoS2 catalysts with di�erent active phase loadings.
Trine M. H. Dabros conducted the experimental work, in most cases assisted by Hendrik Kramer
(B.Sc. student). Paul Sprenger conducted Raman spectroscopy on selected catalyst samples and
provided important insights to the analysis of Raman spectra. Some of the results presented
in chapter 4 are considered for the article, which is prepared based on the results presented in
chapter 6.

� Chapter 5 is essentially the "Results and Discussion" section from the accepted article: "In�u-
ence of H2O and H2S on the Composition, Activity, and Stability of Sul�ded Mo, CoMo, and

NiMo Supported on MgAl2O4 for Hydrodeoxygenation of Ethylene Glycol" (Accepted by Applied

Catalysis A: General in December 2017). This chapter presents a study of the activity and
stability of prepared Ni-MoS2, Co-MoS2, and MoS2 catalysts under varying water and H2S con-
centrations. Trine M. H. Dabros was the main author of this work and conducted the catalyst
preparation and catalytic activity tests. The in-situ XAS experiments were performed at the
PSI-SLS synchrotron by Marin Høj, Abhijeet Gaur, Tim Prüÿmann, and Trine M. H. Dabros,
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Chapter 1. Outline

and Abhijeet Gaur subsequently performed the XANES and EXAFS data treatment. Abhijeet
Gaur wrote the description of the XAS data treatment process, which can be found in Appendix
A. Abhijeet Gaur provided the backbone for the analysis of the in-situ XAS results, and the
text presented in chapter 5.2.4 is the result of a joint e�ort from both Abhijeet Gaur and Trine
M. H. Dabros. Del�na G. Pintos performed DFT calculations, and wrote the description of the
computational procedures (which can be found in Appendix B) together with Felix Studt. Paul
Sprenger conducted Raman spectroscopy on selected catalyst samples and provided important
insights to the analysis of Raman spectra, and the text presented in chapter 5.2.4.1 is the result
of a joint e�ort from both Paul Sprenger and Trine M. H. Dabros. Thomas W. Hansen took
TEM images of selected catalyst samples. The remaining authors for this article (Jostein Gabri-
elsen, Jan-Dierk Grunwaldt, Anker D. Jensen) contributed to the planning, discussion, and proof
reading.

� Chapter 6 is the "Results and Discussion" being prepared for the article in preparation: "Hy-

drodeoxygenation of Pyrolysis Vapor Model Compounds over Sul�ded NiMo/MgAl2O4". It presents
the results from a kinetic study of the HDO of various model compounds in pure and mixed solu-
tions over a Ni-MoS2/MgAl2O4 catalyst. Trine M. H. Dabros is the main author of this work and
conducted the experimental work, partly assisted by Mads L. Andersen and Simon B. Lindahl
(B.Sc. students), who also performed the statistical TEM analysis on images taken by Thomas
W. Hansen. The remaining authors for the article in preparation (Martin Høj, Jostein Gabrielsen,
Jan-Dierk Grunwaldt, Anker D. Jensen) will contribute to the discussion and proof reading.

� Chapter 7 gives the overall conclusions and outlook based on the result obtained in the preceding
chapters.

� The appendices provide additional details to many of the chapters presented in this thesis.

Chapters 2, 5, and 6 have been built up according to their respective article structure. A few small
modi�cations such as reference updates and minor modi�cations of the content have been performed to
�t the scope of this thesis. In chapter 5, the "Introduction" section was shortened to avoid repetition of
chapter 2. Chapter 6 is still in the process of being prepared for submission. This means that changes
may occur before manuscript submission.
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2 | Introduction and Background

Transportation Fuels from Biomass Fast Pyrolysis, Catalytic

Hydrodeoxygenation, and Catalytic Fast Hydropyrolysis

Abstract
The modern society is presently based on liquid, carbon containing transportation fuels. With depleting
fossil resources and an increasing global energy demand, biomass is the most promising renewable
carbon source. Fast pyrolysis of biomass is a well-developed technology, which can produce bio-oil
at yields up to ∼ 75 %. This bio-oil has a high oxygen content of 35-50 wt% (present as water and
biomass derived oxygenates), resulting in a low heating value, approximately half of that of fossil
based fuels, and other adverse properties such as high polarity, acidity, and instability upon storage
and heating. Raw bio-oil produced by fast pyrolysis can therefore primarily be used for gasi�cation or
combustion in boilers, and not as a transportation fuel. It is possible to remove the oxygen by catalytic
hydrodeoxygenation (HDO), in which the undesired oxygenates react with hydrogen to produce a stable
fuel, with similar heating value as fossil fuels, and water, which is removed by separation. HDO is
typically carried out on condensed bio-oil or model compounds in a batch or �xed bed reactor operated
at 250-400 ◦C and up to 200 bar hydrogen. Several catalytic systems have been tested with the most
widely studied being commercial hydrotreating catalysts (Co/Ni-MoS2), oxides (MoO3, V2O5, Fe2O3),
reduced transition metals (Ni, Pt, Pd, Ru), and phosphides (Ni2P, WP, MoP). HDO on condensed bio-
oil seems very challenging for commercial scale for bio-oil upgrading, as the coking and polymerization,
which occurs upon re-heating of the oil, rapidly deactivates the catalyst and plugs the reactor. Instead,
a promising technology is catalytic fast hydropyrolysis, which combines fast pyrolysis with catalytic
HDO in a �uid bed reactor and produces a stable oil with an oxygen content, an H/C ratio, and a
heating value comparable to those of fossil fuels. The process development includes several challenges
with the following most urgent three issues: i) operating conditions (temperature, H2 pressure, and
residence time) and catalyst formulation should be optimized to maximize oil yield and minimize
cracking, coke formation, and catalyst deactivation, ii) development of a proper process design and
reactor con�guration to allow for continuous operation including pressurized biomass feeding, fast
entrainment and collection of catalytically active char, e�cient condensation of the produced oil, and
utilization and/or integration of by-products (non-condensable gasses and char), and iii) long-term
tests with respect to catalyst stability and possible pathways for regeneration.
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Chapter 2. Introduction and Background

2.1 Introduction

Today's production and use of energy is responsible for 60 % of the global greenhouse gas (GHG)
emissions (2016 number) [2]. With an increasing world population and the continued industrialization
of developing countries the energy consumption will keep increasing in the near future [3�5]. In
addition, the depletion of fossil resources and the wide awareness of anthropogenic global warming have
intensi�ed the search for renewable and sustainable energy resources that can support our modern way
of living [6].

The increase in the anthropogenic CO2 emissions can be traced back to the industrialization that
accelerated through the 20th century [6]. In 2010, CO2 released from fossil fuels and industrial processes
constituted 65 % of anthropogenic GHGs emitted [6]. At this time, the transport sector contributed
to 14 % of the total GHG emissions with the energy supply sector covering 34.6 %, industry 21 %,
agriculture and forestry 24 % and buildings 6.4 %, respectively [6]. In 2016, 20 % of the human
population still lived without access to modern electricity and around 40 % rely on wood, coal, or
animal waste for cooking and heating [2]. However, as projected by the U.S. Energy Administration in
2016, the global energy consumption of non-OECD countries will increase signi�cantly from 311·1015

Btu in 2012 to 533·1015 Btu in 2040 (see �gure 2.1a) [5].
In 2011 , The World Bank estimated that there were 176 vehicles per 1000 people on average in the

world. The number was 55 for low and middle income countries, 620 for high income countries, and
797 in the U.S. alone [7]. Especially for non-OECD countries, the liquid fuel consumption is expected
to increase (see �gure 2.1b) [5]. In order to accommodate the increasing demand from developing
countries it is crucial to develop technologies for a sustainable production of renewable transportation
fuels. Fluctuations in the crude oil prices [5, 8], which in 2016 were historically low [8], a�ect the
economy of emerging technologies immensely, which calls for the need of political initiative to ensure
a dedicated e�ort.
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Figure 2.1: (a) Global energy consumption reported and projected by the U.S. Energy Information Administra-

tion in 2016. (b) Petroleum and other liquid fuel consumption by OECD and non-OECD countries. Re-drawn

from [5].
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Chapter 2. Introduction and Background

Today, the infrastructure of the modern society is almost solely based on carbon based fuels due to
their very high energy density and their availability from the still large oil reserve. At the same
time, wind and solar based electricity production is reaching a mature stage. The electrical vehicle
industry is, however, facing challenges. An immediate threshold for both fuel-cell and battery driven
vehicles is the necessity to build a new fuel infrastructure with charging stations for H2 and electricity,
respectively [9]. Battery driven vehicles also struggle with a low energy density and instability of
the currently dominant Lithium batteries [9]. Another challenge lies in the availability of wind and
solar based electricity and lack of good storing technologies, e.g. chemical energy storage via hydrogen
is not yet economically feasible [10]. Electricity production from photovoltaic cells peaks during the
day, whereas power consumption typically peaks in the morning and afternoon, which results in the
so-called duck-curve [11]. Consequently, biomass appears as the most promising renewable source of
carbon for fuels. Additionally, if we look towards the aviation and shipping industries, it is unlikely
that these will be fueled by electricity in the near future.

Biomass can be used as a raw material for the production of fuels with low (potentially zero)
carbon footprint [12�14]. First generation biofuel processes such as bio-ethanol (from sugar cane
and corn) and bio-diesel (from vegetable oils) convert the biomass into fuels through well-established
technologies [15]. However, since the applied biomass types are edible, a political and ethical dilemma
arises when the number of undernourished people in the world is more than 10 % (data from 1990-
2010); a number which has fortunately been decreasing since 1990 and until today [16]. Additionally,
the energy e�ciency per unit land is markedly lower for food grade biomass compared to energy
crops [14]. Therefore, development of second generation biofuels is based on utilization of non-edible
biomasses such as wood, energy crops, algae, and waste material from agriculture, paper production,
and municipalities [17,18].

Mortensen et al. [19] reviewed the competitiveness of various routes for biofuel generation. Based
on an assessment of the fuel price per mass of oil equivalent, it was concluded that a viable route for
renewable liquid fuel production is fast pyrolysis coupled with catalytic hydrodeoxygenation (HDO).
While fast pyrolysis is used to increase the biomass energy density by producing a liquid product
commonly referred to as bio-oil, which can be transported more easily than solid biomass, catalytic
HDO is used to enhance the fuel properties through oxygen removal in an H2 atmosphere using a
suitable catalyst. A promising technology is the coupling of fast pyrolysis and HDO in catalytic fast
hydropyrolysis, where the HDO is performed directly in the pyrolysis reactor [20]. Additional H2 could
possibly be provided from the hydrolysis of water powered by wind or solar energy.

This chapter provides an brief introduction to fast pyrolysis (section 2.2), an extensive review of
catalytic HDO (section 2.3), and a summary of coupled fast pyrolysis and catalytic HDO in a continuous
catalytic fast hydropyrolysis process (section 2.4). The aim of this review is to couple the knowledge
from fast pyrolysis and HDO in the evaluation of proposed processes for production of transportation
fuels from biomass fast pyrolysis, catalytic HDO, and catalytic fast hydropyrolysis.
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Chapter 2. Introduction and Background

2.2 Properties of Fast Pyrolysis Bio-oil

Lignocellulosic biomass can be converted into an oil, typically referred to as bio-oil, by fast pyrolysis,
which is a thermochemical degradation obtained by fast heating (700-10,000◦C/s) of biomass particles
in an inert atmosphere to 400-600 ◦C with short vapor residence times (<2 s); typically in a �uid bed
or cyclone reactor [21]. Fast pyrolysis produces a liquid (bio-oil), solid and gaseous product fraction
with the distribution being dependent on the operating conditions, see table 2.1. The typical energy
recovery is 45-75 % [22].

Table 2.1: Typical product yields obtained by di�erent modes of wood pyrolysis, db = dry basis. Adapted

from [21].

Approximate product yields [wt% db]
Mode Conditions Liquid Solid Gas
Fast pyrolysis ∼ 500◦C, short hot vapor

residence time <2 s

75 12 13

Intermediate ∼ 500◦C, hot vapor

residence time ∼ 10-30 s

50 (two phases) 25 25

Carbonization (slow) ∼ 400◦C, long solid residence

time of hours or days

30 35 35

Torrefaction (slow) ∼ 290◦C, solid residence

time ∼ 10-60 min

0-5 80 20

Bio-oil is a dark brown and viscous, but freely �owing, liquid [21,23]. It is a complex mixture, consisting
of hundreds of di�erent compounds [24,25]. The chemical composition of bio-oil is similar to that of the
parent biomass, but the volumetric energy density is increased, potentially by a factor of >6 [26, 27].
The higher heating value (HHV) of bio-oil (16-19 MJ/kg) is however less than half of that of diesel and
heavy fuel oil (∼ 40 MJ/kg) [21,22,28,29]. This is due to a high content of oxygen (35-50 wt%), which
is present as water (15-30 wt%) [21, 28, 30] and many di�erent oxygenates derived from the cellulosic,
hemicellulosic, and lignin part of biomass [24, 25]. The properties of bio-oil are compared with those
of fossil fuels in table 2.2. It is clear that bio-oil is very di�erent from crude oil.

Bio-oil is unstable upon heating, and the high content of water can therefore not be removed by
conventional distillation, as this would cause rapid polymerization resulting in the formation of 30-50
wt% residual solid [30]. Furthermore, the high oxygen content in bio-oil gives it a high polarity which
makes it immiscible with conventional petroleum oils [21, 23, 31]. The density of bio-oil (∼ 1.2 kg/L)
is signi�cant higher than the density of diesel (0.82-0.85 kg/L) [32,33]. This means that bio-oil has an
energy density of 37-44 % compared to that of diesel on mass basis, but 53-65 % on volumetric basis.
Depending on the source of biomass, bio-oil typically contains trace amounts of ash, alkali, chlorine,
and sulfur [21, 34,35]; species that are all potential catalyst poisons.
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Chapter 2. Introduction and Background

Table 2.2: Common properties of wood derived bio-oil and fossil derived oils (data adapted from refs. [21, 22,

28�30,32,33,36,37]).

Property Unit Bio-oil Diesel Heavy fuel oil
Water [wt%] 15-30 0-0.001 0.1-7

Ash [wt%] 0-0.2 0-0.01 0.03-0.1

Carbon [wt%] 44-58 86 85

Hydrogen [wt%] 5.5-7.2 13 11-12

Nitrogen [wt%] 0-0.2 - 0.6

Oxygena [wt%] 35-50 0 0-0.1

Sulfur [ppm] <400 10-500 21,000

Stability - Unstable Stable Stable

Viscosity (40-50 ◦C) [cSt] 13-100 1.9-4.5 140-380

Density (15-40 ◦C) [kg/L] 1.1-1.3 0.82-0.85 0.96

Flash point [◦C] 62-95 52-55 65-100

Pour point [◦C] -19 to -24 -20 15-21

HHV [MJ/kg] 16-19 43 38-41

pH - 2.4-3.2 - -

a Includes oxygen from water.

Gas chromatography mass spectrometry (GC-MS) [24, 38] and nuclear magnetic resonance (NMR)
spectroscopy [25, 38] analysis of di�erent bio-oils have revealed that the bio-oil contains acids, non-
aromatic aldehydes, non-aromatic ketones, furans, pyrans, sugars, benzenes, catechols, lignin derived
phenols, guaiacols, and syringols. A list of common molecules found in bio-oil produced from fast
pyrolysis of wood is shown in table 2.3. Owing to the nature of these oxygenates, the oil is viscous,
acidic, and unstable upon storage and heating; phase separation, coking, or re-polymerization reactions
may occur. Thus, the direct application of fast pyrolysis bio-oil as an engine fuel is highly challenged.
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Table 2.3: Common compounds in wood derived bio-oil. Primarily adapted with permission from [39] (copyright

2013, American Chemical Society). Modi�ed and updated based on refs. [21,23,24,28,30,40�47].

Functional group Typical compounds Structurea

Simple oxygenates

Acids Acetic acid, formic acid, propanoic acid, methyl propanoic acid,

butanoic acid, pentanoic acid, glycolic acid, hexanoic acid, ...

Esters Methyl acetate, ethyl acetate, methyl formate, ...

Alcohols Methanol, 2-propene-1-ol, butanol, ethylene glycol, propylene

glycol, 2,3-butandiol, cyclopentanol, cyclohexanol,

1,2-cyclohexanediol, ...

Ketones 2-butanone, cyclopentanone, methylcyclopentanone,

3-methyl-1,2-cyclopentanedione, 2-petanone, cyclohexanone, ...

Aldehydes 2-butenal, glyoxal, formaldehyde, benzaldehyde, ...

Mixed oxygenates 2-hydroxyacetaldehyde

1-hydroxy-2-propanone

Methyl-2-oxopropanoate, 1-hydroxy-2-butanone, ...

Sugars and derivatives Levoglucosan

Xylose, arabinose, glucose, fructose, sorbitol, cellobiosan, ...

Furans Furfural

Furan, 2-furanone, butyrolactone, methyl-2-furanone, furfuryl

alcohol, 2-acetyl furan, 5-methyl furfural, 5-hydroxymethyl

furfural, tetrahydrofuran, 2,5-dimethyltetrahydrofuran, ...

Aromatics
Oxygen free Toluene, benzene, xylene, ...

Phenols Phenol, methylphenol, dimethylphenol, ethyl phenol, catechol,

methylcatechol, ethylcatechol, methoxycatechol, ...

Guaiacols Guaiacol

Methylguaiacol, ethylguaiacol, eugenol, vanillin, ...

Syringols Syringol

Methylsyringol, ethylsyringol, 4-propenylsyringol, ...

Others Vanilinic acid, sinapaldehyde, syringaldehyde, acetosyringone, ...

High Mw speciesb Dimmers, trimmers, oligomers, and cellulose, hemicellulose, and

lignin pyrolysis products

a R denotes H, CH3, or other aromatic/aliphatic groups.
bMw denotes molar mass.
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Figure 2.2a shows a typical carbon distribution in the compounds present in oak bio-oil and illustrates
that the organics in bio-oil are mainly composed of a lignin-derived fraction as well as a cellulosic/hemi-
cellulosic fraction (C5−6), and short C2 compounds. In �gure 2.2b, the organic content is divided based
on compound types and parent biomass component.
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Figure 2.2: (a) Carbon distribution for compounds present in an oak derived bio-oil. Adapted with permission

from [47] (copyright 2017). (b) Composition ranges in wood bio-oil, reproduced from Ruddy et al. [48] (with

permission of the Royal Society of Chemistry), who used the data collected by Milne et al. [49].

Woody bio-oil has a high concentration of hydroxyacetaldehyde and levoglucosan; products from cel-
lulose degradation [24, 50]. The cellulosic and hemicellulosic part of biomass is responsible for the
corrosive character (from acids) and instability (from light and reactive oxygenates) of bio-oil.

The lignin part of biomass contributes to the aromatic content in bio-oil. The phenolic content
consists of aromatics with a lower O/C content compared to the cellulose and hemicellulose derived
compounds. Additionally, these aromatics are stable and do not readily react. In conclusion, the
negative in�uence of aromatic oxygenates on the fuel quality of bio-oil is less signi�cant compared
to cellulose and hemicellulose fragments. It is therefore interesting that bio-oil model compounds
upgrading studies have mainly focused on oxygen removal from phenolic species. They may be the
most di�cult compounds to upgrade, but they are also the least problematic compounds with respect
to stability upon storage and heating.

2.2.1 Aspects of Bio-oil Utilization

The main challenge in the utilization of raw bio-oil as a transportation fuel is its instability caused
by the content of highly reactive oxygenates. Several issues have been reported when using bio-oil in
diesel engines: ignition di�culties, fuel injection problems, corrosion of injector needles, and coking
of combustion chamber, exhaust valve, and injection nozzles leading to clogging [51�57]. Therefore
further upgrading of the bio-oil is necessary, before it can be used as a transportation fuel.

Despite that fast pyrolysis technologies to some extent are commercially available, the market for
bio-oil in power plants is challenged. Solid biomass, such as wood chips or pellets, is already used in
power plants in Europe with a minimum requirement for pretreatment, which of course challenges the
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interest in biomass pyrolysis processes that produce a fuel with limited applicability. Bio-oil can be
mixed with the produced char and gasi�ed to form synthesis gas mixture that that can be converted
into liquid fuel by use of the dimethyl ether to gasoline process [26,58]. It is also possible to co-process
the bio-oil with conventional fuels in a re�nery �uid catalytic cracking (FCC) unit [59, 60], but co-
feeding is highly challenged in hydrotreating units due to the high content of oxygen in bio-oil, which
makes it immiscible with fossil feeds and causes severe coking [61]. Additionally, the alkaline metals in
the bio-oil can decrease the lifetime of catalysts in both the FCC and hydrotreating processes [59�61].
It should also be mentioned that zeolites, which are used as commercial FCC catalysts [62], typically
have a high cracking activity, which limits the oil yield.

2.3 Catalytic Hydrodeoxygenation

Catalytic HDO is known from hydrotreating (also called hydroprocessing) of crude oil, where it is
used to remove the <1 % oxygen present in the feed [28, 63]. Hydrotreating covers the removal
of sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrogenation, HDN), oxygen (HDO), and
metals (hydrodemetallization, HDM) from fossil crudes [63]. Since the oxygen content in bio-oil is
signi�cantly higher than in fossil feedstocks, the requirements for catalysts for hydrotreating of bio-oil
is signi�cantly di�erent from those for hydrotreating a fossil feed.

The literature on bio-oil upgrading by HDO and other techniques has experienced a massive increase
within the last decades. Saidi et al. [64] counted the number of bio-oil related HDO papers and found
5, 16, 73, and 131 publications for the years 2006, 2008, 2010, and 2012. A quick view at the literature
published after 2012 indicates a near exponential growth. In conclusion, bio-oil upgrading by HDO is
a hot topic, which has called many researchers to contribute to the complex task of converting biomass
into high quality liquid fuels. The scope of this section is not to give an exhaustive review of the HDO
literature, but rather to provide a comprehensive overview of the most important concepts, results,
and trends.

In 2007, Elliott [65] reviewed the historical development in hydrotreating of bio-oil produced via
di�erent pyrolysis and liquefaction techniques. In 2014, this review was followed up by a critical review
including perspectives on industrial process integration and evaluation of techno-economic analyses [66].
Furimsky [67] has provided a comprehensive review on catalytic HDO chemistry in terms of reaction
mechanisms and kinetics for both petrochemical and biomass derived model oxygenates with a focus on
conventional hydrotreating catalysts. A more general review by Furimsky [68] focuses on hydrotreating
of various bio-feeds with vegetable oil, lignocellulosic, algae, and sewage sludge origin over di�erent
catalyst classes. A number of recent reviews have a more concentrated focus on catalytic HDO of
lignocellulosic bio-oil and model oxygenates including descriptions of the HDO chemistry over di�erent
catalytic systems [19,39,48,69].

The majority of studies on catalytic HDO involve the conversion of model compounds chosen to
represent selected functionalities present in bio-oil. The results from these studies aid the understanding
of individual reaction mechanisms for a given catalyst and set of reaction conditions. Even though these
results provide some insight into catalytic HDO, they cannot be used to draw general conclusions for
HDO of real bio-oil due to the complexity of its composition and impurities present. The evaluation
of catalytic HDO activity should include considerations on catalyst properties such as active phase
dispersion (or particle size), surface area, and pore volume as these features will a�ect the observed
HDO activity.
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2.3.1 Reactions, Reactivity, and Reaction Mechanisms

The complex structure of biomass results in bio-oil compositions with very high diversity as mentioned
in section 2.2 and shown in table 2.3. As a result of the complex composition, catalytic HDO of bio-oil
entails a comprehensive reaction network. An overview of reactions that can occur during upgrading
of bio-oil is shown in �gure 2.3 together with commonly applied acronyms.

Decarboxylation and decarbonylation (DCO) especially occur in upgrading of vegetable oils due to
a high content of fatty acids and fatty acid esters [70]. HDO covers the removal of oxygen with H2

and has the deoxygenated compound and water as products. HDO can occur as direct deoxygenation
(DDO) or with saturation of double bonds or aromatic functional groups by hydrogenation (HYD)
prior to deoxygenation. It should be noted that HYD has also been used as an acronym for combined
hydrogenation and deoxygenation [71�73]. Cracking reactions are dominant in upgrading processes
with zeolites and are well-known from the FCC of petrochemical oils [62]. Demethylation (DME),
demethoxylation (DMO), and transalkylation reactions such as methyl transfer (MT) are acid catalyzed
and are thus observed when using acidic supports such as Al2O3 [71,72,74]. Coking and polymerization
reactions typically occur as well, and the extent depends largely on the acidity of the catalyst support
[75�78], on the temperature [79], and on the oxygenate functionality [65,67].

C-C and C-O bond cleavage is the common route for upgrading of simple oxygenates and furans,
while phenols can undergo either DDO or hydrogenation (HYD) prior to deoxygenation [39, 74]. The
acid catalyzed reactions have previously been assigned the acronym ACI to distinguish these reactions
from the HDO pathways [71,72].
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Figure 2.3: Reactions that may occur during HDO. R denotes H, CH3, and aromatic/aliphatic groups present

in bio-oil. Drawn on the basis of [19,48,80].
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Due to the complex nature of the HDO reaction network, the HDO reactivity can be di�cult to quantify.
In a simple approach, it may be described as inversely related to the oxygen bond dissociation energy,
which follows the trend Ar-OH > Ar-OR > R-OH > R-OR' (see table 2.4) [67], with Ar representing
aromatic species and R representing aliphatic species.

Table 2.4: Bond dissociation energies for breakage of C-O bonds between black carbon and red oxygen. Data

from [67].

Bond type Dissociation energy
[kJ/mol]

339

385

422

468

A more detailed reactivity scale was presented by Elliott [65](see �gure 2.4) and Grange et al. [81]
(see table 2.5). Figure 2.4 gives a reactivity ranking, which will depend on the catalyst identity
and the thermodynamics. The iso-reactive temperature in table 2.5 is the temperature required for
deoxygenation to take place, and as seen from table 2.5 it is much lower for simple oxygenates such as
ketones and carboxylic acids (Tiso = 203 ◦C and 283 ◦C) compared to phenolic species (Tiso >300 ◦C).
The activation energy for deoxygenation follows the same trend (see table 2.5).

Phenolic species are very resistant to HDO owing to the strong Ar-O bond and the stabilizing nature
of the aromatic ring. Hence, they have received great attention in the bio-oil upgrading literature as
will be evident in the following sections. HDO of phenolics may (depending on the choice of catalyst)
require hydrogenation of the aromatic ring to facilitate deoxygenation by weakening the C-O bond,
which in turn results in a high hydrogen demand. In fact, it has been questioned whether the DDO
pathway is even feasible since it requires scission of a strong C-O bond [67,82]. Moreover, presence of
other components in the bio-oil may hamper deoxygenation of phenolic compounds [83].
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Figure 2.4: Reactivity of oxygenates under hydrotreating conditions. Reprinted with permission from [65]

(copyright 2007, American Chemical Society).

Simple oxygenates, on the other hand, are very reactive. Aldehydes and ketones readily undergo
polymerization and condensation reactions upon storage and heating of bio-oil above around 80 ◦C
may cause undesired coke formation [84�86]. Low temperature and high H2 pressure is typically
required to stabilize such reactive species [39, 87]. Simple oxygenates have received little attention in
HDO studies, probably due to their high reactivity. This is in spite of their high concentration in
bio-oil compared to aromatic species (see �gure 2.2) and them being reactive oxygenates responsible
for several detrimental properties of bio-oil (e.g. instability and acidity, and coking of catalysts and
reactor plugging). Upgrading of simple oxygenates has instead been targeted through other approaches
such as liquid phase ketonization and aldol condensation [88]. Cellulosic sugar (polyol) fragments such
as levoglucosan and cellobiosan occur as intermediates during pyrolysis [40,89] and are among the most
reactive bio-oil species owing to the high polymerization and coking tendency, which directly a�ects
catalyst lifetime and operation stability [87].

Table 2.5: Activation energy, Ea, iso-reactive temperature, Tiso, and H2 consumption for HDO of di�erent

reactants over Co-MoS2/Al2O3. Reprinted from [81] (copyright 1996) with permission from Elsevier.

Reactant Ea Tiso Molar H2 consumption
[kJ/mol] [◦C] [H2/reactant]

Ketone 50 203 2

Carboxylic acid 109 283 3

Methoxyphenol 113 301 ≤6
4-methylphenol 141 340 ≤4
2-ethylphenol 150 367 ≤4
Dibenzofuran 143 417 ≤8

Figure 2.5 shows the enthalpy of reaction and equilibrium constant for the HDO and DCO reactions
of a range of the most abundant bio-oil compounds (see table 2.3). The HDO reactions (�gure 2.5,
R1-R4) are highly exothermic, and full conversion of an oxygenate-rich feed is correlated with the risk
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of thermal runaway; especially in batch and �xed bed reactor experiments. DCO reactions (�gure
2.5, R5 and R6) are less troublesome in terms of heat development and may even be endothermic as
in this case for 2-butenal decarbonylation. All reactions in �gure 2.5 (except for R1, see below) are
spontaneous in the temperature range of 100-700 ◦C.

OH
O H + 2 H 2 + 2 H 2 O

R1:

R2:
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Figure 2.5: (a) Enthalpy of reaction (per mol oxygenate reacted). (b) Equilibrium constants, K, for model

HDO and DCO reactions. Calculated with HSC Chemistry.

The selectivity towards HYD or DDO products does not only depend on the choice of catalyst but to
a high extent also on the reaction thermodynamics. The DDO route for phenol HDO (�gure 2.5, R2)
becomes more favorable than the HYD route (�gure 2.5, R1) at temperatures above ∼ 275 ◦C. At ∼
450 ◦C, the equilibrium constant for R1 is <1; the Gibbs free energy is >0 kJ/mol, and hydrogenation
of the aromatic ring is unfavorable. Similar results were obtained by Edelman et al. [90].

With the thermodynamics in mind, the consumption of hydrogen can be (partly) controlled through
the choice of operating temperature and H2 pressure. A thermodynamic calculation of the (using HSC
chemistry) has shown that the conversion of phenol into cyclohexane (�gure 2.5, R1) in H2 at 25 bar
is ∼ 100 % at 200-300 ◦C. At >300 ◦C, the conversion drops reaching 90 % at 475 ◦C, 60 % at 590
◦C, and 40 % at 650 ◦C. A high temperature (>300 ◦C) and low H2 pressure (e.g. atmospheric) will
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favor the DDO path and a low hydrogen consumption. Note that the DDO path for phenolic species
will require a high temperature to activate the strong arylic C-O bond.

Dwiatmoko et al. [91] studied the e�ect of various carbohydrate derived compounds (sugars,
carboxylic acids, furans, furfurals, and aldehydes) on the HDO of guaiacol over ruthenium catalysts
in a batch reactor, which was pressurized with 40 bar H2 and then heated to a reaction temperature
of 270-300 ◦C. Among the tested compounds, only furfural and 5-hydroxymethylfurfural a�ected the
guaiacol conversion. They observed that the conversion of guaiacol dropped from 98 % to 28 % when
the molar furfural/guaiacol ratio was increased from 0.47 to 0.96 while the yield of fully deoxygenated
products decreased from 50 to 14 % over a Ru/C catalyst at 270 ◦C. Further increase in the furfur-
al/guaiacol ratio lead to even lower conversion and yields. Full conversion of furfural was obtained in
all cases with nearly unchanged product selectivity. The inhibition of guaiacol conversion by furfural
was explained by competitive adsorption, which was supported by density functional theory (DFT)
calculations of the adsorption energy. A similar observation was made by Ryymin et al. [92] for a Ni-
MoS2/Al2O3 catalyst, where methyl heptanoate was reported to suppress phenol conversion without
the opposite being observed.

As reviewed by Furimsky [67], numerous mechanistic studies exist for the HDO of bio-oil model
compounds and mainly for the conversion of phenolic species. Bui et al. [80] presented a general reaction
scheme for guaiacol HDO over transition metal sul�des based on experiments with MoS2 and Co-MoS2
(bulk and Al2O3-supported) performed in a �xed bed reactor at 300 ◦C and 40 bar H2 (see �gure 2.6).
The Al2O3 support was associated with DME and MT reactions, while Co promotion was associated
with DDO reactions. A more detailed reaction network was presented by Runnebaum et al. [74] based
on a comprehensive experimental study on the conversion of guaiacol, anisole, cyclohexanone and
4-methylanisole in a �xed bed reactor over a Pt/Al2O3 catalyst at 300 ◦C and 1.4 bar (see �gure 2.7).

Figure 2.6: General reaction scheme for guaiacol conversion over transition metal sul�de catalysts under H2

pressure. Me: methyl. Reprinted from [80] (copyright 2010) with permission from Elsevier.
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As indicated by �gure 2.6 and �gure 2.7, the reaction mechanism for HDO of even a single bio-oil
model compound is rather complex. The speci�c reaction mechanism will depend on the type of
catalyst (incl. active phase particle size, promoters, and support), the operating conditions, and the
presence of inhibitors or poisons. Therefore, a complete mechanistic and kinetic understanding of the
HDO of real bio-oil will not be obtained in the near future. However, such a detailed understanding
may not be necessary in order to develop an industrial scale process. This is the case for conventional
hydrotreating, where global, lumped kinetic models are typically applied [63].

Figure 2.7: Simpli�ed reaction network for HDO of lignin-derived compounds. Red compounds: Reactants:

Black compounds: Intermediates and products. Arrows represent reactions: HDO (dashed green), hydrogenolysis

(dashed blue), hydrogenation or dehydrogenation (dashed black), transalkylation (solid black). Reprinted from

[74] with permission from the Royal Society of Chemistry.
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2.3.2 Bio-oil Upgrading

An overall simpli�ed reaction for HDO of bio-oil may be written as [21]:

CH1.33O0.43 + 0.77H2 → CH2 + 0.43H2O (2.1)

with CH2 representing the fully deoxygenated hydrocarbon product. The reaction is exothermic with
an overall heat of reaction of approximately 2.4 MJ/kg oil [93]. HDO with moderate to high degree
of deoxygenation will result in two liquid phases, a low polarity upgraded oil phase and an aqueous
phase. Three liquid phases may form if distinct organic phases with higher and lower density than
water are formed. This was reported in the case of high degrees of deoxygenation [87, 94]. Complete
deoxygenation according to generalized equations, similar to equation 2.1, have been associated with
an oil yield of 56-58 wt% [95]. However, this remains a theoretical number due to the complex bio-
oil composition and variety of reactions taking place (see �gure 2.3). A more realistic reaction was
proposed by Venderbosch [87] for a speci�c experiment (gas phase not included):

CH1.47O0.56 + 0.386H2 → 0.742CH1.47O0.11(oil fraction) + 0.192CH3.02O1.09(water fraction) + 0.285H2O
(2.2)

The product consisted of two phases and the oxygen content in terms of O/C ratio was decreased
from 0.56 (feed oil) to 0.11 (product oil fraction). Similarly, the oxygen content in the resulting water
fraction was increased compared to that in the feed oil (from 0.56 to 1.09) [87].

The e�ciency of bio-oil upgrading processes can be evaluated (and compared) based on the bio-oil
yield (Yoil) and degree of deoxygenation (DOD):

Yoil =
moil

mfeed
· 100% (2.3)

DOD = 1−
(
wt%O,oil

wt%O,feed

)
· 100% (2.4)

with m being the mass of feed and produced oil, and wt% covering the fraction of oxygen in the
produced oil and feed, respectively. The energy recovery of the upgraded oil compared to the feed is
also a very important parameter, which is often overlooked. This is de�ned as:

YH =
hoil ·moil

hfeed ·mfeed
· 100% (2.5)

Here, YH is the energy yield, and h is the heat of combustion (MJ/kg) of the produced oil and the
feed. Other parameters such as the resulting O/C and H/C ratios provide valuable information on the
oil quality. Speci�cally for catalytic fast hydropyrolysis it has been proposed to evaluate the degree of
deoxygenation in the process compared to that of uncatalyzed pyrolysis (thermal deoxygenation) [96].
Full deoxygenation (DOD = 100 %) is not necessarily the ultimate goal in bio-oil upgrading. Methanol,
ethanol, and dimethyl ether have high oxygen contents (35 and 50 wt%, respectively) but are regarded
as fuels of high value. Additionally, there is an inherent trade-o� between the degree of deoxygenation
and oil yield, in part due to the removal of oxygen. This can be seen from the representative example
on yields of oil, water, and gas at varying degrees of deoxygenation from bio-oil HDO shown in �gure
2.8.
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Figure 2.8: Results from upgrading of eucalyptus bio-oil via thermal hydrotreatment (slurry reactor, DOD <83

%) and catalytic hydrotreatment (�xed bed reactor, commercial Co-MoS2 and Ni-MoS2 catalysts, DOD >83 %).

(a) Yields of oil, water from feed+reaction, and gas. (b) C/H ratio, O content, and density. Reprinted from

Samolada et al. [97] (copyright 1998) with permission from Elsevier.

As a minimum requirement, deoxygenation should be performed to a degree, which stabilizes the oil.
Further deoxygenation and incorporation of hydrogen could be targeted towards increasing the heating
value su�ciently to allow for its use of the produced oil directly as a fuel (alternatively as a fuel blend),
as a co-feed in petrochemical hydrotreating, or as a means of storing hydrogen in the oil. An overview
of di�erent bio-oil upgrading studies is given in table 2.6. More comprehensive reviews of HDO of both
bio-oil and model compound studies are available in the literature [19, 48,67,68].
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Table 2.6: Updated overview of HDO studies for upgrading of bio-oil. Based on [19] (copyright 2011) with

permission from Elsevier.

Catalyst Bio-oil Setup Time P T DOD O/C H/C Yoil Ref.
source [h] [bar] [◦C] [%] [mol/mol] [wt%]

Co-MoS2/Al2O3 Beech Batch 4 200 350 82 0.07 1.20 26 [94]

Co-MoS2/Al2O3 Beech Batch 4 100 250 41 0.27 1.24 28 [94]

Co-MoS2/Al2O3 Maple/oak Cont. 4 ≤300 370 99.9 0.00 1.82 33 [98]

Ni-MoS2/Al2O3 Maple/oak Cont. - ≤300 370 97.2 0.00 1.79 34 [98]

Ni-MoS2/Al2O3 Beech Batch 4 200 350 74 0.10 1.24 28 [94]

Ni-MoS2/Al2O3 Beech Batch 4 100 250 37 0.31 1.48 31 [94]

Ni-MoS2/Al2O3 Pine Cont. - 87 400 28 - - 84 [99]

Ni-MoS2/Al2O3 Pine Cont. 168-192c 96 330 100 0.00 1.18 - [100]

Ni-MoS2/Al2O3 - Cont. 6 100 300 100 - 2.1 - [1]

Ni/SiO2 Wheat straw Batch 4 130-180 250 51 0.25 1.46 15 [38]

Ni/ZrO2 Wheat straw Batch 4 130-180 250 41 0.21 1.36 13 [38]

Pd/C Beech Batch 4 200 350 85 0.06 1.26 65a [94]

Pd/C Beech Batch 4 100 250 56 0.19 1.30 44 [94]

Pd/C Mixed wood Cont. - 138 340 63 0.12 1.49 62 [101]

Pt/Al2O3-SiO2 Pine Cont. - 87 400 45 - - 81 [99]

Pt/C Beech Batch 4 200 350 76 0.11 1.36 27a [94]

Pt/C Beech Batch 4 100 250 35 0.32 1.60 57 [94]

Pt-Pd/ACPb Black poplar Cont. 6 ≤65 450 - - - 21 [102]

Pt-Pd/FCC Black poplar Cont. 6 ≤65 450 - - - 14 [102]

Ru/Al2O3 Beech Batch 4 200 350 78 0.04 1.10 36a [94]

Ru/Al2O3 Beech Batch 4 100 250 37 0.39 1.70 23 [94]

Ru/C Mixed wood Cont. - 230 350-400 70 0.11 1.48 39 [87]

Ru/C Beech Batch 4 200 350 86 0.06 1.24 53a [94]

Ru/C Beech Batch 4 100 250 44 0.26 1.34 35 [94]

Ru/TiO2 Beech Batch 4 200 350 77 0.09 1.32 67a [94]

Ru/TiO2 Beech Batch 4 100 250 50 0.23 1.56 37 [94]

a A heavy and light oil phase was obtained, results represent an average.
b Phosphorous containing activated carbon.
c Operating time at the noted conditions. Entire experiment runtime: 240 h.

As seen from table 2.6, several di�erent catalytic systems are active in upgrading of bio-oil with the
oil yield and properties depending on the catalyst system and applied operating conditions. The
studies in table 2.6 were performed at a high pressure, mostly above 100 bar, and a moderate to high
temperature above 250 ◦C. There is a general trade-o� between yield and degree of deoxygenation for
the obtained oil as discussed previously. Moreover, a very short operating time (<10 h) was applied
in most studies, which makes it di�cult to know if the obtained product yield and quality could be
obtained in a long-term experiment. In fact, several experiments were terminated due to coking and
reactor plugging [98,101,102]. In most of the studies, where reactor plugging was not observed, carbon
deposition on the catalyst was mentioned as a main source of deactivation [38, 94, 99, 100, 102]. Sheu
et al. [99] were not able to conduct an attempted experiment for HDO of pine bio-oil with a sul�ded

20



Chapter 2. Introduction and Background

NiW/Al2O3 catalyst due to rapid reactor plugging. Wang et al. [100] reported 21.4 wt% carbon
deposited on a spent Ni-MoS2/Al2O3 used for pine bio-oil HDO; it was however run for more than 200
h at varying operating conditions (280-350 ◦C and 34-97 bar H2).

Mortensen [1] reported rapid catalyst deactivation over a commercial Ni-MoS2/Al2O3 catalyst at
300 ◦C and 100 bar (see �gure 2.9). Initially, 100 % deoxygenation could be obtained with the produced
oil being clear and colorless with an H/C ratio of 2.1, similar to crude oil. This initial product primarily
consisted of naphthenes and linear/branched hydrocarbons. However, rapid catalyst deactivation was
observed, and after 11 h the degree of deoxygenation was down to 69 % and the produced oil looked
more similar to the feed.
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Figure 2.9: Feed bio-oil (unknown source) and deoxygenated product oil including DOD as a function of time

on stream (TOS). HDO performed in a �xed bed reactor using a commercial Ni-MoS2/Al2O3 catalyst at 300
◦C

and 100 bar. DOD data from [1] is averaged over 2 hours.

2.3.3 Catalysts

As summarized in table 2.6 several catalytic systems have been applied for the HDO of bio-oil. This
section reviews the most widely applied catalysts for HDO, namely sul�des, oxides, reduced transition
metals, and phosphides. A brief description of other catalysts is also given.

2.3.3.1 Sul�des

Co- and Ni-MoS2 catalysts (also referred to as Co-/NiMoS or sul�ded Co-/NiMo catalysts) have
received signi�cant attention in upgrading of bio-oil by HDO [70, 76, 80, 92, 94, 98�100, 103�116] based
on their well-known activity in conventional hydrotreating [63]. Studies also exist on noble metal
sul�des such as ReS2 [117�119] and RuS2 [120], but their much higher price most likely would prohibit
commercial use.

Ni and Co are used as promoters as they signi�cantly enhance the catalytic activity and stability
compared to unpromoted MoS2. Several theories have been proposed for the role of promotion as
reviewed by Topsøe et al. [63]. It is now widely accepted that the role of promotion is the formation
of highly active CoMoS and NiMoS phases, in which Ni or Co substitutes Mo at the edges of MoS2
slabs [63, 121, 122]. For Co-MoS2, it has been shown that Co has a preference for promoting the S-
edge of the hexagonal Co-MoS2 structure, whereas both a hexagonal and a less systematic distorted
hexagonal structure has been reported for Ni-MoS2 [121�123]. The slabs are stacked with the S-edge
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in alternating direction as shown in �gure 2.10. For NiMoS. The size and shape of the individual
particles (composed of mono- and multilayer polygonal slabs) is determined by a complex interplay
between catalyst composition (e.g. identity of promoter), and sul�dation conditions [122,124�127].

Figure 2.10: Ball-models for the hexagonal CoMoS structure of Co promoted MoS2 in top view and side

view. Blue: Mo, yellow: S, red: Co. (a) Single slab structure. (b) Double slab structure. Reprinted from [121]

(copyright 2015) with permission from Elsevier.

The active sites for C-O (in HDO) and C-S (in HDS) scission is widely accepted to be coordinatively
unsaturated sites (CUS) of sulfur at the promoted (or unpromoted) MoS2 edge [92,128�130]. CUS can
be present either as sulfur vacancies or as unsaturated sites at the sulfur terminated edge, where more
sulfur (or oxygen from oxygenates) can adsorb, and this adsorption of a heteroatom may be correlated
with a restructuring of the S atoms at the surface.

Romero et al. [71] studied HDO of 2-ethyl phenol over MoS2 based catalysts and proposed the
reaction mechanism shown in �gure 2.11. The target oxygen atom chemisorbs to a sulfur vacancy,
which has been created at a MoS2 slab edge by reduction with H2. SH groups generated from feed
H2 are present at the MoS2 edges [129, 130]. They enable proton donation from S to the attached
molecule, which forms a carbocation that can undergo direct C-O bond cleavage to give the deoxy-
genated compound [109,129�131]. The active site is regenerated when the deoxygenated product and
water are desorbed. Another mechanism was proposed for HDO of aromatic oxygenates, with initial
saturation of the aromatic ring [71]. In this mechanism, two adjacent vacancies are needed in order to
facilitate adsorption through a sterically more constrained �at adsorption mode, which facilitates ring
hydrogenation (see �gure 2.12). As opposed to the mechanism proposed by Romero et al. [71], a DFT
study from Moses et al. [128] on HDS of thiophene showed that C-S scission could take place on CUS
on a CoMoS edge without formation of sulfur vacancies.
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Figure 2.11: Proposed HDO mechanism of alkyl substituted phenol over MoS2 on sulfur vacancy active site

(R denotes alkyl group). Drawn on the basis of [19] and [71].

Figure 2.12: Flat ring adsorption of alkyl substituted phenol onto MoS2 (R denotes alkyl group). Drawn on

the basis of [71].

Based on DFT and experimental studies with thiophene, Lauritsen et al. [123, 132, 133] found that
fully sul�ded brim sites at edges of both NiMoS and CoMoS structures exhibit catalytic activity for
adsorption and hydrogenation of thiophene. These so-called brim sites have been visualized at atomic
resolution as bright brims along the MoS2 edges using scanning tunneling microscopy (STM) (see �gure
2.13). They are located at the edge of the top basal plane of a multi-slab particle and exhibit metallic
character due to their electronic properties The mechanisms of HDO and HDS therefore seem to be
governed by an interaction of two di�erent active sites controlling the degree of hydrogenation (over
brim sites) and desulfurization/deoxygenation (via CUS) [134]. Furthermore, it has been proposed that
di�erent types of active sites come into play in the HDO of di�erent oxygenate functional groups [108].
The identity and nature of active sites as well as particle morphology and the exact location of promoter
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atoms in Co- and Ni-MoS2 catalysts is still debated, which can partly be traced back to the high
dynamics of the catalyst system.

There are some dissimilarities between HDO and HDS. One example is the comparison between sul-
fur and oxygen analogues such as thiophene and furan as they interact di�erently with sulfur vacancies
due to steric constraints [135].

Figure 2.13: (a) Atom-resolved STM image of a CoMoS slab on an Au(111) surface. (b) Ball-model of the

slab. Blue: Mo, yellow: S, red: Co. Reprinted from [123] (copyright 2007) with permission from Elsevier.

It is necessary to co-feed H2S in order to the enhance activity [106,136] and avoid oxidation by keeping
the sul�de catalyst systems in the active sul�ded form during HDO [1,67,106,135]. Gutierrez et al. [112]
proposed that H2S co-fed in the HDO of a broad variety of model compounds is responsible for creating
and retaining nucleophilic SH-groups at the sul�ded catalyst surface and that these groups can activate
oxygenates at the catalyst surface. However, H2S can also be a reaction inhibitor [107�109], but the
inhibiting e�ect depends on the oxygenate functionality and reaction mechanism [109,110].

A concern that has been raised is that the use of sul�de catalysts for HDO results in incorporation
of sulfur into the product, which contradicts the increasingly strict legislation on sulfur in fuels [37]
and contaminates the otherwise sulfur scant bio-oil. It has been shown that sulfur from the catalyst
surface - regardless of whether H2S is fed to the system - can be integrated into the deoxygenated
compounds and thereby end up in the product oil [109, 110, 137, 138]. However, sul�de catalysts are
used industrially in HDS to remove sulfur from oil down to a few ppm [63]. Mortensen et al. [34]
investigated the HDO of phenol in 1-octanol (50 g/L) over a Ni-MoS2/ZrO2 catalyst in a �xed bed
reactor at 280 ◦C and 100 bar and found that at su�cient residence time, sulfur incorporation into the
product could be avoided. As biomass and bio-oils contain sulfur, it is important to consider a sulfur
tolerant catalyst for HDO.

2.3.3.1.1 Role of Promotion MoS2 is typically promoted with Co or Ni, which weakens the
surface metal-sulfur bond energy [139, 140] and facilitates CUS formation. Co or Ni promotion is
used to enhance the overall catalyst performance; both in terms of providing better hydrogenation
activity [113,123,132,133] and in terms of a better stability towards oxidation [106,135].

The activities and selectivities of Ni-MoS2/Al2O3 and Co-MoS2/Al2O3 in HDO are comparable
according to a study of Laurent and Delmon [108], who investigated the conversion of 4-methylaceto-
phenone, diethyldecanedioate and guaiacol in a batch reactor at 260-300 ◦C and 10 bar H2. However,
promotion with Ni caused a higher decarboxylation activity as opposed to Co [108]. For phenolic
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species, it is commonly accepted that Co promotes DDO routes while Ni promotes HYD routes [80,109,
110,112,113,138,141,142]. In line with this observation, Co-MoS2/Al2O3 seems to have a higher activity
for HDO of aromatic species compared to Ni-MoS2/Al2O3, while the opposite is the case for aliphatic
species [109, 110, 136, 138]. The choice of Co or Ni promotion could therefore take into consideration
the feed composition (aromatic/aliphatic), but also whether the reaction gas contains CO, which has
been reported to inhibit Co-MoS2, but not Ni-MoS2 [113]. However, the choice of temperature a�ects
this conclusion, as thermodynamics determine whether aromatic ring hydrogenation is favorable or not
(see section 2.3.1).

Bouvier et al. [113] studied the HDO of 2-ethylphenol over Al2O3 supported MoS2, Ni-MoS2, and
Co-MoS2 in a �xed bed reactor at 340 ◦C and 70 bar with varying H2S concentration in the feed
(0.1-0.5 bar corresponding to ∼ 1430-7145 ppm). Their results are shown in �gure 2.14. The HYD
and ACI activity for all three catalysts increased with increasing H2S concentration. At the same time
the DDO pathway, which primarily occurred with Co promotion, was strongly inhibited by H2S. It
was proposed that the inhibiting e�ect observed for Co-MoS2 was caused by CUS saturation inhibiting
oxygenate adsorption. On the contrary, Laurent and Delmon [108] reported that H2S inhibited the
HDO of carboxylic, guaiacyl, and carbonyl groups over Ni-MoS2/Al2O3 whereas no clear trend was
observed for Co-MoS2/Al2O3.
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Figure 2.14: DDO, HYD and ACI activity from HDO of 2-ethylphenol at 340 ◦C and 70 bar (�xed bed reactor)

over promoted and unpromoted MoS2 catalysts. Drawn on the basis of data from [113].

The role of Ni promotion in unsupported MoS2 was investigated by Ruinart de Brimont et al. [70]
who found that the selectivity towards DCO of ethyl heptanoate at 250 ◦C and 15 bar (14.4 bar H2)
increased with increasing degree of Ni promotion, while HDO selectivity followed the opposite trend:

DCO selectivity : Ni3S2 > Ni-MoS2(Ni/Mo:0.43) > Ni-MoS2(Ni/Mo:0.2) > Ni-MoS2(Ni/Mo:0.1) > MoS2

In the same study, the HDO reaction rates of heptanal had the following trend with DCO reaction
rates being insigni�cant for all catalysts:

Ni-MoS2(Ni/Mo:0.43) � Ni-MoS2(Ni/Mo:0.2) > Ni-MoS2(Ni/Mo:0.1) > Ni3S2 ∼ MoS2

The reactivity was found to be more complex for heptanoic acid and ethyl heptanoate, due to com-
petition between HDO and DCO reactions. Dupont et al. [143] used DFT calculations to study the
interaction and HDO pathways of methyl propionate, propionic acid, propanal, and propanol with
MoS2 and Ni-MoS2. They found that promotion with Ni facilitated a bidentate adsorption of pro-
panal, which lowered the activation energy for the hydrogenation of propanal into propanol. The
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reaction of propanol to propane was proposed to occur via the formation of an intermediate thiol at
the catalyst surface. The rate limiting step in propanal HDO to propane was the C-O cleavage in
propanol, for which the activation energy was found to be lower over Ni-MoS2 compared to MoS2.

Based on DFT calculations, Badawi et al. [106, 135] found that a H2S/H2O partial pressure ratio
>0.025 is necessary to avoid S-O exchanges at the S-edge of MoS2. Promotion by Co was reported to
enhance stability towards water with no S-O exchange at 100 % Co promotion at the S-edge in the
partial pressure range of H2S/H2O of 10−5-102 at 350 ◦C [106]. This stabilizing e�ect was supported
by transmission electron microscopy (TEM) studies showing that exposure of MoS2 to water lead to
a decrease in slab length and stacking height, which could be explained by S-O exchange. Exposure
of Co-MoS2 to water resulted in insigni�cant crystallite changes. The conversion of 2-ethylphenol was
studied over Co-MoS2/Al2O3 and MoS2/Al2O3 in a �xed bed reactor at 340 ◦C and 70 bar with a
H2S/H2O ratio of 0.04-0.12. Deactivation of both catalysts with decreasing H2S/H2O ratio by addition
of water was seen, but for the Co promoted sample, the deactivation was reversible, as > 90 % of the
initial activity could be recovered by returning to the initial water free reaction conditions [106]. Badawi
et al. [107] also used DFT calculations to assess the Gibbs free energy of adsorption of known inhibitors
at 350 ◦C for a 50 % promoted Co-MoS2 edge, which indicated that the inhibition strength followed a
trend of CO > H2O ∼ H2S.

Bui et al. [80] investigated the role of Co promotion in bulk and Al2O3 supported MoS2 for the
HDO of guaiacol in a �xed bed reactor operated at 40 bar H2 and 300 ◦C. They found that promotion
with Co enhanced overall reaction rates and the selectivity towards DDO of intermediate phenol into
benzene. DME reactions were observed for unpromoted MoS2 while Co-MoS2 also exhibited DMO
activity.

2.3.3.2 Oxides

Oxides of Mo, Ni, W, V and others have HDO activity [77, 144�148]. It has been proposed that the
HDO reaction mechanism for reducible oxide catalysts follows a reverse Mars-van Krevelen mechanism
(see �gure 2.15) [144, 145], somewhat similar to the mechanism for sul�des proposed by Romero et
al. [71] (see �gure �gure 2.11). This implies that low H2 pressures are necessary to avoid reduction of
the active phase into inactive species [144,146,147]. Low H2 pressures are favored from an economical
perspective but may pose di�culties from an upgrading perspective, where higher H2 pressures can
mitigate catalyst deactivation by coking. In this mechanism (see �gure 2.15), an O-vacancy (acting as a
Lewis acid site) is created by elimination of water (reduction with hydrogen) and facilitates adsorption
of an oxygenate at the vacancy. The C-O bond in the oxygenate is cleaved through electron donation
from Mo, the deoxygenated product is desorbed and the active site is regenerated by reaction with H2.

No hydrogenation activity has been detected for MoO3 [144, 148]. A revised HDO mechanism has
been presented for supported MoO3 suggesting that the support enables dispersion of MoOx clusters
with ZrO2 and TiO2 being capable of e�ciently stabilizing Mo in the redox active intermediate Mo+3

and Mo+5 states [148].
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Figure 2.15: Proposed reverse Mars-van Krevelen mechanism for HDO of alkyl substituted phenol over MoO3

(R denotes alkyl group). Drawn on the basis of [144,148].

The activity of oxides in HDO relies on the presence and strength of acid sites. The Lewis acidity
a�ects the initial chemisorption step, where the oxygen lone pair of the target oxygenate is chemisorbed
at a vacancy. Brønsted acidity in�uences hydrogen availability at the catalyst surface in terms of the
presence of hydroxyl groups. Auroux and Gervasini [149] have reported the Lewis acidity, based on
NH3 adsorption, of a broad range of oxides to follow the trends:

Concentration of sites : Cr2O3 � MoO3 > ZrO2 ∼WO3 > Nb2O5 > TiO2 > Al2O3 > V2O5

Strength of sites : Cr2O3 � ZrO2 ∼WO3 > Nb2O5 > TiO2 > Al2O3 > MoO3 ∼ V2O5

The contribution from Brønsted acid sites was assumed negligible. ZrO2, TiO2, and Al2O3 are am-
photeric and have been reported to have basic character as well [149]. Li and Dixon [150] reported
another relative Lewis acid strength scale based on DFT calculations:

WO3 > MoO3 > Cr2O3

The Brønsted acid strength in terms of relative hydroxyl acidity was investigated by Busca et al. [151]:

WO3 > MoO3 > V2O5 > Nb2O5 > Al2O3 > TiO2 > ZrO2

Furthermore, the metal-oxygen bond strength should be weak enough to facilitate vacancy forma-
tion but strong enough to enable oxygenate chemisorption and C-O bond breaking. The catalytic
HDO activity of MoO3 has been ascribed to the formation of oxycarbide and oxycarbohydride phases
(MoOxCyHz) [146, 147] as well as the formation of hydrogen molybdenum bronzes (HxMoO3, x =
0-2) [145].

Prasomsri et al. [144] have reported HDO activity of various oxides tested for acetone conversion
in a �xed bed reactor at 400 ◦C and <1 bar H2. They reported the acetone consumption rate to
follow the trend MoO3 > V2O5 > Fe2O3 > CuO ∼ WO3 with a selectivity towards deoxygenated
hydrocarbon (mainly propene - due to the insigni�cant hydrogenation activity) above 88 % for all
oxides. Reactivation of spent MoO3 is possible through calcination in O2 at 400 ◦C [147,148]. Whi�en
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and Smith [146] compared the HDO of 4-methylphenol in a batch autoclave at 41-48 bar and 325-375
◦C using MoO3, MoO2, MoS2, and MoP. They reported the turnover frequency (TOF) to decrease in
the order MoP > MoS2 > MoO2 > MoO3. MoO3 was reduced to MoO2 during the reaction and based
on the �ndings of Prasomsri et al. [144, 147, 148] it can be speculated that the partial pressure of H2

was too high to retain the MoO3 in the active phase.
The activity of partially reduced W and Ni-W oxides supported on active carbon was investigated

by Echeandia et al. [77] in a �xed bed reactor operated at 150-300 ◦C and 15 bar. All catalysts
were proven active for HDO of phenol with the Ni-W oxide catalysts showing a signi�cantly higher
conversion compared to the W oxides. It was shown that W was fully reduced after 6 hours on stream,
whereas partial reduction of Ni was achieved.

As described above, the working principle behind oxide and sul�de catalysts is a vacancy or CUS
based mechanism, which means that inhibition is possible if continuous regeneration of the active site
is not ensured. Water formed during HDO can oxidize the active edge of sul�des [1, 67, 106, 135] and
inhibit further reaction (see section 2.3.3.1). The H2 required for HDO can over-reduce and thereby
deactivate oxide catalysts, and sulfur is a potential poison due to its strong adsorption [152,153]. For
both oxide and sul�de catalysts, it thus seems plausible that the identity of the active phase is a
dynamic oxysul�de phase, and catalyst preparation and reaction conditions should be chosen to push
the active phase towards the desired composition.

2.3.3.3 Reduced Transition Metals

Reduced transition metal catalysts such as Ni, Pt, Pd, Ru, and Rh are active in HYD and HDO
reactions [38, 82, 87, 94, 99, 101, 154, 155]. The reaction rate increases with increasing H2 pressure (as
opposed to oxides, see section 2.3.3.2) and these catalysts do not require a feed of H2S to remain
active (as opposed to sul�des, see section 2.3.3.1). As a down-side, most reduced transition metals are
highly sensitive to sulfur poisoning, which means that sulfur in bio-oil must be removed upstream of
catalytic HDO [34]. This would however require either a sulfur selective adsorbent or hydrotreating
over Ni/Co-MoS2 catalysts which, as discussed above, are also HDO catalysts.

Mortensen et al. [19] proposed that HDO over transition metals relies on a bifunctionality combin-
ing the ability of oxygenate activation with hydrogenation activity. It was proposed that oxygenate
activation takes place at the metal-support interface, while hydrogen donation is facilitated by the
reduced transition metal [19].

A DDO reaction mechanism, in which phenol is converted into benzene by direct C-O scission, is
challenged by a high bond dissociation energy (see table 2.4), as shown by DFT calculations for HDO
of phenol over Rh [156]. Instead two other mechanisms have been proposed for the DDO mechanism,
in which the C-O bond is weakened prior to scission (see �gure 2.16). Instead of a direct C-O bond
cleavage (mechanism A in �gure 2.16), it has been proposed that an initial hydrogenation step at the
ortho position weakens the C-O bond and that subsequent acid-catalyzed dehydration then leads to
the desired DDO product (mechanism B in �gure 2.16) [157, 158]. This mechanism would require a
bifunctional catalyst comprising both hydrogenation activity and acid sites.
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Figure 2.16: Three proposed reaction mechanisms for DDO of phenol. Isotopic labelling indicates predicted

products when using D2 as reductant. Mechanism A) Based on direct C-O cleavage. Mechanism B) Based

on initial hydrogenation followed by dehydrogenation. Mechanism C) Based on initial tautomerization followed

by hydrogenation and dehydration. Reprinted with permission from [73] (copyright 2015, American Chemical

Society).

Resasco et. al [82,159�162] have recently presented a mechanism (mechanism C in �gure 2.16), which is
initialized by a tautomerization step, i.e. the interconversion between the enol and keto form of phenol.
This proposed tautomerization step was recently supported by Gri�n et al. [163] who compared the
conversion of m-cresol over Pt supported on C and TiO2. Resasco et al. [82, 159�162] have reported
that the mechanism depends on the support acidity and oxophilicity. While acid sites catalyze de-
hydration, oxophilic sites have been proposed to facilitate interaction with the carbonyl (C=O) group
present in the tautomer keto form of phenol. This interaction promotes hydrogenation of the C=O
bond on metal particles at the metal-support interface. Nelson et al. [73] have recently presented a
thorough experimental and theoretical study of the conversion of phenol over Ru/TiO2, which partly
supports the work of Resasco et al. [82,159�162]. Using isotopic labelling (as indicated in �gure 2.16),
they con�rmed the presence of phenol tautomerization. They were however not able to con�rm the
subsequent hydrogenation/dehydration steps as proposed by Resasco et al. (see mechanism C in �gure
2.16). Instead they proposed that the amphoteric character of the TiO2 support plays a crucial role in
activating H2O as a co-catalyst with the ability to donate and accept electrons and to lower the C-O
scission barrier by donating a proton to the abstraction of the phenolic OH group [73].

As it can be inferred, there is a consensus that the mechanism of HDO over reduced transition
metals depends on a bifunctionality based on the interplay between the support and active material.
The reaction mechanism is however still under debate. To some extent this may be ascribed to the
complexity introduced by the bifunctionality, namely the dependence of choice of catalyst active phase
and support. Also, the thermodynamics (see �gure 2.5) determine whether ring hydrogenation is
favorable or not; an important restriction, which is often left out.
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2.3.3.3.1 Noble Metals Noble metals such as Pt [74,94,99,159,164�170], Pd [82,94,101,162,163,
169,171�174], and Ru [87,91,94,159,166,175] have received signi�cant attention in the HDO literature.
Oh et al. [166] studied the HDO of miscanthus sinensis bio-oil over carbon supported noble metals in
a batch reactor �lled with H2 to a pressure of 30 bar (room temperature) and reached a 78.2 % degree
of deoxygenation over Pt/C at 350 ◦C. The HHV of the bio-oil was increased by 61 % during HDO
and unstable sugar fragments (acetic acid, furfural, vanillin, and levoglucosan) were reported to be
converted into stable compounds.

de Souza et al. [82] converted phenol (in vapor phase) over Pd/SiO2, Pd/Al2O3, and Pd/ZrO2

at 300 ◦C and atmospheric pressure in a �xed bed reactor. They reported the density of acid sites
(Brønsted and Lewis) to follow the trend: Pd/Al2O3 > Pd/ZrO2 > Pd/SiO2. Compared to the other
catalysts, Pd/ZrO2 was reported to have a two times higher activity (determined as TOF), and a three
times higher selectivity towards benzene. A physical mixture of Pd/SiO2 and ZrO2 showed similar
activity to the Pd/SiO2 catalyst, and it was therefore proposed that the higher activity of Pd/ZrO2 was
caused by interactions at the metal-support interface , which are governed by the oxophilic nature of
ZrO2. Thee positive support e�ect from ZrO2 was con�rmed for a Ni/ZrO2 catalyst [82] in agreement
with the work of Mortensen et al. [154]. Another approach is to use bimetallic catalysts, in which an
oxophilic metal like Fe is combined with a hydrogenation active metal such as Pd [171,172] or Ni [161].

Di�erent conclusions have been made when comparing the HDO activity of noble metals compared
to conventional hydrotreating catalysts. Gutierrez et al. [169] investigated the conversion of guaiacol
over various catalysts in a batch reactor at 100 ◦C and 80 bar. At 100 ◦C, the guaiacol conversion
followed the trend:

Rh/ZrO2 � Co-MoS2/Al2O3 ∼ Pd/ZrO2 > Pt/ZrO2

Gutierrez et al. [169] reported that the activity of the noble metal catalysts was too high for comparison
of the tested catalysts at 300 ◦C. However, HDO was primarily observed in experiments conducted at
300 ◦C, whereas hydrogenation reactions were dominant at 100 ◦C [169], which might be explained by
100 ◦C being too low to facilitate C-O bond breaking.

Results from Wildschut et al. [94] are shown in �gure 2.17 (see also table 2.6). They investigated
the HDO of beech wood bio-oil in a batch reactor operated at mild (250 ◦C and 100 bar) and severe
(350 ◦C and 200 bar) conditions over 4 h. Mild conditions only lead to a DOD of 35-56 %, while
severe conditions resulted in a degree of deoxygenation of 74-86 %. Especially Ru/C and Pd/C seemed
promising with an oil yield of >53 % and a deoxygenation degree >85 %. As it can be seen, the
sul�ded Co-MoS2 and Ni-MoS2 catalysts were among the poorest performing catalysts at both mild
and severe conditions with lower oil yields and DOD. However, no sul�ding agent was introduced to
the batch reactor to keep these catalysts in their active sul�de form.

Even though noble metals are active in HDO reactions, they are commercially unattractive due to
their high price and limited availability [176]. In addition, they are highly sensitive towards sulfur [152],
which is present in biomass and bio-oil (see table 2.2).
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Figure 2.17: Comparison of DOD and oil yield in HDO of beech wood bio-oil with various catalysts [94].

Experiments were performed in a batch reactor at mild (250 ◦C and 100 bar) and severe (350 ◦C and 200 bar)

conditions over 4 h. All oil obtained at severe conditions (except for Ni-MoS2/Al2O3 and Co-MoS2/Al2O3)

consisted of a heavy and a light oil fraction and hence, this data is represented as an average of both phases.

2.3.3.3.2 Non-noble Metals A cheaper alternative to noble metals is e.g. Ni, which is the most
widely applied non-noble reduced transition metal for HDO [35,38,173,177�181]. Yakovlev et al. have
investigated the activity of Ni and bimetallic Ni-Cu catalysts for the HDO of anisole [178,179] and real
bio-oil [182]. Selected results from the anisole conversion experiments in a �xed bed reactor operated
at 10 bar and 300 ◦C are given in 2.18, which shows that complete deoxygenation was achieved with
Ni-Cu supported on Al2O3 and CeO2. Nie et al. [161] reported that the hydrogenation activity of
a Ni/SiO2 catalyst could be modi�ed by adding oxophilic Fe, which facilitated hydrogenation of the
carbonyl group in the tautomerized keto form of phenolic species, which could then be deoxygenated
by dehydration.
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Mortensen et al. [180] studied the HDO of phenol over Ni/SiO2 in a batch reactor operated at 275
◦C and 100 bar. They reported both hydrogenation and deoxygenation reactions to be dependent on
the Ni particle size as shown in �gure 2.19 and related the TOF to particle size as well as theoretical
distribution of di�erent metal sites (steps, corners, facets). The rate of deoxygenation of cyclohexanol
to cyclohexane increased linearly with increasing dispersion (decreasing particle size), and a correlation
with the fraction of exposed Ni step sites was proposed. On the other hand, the decreasing rate of
hydrogenation of phenol to cyclohexanol with increasing dispersion could not be linked to the exposure
of a speci�c type of site possibly because of the interplay with oxygen vacancies in the support as
discussed above.
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Figure 2.19: (a) TOF of hydrogenation and deoxygenation of phenol over Ni/SiO2 in a batch reactor operated

at 275 ◦C and 100 bar. (b) Calculated number of sites (NS) and fraction of di�erent sites (facet, step, corner)

on Ni icosahedron crystal. Adapted from [180] (copyright 2015) with permission from Elsevier.

Boscagli et al. [38] reported that Ni supported on active carbon and various oxides (Al2O3, TiO2, SiO2,
ZrO2) had deoxygenation activities comparable to that of a Ru/C benchmark. The experiments were
performed in a pressurized batch autoclave (80 bar at room temperature) operated at 250 ◦C using a
wheat straw bio-oil. The O/C ratio was reduced from around 0.6 to less than 0.3 for all catalysts. The
Ru/C catalyst possessed better hydrogenation activity resulting in an H/C ratio around 1.7, whereas
those from the Ni catalysts were in the range of 1.3-1.5.

2.3.3.4 Phosphides

As discussed in section 2.3.3.2, Whi�en and Smith [146] reported that an unsupported MoP had higher
activity for HDO of 4-methylphenol compared to the corresponding sul�des and oxides at the given
reaction conditions. Metal phosphides (especially Ni2P) have shown promising activity and stability in
HDO reactions [183�187]. Additionally, there are studies on sul�ded [72] and non-sul�ded [185] NiMoP
systems used for HDO of furans and aromatic oxygenates. Oyama and co-workers investigated the HDO
activity of several phosphides (based on Ni, Co, Fe, W, and Mo) supported on SiO2 [183,188]. For the
conversion of 2-methyltetrahydrofuran in a �xed bed reactor at 300 ◦C and atmospheric pressure [188],
MoP and WP showed the highest selectivity towards HDO products while the overall TOF decreased
according to:

Ni2P >WP > MoP > CoP > FeP
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All catalysts were more active than a Pd/Al2O3 reference; an improvement compared to previous
results [183]. Moon et al. [184] investigated the conversion of guaiacol over Ni2P/SiO2 at 1 and 8.1
bar of H2 in a �xed bed reactor operated at 300 ◦C during 30 hours on stream. A conversion of ∼ 80
% was achieved at 1 bar while 100 % conversion was achieved at 8.1 bar. Furthermore, the conversion
was reported to follow a DDO route at low H2 pressure and a HYD route at high H2 pressure. At 1
bar, the main product formed was benzene (∼ 60 % selectivity), while it was cyclohexane (∼ 90 %
selectivity) at 8.1 bar. Slight oxidation of the active phase in the spent catalyst exposed to 1 bar was
evidenced by X-ray absorption �ne structure (XAFS) [184].

2.3.3.5 Alternative Catalysts

A range of other catalysts have also been investigated for the HDO of bio-oil. Transition metal carbides
and nitrides (typically based on molybdenum or tungsten) have received increasing attention within
the last decade. Their potential lies in their low cost, similar hydrotreating (HDN, HDS) properties
as conventional sul�des [189] as well as properties, which bear some similarity to noble metals [190].
Ruddy et al. [48] have presented a detailed overview of model compound HDO studies over a broad
range of traditional and alternative catalysts including carbides and nitrides. While studies on nitrides
remain scarce it is clear that carbides are less attractive as they are sensitive to water [191,192], which
is inevitable in HDO. There are also examples of other reaction conditions and catalyst systems in the
HDO literature. These include sub- [193] and super-critical [194] aqueous phase HDO, aqueous phase
HDO where a mineral acid is used to promote hydrolysis reactions [158], use of boride catalysts [195],
co-feeding a hydrogen donor such as methanol [196], and more.

2.3.4 Role of Support

Investigations of the in�uence of catalyst support in HDO have been scattered over di�erent catalytic
systems and model compounds. The role of the support depends on the catalyst system (e.g. re-
duced transition metals or sul�des) and on the identity of oxygenates subject to HDO (i.e. reaction
mechanism).

In conventional hydrotreating, γ-Al2O3 is the prevailing support [63]. In HDO, however, Al2O3

has a number of undesired properties. The large concentrations of water present in bio-oil, and formed
during HDO, can convert γ-Al2O3 into boehmite (AlOOH) [87, 197]. This decreases the activity as
the transformation into boehmite can trap crystals of the catalytically active material in the support
lattice [197]. Furthermore, the high acidity of Al2O3 results in high coke formation propensity. Popov
et al. [75] linked the acidity of Al2O3 with a high carbon formation a�nity through saturation studies
using a phenol/argon �ow where 2/3 of Al2O3 was covered with phenolic species at 400 ◦C.

The acidity of various supported Ni catalysts was measured by Mortensen et al. [154] by NH3

chemisorption and was seen to follow a decreasing trend as follows:

Ni/Al2O3 ≥ Ni/ZrO2 ≥ Ni/CeO2 > Ni-V2O5/ZrO2 > Ni/MgAl2O4 > Ni/CeO2-ZrO2

� Ni-V2O5/SiO2 > Ni/SiO2 > Ni/C

The HDO of phenol at 275 ◦C and 100 bar H2 revealed a non-straight forward relation between catalyst
acidity and HDO activity. Instead, Mortensen et al. [154] found a correlation between metal-oxygen
(M-O) bond strength and catalyst hydrogenation activity (see �gure 2.20). This was explained by
a weak M-O interaction giving rise to the formation of O-vacancies that in turn act as Lewis acid
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sites [198, 199]. The deoxygenation activity (for phenol) was concluded to take place on the Ni metal
sites and therefore be independent on O-vacancy formation.
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bond strength, E(M-O), of support material. Hydrogenation activity: phenol conversion in autoclave at 275 ◦C

and 100 bar H2 from [154]. E(M-O) data from [198]. Adapted with permission from [154] (copyright 2013,

American Chemical Society).

Contrarily, Lee et al. [157] reported that the catalyst acidity and HDO activity for guaiacol conversion
in a batch autoclave at 250 ◦C and >40 bar H2 followed the same trend for a noble rhodium catalyst,
where NAC refers to nitric acid treated carbon black:

Rh/SiO2-Al2O3 > Rh/Al2O3 > Rh/NAC > Rh/ZrO2

Carbon has been proposed as a promising support [76�78, 94] due to its low acidity and thereby low
coke formation tendency [76�78]. The correlation between low acidity and low coke a�nity has also
been reported for SiO2 [183], where Popov et al. [75] showed that the concentration of adsorbed phenol
on SiO2 only was 12 % relative to the concentration on Al2O3 at 400 ◦C. While phenolic species were
concluded to only interact with SiO2 via hydrogen bonds, dissociated species were strongly adsorbed
on Al2O3 acid sites [75, 200]. Another study concluded that both Ni/Al2O3 and Ni/AC caused a
lower degree of deoxygenation compared to Ni/SiO2 due to a respectively too strong and too weak
interaction between support and anisole at 180-220 ◦C and 5-30 bar H2 [177]. High acidity micro- and
mesoporous materials such as hierarchical zeolites and alumina doped silicates have been applied as
HDO catalyst support [201�203]. As mentioned, zeolites, which are commercially used in the FCC
process [62], typically have a high cracking activity, which may limit the potential oil yield.

ZrO2, CeO2, and ZrO2-CeO2 mixtures have received attention as promising support materials
[82,111,154,162,165,169,178,186,204�207]. These oxophilic carriers can potentially activate molecules
for HDO on the catalyst surface [82, 178, 207]. CeO2 is additionally known to be a versatile support
with redox sites (oxygen storage and exchange) and acid-base sites [208]. Recent studies on ZrO2 have
proposed that the monoclinic crystal phase (m-ZrO2) has a higher propensity of forming catalytically
active O-vacancies than the tetragonal phase (t-ZrO2) [209]. It was however pointed out by de Souza
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et al. [160] that the reaction rate of the deoxygenation step considered by Foraita et al. [209] was
independent on ZrO2 morphology. In their studies [160], they found that the t-ZrO2 had more oxophilic
sites compared to m-ZrO2, which promoted deoxygenation.

SiO2, ZrO2, and TiO2 carriers have been shown to promote an HDO reaction route for phenols,
which involves a tautomerization step (see section 2.3.3.3) and it has been proposed that the HDO
activity can be tuned through the support oxophilicity [73,82,159�161,163]. For MoO3, which is active
in HDO at low H2 pressures, it was shown that the support plays an important role in stabilizing
redox-reactive Mo oxidation states [148] (see section 2.3.3.2).

Wu et al. [186] investigated the conversion of guaiacol in a �xed bed reactor at 300 ◦C and atmo-
spheric pressure over Ni2P supported on Al2O3, ZrO2, and SiO2. The activity declined in the order
Ni2P/ZrO2 > Ni2P/Al2O3 > Ni2P/SiO2. The adverse properties of SiO2 were elaborated by Moon and
Lee [187], who performed a combined activity and in-situ XAFS study on the HDO of guaiacol over
supported Ni2P. Experiments conducted in a batch reactor at 30 bar and 300 ◦C showed that while AC
and ZrO2 supported catalysts had a stable conversion over time, Ni2P/SiO2 experienced signi�cant
deactivation. XAFS studies revealed that SiO2 was very sensitive to water and via its hydrophilic
character facilitated oxidation of the active phase to nickel phosphate [187].

Bui et al. [111] investigated the conversion of guaiacol over MoS2 and Co-MoS2 supported on ZrO2,
TiO2, and Al2O3 in a �xed bed reactor operated at 300 ◦C and 40 bar H2. Al2O3 catalyzed demethyl-
ation and methyl substitution reactions at a rate 7 times higher than for the other supports. The
HDO activity of Co-MoS2/ZrO2 per Mo atom was four times higher than that of Co-MoS2/TiO2 and
Co-MoS2/Al2O3, while MoS2 on both ZrO2 and TiO2 had an activity two times that of MoS2/Al2O3.
Co-MoS2 on ZrO2 and TiO2 was stable for >60 h operation while a constant deactivation was seen for
Co-MoS2/Al2O3. The adverse e�ects of Al2O3 were ascribed to its high acidity, which was expected
to enhance coke formation on the catalyst surface.

It is crucial to acknowledge that the choice of support material a�ects the activity and selectivity
of HDO catalysts and to include it in the catalyst design. Three aspects are important concerning
choice and evaluation of support in HDO catalyst design:

� Propensity of carbon formation. This generally increases with increasing acidity resulting in
undesired coke formation.

� The interaction between the support and bio-oil oxygenates. An activation of HDO reactants
through oxygen vacancies/oxophilic sites in the support is possible.

� Stability against water and possibility for regeneration, e.g. by burning o� coke at high temper-
atures (>400 ◦C).

The evaluation of catalytic HDO activity using di�erent supports must include considerations on funda-
mental properties such as active phase dispersion (or particle size), surface area, and pore volume/size
distribution in order to allow proper comparison of di�erent catalysts.

2.3.5 Choice and In�uence of Operating Conditions

Reaction conditions for HDO should be chosen to facilitate high catalyst activity over prolonged periods
of time with minimum deactivation. In this regard, di�erent requirements will arise depending on the
feedstock and catalyst identity.
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2.3.5.1 Temperature

HDO is typically carried out in the range of 250-400 ◦C (see table 2.6), which should favor full HDO
from a thermodynamic perspective [19], see also �gure 2.5. The process should be operated below ∼
450 ◦C, if both deoxygenation and hydrogenation of aromatics is targeted. At higher temperatures,
hydrogenation becomes unfavorable, and the exothermic nature of HDO reactions could furthermore
limit the choice of temperature in a batch or �xed bed reactor as full deoxygenation could lead to
generating hot spots. Additionally, coking increases with temperature, especially above 450 ◦C [79].

Elliott et al. [101] investigated the in�uence of temperature in the HDO of wood derived bio-oil
over a Pd/C catalyst in a �xed bed reactor operated at 140 bar. Increasing the temperature from 310
◦C to 340 ◦C increased the degree of deoxygenation from 65 % to 70 % but above 340 ◦C cracking
reactions became dominant Overall, increasing the temperature from 310 ◦C to 360 ◦C had a negative
e�ect on the oil yield, which decreased from 75 % to 56 %, and on the degree of deoxygenation which
decreased from 65 % to 52 %. At the same time, the gas yield increased by a factor of three.

The change in reactivity with temperature is dependent on the bio-oil composition and reactivity
of individual species (see section 2.3.1). The catalytic upgrading can be performed in a two stage
continuous process to achieve high degrees of deoxygenation with limited formation of gas and coke
(e.g. by cracking reactions). In dual stage HDO, a reactor operated at mild conditions below 250-
350 ◦C, aiming at stabilizing the most reactive species, is followed by a reactor operated at higher
temperatures, to facilitate complete deoxygenation of refractory phenolic species [39]. A brief review
of dual stage studies was presented by Wang et al. [39]. Severe catalyst deactivation as well as coking
and reactor plugging has however also been observed in dual stage HDO studies. For example, Routray
et al. [47] used Ru/C at 130 ◦C followed by Pt/ZrP at 300-400 ◦C to upgrade oak bio-oil in a dual
stage setup and reported that reactor plugging occurred after 55-71 h for all their experiments.

2.3.5.2 Residence Time

A fairly low liquid hourly space velocity (LHSV) of 0.1-1.5 h−1 (corresponding to a high residence
time) is generally applied in HDO processes to obtain high degrees of deoxygenation [23, 34, 210]. For
example, Elliott et al. [101] investigated the HDO of bio-oil over a Pd/C catalyst at 140 bar and 340 ◦C
and observed that the oxygen content in the product oil decreased from 21 to 10 wt% when the LHSV
was decreased from 0.70 h−1 to 0.25 h−1. For sul�ded catalysts, a low LHSV also helps to prevent
incorporation of sulfur into the produced oil [34]. There are, however, cases of a slight negative e�ect
of a lower LHSV due to enhanced cracking and coke formation [99].

2.3.5.3 Hydrogen Pressure

A high H2 pressure of 100-300 bar has traditionally been applied in HDO processing of bio-oil (see
table 2.6). It is generally favorable in order to saturate unstable species, suppress coke formation,
and ensure a high solubility of hydrogen in the oil leading to an increased availability of hydrogen at
the catalyst surface [87, 103]. However, recent studies have been concentrated on the HDO of model
compounds at near atmospheric pressure [82,144,147,148,184,188].

It has been reported how di�erent reactions (i.e. DDO/DCO or HYD) can be controlled through
the H2 pressure [100, 174, 184], which is in agreement with the thermodynamics. The thermodynamic
restrictions (see �gure 2.5) should always be kept in mind, as the equilibrium will determine which
reaction pathways are favorable. Mortensen et al. [19] looked into the hydrogen consumption in the
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HDO of bio-oil, which was studied by Venderbosch et al. [87] (see �gure 2.21). The slope of hydrogen
consumption increases as a function of the degree of deoxygenation, which can be related to the
di�erence in reactivity and hydrogen consumption of di�erent oil constituents (see section 2.3.1). For
HDO of the least reactive phenolic species, a high hydrogen consumption is required (see table 2.5) as it
proceeds through the HYD path, which results in a hydrogen consumption surpassing the stoichiometric
demand for oxygen removal at high deoxygenation degrees. The H/C ratio of the produced oil increases
when hydrogenation (saturation of double bonds) occurs. As a result, the heating value of the oil
increases and it has been reported that the HHV of upgraded oil is proportional to the hydrogen
consumption with an increase of 1 MJ/kg for every mol H2 consumed per kg feed [211].
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Figure 2.21: Measured H2 consumption as a function of degree of deoxygenation for the HDO of forestry

residue bio-oil over a Ru/C catalyst operated in a �xed bed reactor at 175-400 ◦C and 200-250 bar including

proposed extrapolation until 100 % DOD [87]. Comparison with stoichiometric requirement re-calculated with

31 wt% organic bound oxygen and a H2:O requirement of 1 (based on [19]). Adapted from [19] (copyright 2011)

with permission from Elsevier.

2.3.6 Catalyst Deactivation

Catalyst deactivation is a key bottleneck in the development and integration of industrially robust
HDO processes. Deactivation generally occurs from exposure to water and due to coking, sintering
of the active phase, poisoning by nitrogen, sulfur (except for sul�des) or chlorine species, and metal
deposition (especially alkali metals) [1,34,35,83,87,93,212,213]. Catalyst type and operating conditions
in�uence the nature and severity of deactivation, but deactivation from carbon deposition and water
is generally dominant in HDO catalysis.

Mortensen et al. [35] studied the in�uence of sulfur, chlorine, and potassium on a Ni/ZrO2 catalyst
tested for HDO of guiacol in 1-octanol at 250 ◦C and 100 bar. The results are shown in �gure 2.22.
Sulfur (added as 1-octanethiol) caused rapid deactivation of the catalyst due to the sul�dation of Ni
particles into NiSx. Both potassium (added as KNO3 and KCl) and chlorine (added as chloro-octane)
deactivated the catalyst. For chlorine, the deactivation was shown to be reversible, as the activity
could be regained after removal of chlorine from the feed. With all tested poisons being strong, it was
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concluded that sources of sulfur and alkali metals must be removed from the feed upstream of any
HDO unit operating with reduced Ni based catalysts. Alkali metals can potentially be removed with
the ash rich char formed during pyrolysis (by �ltering the pyrolysis vapors before condensation), but
the gaseous sulfur compounds are more di�cult to remove. Therefore, sulfur tolerant catalysts, mainly
sul�des, show promise as they need sulfur in the gas to stay active.
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Figure 2.22: Conversion, X, and DOD of guaiacol (GUA) and 1-octanol over a Ni/ZrO2 catalyst poisoned

with (a) Sulfur (1-octanethiol), and (b) Chlorine (chloro-octane). Tested at 250 ◦C and 100 bar in a �xed bed

reactor. Adapted from [35] with permission from the Royal Society of Chemistry.

2.3.6.1 Water

Water is a known catalyst poison to many catalyst systems, where it can either interact with the
active phase and inhibit the target reactions or degrade the support material, e.g. by accelerating
sintering processes and in the case of γ-Al2O3 by conversion into boehmite (AlOOH) [87,197]. Water
formed during pyrolysis of biomass is mixed into the bio-oil, and additional water is formed during
the subsequent HDO due to the high concentration of oxygen in the feed. It is therefore important to
develop water tolerant catalysts; an important aspect, which is often overlooked in HDO research.

For sul�de catalysts, there is a risk that water may saturate active sites (CUS) through chemisorp-
tion, which limits oxygenate adsorption and thereby inhibits HDO. As mentioned in section 2.3.3.1,
Badawi et al. [106,135] performed DFT calculations showing that a partial pressure ratio of H2S/H2O
> 0.025 is needed to avoid S-O exchanges at the S-edges of MoS2, while 100 % Co promotion at
the S-edge inhibited S-O exchange in the H2S/H2O range of 10−5-102 at 350 ◦C [106]. However, as
mentioned by �enol et al. [136], contradictory conclusions on the e�ect of water have been presented
in the literature. In order to understand the in�uence of water on HDO, it is important to apply
both theoretical and analytical tools (as in [73] and [106]) as well as being able to distinguish between
the in�uence of water from those of other parameters such as operating conditions (e.g. H2, H2S,
temperature), feed identity and catalyst support.

Looking into the other catalyst classes, phosphides operated at low H2 pressures are oxidized by
water and lose their activity [184]. Carbides have also been reported to deactivate as a function of water
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induced oxidation [1]. Oxide catalysts may be subject to active site saturation in a similar manner as
sul�des with the di�erence that oxides cannot be treated with H2S to remove water from the active
phase. For MoO3, it has been indicated that deactivation by water can be mitigated by controlling
the ratio of H2/H2O [144,145]. However, this ratio must be carefully controlled, as oxides can only be
exposed to a low (near or sub atmospheric) H2 pressure in order to avoid reduction [146,147].

2.3.6.2 Carbon Deposition

Carbon formation occurs through polymerization condensation reactions at the catalytic surface. The
resulting poly-aromatic (potentially also poly-aliphatic) species adsorb strongly to the catalyst surface
and block active sites and �ll up the pore volume, which in turn reduces reaction rates, especially
during initial operation [212]. Fonseca et al. [214,215] reported that carbon occupied about one third
of the total pore volume of a Co-MoS2/Al2O3 catalyst used for hydrotreating after an initial deposition
stage and that the subsequent carbon deposition was limited.

The reaction rates of carbon formation depend strongly on the feed, but process conditions can be
controlled to reduce carbon formation. Unsaturated hydrocarbons such as aromatics and alkenes have
a high a�nity for carbon formation as they have a signi�cantly stronger interaction with the catalyst
surface compared to saturated analogues [212]. For oxygenates, the propensity of coking is increased
for compounds with more than one oxygen in its structure [212,216] while carbonyls (i.e. ketones) may
polymerize through aldol condensation [217].

Carbon formation increases with increasing catalyst acidity; Lewis acidity is responsible for chemi-
sorbing compounds to the catalyst surface, and Brønsted acidity is responsible for forming polymer-
ization active carbocations through proton donation [212]. For HDO catalysts where the reaction
mechanism involves acid sites, coke formation on these sites is critical. Additionally, organic acids (e.g.
acetic acid) in the feed can catalyze thermal degradation of bio-oil constituents increasing the a�nity
for carbon deposition [175].

In terms of mitigating coke formation during HDO, elevated temperatures should be avoided. The
rate of dehydration increases at higher temperatures leading to increased carbon formation [212].
Furthermore, H2 can be used to stabilize reactive coke precursors. For a Co-MoS2/Al2O3 catalyst,
H2 has been shown to e�ectively decrease carbon formation by saturating adsorbed species such as
alkenes [212].

A simple model for the loss of HDS and HDO activity over a Co-MoS2/Al2O3 catalyst due to
coking was developed by Yamamoto et al. [218]:

k = k0(1−ΘC) (2.6)

Here, k is the apparent rate constant during deactivation, k0 is the rate constant over the fresh catalyst,
and ΘC is the fraction of active sites covered by coke. The model proposes an apparent proportional
correlation between the extent of carbon deposition on the catalytic surface and the resulting degree
of catalyst deactivation [212].

Weber et al. [217] proposed that coking during processing of bio-oils is dominated by gelation
reactions, forming 2-D and 3-D polymers by thermally induced polymerization and aldol condensation
as opposed to linear chain growth. Using gelation kinetics, they successfully modeled the increased
pressure drop from carbon deposition in a dual bed setup consisting of a sul�ded Ru/C catalyst
operated at ∼ 180 ◦C followed by a promoted MoS2 catalyst operated at ∼ 400 ◦C [217].
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2.3.6.3 Regeneration and Activity Control

Only a few studies on regeneration of HDO catalysts have been published. However, the need for
catalyst regeneration must be assessed in the development of HDO processes. If a cheap earth abundant
catalyst is applied, it may simply be replaced when necessary. Such a catalyst must however be very
cheap in order to make disposal, repurchase, and replacement acceptable.

For noble metal catalysts, their cost is so high that any deactivation should be mitigated. Coke
deposits can be burned o� in an oxidizing atmosphere, but the required temperature could induce
sintering of the active metal nanoparticles, which reduces the surface area and thereby the activity. In
industrial naphta-reforming, the commonly applied Pt-Re/Al2O3 catalyst deactivates over time due to
coke deposition, contamination with impurities from the feed and loss of chlorine, which is used as a
promoter for the acid function of Al2O3 [219]. The regeneration process includes coke burn-o� followed
by an oxo-chlorination step, which re-introduces chlorine into the catalyst structure and re-disperses
the metal phase, which sinters during the coke burn-o� [219]. A similar regeneration process may be
possible for noble metal based HDO catalysts.

The remaining catalyst classes are cheap to moderately priced, and regeneration should be con-
sidered. In FCC units, continuous regeneration is ensured by letting spent catalyst run through a
coke-burno� unit upon recycling into the reactor. This could be favorable for oxide catalysts [147,148].
Prasomsri et al. [147] showed how a bulk MoO3 catalyst used for the HDO of various phenolic com-
pounds could be regenerated by oxidation in pure O2 (atmospheric pressure) for 3 h at 400 ◦C (see
�gure 2.23). However, even though regeneration is possible, the catalyst lost 50 % of its activity within
the 24 h test, which was caused by a combination of reduction of the oxide phase and carbon depos-
ition. Deactivation rates at such scale may require the reaction to take place in a moving bed reactor
or to have several parallel reactors in swing operation.
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Figure 2.23: Conversion of m-cresol over bulk MoO3 in a �xed bed reactor at 320 ◦C and atmospheric pressure

(0.015 bar feed, balance H2). Regeneration by calcination at 24 h. Data from [147].

If coke burn-o� is used to regenerate sul�des, a separate sul�dation step is needed to reactivate the
active phase, which is oxidized during the coke burn-o�. A sul�dation step could also be used to
regenerate a catalyst deactivated by water, if this is not circumvented by adjustment of the H2S/H2O
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ratio during operation. Badawi et al. [106] exposed a Co-MoS2/Al2O3 sample to water at 350 ◦C. This
decreased the uptake of CO (a measure for sul�de active sites) measured by infrared (IR) spectroscopy
at a frequency of 2072 and 2055 cm−1 by 28 %. It was concluded that the catalyst could be regenerated
by resul�dation as the CO uptake on the resul�ded sample was similar to that of the initial sample.

Industrial hydrotreating catalyst are regenerated by ex-situ by combustion to remove coke deposits
[220]. Deactivation occurs throughout the entire catalyst lifetime, and thus, the operating conditions
are used to control the catalyst activity until ex-situ regeneration becomes the last option to regain
activity. This deactivation occurs in stages, initially by coking and in the end by pore blockage (see
�gure 2.24a) [212], and the overall activity can be maintained by increasing the temperature. It is
important to do this in steps. If the temperature increase is introduced before su�cient deactivation
has occurred, it may result in accelerated coking (see �gure 2.24b) [79].
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Figure 2.24: (a) Typical temperature rise in hydrotreater as a function of run time to account for continuous

deactivation, based on [212] (copyright 1999) with permission from Elsevier. (b) Temperature dependent carbon

deposition on a Co-MoS2/Al2O3 catalyst used for fossil feed hydrotreating, based on [79] (copyright 1979) with

permission from Elsevier.

The stability of sul�des used for HDO of bio-oil is challenged by the large fraction of water present
compared to traditional hydrotreating. As described above, adjustment of the H2S level in the feed
gas should be used to keep the catalyst in the active sul�ded form, so stable operation can be obtained
by increasing the temperature throughout the run. This should be done until catalyst deactivation is
so severe that a stable activity cannot be maintained through further temperature increase. At this
time, the catalyst should be regenerated or renewed.

2.3.7 Kinetic Models

A comprehensive review on kinetic studies on the HDO of both petrochemical and biomass derived
model oxygenates was provided by Furimsky [67]. Several more recent studies also provide kinetic
models for the HDO of model compounds, but when it comes to HDO of bio-oil only a few kinetic
studies have been performed. In this case, lumped kinetic expressions have been developed due to the
complexity of the feed.

Sheu et al. [99] investigated the HDO of pine wood bio-oil over supported Pt/Al2O3-SiO2, Ni-
MoS2/Al2O3, and Co-MoS2/Al2O3 in a �xed bed reactor at ∼ 350-400 ◦C and 45-105 bar with a weight
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hourly space velocity (WHSV) of 0.5-3.0 h−1. The kinetics were evaluated based on an expression of
the type:

− dwO

dZ
= kwmOP

n (2.7)

Here, wO is the mass of oxygen in the product relative to that in the feed oil, Z is the axial position in
the reactor, k is the rate constant de�ned by an Arrhenius expression, P is the total pressure (mainly
H2), m is the reaction order for oxygen, and n is the reaction order for the total pressure. Sheu et
al. [99] assumed that a �rst order dependency on oxygen (i.e. m = 1) could describe the kinetics for
all three catalysts. It was then possible to �t the pressure dependency and activation energy to the
data as summarized in table 2.7. With n in the range of 0.3-1.0, increased hydrogen pressure had a
positive e�ect on the rate of deoxygenation as expected. The activation energies were found to be in
the range of 45.5 to 71.4 kJ/mol with that for the platinum catalyst being the lowest. The dependency
on oxygen mass fractions and axial reactor position limits the model to the speci�c experimental setup
and feed, which makes it di�cult to apply the model at a general level.

Table 2.7: Parameters from the kinetic expression in equation 2.7 for di�erent catalysts. Experiments were

performed in a �xed bed reactor at ∼ 350-400 ◦C, 45-105 bar with pine wood bio-oil as feed [99].

Catalyst m n Ea

[-] [-] [kJ/mol]
Pt/Al2O3-SiO2 1.0 1.0 45.5±3.2
Co-MoS2/Al2O3 1.0 0.3 71.4±14.6
Ni-MoS2/Al2O3 1.0 0.5 61.7±7.1

A similar kinetic model was presented by Su-Ping et al. [104] who investigated the HDO of bio-oil
(feedstock not stated) using a Co-MoS2/Al2O3 catalyst in a batch reactor operated at 360-390 ◦C. The
resulting kinetic expression was:

− dCO

dt
= kC2.3

O (2.8)

were CO is the total concentration of oxygen, k is the reaction rate constant and t is the time (which
includes the mass of catalyst in the reactor). A dependency on H2 partial pressure was omitted due
to a low dependency observed in the range of 15-30 bar H2. The oxygenate reaction order of 2.3 is
higher than the assumed �rst order dependency of Sheu et al. [99]. Su-Ping et al. [104] found an
activation energy of 91.4 kJ/mol, which is also higher than the values reported by Sheu et al. [99].
Nevertheless, the complexity and diversity of bio-oil feeds as well as di�erences in reactor setup, choice
of catalyst, and process conditions makes it di�cult to compare kinetic models across various studies.
For the model presented by Su-Ping et al. [104], the high oxygenate reaction order could be explained
by a high initial reaction rate caused by very reactive species. As these react and disappear, a rapid
decrease in the rate will be observed.

Massoth et al. [114] developed a Langmuir-Hinshelwood type kinetic model for the HDO of methyl
substituted phenols over Co-MoS2/Al2O3 in a �xed bed reactor at 28.5 bar and 300 ◦C:

− dx

dτ
=
k1KAx+ k2KAx

(1 + C0KAx)2
(2.9)
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Here, x denotes mole fraction of phenol, whereas C0 denotes the feed concentration. KA is the equi-
librium constant for the adsorption of phenol onto the catalyst, τ is the residence time, and k1 and
k2 are reaction rate constants for DDO and HYD of phenol, respectively. Nie et al. [165] presented a
more complex Langmuir-Hinshelwood kinetic model for the HDO of m-cresol over a Pt/SiO2 catalyst
operated at 300 ◦C and atmospheric pressure in a �xed bed reactor. Their model took into account
the partial pressures of m-cresol, 3-methyl-cyclohexanone, 3-methyl-cyclohexanol, toluene, methylcyc-
lohexane, and 3-methyl-1-cyclohexene. Direct deoxygenation of the arylic C-O bond was considered
through a tautomerization/secondary hydrogenation pathway as opposed to hydrogenolysis. Mortensen
et al. [154] took a simpler approach for the screening of a broad range of catalysts and their activity in
the conversion of phenol in a batch reactor at 275 ◦C and 100 bar. They used a set of global reaction
rate expressions of the type:

ri = kiCy (2.10)

Here, ri refers to the rate of hydrogenation of phenol to cyclohexanol (i = 1) and the deoxygenation
of cyclohexanol to cyclohexane (i = 2), respectively. k is the rate constant and Cy represents the
concentration of phenol (y = 1) and cyclohexanol (y = 2) in the liquid.

Clearly, working with HDO of model compounds allows for a more detailed investigation of reaction
pathways and enables a more comprehensive understanding of the reaction mechanisms and kinetics
over di�erent catalysts. Setting up detailed kinetic models for HDO of real bio-oil including all possible
reaction pathways is challenging due to the high complexity of the feed.

General applications of kinetic models for HDO of model compounds are obviously limited, but they
can be used for screening of catalyst activity as shown by Mortensen et al. [154]. Kinetic expressions
developed for the HDO of real bio-oil feeds describe the deoxygenation on an overall level, but are
highly dependent on the conditions applied (e.g. feed identity, reactor con�guration, and operating
conditions). On the other hand, detailed mechanistic expressions developed for model compound HDO
are limited to the speci�c model compound(s) of choice, and expanding this type of model for all bio-oil
components is very complex. These compromises on accuracy and applicability of are well-known from
conventional hydrotreating, where it has been shown that simple and generalized models (similar to
equations 2.7 and 2.8) are useful tools in the development and optimization of catalysts and reaction
conditions [63].

2.3.8 Perspectives of HDO as Upgrading Technique for Condensed Bio-oil

In section 2.2.1 it was concluded that bio-oil cannot be used as an engine fuel, partly because of its
instability. This exact issue also limits the potential for HDO as a feasible upgrading technique for
condensed bio-oil. The reactive oxygenates, which originate from cellulose and hemicellulose [65,67,86]
cause severe coking and polymerization resulting in reactor plugging and catalyst deactivation [87],
which strongly challenges the development of a continuous process. Instead, it is proposed that HDO
should be performed on the pyrolysis vapors before condensation. In this way, reactive intermediates
can be stabilized by HDO immediately when formed. Processes combining fast pyrolysis and HDO are
reviewed in section 2.4.

Catalytic HDO studies have been focused either on upgrading condensed bio-oil or selected model
compounds. Table 2.8 summarizes the advantages and disadvantages of using the one or the other type
of feed. Studies on HDO of condensed bio-oil cover the complexity of working with real feeds. They
enable application industrially relevant operating conditions and they use a diverse multi-compound
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feed, which means that the experiments are subject to adverse phenomena such inhibition and coking,
which must also be dealt with at large scale. On the other hand, model compound studies allow for
catalyst development at a more fundamental stage, which is necessary in order to understand and
optimize the catalyst formulation and operating conditions.

Table 2.8: Advantages and disadvantages of performing HDO on condensed bio-oil or HDO on model com-

pounds.

HDO on condensed bio-oil HDO on model compounds
Advantages

HDO of a real and complex feed is

performed. This gives a complex

reaction network, which cannot be

represented by model compounds.

Detailed reaction mechanism,

thermodynamics, kinetics, and catalyst

deactivation can be investigated and

optimized.

Industrial-type reactor design (e.g.

trickle �ow) and reactant �ow patterns

(e.g. reactant vapor pressure) can be

applied.

Feed mixture is stable upon heating

and severe coking is avoided (long time

on stream is possible).

Disadvantages
Feed is too complex to track individual

reactions: only overall deoxygenation

kinetics and deactivation trends can be

obtained.

The highly simpli�ed feed composition

does not represent real feeds. Reactions

and interactions investigated are

limited to the choice of reactants.

Severe coking results in rapid

deactivation and reactor plugging

(experiment termination).

Typically operated at other conditions

(e.g. lower WHSV and hydrogen

pressure) than would be required at

industrial scale.

In short, both real feed and model compound studies are needed to develop and optimize industrially
relevant processes that combine fast pyrolysis and catalytic HDO, with the latter performed on the
pyrolysis vapors before condensation of the oil.

2.4 Combined Biomass Fast Pyrolysis and Catalytic Product

Upgrading

As reviewed by Resende [221], it has been considered to perform combined fast pyrolysis and catalytic
upgrading as a method for obtaining a stabilized, higher quality bio-oil, either with a catalyst in
the pyrolysis reactor and/or with a downstream reactor for upgrading pyrolysis vapors before oil
condensation. An overview of the possible reactor con�gurations is given in �gure 2.25. The background
for this is the adverse properties of fast pyrolysis bio-oil and the di�culties in upgrading by subsequent
HDO as outlined in the preceding sections. Catalytic fast pyrolysis is typically performed in �uid
bed reactors, where the bed material acts as both heat transfer material and catalyst. Reactors for
downstream vapor upgrading are typically �xed bed reactors.
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Figure 2.25: Overview of di�erent reactor con�gurations for continuous production of bio-oil via fast pyrolysis

in a �uid bed reactor: (a) Fast hydropyrolysis, (b) Catalytic fast hydropyrolysis, (c) Fast hydropyrolysis and

downstream catalytic HDO (�xed bed) on pyrolysis vapors, (d) Catalytic fast hydropyrolysis and downstream

catalytic HDO (�xed bed) on pyrolysis vapors. Reprinted from [221] (copyright 2016) with permission from

Elsevier.

Catalytic fast pyrolysis at atmospheric pressure and without hydrogen addition has been intensively
investigated using zeolite catalysts for cracking the bio-oil to achieve lower oxygen content (around 24
wt%) and higher aromatic content compared to standard fast pyrolysis [96]. Such a bio-oil is easier to
upgrade by HDO. However, as discussed by Venderbosch [96], the product of catalytic fast pyrolysis
is either a low yield of bio-oil and high yield of char, with low energy recovery in the oil, or a bio-oil
resembling non-catalytic fast pyrolysis bio-oil.

Another method, which is aimed at achieving both deoxygenation and fast pyrolysis in one step, is
fast hydropyrolysis, in which the gas is changed from an inert to H2 or partial H2 (scenario a in �gure
2.25). If an HDO catalyst is present in the reactor it is called catalytic fast hydropyrolysis (scenario
b in �gure 2.25). Catalytic fast hydropyrolysis is often performed at elevated pressure to increase the
driving force for HDO. This approach has been more successful in achieving both high energy recovery
and bio-oil with low oxygen content [96]. Both non-catalytic and catalytic fast hydropyrolysis can be
coupled with downstream HDO, performed in a �xed bed reactor, for vapor phase product upgrading
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(scenario c and d in �gure 2.25).
The di�erent concepts in �gure 2.25 each have their advantages and disadvantages. An advantage

of not having a catalyst in the pyrolysis reactor (scenario a and c) is that the optimal temperature
of ∼ 500 ◦C for fast pyrolysis (see Table 1) [21] can be applied without having to also consider what
might be optimal for the catalytic HDO reaction. Note, however, that without the HDO catalyst, the
H2 used in fast hydropyrolysis typically does not enable signi�cant HDO [222�225]. Therefore, the
advantage of in-situ HDO is not obtained here, and it becomes crucial to have a short residence time
before the downstream HDO reactor to avoid secondary reactions. For concepts with a catalyst in the
�uid bed (scenario b and d), the choice of catalyst becomes crucial; a too reactive catalyst may crack
all species to light gases, and no oil phase is formed. This was observed by Dayton et al. [226] using
a commercial hydrotreating catalyst (pre-reduced). Initially, mostly gaseous products were obtained,
but due to catalyst deactivation a liquid product was obtained after ∼ 20 hours on stream.

2.4.1 Perspectives of Fast Pyrolysis with Ex-situ and In-situ Hydrodeoxygenation

Several pilot scale concepts of combined fast pyrolysis and HDO have been investigated [222�224,226�
235]. Overall, it appears that to realize biomass to hydrocarbon fuels using a fast pyrolysis based
process, fast hydropyrolysis at elevated pressure using a high partial pressure of H2 is a very promising
method. Most likely the pyrolysis step will have to be catalytic and downstream vapor HDO is
necessary to achieve a product with low oxygen content. Alternatively, oil condensed after catalytic
fast hydropyrolysis may be co-processed in a re�nery hydrotreater. There are a number of technical
challenges to overcome in the scale-up e.g. feeding solid biomass to a pressurized �uid bed reactor. The
catalyst formulation is highly important and questions about poisoning and mechanical degradation
in the �uid bed as well as possible regeneration have yet to be answered.

Fast pyrolysis of lignocellulosic biomass produces oil with an increased volumetric heating value
compared to its parent biomass. In fact, the bulk energy density can be increased by a factor of >6
through fast pyrolysis [26,27]. There is however limited direct application for this bio-oil due to the high
content of oxygen which is responsible for a wide range of detrimental properties. Upgrading of this bio-
oil is necessary through catalytic HDO carried out at conditions similar to conventional hydrotreating
or even at lower temperatures and pressures. As reviewed in section 2.3, several studies on catalytic
HDO show promising results for this technique. However, as the vast amount of research studies have
shown, it seems necessary to couple fast pyrolysis and HDO into catalytic fast hydropyrolysis in order
to develop a technology which can continuously convert solid biomass into liquid fuel. Otherwise, if
HDO is performed on condensed oil in a separate process, coking during heating of the oil will be
so severe that catalyst deactivation, low energy recovery of the oil, and plugging make the process
infeasible.

It has been proposed that fast pyrolysis of biomass into bio-oil can be implemented at delocalized
sites to increase the energy density and make transportation economically feasible [19,27]. Mortensen
et al. [19] presented a �ow sheet for this process based on the work of Jones et al. [236] (see �gure
2.26) where raw bio-oil is produced at delocalized sites and subsequent upgrading is performed at a
centralized plant. Here, HDO is used to upgrade the oil with a downstream recovery section similar to
that applied in hydrotreating processes [62,63].
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Figure 2.26: Overall �ow sheet for a proposed production of bio-fuels on the basis of catalytic upgrading of

bio-oil. PSA = pressure swing adsorption. Reprinted from [19] (copyright 2011) with permission from Elsevier.

Even with a seemingly promising process economy [236], implementation of delocalized pyrolysis plants
is challenged by the instability of bio-oil, which cannot be reheated as required for subsequent HDO
without severe coking and polymerization. This challenge can be overcome by performing the pyrolysis
as catalytic fast hydropyrolysis followed by transport of the stabilized bio-oil to centralized plants for
upgrading to fuel grade oil. This partly upgraded bio-oil could also be transported to already existing
oil re�neries, where it could be co-processed with fossil feeds. This would eliminate the need for
construction and commissioning of new plants.

Centralized plants are more favorable in terms of the H2 requirement, which is signi�cant for both
catalytic fast hydropyrolysis and catalytic HDO, and it becomes clear that there are several challenges
to overcome in the development of a commercially attractive process. One option is to use reforming to
convert light gasses produced in the fast hydropyrolysis (C1−3 hydrocarbons) into CO2 and H2 which
can then be fed to the pyrolysis reactor. Additional H2 could potentially be produced sustainably
from electrolysis of water using electricity from wind and solar power, but it requires progress in the
development of electrolysis cells [10, 237]. H2 could potentially also be produced from the gasi�cation
of char. Another utilization strategy for the light gasses could be conversion into synthetic natural gas
(SNG) by methanation.

Techno-economic analyses or life cycle assessments (LCAs) can be used to evaluate whether a
process is economically viable and allows for comparison of di�erent processes. Such analyses have
been performed for various fast pyrolysis and catalytic upgrading processes, for example stating that
transportation of solid biomass is viable within a radius of <170 km [26]. As these analyses are based on
a complex network of data and assumptions (i.e. agricultural yields, energy prices, process e�ciencies,
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and yields), it is recommended to interpret the results with caution, especially if an uncertainty and
sensitivity analysis is left out.

It must be considered what type of product the combined fast pyrolysis and bio-oil upgrading should
produce. Table 2.9 gives an overview of the oil properties achieved by di�erent methods. Even though
HDO on condensed bio-oil produces an oil with a low oxygen content and high energy content, the
instability of condensed bio-oil is a critical drawback. Instead, catalytic fast hydropyrolysis produces
an oil similar to the HDO oil [233] but with the possibility to operate the process continuously for
several hundred hours [238]. If the catalytic fast hydropyrolysis is coupled with downstream HDO,
the produced oil is further upgraded; the oxygen content is markedly decreased while the contents of
carbon and hydrogen are increased.

Table 2.9: Comparison of bio-oil properties from fast pyrolysis of wood and HDO of condensed fast pyrolysis

oil with oils obtained from catalytic hydropyrolysis.

Catalytic fast hydropyrolysis oil
Property [Unit] Fast pyrolysis oil HDO oila no HDO downstream HDO
Scenario

(�gure 2.25) - - b d

Refs. [21, 22,28�30,36] [87,94,98,101] [233] [233]

Carbon [wt%] 44-58 76-87 77-87 85-88

Hydrogen [wt%] 5.5-7.2 9.7-13 9.6-12 11-13

Nitrogen [wt%] 0-0.2 <0.6 0.04-0.1 0.04-0.06

Oxygen [wt%] 35-50 0.02-14.2 0.5-14 0.7-2.2

Sulfur [ppm] <400 <700 300-400 100

Viscosity [cSt] 13-100 1 - -

(40-50 ◦C)

Density [kg/L] 1.1-1.3 0.83-0.93 0.82-1.0 0.78-0.86

(15-40 ◦C)

HHV [MJ/kg] 16-19 41-46 - -

H/C - 1.3-1.9 1.48-1.82 1.40-1.81 1.61-1.76

O/C - 0.4-0.8 <0.12 <0.14 <0.02

a From HDO of condensed bio-oil.

The boiling point of oxygenates is higher than for fuel type hydrocarbons with equivalent carbon
numbers [61]. Thus, the oxygen content should preferentially be tuned to �t the target product, which
could be a range of boiling point fractions. Fuel compositions are complex [239], and it is necessary
to look at the speci�cations for the target fuel as well as what can be achieved from the biomass and
process of choice. A common goal in the literature is to go all the way from solid biomass to a high-
quality liquid fuel - preferably in one step. Complete deoxygenation of bio-oil is, however, often only
achieved with severe operating conditions (see e.g. �gure 2.17 and table 2.6). Furthermore, as discussed
above, re-heating of condensed bio-oil causes severe process issues due to coking, polymerization, and
reactor plugging. Therefore, catalytic fast hydropyrolysis seems promising as reactive oxygenates can
be stabilized in-situ when formed. It could perhaps be interesting to target a less deoxygenated
product to be used as a fuel additive (similar to ethanol or methanol) or to be co-processed in already
functioning hydrotreating plants.

The investigation of catalytic fast hydropyrolysis is still at an early stage and the technology needs
to mature before more concrete considerations, for example based on LCAs, can be made regarding the
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process economy and sustainability, and application of the product oil. Furthermore, the requirements
for (�uid bed) hydropyrolysis catalysts di�er from those of commonly applied HDO catalysts. Firstly,
they must have a high mechanical strength in order to ensure attrition resistance during �uidization.
Secondly, a moderate or even low activity could be preferential in order to avoid extensive cracking or
potential generation of hot spots (in �xed bed reactors). As is the case with most other green techno-
logies, subsidies, and political initiatives will be very important in order to facilitate the development
of an economically feasible process for the continuous conversion of solid lignocellulosic biomass into
transportation fuel grade oil.

2.5 Conclusions and Outlook

The global society is facing challenges with global warming, depleting fossil resources, an increasing
population, and a corresponding increase in energy demand. Our lifestyle depends on energy and there
is a need for sustainable carbon based fuels. Lignocellulosic biomass such as wood, energy crops, straw,
and agricultural waste is a renewable carbon based material that does not compete directly with food;
note, however, that considerations on usage of agricultural land must be included. Fast pyrolysis is
a simple and e�cient way to convert solid biomass into a liquid with an increased volumetric energy
density. The signi�cant oxygen content (35-50 wt% compared to <0.1 wt% in heavy fuel oil) results
in a heating value less than half that of conventional fossil fuels. Furthermore, as much of the oxygen
is present as carboxylic acids, ketones, and aldehydes, bio-oil is acidic and unstable upon storage and
heating.

Catalytic HDO is a promising technique for upgrading bio-oil, and much research has been devoted
to developing and understanding catalyst systems as well as reaction and deactivation mechanisms.
Particularly deactivation is a major issue in HDO, where coke deposition and exposure to high water
concentrations challenge many catalysts and in�uence both catalytic performance and selectivity. Due
to the thermal instability of bio-oil, catalytic fast hydropyrolysis with immediate product stabilization
seems an alternative, promising approach compared to sequential non-catalytic fast pyrolysis and HDO
on the condensed oil. However, several challenges remain, such as:

� Catalyst development for both (�uid bed) catalytic fast hydropyrolysis and downstream �xed
bed HDO to optimize liquid yields: Investigation and optimization of known formulations as well
as novel catalyst materials in combination with advanced experimental and theoretical tools such
as DFT, TEM, STM, XAFS, and tomographic techniques.

� Better understanding of the kinetics of HDO occurring during catalytic fast hydropyrolysis in-
cluding in�uence of impurities (e.g. alkali metals) on secondary reactions (e.g. cracking), which
a�ect the selectivity towards HDO. Model compound studies using multi compound feeds should
be employed in order to investigate how the HDO kinetics of various oxygenates are in�uenced
by the presence of other compounds (e.g. through competitive adsorption).

� Comprehensive investigation of catalyst deactivation (attrition, poisoning, coking, phase change)
by poisons abundant in biomass (alkali metals, chlorine, nitrogen, water, and sulfur) of di�erent
catalyst types to optimize catalyst performance. Catalyst deactivation should be mitigated
and/or e�cient regeneration methods should be developed.

� Investigation of catalytic fast hydropyrolysis of solid biomass directed at minimizing coke forma-
tion and cracking, and stabilizing reactive oxygenates. Investigation and optimization of operat-
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ing conditions for catalytic fast hydropyrolysis (temperature, H2 partial pressure, space velocity,
gas �ows, etc.).

� Development of new processes and reactor con�gurations for the continuous catalytic fast hy-
dropyrolysis and downstream catalytic HDO including feeding of solid biomass into a pressur-
ized reactor, catalyst regeneration and/or replacement, and integrated utilization of by-products
(char, light gasses, product water, system heat). Long-term tests should eventually be performed
to test the stability and robustness of the process.

� Assessment of target product(s). The operating conditions and catalyst type(s) should be aimed
at the desired product composition (e.g. oxygen content in produced bio-oil) and yields (gas vs.
bio-oil). The product could e.g. be a moderately oxygenated fuel additive or re�nery blend-in,
or an oxygen free ready-to-use fuel.

With all the work already performed on fast pyrolysis of biomass and on catalytic HDO of the condensed
bio-oil, the task at hand is to combine this knowledge in the further research and development of
combined fast pyrolysis and HDO processes such as catalytic fast hydropyrolysis. Combining fast
pyrolysis and HDO, e.g. as catalytic hydropyrolysis, is in its industrial infancy, and there are many
points to address to obtain optimized, commercially viable processes. An additional point not addressed
in this work, is to �nd suitable sources for H2, e.g. by solar or wind powered electrolysis of water or
by reforming of light pyrolysis gasses. In terms of combining fast pyrolysis and catalytic HDO, several
proof of concept studies already exist. Thus, what remains is a directed scienti�c, commercial, and
political e�ort to ensure the development of an e�cient route for renewable liquid fuels from biomass.
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3 | Experimental Work

This chapter describes the experimental setup used for catalytic activity tests along with methods of
catalyst preparation and characterization. Typical operating conditions and calculations employed for
activity assessment are included.

3.1 Experimental Setup

Catalytic HDO activity tests were performed using a continuous �xed bed reactor setup capable of
operating up to 550 ◦C and 125 bar. The setup name is the Pyrolysis Oil Converter (POC) (setup
045-28 in the pilot hall at DTU Chemical Engineering). A simpli�ed process diagram is shown in �gure
3.1, and a quick overview of main instrument details can be found in table 3.1.
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Figure 3.1: Simpli�ed process diagram for the POC setup. MFC1-5: mass �ow controllers, E1-2: evaporators,

P1-2: pumps, S1: Separator tube, PIC: pressure indicator and controller, dP: di�erential pressure cell, C1:

condenser, V1-V8: manifold magnetic valves.
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A detailed description of the setup excluding minor modi�cations can be found elsewhere [1]. The
modi�cations include cooling of the separator tube, S1, possibility for �ushing MFC4 with N2, and
other minor alterations. Most of the equipment can be controlled and monitored on a PC via LabView,
which enables data logging with a frequency of 1-60 s−1 (5 s−1 has been used as default). Generally,
�ows, temperatures, magnetic valve positions, and pressures were logged.

Table 3.1: Instrumentation details for �gure 3.1.

Instrumentation Description Details
P1-2 HPLC pumps 10 or 50 mL pump heads

E1-2 Evaporators Thermopatron heat cartridges

with 6m 1/8" 316L stainless

steel tubes

MFC1-2 Liquid mass �ow controllers Used as �ow indicators (valves

fully open)

MFC3-5 Gas mass �ow controllers Used as �ow indicators and

controllers

PIC Pressure indicator and controller Feedback to backpressure valve

V9. Fit for ≤120 bar
V9 Backpressure valve (gas) Used for automated pressure

control (gas e�uent). Trim 15

(Cv = 2-250·10−6 at 5-100 %

opening) installed

V10-12 Backpressure valves (liquid) Used for build-up of liquid feed

pressure and for pressure

reduction before C1

dP Di�erential pressure cell Measures liquid column height

in S1

V13 Magnetic valve Feedback to dP for automated

liquid collection. Typical

open/close level for V13 at dP

45/35 mmH2O

Heat tracing Winded electrical heat tracing 80 ◦C used during catalyst tests

Cooling Water cooling through winded copper pipes 10-15 ◦C used during catalytic

activity tests

C1 Condenser 6 ◦C used during catalytic

activity tests

3.1.1 Setup Modi�cations and Material Selection

Some modi�cations to the original design (see [1]) have been made in order to �t the purposes of this
project. The setup has previously been used for the continuous upgrading of wood pyrolysis oil [1].
These experiments resulted in severe coke and tar deposition in the reactor and in downstream pipes
and equipment. Coke deposition has most likely been caused by rapid polymerization of highly reactive
species, both present in the pyrolysis oil feed and in the product as partly deoxygenated coke precursors.
The experimental work performed by the author of this work was thus initiated with extensive cleaning
of the setup, and the conclusion was made, that HDO on condensed pyrolysis oil, which is reheated
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before upgrading is highly unattractive.
In former experiments, the reactor outlet could be kept warm with heat tracing, and it is possible

that polymerization reactions have been further enhanced by this. In order to ensure cooling and
stabilization of products leaving the reactor, the heat tracing of the reactor e�uent was replaced by
water cooling. The setup has additionally been cleaned in a systematic manner prior to start-up of
the experimental work presented in the following. Equipment and pipelines have been taken apart and
cleaned by scrubbing with deionized water, ethanol, and acetone. Ultrasound cleaning was applied
when necessary. Pipelines too small to clean and fully damaged equipment have been exchanged with
new equipment.

Figure 3.2a-b illustrates the severity of the coking in the setup. Unfortunately, no pictures were
taken of the reactor tube before it was discarded. It had a several mm thick, dark brown/blackish
clotted char trace running down the outside of the inlet section, making it resemble an old candle. It
indicated that there was a liquid over�ow in the last experiment causing the liquid feed to run in reverse
direction through the reactor tube. In addition to coking, sealing materials in various components were
damaged by the use of pyrolysis oil and the use of acetone during cleaning. Figure 3.2c-d shows a fresh
seal from a check valve and a used, swollen one, which poses a risk to the safety of operation.

Figure 3.2: Pictures from initial cleaning of the POC setup after former experiments with real pyrolysis oil.

(a) Looking into the separator tube, S1, where a layer of coke (≤0.5 mm) was deposited on the inner surface.

(b) A pipe cleaner inserted into a T-piece in the liquid product collection line. (c) A fresh check valve bonnet

(kalrez seal). (d) A check valve bonnet (viton seal) exposed to pyrolysis oil and acetone.

Before starting new experiments, it was ensured that the wetted parts of the setup were compatible
with representative pyrolysis oil compounds as well as water, H2S, H2, and a few organic solvents which
could be relevant for cleaning. Any non-compatible parts were exchanged with compatible materials
with only a few exceptions, if the risk of damage was considered low. Fluorinated sealing materials
(Kalrez, Kel-F, FFKM, PEEK, PTFE) have frequently been applied in the setup. An overview of the
material compatibility between relevant materials and chemical species is provided in table 3.2.
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3.1.2 Reactor

A schematic drawing of the in-house designed reactor is shown in �gure 3.3. The reactor is constructed
from 316L stainless steel, like the piping of the entire setup. The reactor consists of a vertical pressure
shell and an internal reactor tube, in which the catalyst bed was placed. The pressure shell consists of a
80 cm straight tube with �anges welded to the top and bottom respectively. The internal reactor (from
this point on referred to as the reactor) is a 91.5 cm long straight tube with internal diameter 0.8 cm
and outer diameter 1.0 cm. A support pin located 42.15 cm from the outlet of this tube enables �xation
of the catalyst bed in the isothermal zone of the furnace using steel wool. A steel reactor was used in
all experiments presented here, but it is also possible to use a quartz reactor. Initial experiments using
a quarts reactor tube, quarts wool, and glass beads for bed dilution, however showed that all three
glass components degraded upon exposure to ethylene glycol, H2S, and H2 under reaction conditions
(see Appendix C).

Figure 3.3: Schematic drawing of the POC reactor. Pressure shell, internal reactor, and thermopocket have

been highlighted. The gas and liquid inlets are shown. The insert to the right shows the gas and liquid feed �ow

paths at the internal reactor tube inlet.

55



Chapter 3. Experimental Work

The gas feed enters the bottom �ange and rises through the pressure shell and enters the reactor
in the top �ange. Some of the gas (MFC3-4) may be fed together with the liquid through the dip
tube. The product (gas and liquid) exits the bottom �ange. A thermopocket allows for temperature
measurements at adjustable locations along the axial direction of the catalyst bed. The liquid feed
enters the reactor through a dip tube �tted to the top �ange.

The pressure shell and reactor is heated by a Carbolite TVS12/600 furnace which has a 60 cm
heated zone. The �xed bed length was <20 cm for all catalyst activity tests, and the catalyst was
placed in the isothermal zone of the furnace (see �gure 3.4). The temperature pro�les in �gure 3.4
show that it is more di�cult to maintain the isothermal zone at higher temperatures, due to heat
loss to the surroundings. The temperature pro�les include one pro�le measured during the HDO of
a cyclohexanol/ethylene glycol mixture at 420 ◦C (see chapter 6). In this experiment, the bed length
(including steel wool) was ∼ 6 cm, and the temperature pro�le revealed endothermal activity in the
inlet part of the bed. The exact location of catalyst bed in this experiment is shown in Appendix D. The
HDO temperature pro�le can be compared with that obtained without reaction; in this case, the pro�le
obtained at setpoint 450 ◦C has been parallel shifted downwards by 31 ◦C for easy comparison. This
comparison shows how the heat of reaction may in�uence the temperature through the catalyst bed;
in this case, endothermal activity was caused by the rapid dehydration of cyclohexanol (see chapter
6).
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di�erent setpoints (SP). One temperature pro�le measured during the HDO of a cyclohexanol/ethylene glycol
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pressure 40 barg (27 bar H2, 550 ppm H2S, balance N2, see chapter 6). Position = 0 is the location of the

support pin. The distance relative to 0 corresponds to the distance above the support pin.
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3.1.3 Liquid feed

Two di�erent liquid feeds were pumped from 1 L blue cap bottles into the system via HPLC pumps
P1 and P2 (see �gure 3.1). During continuous operation, these bottles were re�lled when necessary.
Line 1 was used for bio-oil model compounds, while line 2 was used for dimethyl disul�de (DMDS).
The liquid feed entered the reactor top through a dip tube (see �gure 3.3). The pressure in lines 1-2
was built up using backpressure valves V11-12 and the �ow was monitored with MFC1-2. Whenever a
new liquid was introduced, the respective feed line (1 or 2) was �ushed with the new liquid, and it was
checked with GC-FID/MS, that the former liquid had been e�ciently removed. The corresponding
pump and mass �ow controller (P1/MFC1 or P2/MFC2) were then calibrated to enable �ow rates and
logging in the desired feed �ow range.

3.1.4 Gas feed

50 L gas cylinders (supplied by AGA) containing N2 (≥99.95 %), H2 (≥99.9 %), and 2% H2S/H2

(≥99.5 %) were connected to the setup. The gas feed �ow was monitored and controlled using MFC3-5
(see �gure 3.1). The gas feed feed was consistently sent to the bottom of the reactor pressure shell,
where it �owed upward inside the pressure shell along the outer surface of the reactor until it was
mixed with the liquid feed in the top and entered the reactor tube in a down�ow (see �gure 3.3). The
H2 and 2 % H2S/H2 feeds could however also have been sent to the reactor top together with the
liquid feed depending on the position of three-way valve V13. The setup was �ushed with N2 before
and after operation with H2 to avoid mixture with air.

H2S a sticky gas and especially MFCs exposed to H2S may experience deterioration if exposed to
air, while H2S is deposited on inner surfaces. Therefore, a three-way valve, V15, was installed to enable
�ushing of MFC4 with N2 to remove air (before experiments were started) and H2S (after experiments
were ended).

The automated pressure control loop consisted of the pressure indicator and controller, PIC, and the
backpressure valve V9. The possible pressure range depends on the backpressure valve speci�cations
(i.e. trim dimensions), the temperature (e.g. if heat tracing is employed), and the gas composition. If
a nitrogen rich feed is used, the resulting pressure at a given degree of opening of V9 will be higher
than that resulting from a hydrogen rich feed, due to the higher density of nitrogen. V9 was equipped
with a trim 15 (Cv = 2-250·10−6 at 5-100 % opening). The pressure in a typical activity test was
maintained at 40 barg with a total feed �ow of 1550 NmL/min (31 % N2, 65 % H2), and a V9 opening
of 70-75 %.

3.1.5 Product Separation, Collection, and Analysis

The reactor e�uent was cooled to 10-15 ◦C and separated by gravity into gas and liquid in the separator
tube, S1 (see �gure 3.1). The gas �owed upwards from S1 to V9, which reduced the pressure down to
near-ambient. Downstream of V9, the gas was analyzed online on a Shimadzu GC-2014 with a thermal
conductivity detector (TCD) and a 2 m 0.53 mm ID Shincarbon ST column (N2, H2, CO, CO2, CH4,
C2H4, C2H6, C3H6, C3H8 were detected and analyzed). The analysis frequency was typically two
GC-TCD measurements per hour.

The di�erential pressure cell (dP) at the bottom of S1 was connected to the magnetic valve V13,
which was controlled to open and close at certain liquid column heights in S1 to keep an approximate
steady state liquid level. A note on the development of steady state liquid collection in S1 for a two-
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phase liquid product is given in Appendix E. The pressure in the liquid collection line was reduced
by backpressure valve V10, and the condenser C1 provided additional cooling of the product. Liquid
products were then collected in a valve manifold (V1-V8), typically programmed for a 4-5 h collection
period in separate sample bottles. The mass and density (using an Anton Paar DMA 4100 density
meter) of liquid samples was measured to get the volumetric �ow rate. The liquid composition was
analyzed by GC-FID/MS using a Shimadzu 2010 GCMS-QP2010 Ultra �tted with an Equity®-5 30
m x 0.32 mm column with dfilm 0.5 µ and equipped with a �ame ionization detector (FID).

3.2 Catalyst Preparation

Catalysts composed of Mo, NiMo, and CoMo were prepared by sequential incipient wetness impregna-
tion of a MgAl2O4 spinel support supplied by Sasol as Al2O3-MgO precursor pellets (Puralox MG30
5x5, Z600134). This precursor was initially calcined for 3 h at 1000 ◦C to obtain the MgAl2O4 structure
(veri�ed by X-ray di�raction, XRD). The calcined MgAl2O4 sample had a pore volume of 0.44 gwater/g
(90 % of this volume was used for impregnation), and a pore volume determined by N2-physisorption
of 0.28 cm3/g (see Appendix F for physisorption isotherm and pore size distribution). The mean pore
radius was 104.1 Å. The speci�c surface area, SSA, of the calcined MgAl2O4 was 60-62 m2/g with little
variation between the di�erent batches calcined.

The support was crushed and sieved into a 300-600 µm fraction that was impregnated with an
aqueous solution of (NH4)6Mo7O24·4H2O (Fluka ≥99.0 %). It was then aged (by stirring) for 1 h and
dried at 110 ◦C overnight. For promoted catalysts, a second impregnation was performed similarly
with Co(NO3)2·6H2O (Fluka ≥98 %) or Ni(NO3)2·6H2O (Sigma-Aldrich ≥97 %) followed by aging and
drying at 110 ◦C overnight. Calcination was then performed in a �ow of 2.5 NL/min technical air (20
% O2 in N2) by heating with a ramp of 5 ◦C/min to 500 ◦C and holding for 3 h. The catalysts were
fractioned again (300-600 µm) before activity tests to remove any dust or agglomerates formed during
the preparation. A catalyst with 14 wt% Ni was prepared as well to test the activity of supported
NiSx.

Catalyst activation was performed in-situ in the catalytic activity setup close to atmospheric pres-
sure in a �ow of 10-12 % H2S created from DMDS (Sigma-Aldrich ≥99.0 %) in H2; resulting in a
total �ow rate of ∼ 830 NmL/min. Initial heating was performed in ∼ 100 NmL/min N2 from room
temperature to 200 ◦C. The temperature was then ramped at 5 ◦C/min from 200 ◦C to 360 ◦C and held
at 360 ◦C until unconverted DMDS started to build up in the outlet. The temperature and pressure
was then increased to achieve reaction conditions.

Table 3.3 gives an overview of prepared catalysts. The loading of Mo was targeted at a sub
monolayer, which is <4 atoms/nm2 for MgAl2O4 and thus similar to that of γ-Al2O3 [241]. This
was done to ensure a high dispersion of small moderately active sul�de particles and thereby prevent
the formation of a highly active type II sul�de phase [63, 242]. An estimated loading of 3.0-3.7 Mo
atoms/nm2 was achieved. The promoter loading was �xed at a M/Mo (M = Ni, Co) molar ratio of 0.3
to optimize the activity [63,243].
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Table 3.3: Composition and properties of as-prepared calcined catalyst precursors (oxide phase).

Catalyst Mo Ni Co Ni/Mo Co/Mo Mo loada BET SSA
[wt%] [wt%] [wt%] [molar] [molar] [atoms/nm2] [m2/g]

Mo#1 3.36 - - - - 3.7 64

Mo#2 3.37 - - - - 3.7 62

NiMo#0 0.83 0.17 0.34 0.85 80

NiMo#1 2.83 0.58 - 0.34 - 3.0 97

NiMo#2 3.33 0.66 - 0.33 - 3.7 77

CoMo#0 0.88 - 0.16 - 0.30 0.91 79.4

CoMo#1 3.28 - 0.59 - 0.29 3.5 73

CoMo#2 3.37 - 0.58 - 0.28 3.7 70

Ni#1 - 14.3 - - - - 49

Mg Al Al/Mg
[wt%] [wt%] [molar]

MgAl2O4 17.4 36.1 1.87b - - - 60-62

(support)

a Estimated Mo loading in atoms per nm2 support surface area available (assuming presence

of MoO3, NiO, and CoO).
b A slight excess of MgO, as reported by Sasol, was veri�ed by XRD.

3.3 Catalyst Characterization

Fresh and spent catalysts have been analyzed using various techniques.

3.3.1 Elemental Analysis and Morphology

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to determine the con-
centration of metals (Mo, Co, Ni, Fe, Si, Mg, and Al), and CS analysis by combustion and IR product
detection (CO2 and SO2) was used to get the content of C and S (in spent catalysts). N2-physisorption
(BET and BJH) was performed at liquid nitrogen temperature, -196 ◦C, using a QuantaChrome Auto-
sorb iQ2 or Monosorb MS-21 gas sorption analyzer. The catalysts were outgassed for 2 h at 350 ◦C
under vacuum, prior to N2 physisorption in the p/p0 range of 0.01-0.99. TEM was performed on an
aberration corrected FEI Titan 80-300 operated at 300 kV. XRD was performed on a Huber G670 dif-
fractometer with monochromatic Cu-Kα1 radiation (λCu-Kα1 = 1.54056 Å) or on a Panalytical X'pert
Pro di�ractometer using Cu-Kα1, Cu-Kα2, and Cu-Kβ radiation (λCu-Kα2 = 1.54443 Å, λCu-Kβ =
1.39225 Å) in the 2θ range of 0-70 ◦.

3.3.2 Raman Spectroscopy

Raman spectroscopy was performed at KIT using a Renishaw inVia Re�ex Spectrometer System
equipped with a frequency doubled Nd:YAG laser (532 nm, 100 mW). Data collection was typic-
ally performed in the 60-1300 cm−1 spectral range with a grating of 2400 lines/mm resolution. For
each sample, an area of ∼ 384 x 576 µm was scanned in a raster with 5400 points, which were averaged
giving a single spectrum. To avoid sample heating, the laser was set to line shape at 10% intensity
and the acquisition time was varied between 10 and 60 s per point. No dehydration was performed
on the calcined catalysts prior to Raman spectroscopy; the molybdenum oxide precursor species were
thus expected to be in their hydrated state [244,245].
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3.3.3 NH3-TPD

Ammonia temperature programmed desorption (NH3-TPD) was performed in a horizontal �xed bed
reactor setup at KIT. The experimental procedure is illustrated in �gure 3.5. The samples were �rst
pretreated by heating at 10 ◦C/min until 550 ◦C and holding for ∼ 10 min in a �ow of 555 NmL/min
N2. The samples were then cooled in a �ow of N2 until 90 ◦C, and adsorption of NH3 was performed
at 90 ◦C in a ∼ 580 NmL/min �ow of 2550 ppm NH3/N2 for ∼ 5 min. Adsorption was followed by
�ushing out excess NH3 at 90 ◦C for 2 h in 555 NmL/min N2. Desorption was then performed in
a �ow of 555 NmL/min N2, while heating at 5 ◦C/min until 550 ◦C and holding for ∼ 5 min. The
outlet concentration of NH3 was determined by Fourier transform infrared (FTIR) spectroscopy using
an MKS Multigas 2030 analyzer.
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Figure 3.5: NH3-TPD experimental procedure.

3.3.4 XAS

In-situ X-ray absorption spectroscopy (XAS) measurements were performed at the SuperXAS beam-
line at SLS (2.4 GeV storage ring, 400 mA ring current) [246]. Both X-ray absorption near edge
structure (XANES) and extended X-ray absorption �ne structure (EXAFS) spectra were collected.
Measurements were conducted at the Ni K- (8.333 keV), Co K- (7.709 keV), and Mo K-edge (20 keV)
of the prepared Mo, NiMo, and CoMo catalysts.

The catalysts were loaded into a 1 or 1.5 mm quartz capillary microreactor, which was heated by a
gas blower [247,248]. The reactor was connected to a H2S gas feed line and could be switched between
1000 ppm or 10 % H2S/H2, and to a H2 feed line, which could be sent through a water saturater or
directly to the reactor. The total �ow through the capillary reactor was 40-43 NmL/min. The exhaust
was sent through a H2S absorber (3.5 mol/L NaOH solution) into the exhaust system of the beamline.
A N2 line was installed for �ushing. The setup process diagram can be found in Appendix A.

Quick-EXAFS (QEXAFS) spectra were recorded in transmission mode with frequency of 10 Hz
using ionization chambers as detectors and using an excentre disk to continuously move the monochro-
mators in an oscillating manner allowing for fast measurements [246]. Reference spectra were recorded
for MoS2, MoO3, MoO2, (NH4)6Mo7O24·4H2O, MoO3·H2O, CoS, CoO, Co2O3, Co3O4, Ni3S2, and
NiO (pressed as BN pellets as received).

The catalysts were �rst dehydrated in a �ow of N2 while heating at 10 ◦C/min from room tem-
perature to 200 ◦C. Sul�dation was then performed by heating until 400 ◦C at 5 ◦C/min in a �ow of
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10% H2S/H2 and holding at 400 ◦C for 1 h. Sul�dation was followed by exposure of the catalyst to
increasing ratios of H2O/H2S in H2 with a constant total �ow rate of 43 NmL/min at 400-450 ◦C. In
the case, where 450 ◦C was applied, the sul�dation was immediately followed be heating from 400 ◦C
to 450 ◦C in 1000 ppm H2S/H2 at 5 ◦C/min, before H2O was introduced in the gas. The holding time
at each H2O/H2S ratio was typically 30 minutes. Figure 3.6 schematically illustrates the experimental
procedure employed for in-situ XAS measurements.

EXAFS spectra were analyzed by using the software package IFEFFIT interfaces, i.e., Athena
and Artemis [249]. The model included amplitude reduction factor (S2

0), coordination number (CN),
Debye-Waller factor (σ2), energy shift for each path (∆E0), and change in the path length (∆R), where
R is the bond length. A detailed description of the data treatment can be found in Appendix A.
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Figure 3.6: In-situ XAS experimental procedure applied during SLS beamtime.

3.3.5 DFT

DFT calculations were made to get insights into the structural dependency of molybdenum sul�de cata-
lysts upon promotion and exposure to varying concentrations of H2O and H2S. A detailed description
of the DFT calculations can be found in Appendix B.

3.4 Catalytic Activity Tests

Ethylene glycol (EG, Sigma-Aldrich, ≥99.8 %), phenol (Phe, Sigma-Aldrich, ≥99 %), cyclohexanol
(Cyc, Sigma-Aldrich, ≥99 %), and acetic acid (HAc, Sigma-Aldrich, ≥99.5 %) were used as model
compounds. In activity tests, 0.5-4 g catalyst was diluted with 0.5-4 g SiC (150-250 µm) and �xed
with steel wool in the reactor tube. The reactor was loaded into the pressure shell and the adjustable
thermocouple was placed in the thermopocket in a position corresponding to the middle of the catalyst
bed.
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In-situ activation was performed as described above. After this sul�dation, the temperature was
increased to reaction temperature in N2. The liquid HDO model compound was pumped around in an
internal loop to increase the pressure to a value 10-20 bar higher than the desired reaction pressure
(using backpressure valve V11) to ensure �ow through the evaporator into the reactor. Once the
desired temperature was reached, the gas �ow was switched from N2 to reaction gas and the pressure
was increased to reaction pressure. The HDO model compound(s) was added, when the reaction
pressure had stabilized, and this point of time is referred to as time on stream (TOS) = 0. The
activity tests were typically performed at 380-450 ◦C, 27 bar H2, 550-2200 ppm H2S, 40 barg total
(balance N2), a total gas feed (H2, N2, H2S) of 1550 NmL/min, and a model compound volumetric
feed of 0.14-0.16 mL/min. The resulting liquid WHSV was 2.4-21 gmodel/(gcat·h), depending on the
catalyst mass. The model compound concentration in the feed was 0.5-3.5 mol%.

Experiments were terminated by stopping the model compound feed and changing from reaction
gas to ∼ 500 NmL/min N2 while reducing the pressure. When ambient pressure was reached, �ushing
with N2 was continued at reaction temperature to desorb condensed species from the catalyst pores.
After 30 minutes �ushing, the furnace was turned o� to allow the system to cool to room temperature
overnight while continuing the �ow of N2. Unloaded catalysts were separated from SiC and steel wool
prior to analysis. No Soxhlet extraction was performed on spent catalysts prior to characterization;
thus, any condensed high-molecular weight products formed during reaction could be left in the catalyst
pores.

A blank experiment showed negligible HDO activity for the conversion of ethylene glycol at 400
◦C with a feed of 3-3.5 mol% ethylene glycol, 27 bar H2, 550 ppm H2S, and 40 barg total pressure
(balance N2); ethylene was the main gaseous product formed with a yield <0.7 %.

3.4.1 Calculations

The conversion, X, of model compound A was calculated based on the molar �ow in, FA,feed, and out,
FA,out, of the system:

X =
FA,feed − FA,out

FA,feed
· 100% (3.1)

The carbon based yield of product i, Yi, was calculated as:

Yi =
Fi · νC,i

FA,feed · νc,A
· 100% (3.2)

Fi is the molar �ow rate of compound i, and νC,i is the carbon number in compound i. N2 was used
as an internal standard in GC-TCD measurements so that the molar �ow of H2 and gaseous products
could be determined as:

Fg =
FN2,feed

yN2

(3.3)

Fg,i = yi · Fg (3.4)

Fg is the total e�uent molar gas �ow based on the known molar feed �ow of N2, FN2,feed, and the
fraction of N2, yN2 , determined by GC-TCD. Fg,i is the resulting molar �ow of compound i based on
the composition (molar fraction yi) determined by GC-TCD.
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The FID signal from the GC-FID/MS was calibrated for a range of compounds (methanol, eth-
anol, ethylene glycol, 1-propanol, ethyl acetate, 1-butanol, phenol, cyclohexanol). A broader range of
compounds were analyzed and quanti�ed by using the e�ective carbon method:

Ci =
Cref · νC,e�,ref

Aref
· Ai
νC,e�,i

(3.5)

The concentration of compound i, Ci, was calculated based on the area of the corresponding peak, Ai,
on the e�ective carbon number of this compound, νC,e�, and on the data from a reference compound
(in this case ethanol or phenol). Data on e�ective carbon numbers for the most abundant products
detected can be found in table 3.4.

In experiments with conversion of ethylene glycol and cyclohexanol, cyclohexene was produced, and
the GC-FID peak overlapped that of ethylene glycol. In this case, the peak of cyclohexene appeared
as a shoulder on the ethylene glycol peak (see �gure 3.7). The area of each compound was determined
by subtracting the cyclohexene shoulder from the main ethylene glycol peak. This method was veri�ed
by analysis of standard mixtures of cyclohexene and ethylene glycol in di�erent concentrations.
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Figure 3.7: GC-FID spectrum for liquid product collected at TOS 24-29 h for a cyclohexanol/ethylene glycol

experiment with a feed of 0.5 mol% cyclohexanol and 3 mol% ethylene glycol, 27 bar H2, 550 ppm H2S, and

40 barg total pressure (balance N2). 87 % conversion of cyclohexanol and 92 % conversion of ethylene glycol.

The area of the ethylene glycol peak is determined by subtraction of the shoulder, which is equal to the area of

cyclohexene.
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Table 3.4: Most abundant liquid products from EG, Phe, and Cyc conversion and their corresponding e�ective

carbon number based on [250].

Non-contributing E�ective
Compound Carbon number carbon number carbon number

νC νC,non νC,e� = νC − νC,non
Oxygenate functionalities
Primary alcohol - 0.5 νC-0.5

Ketone - 1 νC-1

Carboxylic acid - 1 νC-1

Ether - 1 νC-1

Aldehydes - 1 νC-1

C2−6 ester - 1.1-1.5 νC-νC,non
Most common products detected from EG
Ethylene glycol 2 1 1

Methanola 1 0.5 0.5

Ethanol (used as ref) 2 0.5 1.5

Acetic acid 2 1 1

Acetoneb 3 1 2

1-propanol 3 0.5 2.5

Methyl acetate 3 1.5 1.5

1-butanol 4 0.5 3.5

2-butanone 4 1 3

2-methyl-1-propano1 4 1 3

Ethyl acetate 4 1.5 2.5

2-methyl-1,3-dioxolane 4 2 2

Diethylene glycol 4 2 2

4-polyethylene glycol 8 4 4

Most common products detected from Phe (in mixture with EG)
Phenol (used as ref) 6 0.8 5.2

2-ethylphenol 8 0.5 7.5

Benzofuran 8 1 7

3-methylphenol 7 0.5 6.5

Most common products detected from Cyc (pure or in mixture with EG)
Cyclohexanol (used as ref) 6 0.5 5.5

Cyclohexane 6 0 6

Cyclohexene 6 0 6

Cyclohexanone 6 1 5

1,4-dioxaspiro[4.5]decanec 8 2 6

a May also include acetaldehyde, hydroxyacetaldehyde or a mixture of methanol, acetaldehyde,

and hydroxyacetaldehyde.
b Prior to GC-FID/MS measurement on each sample, the autoinjector �ushed the syringe with

acetone and then with the sample itself. It was occasionally checked (using a blank sample)

that any acetone remaining from the �ush was negligible or not detectable.

c Structure:

The molar �ow rate of liquid phase compound i, Fl,i, was then found from the total liquid volumetric
�ow rate for the speci�c sample bottle, Ql, which was determined based on the sample mass, ml,
sample density, ρl, and sampling time, t, for the speci�c bottle analyzed:
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Fl,i = Ci ·Ql (3.6)

Ql =
ml

ρl · t
(3.7)

The carbon mass balance was calculated based on the �ow of carbon into and out of the system, where
n denotes the total number of compounds analyzed in the outlet (gas and liquid) including unconverted
model compound A:

Cbalance =

∑n
i Fi · νC,i

FA,feed · νC,A
· 100% (3.8)

The mass balance closure in the ethylene glycol experiments was challenged by the formation of light
oxygenates (methanol, ethanol, acetaldehyde, etc.), which could not be detected by the online GC-TCD
analysis. A thorough review of the mass balance closure has been provided in Appendix G.

Space time yields, STY, were calculated for C1, C2, and C3 gas products to compare the catalyst
productivity based on the mass of catalyst, mcat, and the molar carbon based product of the compound
of interest:

STYi =
Fi · νC,i
mcat

(3.9)

In the HDO of ethylene glycol, cracking occurred forming C1 gasses (CO, CO2, CH4). The ratio of
fully deoxygenated ethylene glycol products (ethane and ethylene) to C1 gas products was used to
assess the degree of HDO compared to cracking:

C2

C1
=

YC2H6 + YC2H4

YCO + YCO2 + YCH4

(3.10)

The total carbon based yield of gas products detected, Csum,gas, was used to asses the combined yield
of C1 (CO, CO2, CH4), C2 (ethylene and ethane), and C3 (propylene and propane):

Csum,gas = YC1 + YC2 + YC3 (3.11)

3.5 Experimental Results Not Covered by this Thesis

Several conducted experiments did not make their way into this thesis for di�erent reasons. The very
�rst HDO catalytic activity tests were performed using bulk MoO3 (Sigma-Aldrich, 1-2.5 m2/g) as
catalyst and acetone as model compound, inspired the the work of Prasomsri et al. [144]. These initial
experiments were run over shorter periods of time, and were targeted at quickly assessing the activity.
The HDO activity tests for acetone conversion were performed at 350-400 ◦C with ≤ 2 bar H2 and
approximately 4 % acetone in the feed. In conclusion, the HDO activity of bulk MoO3 was negligible,
possibly due to reduction of MoO3 to MoO2 or coke deposition.

After the initial work with bulk MoO3, the focus was moved towards molybdenum sul�des, due to
their ability to operate at high hydrogen pressures necessary for stabilization of reactive oxygenates
and suppression of coke formation in pyrolysis vapor upgrade, and due to their sulfur tolerance. With
the aim to study the HDO of the very reactive polyolic sugar fragments in pyrolysis vapor, glycerol
was chosen as a model compound. It could be fed as a pure liquid (larger polyolic molecules are
typically solid at room temperature) and HDO would produce C3 gas products that could readily
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be determined with the online GC-TCD analysis, enabling high time on stream resolution. These
experiments were performed using a commercial hydrotreating catalyst, and it was possible to produce
propane at a yield of ∼ 50 % at 275 ◦C at 50 bar H2 with a co-feed of H2S and with 1.7 % glycerol
in the feed. Glycerol conversion experiments were run for a short period of time (<10 h) showing
some deactivation. Experiments with glycerol were challenged by the lack of a proper quanti�cation
method for unconverted glycerol, which was necessary for determination of the conversion, and these
experiments were thus terminated.

The next model compound of choice was ethylene glycol, which same as glycerol represents a
polyolic functionality and produces HDO products that could be detected with the online GC-TCD.
At the same time, ethylene glycol could be quanti�ed with instrumentation at hand (GC-FID/MS)
allowing for determination of the conversion. The �rst experiments were conducted at temperatures of
275-420 ◦C, 40 bar H2 and a co-feed of approximately 500 ppm H2S. These experiments provided useful
insights into the overall activity, coke deposition, in�uence of temperature, and in�uence of promotion.
However, it was found that Si from the glassy reactor equipment used was deposited onto the catalysts
and thereby induced accelerated deactivation (see Appendix C).

The reactor, bed �xator, and dilution material were then changed to inert materials, and the
reaction conditions were furthermore changed to higher temperatures and slightly lower H2 pressure
to �t the properties, that were going to be investigated in another PhD project studying the catalytic
(hydro)pyrolysis of solid biomass with downstream HDO of the pyrolysis vapors. The resulting work
from these �nal experiments are presented in this thesis.
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In�uence of Promotion and Loading on the Hydrodeoxy-

genation of Ethylene Glycol over Sul�ded NiMo and CoMo

Catalysts Supported on MgAl2O4

Abstract
The hydrodeoxygenation (HDO) of ethylene glycol over MgAl2O4 supported NiMo and CoMo catalysts
with di�erent active phase loadings was studied in a continuous �ow reactor setup operated at 27 bar
H2 and 400 ◦C. A co-feed of H2S was necessary to avoid accelerated deactivation, and increasing
the H2S concentration was observed to promote both deoxygenation and hydrogenation, which was
ascribed to the presence of SH groups at the catalytic active edge of MoS2. Higher yields of C1−3
gas products were obtained with higher loading catalysts. With 2.8-3.3 wt% Mo, a total gas yield of
80-100 % was obtained with an ethane yield of 36-50 % (no ethylene) at up to 118 h on stream. A
moderate selectivity towards HDO was obtained, but cracking and HDO were generally catalyzed to
the same extent by the active phase. Thus, the ratio of C2/C1 products was 1.1-1.5 for catalysts with
Mo loadings in the range of 0.8-3.3 wt%. Similar activities were obtained from Ni and Co promoted
catalysts, but with a somewhat better hydrogenation activity over NiMo, which for the catalysts with
a 0.83-0.88 wt% Mo loading lead to a relatively higher yield of ethane compared to ethylene.
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4.1 Introduction

When performing in-situ HDO of pyrolysis vapor, the reactive compounds can favourably be upgraded
and stabilized before condensation. This could be achieved either via catalytic hydropyrolysis in a
�uid bed reactor or by �xed bed HDO on the fast pyrolysis vapors before condensation [20, 221]. For
catalytic hydropyrolysis in a �uid bed (at ∼ 500 ◦C), the catalyst must be attrition resistant, and
moderate activity is necessary in order to limit cracking of the biomass into light gasses at elevated
temperature. For downstream �xed bed HDO of non-catalytic fast pyrolysis vapors (at 250-400 ◦C)
[1, 38, 87, 94, 98�102], a moderate catalyst activity is necessary to limit cracking, but also to avoid hot
spots from the exothermic HDO reactions.

Sul�de based catalysts, Ni- and Co-MoS2/Al2O3, which are used commercially as HDS catalysts,
are active for HDO of bio-oil and model compounds showing promising activity and stability [70,
76, 80, 92, 94, 98�100, 103�114]. Compared to other catalyst systems such as reduced transition metal
catalysts [38,82,87,92,94,99,101,154], sul�de catalysts are promising due to their moderate price and
tolerance against sulfur, which is inevitably present in bio-oil [22, 30]. γ-Al2O3, which is a commonly
applied support material [63, 67], is however not tolerant against water present in bio-oil and formed
during HDO, as it converts into boehmite [87,197].

In this work, Ni- and Co-promoted MoS2 catalysts supported on water and attrition resistant
MgAl2O4 have been prepared and tested for HDO activity. Ethylene glycol has been chosen as a model
compound as it represents the more reactive polyol functionality present in cellulose [251], which should
be upgraded before condensation of pyrolysis vapors to achieve a stable bio-oil. Catalysts with low and
higher loading of active phase and with di�erent promoters have been prepared and tested to study
the interaction between the active phase and support as well as the in�uence of promoter. With the
aim of developing stable catalysts and optimizing operating conditions, the in�uence of WHSV was
investigated to �nd reaction conditions where catalyst deactivation could be studied.

The Mo loading in the prepared catalysts was 0.83-0.88 wt% or 2.83-3.28 wt% corresponding to
0.9 or 3.0-3.7 Mo atoms per nm2 support surface area (see table 3.3). The molar ratio of Ni/Mo and
Co/Mo was �xed at 0.3.

4.2 Results and Discussion

4.2.1 XRD

The support material was received as a MgAl2O4 precursor; an amorphous mixture of MgO and Al2O3

(Puralox MG30 5x5, Z600134 from Sasol, see also chapter 3.2). XRD was used to identify that MgAl2O4

had formed during calcination at 1000 ◦C, see �gure 4.1. While the precursor was amorphous, the
calcined support was crystalline MgAl2O4 with expected peaks at 2θ = 19, 31.2, 36.8, 44.8, 55.6, and
59.4 ◦. A small peak at 2θ = 42.8 ◦ indicated the presence of a small amount of MgO in agreement
with the excess of Mg compared to Al as revealed by elemental analysis (see table 3.3). As γ-Al2O3 (as
well as η-Al2O3) transforms into θ-Al2O3 at ∼ 850-1000 ◦C [252], a comparison with θ-Al2O3 was also
made (see �gure 4.1), which despite some similarity with the MgAl2O4 di�ractogram, did not indicate
presence of θ-Al2O3 in the sample. Such a comparison was also performed ensuring that there was no
presence of α-Al2O3 (forms at >1150 ◦C [252]) or γ-Al2O3.

XRD was also performed for the calcined oxide phase precursors of the prepared catalysts with
low and higher loading of active phase (see table 3.3 for composition). In all cases, only MgAl2O4 was
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detected suggesting that active phase precursors were present at high dispersion; possibly incorporated
into the spinel structure. This was also the case for a sul�ded and spent NiMo catalyst, where the
di�ractogram was also similar to that of the support (see also section 4.2.5).
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Figure 4.1: XRD spectra of support material in as-received and calcined state, of oxide phase precursors of

prepared catalysts (see table 3.3 for composition), and of a spent NiMo catalyst (see table 4.4 for composi-

tion). References for θ-Al2O3, MgAl2O4, MgO, and boehmite (AlOOH) have been inserted (from the ICSD Web

Database [253], collection codes 82504, 39161, 9863, and 36340).

4.2.2 NH3-TPD

The total number of acid sites was measured by NH3-TPD for the calcined support (SSA = 60 m2/g)
and compared with that of the precursor (SSA = 266 m2/g), and a sample of γ-Al2O3 (Puralox NWa
155 from Sasol), SSA = 153 m2/g). The resulting TPD pro�les are shown in �gure 4.2 with the results
summarized in table 4.1. The concentration of acid sites per unit of surface area followed the trend:
MgAl2O4 > γ-Al2O3 > Al2O3-MgO, but due to the low surface area of MgAl2O4, the trend based per
unit of mass was: Al2O3-MgO > γ-Al2O3 > MgAl2O4. In the following, the concentration of acid sites
per unit surface area is discussed.

There was no immediate di�erence in the concentration of acid sites (on the basis of surface area)
between MgAl2O4 used in this work and conventional alumina supports. The spinel precursor showed
the lowest concentration of acid sites due to the content of basic MgO, while MgAl2O4 and γ-Al2O3

showed similar concentration of acid sites at ∼ 1 µmol/m2. Slightly higher values of 1.3-1.7 µmol/m2

has been reported for support material aluminas [254, 255], but values of 4-8 or even as high as 34
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µmol/m2 have been reported for aluminas used as dehydration catalysts [256, 257]. The broad peak
in the desorption pro�le for γ-Al2O3, which has a shoulder between 30-40 minutes (�gure 4.2), could
indicate that both weaker and stronger acid sites were present in γ-Al2O3, while there was a higher
concentration of weaker acid sites in MgAl2O4. However, even though the applied �ow rate was quite
large compared to the bed length (the linear gas velocity divided by the bed length was >9 s−1), which
should minimize the risk of re-adsorption phenomena during desorption, care should be taken in the
interpretation of acid strength [254,258].
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Figure 4.2: NH3-TPD pro�les for the MgAl2O4 support material used along with its as-received precursor and

a γ-Al2O3 sample. The mass of each sample was chosen to achieve a constant total surface area of 45 m2 (see

table 4.1).

Table 4.1: Concentration of acid sites (NH3-TPD) for the support material, its precursor, and a γ-Al2O3

sample.

Property MgAl2O4 Puralox: As received γ-Al2O3

(Al2O3-MgO)
m [mg] 750.2 169.8 294.1

SSA [m2/g] 60 266 153

SA [m2] 45.0 45.2 45.0

NH3 uptake:
[µmol/m2] 1.137 0.594 0.993

[mmol/g] 0.068 0.158 0.152
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4.2.3 Activity of MgAl2O4

The activity of the support (without pre-sul�dation) was tested for 52 h on stream at 400 ◦C, 27 bar
H2, 550 ppm H2S, and 3.4 mol% ethylene glycol in the feed with a total pressure of 40 barg (balance
N2). The average conversion was 28.3 % and there was negligible cracking and HDO activity over the
support, producing a total carbon gas yield of 1.3-2.1 % (≤1.1 % ethylene, ≤0.4 % ethane, ≤0.9 %
CO, ≤0.4 % CO2, no CH4, and no C3). There was a more signi�cant yield of 2-methyl-1,3-dioxolane
(2.7-5.6 %), diethylene glycol (2.5-4.5 %), and ethanol (2.7-4.4 %). The yield of methanol (0.9-1.4
%) and 4-polyethylene glycol (0.3-0.8 %) along with the remaining liquid products detected, was less
signi�cant. The formation of 2-methyl-1,3-dioxolane, diethylene glycol, and 4-polyethylene glycol is
proposed to occur via the reaction scheme in �gure 4.3. Dehydration of ethylene glycol forms ethenol,
which is expected to be shifted to its keto form, acetaldehyde, as the equilibrium constant for this
reaction is � 1 with log(K) = 3-5 at 300-600 ◦C (calculated with HSC Chemistry). Acetaldehyde can
undergo acetalization with ethylene glycol to form 2-methyl-1,3-dioxolane, while di- and polyethylene
glycol can form via alcohol condensation reactions. Mixed magnesium aluminum oxides are known to
catalyze both dehydration and alcohol condensation reactions [259, 260], and alcohol dehydration has
been reported to occur via di�erent reaction mechanisms over Mg-rich and Al-rich MgxAlyOz, with
the resulting rate of dehydration being the fastest for the more acidic Al-rich samples [260].

Figure 4.3: Proposed reaction scheme for formation of common coupling products detected in the conversion

of ethylene glycol over MgAl2O4.

As shown in �gure 4.4, the conversion �uctuated between 13-41 % (average: 28.3 %), while the carbon
balance �uctuated between 73-102 % (average: 88.1 %). As it can be seen, these �uctuations were
strongly correlated with the �ow of liquid product. The �uctuations in the liquid product �ow were
determined by the performance of the backpressure valve V10 (see �gure 3.1). This valve was manually
adjusted by turning the range spring to reduce the pressure from 40 barg down to ambient. The degree
of opening of the valve gradually decreased during the �rst day on stream. The valve was heat traced
in the attempt to stabilize its temperature. The setpoint of 40 ◦C was possibly too low to e�ciently
do so, but on the other hand, a higher temperature could have induced clogging issues in the valve.
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Generally, the range spring had to be adjusted during the entire runtime for all experiments to ensure a
stable liquid product �ow. At a given �xed range spring setting, the degree of opening in the valve was
both seen to increase and decrease during experiments, probably due to slight clogging or entrainment
of clogged products. In some cases, the degree of opening decreased to a level, which caused the �ow
through the backpressure valve to stop. The liquid product would then build up in S1, and as a safety
function, the liquid feed would automatically stop. In the attempt to avoid these process upsets, which
sometimes occurred overnight, the opening degree of the backpressure valve was generally set a little
higher than necessary to get a stable �ow, which in turn cause the �ow to �uctuate more. It should be
considered to perform these types of experiments with an automated pressure reduction of the e�uent
liquid �ow, similarly to what was employed for the e�uent gas �ow.
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Figure 4.4: Conversion, X, carbon balance, and liquid product �ow, Ql, from the conversion of ethylene glycol

over MgAl2O4 (1.0 g) at 400
◦C, 27 bar H2, 550 ppm H2S, and 3.4 mol% ethylene glycol in the feed with a total

pressure of 40 barg (balance N2). The liquid product density was approximately constant at 1.085-1.095 g/mL

at 25 ◦C.

4.2.4 NiMo and CoMo Activity

4.2.4.1 In�uence of Loading and Choice of Promoter

The conversion of ethylene glycol was tested for Ni and Co promoted MoS2/MgAl2O4 with an active
phase loading corresponding to a slight sub monolayer coverage (NiMo#1 and CoMo#1) and with
a four times lower loading (NiMo#0 and CoMo#0), see table 3.3, to study the interaction between
the active phase and the support. For MgAl2O4, monolayer coverage is achieved at a loading of
approximately 4 Mo atoms per nm2 surface area [241], which ensures optimal spreading of oxidic
molybdenum species formed during calcination [261] and results in the formation of small and highly
dispersed MoS2 particles during sul�dation. Furthermore, a low loading could be necessary to limit
undesired cracking reactions.
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Activity tests were performed with 2.2-3.8 mol% ethylene glycol in the feed at 400 ◦C, 27 bar H2,
550 ppm H2S, and a total pressure of 40 barg (balance N2) using 4.0 g catalyst. The resulting activity in
terms of conversion and gaseous product yields are shown in �gures 4.5-4.8. The temperature increase
upon addition of ethylene glycol was 4-16 ◦C; being highest for the more active higher loading catalysts.
The reaction temperature at TOS >5 h was stable. It was 408-411 ◦C for NiMo#0, NiMo#1, and
CoMo#0, while it was 413-416 ◦C for CoMo#1. During each activity test, the reaction conditions
were changed after initial testing at the mentioned conditions to study the in�uence of H2S or H2O.
Time on stream pro�les from the initial activity test are shown in �gures 4.5-4.8, while the entire time
on stream pro�les including varying operating conditions are included in sections 4.2.4.2 and 4.2.4.3.

The initial conversion was >90 % for all catalysts, and for the higher loading catalysts, it was close
to 100 % (see �gure 4.5). Full conversion (NiMo#1 and CoMo#1) resulted in notable �uctuations in
the gas yields, which was correlated with �uctuations in the liquid feed. The measured carbon based
liquid product yield was ≤4 % for NiMo#1 and CoMo#1, while it was ∼ 30-45 % for NiMo#0 and
CoMo#0. Due to incomplete condensation, it should be noted that these yields are expected to have
been higher than reported here; especially for the low loading catalysts, which produced low yields of
gas products.
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Figure 4.5: Conversion, X, of ethylene glycol over NiMo#0, NiMo#1, CoMo#0, and CoMo#1 (4.0 g) at

400 ◦C, 27 bar H2, 550 ppm H2S, and 2.2-3.8 mol% ethylene glycol in the feed with a total pressure of 40 barg

(balance N2). For catalyst composition, see table 3.3.

The TOS at similar reaction conditions was kept around 40-50 h, but for CoMo#1, it was extended
to 118 h in order to see, if the catalyst deactivated measurably bringing the conversion below 100 %.
Such deactivation in terms of a decrease in the conversion (�gure 4.5) or total carbon gas yield (�gure
4.6a) was not observed for the higher loading catalysts, but the C2/C1 ratio (see �gure 4.6b) decreased
until 80 h and then stabilized, indicating some deactivation in the HDO activity. The low loading
catalysts were subject to deactivation during the �rst 40-50 h on stream, which could be observed from
the conversion as well as all yields presented in �gures 4.5-4.8.
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Figure 4.6: (a) Sum of gas product carbon yields, Csum,gas, and (b) C2/C1 ratio from the conversion of ethylene

glycol over NiMo#0, NiMo#1, CoMo#0, and CoMo#1 (4.0 g) at 400 ◦C, 27 bar H2, 550 ppm H2S, and 2.2-3.8

mol% ethylene glycol in the feed with a total pressure of 40 barg (balance N2). For catalyst composition, see

table 3.3

The gas product yields were similar for Ni and Co promoted catalysts with the same loading. For the
higher loading catalysts, 80-100 % of the carbon feed was converted to gas products (see �gure 4.6a).
For the low loading catalysts, this number was initially 31 %, and then decreased to 13-15 % at 40-50
h. The ratio of HDO to cracking, the C2/C1 ratio, was very similar for all catalysts. It was in the
range of 1.1-1.5 with a decreasing trend over time. For the low loading catalysts, the initial C2/C1

ratio was 1.7-1.9, but decreased to 1.5 within the �rst 2-5 h on stream. The independence of this
ratio on the loading suggest that both HDO and cracking were equally catalyzed by the active phase
without signi�cant in�uence from the support.

The higher loading catalysts produced hydrogenated HDO products; no ethylene or propylene was
detected. Ethane was initially produced at a yield of 40-50 %, see �gure 4.7. In the case of NiMo#1, the
ethane yield was stable over time, whereas a slight linear decrease was observed for CoMo#1, resulting
in the average loss of 3.8 %-points of the ethane yield per hour. The low loading catalysts produced
a mixture of ethylene, ethane, propylene, and propane. A slightly higher hydrogenation activity was
observed for NiMo#0 compared to CoMo#0. As �gure 4.7 shows, the ethane yield was 1.7-12.0 % for
NiMo#0 and 1.7-10 % for CoMo#0. Both catalysts experienced an initial rapid decrease down to 4
% within the �rst 6-12 h on stream. The ethylene yield was 5.9-7.9 % for NiMo#0 and 6.1-10.0 % for
CoMo#0. At the same time, the propane yield was ≤1.2 % for NiMo#0 and ≤0.7 % for CoMo#0, and
the propylene yield was ≤2.1 % for NiMo#0 ≤2.4 % for CoMo#0. Ni promotion is commonly accepted
to provide better hydrogenation activity than Co promotion, namely in the conversion of aromatic
species [80,109,113,141,142,262]. In this case, however, a rather similar activity was obtained with Ni
and Co promotion; especially at higher active phase loadings.
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The cracking activity was practically identical for catalysts having the same loading (see �gure 4.8).
NiMo#0 and CoMo#0 produced CO, CO2, and CH4 at yields of 2.7-4.7 %, 2.5-4.3 %, and 0.6-3.0 %,
respectively, with a decreasing trend over time. For the higher loading catalysts, there was no di�erence
between CO, CO, and CH4, which were all produced at yields of 8-14 %. Cracking is favoured at
higher temperatures [21], so if HDO is performed in-situ during catalytic hydropyrolysis, a catalyst
with moderate activity should be employed to avoid gasi�cation of the biomass fed. This was observed
during the �rst ∼ 20 h on stream by Dayton et al. [226] who performed catalytic hydropyrolysis of
woody biomass using a pre-reduced commercial hydrotreating catalyst at 375 ◦C and 3 bar H2. Some
cracking will, however, most likely always occur during pyrolysis and potentially also during HDO, so it
is important to consider how to utilize these by-products, for example through water gas shift (WGS)
and steam reforming to regain H2 for the reaction or by production of SNG as a valuable by-product
by methanation.
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Comparison of the product yields at the average TOS of 16-17 h (table 4.2) illustrate the trends
described above and show how a larger liquid product yield as seen for NiMo#0 and CoMo#0 was
correlated with a poorer carbon balance due to incomplete condensation. During the entire time on
stream, the liquid collected from NiMo#1 and CoMo#1 was practically pure water with a density
of 0.994-0.997 g/mL (25 ◦C). A four times lower loading of active phase resulted in signi�cant liquid
product formation, and as opposed to the activity over pure MgAl2O4, a higher concentration of partly
deoxygenated compounds was formed. Furthermore, the GC-FID/MS spectra revealed a complex
composition with low concentrations of many partly deoxygenated and coupled products (polyols,
ethers, and ketones) formed over the low loading catalysts, and in several of these compounds, C2HxO
seemed to be a repeating unit. Only a few of these compounds, such as diethylene glycol and 4-
polyethylene glycol, were present in large enough amounts for identi�cation and quanti�cation. With
the amount of active phase being insu�cient for full deoxygenation, partly deoxygenated ethoxy groups
are believed to have been adsorbed on the catalyst, which could then form larger compounds over
MgAl2O4 by acid catalyzed isomerization and coupling reactions [71, 74,76]
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Table 4.2: Product distribution for conversion of ethylene glycol at 400 ◦C, 27 bar H2, 550 ppm H2S, 40 barg

total (balance N2) and 2.2-3.8 mol% ethylene glycol in the feed. For catalyst composition, see table 3.3.

Catalyst NiMo#0 CoMo#0 NiMo#1 CoMo#1 MgAl2O4

TOS [h] 15.3-19.3 15.0-19.0 13.8-17.8 14.9-18.9 15.7-19.7

WHSVEG [h−1] 2 2 2 2 9

Conversion [%] 98.7 95.8 100 99.9 24.8

Yields [%]

Unconverted ethylene glycol 1.29 4.21 0.04 0.11 75.2

Liquid products 36.9 44.1 1.3 0.2 15.8
Miscellaneous 12.0 13.0 0.35 <0.1 2.18

Methanol 5.22 6.15 0.23 <0.1 1.20

Ethanol 16.5 21.0 0.57 0.11 3.81

1-propanol 2.96 3.47 0.10 <0.1 0

2-methyl-1,3-dioxolane 0 0 0 0 4.30

Diethylene glycol 0.22 0.35 0 0 3.82

4-polyethylene glycol <0.1 0.16 0 0 0.49

Gas products 20.7 19.5 88.3 88.4 1.76
Propane <0.1 0 14.1 12.36 0

Propylene 1.13 0.75 0 0 0

Ethane 3.36 2.52 43.1 43.7 0.18

Ethylene 7.48 8.18 0 0 0.90

CO 3.82 3.36 10.5 9.87 0.48

CO2 3.74 3.69 9.61 11.3 0.20

CH4 1.20 0.98 10.9 11.2 0

Total (Cbalance) 58.9 67.8 89.6 88.7 92.8

4.2.4.2 In�uence of Varying H2S Feed Concentration

The H2S concentration was increased by a factor of four from 550 to 2200 ppm after 40-50 h on
stream for the low loading catalysts in the attempt to reactivate them (see �gure 4.9). At full HDO
of the ethylene glycol fed, the water generated would give a molar H2O/H2S ratio of ∼ 120 at 550
ppm H2S and ∼ 30 at 2200 ppm H2S. After increasing the H2S concentration, the conversion was
stabilized at 92-95 % for NiMo#0 and partly stabilized, but with some deactivation, for CoMo#0 at
88-95 %. At the higher H2S concentration the cracking activity and yield of ethylene were stabilized,
whereas the yield of ethane was approximately doubled due to a higher degree of both deoxygenation
and hydrogenation. The selectivity towards HDO was increased and stabilized at C2/C1 ∼ 1.4-1.8 for
both catalysts. This promoting e�ect of H2S in HDO of aliphatic species has been studied by �enol et
al. [109,110] and is further studied here in chapter 5. H2S adsorbs as SH groups onto the active edges of
MoS2 and thereby provides hydrogen and acidity, which can catalyze dehydration and hydrogenation
reactions [109,129�131].

The di�erence between Ni and Co promotion was more pronounced when the concentration of H2S
was increased. Ni promotion facilitated a greater ethane yield, which at 2200 ppm H2S resulted in
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a better C2/C1 ratio of up to 1.8 compared to the Co promoted catalyst. Thus, both the choice of
promoter and feed level of H2S may a�ect the HDO activity.
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Figure 4.9: Gas product yields from conversion of ethylene glycol over (a) NiMo#0 and (b) CoMo#0 (4.0 g)

at 400 ◦C, 27 bar H2, 550-2200 ppm H2S (noted in �gures), and 2.2-3.8 mol% ethylene glycol in the feed with

a total pressure of 40 barg (balance N2). The �rst 40-50 h on stream are also represented in �gures 4.5-4.8.

Please note that yields of C1 and ethylene are almost coinciding. For catalyst composition, see table 3.3.

The gradual reactivation, which occurred upon increasing the H2S co-feed was not assumed to be
correlated with resul�dation of partially oxidized MoS2. Addition of water to the feed mixture was
not found to oxidize the active phase (see section 4.2.4.3), and furthermore, the work presented in
chapter 5 indicates that the promoted MoS2 active phase in the prepared catalysts was stable upon
water exposure, due to a strong interaction with the support.

The importance of co-feeding H2S at a certain level was also veri�ed from the activity test of the
higher loading CoMo#1 catalyst, which was run at 550 ppm H2S for 118 h (see �gures 4.5-4.8) followed
by 28 h at 240 ppm, and 26 h with practically no H2S feed (<5 ppm). The conversion was 100 %
throughout the activity test, but the product distribution revealed catalyst deactivation (see table
4.3). Firstly, a higher liquid yield was detected at lower H2S concentrations, with a correspondingly
poorer mass balance from the incomplete condensation. Secondly, the total yield of gasses decreased
correspondingly with decreasing H2S feed. In terms of HDO, both deoxygenation and hydrogenation
activity decreased at 240 ppm and at <5 ppm H2S; i.e. the combined yield of deoxygenated C2−3
products decreased and the yield of unsaturated ethylene and propylene increased. The yield of CO
increased with decreasing H2S in the feed, which was partly explained by a lower WGS reaction activity
(CO + H2O → CO2 + H2), as evidenced from the lower yield of CO2.
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Table 4.3: Product distribution for conversion of ethylene glycol at WHSVEG = 2 h−1 400 ◦C, 27 bar H2, 40

barg total (balance N2), and varying H2S concentration over CoMo#1. No diethylene glycol, polyethylene glycol,

or 2-methyl-1,3-dioxolane was detected. For catalyst composition, see table 3.3.

H2S feed [ppm] 550 240 <5
TOS [h] 110-116a 140-144b 168-172c

Conversion [%] 99.8 100 99.8

Yields [%]

Unconverted EG 0.22 0 0.23

Liquid products 0.12 0.22 2.93
Miscellaneous <0.1 0.14 1.31

Methanol <0.1 <0.1 0.59

Ethanol <0.1 <0.1 0.97

1-propanol <0.01 <0.01 <0.1

Gas products 85.8 78.3 64.5
Propane 12.2 10.2 4.83

Propylene 0 0.82 3.80

Ethane 39.6 33.3 23.2

Ethylene 0 0 2.98

CO 11.5 13.0 14.0

CO2 11.7 10.0 5.93

CH4 10.8 11.0 9.81

Total (Cbalance) 86.1 78.5 67.6
a At approximate steady state from 60-118 h (see

�gures 4.5-4.8).
b At approximate steady state from 118-146 h, how-

ever with slightly increasing liquid yield over time.
c Not at steady state, deactivation was observed

over time at 146-172 h.

4.2.4.3 In�uence of Water

The sensitivity towards water was tested for NiMo#1 by switching the pure ethylene glycol feed with
one containing 30 wt% water at ∼ 50 h on stream, while keeping the WHSV of ethylene glycol and the
�ow of gasses constant (see �gure 4.10). This corresponded to a feed partial pressure of 1.1 bar ethylene
glycol and 1.6 bar H2O. At full HDO of ethylene glycol, this would give a total molar H2O/H2S ratio of
180, while the pure ethylene glycol feed would give H2O/H2S ∼ 120. Thus, addition of water increased
the potential H2O/H2S ratio by a factor of ∼ 1.5.

No severe e�ect of water addition was observed. Addition of water only resulted in a slight deactiv-
ation over time, but the activity was overall stable, and the conversion was 98.9-100 % during the entire
TOS. The S/Mo ratio in the spent catalyst (see table 4.4) furthermore did not suggest oxidation of
the active phase, which is a common worry in HDO over MoS2 based catalysts [1,106,135]. The liquid
product yield was low during the entire TOS, and addition of water did not result in a higher observed
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liquid product yield, as it was 0.22-3.8 % before water addition and 0.43-0.79 % after water addition.
Furthermore, no propylene or ethylene was detected. Thus, there seemed to be a greater sensitivity
towards changes in the H2S feed concentration compared to variation in the H2O concentration. This
could indicate that the promoted catalysts are stable against water induced oxidation, while a co-feed
of H2S is necessary to ensure optimal performance, for example through the adsorption of SH groups
at the active edges [109,129�131].

However, since the experiments were run at 100 % ethylene glycol conversion, it is not possible
to determine, if the entire catalyst bed was utilized and therefore, the deactivation induced by water
could be more severe than indicated by �gure 4.10. Chapter 5 studies the in�uence of H2S and H2O
at lower conversions and at the atomic level using in-situ XAS.

y = -0.05x + 41.6

y = -0.04x + 35.7

y = -0.09x + 92.8

y = 4.4E-03x + 42.4

y = 0.06x + 30.2

y = 0.08x + 86.2

y = 3.7E-05x + 1.2

y = -2.3E-03x + 1.4

0.0

0.4

0.8

1.2

1.6

2.0

0

20

40

60

80

100

0 20 40 60 80 100
C

2
/C

1
[-

]

Y
ie

ld
 [

%
]

TOS [h]

C_tot Ethane C1 C2C1C2/C1C1

Feed EG: 1.3 bar 1.1 bar

Feed H2O: - 1.6 bar

Feed H2S: 550 ppm 525 ppm

Csum,gas

Figure 4.10: Gas product yields from conversion of ethylene glycol over NiMo#1 (4.0 g) at 400 ◦C, 27 bar

H2, and 2.2-3.8 mol% ethylene glycol in the feed with a total pressure of 40 barg (balance N2). The �rst 50 h on

stream are also represented in �gures 4.5-4.8. No ethylene or propylene was detected. For catalyst composition,

see table 3.3.

4.2.4.4 In�uence of Residence Time

The WHSV of ethylene glycol was increased to lower the �uctuating gas yields and to allow for
studying deactivation the behaviour at less than 100 % conversion. The activity of NiMo#1 at the
initial ethylene glycol WHSV of 2 h−1 (�gures 4.5-4.8) was compared with the WHSV of 9 and 18 h−1,
which was obtained by decreasing the catalyst mass from 4.0 g to 1.0 g and 0.5 g, respectively. As
shown in �gure 4.11, the conversion was decreased below 90 % at WHSVEG = 18 h−1, which allowed
for detection of catalyst deactivation.
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Figure 4.11: Conversion, X, of ethylene glycol over NiMo#1 at WHSVEG = 2, 9, and 18 h −1 using 4.0,

1.0, and 0.5 g of catalyst. At 400 ◦C, 27 bar H2, 550 ppm H2S, and 40 barg total (balance N2). For catalyst

composition, see table 3.3.

The overall product distribution from NiMo#1 was similar for all three WHSV with the ratio of
Csum,gas/C1 = 3 (see �gure 4.12). However, the concentration of unsaturated HDO products (ethylene
and propylene) increased as the WHSV was increased, indicating insu�cient hydrogenation activity,
due to a lower amount of active phase and due to deactivation over time, similar to what was observed
for the lower loading catalysts. At WHSVEG = 9 h−1, the ratio of ethane to ethylene was 4-5 at TOS
> 5.5 h, and that of propane to propylene was 1. At WHSVEG = 18 h−1, the ethane to ethylene ratio
was 1.2-1.4, and propylene was the only C3 gas product detected.
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Figure 4.12: Gas product yields from the conversion of ethylene glycol over NiMo#1 at WHSVEG = 2, 9,

and 18 h −1 using 4.0, 1.0, and 0.5 g of catalyst. (a) Total gas product yield (C1+C2+C3). (b) C1 gas product

yield (CO+CO2+CH4). At 400 ◦C, 27 bar H2, 550 ppm H2S, and 40 barg total (balance N2). For catalyst

composition, see table 3.3.
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4.2.5 Spent Catalyst Characterization

The composition of the spent catalysts (see table 4.4) was approximately the same as the fresh catalysts
(table 3.3) in terms of the molar ratio of Ni/Mo, Co/Mo, and Al/Mg. Taking into account the time
on stream for each activity test, the carbon deposition was more severe on the lower loading catalysts
compared to the higher loading catalysts (see table 4.4). This property was ascribed to the lower
hydrogenation activity and greater exposure of the acidic support, when the active phase loading was
low.

Table 4.4: Composition of spent catalysts at 400 ◦C, 27 bar H2, varying H2S concentration, and WHSVEG =

2 h−1. For fresh catalyst composition, see table 3.3.

Catalyst TOS H2S Mo Ni Ni/Mo Si Fe S C S/Mo C/TOS
[h] [ppm] [wt%] [wt%] [molar] [wt%] [molar] [wt%] [wt%] [molar] [wt%/h]

NiMo#0 106 550, 0.76 0.11 0.24 0.04 0.06 0.73 9.5 2.87 0.09

2200

NiMo#1a 99 550, 2.91 0.50 0.28 0.06 0.02 2.24 3.5 2.30 0.04

525

Co Co/Mo
[wt%] [molar]

CoMo#0 91 550 0.73 0.11 0.25 0.03 0.04 0.70 9.1 2.87 0.10

2200

CoMo#1 172 550, 2.56 0.44 0.28 0.05 0.06 1.77 8.8 2.07 0.05

240, <5

Mg Al Al/Mg
[wt%] [wt%] [molar]

MgAl2O4
b 52 550 16 33 1.86 0.02 0.06 0.06 4.3 - 0.08

a Water was added to the feed after 118 h on stream.
b WHSVEG = 9 h−1.

Dark-�eld TEM images of the spent CoMo#1 sample (�gure 4.13) show that the active Co-MoS2
phase was present as small (∼ 5 nm long) slabs, seemingly present in monolayers, and with very high
dispersion.

1 0 n m1 0 n m 5 n m5 n m

1 0 n m1 0 n m 2 0 n m2 0 n m

(a) (b) 

(a) (b) 

10 nm   20 nm 

Figure 4.13: High-angle annular dark-�eld scanning TEM (HAADF-STEM) images of the spent CoMo#1

sample (see table 4.4). Co-MoS2 crystallites are visible as bright slabs.
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The spent higher loading catalysts showed similar Raman spectra (�gure 4.14) with characteristic
MoS2 Raman bands at 381 and 407 cm−1 with a smaller peak at 451 cm−1 [263�266]. No peaks were
associated with the presence of bulk Ni3S2 or Co9S8, which was further supported by the identical
shape of the spectra obtained from the Ni- and Co-promoted sample. The peaks at 194 and 229 cm−1

could possibly be from the presence of MoS3 [264], but a peak at 530 cm−1 was not observed. No peaks
were associated with oxide phases of Mo, Ni, or Co as observed in the oxide phase catalyst precursors
(see chapter 5.2.4.1). The absence of oxide phases suggests that the prepared catalysts were stable
against oxidation at the applied conditions. Additionally, MgAl2O4 was stable against water, as seen
from the XRD spectrum of the spent NiMo#1 sample, which was exposed to water (see �gure 4.1). In
HDO, this is a clear advantage compared to commonly applied γ-Al2O3, which forms boehmite upon
water exposure [87,197].

Figure 4.14: Baseline corrected Raman spectra of spent NiMo#1 and CoMo#1 (see table 4.4) along with a

MoS2 reference (Sigma-Aldrich 99 %).

Carbon deposition in the spent catalysts was clearly evident from the Raman spectra (�gure 4.14).
The sharp peak at 1600 cm−1 corresponds to crystalline carbon with an ideal graphite lattice (G band),
while the broader peaks at 1200-1400 cm−1 correspond to a distorted lattice and are typical for more
amorphous carbon species [267, 268]. Overall, due to the comparatively sharp carbon bands and the
strong presence of the G band, the observed carbon species seem crystalline and mostly graphite-like.
It is proposed to choose a catalyst with good hydrogenation activity, such as Ni-MoS2, and operate
at moderate to high hydrogen pressure to minimize carbon deposition. As support acidity contributes
markedly to the coke formation [75�77], a less acidic support than MgAl2O4 could be considered.
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4.3 Conclusions

Sul�ded NiMo and CoMo catalysts were tested for activity in the HDO of ethylene glycol. The Mo
loading was targeted at a slight sub monolayer (2.83-3.28 wt%) and at at four times lower loading
(0.83-0.88 wt%) to study the in�uence of loading and the interaction with the MgAl2O4 support.
MgAl2O4 was seen to catalyze dehydration and coupling reactions, which was ascribed to the presence
of acid sites, but no signi�cant HDO or cracking was observed.

At an ethylene glycol WHSV of 2 h−1, a conversion >90 % could be obtained for both low and higher
loading NiMo and CoMo catalysts. These catalysts produced C1-C3 gas products with a moderate
selectivity towards HDO relative to cracking in terms of a C2/C1 ratio of 1.1-1.5. HDO and cracking
reactions were equally catalyzed by the active phase, giving a similar C2/C1 ratio independent of
catalyst loading. A higher catalyst loading did however enable superior hydrogenation activity, which
in turn also resulted in lower carbon deposition on the spent catalysts, possibly masked by the high
conversion of 100 % and incomplete usage of the catalyst bed.

Ni and Co promotion gave rise to similar activities and product distributions at the applied condi-
tions, but hydrogenation seemed to be favoured over NiMo. A co-feed of H2S was necessary to avoid
accelerated deactivation. The level of H2S a�ected the deoxygenation and hydrogenation activity with
a promoting e�ect with more H2S. An increase in the ethylene glycol WHSV from 2 to 18 h−1 was
necessary to achieve a conversion below 90 %, and a high WHSV should be applied in further work, if
deactivation and reactivation mechanisms are to be studied further.
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In�uence of H2O and H2S on the Composition, Activity, and

Stability of Sul�ded Mo, CoMo, and NiMo Supported on

MgAl2O4 for Hydrodeoxygenation of Ethylene Glycol

Abstract
In this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption
spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS2,
Ni-MoS2, and Co-MoS2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation
of the partial pressures of H2O and H2S. The results show high water tolerance of the catalysts and
highlight the importance of promotion and H2S level during HDO.

DFT calculations unraveled that the active edge of MoS2 could be stabilized against S-O exchanges
by increasing the partial pressure of H2S or by promotion with either Ni or Co. The Mo, NiMo, and
CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400
◦C, 27 bar H2, and 550-2200 ppm H2S, and conversions of ∼ 50-100 %. The unpromoted Mo/MgAl2O4

catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo
and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C2/C1 ratio of 1.5-
2.0 at 550 ppm H2S. This ratio of HDO to cracking could be increased to ∼ 2 at 2200 ppm H2S
which also stabilized the activity. Removing H2S from the feed caused severe catalyst deactivation.
Both DFT and catalytic activity tests indicated that increasing the H2S concentration increased the
concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic
HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when
exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400-450 ◦C.

Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and
highly dispersed particles, probably owing to a strong interaction with the support. Linear combination
�tting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during
in-situ sul�dation showed that Ni was sul�ded faster than Mo and CoMo, and that Mo was sul�ded
faster when promoted with Ni. Extended X-ray absorption �ne structure (EXAFS) results showed the
presence of MoS2 in all sul�ded catalysts. Sul�ded CoMo was present as a mixture of CoMoS and
Co9S8, whereas sul�ded NiMo was present as NiMoS.
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5.1 Introduction

DFT studies have indicated that exposure of MoS2 to water vapor can lead to exchange of S with O at
the active edge of MoS2 and that promotion can stabilize the catalyst against these exchanges [106,107].
Co-feeding of H2S is necessary to keep the catalyst in its active sul�de form [1, 67, 106, 135] and to
enhance the activity [106,136]. H2S can however also inhibit the reaction [109,111,113], as it potentially
saturates the coordinatively unsaturated sites (CUS), which are commonly accepted as active sites for
oxygenate adsorption and deoxygenation [92, 128�130]. Badawi et al. [106] reported that the state
of the active edge can be controlled through the H2O/H2S ratio to avoid S-O exchanges, but the
in�uence of water on the working catalyst has not been fully understood [136]. In order to optimize
sul�de catalysts for HDO, a water tolerant support material should be chosen and the in�uence of H2S
and H2O should be investigated experimentally; both in terms of HDO activity and catalyst structure.

In this work, MoS2, Ni-MoS2, and Co-MoS2 clusters have been modeled with DFT to obtain insights
into structural changes at the active edges under exposure to varying H2O/H2S ratios. MoS2, Ni-MoS2,
and Co-MoS2 supported on a water tolerant and attrition resistant MgAl2O4 spinel support were
prepared and tested for the hydroconversion of ethylene glycol. Ethylene glycol was chosen as a simple
model sugar fragment; representing the more reactive fraction of pyrolysis vapors. The in�uence of
varying the feed concentration of H2S was tested in catalyst activity tests with constant ethylene glycol
feed. The evolution of the active sul�de phase in the catalysts was studied in-situ with XAS in terms
of XANES and EXAFS. At �rst, sul�dation rates were compared for the three catalysts. The in�uence
of varying H2O/H2S ratios on the catalyst structure was furthermore investigated experimentally using
in-situ XAS.

5.2 Results and Discussion

5.2.1 DFT Phase Diagrams

Unpromoted MoS2 can exhibit a triangular crystal structure exposing only one type of edge, or a
hexagonal (truncated triangle) structure depending on the H2S/H2 ratio [127]. Promoted MoS2 exhibits
a hexagonal structure with exposure of pure M- and metal doped S-edges [122, 123, 126, 269]. For
NiMoS, a less systematic distorted hexagonal structure has also been reported [123]. Figure 5.1 shows
the calculated phase diagrams for unpromoted MoS2 (M-edge), Ni-MoS2 (S-edge), and Co-MoS2 (S-
edge) at varying H2O/H2S partial pressures and 400 ◦C. Due to the inherent uncertainty associated
with generalized gradient approximation (GGA) DFT, it must be noted that the phase diagrams are
representative of the trends between the di�erent materials, but do not re�ect precise numbers. Thus,
the partial pressures of water and H2S mentioned in the remainder of this section serve the purpose of
distinguishing the di�erent edge structures obtained from DFT to clarify the general trends observed
in �gure 5.1 at varying partial pressures of H2S and H2O.
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(a) 

MoS2

(b) 

Co-MoS2

(c) 

 Ni-MoS2

Figure 5.1: Phase diagrams as function of the partial pressure of water and H2S for (a) the unpromoted MoS2
M-edge, and the promoted S-edges of (b) Co-MoS2, and (c) Ni-MoS2 as obtained from DFT calculations. Yellow

= S, blue = Mo, pink = Co, green = Ni, red = O, white = H. Total pressure 40 bar, 28 bar H2, 400
◦C, p0 =

1 bar.
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The MoS2 edge has a single S-vacancy and exhibits a Mo1.00S0.75 structure in the range of log(pH2O/p0)
= < -0.7 and log(pH2S/p0) < -3 corresponding to ∼ 0.3-5000 ppm H2O and ∼ 0.3-30 ppm H2S (see
�gure 5.1a). An OH group adsorbs on the vacancy site if the H2O pressure is increased further,
resulting in a Mo1.00S0.75(OH)0.25 edge structure. If instead the H2S concentration is increased above
30 ppm, an SH group adsorbs on the vacancy (H2O concentration <5000 ppm) and the edge structure
becomes Mo1.00S1.00H0.25. In the concentration range of >5000 ppm H2O and 30 ppm to 1.5 % H2S,
the H2O/H2S ratio should be kept below ∼ 150 to avoid an S-O exchange at the surface. At a H2S
concentration >1.5 %, no S-O exchange is observed no-matter the H2O pressure. These results indicate
that a certain concentration of H2S should be fed during HDO to avoid oxidation of unpromoted MoS2
in line with results from other theoretical work [106].

The Co promoted MoS2 does not exhibit any vacancy formation or S-O exchange in the investigated
H2O/H2S ranges, which indicates that Co stabilizes the active edge against oxidation (see �gure 5.1b).
Below log(pH2S/p0) = -0.3, corresponding to ∼ 1 % H2S, the S-edge is fully decorated with S (edge
structure Co1.00S1.00), and if the H2S pressure is increased, two additional S atoms and two H atoms are
adsorbed on the surface giving the edge structure Co1.00S1.50H0.50. This indicates that the Co1.00S1.00
structure has CUS, which could act as active sites for oxygenate adsorption and deoxygenation [128].

Ni promotion also stabilizes the edge; no S-O exchange is observed at the investigated conditions
(see �gure 5.1c). Three stable phases were obtained with structures that are less ordered compared to
the Co promoted analogue; Ni1.00S0.75H0.75, Ni1.00S1.00H1.00, and Ni1.00S1.50H0.50 at low, intermediate,
and high H2S concentration, respectively. H atoms are adsorbed on the surface in the entire H2S partial
pressure range. A single sulfur vacancy is present below ∼ 1000 ppm H2S (log(pH2S/p0) = -1.35). At
∼ 1000 ppm to 1.5 % H2S (log(pH2S/p0) = [-1.35;-0.21]), the edge is fully decorated with S exhibiting
a Ni1.00S1.00H1.00 structure. At higher concentrations, more S is adsorbed indicating presence of CUS
at <1.5 % H2S.

5.2.2 Conversion of Ethylene Glycol over Promoted and Unpromoted

MoS2/MgAl2O4

Based on the results from the catalytic activity tests, HDO of ethylene glycol is proposed to follow a
reaction mechanism involving consecutive dehydration and hydrogenation steps (�gure 5.2):

Figure 5.2: Proposed reaction scheme for HDO of ethylene glycol via consecutive dehydration and hydrogena-

tion reactions.

5.2.2.1 Overall Activity

The results from the activity tests are shown in �gure 5.3 (conversion, STY, and C2/C1) in this section
and �gure 5.4 (yields of ethane, ethylene, and ethanol) in section 5.2.2.4. All gas product yields can
be found in Appendix H, �gure H.1. The conversion of ethylene glycol was in the range ∼ 50-100 %
for the prepared catalysts, and the selectivity towards HDO in terms of the C2/C1 ratio followed the
trend MoS2 > Ni-MoS2 ∼ Co-MoS2 > NiSx (see �gure 5.3).
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A blank experiment (steel reactor packed with steel wool and SiC) showed negligible HDO activity;
ethylene was the main gaseous product formed with a yield <0.7 %. In all experiments performed
using MoS2 based catalysts, the yield of ethane and ethylene, respectively, was in the range of ∼ 5-45
% depending on the catalyst and level of deactivation. The detected yield of ethanol was 4.5-18 % and
accounted for the majority, ∼ 35-55 %, of carbon in the liquid products formed (for methanol, this
number was 13-18 %). Cracking reactions also occurred, resulting in the formation of CH4, CO, and
CO2; the latter possibly through the WGS reaction. C-C bond formation also occurred forming small
amounts of C3+ gas and liquid species, e.g. propane, propylene, 1-propanol, butane, and 1-butanol.

Coupling reactions forming e.g. 2-methyl-1,3-dioxolane and 4-polyethylene glycol were also ob-
served and ascribed to the support acidity, which is known to catalyze coupling reactions such as
transalkylation, polymerization, and coking [74�76]. The conversion of ethylene glycol over the pure
MgAl2O4 support (1.0 g) produced an insigni�cant total gas carbon yield of ≤2 % (C1, C2, and no
C3) and a more signi�cant yield of 2-methyl-1,3-dioxolane (≤5.6 %), diethylene glycol (≤4.5 %), and
ethanol (≤4.4 %) over 52 h on stream at a conversion of 13-41 % (see chapter 4). Partly deoxygenated
and reactive intermediates, such as ethyl or ethoxy groups can readily undergo polymerization if they
are not stabilized by hydrogenation into ethane. Ethylene and propylene are furthermore known to be
strong coke precursors [270].

Ni-sul�des have shown moderate activity in HDO [70]. The tested Ni catalyst, however, showed
poor HDO selectivity at 55-65 % conversion with a C2/C1 ratio of ∼ 1 at 550 ppm H2S and low STYs
<0.3 mmol/gcat/min (see �gure 5.3a). The C2/C1 ratio could be increased to ∼ 1.5 at 2200 ppm H2S;
mainly by increasing the yield of ethylene, while the yield of ethane remained <1.5 % and the C2 STY
remained low (see �gure 5.4a).

The presence of promoter and the feed concentration of H2S in�uenced the activity and stability
of the Mo, NiMo, and CoMo catalysts as discussed in section 5.2.2.3. During the �rst ∼ 50-70 h of
time on stream (TOS), the feed contained 550 ppm H2S. Then, the H2S concentration was increased
by a factor of four to 2200 ppm. For the NiMo catalyst (see �gure 5.3c and �gure 5.4c), a subsequent
decrease of H2S down to 1900 ppm was performed from ∼ 140-160 h on stream, followed by a stepwise
shut-o� of H2S. For the CoMo catalyst, (see �gure 5.3d and �gure 5.4d), an issue with the ethylene
glycol feed arose at TOS ∼ 80-90 h. In that period, the feed consisted of reaction gas (N2, H2, H2S)
without ethylene glycol.
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Figure 5.3: STY [mmol/gcat/min], C2/C1 ratio [-], and conversion for ethylene glycol conversion at 400 ◦C,

27 bar H2, 550-2200 ppm H2S (noted in �gures), 40 barg total (balance N2), and 3-3.5 mol% ethylene glycol in

the feed for (a) Ni#1(1.5 g), (b) Mo#1 (1.5 g), (c) NiMo#1 (0.5 g), and (d) CoMo#1 (0.5 g) in table 3.3.

Cooling on separator tube S1 was not installed in experiments (c) and (d).

5.2.2.2 Carbon Mass Balance

The carbon mass balance could not be fully closed for the presented experiments; the balance closure at
TOS >20 h was 69-83 % for NiSx (�gure 5.3a), 63-76 % for Mo (�gure 5.3b), 72-84 % for NiMo (�gure
5.3c), and 73-91 % for CoMo (�gure 5.3d). The lack of closure in the mass balance was ascribed to the
presence of mainly non-condensed oxygenate compounds in the gas phase, which were not detected
or quanti�ed. Based on o�-line GC-FID and GC-TCD analysis of gas samples from experiments
similar to those presented in this work, it was found that the product gas contained non-condensed
hydrocarbons (C4−6 isomers) and oxygenates (ethanol, acetaldehyde, methanol, 2-propanone, 1- and
2-propanol, 2-butanone, and 2-pentanone), which could not be detected by the online GC analysis.
These compounds were present in concentrations, which could account for majority of the missing
carbon. As a consequence, the yield of ethanol (�gure 5.4) can be assumed to be higher than reported
here. In order to improve the carbon balance, it can be considered to perform online analysis of the
oxygenates and C4+ hydrocarbons present in the gas phase, and to improve cooling further in the
liquid product collection and storage.
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In an experiment using 4 g NiMo, 100 % conversion into gas and pure water was obtained, and
the mass balance could be closed within 87-96 % (no cooling of S1). Also, an >20 h empty tube test
conducted at 400 ◦C and 40 barg, feeding 500 NmL/min N2 and 0.14 mL/min ethylene glycol had an
average carbon balance of 95 % (no cooling of S1). Elemental carbon analysis of four liquid samples
from the Mo test (�gure 5.3b, 68-83 h) using a Eurovector EA3000 CHNS analyzer was used to con�rm
that the carbon content determined by GC-FID/MS was precise within a deviation of <10 %. Thus,
the gas product results (yields, STY, and C2/C1) and the conversion (based on unconverted ethylene
glycol) are not a�ected by the discrepancy in the carbon mass balance. A more detailed review of the
carbon mass balance is given in Appendix G.

5.2.2.3 Role of Promotion and H2S in the C2/C1 Selectivity and Stability

Unpromoted Mo showed a very favorable selectivity towards HDO products compared to the promoted
catalysts. The ratio of C2/C1 was approximately ≥3 for the entire run (see �gure 5.3b), while it
was <2.5 for the promoted catalysts (see �gure 5.3c-d). The mass based productivity was, however,
lower for the unpromoted, which initially had a C2 STY of 1.7 mmol/gcat/min, while it was 1.9-2.0
mmol/gcat/min for the promoted catalysts. Furthermore, the unpromoted catalyst was subject to
signi�cant deactivation. After 40 h on stream, the C2 STY was 0.5 mmol/gcat/min and had thereby
decreased by 70 %. In the same period of time, the C2/C1 ratio dropped by 30 % from 4.8 to 3.3,
showing a decrease in HDO selectivity. In comparison, the promoted catalysts only deactivated with 35
% in terms of the C2 STY in the same period of time reaching 1.2 mmol/gcat/min at 40 h. The initial
decrease in the C2/C1 ratio was similar for NiMo and CoMo reaching 1.6 at 40 h. Promotion with Ni or
Co was therefore seen to enhance the activity of the catalyst, which is in agreement with other studies
on the role of promotion in HDO and HDS over MoS2 based catalysts [106,113,123,132,133,135]. The
selectivity to HDO products was, however, higher for the unpromoted catalyst.

As the H2S concentration was increased from 550 to 2200 ppm at TOS ∼ 50 h for the unpromoted
catalyst, a slight stabilizing e�ect was obtained, but the activity remained low (see �gure 5.3b). For
both NiMo and CoMo, the C2 STY increased when the H2S concentration was increased to 2200 ppm
and a stabilized activity was obtained. For NiMo (see �gure 5.3c), the C2 STY increased from 0.98 to
1.3 mmol/gcat/min (at TOS ∼ 75-80 h) resulting in a C2/C1 improvement from 1.6 to 2.3. For CoMo
(see �gure 5.3d), the C2 STY increased from 1.2 to 1.7 mmol/gcat/min (at TOS ∼ 50 h), giving a
C2/C1 from 1.6 to 2.0, since there was also a slight increase in the C1 STY. The conversion of ethylene
glycol did not increase, as the H2S concentration was changed during each experiment (see �gure 5.3),
but a slight stabilization of the conversion occurred as the H2S concentration was increased from 550
to 2200 ppm.

For the NiMo catalyst, it was seen that with a slightly lower H2S concentration of 1900 ppm (TOS
∼ 140-160 h), deactivation occurred at a faster rate than at 2200 ppm H2S, and the selectivity towards
cracking products increased (see �gure 5.3c). A further decrease to <400 ppm H2S caused severe
deactivation. It can be concluded that a feed of H2S is necessary to keep the catalyst active and that
this concentration should be in the order of 2200 ppm at the applied conditions to ensure a higher
selectivity towards HDO and a stable activity.

As the ethylene glycol �ow was reapplied after feed issues at TOS ∼ 80-90 h (see �gure 5.3d)
during the CoMo test, the catalyst was more active with a slightly higher conversion (65-70 % at
92-97 h compared to 61-63 % at 72-77 h) and a higher yield of both cracking and HDO products.
The activity in terms of yields of ethane (see �gure 5.4d) and some C1 gasses (see also Appendix H,
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�gure H.1) increased to a level above the initial activity after the period without ethylene glycol in
the feed. Based on the DFT �ndings (see �gure 5.1b), it could be speculated that before ethylene
glycol is shut o�, several CUS were occupied by ethylene glycol and reaction intermediates, while the
ethylene glycol free period at the high concentration of H2S might have either released CUS, increased
the concentration of SH at the surface, or both, resulting in a higher HDO activity.

5.2.2.4 Role of H2S in Primary Alcohol Hydrodeoxygenation

The yield of ethane and ethylene (see �gure 5.4) re�ected the trends observed in the STYs and C2/C1

ratio (see �gure 5.3). The Ni catalyst had a poor hydrogenation activity, resulting in a 3-5 times higher
yield of ethylene compared to ethane at TOS >5 h (see �gure 5.4a).
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Figure 5.4: Carbon based yields for ethylene glycol conversion at 400 ◦C, 27 bar H2, 550-2200 ppm H2S

(noted in �gures), 40 barg total (balance N2), and 3-3.5 mol% ethylene glycol in the feed for (a) Ni#1(1.5 g),

(b) Mo#1 (1.5 g), (c) NiMo#1 (0.5 g), and (d) CoMo#1 (0.5 g) in table 3.3. Cooling on separator tube S1

was not installed in experiments (c) and (d).
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For the unpromoted Mo catalyst (see �gure 5.4b), there was an initial fast change in the relative
proportions of the yields of ethane and ethylene, caused by deactivation of the hydrogenation activity.
The initial ethane yield was 45 % compared to an ethylene yield of 9 %. At 15 h on stream, the ethane
yield had dropped and the ethylene yield had increased, both reaching ∼ 15 %. After this point in
time, the ethane yield continued to decrease, and the ethylene yield also decreased, however, at a slower
rate. The lower hydrogenation activity of the unpromoted catalyst compared to the promoted catalysts
(see �gure 5.4b-d), was ascribed to the ability of Ni and Co promotion to facilitate adsorption of H at
the surface as evidenced by DFT calculations (see �gure 5.1), thereby providing better hydrogenation
activity [113,123,132,133].

For NiMo (see �gure 5.4c), the ethane yield was higher than the ethylene yield during the entire
TOS, as long as H2S was added to the feed, which could be explained by the high concentration of
H adsorbed at the S-edge (see �gure 5.1c). As the H2S concentration was increased from 500 to 2200
ppm, the ethane yield increased from ∼ 6 to 9 %, while the ethylene yield overall remained unchanged.
This increase in ethane yield is possibly explained by the change of a Ni1.00S0.75H0.75 S-edge structure
to Ni1.00S1.00H1.00 providing more hydrogen in terms of additional SH groups (see �gure 5.1c).

For CoMo (see �gure 5.4d), the yield of ethylene was initially higher than that of ethane, until the
H2S concentration was increased from 500 to 2200 ppm, causing the yield of ethane to increase above
that of ethylene (from ∼ 6 to 10 %), which remained rather unchanged (at 7-8 %). These observations
could be explained by the change in the S-edge structure from Co1.00S1.00 to Co1.00S1.50H0.50, which
provides more hydrogen through SH groups (see �gure 5.1b).

Since only ethane and not ethylene seemed to be a�ected by the change in H2S, this indicates that
the hydrogenation of ethylene to ethane in reaction in �gure 5.2 is very fast, and that an increased
H2S concentration of 2200 ppm increased both the deoxygenation and hydrogenation activity.

Mortensen [1] saw that even though an increase from 283 to 8172 ppm H2S (at 280 ◦C and 100
bar) inhibited the conversion of phenol over a Ni-MoS2/ZrO2 catalyst, the conversion of 1-octanol
(used as solvent), was increased from 50-75 % to 85-100 % during the 100 h TOS test. In line
with this observation, �enol et al. [109, 110] reported that while H2S had an inhibiting e�ect on the
HDO of aromatic oxygenates (due to competitive adsorption of H2S), HDO of aliphatic oxygenates was
promoted by increasing H2S owing to their di�erent reaction mechanisms that depend on acid-catalyzed
reactions; e.g. dehydration and hydrogenation. These reactions have been proposed to be governed
by the presence of nucleophilic SH groups present at the catalyst surface, which have been suggested
to supply hydrogen and provide Brønsted acidity for HDO and HDS reactions [109, 129�131]. �enol
et al. [110] also reported that increasing the H2S concentration increased the activity and stability of
NiMo/Al2O3 and CoMo/Al2O3 catalysts in the HDO of methyl heptanoate at 250 ◦C and 15 bar.

Based on the �ndings in this work, it is therefore proposed that the role of H2S in the conversion of
ethylene glycol is to increase and maintain a high concentration of SH groups at the catalyst surface,
which correspondingly aid catalysis of the consecutive dehydration/hydrogenation reactions of ethylene
glycol to ethylene and ethane (see �gure 5.2). This is supported by the DFT calculations, which showed
that the surface concentration S and H generally increased with increasing H2S pressure (�gure 5.1).

5.2.2.4.1 Reproducibility of Stabilizing E�ect of H2S Generally, fast deactivation was seen
in the beginning of the catalytic activity tests (�gure 5.3 and �gure 5.4). Thus, two additional short
terms experiments were performed to investigate whether the observed stabilizing e�ect of H2S had
also been a�ected by general stabilization of the catalyst activity over time. Two fresh loads of CoMo
(CoMo#2 with comparable composition to CoMo#1, see table 3.3) were tested for ethylene glycol
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conversion with a H2S feed concentration of 550 and 2200 ppm, respectively (see �gure 5.5). The TOS
of 8 h was too short to collect liquid products for calculation of conversion. Instead, the total carbon
yield of C1−3 gas products indicates the minimum conversion level.

0

1

2

3

4

5

0

20

40

60

80

100

0 2 4 6 8

C
2
/C

1
[-

]

Y
ie

ld
 [

%
]

TOS [h] 

CH4 CO CO2 Ethylene Ethane Propylene Propane Csum,gas C2/C1

2200 ppm   (a)

0

1

2

3

4

5

0

20

40

60

80

100

0 2 4 6 8

C
2

/C
1

 [
-]

 

Y
ie

ld
 [

%
] 

TOS [h]

CH4
CO
CO2
Ethane
Ethylene
Propane
Propylene
Ctotal
C2/C1

2200 ppm   (a) 
CH4 

CO 

CO2 

Ctotal 

C2/C1 0

1

2

3

4

5

0

20

40

60

80

100

0 2 4 6 8

C
2

/C
1

 [
-]

 

Y
ie

ld
 [

%
] 

TOS [h]

550 ppm   (b) 

0

1

2

3

4

5

0

20

40

60

80

100

0 2 4 6 8

C
2

/C
1

 [
-]

 

Y
ie

ld
 [

%
] 

TOS [h]

550 ppm   (c) 

Figure 5.5: Carbon based yields for ethylene glycol conversion at 400 ◦C, 27 bar H2, 550-2200 ppm H2S (noted

in �gures), 40 barg total (balance N2), and 3-3.5 mol% ethylene glycol in the feed with 0.5 g catalyst for (a)

CoMo#2 at 2200 ppm H2S, (b) CoMo#2 at 550 ppm H2S, and (c) CoMo#1 at 550 ppm H2S (same experiment

as presented in �gure 5.3d and �gure 5.4d). For catalyst composition, see table 3.3.

An initial feed concentration of 2200 ppm H2S (see �gure 5.5a) resulted both in a higher activity (total
carbon gas yield >70 %) and better HDO selectivity with C2/C1 ∼ 2.3 compared to the lower feed
concentration of 550 ppm H2S, where the total carbon gas yield was ∼ 45-60 % and the C2/C1 ratio was
1.7-2.0 (see �gure 5.5b). For 2200 ppm H2S, there was a stable (actually slightly increasing) activity
over time. For 550 ppm H2S, similarly as observed previously, deactivation occurred over time, while
for 550 ppm H2S deactivation occurred over time con�rming the stabilizing e�ect of H2S.

There was some deviation between the activity observed during the �rst 8 h on stream at 550 ppm
H2S with CoMo#1 (see �gure 5.5c) and CoMo#2 (see �gure 5.5b), which is essentially an attempted
reproduction. A higher activity was obtained for CoMo#2, namely in terms of the ethane yield, but
as it can be seen from the long TOS activity tests (see �gure 5.4), the initial 10 h period on stream
is subject to signi�cant activity changes, and it is recommended to run experiments for long TOS
to decouple the initial activity from the long term performance. Also, it should be noted that two
di�erent catalyst batches were used for the experiments in �gure 5.5a-b (CoMo#2) and c (CoMo#1).
As discussed later (see section 5.2.4.3), it is possible that the lower activity obtained in CoMo#1 was
caused by formation of Co9S8.

Reproducibility was obtained for the NiMo#1 catalyst (see Appendix H, �gure H.2), though it was
seen that especially the ethane yield, temperature, and conversion were subject to smaller variations.
These parameters are correlated, and it is believed that the speci�c morphology and dispersion of the
active phase obtained through the sul�dation could vary slightly and consequently a�ect the ethane
production and thereby also the conversion and temperature. This indicated di�erent sul�dation
behavior of the loaded catalysts (even from the same batch), indicating the complex nature of sul�de
catalysts [63].
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5.2.3 Spent Catalyst Composition

The composition of spent catalysts is given in table 5.1. The deposited carbon (3.4-12 wt%) is ap-
proximately linearly correlated with the TOS (see Appendix H, �gure H.3) indicating that carbon
deposition is a major source of deactivation. This was further evidenced as resul�dation of both spent
Mo and NiMo catalysts (tested for ethylene glycol conversion at slightly di�erent conditions), could
only reactivate the catalyst for a short period of time. The activity of the reactivated catalysts was
lower than the initial activity and the catalysts were subject to rapid deactivation; within <4 h on
stream after reactivation, the activity had dropped to the same level as was achieved prior to the
resul�dation.

The S/Mo ratio followed the trend NiMo#1 > CoMo#1 > Mo#1 > CoMo#2 (see table 5.1). Ni
promotion has been shown to facilitate faster sul�dation of MoOx into MoS2 (see �gure 5.10in section
5.2.4.2), which might explain the high content of sulfur in the spent NiMo catalyst. The S/Mo ratio
of ∼ 2 for CoMo#1 indicated that a stoichiometric MoS2 phase was present in the spent catalyst,
but for CoMo#2, including a fresh sul�ded sample, this ratio was 1.52-1.70 indicating the complex
nature of sul�des and the di�culties in obtaining identical sul�de phases in di�erent experiments.
The elemental composition should however be interpreted with caution and more advanced in-situ

characterization tools are needed to determine the phases present (see section 5.2.4). In this case, the
elemental composition does not reveal if there were any presence of segregated Ni or Co sul�des, or if
any C or S was present as condensed species in the catalyst pores.

The M/Mo (M = Ni, Co) ratio of the spent catalysts was slightly lower than in the fresh catalysts,
but it remained approximately constant at 0.3 indicating that Mo, Ni, and Co are stable against
volatilization; potentially induced by e.g. H2O and CO.

Table 5.1: Composition and properties of spent catalysts (activity tests presented in �gures 5.3-5.5) including

TOS and H2S feed concentrations used.

Catalyst TOS H2S Mo Ni Ni/Mo Si Fe S C S/Mo
[h] [ppm] [wt%] [wt%] [molar] [wt%] [wt%] [wt%] [wt%] [molar]

Mo#1 99 500, 2.48 - - 0.05 0.05 1.47 10.4 1.78

2200

NiMo#1 169 500, 2.52 0.44 0.28 - 0.06 1.90 12.0 2.25

2200,

1900,

<400

Ni#1 71 500, - 12.0 - 0.04 0.05 3.54 6.82 0.54

2200 (S/Ni)

Co Co/Mo
[wt%] [molar]

CoMo#1 90 500, 2.54 0.41 0.26 0.04 0.04 1.72 10.8 2.02

2200

CoMo#2a 8 2200 3.31 0.52 0.26 0.05 <0.02 1.76 3.61 1.56

CoMo#2b 8 500 3.15 0.49 0.25 0.03 <0.02 1.60 3.44 1.52

CoMo#2fresha 0 - 3.11 0.49 0.25 0.02 0.02 1.76 2.83 1.70

a Sul�ded and subsequently exposed to the same procedure of increasing temperature and pressure as

applied in experiments. At the point in time, where ethylene glycol would normally be added,

�ushing and cooling was performed according to the procedure applied for experiment shut-down.
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5.2.4 Characterization of Active Phases

5.2.4.1 Oxide Phase

The calcined catalyst precursors (see table 3.3) were analyzed with Raman spectroscopy to assess the
dispersion of Mo, NiMo, and CoMo phases (see �gure 5.6). The identi�cation of the various phases
present was supported by curve �tting analyses (see Appendix H, �gure H.4 and table H.1).

Figure 5.6: Baseline corrected Raman spectra of Mo#1, NiMo#1, and CoMo#1 in the oxide phase (calcined,

not dehydrated, see table 3.3). The Raman bands were assigned to monomolybdate tetrahedral (blue: 315, 895,

910 cm−1), the MgAl2O4 support (orange: 406, 670, 769 cm
−1), supported and dispersed NiO (red: 555 cm−1),

supported CoO (green: 593 cm−1), and Si impurities (turquoise: 521 cm−1).

Broad main signals around 910 and 895 cm−1 were found indicating a small crystallite size of tetrahed-
rally coordinated MoO2−

4 species [244,271]. The bands can be assigned to symmetric and asymmetric
stretching modes, while broad bands around 315 cm−1 are caused by the bending modes of terminal
Mo=O [244]. The lack of broad bands at 200-230 cm−1 (Mo-O-Mo vibration) and 943-965 cm−1 fur-
ther suggests that the tetrahedral entities are isolated and not present as polymolybdates, which is in
agreement with the low catalyst loading that was applied [244,245,271]. For NiMo#1, the main band
is slightly shifted to lower wavenumbers, which may represent a lower bond order (higher coordination)
or a longer atomic distance of MoO2−

4 species. The Raman bands at 406, 670, and 769 cm−1 refer to
the Eg, F2g, and A1g modes of the support material, MgAl2O4 [272] and were found for all samples.
An additional Raman band at 555 cm−1 was found for NiMo#1 and corresponds to supported and
dispersed NiO [273]. Similarly, a Raman band at 593 cm−1 can be attributed to supported CoO for
CoMo#1 [273].

Bulk NiMoO4, CoMoO4, and MoO3 is unwanted, as crystallites of these phases do not convert into
the active NiMoS and CoMoS phases during sul�dation [111]. No sharp Raman bands of crystalline
NiMoO4 (∼ 912 and 962 cm−1) or CoMoO4 (∼ 936 (α-CoMoO4) or 935 and 946 cm−1 (β-CoMoO4))
[265, 274] were observed. For CoMo#1, no bulk Co3O4, CoO, or CoAl2O4 was found (∼ 480, 520,
620, and 690 cm−1) [275, 276] and similarly, the lack of a broad peak around 525 cm−1 for NiMo#1
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indicated that no bulk NiO was present in this catalyst precursor [277]. In general, the presence of
bulk MoO3 (667, 820, and 992 cm−1) [244] could be ruled out for all catalyst precursors. Supported
MoOx may show Raman shifts at higher wavenumbers than 992 cm−1 [278]. Nevertheless, this may
not explain the observed Raman bands between 1045-1090 cm−1 (�gure 5.6). Minor Si impurities with
a characteristic Raman shift at 521 cm−1 were assigned to potential impurities in the support or in
the Mo precursor used for the preparation.

The presence of highly dispersed MoOx was also veri�ed by XAS. Figure 5.7 shows XANES spectra
of the dehydrated and sul�ded Mo#1 along with references, which exhibit di�erent features depending
on the oxidation state and coordination geometry of the central Mo atom. Similar XANES spectra of
dehydrated and sul�ded NiMo#1 and CoMo#1 at the respective Mo, Ni, and Co K-edges are given
in Appendix H, �gure H.7. The XANES spectrum of the dehydrated sample exhibits a pre-edge peak
at ∼ 20,005 eV indicating the presence of Mo6+ (see �gure 5.7). This pre-edge peak, which was seen
for all dehydrated samples, is quite intense, which further indicates tetrahedral geometry around the
central Mo atom [279,280].

Figure 5.7: Mo K-edge XANES spectra of the dehydrated and sul�ded Mo#1 together with MoO3 and MoS2
references.

The EXAFS �tting results obtained at the Mo K-edge for all dehydrated samples are shown in table
5.2. The corresponding Fourier transformed (FT) spectra with �tted theoretical models are given in
the Appendix H, �gures H.8-H.9 (Mo K-edge) and �gure H.10 (Ni K-edge and Co K-edge). For the
dehydrated samples, the CN of Mo-O was found in the range of 4.2-4.6 with an average bond length of
1.75 Å, which is in accordance with the XANES results. Higher metal-metal shells were not observed
in the FT spectra of these samples indicating high dispersion as also found by Raman spectroscopy.

Table 5.2: Mo K-edge EXAFS �tting results for the dehydrated oxide phase precursors. ∆ states the uncertainty

in the reported values.

Mo-O
Catalyst R CN (∆CN) σ2 (∆σ2)

[Å] [-] [Å−2]·103

Mo#1 1.76 4.2(0.4) 4.9(0.7)

NiMo#1 1.73 4.6(0.7) 5.8(1.6)

CoMo#1 1.75 4.3(0.4) 5.1(0.7)

97



Chapter 5. In�uence of H2O and H2S

5.2.4.2 Oxide to Sul�de Conversion during Sul�dation

The transition of oxide to sul�de was followed in-situ with XANES and EXAFS (see �gure 5.8 and
�gure 5.9). Similarly to what has been obtained in literature [124, 281�283], the oxide precursor
underwent transformation into intermediate oxysul�de species prior to conversion into the �nal sul�de
form.

Figure 5.8: Mo K-edge XAS results as (a) XANES spectra and (b) corresponding magnitude of the FT (�tted

k3-weighted EXAFS spectra) for in-situ sul�dation of Mo#1. (a) Overlaid view; arrows indicate change over

time. (b) Averaged magnitude of FT spectra are shown as a function of time indicating presence of oxide (black),

intermediate oxysul�de (red), and sul�de (green) phases.

Figure 5.9: XANES spectra for in-situ sul�dation of (a) CoMo#1 at the Co K-edge and (b) NiMo#1 at the

Ni K-edge; arrows indicate change over time.
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A linear combination �tting (LCF) analysis of the XANES spectra obtained during sul�dation of the
three catalysts (Mo#1, NiMo#1, CoMo#1) showed that Ni promotion increased the rate of sul�dation
(see �gure 5.10). Based on the Mo K-edge spectra, 10 % oxide phase remained at ∼ 320 ◦C in Mo, at
∼ 335 ◦C in CoMo, and at ∼ 295 ◦C in NiMo (�gure 5.10a-c). Looking at the promoter K-edges, 10
% Co oxide phase remained at ∼ 335 ◦C, whereas 10 % Ni oxide phase remained at ∼ 260 ◦C (�gure
5.10d-e). Thus, Ni was sul�ded faster than Mo and this aided the sul�dation of Mo, whereas Co had
no signi�cant in�uence on the sul�dation rate of Mo.

Figure 5.10: LCF analysis of �tted EXAFS spectra from in-situ sul�dation at the Mo K-edge for (a) Mo#1,

(b) CoMo#1, (c) NiMo#1, at the Co K-edge for (d) CoMo#1, and at the Ni K-edge for (e) NiMo#1.
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5.2.4.3 Sul�de Phase

The presence of small and highly dispersed MoS2 particles was revealed by EXAFS. The structural
parameters determined from �tting the Mo K-edge spectra of the sul�ded catalysts and the promoter
K-edges spectra for the dehydrated and sul�ded samples are shown in table 5.3.

Table 5.3: EXAFS �tting results. Mo K-edge results for all three sul�ded catalysts and Ni and Co K-edge

results for dehydrated and sul�ded NiMo#1 and CoMo#1. ∆ states the uncertainty in the reported values.

K-edge/ R CN σ2 R CN σ2 R CN σ2

catalyst (∆CN) (∆σ2) (∆CN) (∆σ2) (∆CN) (∆σ2)
[Å] [-] [Å−2]·103 [Å] [-] [Å−2]·103 [Å] [-] [Å−2]·103

Mo K-edge/ Mo-O Mo-S Mo-Mo
Mo#1 1.65 0.19(0.07) 4.9(0.7)a 2.40 4.1(0.2) 8.4(0.5) 3.16 0.40(0.07) 3.2(0.2)b

NiMo#1 1.62 0.32(0.11) 4.9(0.7)a 2.40 4.8(0.3) 8.9(0.6) 3.17 0.43(0.10) 3.2(0.2)b

CoMo#1 1.64 0.32(0.11) 4.9(0.7)a 2.41 4.4(0.4) 9.8(0.9) 3.17 0.26(0.09) 3.2(0.2)b

Ni K-edge/ Ni-O Ni-Ni Ni-Mo
Dehydrated 2.04 5.4(0.7) 7.7(1.4) 3.20 3.0(-)c 6.7(2.8) 3.20 3.0(-)c 6.7(2.8)

Ni-S Ni-Ni Ni-Mo
Sul�ded 2.22 3.60(0.6) 8.6(1.8) 2.83 1.0(-)c 7.8(4.4) 3.30 1.0(-)c 5.7(1.4)

Co K-edge/ Co-O
Dehydrated 1.92 4.5(1.1) 3.1(2.0)

Co-S Co-Co (1st) Co-Mo
Sul�ded 2.16 2.54(0.55) 6.1(1.8) 2.53 3.0(-)c 13.3(1.7) 3.81 2.0(-)c 5.7(3.3)

Co-Co (2nd)
3.85 3.0(-)c 9.0(0.6)

a ∆σ2 for Mo-O was �xed to the value as determined from the dehydrated Mo#1 sample.
b ∆σ2 for Mo-Mo was �xed to the value as determined from a MoS2 reference.
c The parameter was �xed during the �tting.

The Mo K-edge results show that all three sul�ded catalysts had a Mo-O contribution at 1.62-1.65 Å
with a very low CN of 0.19-0.32 (see table 5.3). This may be explained by an interaction with the
support resulting in the formation of highly dispersed, small particles as indicated by Raman. The
very low CN observed for the Mo-O coordination, indicates that there is no actual bonding between
Mo and O but only a slight interaction. In a recent study, Rochet et al. [281] also reported a very
short Mo-O contribution at 1.68 Å with a CN of 1, which was proposed to be due to the presence of
molybdenum oxysul�de species. In our case, the Mo-O CN is too low to predict the formation of such
phases. Furthermore, Rochet et al. [281] observed a weak pre-edge feature in the XANES spectrum
corresponding to the presence of molybdenum oxide species. In the sul�ded samples of this work,
however, no such peak was observed. Thus, most probably the short Mo-O bond with very low CN
was due to interaction with the support.

The Mo-S coordination at 2.40-2.41 Å with a CN of 4.1-4.8 corresponds to the MoS2 phase and
is in agreement with published values [124, 243, 284]. The Mo-Mo coordination at 3.16-3.17 Å also
corresponds to literature results [124, 243], but the CN = 0.26-0.43 is too low to obtain a precise
estimate of the particle size (e.g. due to high temperature leading to a high Debye-Waller factor and
small particle size due to mobility at >300 ◦C), which is expected to be <2 nm [284]. A TEM analysis
was performed (see Appendix H, �gures H.5-H.6) giving an average slab length of 4.3±2.8 nm with a
mean stacking of 1.2. But with an average Mo-Mo CN <1 from EXAFS, the majority of the particles
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were too small (<2 nm) to detect with TEM at the applied resolution. These results are in line with
the �ndings of Seo and Lee [285], who showed that the formation of MoS2 particles can take place
through the initial formation of nanoparticles of ≤1 nm at mild sul�dation conditions. No Mo-Mo
backscattering at 3.16 Å was detected for these particles indicating a very low coordination number,
but at the same time, a Mo-S signal at 2.4 Å with a CN of 3.6 was reported, and the elemental
S/Mo ratio was 1.3 [285]. As the sul�dation temperature was increased, they showed (TEM and
EXAFS) that the nanoparticles merged to form the well-known MoS2 slab structures giving stronger
Mo-Mo backscattering. In this work, a low Mo loading (sub monolayer, see table 3.3) and rather mild
sul�dation conditions were applied; i.e. moderate temperature and low pressure. Together with a
strong support interaction as indicated by the Mo-O contribution at 1.62-1.65 Å, this is proposed to
have caused the formation of very small and highly dispersed MoS2 particles.

Using the EXAFS results (table 5.3), a MoS2 cluster was constructed from a bulk MoS2 model by
only including the �rst shell of S and a single Mo atom from the second Mo shell. The central Mo
atom thus had a Mo-S CN of 6, similar to bulk MoS2, and a Mo-Mo CN of 1. The outer Mo atom
had a Mo-S CN of 2 and a Mo-Mo CN of 1, which gives an average Mo-S CN of 4, corresponding to
the EXAFS results (see table 5.3), and Mo-Mo CN of 1. The structure of this cluster is shown in the
Appendix H, �gure H.11. FEFF9 simulations were performed with each of the two Mo atoms as the
absorber, and the obtained spectra were averaged to get the XANES spectrum shown in �gure 5.11.
The Debye-Waller factor obtained from the EXAFS �tting was used to introduce the disorder in the
model. The spectra were averaged with a 1:1 ratio between the two Mo atoms, which gave a good
agreement between modelled and experimental XANES spectra and supported the EXAFS results (see
�gure 5.11). There are, however, some regions where the shape of the modelled spectrum deviates from
the experimental spectrum, possibly due to presence of further contributions from Mo-S and Mo-Mo
in the sample not considered in the model.

Figure 5.11: XANES spectrum for sul�ded Mo#1 together with the average calculated XANES spectrum

(FEFF9) for a MoS2 cluster consisting of two Mo atoms and with an average Mo-S CN of 4 and an average

Mo-Mo CN of 1.

The EXAFS results obtained at the Co K-edge indicate that a bulk Co9S8 phase was present in the
sul�ded CoMo catalyst (see table 5.3). The Co-S CN of 2.54 with bond length 2.16 Å is similar to
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one of the shorter Co-S coordinations present in Co9S8 [286], and the low CN of 2.54 indicates the
presence of smaller particles on the surface. The presence of a Co-Co shell was observed at a higher
distance of 3.85 Å, supporting the presence of a Co9S8 phase after sul�dation [286]. Also, a Co-Mo
shell was found at about the same distance of 3.81 Å indicating that some Co atoms were replaced
by Mo, which points towards the presence of a CoMoS phase. Thus, the sul�ded phase in the CoMo
catalyst seemed to contain a mixture of Co9S8 and CoMoS.

Especially CoMo catalysts have been reported to be sensitive towards bulk Co9S8 formation during
sul�dation with the propensity to form this undesired phase being dependent on the catalyst prepar-
ation method. Co9S8 is most likely to form in samples prepared from a stepwise incipient wetness
impregnation where the Co precursor has been added prior to the Mo precursor [63]. Co9S8 formation
can be minimized by application of a chelating agent, such as citric acid, to the impregnation solution,
which has been reported to stabilize Co and Mo precursors at the catalyst surface and facilitate a
high degree of promotion of Co in the resulting MoS2 structure [124, 243, 287]. The catalytic activity
repeatability test (see section 5.2.2.4.1 and �gure 5.5) might thus be improved by altering the catalyst
preparation procedure.

For NiMo, the EXAFS results obtained at the Ni K-edge indicated the presence of a NiMoS phase.
The Ni-S CN of 3.60 with bond length 2.22 Å is similar to the results obtained by Rochet et al. [288]
for a sul�ded NiMo/Al2O3 catalyst, which was prepared with approximately the same metal loading
per nm2 available support surface area as for this work. The Ni K-edge XANES spectrum for the
sul�ded catalyst (see Appendix H, �gure H.7), showed similar features as the NiMoS XANES spectrum
reported in literature [289]. Furthermore, a small bump at ∼ 8352 eV corresponded to the white line
characteristics of NiAl2O4 indicating some interaction of Ni with the MgAl2O4 support.

5.2.4.4 Stability against Varying H2O/H2S

The stability of promoted and unpromoted MoS2 against H2O/H2S variations was investigated in-situ

by XAS. After sul�dation, the catalysts were exposed to di�erent molar ratios of H2O/H2S (30, 100,
190, and 300) corresponding to 100-500 ppm H2S and 1.6-3.0 % H2O. In the performed activity tests
(�gure 5.3 and �gure 5.4), full conversion corresponded to a H2O/H2S ratio of ∼ 125 and ∼ 30 at 550
and 2200 ppm H2S, respectively.

Figure 5.12 shows the in-situ XANES spectra at the Mo K-edge for Mo#1, CoMo#1, and NiMo#1,
at the Co K-edge for CoMo#1, and at the Ni K-edge for NiMo#1, respectively, during H2O/H2S
variations. Any changes induced by adding water to the gas and increasing the H2O/H2S ratio were
negligible, which indicates that all catalysts were stable against water induced phase change such as
oxidation for H2O/H2S ratios ≤300. Also, the variation in the EXAFS parameters for the catalysts
exposed to H2O were too small to predict any phase transformation and are hence not presented here.

The presence of promoters in the CoMo and NiMo catalysts could stabilize the catalyst against
oxidation as indicated by the DFT results (see �gure 5.1), which suggested a lower stability of un-
promoted MoS2, but at the same time only provided general trends. Furthermore, the stability of all
catalysts could be due to a stabilizing e�ect from the strong interaction between the small and highly
dispersed particles with the support. A possibility for further investigating the in�uence of H2O/H2S
variations could be to perform modulation excitation spectroscopy (MES) during in-situ experiments,
which can potentially enhance the sensitivity of small and fast changes [290]. This is outside the scope
of this paper, and it is the topic of further research.
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Figure 5.12: Average XANES spectra from in-situ H2O/H2S variations at the Mo K-edge for (a) Mo#1,

(b) CoMo#1, (c) NiMo#1, (d) at the Co K-edge for CoMo#1, and (e) at Ni K-edge for NiMo#1. Numbers

indicate molar H2O/H2S ratios. Start and end denote whether the averaged XANES spectra are from the �rst

or last 5 minutes of the exposure time at the given ratio.

5.2.5 Target Sul�de Phase for Hydrodeoxygenation at Elevated Temperature

A strong support interaction (commonly through Mo-O-Al linkages) has often been associated with
formation of the less active type I sul�de phases [124, 243, 287]. Type I sul�des are smaller particles
with higher dispersion than type II sul�des that more resemble bulk MoS2 [291]. A moderately active
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catalyst stabilized through the support interaction of highly dispersed MoS2 particles was the aim in
this work, where a catalyst for in-situ HDO of pyrolysis vapors at high temperatures (∼ 500 ◦C) is
targeted. If a too active catalyst (such as type II sul�des) is prepared, extensive cracking can minimize
(potentially remove) the oil yield when a real biomass feed is used. Additionally, the strong active
phase-support interaction helps in stabilizing the active phase upon water exposure, this could further
favor the use of type I sul�des in high temperature HDO of pyrolysis vapor.

A bulk-like MoS2 structure with a Mo-S CN of ∼ 6 can be obtained by lowering the interaction
with the support; either by the use of a chelating agent during impregnation on Mo-O-Al anchoring
supports such as Al2O3 [124,243,287], or by the use of an inert support such as carbon [287]. Sul�dation
conditions (temperature, pressure, and sulfur source) can additionally be used to alter the composition
of formed sul�des [124, 243, 291, 292]. As mentioned, the loading of Mo also in�uences the type I/II
distribution as a higher loading minimized the support interaction and favors the formation of fully
sul�ded MoS2 with Mo-S CN = 6 [63,242].

It has been reported that NiMo catalysts are more active for HDO of aliphatic species, while
CoMo catalysts are more active for HDO of aromatic species [109, 110, 136, 138]. In this work, similar
activities were seen with the prepared NiMo and CoMo catalysts tested for ethylene glycol conversion.
Biomass fast pyrolysis vapor will contain both aliphatic and aromatic oxygenates. It could therefore
be interesting to test the activity and stability of the prepared catalysts for HDO of aromatic species.
Mixtures of aromatic and aliphatic species should be tested as well to study possible competitive
inhibition. However, the aliphatic oxygenates (sugar derived polyols, ketones, acids, and aldehydes)
are responsible for the most detrimental properties of bio-oil. These species should be upgraded by
HDO immediately when formed during catalytic hydropyrolysis. Further upgrading of more refractory
aromatic species could potentially be performed downstream in a �xed bed reactor operating with
another catalyst at other operating conditions.

5.3 Conclusions

DFT, catalytic activity tests, and in-situ XAS was conducted to provide detailed information on the
activity and stability of MoS2, Ni-MoS2, and Co-MoS2 catalysts used for HDO upon variation of the
partial pressures of H2O and H2S. H2S was added to the reaction gas to stabilize the sul�de catalyst,
while H2O is a HDO reaction product. DFT calculations showed that the active edge of MoS2 could
be stabilized against S-O exchanges by increasing the partial pressure of H2S or by promotion with
either Ni or Co. HDO activity tests were performed using Mo, NiMo, and CoMo catalysts prepared
by incipient wetness impregnation using a MgAl2O4 support. Ethylene glycol was chosen as a model
compound representing the more reactive cellulose derived species formed during pyrolysis of biomass.
The prepared MoS2 based catalysts were all active and fairly selective for ethylene glycol HDO at
400 ◦C, 27 bar H2, and 550-2200 ppm H2S, and produced ethane, ethylene, and C1 cracking products
at C2/C1 ratios of 1.5-4.8 and conversions of ∼ 50-100 %. Both DFT and catalytic activity tests
indicated that increasing the H2S concentration in the gas increased the concentration of SH groups on
the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ
XAS showed that the catalysts were tolerant towards water, and that the active phases were present
as small and highly dispersed particles.
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6 | Kinetics, Deactivation, and

Reactivation

Hydrodeoxygenation of Pyrolysis Vapor Model Compounds

over Sul�ded NiMo/MgAl2O4

Abstract
Hydrodeoxygenation (HDO) of acetic acid, ethylene glycol, phenol, and cyclohexanol was investigated
using a Ni-MoS2/MgAl2O4 catalyst. Activity tests were performed in a continuous �ow �xed bed
reactor operated at 380-450 ◦C, 27 bar H2, and 550 ppm H2S. Acetic acid plugged the reactor inlet
within 2 h on stream, illustrating the challenges of performing HDO of reactive oxygenates. Phenol,
which was fed together with ethylene glycol, was not converted at the applied conditions, which seemed
to be due to a combination of mechanistic and thermodynamic constraints.

For ethylene glycol and cyclohexanol, steady state activity was obtained in the temperature range

of 380-415 ◦C and the kinetics were evaluated in terms of the reactions: ethylene glycol
k′1−→ ethylene

k′2−→ ethane and cyclohexanol k1−→ cyclohexene
k′2−→ cyclohexane. The hydrogenation of ethylene was the

fastest step in the conversion of ethylene glycol with k′2/k
′
1 = 15-27, while the initial dehydration was

the fastest step during the pure cyclohexanol conversion with k′2/k1 ≤0.1. The results could indicate
that the conversion of ethylene glycol and cyclohexanol was taking place on di�erent active sites.

There was no signi�cant in�uence from phenol and cyclohexanol on the rate of HDO of ethylene
glycol. But for cyclohexanol, a signi�cant inhibiting e�ect from ethylene glycol was observed. The
rate constant for dehydration of cyclohexanol, k1, decreased by a factor of 25-51, when ethylene glycol
was present. This was explained by competitive adsorption on active sites by ethylene glycol and
deactivation by coke from ethylene glycol.

All catalysts deactivated due to carbon deposition with the time on stream of 90-220 h. Catalyst
reactivation was possible by oxidation and resul�dation, but the conditions of reactivation should be
controlled to limit changes in the active phase.
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6.1 Introduction

As discussed in chapter 2.3.8, HDO of a single model compound allows for detailed insights into reaction
and deactivation mechanisms, but the complexity of a real feed is neglected. Thus, it is interesting to
mix di�erent model compounds to obtain a feed which is slightly closer to representing a real feed. This
work studies the reactivity and interaction between acid, polyol, alcohol, and phenol functionalities in
HDO over a sul�ded NiMo/MgAl2O4 catalyst.

Ethylene glycol represents the highly reactive polyol functionality, which should be stabilized
through HDO immediately when formed during pyrolysis to avoid coking and polymerization. An-
other important functionality is carboxylic acids, which along with their unwanted corrosiveness also
possess a high reactivity (see �gure 2.4). Finally, phenolic compounds are interesting in HDO studies
due to their refractory properties. The di�erence in reactivity between alcohols, carboxylic acids, and
phenols may challenge single stage HDO. Furthermore, the interaction between oxygenates such as
competitive adsorption may limit their HDO [91,92].

6.2 Results and Discussion

6.2.1 Hydrodeoxygenation of Acetic Acid

The HDO of acetic acid was tested in the POC setup at 450 ◦C and 40 barg with 27 bar H2 and 550
ppm H2S using 0.5 g NiMo#2 catalyst (see table 3.3) and a feed of ∼ 0.06-0.13 mL/min acetic acid
corresponding to 1.0-2.3 mmol/min (experiment: HAc). It was not possible to obtain a stable feed �ow.
After 2 h on stream, a coke plug developed in the reactor inlet (above the catalyst bed), resulting in a
pressure drop of 48 bar. This experiment clearly illustrated the issues of heating reactive oxygenates,
which many others also have faced when using condensed bio-oil for HDO studies [98,101,102].

The short TOS with acetic acid over a sul�ded NiMo catalyst resulted in the gas product yields
summarized in table 6.1, which compares the yields with those from the conversion of pure ethylene
glycol at similar conditions. Acetic acid can undergo di�erent reactions such as decarboxylation to form
CH4 and CO2, decarbonylation (of two acetic acid molecules) to form ethylene, CO, and water, and
ketonization (of two acetic acid molecules) to form acetone, CO2, and water [293]. It is also possible
that acetic acid can be converted by HDO to acetaldehyde and water, allowing for similar reactions
as for ethylene glycol. The formation of acetone could be the reason for the high yield of propane and
propylene formed from acetic acid compared to ethylene glycol, which indicated the higher propensity
for carboxylic acids to polymerize. The ratio of ethane/ethylene was higher (at ∼ 10) for acetic acid
HDO compared to ethylene glycol HDO (at ∼ 3), which could either be due to di�erences in the
mechanism for ethylene formation or due to extensive coke formation from the ethylene formed from
acetic acid. The higher yield of C1 and coke from acetic acid HDO also indicated a higher a�nity for
cracking of acetic acid compared to ethylene glycol, which to some extent, however, was also a�ected
by a higher (≤13 ◦C) reaction temperature (see �gure 6.1).

Table 6.1: Gas product yields at TOS = 0-2 h for the conversion of ethylene glycol (experiment: EG) and

acetic acid (experiment: HAc) at 450 ◦C, 550 ppm H2S, 27 bar H2 and 40 barg total pressure (balance N2).

Model compound CH4 CO CO2 Ethylene Ethane Propylene Propane Csum,gas

[%] [%] [%] [%] [%] [%] [%] [%]
Ethylene glycol 8-9 12-13 4-5 8-11 28-29 4-7 3 67-74

Acetic acid 17-21 17-20 7-8 2 21-24 8-11 9-11 83-93
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6.2.2 Hydrodeoxygenation of Ethylene glycol, Phenol, and Cyclohexanol

6.2.2.1 Reaction Conditions

The conversion of ethylene glycol, phenol, and cyclohexanol in pure and mixed solutions was invest-
igated over a sul�ded NiMo catalyst (0.5 g NiMo#2, see table 3.3) at 380-450 ◦C and 40 barg with
27 bar H2 and 550 ppm H2S. The conversion of pure ethylene glycol (experiment: EG) was compared
with that of an ethylene glycol feed containing either phenol (experiment: Phe/EG) or cyclohexanol
(experiment: Cyc/EG). In these experiments, a constant oxygen molar feed �ow was targeted (see
table 6.2). An experiment with pure cyclohexanol (experiment: Cyc) was performed to see if cyclohex-
anol was a�ected by the presence of ethylene glycol. In this experiment, the volumetric feed �ow was
targeted at a level comparable to the pure ethylene glycol experiment. The catalyst used for HDO of
the mixed ethylene glycol and phenol feed was reactivated after the end of the run (see section 6.2.3),
and the experiment was then repeated (experiment: Phe/EG-ReGen) to test catalyst regenerability.
Catalyst regeneration and activity of the reactivated catalyst is discussed in section 6.2.3.

Table 6.2: Applied model compound feeds (average values) at 27 bar H2, 550 ppm H2S, a total pressure of 40

barg (balance N2) and temperatures of 280-450 ◦C.

Experiment/ EG Phe/EG Cyc/EG Cyc
parameter Unit (21 wt% Phe) (22 wt% Cyc)
Total compound �ow [mmol/min] 2.46 2.62 2.57 1.5

EG �ow [mmol/min] 2.46 2.23 2.19 0

Phe [mmol/min] 0 0.39 0 0

Cyc [mmol/min] 0 0 0.38 1.5

O [mmol/min] 4.92 4.85 4.76 1.5

C [mmol/min] 4.92 6.9 6.7 9.0

Volumetric feed [mL/min] 0.14 0.16 0.16 0.16

WHSV [h−1] EG: 19 EG: 16 EG: 16 -

[h−1] - Phe: 4.4 Cyc: 4.6 Cyc: 18

[h−1] Total: 19 Total: 21 Total: 21 Total: 18

Previous activity tests (see chapter 5) showed signi�cant deactivation over time. Steady state activity
is crucial for kinetic modelling. Thus, an accelerated deactivation was introduced at 420-450 ◦C to
obtain subsequent steady state activity in the approximate temperature range of 380-400 ◦C. In most
experiments, the initially applied operating temperature of 450 ◦C was revisited to see if the catalyst
had deactivated further during steady state operation.

The temperature programs for the experiments are listed in table 6.3 and the resulting temperature
pro�les are shown in �gures 6.1 and 6.2. Experiments EG and Phe/EG were run in a similar manner,
but in the experiment with the reactivated catalyst, a step at 280 ◦C was introduced to see, if phenol
conversion could be obtained at a lower temperature. The experiment Cyc/EG had to be terminated
after 90 h on stream due to setup issues. The experiment Cyc was run similarly to Cyc/EG with the
addition of a revisit at the initial setpoint of 450 ◦C at the end of the run.
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Table 6.3: Applied temperature programs in terms of setpoints, TSP , for the experiments listed in table 6.2.

Experiment EG Phe/EG Phe/EG-ReGen Cyc/EG Cyc
TOS TSP TOS TSP TOS TSP TOS TSP TOS TSP

Step [h] [◦C] [h] [◦C] [h] [◦C] [h] [◦C] [h] [◦C]
1 0-24 450 0-24 450 0-24 450 0-24 450 0-24 450

2 24-69 420 24-69 420 24-69 420 24-69 420 24-71 420

3 69-105 400 69-105 400 69-105 400 69-90 400 71-91 400

4 105-139 390 105-139 390 105-155 390 91-101 450

5 139-171 380 139-171 380 155-171 380

6 171-201 410 171-201 410 171-198 280

7 201-221 450 201-220 450 198-220 450

Figure 6.1 shows the initial sharp temperature increase of up to 16 ◦C as the oxygenate feed was added
due to the highly exothermic nature of HDO reactions. The subsequent decreasing temperature over
time indicated catalyst deactivation, which was also evident from the conversion and product yields.
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Figure 6.1: Initial temperature pro�les for the experiments listed in table 6.2. In the experiment HAc, the

acetic acid feed was stopped at TOS ∼ 2.2 h.

The HPLC pump used to feed cyclohexanol in experiment Cyc broke down at TOS = 63-70 h and no
cyclohexanol was fed in this period, which resulted in a slightly higher temperature (∼ 2 ◦C) indicating
that the reaction temperature (at TSP = 420 ◦C) was governed by endothermic reactions (see �gure
6.2). During the activity test using the reactivated catalyst (Phe/EG-ReGen) at TSP = 390 ◦C, the
temperature suddenly increased from 385 to 388 ◦C at TOS = 138 h and stayed at 388 ◦C. The
activity increased correspondingly. Before this temperature increase, there had been a few spikes in
temperature and the measured gas product concentrations indicating that the catalyst was somehow
changing. At 138 h, this change became permanent leading to a di�erent activity. Apart from an
increased activity and a correspondingly higher temperature, no changes in the operational parameters
(�ows, pressures, etc.) were introduced or detected during this period of time.
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Figure 6.2: Temperature pro�les for the experiments listed in table 6.2 with the temperature programs listed in

table 6.3. A) Temperature increase in the Cyc experiment (2 ◦C) during period without cyclohexanol feed. B)

Temperature decrease (25 ◦C) in the Cyc/EG experiment prior to decreasing the setpoint from 420 ◦C to 400
◦C due to measurement of temperature pro�le (moving thermocouple out of reaction zone, see Appendix D). C)

Unexpected catalyst activation with temperature increase (4 ◦C).

6.2.2.2 Conversion of Ethylene Glycol

The conversion of ethylene glycol in the di�erent experiments (EG, Phe/EG, Cyc/EG) is shown in
�gure 6.3, while �gure 6.4 gives the total yield of carbon in the detected C1−3 gas products. In all
three ethylene glycol experiments, close to complete conversion was obtained initially at ∼ 450 ◦C.
Deactivation however occurred, and before the temperature was dropped to ∼ 420 ◦C at TOS = 24
h, the conversion had decreased below 100 %. Steady state activity was obtained at the subsequent
temperature setpoints of 400, 390, and 380 ◦C. This is more evident from the yield pro�les (�gure 6.4)
compared to the conversion pro�les (�gure 6.3), due to the higher resolution with less �uctuation of
the gas data. The initial total carbon yield in the gas (�gure 6.4) was ≥20 % at TSP ≥420 ◦C, while
it was 6-14 % at TSP = 380-400 ◦C.

The ethylene glycol conversion was in the range of 64-96 % at TSP = 420 ◦C, 46-57 % at TSP =
400 ◦C, 35-50 % at TSP = 390 ◦C, and 29-39 % at TSP = 380 ◦C (see �gure 6.3). Increasing the
temperature setpoint from 380 ◦C to 410 ◦C at TOS = 171 h (experiments EG and Phe/EG), did not
allow for steady state operation, and continuous deactivation was observed (see �gure 6.4). As the
temperature was brought back to the initial setpoint of 450 ◦C, the conversion increased to 88-95 %
and was thus slightly lower than initially obtained, and continued deactivation was evident from the
gas yields (see �gure 6.4).

The temperature was identical (within <2 ◦C) for the experiment with pure ethylene glycol and
with phenol in the feed. The temperature was however notably lower (up to 10 ◦C) when cyclohexanol
was present in the feed, which a�ected the conversion and yields accordingly. This lower temperature
was explained by the endothermic dehydration of cyclohexanol (see section 6.2.2.6).
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Figure 6.3: Temperature pro�les and ethylene glycol conversion over NiMo#2 (see table 3.3) from experiments

with ethylene glycol, phenol, and cyclohexanol in the feed. Based on ethylene glycol. For feed composition, see

table 6.2.
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Figure 6.4: Total carbon yield of gas products from the conversion of ethylene glycol over NiMo#2 (see table

3.3) from experiments with ethylene glycol, phenol, and cyclohexanol in the feed. Based on ethylene glycol. For

feed composition, see table 6.2. For temperature pro�les, see �gure 6.2.
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6.2.2.3 Product yields from Ethylene Glycol Conversion

Based on the product composition and yields from the HDO of pure ethylene glycol and cyclohexanol,
and from the mixed ethylene glycol and phenol feed, it was found that C1−3 products were formed
from ethylene glycol and not from phenol or cyclohexanol. Thus, the yields of these compounds were
calculated based on the feed of ethylene glycol. Figure 6.5 shows the yields of C1−2 gas products. The
yield of CO2 was ∼ 1-5 % during the initial deactivation period and <0.5 % at the subsequent steady
states.

Looking at the yield of ethylene and ethane for all three experiments (�gure 6.5a-b), there was an
initial decrease in the yield of ethane and a corresponding increase in ethylene, indicating a deactivation
of hydrogenation sites as previously observed (see chapter 5). During steady state operation at TSP

= 380-400 ◦C, the yields of ethane and ethylene, respectively, were below 5 %. The yields obtained
immediately after returning to 450 ◦C at TOS = 198 h was approximately the same as obtained at
24 h in the end of the initial 450 ◦C operation period, supporting the observation that steady state
activity was obtained during 69-171 h on stream with little further deactivation during this period.
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Figure 6.5: Yields of (a) ethane, (b) ethylene, (c) CO, and (d) CH4 from the conversion of ethylene glycol

over NiMo#2 (see table 3.3) from experiments with ethylene glycol, phenol, and cyclohexanol in the feed. The

yield of CO2 was <0.5% during steady state operation. Based on ethylene glycol. For feed composition, see table

6.2. For temperature pro�les, see �gure 6.2.
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CO was the main cracking product formed (see �gure 6.5c-d). The C2/C1 ratio obtained in all three
experiments (see �gure 6.6) increased linearly with decreasing temperature, showing how cracking can-
not be avoided at elevated temperature. The higher deviation in the C2/C1 ratio at lower temperatures
is caused by greater relative �uctuations in the measured concentration of C1 products.
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Figure 6.6: Selectivity towards HDO compared to cracking as a function of temperature from the conversion of

ethylene glycol over NiMo#2 (see table 3.3) from experiments with ethylene glycol, phenol, and cyclohexanol in

the feed. Data from the �nal 5 h of each operating temperature. Based on ethylene glycol. For feed composition,

see table 6.2. For temperature pro�les, see �gure 6.2.

The combined yield of propane and propylene was ≤10 % during the initial deactivation period (TOS
≤69 h). However, at the subsequent steady states (TSP = 380-400 ◦C), this number was less than 1
%, and it remained low (≤2%) during the remainder of the activity tests, indicating that active sites
(potentially acid sites) responsible for carbon-carbon bond formation had been deactivated, probably
by coking.

6.2.2.4 Kinetics of Ethylene Glycol Hydrodeoxygenation

The proposed reaction scheme for the conversion of ethylene glycol into C1, C2, and C3+ products is
shown in �gure 6.7. Based on the experimental results for conversion of ethylene glycol over sul�ded
catalysts, the HDO reactions have been assumed to follow a route of consecutive dehydration and
hydrogenation reactions (see e.g. �gure 5.2). Ethenol, vinyl alcohol, is expected to be shifted via
tautomerization towards its keto form, acetaldehyde, which same as ethenol can be hydrogenated to
form ethanol. Acetaldehyde was detected in the gas product from ethylene glycol conversion over
sul�ded catalysts in experiments, where an extended gas analysis was performed (see Appendix G).
CO and CH4 can form from the decarbonylation of acetalaldehyde, but the yields of these products
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with YCO/YCH4 >1 (see �gure 6.5c-d) show that cracking of ethylene glycol also occurred. CO2 can
form from the WGS reaction.

Figure 6.7: Proposed reaction scheme for the conversion of ethylene glycol into C1, C2, and C3+ products

including target reactions (blue) and side reactions (red).

Due to incomplete condensation in the separator tube and lack of oxygenate quanti�cation in the
product gas, the kinetic model was set up with a lumped C2,ox term covering ethylene glycol, ethenol,
acetaldehyde, and ethanol as indicated in �gure 6.7. The kinetic model was based on the assumption
of a constant and excess hydrogen pressure and �rst order kinetics for the remaining species (see
Appendix I). All species were assumed to be in the gas phase, and the total volumetric �ow rate, v,
was assumed constant. The reactions included were the joint dehydration and hydrogenation of C2,ox

into ethylene, and the subsequent hydrogenation of ethylene into ethane:

C2,ox + H2
k1−→ C2H4 + 2H2O, ∆H380−400◦C = −47 kJ/mol , C2,ox = EG (6.1)

C2H4 + H2
k2−→ C2H6, ∆H380−400◦C = −141 kJ/mol (6.2)

r1 = k′1CC2,ox
(6.3)

r2 = k′2CETY (6.4)

ri is the reaction rate for reaction i with the lumped rate constant k′i and Cy is the concentration of
compound y. ETY and ETA denote ethylene, and ethane. The packed bed reactor model was used
to set up molar �ow balances for ethylene glycol, ethylene, and ethane based on reactions 6.1 and 6.2
and the respective rate expressions in equations 6.3 and 6.4:

dFC2,ox

dW
= −r1 = −k′1CC2,ox

(6.5)

dFETY
dW

= r1 − r2 = k′1CC2,ox
− k′2CETY (6.6)

dFETA
dW

= r2 = k′2CETY (6.7)
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W is the catalyst mass and Fi is the molar �ow rate of compound i. The concentration was determined
as Ci = Fi/v. The rate constants were parametrized according to equation 6.8 in order to decouple
the activation energy and the pre-exponential factor:

k = kref · exp
(
−Ea
R

(
1

T
− 1

Tref

))
(6.8)

kref is the reference rate constant at the temperature Tref in K. Ea is the activation energy in kJ/mol
and R is the gas constant equal to 8.315·10−3kJ/mol. The inlet molar �ows of ethylene glycol (FC2,ox,0

= FEG,0), ethylene (zero), and ethane (zero), were used as initial conditions for the system of di�erential
equations presented in 6.5-6.7, which was solved, while values of kref and Ea were �tted. The conversion
in the two reactions was then determined by comparing the calculated outlet �ows of ethylene and
ethane to the feed �ow of ethylene glycol, FEG,0:

X1 =
FETY + FETA

FEG,0

∣∣∣∣
W=0.5g

(6.9)

X2 =
FETA
FEG,0

∣∣∣∣
W=0.5g

(6.10)

Only steady state data were used, and for each steady state, the data used were the average from the
�nal 5 hours at the given steady state. The results are summarized in table 6.4 with the Arrhenius plots
shown in �gure 6.8. Based on the evaluation of the Mears' criterion and the e�ectiveness factor [294], it
was concluded, that the experiments were conducted without signi�cant external or internal di�usion
limitations (see Appendix I).

Table 6.4: Rate constants, conversions, and activation energy for the conversion of ethylene glycol according

to the reactions 6.1 and 6.2. Tref = 395 ◦C.

Experiment TOS T k′1 · 103 k′2 · 103 X1 X2 Ea,1 Ea,2 kref,1 · 103 kref,2 · 103

[h] [◦C] [L/(min·g)] [%] [kJ/mol] [L/(min·g)]
99-104 398.6 16.4 271 8.08 3.76

EG 134-139 387.6 12.4 264 6.28 2.90 93.3 8.15 15.0 269

165-170 377.0 9.41 258 4.87 2.23

99-104 396.6 14.2 250 7.02 3.10

Phe/EG 134-139 386.1 10.8 235 5.46 2.33 95.9 22.1 13.6 248

165-170 375.8 8.15 220 4.23 1.75

Phe/EG 99-104 395.3 11.5 78.9 5.75 1.03 135 22.2 11.4 78.7

-ReGenAa 132-137 384.5 7.71 73.9 3.96 0.679

Phe/EG 148-153 388.1 12.6 78.4 6.34 1.15 141 32.3 16.4 83.3

-ReGenBb 173-178 377.2 8.19 71.1 4.24 0.712

Cyc/EG 64-69 413.2 22.2 336 10.5 5.52 85.4 2.43 14.8 332

85-90 390.4 13.3 331 6.65 3.50

a Activity before unexplained change at TOS ∼ 138 h.
b Activity after unexplained change at TOS ∼ 138 h.
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Figure 6.8: Arrhenius plots for the rate constants presented in table 6.4. (a) k′1: Initial dehydration and

hydrogenation of C2,ox into ethylene (reaction 6.1). (b) k′2: Hydrogenation of ethylene into ethane (reaction

6.2).

The equilibrium of reactions 6.1 and 6.2 are both fully shifted towards the product side with approx-
imately full conversion of ethylene glycol (in reaction 6.1) and ethylene (in reaction 6.2) at the applied
operating conditions (calculated with HSC Chemistry). Incomplete conversion of ethylene glycol was
however obtained during steady state operation (see table 6.4), and ethylene and ethane were formed
at similar yields. Thus, the reactions were run far from equilibrium, and the low activation energy of
2.43-32.2 kJ/mol for the hydrogenation of ethylene therefore indicates that this reaction was restricted
by a limited access to hydrogenation active sites. The hydrogenation of ethylene was faster than the
rate of the initial dehydration and hydrogenation of ethylene glycol with k′2/k

′
1 = 15-27, except in the

case for the reactivated catalyst, where this ratio was 6-10.
The Arrhenius plots (see �gure 6.8) revealed that the kinetics of ethylene glycol HDO were rather

similar for pure ethylene glycol and in the presence of phenol or cyclohexanol, especially in the �rst
dehydration and hydrogenation step with k′1 = 8.15-22.2·10−3 L/min/g and Ea,1 = 85.4-95.9 kJ/mol,
suggesting that no immediate inhibition of ethylene glycol HDO from phenol or cyclohexanol occurred
(�gure 6.8a). The hydrogenation of ethylene was apparently more dependent on whether phenol or
cyclohexanol was present in the feed (�gure 6.8b). Cyclohexanol seemed to have a slight promoting
e�ect, while phenol seemed to have a slight inhibiting e�ect. Phenol is expected to adsorb strongly
onto the support, which may block the accessibility to active edge sites [75, 200] and thereby limit
hydrogenation. Cyclohexanol dehydration was believed to occur over the acid sites of the support, and
it is possible that this occupation of acid sites has prevented coke formation, which could block the
accessibility to hydrogenation sites. It should however be noted that the hydrogenation activity was
generally subject to some variation in reproduced experiments (see Appendix H, �gure H.2).

The reactivated catalyst showed a decreased hydrogenation rate (k′2 = 71.1-78.9·10−3 L/min/g)
and a signi�cantly higher barrier for the initial ethylene glycol dehydration and hydrogenation (Ea,1
= 135-141 kJ/mol). This was explained by the loss of Mo from the active phase and slight sintering
of the active phase (see section 6.2.3.3).
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6.2.2.5 Phenol Reactivity in the Presence of Ethylene Glycol

Phenol, which was fed in a mixture with ethylene glycol, was not converted at the applied conditions
over the sul�ded NiMo catalyst. The only products detected from phenol were small concentrations
of alkyl substituted phenols and coupling products (primarily 2-ethylphenol, 3-methylphenol, and
benzofuran), which were ascribed to the support acidity. These non-deoxygenated coupled products
were mainly formed at TOS <30 h at a total phenol based yield of up to 12 %. At TOS >30 h, this
yield was 0.4-3.7 %.

Cyclohexanol on the other hand was converted; both from a pure feed and in a mixture with
ethylene glycol (see section 6.2.2.6). This suggested that lack of ring hydrogenation was the reason
for the lack of phenol conversion. A NiMo catalyst was chosen over a CoMo catalyst due to its
known hydrogenation activity [142,262]. Ni-MoS2 has been reported to promote phenol HDO by ring
hydrogenation (HYD) prior to breakage of the C-O bond, whereas direct deoxygenation (DDO) can
be performed with Co-MoS2 [80, 109, 113, 141]. Hydrogenation activity is furthermore necessary to
stabilize reactive intermediates and limit coke formation [87,212].

Equilibrium calculations can explain the lack of ring hydrogenation from a thermodynamic per-
spective, as benzene is the favored HDO product from phenol at the applied temperature and feed com-
position (see Appendix I.5). At a temperature of ∼ 265 ◦C, thermodynamics prescribe an equimolar
mixture of benzene and cyclohexane, whereas a temperature below 210 ◦C is necessary to thermody-
namically favor full hydrogenation of the aromatic ring at the applied feed composition. The temper-
ature was decreased to 280 ◦C for the reactivated catalyst to test this hypothesis, based on the work of
Mortensen et al. [34], who reported ∼ 20-55 % phenol conversion over a Ni-MoS2/ZrO2 catalyst tested
in the same �ow reactor setup at TOS ≤100 h at 280 ◦C, 100 bar, ∼ 283 ppm H2S and a WHSV of
4.0 h−2 of 50 g/L phenol in 1-octanol. No conversion of either ethylene glycol or phenol was however
observed at 280 ◦C, and another experiment using more catalyst should be performed if the activity
at 280 ◦C is to be assessed. Alternatively, the activity over a Co-promoted catalyst could be tested
without changing the temperature to see if DDO is feasible.

The lack of ring hydrogenation can also be explained from a mechanistic perspective as it has
been proposed that HDO of phenolic species over Ni-MoS2 requires a �at ring adsorption onto the
slab surface (see �gure 2.12) [71, 113], which facilitates ring hydrogenation. If most active sites were
occupied by ethylene glycol, its derivatives, or coke, these species could sterically hinder �at ring
adsorption of phenol. Ryymin et al. [92] reported a slight suppression of methyl heptanoate HDO
in the presence of phenol at 250 ◦C and 75 bar using a commercial NiMo/Al2O3 catalyst in a batch
reactor at reaction times lower than 50 minutes. At the same time, they reported a notable inhibition
of phenol HDO in the presence of methyl heptanoate during the entire reaction time of ∼ 4.5-5 h, and
they suggested that the inhibiting e�ect of the ester on phenol was caused by a competition for active
sites. An additional possibility, is that the H2S concentration was too high for phenol conversion in
the current experiments [109].

In this work, no hydrogenation or deoxygenation of phenol was observed. Thus, it is speculated
that the lack of ring hydrogenation and subsequent deoxygenation might be a combination of thermo-
dynamic and mechanistic constraints. To investigate this further, it could be interesting to study the
conversion of phenol at varying temperatures, possibly with a lower H2S feed and in the absence of
other oxygenates, i.e. dissolved in an inert solvent such as an alkane.
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6.2.2.6 Conversion and Product Yields from Cyclohexanol Conversion

Cyclohexanol was converted both in the presence and absence of ethylene glycol, see �gure 6.9. The
conversion and yields were calculated on a cyclohexanol basis. In the case of 1,4-dioxaspiro[4.5]decane
(C8H14O2), the cyclohexanol based yield was calculated from 6/8 of the molar �ow of this product to
disregard carbon from ethylene glycol.
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Figure 6.9: Temperature pro�le and cyclohexanol based product yields from the conversion of cyclohexanol

over NiMo#2 (see table 3.3) in the presence (a) and absence (b) of ethylene glycol. See table 6.2 for feed

composition. Based on cyclohexanol. The conversion of cyclohexanol in the absence of ethylene glycol (b) was

≥99.5 % during the entire time on stream.

In the presence of ethylene glycol, >90 % conversion was initially obtained, decreasing to approximately
70 % at 29-64 h on stream, where an approximate steady state was obtained at 413 ◦C (�gure 6.9a).
As the temperature was decreased to the setpoint of 400 ◦C, the conversion continued to decrease
reaching 49 % at 82 h on stream. Shortly after, setup issues (a plug in the backpressure valve for
liquid collection), forced termination of the experiment. As steady state was obtained after 8 h upon
the temperature change at 24 h, it was assumed that the data points at 77 and 82 h (after the
temperature change at 69 h) represented steady state values. The product composition from the
feed containing ethylene glycol was comprised of cyclohexene, cyclohexane, cyclohexanone, and 1,4-
dioxaspiro[4.5]decane (a ketal coupling product from cyclohexanone and ethylene glycol). The yield
of HDO products were 4.5-16 % cyclohexene and 0.7-2.5 % cyclohexane at TOS >30 h. The yields of
by-products were signi�cant; 5.7-11 % 1,4-dioxaspiro[4.5]decane, and 6.8-19 % cyclohexanone in the
same time period.

Pure cyclohexanol was close to being fully converted (X ≥99.5 %) during the entire duration of the
activity test at 390-450 ◦C and a WHSV of 18 h−1 (see �gure 6.9b). Cyclohexene and cyclohexane were
the dominant products, only trace amounts of cyclohexanone were formed. The yield of cyclohexene
was 60-80 % and that of cyclohexane was 14-30 %. There was an initial decrease in the yield of
cyclohexane and increase in cyclohexene indicating some deactivation of hydrogenation activity as
observed for the conversion of ethylene glycol. As the conversion of pure cyclohexanol was performed
at a four times lower cyclohexanol residence time compared to the experiment with ethylene glycol in
the feed (see table 6.2), these results show that ethylene glycol inhibited the conversion of cyclohexanol
signi�cantly.
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The equilibrium conversion for the dehydration of cyclohexanol to cyclohexene at the applied feed
composition is 100 % at temperatures above 200 ◦C (calculated with HSC Chemistry), suggesting
that this reaction could be at equilibrium in the activity test using a pure cyclohexanol feed. The
equilibrium conversion for hydrogenation of cyclohexene is 100 % at temperatures below 300 ◦C, and
in the range of 390-415 ◦C, the molar ratio of cyclohexane to cyclohexene is 10-20 at equilibrium. Here,
this ratio was 0.2-0-3, which suggested that the hydrogenation reaction was limited. Cyclohexanol
dehydration is proposed to mainly take place on the acid sites of the MgAl2O4 support [259, 260],
whereas hydrogenation occurs on the active Ni-MoS2 phase. It is thus possible that concentration of
active sites for hydrogenation, i.e. the loading of Ni-MoS2, was too low to enable hydrogenation of all
the cyclohexene produced, or that the rate of cyclohexene hydrogenation was signi�cantly slower than
that of cyclohexanol dehydration.

It was not possible to estimate, if the acidic support provided more active sites for dehydration than
the sul�de particles did for hydrogenation. The concentration of acid sites in the MgAl2O4 support
measured by NH3-TPD (see chapter 4) corresponded to 0.68 acid sites/nm2 of the support. The Mo
loading of the oxide precursor was 3.7 Mo atoms/nm2 (see table 3.3). A Mo-Mo distance of 3.16 Å [284]
and an approximate MoS2 slab length of 4 nm (see �gure 6.17, section 6.2.3.3) corresponds a MoS2
particle diameter containing 13 Mo atoms. Assuming a perfect hexagonal MoS2 structure [284], such a
particle would have a total of 127 Mo atoms, from which 36 are in active edge positions. Thus, ∼ 1.1
Mo atoms/nm2 (30 % of 3.7) could be expected to be available in active site positions at the edges of
hexagonal MoS2 slabs. If brim sites are necessary for hydrogenation, the availability of these sites could
be even lower, as some MoS2 particles were stacked in two or more layers. An in-situ XAS sul�dation
study however showed that the majority of the sul�ded Mo particles were present as nanoparticles with
a low Mo-Mo coordination number, which could be modelled as a MoS2-derived Mo2S6 nanocluster
(see chapter 5). If the majority of the sul�de phase in this work was present as such nanoclusters,
all 3.7 Mo atoms/nm2 could potentially be available as edge sites, but their hydrogenation properties
compared to brim sites are unknown. Further characterization of the employed NiMo catalyst would
be needed to determine the concentration and identity of active sites in this catalyst.

6.2.2.7 Kinetics of Cyclohexanol Hydrodeoxygenation

Based on the results from the activity tests, the conversion of cyclohexanol was assumed to follow a
dehydration step forming cyclohexene, which could then be hydrogenated to cyclohexane (�gure 6.10).
The kinetic model was derived similarly as to that for ethylene glycol (see Appendix I) and steady
state data was used to get the results presented in table 6.5.

Figure 6.10: Proposed reactions of cyclohexanol HDO. ∆H380−400◦C: 41 kJ/mol (reaction 1) and -124 kJ/mol

(reaction 2).
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Table 6.5: Rate constants, conversions, and activation energy for the conversion of cyclohexanol according to

reactions in �gure 6.10. Tref = 395 ◦C.

Experiment TOSa T k1 · 103 k′2 · 103 X1 X2 Ea,1 Ea,2 kref,1 · 103 kref,2 · 103

[h] [◦C] [L/(min·g)] [%] [kJ/mol] [L/(min·g)]
Cycb 53-63 412.8 ≥524 55.1 93.1 16.5 - 43.3 - 45.2

78-88 390.5 ≥524 43.5 93.7 13.7

Cyc/EG 54-64 413.0 21.4 74.4 10.2 1.72 121 82.9 12.1 50.3

74-84 390.0 10.3 44.9 5.2 0.566

a Averages for two sample bottles (TOS of 10 h) collected at steady state operation.
b Reaction 1 was assumed at equilibrium, and parameters were not �tted. k1 represents an average value of

the two steady states determined as k1 =
v
W ln

(
1

1−X1

)
.

The results in table 6.5 support the observation that cyclohexanol was readily converted in the absence
of ethylene glycol. The �rst dehydration step was very fast with k1 ≥524·10−3 L/min/g and a conversion
above 90 %, and could therefore have been subject to mass transfer limitations. The deviation between
the experimentally observed cyclohexanol conversion of close to 100 % and the modelled value of X1

= 93.1-93.7 % shows that the measured amount of cyclohexene and cyclohexane formed could not
account for the full conversion of cyclohexanol.

Ethylene glycol strongly inhibited the dehydration of cyclohexanol. With ethylene glycol present
in the feed, the conversion in reaction 1, X1, dropped by a factor of 9-18, in spite of the higher
cyclohexanol residence time in this experiment. The rate constant, k1, decreased from ≥524 to 10.3-
21.4·10−3 L/min/g, and there was a notable activation energy of 121 kJ/mol. This detrimental e�ect
was explained by deactivation of acidic active sites by carbon deposition (see also section 6.2.3.1). The
hydrogenation of cyclohexene was also a�ected by the presence of ethylene glycol, which caused the
activation energy, Ea,2, to double, while the rate constant remained more constant. This could be
caused by the competition for hydrogenation active sites.

Interestingly, the hydrogenation step was the fastest for ethylene glycol with k′2/k
′
1 = 15-27 (dis-

regarding the reactivated catalyst). For pure cyclohexanol, the dehydration was the fastest step with
k′2/k1 ≤0.1. This further supports that the conversion of ethylene glycol and cyclohexanol was taking
place on di�erent active sites. Full deoxygenation of cyclohexanol can occur on acid sites supplied by
the support without interaction with the MoS2 active phase, whereas ethylene glycol HDO depends on
MoS2 for intermediary hydrogenation.

6.2.3 Catalyst Deactivation and Regeneration

Catalyst deactivation occurred in all activity tests performed. For tests performed at 400 ◦C (see
chapter 5), deactivation was evident throughout the tests. In the current tests, where a steady state
was obtained at ∼ 380-400 ◦C, the deactivation was evident at temperatures above 400 ◦C.

6.2.3.1 Origin of Deactivation

Even though a promoting and stabilizing e�ect was observed from increasing the H2S concentration
in the feed during ethylene glycol conversion (see chapter 4 and 5), oxidation of the active sul�ded
phase could not explain the loss of activity over time, as proposed by Badawi et al. [106, 107]. This
became clear, as resul�dation of deactivated MoS2/MgAl2O4 and Ni-MoS2/MgAl2O4 catalysts could
not regenerate their activity (see �gure 6.11). Resul�dation was performed similarly to the initial
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catalyst activation. Resul�dation of the unpromoted MoS2 catalyst after 24.5 h on stream facilitated a
brief reactivation (�gure 6.11a). During the �rst 24.5 h, the ethane yield had dropped from 42 to 8 %,
while the ratio of C2/C1 decreased from 3.1 to 1.8. Resul�dation only partly reactivated the catalyst,
giving 18.8 % ethane and C2/C1 = 2.8. However, the ethane yield rapidly decreased, and within 4 h,
it was similar to what was obtained before the resul�dation. The ethylene yield was less a�ected by
deactivation and resul�dation. The same trend was seen for the promoted Ni-MoS2 catalyst (see �gure
6.11b). The activity during 33-106 h on stream is not shown in �gure 6.11b, due to uncertainties in
the feed �ow rate and composition. During this period, the feed bottle with pure ethylene glycol was
exchanged back and forth with one containing 30 wt% H2O in ethylene glycol. The goal was, among
others, to vary the H2O/H2S ratio while keeping a constant ethylene glycol feed �ow. However, the
operation time at the di�erent conditions investigated was too low to ensure a stable feed �ow of either
pure ethylene glycol or 30 wt% H2O in ethylene glycol. Hence, the yield and conversion could not be
calculated without greater uncertainty, and the data has hence been omitted.
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Figure 6.11: TOS activity for ethylene glycol conversion at 40 barg with 27 bar H2, 550 ppm H2S, and 3-3.5

mol% ethylene glycol in the feed. (a) At 450 ◦C over 1.5 g MoS2/MgAl2O4 (Mo#2). (b) At 400 ◦C over

0.5 g Ni-MoS2/MgAl2O4 (NiMo#1), see table 3.3. The activity during TOS = 33-106 h is not shown due to

uncertainties in the feed �ow, leading to uncertain determination of conversion and yields.

Carbon deposition was found to be the main source of deactivation rather than oxidation of the sul�de
phase. This is in agreement with the �ndings that the active phase is highly stable towards oxidation
(see chapter 5); i.e. exposure to water did not deactivate the catalysts signi�cantly. Figure 6.12 shows
how the carbon deposition on spent catalysts followed a linear trend as a function of the activity test
run time (summarizing tables 4.4, 5.1, and 6.6). The carbon deposited at TOS = 0 h stems from
DMDS residues left in the catalyst pores after sul�dation.
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Figure 6.12: Carbon deposition as a function of run time. From HDO tests performed at 380-450 ◦C (see

tables 4.4, 5.1, and 6.6). Linear trend (circles) for the conversion of ethylene glycol, acetic acid, and phenol in

ethylene glycol (1st run) over NiMo and CoMo catalysts (and the MgAl2O4 support). Outliers (triangles) from

experiments with ethylene glycol conversion at 100 % (NiMo and CoMo), for feeds containing cyclohexanol (Cyc

and Cyc/EG), and for the reactivated catalyst tested with phenol in ethylene glycol (Phe/EG-ReGen).

In activity tests with close to 100 % conversion during the entire TOS (see chapter 4), the carbon
deposition was lower than expected from the linear trend, indicating that the catalyst bed was not
fully utilized and that only a fraction of the catalyst was deactivated by carbon deposition (see �gure
6.12). Even though a strong adsorption of phenol onto Al2O3 supports has been reported [75, 200],
phenol did not seem to prevent carbon deposition by competitive adsorption with ethylene glycol. The
carbon deposition from the �rst Phe/EG run was within the linear trend, whereas the carbon deposition
on the reactivated catalyst was lower than expected. This might be explained by the lower activity
obtained after reactivation (see table 6.4). The experiments performed with cyclohexanol also deviated
from the linear trend. Pure cyclohexanol was seen to have a lower propensity for coke formation than
ethylene glycol in agreement with the high propensity for coke formation of polyolic species [87] as
well as the fact that ethylene glycol HDO occurs via the formation of strong coke precursors such as
ethylene [270]. The carbon deposition from the mixed cyclohexanol and ethylene glycol feed was higher
than expected from the linear trend, which was ascribed to the abrupt termination of this experiment
(plugging), which did not allow for controlled desorption of condensed species from the catalyst pores.

The proportional deposition of carbon as a function of operating time is known from industrial
hydrotreating, where the initial carbon deposition pro�le similarly follows a linear trend, which is
inversely proportional with the catalyst surface area (�gure 6.13) [295], as the coke builds up and
blocks the catalyst pores [212]. In hydrotreating, this initial carbon deposition is driven by the acidity
of the support, and once the acid sites have been saturated, carbon deposition occurs at a slower rate,
and the pro�le levels o� at 20-25 wt% coke [212,295]. Had the activity test TOS been extended beyond
221 h (the maximum TOS used), it is thus possible that the carbon deposition pro�le shown in �gure
6.12 would level o� at some point due to saturation of the acid sites.
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Figure 6.13: Typical pro�le for carbon deposition and its in�uence on speci�c surface area as a function of

TOS for industrial hydrotreating catalysts. Redrawn from [295] with permission from Elsevier.

Carbon deposition has been reported as a primary cause of catalyst deactivation and process upsets
in HDO experiments using real bio-oil [38, 94, 98�102]. As mentioned in chapter 2, this is due to the
high content of highly reactive oxygenates that readily polymerize upon heating [86, 212, 217]. When
an acidic carrier is used as is the case for these MgAl2O4 supported catalysts, polymerization and
coking reactions are further enhanced [75�77]. The coking propensity also depends highly on the
oxygenate identity [76, 217]. This is evident from �gure 6.12, which shows that ethylene glycol, a
reactive polyol [65, 67] which has ethylene as HDO intermediate, had a high propensity for carbon
deposition.

TEM (see �gure 6.14), revealed that the deposited carbon was present throughout the spent cata-
lysts, which is in agreement with previous �ndings [296]. The carbon appeared crystalline in agreement
with previous Raman results (see �gure 4.14 in chapter 4). The lattice distances were analyzed by
performing fast Fourier transforms of several crystalline areas in the TEM images of spent catalysts,
which showed the presence of the MgAl2O4 support, and indicated the presence of carbon as well. Fig-
ure 6.14 reveals the consequence of carbon deposition: a ∼ 20 nm long, rectangular support particle
sticking out of the bulk sample, having a double layer sul�de slab on either side, is covered in carbon.
The deposited carbon thus limits the accessibility to the MoS2 active sites and inhibits HDO as well
as other sul�de catalyzed reactions.
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MgAl2O4

Carbon

Ni-MoS2

Figure 6.14: TEM image of spent NiMo#2 from experiment EG (see table 6.2 for feed composition).

6.2.3.2 Reactivation by Oxidation and Resul�dation

In hydrotreating, the HDS catalyst activity can be maintained for a certain period of time by con-
tinuously increasing the reaction temperature [212], and ex-situ regeneration can then be performed,
once the activity no longer can be maintained by temperature adjustment [220]. When deoxygenation
removal occurs during pyrolysis (as catalytic hydropyrolysis), the operation temperature should not
be increased markedly, as this would favor gas formation and limit the oil yield [21]. For downstream
HDO of pyrolysis vapors, there is however greater �exibility for the choice of temperature, as this step
is decoupled from the pyrolysis.

The NiMo catalyst tested for HDO of phenol in ethylene glycol was reactivated. Deposited carbon
was burned o� in an oxidation step, which left the active sul�de phase in a partially oxidized state
requiring a resul�dation step to convert the resulting MoOxSy phase back to the active MoS2 phase.
The oxidation step was performed in-situ in the POC setup. First, the reactor was heated to 250 ◦C in
a �ow of ∼ 100 NmL/min N2. Then the gas was switched to 1 NL/min 7.6 % O2 (from technical air)
in N2, and slow heating with 1 ◦C/min was performed until 450 ◦C. After this point, the temperature
was increased in small steps until 545 ◦C, where it was kept overnight. The concentrations of NOx

(negligible), CO, CO2, O2, and SO2 where monitored using an Emerson NGA 2000 gas analyzer. Upon
the change from N2 to O2/N2 at 200 ◦C, a brief temperature increase of 30 ◦C was observed, while
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concentrations of CO and CO2 up to 1.8 % and 4.2 %, respectively, were measured. This sudden
combustion was explained by the presence of condensed reactant and product residues in the reactor
and in the dead volume in the bottom �ange of the pressure shell.

The concentration and temperature pro�les are shown in �gure 6.15 for period of time, during
which the majority of the carbon was burned o�. At temperatures above 460 ◦C, no more carbon
was burned o�, but continued sulfur removal occurred as a function of temperature. Details on the
oxidation can be found in Appendix J.
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Figure 6.15: O�-gas concentration pro�les and temperature pro�le from carbon burno� from NiMo#2 after

experiment Phe/EG (before Phe/EG-ReGen). Performed in-situ with 1 NL/min 7.6 %O2 (from technical air)

in N2. For experimental details, see table 6.2 (feed composition) and �gure 6.2 (temperature pro�les).

The following reactions were assumed for the oxidation of deposited carbon and sulfur in MoS2:

C(s) + 0.5O2(g)→ CO(g) (6.11)

C(s) + O2(g)→ CO2(g) (6.12)

S(s) + O2(g)→ SO2(g) (6.13)

The carbon deposition on the catalyst was calculated based on the �ow of N2 and O2 into the system,
and on the concentrations of oxidation products and O2 measured (see Appendix J) giving a carbon
deposition of 15.4 wt%.

The catalyst was then resul�ded, and since the catalyst was only converted into a partial oxide
phase, MoOxSy, by the oxidation step, the resul�dation took shorter time than the initial sul�dation.
The catalyst activity was then tested again for the conversion of ethylene glycol and phenol.

6.2.3.3 Activity of Reactivated Catalyst

The 1st run and reactivated catalyst activity is shown in �gure 6.16 for TOS ≤ 125 h on stream, where
the reaction temperatures were comparable (see �gure 6.2). During the 1st run, the activity measured
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at 450 ◦C in the end of the run at ≥221 h was signi�cantly lower than the initial activity (see �gure
6.3-6.5) with a C2 yield of 10 % compared to an initial yield above 40 %. After reactivation, the
activity in terms of C2 yield was partly recovered at >35 % and the activity towards cracking had
decreased signi�cantly giving a C2/C1 ratio >3 (see �gure 6.16a-b), which increased with decreasing
temperature as expected. The conversion was however lower for the reactivated catalyst, and the kinetic
investigation (table 6.4), revealed a poorer activity for ethylene glycol HDO; the activation energy for
the initial dehydration/hydrogenation, Ea,1, had increased from 95.9 to 135-141 kJ/mol, and the rate
constant for hydrogenation, k′2, had decreased from 220-250·10−3 to 71.1-78.9·10−3 L/min/g. The lower
hydrogenation activity is evident from �gure 6.16c-d; a signi�cant proportion of the ethane yield was
lost after reactivation, while the ethylene yield for the reactivated catalyst was greater than observed
in the 1st run until TOS ∼ 100 h.

Overall, reactivation of the catalyst was possible, as the yield of deoxygenated C2 species of the
spent catalyst was increased to its initial level with a rate of deactivation for the reactivated catalyst
similar to what was initially obtained. However, the reactivated catalyst showed a di�erent activity,
namely for hydrogenation and cracking, indicating a change in the catalyst composition or morphology.
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Figure 6.16: (a) C2 yield, (b) C2/C1 ratio, (c) Ethylene yield, and (d) Ethane yield from 1st run and re-

activated catalyst activity in ethylene glycol conversion over NiMo#2 (see table 3.3) from experiment Phe/EG.

Based on ethylene glycol. For feed composition, see table 6.2. For temperature pro�les, see �gure 6.2.

The spent catalyst compositions (table 6.6), revealed that the reactivated catalyst had lost Mo from
its structure, as the Ni/Mo ratio was increased by a factor of 1.7 compared to the remaining catalysts.
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The content of Ni and Mo was approximately constant for the other catalysts with a Ni/Mo ratio
was similar to the fresh catalyst precursor (see table 3.3). There is a risk that Mo present as MoO3

was volatilized during the oxidation step. The temperature of 545 ◦C was possibly high enough to
facilitate some volatilization of MoO3 [297], but as it can be seen from �gure 6.15 this temperature
could be lowered to 460 ◦C in future work. Water, which is generated from combustion of carbon, may
convert MoO3 into volatile hydroxy molybdenum oxides [220,297], so the combustion conditions should
be optimized to mitigate loss of Mo from H2O exposure. As the deoxygenation and hydrogenation
activity is associated with the MoS2 and Ni-MoS2 phases, loss of Mo could explain the change in
activity observed for the reactivated catalyst. From table 6.6 it is observed that the spent reactivated
sample contained some Si and Fe (0.5-0.6 wt%) indicating insu�cient removal of SiC and steel wool
from the spent catalyst sample.

Table 6.6: Composition of spent NiMo#2 (see table 3.3) tested at 380-450 ◦C in 27 bar H2, 550 ppm H2S,

and total pressure 40 barg (balance N2). For experimental details, see table 6.2 (feed composition) and see �gure

6.2 (temperature pro�les).

Experiment TOS Mo Ni Ni/Mo Si Fe S C S/Mo
[h] [wt%] [wt%] [molar] [wt%] [wt%] [wt%] [wt%] [molar]

EG 221 2.55 0.46 0.29 0.07 0.14 1.71 18.8 2.00

Phe/EG 220(1st) - - - - - - 15.4 -

Phe/EG-ReGen 220(2nd) 1.45 0.44 0.49 0.51 0.60 2.40 11.3 4.96

Cyc/EG 90 2.63 0.42 0.26 0.05 0.04 1.69 13.6 1.92

Cyc 96 2.96 0.51 0.28 - 0.11 2.18 3.81 2.51

HAc 2 3.09 0.52 0.27 0.02 0.08 2.03 2.76 1.96

The change in activity could furthermore be in�uenced by a change in the particle size distribution.
A TEM analysis was performed for the spent catalysts from the experiment with pure ethylene glycol
and with phenol in ethylene glycol (reactivated) with the resulting slab length and slab stacking
distributions shown in �gure 6.17.

0

10

20

30

40

0
-1

1
-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1

0
1
0
-1

1
1
1
-1

2
1
2
-1

3
1
3
-1

4
1
4
-1

5
1
5
-1

6
1
6
-1

7
1
7
-1

8
1
8
-1

9
1
9
-2

0
M

o
re

F
re

q
u

en
cy

 [
%

]

Slab length [nm]

EG Phe/EG-ReGen
(a)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

F
re

q
u

en
cy

 [
%

]

Stacking [-]

EG Phe/EG-ReGen (b)

Figure 6.17: Particle size distribution for spent NiMo#2 catalysts. (a) Slab length. (b) Stacking. Based on

> 700 slabs in > 40 images for each sample. For experimental details, see table 6.2 (feed composition) and see

�gure 6.2 (temperature pro�les).
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In line with previous results (see chapter 5), the observed average length and stacking for both spent
catalysts were 5.1-5.3 nm and 1.2-1.4. The majority of the observed sul�de particles in the spent
catalyst samples were distributed as small monolayer slabs. But while the maximum stacking degree
was 3 for the non-reactivated catalyst, several multilayer slabs with stacking degrees of 4-10 were
observed in the reactivated sample. These multilayer slabs were also longer than in the non-reactivated
sample, as evidenced from the longer tail in �gure 6.17. Representative TEM images are given in �gure
6.18.

The TEM analysis indicated that some degree of sintering had occurred during the reactivation
process, most likely during the high temperature oxidation performed at 545 ◦C. As a result, the active
phase particles present in the reactivated catalyst have had lower concentrations of active edge sites
and brim sites (present at the top layer) and a higher concentration of MoS2 present in inactive bulk
and basal plane positions. Especially the loss of brim sites along with the loss of Mo might explain the
loss of hydrogenation activity.

(a) (b)

Figure 6.18: TEM images of spent NiMo#2 catalysts from experiments (a) EG, and (b) Phe/EG-ReGen. For

experimental details, see table 6.2 (feed composition) and see �gure 6.2 (temperature pro�les).

6.3 Conclusions

The HDO of acetic acid, ethylene glycol, phenol, and cyclohexanol was investigated at 380-450 ◦C, 27
bar H2, and 550 ppm H2S, over Ni-MoS2/MgAl2O4. Acetic acid was unstable at the applied conditions,
and rapidly coked up the reactor inlet, indicating the necessity of stabilizing reactive pyrolysis vapors
immediately when formed, and not through HDO of condensed oil. Prolonged activity tests of 90-220
h were performed for the remaining model compounds. An initial deactivation at 420-450 ◦C enabled
steady state operation in the temperature range of 380-415 ◦C, but also caused the conversion in the
target HDO reactions to be low (≤10.5 %), when ethylene glycol was present in the feed.

No HDO of phenol was detected in the presence of ethylene glycol. This was assigned to a combin-
ation of thermodynamic and mechanistic constraints, which prevented hydrogenation of the aromatic
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ring. Based on the conversion of cyclohexanol in the presence of ethylene glycol, the lack of phenol
conversion at similar operating conditions was ascribed to the lack of aromatic ring hydrogenation.

HDO of ethylene glycol was performed in the presence and absence of cyclohexanol and phenol
with a higher rate of ethylene hydrogenation compared to the initial dehydration/hydrogenation step
(k′2/k

′
1 = 15-27). The thermodynamics prescribe full hydrogenation of ethylene to ethane at the

applied conditions, but deactivation of hydrogenation active sites limited this reaction. Phenol and
cyclohexanol did not a�ect the HDO of ethylene glycol signi�cantly.

HDO of pure cyclohexanol readily occurred, and the initial dehydration step occurred at > 90 %
conversion, practically at equilibrium, with k1 ≥524·10−3 L/min/g. The subsequent hydrogenation of
cyclohexene to cyclohexane was slower and occurred far from equilibrium, indicating that dehydration
and hydrogenation reactions could take place on di�erent active sites. Ethylene glycol was seen to
inhibit the HDO of cyclohexanol, namely the initial dehydration step, but also the subsequent hydro-
genation reaction, which was explained by deactivation of acidic dehydration active sites by competitive
adsorption and carbon deposition.

Carbon deposition was the main reason for catalyst deactivation with a linear deposition as a
function of TOS. The catalyst could be reactivated by oxidation and resul�dation. The activity for
ethylene glycol HDO was however altered by the reactivation, which caused the rate of hydrogenation,
k′2 to decrease from 220-250·10−3 to 71.1-78.9·10−3 L/min/g, while the activation energy for the initial
dehydration/hydrogenation step increased from 95.9 kJ/mol to 135-141 kJ/mol. This was explained
by the loss of Mo from the catalyst structure as well as sintering of MoS2 slabs, and it is suggested to
reconsider the oxidation conditions to prevent volatilization of MoO3 and sintering of MoS2.
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This thesis contributes with new insights to the catalytic hydrodeoxygenation (HDO) of reactive bio-
mass derived oxygenates with (Ni/Co)-MoS2/MgAl2O4 catalysts showing high water tolerance of the
catalysts and importance of promotion and H2S level during HDO. These insights allow for further
development of catalyst formulations and operating conditions for the production of green fuels from
biomass by catalytic fast hydropyrolysis or HDO of pyrolysis vapors.

Processes which couple fast pyrolysis with catalytic HDO prior to condensation of the produced oil
show promise, as the reactive oxygenates can be stabilized immediately when formed. Such processes
have been presented in the recent literature (within the last <10 years) showing that the technology
development for the continuous combined pyrolytic and catalytic conversion of solid biomass to fuels
has begun, although still being in its infancy. In most studies on catalyst development for HDO of
bio-oil, there is still a focus on condensed oil, which will inevitably coke when heated, and the highly
important issues of catalyst deactivation and possible routes for regeneration are often overlooked.
Instead, much e�ort has been put into another important aspect in HDO, which is understanding the
chemistry of deoxygenation of the di�erent oxygenate functionalities present in bio-oil. Lignin derived
phenolic compounds have been subject to much research. These studies are relevant for downstream
HDO of pyrolysis vapor, where the instability and deactivation issues originating from the more reactive
cellulosic fraction of biomass have already been dealt with.

In this study, the more reactive oxygenates were targeted with the aim of developing catalysts, un-
derstanding deactivation mechanisms, and optimizing operating conditions for the immediate upgrad-
ing and stabilization of pyrolysis vapors by HDO. Molybdenum sul�de based catalysts with di�erent
loading and promoters (none, Ni, or Co) were supported on a water and attrition resistant MgAl2O4

support, which is suitable for �uid bed catalytic fast hydropyrolysis. Catalytic activity tests were
performed at reaction conditions relevant to catalytic hydropyrolysis (380-450 ◦C and 27 bar H2) for
di�erent model compounds. Ethylene glycol (EG) was used in most experiments as it represents the
reactive polyolic fraction of pyrolysis vapors, which must be upgraded to obtain a stable oil. Several
characterization techniques were employed to unravel the composition, morphology, and properties of
the prepared catalysts including N2-physisorption, NH3-chemisorption, transmission electron micro-
scopy (TEM), X-ray di�raction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy,
and elemental analysis.

The conversion of ethylene glycol over the support showed that MgAl2O4 was responsible for
dehydration and coupling reactions forming mainly ethanol, 2-methyl-1,3-dioxolane, and diethylene
glycol. Both cracking (giving C1 species: CH4, CO, and CO2) and HDO (giving C2 species: ethylene
and ethane) were catalyzed by the MoS2 active phase; Ni- and Co-promoted MoS2/MgAl2O4 catalysts
with di�erent loadings of Mo (0.83-0.88 wt% or 2.83-3.28 wt%) all produced gas yields at the same
C2/C1 ratio of 1.1-1.5 (at WHSVEG = 2 h−1, 400 ◦C, and 550 ppm H2S), but the yields obtained with
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the higher loading catalysts were more than four times higher than for the lower loading catalysts.
With a co-feed of 550 ppm H2S, the higher loading catalysts produced ethane at a yield of 40-50 %
and thus showed good deoxygenation and hydrogenation activity.

Approximately 100 % conversion was obtained and maintained throughout activity tests of up
to 172 h at WHSVEG = 2 h−1, demonstrating the potential of promoted MoS2 based catalysts. In
order to study catalyst deactivation, the WHSV was increased in the subsequent experiments to bring
the conversion below 100 % and study loss of activity over time. This allowed for more detailed
investigation of the role of promotion, H2S, and H2O by coupling activity tests at ∼ 50-100 % ethylene
glycol conversion with density functional theory (DFT) and in-situ XAS. The presence of Ni or Co
was con�rmed to increase the activity and stability, while H2S promoted HDO via incorporation of SH
groups at the active catalyst edges enabling a better HDO selectivity with C2/C1 ∼ 2 at 2200 ppm
H2S and 400 ◦C. It was furthermore shown that the prepared catalysts had a good water tolerance,
probably owing to a stabilizing interaction with the support.

A signi�cant deposition of mainly crystalline carbon was the main reason for catalyst deactivation
and was associated with the support acidity and the reactivity of ethylene glycol. This coking occurred
linearly over time, but would be expected to level o� at longer time on stream (> 220 h) than invest-
igated in this work. Reactivation of a deactivated Ni-MoS2 catalyst by oxidation and resul�dation was
performed to demonstrate that catalyst regeneration is possible by industrially well-known methods.
The high a�nity for coke formation from ethylene glycol was shown to inhibit the dehydration of cyc-
lohexanol, and along with a kinetic analysis, this indicated that deoxygenation could take place over
active sites from the MoS2 phase as well as from the support. In this kinetic analysis, it was shown
that phenol did not undergo HDO at the applied conditions, indicating that thermodynamic and/or
mechanistic constraints hindered the hydrogenation and subsequent deoxygenation of aromatic entit-
ies. In a continuous process, HDO of refractory phenolics could potentially be performed downstream
of the initial stabilization stage using a di�erent catalyst and di�erent operating conditions.

7.1 Future work

Taking o�set in the work presented in this thesis, there are several possible pathways for further
research. One could be to investigate the constraints for phenol HDO, where the following experiments
could be interesting to conduct:

� Conversion of phenol in ethylene glycol over Ni-MoS2/MgAl2O4 at <380 ◦C with more catalyst
than currently applied (i.e. WHSV <19 h−1) to determine possible thermodynamic constraints.

� Conversion of phenol in ethylene glycol over Ni-MoS2/MgAl2O4 with <550 ppm H2S to determine
possible inhibition from H2S.

� Conversion of phenol dissolved in an alkane over Ni-MoS2/MgAl2O4 to determine possible inhib-
ition from ethylene glycol.

� Conversion of phenol over Co-MoS2/MgAl2O4 to determine possible mechanistic constraints.

Another pathway could be to expand the investigation of catalyst deactivation to include other potential
inhibitors/poisons than sulfur, coking, and water, which were covered in this work. Alkali metals,
chlorine, ammonia, and carbon monoxide are relevant. Furthermore, the coking a�nity of the MgAl2O4

support could be addressed by increasing the Mg/Al ratio or considering a di�erent support. Yet a
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third option could be to perform a more detailed investigation of the reaction mechanism of ethylene
glycol HDO with ethanol and acetaldehyde as reactants to determine their role as intermediates in the
proposed reaction scheme. This would of course require an expansion of the online gas analysis of the
activity setup to include light oxygenates and potentially also require an improvement of the cooling
of collected of liquid products.

Looking at it from a more pragmatic approach, the most important issues have been covered by this
model compound study: i) Water resistant and sulfur tolerant catalysts have been developed, ii) The
developed catalysts are able to operate at high activity with high HDO yields at moderate selectivity
(given the inevitable cracking at higher temperature), iii) The main source of deactivation, i.e. carbon
deposition, has been identi�ed and a reactivation process has been presented. Given the complexity
of solid biomass and the inherent challenges in developing continuous processes for the conversion of
such, the next steps should be focused on pilot scale testing of combined pyrolysis and catalytic HDO
processes for solid biomass conversion, which can never be fully mimicked with model compounds.
With the process development being at an early stage, there are numerous elements to consider. On
the short term, issues with continuous operation should be addressed; e.g. feeding of solid biomass to
a pressurized system and testing of long time on stream activity, which could be challenged both from
catalyst deactivation and from entrainment of catalyst, if a �uid bed reactor is used. On the long term,
the process e�ciency should be addressed taking into account considerations on sustainable sources
for hydrogen and utilization strategies for by-products, namely light gasses from cracking. Overall,
the �rst moves within coupled biomass fast pyrolysis and catalytic HDO seem very promising, and
important technological advances are expected in the near future.
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A | In-situ XAS Setup and Data

Treatment Details

The process diagram for the constructed setup for in-situ XAS investigation is given in �gure A.1
below.
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Figure A.1: In-situ XAS setup constructed for SLS beamtime. MFC = mass �ow controller, MFM = mass

�ow meter, PI = pressure indicator.
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Appendix A. In-situ XAS Setup and Data Treatment Details

An Ar purge from the SLS gas supply was provided for the reduction valves connected to H2S gas. 10
% H2S/H2 and H2 cylinders were located outside the hutch, whereas the 1000 ppm H2S/H2 cylinder
was located inside the hutch. Check-valves V9/V10/V14/V17/V20/V21 ensured �ow in the desired
direction. Check-valve V21 was an adjustable check-valve which could be used to adjust the pressure
read on PI1. MFC2 was used to feed 0-100 NmL/min N2 or H2S/H2 (determined by three-way valve
V12). H2S was fed as 10 % or 1000 ppm (determined by magnetic valves V7/V8). The oulet from MFC2
was sent to one out of two possible positions in the four-way valve V19 (determined by three-way valve
V15). MFC1 was used to feed 0-100 NmL/min N2 or H2 (determined by two-way valves V11/V13). The
gas �ow was sent through or bypassed a water saturater (determined by three-way valves V16/V17).
The four-way valve V19 connected the reaction gas (from MFC1/2) to the capillary reactor and the
MFM or directly to the ventilation. All e�uent gas (through V21/V20) was sent through a H2S
scrubber before being sent to the ventilation. Three pressure indicators enabled pressure readings at
the outlet of V19 (PI1/PI2) and at the in/outlet of the capillary reactor (PI2/PI3). Capillary heating
was performed with the use of a gas blower. The magnetic valves V7/V8 were controlled from the PC
in the control room. They were placed as close to the gas cylinders as possible (in the hutch and gas
cabinet, respectively). The power supply for these valves was placed in the control room.

The calculations were performed according to the following procedure:

EXAFS spectra were analyzed by using the software package IFEFFIT interfaces, i.e., Athena and
Artemis [249]. Athena was �rst employed to process the raw data, which included removal of smooth
background from the measured absorption coe�cient, normalization of the X-ray absorption coe�cient,
and Fourier transform of the resulting spectra from k-space to R-space. Artemis was used for �tting
a theoretical model to the experimental data in the R-space to obtain the structural parameters. The
model included amplitude reduction factor (S2

0), coordination number (CN), Debye-Waller factor (σ2),
energy shift for each path (∆E0), and change in the path length (∆R), where R is the bond length.

The FEFF9 code was used to perform ab initio XANES calculations. In FEFF9 [298] [299], the ab
initio self-consistent real-space Green's function (RSGF) approach was used including inelastic losses,
core-hole e�ects, vibrational amplitudes, etc. The polarization dependence, core-hole e�ects, and local
�eld corrections were based on self-consistent, spherical mu�n-tin scattering potentials. In the present
ab-initio calculations, the Hedin-Lundqvist potential was chosen and XANES, Absolute, SCF (self-
consistent �eld), and FMS (full multiple scattering) cards were used. The self-consistent potential
(SCF) parameters were as follows: rfms = 5.2, lfms1 = 0, nscmt = 100, ca = 0.2, nmix = 1. The
XANES parameters were as follows: xkmax = 4, xkstep = 0.07, vixan = 0. The LDOS card was added
for density of states calculation with an energy range of -20 to 30 eV with a Lorentzian broadening
with half-width of 0.1 eV.

Mo K-edge EXAFS spectra were �tted in R space in the range of R = 1.0-3.6 Å and k = 2.1-
12.5 Å−1. The amplitude reduction factor (S2

0) as determined from a Mo foil was �xed at 1.0, and
one energy shift parameter (E0) was de�ned for all scattering paths. For the dehydrated samples,
the parameters CN, ∆R, and σ2 were �tted for the Mo-O path. In case of the sul�ded samples, the
parameters CN, ∆R, and σ2 were �tted for each scattering path, i.e. Mo-O, Mo-S and Mo-Mo. For
Mo-O, σ2 was �xed to the value determined from the dehydrated Mo#1 sample. For Mo-Mo, σ2 was
�xed to the value determined from a MoS2 reference.

Co K-edge EXAFS spectra were �tted in the range of R = 1.0-4.0 Å and k = 2.8-11.9 Å−1. S2
0

as determined from a Co foil was �xed at 0.72, and one value of E0 was de�ned for all scattering
paths. For the dehydrated sample, parameters CN, ∆R, and σ2 were �tted for the Co-O path. For
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Appendix A. In-situ XAS Setup and Data Treatment Details

the sul�ded sample, the parameters CN, ∆R, and σ2 were �tted for each scattering path, i.e. Co-S,
Co-Co (1st), Co-Co (2nd), and Co-Mo.

Ni K-edge EXAFS spectra were �tted in the range of R = 1.0-3.6 Åand k = 2.1-12.0 Å−1. S2
0 as

determined from a Ni foil was �xed at 0.85, and one value of E0 was de�ned for all scattering paths.
For the dehydrated sample, the parameters CN, ∆R, and σ2 were �tted for Ni-O, Ni-Ni, and Ni-Mo.
In case of the sul�ded sample, the parameters CN, ∆R, and σ2 were �tted for each scattering paths,
i.e. Ni-S, Ni-Ni, and Ni-Mo.
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B | DFT: Computational Details

Plane-wave DFT calculations were performed using the Quantum Espresso [300] code in combination
with the BEEF-vdW [301] exchange correlation functional, as this functional has been shown to yield
a reliable description of heats of formation of metal sul�de compounds [302]. The Brillouin zone was
sampled using a 2x1x1 Monkhorst-Pack k-points set [303]. A kinetic energy cuto� of 500 Rydberg and
a density cuto� of 5000 Rydberg were employed. Ultrasoft pseudopotentials were used to represent the
ionic cores. The occupation of the Kohn-Sham states was smeared according to a Fermi-Dirac distri-
bution with a Fermi temperature of kBT = 0.1 eV, and energies were extrapolated to zero electronic
temperature. Spin-polarization was considered for all calculations. The MoS2, Ni-MoS2, and Co-MoS2
systems were studied using an in�nite stripe model exposing both the M-edge and the S-edge [304].
The unit cell consisted of 4 metal atoms in both x and y direction. The slabs were separated by 8.6
and 14.8 Å in the y and z direction, respectively. Investigations of unpromoted MoS2 were focused
on the M-edge whereas the S-edge was considered for Ni and Co promoted MoS2, with Ni and Co
fully decorating the edge in each case. The phase diagram of the M-edge was constructed considering
di�erent coverages of S and H while keeping the S-edge unchanged. Likewise, phase diagrams of Ni
and Co promoted S-edges where constructed while keeping the M-edge unchanged.
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C | Silica Degradation in Experiments

with Ethylene Glycol, H2, and H2S

It was found that the silica present in the quartz reactor, in the glass beads used for bed dilution,
and in the quartz wool used for bed �xation was degraded during activity tests with the applied feed
mixture of ethylene glycol, H2, and H2S at 400 ◦C and 40 barg total pressure. This degradation was
most evident from the blank experiments, where glassy deposits were observed in the cold zone of the
reactor outlet (see �gure C.1). Also, the inner surface of the reactor tube in the packed bed zone had
a white erosion pattern after blank and catalytic activity tests (see �gure C.2). It was thus concluded
that the feed mixture volatilized the silica in the hot zone of the reactor, and that the glassy deposits
in the cold outlet were condensed Si compounds. Glassy deposits were most pronounced in blank
experiments and catalytic activity tests with low conversion.

Figure C.1: Glassy deposits on the inner surface of the cold outlet of the reactor tube (quartz) after blank

activity test at 400 ◦C with a feed of 3-3.5 mol% ethylene glycol, 27 bar H2, 550 ppm H2S, and 40 barg total

pressure (balance N2).

Figure C.2: Degraded inner surface (white erosion pattern) of the bed zone of the reactor tube (quartz) after

taking out the catalyst and cleaning the reactor; especially observed after blank activity tests at 400 ◦C with a

feed of 3-3.5 mol% ethylene glycol, 27 bar H2, 550 ppm H2S, and 40 barg total pressure (balance N2).
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Appendix C. Silica Degradation in Experiments with Ethylene Glycol, H2, and H2S

Blank experiments were performed with no catalyst present in the quartz reactor with the bed con-
sisting of either i) quartz wool and glass beads, ii) quartz wool and SiC particles, or iii) steel wool and
SiC particles. In all three cases, glassy deposits (see �gure C.1) were observed in the reactor outlet,
and both quartz wool, glass beads, and the quartz reactor looked partially degraded upon unloading.
In conclusion, all quartz and glass components were intolerant towards the applied reaction conditions
and were thus exchanged with non-quartz alternatives: a steel reactor, steel wool for bed �xation, and
SiC particles for bed dilution.

Degradation of the quartz components led to deposition of Si on the catalyst resulting in deac-
tivation. In �gure C.3, the activity obtained for ethylene glycol conversion over a Ni-MoS2/MgAl2O4

catalyst is shown for a selected period of time on stream for two experiments run at similar conditions,
with and without use of glassy components. It can be seen that accelerated deactivation was observed,
when glassy components were used. This deactivation was explained by Si deposition. The spent
catalysts contained 3.31 wt% Si when glassy components were used and no Si (0.06 wt%) when the
glassy components were substituted. When the pure support was tested at the same conditions for a
total TOS of 52 h, the resulting Si deposition was 7.45 wt% indicating that the degradation of SiO2

formed alkaline species that interacted strongly with acid sites.
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Figure C.3: Comparison of activity (selected yields) for ethylene glycol HDO at 100 % conversion over 4.0 g

Ni-MoS2/MgAl2O4 (NiMo#1, see table 3.3). Tested at at 400 ◦C with a feed of 3-3.5 mol% ethylene glycol, 27

bar H2, 550 ppm H2S, and 40 barg total pressure (balance N2). Steel + SiC: Steel reactor, steel wool, and SiC

used. Quartz + glass: Quartz reactor, quartz wool, and glass beads used. After 50-55 h on stream, the liquid

feed was changed to a mixture of ethylene glycol and water. Total TOS ∼ 100 h.
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D | Temperature Pro�le during HDO

Figure D.1 shows the loading pro�le and measured temperature pro�le from the HDO of a cyclohex-
anol/ethylene glycol mixture at at setpoint of 420 ◦C (see chapter 6). This temperature pro�le is
compared with the corresponding temperature pro�le without reaction (see also �gure 3.4 in chapter
3). The temperature pro�le from the Cyc/EG experiment clearly shows that endothermal reaction(s)
took place in the reactor top; caused by the rapid dehydration of cyclohexanol.
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Figure D.1: Loading pro�le and temperature pro�le from the cyclohexanol/ethylene glycol experiment presented

in chapter 6, at TSP = 420 ◦C with 3 mol% ethylene glycol and 0.5 mol% cyclohexanol in the feed at total pressure

40 barg (27 bar H2, 550 ppm H2S, balance N2). The corresponding temperature pro�le without reaction (parallel

shift (- 31 ◦C) from SP 450) is shown for comparison. The distance relative to 0 corresponds to the distance

above the support pin.
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E | Phase Distribution in S1 and Liquid

Collection

At high conversions, the product from experiments with phenol and cyclohexanol in the feed consisted
of two phases due to the formation of su�cient water to facilitate phase separation. The distribution
of liquid phases in the separator tube, S1, was unknown during non-steady state operation, but during
steady state operation, it can be assumed that a steady phase distribution developed over time resulting
in a steady state liquid product collection. This steady state occurred when the product sample released
from S1 via magnetic valve V13 was representative of the phase distribution in the continuous product
�ow entering S1. See �gure 3.1 for an equipment overview.

The development such a steady state depends on the liquid product phase distribution entering S1
and on liquid collection parameters a�ecting the quantity of liquid released through V13 as well as the
rate at which it is released; i.e. the opening and closing level of V13 (via the dP reading) and degree of
opening of the backpressure valve, V10, which reduced the pressure from 40 barg to ambient. Figure
E.1 illustrates this steady state development in S1 in an example, where the steady state product liquid
consists of 1/3 light phase and 2/3 heavy phase.

1A 1B          2A 2B          3A      3B 4A       4B 5A      5B 6A      6B 7A 7B         

S1 fills up 

until opening 

level

V13 opens to release 

liquid product down

to S1 closing level

Collected

product
Steady state

Time

Figure E.1: Schematic illustration of development of steady state liquid collection of two-phase liquid product

in separator tube, S1, over time with 1/3 light phase (red) and 2/3 heavy phase (green) in the liquid product.

1-7: Liquid level before and after product release. A: Just before product release (V13 is closed: X). B: Product

release (V13 is open: ↓ ).
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Appendix E. Phase Distribution in S1 and Liquid Collection

3-5 h (depending on the conversion) after the model compound feed was added in an experiment, liquid
product would start to build up in S1. First, the liquid product �lled up S1 until the opening limit
for V13 (scenario 1A in �gure E.1). Then, V13 opened to release the liquid product (scenario 1B),
which was collected downstream in a valve manifold. In this example, 1/3 of the liquid built up in
S1 is released when V13 opens ("collected product" in �gure E.1). As a result, the �rst sample of
collected product consists of heavy phase only. As product is released through the bottom of S1, the
phase boundary moves downwards accordingly giving a 1/1 ratio between the heavy and light phase
left in S1 (scenario 1B). Once V13 closes, liquid starts building up again. As the opening level of V13
is reached (scenario 2A), the liquid in S1 consists of the previously accumulated product with a 1/1
heavy/light ratio (from scenario 1B) and the freshly produced product, which consists of 1/3 light
phase and 2/3 heavy phase. Assuming equilibrium between the phases, the phase boundary moves
up, when the freshly produced liquid enters S1 (scenario 2A compared to 1B). As the opening level is
reached, V13 opens again to release the second sample of collected product (scenario 2B). Again, it
consists of heavy phase only, and the phase boundary moves to a lower level (scenario 2B compared
to 2A). In the given example, this process of liquid build-up and release is repeated four times before
steady state is achieved in scenario 5-7, when the released product sample has the same composition
(1/3 light and 2/3 heavy) as the product entering S1.

Figure E.2 shows steady state liquid collection in four sample bottles collected over time during an
experiment with a pure cyclohexanol feed and a two-phase liquid product. The time it takes before
steady state liquid collection is achieved depends on the heavy/light phase ratio and on the liquid
collection parameters. If more heavy phase is produced and a smaller quantity of product is released
through V13, it will take more time before steady state is achieved. An important note is that the
light phase is subject to back mixing to a greater extent than the heavy phase due to the inherent
di�erence in retention times of each phase.

Phase split 

 Water phase 

 Organic phase 

TOS[h]:    43-48 h  48-53 h  53-58 h  58-63 h 

Figure E.2: Two-phase liquid product obtained at TOS = 43-63 h during conversion of pure cyclohexanol over

Ni-MoS2/MgAl2O4 (NiMo#2, see table 3.3) at TSP = 420 ◦C with 2.1 mol% cyclohexanol in the feed at total

pressure 40 barg (27 bar H2, 550 ppm H2S, balance N2).

The development of steady states in the liquid collection could be followed from the liquid product
density and �ow rates. This is shown for two experiments in �gure E.3 (see chapter 6 for activity data).
In the experiment Cyc (�gure E.3a), full conversion of cyclohexanol was achieved in the entire TOS
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Appendix E. Phase Distribution in S1 and Liquid Collection

range giving a stable �ow of a two-phase liquid product. The density of the heavy and light phases
were similar to that of water (0.997 g/mL) and cyclohexane/cyclohexene (0.779-0.811 g/mL). In the
Phe/EG experiment (�gure E.3b), there was initially a high conversion of ethylene glycol leading to
the formation of a separate water phase at TOS <40 h. At TOS >40 h, the HDO of ethylene glycol
had decreased to a level, where the amount of water formed was low enough to enable it to mix with
unconverted ethylene glycol and phenol. As it can be seen from �gure E.3b, especially by looking at
the product density, the temperature in�uenced the liquid collection; at ≥420 ◦C (TOS <69 h), no
steady state was obtained, but steady state operation at di�erent temperatures was possible at TOS
>69 h.
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Figure E.3: Liquid product �ow rate, Ql, and density, ρ (at 25 ◦C), from oxygenate conversion over Ni-

MoS2/MgAl2O4 (NiMo#2, see table 3.3) at di�erent operating temperatures at total pressure 40 barg (27 bar

H2, 550 ppm H2S, balance N2). (a) Experiment: Cyc, with 2.1 mol% cyclohexanol in the feed. (b) Experiment:

Phe/EG, with 3.1 mol % ethylene glycol and 0.55 mol % phenol in the feed. For experimental details, see chapter

6, and table 6.2 (feed composition), and �gure 6.2 (temperature pro�les).

164



F | N2-Physisorption of MgAl2O4

Results from N2-physisorption of MgAl2O4 are shown in �gure F.1 and �gure F.2 below.
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Figure F.1: Adsorption-desorption isotherms for the MgAl2O4 support, from N2-physisorption.
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Figure F.2: Pore size distribution for MgAl2O4 support, from N2-physisorption and the BJH model with pore

volume, V, and pore radius, rpore.
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G | Mass Balance in the POC Setup

Most of the experiments conducted were subject to deviation in the carbon mass balance which was
mainly caused by failure to condense light oxygenates or evaporation of such before analysis of the
collected liquid product in terms of mass, density, and composition (by GC-FID/MS).

The online GC-TCD analysis detected N2, H2, CO, CO2, and C1-C3 hydrocarbons. Therefore, the
possibility for closing the carbon balance relied on full condensation and GC-FID/MS quanti�cation
of any other species, such as oxygenates or C4+ hydrocarbons. However, since the mass balance devi-
ation was correlated with incomplete condensation of light oxygenates, the calculations of conversion
(based on feed and e�uent �ow of model compounds with high boiling points, i.e. ethylene glycol,
cyclohexanol, and phenol) and yields of C1−3 gasses (measured by GC-TCD), are reliable.

The impact of non-condensed species was indicated by the di�erence in mass balance closure at
approximately 100 % conversion of ethylene glycol at 400 ◦C using 4 g of low and higher loading
catalysts (see chapter 4), for which a ∼ 90 % mass balance closure could be obtained with the more
active catalysts, which also produced a total gas yield of ∼ 90 % (see table 4.2). The less active
catalysts had a total gas yield of ∼ 20 % and a poor mass balance closure of ∼ 60-70 %.

Figure G.1 compares the mass balances on the basis of ethylene glycol, cyclohexanol, and phenol
during the �rst 100 h on stream of the experiments presented in chapter 6. As it can be seen, the
phenol and cyclohexanol mass balances close well with >90 %, indicating that e�cient condensation
and collection of liquid compounds with high boiling points was possible. The mass balances for
ethylene glycol, on the other hand closed to 73 % and were similar for the experiments run with pure
ethylene glycol and with phenol in ethylene glycol. Taking into account the good closure of the phenol
carbon balance (in an experiment with a poorly closed ethylene glycol balance), this clearly shows that
it was ethylene glycol derived compounds, which were not accounted for in the product analysis.
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Figure G.1: Carbon mass balance closure on the basis of ethylene glycol, phenol, and cyclohexanol for the �rst

100 h on stream of experiments presented in chapter 6 using 0.5 g NiMo#2 (see table 3.3). Operating conditions:

400-450 ◦C, 550 ppm H2S, 27 bar H2, and 40 barg (balance N2). Experiment EG had an ethylene glycol feed of

2.5 mmol/min. Experiment Cyc had a cyclohexanol feed of 1.5 mmol/min. Experiment Phe/EG had a feed of

0.4 mmol/min phenol and 2.2 mmol/min ethylene glycol. The carbon balance for phenol (experiment: Phe/EG)

was based on the yield of unconverted phenol, benzofuran, 2-ethylphenol, and 3-methylphenol (disregarding the

C1−2 alkyl groups; these were included in the ethylene glycol mass balance, which also contained the remaining

liquid products detected and all gas products.

Some modi�cations were made during the experimental work to improve the carbon mass balance by
improving the condensation and collection of the liquid reactor e�uent:

� The holes in the lids of the manifold sample bottles, through which the liquid product was
collected via 1/8" tubes, were not sealed in the NiMo and CoMo experiments presented in
chapter 4. Since the bottles were stored in a ventilated cabinet, accelerated evaporation could
have removed liquid product from the sample bottles. As this was realized, the holes were sealed
with para�lm. Para�lm sealing was applied in all following experiments.

� The reactor e�uent and separator tube, S1, were not cooled in any of the experiments presented
in chapter 4 or in the NiMo experiment presented in chapter 5 (in this chapter, cooling of S1
was however provided for the Mo, CoMo, and Ni tests). Cooling with water was applied in all
subsequent experiments. In the 90 h on stream CoMo test presented in chapter 5, insigni�cant
cooling was provided via plastic tubes, but in all subsequent experiments, cooling down to 10-15
◦C was provided via copper tubing.

The vapor pressures of relevant oxygenates and hydrocarbons calculated from the Antoine equation at
di�erent temperatures are listed in table G.1. The ambient temperature in the pilot hall was typically
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25-30 ◦C, but temperatures up to 35 ◦C were measured during warm days. There was no internal
temperature measurement in the separator tube, so the gas stream passing through it could potentially
have been higher than the 10-15 ◦C measured externally when cooling was applied. Moreover, there
was no cooling the the valve manifold or lab cupboards, where the sample bottles were stored upon
analysis. In a typical experiment, the ethylene glycol feed was 2.4 mmol/min, the total feed was ∼
70 mmol/min at 40 barg, and 15-30 % of the feed carbon �ow could not be accounted for in the
outlet. This corresponds to a missing carbon �ow of 0.7-1.4 mmol/min. Assuming all of this carbon
was present as acetaldehyde, it would correspond to a �ow of 0.35-0.7 mmol/min acetaldehyde and
0.2-0.4 bar, which is below the equilibrium vapor pressure of acetaldehyde at 15 ◦C and thus would
not be condensed in S1. This example illustrates how the presence on non-condensed oxygenates
could contribute signi�cantly to the deviation in the carbon balance. The equilibrium vapor pressures
of especially acetone, methanol, ethanol, and C4−6 hydrocarbons are also signi�cant and indicate a
potential impact on the carbon mass balance from these species.

Table G.1: Boiling points and equilibrium vapor pressures in bar calculated from the Antoine equation using

Antoine parameters from [305]. Feed source which was correlated with detection of each compound has been

noted. none = not detected.

Compound Tb Temperature [◦C]
(feed source) [◦C] 15 30 50
Oxygenates
Acetaldehyde (EG) 21 0.82 1.43 2.72

Acetone (EG) 56 0.19 0.38 0.81

Methanol (EG) 65 0.10 0.22 0.55

Ethanol (EG) 78 0.04 0.10 0.29

1-propanol (EG) 97 0.01 0.04 0.12

1-butanol (EG) 117 <0.01 0.01 0.05

Cyclohexanol (Cyc) 160 <0.001 <0.001 <0.01

Phenol (Phe) 182 <0.001 <0.001 <0.01

Ethylene glycol (EG) 197 <0.001 <0.001 <0.001

Hydrocarbons
n-butane (EG) ∼0 1.76 2.81 4.93

n-pentane (none) 36 0.46 0.82 1.58

n-hexane (EG) 69 0.13 0.25 0.54

Benzene (none) 80 0.08 0.16 0.36

Cyclohexane (Cyc) 81 0.08 0.16 0.36

Cyclohexene (Cyc) 83 0.07 0.15 0.33

All of the compounds listed in table G.1 were detected in the liquid product from several experiments
with varying feedstock, except for benzene, butane, pentane, and hexane. Benzene was not detected,
even though it was expected in the liquid product formed during the conversion of phenol in ethylene
glycol (see chapter 6). Pentane was never detected, but butane and C6+ hydrocarbons were detected on
two occasions. In two activity tests using ethylene glycol as model compound (NiMo#1 and Mo#1 as
catalyst), an additional gas analysis was performed for a shorter period of time using a Thermo Fisher
1300 Trace GC equipped with three sample loops for e�cient analysis of H2, N2, CO2, and C1−6+
hydrocarbons. The GC had an FID detector and two TCD detectors, and the following columns:
Restek 5 m x 0.53 mm x 3 µm Rtx-1 (C6+ hydrocarbons and oxygenates), Restek 25 m x 0.53 mm
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Alox/Na2SO4 (C1−5 hydrocarbons), Hayesep N, XL-sulfur, and Molsieve 5A micro-packed columns
(permanent gasses), and Hayesep N and Shincarbon-ST columns (H2). Using this GC, C4 and C6+/ox

were measured at concentrations of ≤0.02 % C4 (sum of n-butane, trans-2-butene, 1-butene, and iso-
butylene) and ≤0.02 % C6+/ox (C6+ hydrocarbons and/or C1+ oxygenates). At a typical gas �ow
of ∼ 70 mmol/min and a feed of 2.4 mmol/min ethylene glycol, these concentrations correspond to
1.2 and 1.8 % of the carbon feed (assuming the latter was present as C6 hydrocarbons). Hence, it
was concluded that the formation of C4+ hydrocarbons contributed with <5 %-point of the deviation
carbon balance.

In the following, the di�erent e�orts towards understanding the impacts of the carbon mass balance
have been reviewed. Overall, the following setup modi�cations should be considered in order to improve
the carbon mass balance and the liquid collection in general:

� Improved cooling of entire liquid product collection section to ensure a stable temperature, also
on warm days.

� Online GC analysis of C4+ hydrocarbons and light oxygenates to minimize the need for extensive
product cooling and di�cult handling of cold samples.

� Automated pressure reduction in the liquid product collection section to minimize �ow �uctu-
ations and the risk of plugging of the manually controlled backpressure valve (V10, see �gure
3.1).

G.1 Reliability of Liquid Feed and Liquid Product Flow

The reliability of the liquid feed �ow and the collected condensed liquid product �ow was con�rmed
in an empty reactor test at conditions relevant to the conducted activity tests, see �gure G.2.
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◦C),

of collected liquid product (compared with average feed �ow). (b) Carbon mass balance (based on sample mass,

density, and GC-FID/MS measurements) and total mass balance based on inlet and outlet liquid mass �ows.

As it can be seen from �gure G.2, the �rst sample collected at a TOS of 5 h was in�uenced by the initial
delay in the product collection compared to the time at which ethylene glycol was initially added to
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the system. This point has thus typically been excluded in the data treatment, but has been included
here for illustration of the typical product �ow. The �ow of ethylene glycol collected in the manifold
corresponded to the feed �ow, which was 0.14 mL/min on average with some �uctuation as noted in
�gure G.2a. The density of the collected ethylene glycol con�rmed that there was a small variation of
this property, within the uncertainty of the density measurement. The resulting mass balance (�gure
G.2b) was evaluated on the basis of the total mass balance of fed and collected ethylene glycol and on
the basis of the carbon mass balance, where the mass, density, and GC-FID/MS analysis of collected
samples were used to calculate the carbon content. There was a good mass balance closure at 94.6-97.2
% (disregarding the �rst sample) for both methods with a slightly better closure obtained for the total
mass balance, which indicates a slight underestimation of the concentration of pure ethylene glycol
using GC-FID/MS.

G.2 Reliability of GC-FID/MS Quanti�cation

It was veri�ed that the GC-FID/MS analysis su�ciently quanti�ed the carbon content in liquid samples
within a deviation of <10 %. This was in spite of several species being present in low concentrations,
which could not be quanti�ed due to a poor MS signal or overlapping peaks. The total carbon content
determined by GC-FID/MS was compared with the content determined from elemental analysis in
selected liquid samples. The GC-FID/MS analysis was performed as described in chapter 3.4.1. The
elemental analysis was performed using an Eurovector EA3000 CHNS analyzer. The results shown in
table G.2 show a good correlation between the carbon content determined from the two methods.

Table G.2: Liquid product carbon �ow determined by GC-FID/MS and elemental analysis during the conver-

sion of ethylene glycol (2.4 mmol/min) over Mo#1 at 400 ◦C, 27 bar H2, 550 ppm H2S, and a total pressure of

40 barg (balance N2). For TOS activity, see �gure 5.3b. Mass balance closure: 64-72 %, i.e. ∼ 1.5 mmol/min

carbon unaccounted for.

TOS FC [mmol/min] Relative di�erence
[h] GC-FID/MS CHNS [%]
65-70 2.40 2.49 3.7

70-75 2.06 1.89a -8.5

75-80 2.30 2.09a -9.1

80-85 2.34 2.32a -0.3

a Average of two measurements with standard deviation:

1.1-5.7 %.
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G.3 Extended Gas Analysis

G.3.1 Qualitative Analysis

The presence of non-condensed oxygenates and hydrocarbons was veri�ed by an extended gas analysis
performed for a single sample collected with a gas bag during the conversion of ethylene glycol over a
NiMo catalyst. The oxygenates in the gas sample were present in too low concentration for identi�cation
with GC-MS. Instead, the sample was analyzed on an Agilent 7890A GC equipped with a Restek Rt-
Q-BOND 30 m x 530 µm x 20 µm capillary column, one FID detector, and two TCD detectors (see
�gure G.3 for FID signals). Apart from detection of gasses that were already measured with the online
GC analysis at the POC, the FID signal indicated the presence of several of the oxygenates from the
standard mixture, e.g. acetaldehyde, methanol, ethanol, and C3−5 oxygenates and hydrocarbons. The
corresponding carbon �ow of these compounds based on the e�ective carbon method with ethylene as
reference (see chapter 3.4.1) was 0.25 mmol/min, which is approximately 5 % of the missing carbon
at the given TOS. The GC spectrum shown in �gure G.3 was however considered uncertain due to
several issues:

� The gas sampling was performed downstream of the aerosol �lter, which could have trapped
some of the oxygenates, potentially also larger molecules such as ethylene glycol and polyethylene
glycol.

� The gas bag was analysed 1.5 days after sampling, which could have caused some of the contents
to di�use out.

� No heating of the gas bag was performed upon analysis in order to desorb potentially sticky
compounds from the bag wall. Upon analysis, the gas bag was handled outside at <5 ◦C, which
might have caused additional adhesion onto the inner bag wall.
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Figure G.3: GC-FID analysis of a standard oxygenate mixture (acetaldehyde, methanol, ethanol, acetone, iso-

propanol, 1-propanol, 2-butanone, 2-butanol, 2-methyl-1-propanol, 1-butanol, and 2-pentanone) and of a sample

(gas bag) from the conversion of 2.5 mmol/min ethylene glycol at TOS = 29 h over 0.5 g NiMo#1 (see table

3.3) at 400 ◦C, 27 bar H2, 550 ppm H2S, and 40 barg (balance N2). The carbon balance closure at 28-33 h on

stream was 55 %. For TOS activity, see �gure 6.11b in chapter 6.
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G.3.2 Quantitative Analysis

A more correct estimate of the contribution from non-condensed oxygenates was performed by analys-
ing gas samples extracted with a syringe upstream of the the aerosol �lter on the POC setup followed
by immediate analysis on an Agilent 6890 N GC-FID equipped with a 39 m x 0.53 mm HP-PLOT/Q
column. This was done during the conversion of pure ethylene glycol over NiMo#2 at 380 ◦C (see
�gures 6.3-6.5 in chapter 6 for TOS activity). This Agilent GC measurement (see �gure G.4) showed
the presence of C1−3 hydrocarbons along with methanol, acetone ethanol, and several unknown com-
pounds. Methane, ethane, and ethylene were also detected with the online GC, but the concentration
of propane and propylene (<0.01 %) was too low for online detection. Using ethylene as reference in
the e�ective carbon method, the concentrations listed in table G.3 were calculated. As seen, there was
some deviation between the online GC measurements and Agilent measurements indicating room for
improvement on the gas analysis. Based on the qualitative GC analysis (�gure G.3), the unknown com-
pounds were assumed to have a carbon number of 5, which together with a total �ow of 70 mmol/min at
the given TOS corresponded to a carbon �ow of 0.19 mmol/min in the unknowns and 0.086 mmol/min
in the appointed oxygenates. The resulting total carbon �ow of gas compounds not analyzed by the
online GC (0.276 mmol/min) accounted for 55 % of the missing carbon �ow at the given TOS.

As shown in table G.2, there was a <10 % deviation in the GC-FID/MS quanti�cation. The
quanti�ed liquid carbon �ow from the sample bottle at the given TOS (166-171 h) was 4.09 mmol/min,
which corresponded to 98.5 % of the total peak area detected by GC-FID/MS. Assuming that the
remaining unidenti�ed peaks had a similar response factor as the identi�ed peaks, they were estimated
to account for a �ow of (4.09/98.5)·1.5 = 0.062 mmol/min carbon. Thus, the total amount of additional
gas and liquid carbon in the given experiment was 0.276 + 0.062 = 0.338 mmol/min, which corresponds
to 67 % of the carbon �ow originally not accounted for. Taking this additional carbon into account, the
carbon balance could be improved from 89.8 % to 96.7 %. It was thus concluded that the formation
on undetected species, and mainly non-condensed light oxygenates, caused the often poor closure of
the carbon mass balance.

Table G.3: GC analysis of a sample from the conversion of 2.5 mmol/min ethylene glycol at TOS = 168 h

over 0.5 g NiMo#2 at 380 ◦C, 27 bar H2, 550 ppm H2S, and 40 barg (balance N2). The carbon balance closure

at 166-171 h on stream was 89.8 %. For TOS activity, see �gures 6.3-6.5 in chapter 6.

Compound Concentration [%]
Online GC-TCD Agilent GC-FID

Methane 0.0374 0.0257

Ethylenea 0.0918 0.0918
Ethane 0.0780 0.0771

Propylene 0 0.0056

Propane 0 0.0019

Methanol - 0.0755

Acetone - 0.0029

Ethanol - 0.0078

Unknownb - 0.0534

a Basis for e�ective carbon method.
b Assuming an e�ective carbon number of 4.
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Figure G.4: GC-FID analysis of a sample (syringe) from the conversion of 2.5 mmol/min ethylene glycol at

TOS = 168 h over 0.5 g NiMo#2 (see table 3.3) at 380 ◦C, 27 bar H2, 550 ppm H2S, and 40 barg (balance

N2). The carbon balance closure at 166-171 h on stream was 89.8 %. For TOS activity, see �gures 6.3-6.5 in

chapter 6.
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H.1 Results from Catalytic Activity Tests

The TOS activity in terms of individual gas product yields and total gas carbon yield for the exper-
iments presented in �gure 5.3 and �gure 5.4 are given below in �gure H.1. TOS activity in terms of
gas yields, conversion, and temperature for repeated activity tests is shown in �gure H.2. The carbon
deposited in spent catalysts has been plotted as a function of the TOS in �gure H.3 (see table 5.1 for
spent catalyst composition).
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Figure H.1: Carbon based yields for ethylene glycol conversion at 400 ◦C, 27 bar H2, 550-2200 ppm H2S

(noted in �gures), 40 barg total (balance N2), and 3-3.5 mol% ethylene glycol in the feed (a) Ni#1 (1.5 g), (b)

Mo#1 (1.5 g), (c) NiMo#1 (0.5 g), and (d) CoMo#1 (0.5 g).
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Figure H.2: Results from three reproduced experiments (A, B, C) with NiMo#1 (0.5 g) for ethylene glycol

conversion at 400 ◦C, 27 bar H2, 550 ppm H2S, 40 barg total (balance N2), and 3-3.5 mol% ethylene glycol in

the feed. (a) Ethane and ethylene yield, (b) C1 yields, (c) conversion, and (d) reaction temperature.
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H.2 Raman Curve Fitting

Curve �tting of the Raman spectra was performed with WiRE 4.2 (Renishaw) using Voigt pro�les with
the results shown in �gure H.4 and table H.1.

Figure H.4: Curve �tting results for baseline-corrected Raman spectra of Mo#1, NiMo#1, and CoMo#1 oxide

catalyst precursors. The Raman bands were assigned to monomolybdate tetrahedra (blue), MgAl2O4 support

(orange), supported NiO (red), supported CoO (green) and Si impurities (turquoise).
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Table H.1: List of curve �tting parameters for the curve �tting results presented in �gure H.4.

Fraction
Catalyst Curve Centre Area FWHM lorentzian

1 316.2 15474.9 47.452 0.694

2 377.5 10968.8 79.101 0.000

3 408.6 3314.3 27.678 0.178

4 522.1 331.5 6.238 0.000

5 672.8 6780.8 55.869 0.577

Mo#1 6 725.8 2867.5 45.967 0.000

7 766.2 1962.8 26.714 0.449

8 828.9 27970.5 113.839 0.000

9 863.7 4829.3 47.081 0.018

10 907.5 9147.3 32.164 0.272

11 922.5 31268.0 68.288 0.000

12 1089.5 796.7 30.983 0.000

1 315.1 11328.4 39.453 0.000

2 344.2 10389.4 89.916 0.000

3 406.8 3092.9 32.330 0.008

4 521.5 235.8 5.610 0.000

5 558.0 2650.3 36.379 0.214

6 672.7 993.9 34.371 0.000

NiMo#1 7 717.9 222.1 23.830 0.000

8 767.5 264.4 14.113 0.000

9 842.7 20765.8 125.445 0.000

10 860.3 460.3 19.097 0.000

11 894.4 8729.9 15.457 0.706

12 907.4 17975.6 40.438 0.273

13 1047.6 227.4 8.400 0.000

14 1061.5 698.9 13.253 0.000

1 315.5 3208.0 42.446 0.062

2 366.0 2036.4 66.958 0.000

3 407.6 955.7 28.302 0.000

4 521.0 70.0 5.661 0.000

5 533.5 1539.6 79.946 0.000

6 597.0 3965.5 73.694 0.032

CoMo#1 7 668.0 371.5 32.408 0.000

8 723.2 37.1 13.789 0.001

9 766.8 227.2 20.082 0.086

10 811.0 4286.0 79.895 0.000

11 870.3 4335.8 61.118 0.000

12 906.3 4862.5 36.235 0.000

13 928.6 4997.1 51.859 0.000

14 1084.4 431.6 53.885 0.000
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H.3 TEM analysis

A NiMo sample was sul�ded in the POC setup, and subsequently characterized by elemental analysis
(see table H.2) and TEM. As opposed to the freshly sul�ded CoMo catalyst presented in table 5.1,
this NiMo catalyst was not exposed to increasing temperature and pressure after the sul�dation. This
resulted in a higher content of sulfur and carbon indicating that DMDS residues were left in the
pores of the catalyst after sul�dation. Fe was detected in a low concentration, indicating that small
amounts steel wool could be present in the analyzed catalyst sample. There was a slight decrease in
the molar Ni/Mo ratio compared to the oxide phase precursor (see table 3.3), but the ratio remained
approximately constant at 0.3.

Table H.2: Composition and properties of sul�ded NiMo#2.

Mo Ni Ni/Mo Si Fe S C S/Mo
[wt%] [wt%] [molar] [wt%] [wt%] [wt%] [wt%] [molar]
3.00 0.49 0.27 <0.02 0.12 4.81 6.30 4.80

TEM revealed highly dispersed particles as it can be seen from the micrograph in �gure H.6 and the
particle size distribution in �gure H.5. The average slab length was 4.3±2.8 nm with a mean stacking
of 1.24. 84 % of the particles had a stacking of 1, and 95 % of the particles had a stacking of ≤2. Only
1.6 % of the particles had a stacking of ≥4, and a maximum stacking of 6 was observed. The observed
slab length and stacking are in agreement with values obtained in literature for similar catalysts; i.e.
MoS2/Al2O3 with an approximate monolayer, or sub monolayer, Mo loading [106,111,124].

The XANES and EXAFS results from the in-situ sul�dation revealed that average Mo-Mo coordin-
ation number at 3.16 Å was <1, which corresponds to nanoparticles smaller than 2 nm. These particles
were too small to detect with TEM at the applied resolution.
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Figure H.5: Particle size distribution (MoS2 slab length) for sul�ded NiMo#2 (table H.2). Based on 382

particles distributed in 47 TEM images.
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Figure H.6: TEM image used for particle size distribution (MoS2 slab length and stacking) for sul�ded NiMo#2

(table H.2).
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H.4 EXAFS Fitting Results

XANES spectra from the NiMo#1 and CoMo#1 catalysts are shown in �gure H.7. Fourier transformed
EXAFS spectra for all samples are shown in �gures H.8-H.10.

Figure H.7: XANES spectra of the dehydrated and sul�ded catalysts at the Mo K-edge of (a) CoMo#1, (b)

NiMo#1, (c) at the Co K-edge of dehydrated and sul�ded CoMo#1, and (d) at the Ni K-edge for dehydrated

and sul�ded NiMo#1. Spectra of reference compounds and as prepared (calcined) samples have been included in

(c-d).
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Figure H.8: EXAFS �tting curves at the Mo K-edge in R-space and k-space with experimental (black) and

theoretical �tted (red) curves for (a) dehydrated Mo#1, (b) dehydrated NiMo#1, and (c) dehydrated CoMo#1.
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Figure H.9: EXAFS �tting curves at the Mo K-edge in R-space and k-space with experimental (black) and

theoretical �tted (red) curves for (a) sul�ded Mo#1, (b) sul�ded NiMo#1, and (c) sul�ded CoMo#1.
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Figure H.10: EXAFS �tting curves in R-space and k-space with experimental (black) and theoretical �tted (red)

curves at the Co K-edge for (a) dehydrated and (b) sul�ded CoMo#1, and at the Ni K-edge for (c) dehydrated

and (d) sul�ded NiMo#1.
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The cluster model used for modelling of XANES spectra (see �gure 5.11) is shown in �gure H.11.

Figure H.11: MoS2 cluster modelled by Jmol (FEFF9). Blue = Mo, yellow = S.
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I.1 Ethylene Glycol Conversion

Ethylene glycol conversion was assumed to follow a consecutive dehydration hydrogenation reaction
scheme (see �gure 6.7 in chapter 6). Due to the lack of proper quanti�cation of ethenol, acetaldehyde,
and ethanol, these compounds were lumped together with ethylene glycol (EG) in a C2,ox term. Thus,
the following reactions have been included in the kinetic model:

C2,ox + H2
k1−→ C2H4 + 2H2O (I.1)

C2H4 + H2
k2−→ C2H6 (I.2)

The rate of reaction for each reaction, ri in mmol/g/min, is expressed with the rate constant, ki in
L/g/min, and concentrations, Ci in mmol/L, assuming that they are �rst order in C2,ox and ethylene
(ETY), and that hydrogen is present in excess, so that it can be included in the lumped rate constant,
k′i:

r1 = k1C
n
C2,ox

CmH2
= k′1CC2,ox

(I.3)

r2 = k2C
o
ETYC

p
H2

= k′2CETY (I.4)

n, m, o, and p are reaction orders. The concentration of compound i is determined from the molar
�ow rate, Fi in mmol/min, of the compound and the total volumetric �ow rate, v in L/min:

Ci =
Fi
v

(I.5)

Due to the large �ow of feed gasses with Fg = 69 mmol/min (here g denotes N2, H2, and H2S), and a
comparatively small oxygenate feed of <3 mmol/min, v was assumed to be constant, since any change
in the gas volume due to reaction was negligible (see section I.3.1). v was determined as the total feed
�ow (gas+oxygenates) in L/min at the applied conditions (temperature and pressure) based on the
ideal gas law. For all experiments listed in table 6.2, this �ow was 0.099-0.100 L/min on average with
a standard deviation of 2.9-4.1 %.

The packed bed reactor model can be used to set up molar �ow balances for C2,ox, ethylene, and
ethane based on reactions I.1 and I.2 and the respective rate expressions in equations I.3 and I.4:

dFC2,ox

dW
= −r1 = −k′1CC2,ox

(I.6)

dFETY
dW

= r1 − r2 = k′1CC2,ox
− k′2CETY (I.7)

186



Appendix I. Kinetic Models

dFETA
dW

= r2 = k′2CETY (I.8)

W is the catalyst mass, and the concentrations can be expressed by equation I.5. The rate constants
were parameterized according to equation I.9 in order to decouple the activation energy and the pre-
exponential factor:

k = kref · exp
(
−Ea
R

(
1

T
− 1

Tref

))
(I.9)

kref is a reference rate constant at the temperature Tref in K. Ea is the activation energy in kJ/mol
and R is the gas constant equal to 8.315·10−3kJ/mol.

By using the inlet molar �ows of ethylene glycol (typically around 2.2-2.5 mmol/min), ethylene
(zero), and ethane (zero) as initial conditions, the system of di�erential equations I.6-I.8 was solved in
Matlab using ode45 by integration throughout the catalyst bed. Matlab's non-linear solver lsqnonlin
was used to �t kref and Ea for the two reactions with the objective function for minimization, fobj ,
being the absolute di�erence between the experimentally measured and the modelled outlet �ows of
ethylene and ethane:

errorETA = |FETA,out,exp − FETA,out,model|u (I.10)

errorETY = |FETY,out,exp − FETY,out,model|u (I.11)

fobj = errorETA + errorETY (I.12)

Here, u denotes each set of experimental data points used in the �tting. The modelled outlet molar
�ows were evaluated at W equal to the catalyst mass applied, i.e. at the outlet of the catalyst bed.
The quality of the model �t was then evaluated by parity plots and the mean square error (MSE) for
ethane and ethylene, respectively:

MSEETA =
1

M

M∑
u=1

(FETA,out,exp − FETA,out,model)
2 (I.13)

MSEETY =
1

M

M∑
u=1

(FETY,out,exp − FETY,out,model)
2 (I.14)

Here, M denotes the number of experimental data points used for the model solution and �tting. The
conversion in reaction I.1 and I.2 was calculated with the �tted parameters by solving the system of
di�erential equations I.6-I.8 and comparing the resulting outlet �ows of ethylene and ethane to the
feed �ow of ethylene glycol, FEG,0:

X1 =
FETY + FETA

FEG,0

∣∣∣∣
W=0.5g

(I.15)

X2 =
FETA
FEG,0

∣∣∣∣
W=0.5g

(I.16)

Only steady state data were used in the modeling, and two sets of data points were used per steady
state. The �nal 5 h at each steady state were used to generate two average sets of data points covering
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2.5 h (T , v, FEG,0, FETY,out,exp, FETA,out,exp). The standard deviation for steady state data was 1.1-8.8
% for the outlet �ows of ethane and ethylene, < 0.25 % for FEG,0, and insigni�cant for T and v. Parity
plots for the resulting parameter �ts are shown in �gures I.1-I.5.
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Figure I.1: Parity plot for EG model �t for steady states in experiment EG (chapter 6).
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Figure I.2: Parity plot for EG model �t for steady states in experiment Phe/EG (chapter 6).
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Figure I.3: Parity plot for EG model �t for steady states in experiment Phe/EG-RegenA (chapter 6).
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Figure I.4: Parity plot for EG model �t for steady states in experiment Phe/EG-RegenB (chapter 6).
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Figure I.5: Parity plot for EG model �t for steady states in experiment Cyc/EG (chapter 6).
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I.2 Cyclohexanol Conversion

Similar to the procedure for ethylene glycol, a kinetic model was developed for the conversion of
cyclohexanol based on the reaction scheme presented in �gure 6.10. The reactions considered are:

C6H11OH→ C6H10 + H2O (I.17)

C6H10 + H2 → C6H12 (I.18)

With the immediate similarity to the reactions considered for ethylene glycol (see above), the rate
constants for reaction 1 and 2 above were calculated in the exact same way as for ethylene glycol
with the only di�erence being that the rate constant for reaction 1 is not a lumped rate constant
(no consumption of H2). In the equations for ethylene glycol above, ethylene can be substituted with
cyclohexene (CEN), and ethane can be substituted with cyclohexane (CAN) and solved to get k1 and
k′2 for cyclohexanol conversion. The parity plots for the �tted kinetic model parameters are shown in
�gures I.6 and I.7.
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Figure I.6: Parity plot for cyclohexanol model �t for steady states in experiment Cyc (chapter 6).
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Figure I.7: Parity plot for cyclohexanol model �t for steady states in experiment Cyc/EG (chapter 6).
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I.2.1 Note on By-product Formation

The formation of cyclohexanone and 1,4-dioxaspiro[4.5]decane was observed when cyclohexanol was
converted in the presence of ethylene glycol, i.e. oxidation of cyclohexanol occurred. Cyclohexanone
could be formed together with cyclohexane by oxidation of cyclohexanol with cyclohexene according
to the reaction:

C6H10 + C6H11OH→ C6H12 + C6H10O (I.19)

from which 1,4-dioxaspiro[4.5]decane could be formed as an acetal by reaction with ethylene glycol:

C6H10O + C2H4(OH)2 → C6H10(C2H4O2) + H2O (I.20)

However, if only reactions I.19 and I.20 occurred, the measured concentration of cyclohexane in the
outlet would be expected to be at least as large as the summed concentration of cyclohexanone and
1,4-dioxaspiro[4.5]decane. This was far from the case (see �gure 6.9). Instead, cyclohexanone may
have formed through the oxidation of cyclohexanol with ethylene glycol and its products, for example
by reactions I.21 or I.22:

C6H11OH + C2H4(OH)2 → C6H10O + C2H4 + 2H2O (I.21)

C6H11OH + C2H4 → C6H10O + C2H6 (I.22)

Both I.21 or I.22 would add complexity to the kinetic model, since the conversion of ethylene glycol
would be correlated with the formation of cyclohexanone from cyclohexanol. At the same time, there
is no immediate in�uence on the formation of cyclohexene and cyclohexane (target HDO products)
from I.21 or I.22, so the formation of cyclohexanone and 1,4-dioxaspiro[4.5]decane have been omitted
from the kinetic model.

I.3 Evaluation of Assumptions for Kinetic Models

I.3.1 Excess Hydrogen and Constant Volumetric Flow Rate

The reaction temperature was above the boiling points for all oxygenate reactants during the entire
TOS (see table I.1). The oxygenates were assumed to evaporate immediately when entering the reactor.
The reaction temperature was in some cases higher than the critical temperature of the oxygenates.
The feed composition for each experiment used in the kinetic analysis is listed in table I.2. The partial
pressure of each oxygenate reactant (before and after reaction) was low enough to avoid condensation
in the reaction zone.

Table I.1: Boiling points, Tb, and critical temperatures, Tc [305].

EG Phe Cyc H2O
Tb [◦C] 197 182 160 100

Tc [◦C] 372-517 420 372 374
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Table I.2: Feed compositions at 41 bar total pressure. Average values.

Experiment EG Cyc Phe H2 H2S N2

[mol%] [mol%] [mol%] [mol%] [ppm] [mol%]
EG 3.4 0 0 65.2 550 31.3

Phe/EG 3.1 0 0.55 65.0 550 31.2

Cyc/EG 3.0 0.54 0 65.1 550 31.3

Cyc 0 2.1 0 66.1 560 31.8

The outlet molar �ow rate of hydrogen, water, and deoxygenated hydrocarbons at full HDO depends on
whether the hydrocarbons are hydrogenated or not. In both cases, full HDO produces two mol of water
per mol of ethylene glycol reacted, one mol water per mol cyclohexanol, and one mol water per mol
phenol. Without hydrogenation, one mol H2 is spent per mol ethylene glycol (giving ethylene+2H2O),
one mol H2 is spent per mol phenol (giving benzene+H2O), and no H2 is spent on cyclohexanol, which
is dehydrated to cyclohexene, CEN, (+H2O). With full hydrogenation, two mol H2 is spent per mol
ethylene glycol (giving ethane+2H2O), four mol H2 is spent per mol phenol (giving cyclohexane, CAN,
+H2O), and one mol H2 is spent on cyclohexanol (giving CAN+H2O).

The product composition in terms of mol and partial pressures on a 100 mol feed basis (with the
composition given in table I.2) has been calculated for full HDO with and without full hydrogenation
with the results shown in table I.3. As it can be seen, H2 is present in great excess, and the the change
in the total molar �ow as a result of full HDO is less than 5 % with the largest change obtained when
no hydrogenation occurs.

Table I.3: Product composition at full HDO per 100 mol feed with the feed composition given in table I.2 at 41

bar total pressure. Results including full hydrogenation are listed in parenthesis in the cases, where these results

di�er from the results without hydrogenation.

Compound/ ETY CEN Benzene H2 H2S N2 H2O Sum
Experiment (ETA) (CAN) (CAN) ·102

Composition [mol]
EG 3.4 0 0 61.8 (58.4) 5.5 31.3 6.8 103 (100)

Phe/EG 3.1 0 0.55 61.4 (56.6) 5.5 31.2 6.8 103 (98)

Cyc/EG 3.0 0.54 0 62.1 (58.6) 5.5 31.3 6.5 104 (100)

Cyc 0 2.1 0 66.1 (64.0) 5.5 31.8 2.1 102 (100)

Normalized composition [mol%]
EG 3.3 (3.4) 0 0 59.8 (58.4) 5.3 (5.5) 30.3 (31.3) 6.6 (6.8) 100

Phe/EG 3.0 (3.1) 0 0.53 (0.56) 59.6 (57.6) 5.3 (5.6) 30.3 (31.8) 6.6 (6.9) 100

Cyc/EG 2.9 (3.0) 0.52 (0.54) 0 60.0 (58.6) 5.3 (5.5) 30.2 (31.3) 6.3 (6.5) 100

Cyc 0 2.1 0 64.7 (64.0) 5.4 (5.5) 31.1 (31.8) 2.1 100

Partial pressures [bar]
EG 1.3 (1.4) 0 0 24.5 (24.0) 2.2 (2.3) 12.4 (12.8) 2.7 (2.8) 41

Phe/EG 1.2 (1.3) 0 0.22 (0.23) 24.4 (23.6) 2.2 (2.3) 12.4 (13.0) 2.7 (2.8) 41

Cyc/EG 1.2 (1.2) 0.21 (0.22) 0 24.6 (24.0) 2.2 (2.3) 12.4 (12.8) 2.6 (2.7) 41

Cyc 0 0.84 (0.86) 0 26.5 (26.2) 2.2 (2.3) 12.8 (13.0) 0.8 (0.9) 41

Notable cracking also occurred during activity tests (forming CO, CO2, and CH4). Cracking of ethylene
glycol could produce CH4 (C2H4(OH)2 + 3H2 → 2CH4 + 2H2O), CO (C2H4(OH)2 → 2CO + 3H2),
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and CO2 (CO + H2O → CO2 + H2). Formation of CO would a�ect the volumetric �ow rate, as �ve
mol gas are produced per mol ethylene glycol reacted. For the experiment with pure ethylene glycol,
full cracking of ethylene glycol into CO and H2 would result in 114 mol gas per 100 mol feed. This is
a larger change compared to the result obtained for HDO (see above), but considering that the yield
of CO was <14 % in the pure ethylene glycol experiment, it is fair to assume that the volumetric �ow
rate through the catalyst bed was constant and equal to the inlet molar �ow rate.

I.3.2 Plug Flow

The packed bed reactor model assumes plug �ow through the packed catalyst bed. The modi�ed
Reynolds number, Rep, is calculated from the gas density, ρ, the linear gas velocity, U , the particle
diameter, dp, and the dynamic viscosity, η [306]:

Rep =
ρUdp
η

(I.23)

At 380-450 ◦C and 41 bar, the average viscosity of hydrogen and nitrogen was estimated to 14 and
32 µPa·s, respectively [307]. The density of hydrogen and nitrogen was estimated to 1.1 kg/m3 and
20 kg/m3, respectively [307]. With an approximate feed composition of 65 % H2 and 35 % N2, the
resulting viscosity and density becomes 20 µPa·s and 7.7 kg/m3, respectively. With an average gas
velocity of 0.1 L/min, and an inner reactor diameter of 8 mm, U becomes 3.3 cm/s, and Rep becomes
3.8-7.6 with a particle diameter of 300-600 µm. The �ow is laminar for Rep <1 and turbulent for Rep
>1000 [306], meaning that the �ow is in the transition region, but far from being fully turbulent.

I.3.3 Constant Pressure Across Packed Bed

Kozeny's equation [306] can be used for estimation of the pressure drop across the catalyst bed, with
pf/l being the pressure drop in Pa per m and φ being the catalyst void fraction:

pf
l

= 180
Uη(1− φ)2

φ3d2p
(I.24)

With a void fraction of 0.59, the pressure drop was 0.03-0.11 mbar per cm bed. With a total bed length
of <2 cm in the experiments used for kinetic modelling and a total pressure of 41 bar, the pressure
across the catalyst bed could be assumed constant.

I.3.4 Isothermal Conditions

During non-steady state operation, the reaction temperature was seen to depend on the catalyst
activity. The temperature typically increased rapidly, when the oxygenate feed was applied, and then
decreased as deactivation occurred (see �gure 6.1). For steady state operation at 380-400 ◦C, it was
however possible to obtain a steady temperature (measured in the pressure shell thermopocket outside
the reactor).

The adiabatic temperature rise at 100 % HDO including hydrogenation at 380-450 ◦C has been
calculated from [294]:

T − T0 =
−∆HX∑n
i ΘiCp,i

(I.25)
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∆H is the reaction enthalpy, X is the conversion, Cp,i is the heat capacity, and Θi is the feed �ow
ratio Fi,feed/FA,feed, where A is the compound used as basis for the calculations and i denotes all
compounds. T − T0 is the adiabatic temperature rise, i.e. the di�erence in temperature before, T0,
and after, T , reaction. Equation I.25 provides a worst-case estimate, since the reactor was in fact not
operated adiabatically.

From the results shown in table I.4, it can be seen that especially ethylene glycol HDO could have
contributed signi�cantly to a temperature increase during reaction. The yield of ethane was however
not 100 %, rather <40 %, and endothermic reactions counteracted the temperature increase. The
in�uence of endothermic reactions was observed from the measurement of a temperature pro�le during
the cyclohexanol/ethylene glycol experiment (see �gure D.1 in Appendix D).

Table I.4: Thermodynamic properties and adiabatic temperature rise (equation I.25) at full conversion (X=1)

in the experiments used for kinetic analysis on the basis of the di�erent oxygenate reactants.

Property Compound
∑n

i ΘiCp,i T − T0

/experiment EG Cyc Phe H2 H2S N2 [J/(mol·K)] [◦C]
∆HHDO [kJ/mol]a -190 -84 -290 - - -

Cp,i [J/(mol·K)]b 134.8 275.0 195.2 29.4 40.5 30.7

ΘiCp,i (EG basis) [J/(mol·K)] EG HDO
EG 134.8 0 0 564.3 0.7 282.4 982.2 193.4

Phe/EG 134.8 0 34.6 617.0 0.7 308.8 1096.0 173.4

Cyc/EG 134.8 49.5 0.0 638.6 0.7 320.1 1143.7 166.1

ΘiCp,i (Phe basis) [J/(mol·K)] Phe HDO
Phe/EG 759.8 0 195.2 3477.7 4.1 1740.5 6177.2 46.9

ΘiCp,i (Cyc basis) [J/(mol·K)] Cyc HDO
Cyc/EG 748.9 275.0 0 3547.5 4.1 1778.4 6354.0 13.2

Cyc 0 275.0 0 926.2 1.1 464.6 1666.9 50.4

a Calculated with HSC Chemistry, average from 380-450 ◦C (variation <3 kJ/mol).
b From [305], average from 380-450 ◦C (variation <2 J/(mol·K) for H2, H2S, and N2, and 10-20

J/(mol·K) for ethylene glycol, phenol, and cyclohexanol.

It has not been possible to perform the experiments at perfect isothermal conditions, but a fairly stable
temperature was obtained after the accelerated deactivation performed at 420-450 ◦C.

I.4 Evaluation of Mass Transfer Restrictions

It was estimated that the experiments were not subject to mass transfer limitations, except for the
case of conversion of pure cyclohexanol. The assessment was performed for 400 ◦C.

I.4.1 External Mass Transfer

The Mears' criterion [294] for external di�usion was used to determine if external mass transfer re-
strictions were negligible. In that was the case, the system should comply with the following criterion,
which is valid for a �rst order reaction:
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rAρbrp
kcCA,b

< 0.15 (I.26)

rA is the observed rate of reaction for compound A (ethylene glycol or cyclohexanol), ρb is the bulk
density of the catalyst bed (600 kg/m3), rp is the catalyst particle radius (150-300 µm), kc is the mass
transfer coe�cient, and CA,b is the bulk concentration of compound A (≤25 mol/m3 ethylene glycol
and ≤15 mol/m3 cyclohexanol).

The mass transfer coe�cient was estimated from the correlation given by Thoenes and Kramers
[294]:

Sh′ = Re′1/2Sc1/3 ⇒
(
kcdp
DAB

(
φ

1− φ

)
1

γ

)
=

(
Udpρ

η(1− φ)γ

)1/2( η

ρDAB

)1/3

(I.27)

Sc is the Schmidt number, and Sh′ and Re′ are the modi�ed Sherwood and Reynolds numbers, re-
spectively. dp is the particle diameter, U is the linear gas velocity determined earlier (0.3 m/s) and γ
is the shape factor, which is 16, when assuming spherical particles. ρ is the �uid density and η is the
viscosity, both determined earlier (7.7 kg/m3 and 20µPa·s). φ is the void fraction of the catalyst bed
(0.59), determined as 1 -(ρb/ρc), where ρc is density of the catalyst particles (1460 kg/m3). DAB is the
di�usion coe�cient of compound A in medium B, which in this case is the gas mixture mainly consist-
ing of hydrogen (and nitrogen). DAB can be estimated from the Fuller and Giddings correlation [308]
with the unit of cm2/s:

DAB =
0.00143T 1.75

PM
1/2
AB

(
(
∑

v)
1/3
A + (

∑
v)

1/3
B

)2 (I.28)

T is the temperature in K (673.15 K), P is the pressure in bar (41 bar), and
∑

v is the summed
di�usion volumes from the atoms in species A and B, respectively. These can be calculated to 6.1 for
H2, 18.5 for N2, 57.9 for ethylene glycol, and 129.2 for cyclohexanol [308]. MAB is calculated from the
molar masses, Mw, in the following way:

MAB = 2

(
1

Mw,A
+

1

Mw,B

)−1
(I.29)

DAB could thus be determined to the values below. Note that the di�usion through nitrogen is more
restricted than through hydrogen.

DEG,H2 = 4.83 · 10−6 m/s

DEG,N2 = 1.18 · 10−6 m/s

DCyc,H2 = 3.29 · 10−6 m/s

DCyc,N2 = 0.79 · 10−6 m/s

The remainder of this example is based on ethylene glycol in hydrogen. The mass transfer coe�cient
was calculated from equation I.27 giving kc = 7.88·10−2 m/s. The faster the reaction, the higher
the risk of mass transfer limitations, so rA was calculated for the fastest reaction (ethylene glycol
hydrogenation) at 100 % conversion in the initial dehydration/hydrogenation step using the largest
rate constant determined (see table 6.4):
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r2 = k′2CEG,feed(X1 −X2) = 336 · 10−3 L/min/g · 25 · 10−3 mol/L · (1− 0)

= 8.4 · 10−3 mol/g/min = 0.14 mol/kg/s
(I.30)

Using the feed concentration of ethylene glycol as the bulk concentration, the Mears' criterion (equation
I.26) becomes 0.01 (or 0.03 for nitrogen instead of hydrogen), and external mass transfer limitations
could be excluded. Similarly for cyclohexanol with a dehydration rate constant of ≥524·10−3 L/min/g,
the Mears' criterion was calculated to a value of 0.03 in hydrogen (or 0.07 in nitrogen), indicating that
external mass transfer was negligible.

I.4.2 Internal Mass Transfer

The risk of internal mass transfer limitations was assessed using the Weisz-Prater criterion [294], where
internal mass transfer can be neglected if CWP � 1 is satis�ed:

CWP =
rAρcr

2
p

DeCA,s
(I.31)

CA,s is the concentration of reactant A at the catalyst surface assumed equal to the bulk since external
mass transfer limitation could be neglected. De is the e�ective di�usion determined by DAB, the
Knudsen di�usivity, DK , as well as the tortuosity, τ , catalyst porosity, φc, and constriction factor, σ
(estimated to 3.0, 0.40, and 0.8, respectively [294,309]):

De =
φcσ

τ

1
1
DK

+ 1
DAB

(I.32)

The Knudsen di�usion can be determined from [309]:

DK = 9700rpore

(
T

Mw

)1/2

(I.33)

Here, DK is determined in cm2/s from the pore radius, rpore (104 Å) in cm, the temperature, T in K,
and the molar mass, Mw in g/mol. For ethylene glycol, DK was determined to 3.33·10−2 cm2/s. For
cyclohexanol, it was 2.62·10−2 cm2/s. This results in an e�ective di�usivity in hydrogen of 2.10·10−7

m2/s for ethylene glycol and 1.56·10−7 m2/s for cyclohexanol. CWP can then be calculated to 3.0
for ethylene glycol and 7.4 for cyclohexanol with the corresponding values in nitrogen being 7.9 and
17.7, respectively. This suggests, that there could be some internal mass transfer limitations in the
experiments, especially for the very fast cyclohexanol dehydration, which occurred at 100 % conversion
of the pure feed. A further investigation of this could be performed experimentally by reducing the
catalyst particle size used in the experiments.
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I.4.3 E�ectiveness Factor

The e�ectiveness factor, ηe�, can be used to assess the severity of the internal mass transfer limitation.
The e�ectiveness factor can be expressed by the Thiele modulus, Φ, for a �rst order reaction over a
spherical catalyst particle [294], where k denotes the mass based reaction rate constant:

ηe� =
3

Φ2
(Φcoth(Φ)− 1) (I.34)

Φ =
rp
3

(
kρc
De

)1/2

(I.35)

The resulting e�ectiveness factor as a function of particle size is shown in �gure I.8. As it can be
seen, the e�ectiveness factor is ≥0.94 for the two reactions in the applied particle size range, except for
cyclohexanol dehydration in nitrogen, where it is ≥0.89. Thus, the kinetic results presented in chapter
6 are assumed to give a fair representation of the intrinsic reactivity. In the case of pure cyclohexanol
dehydration, however, there was approximately 100 % conversion during the entire activity test inde-
pendent of temperature. To be sure that mass transfer limitations did not restrict this experiment, it
should be repeated at lower conversion to observe a temperature dependent activity.
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Figure I.8: E�ectiveness factor determined for the fastest reaction in the conversion of ethylene glycol (exper-

iment: EG) and cyclohexanol (experiment: Cyc) over NiMo#2 (see table 3.3) as a function of catalyst particle

radius. Based on di�usion in hydrogen and nitrogen. The actual particle radius applied (150-300 µm) is high-

lighted. For experimental details, see chapter 6, and table 6.2 (feed composition), and tables 6.4-6.5 (kinetic

analysis results).
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I.5 Equilibrium Composition during Phenol HDO

The equilibrium composition of phenol, cyclohexanol, and benzene was calculated to investigate the
thermodynamics of phenol conversion in an experiment with a phenol in ethylene glycol feed. The
experimental feed composition (excluding ethylene glycol and H2S) was used in the calculations, while
water, cyclohexane, and benzene were included as products. The resulting temperature dependent
composition is given in �gure I.9. Full conversion of phenol was obtained in the calculations in the
selected temperature range.
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Figure I.9: Equilibrium composition during phenol HDO at operating conditions relevant to the experiment

Phe/EG (feed: 65 kmol H2, 31.2 kmol N2, 0.55 kmol phenol, 0 kmol cyclohexane, 0 kmol benzene, 0 kmol H2O).

Calculated with HSC Chemistry.

198



J | Catalyst Reactivation by Oxidation

and Resul�dation

The following reactions were assumed for the oxidation of deposited carbon and sulfur in MoS2:

C(s) + 0.5O2(g)→ CO(g) (J.1)

C(s) + O2(g)→ CO2(g) (J.2)

S(s) + O2(g)→ SO2(g) (J.3)

The molar �ow of N2 in the in- and outlet was constant and determined by the mass �ow controllers.
The inlet �ow of O2 was also determined by the mass �ow controllers. The inlet molar �ow of CO and
SO2 was zero, and the outlet �ows were determined by reactions J.1 and J.3. Since technical air (21
% O2 in N2) was used to generate the 7.6 % O2 in N2 feed, the feed consequently contained 140 ppm
ppm CO2 (seen as the baseline in �gure 6.15). In the calculations, the feed �ow of CO2 was assumed
to be zero, and the baseline level of CO2 was simply subtracted after the calculation of the product
CO2 �ow. The outlet �ow of O2 was determined from the stoichiometry in reactions J.1-J.3:

FO2,out = FO2,in − FCO2,out − 0.5FCO,out − FSO2,out (J.4)

The total gas �ow out of the reactor (equation J.5) can be simpli�ed to equation J.6 by insertion of
J.4:

Ftotal,out = FN2 + FO2,out + FCO2,out + FCO,out + FSO2,out (J.5)

Ftotal,out = FN2 + FO2,in + 0.5FCO,out (J.6)

Since the �ow of CO is determined by its concentration and the total molar �ow (equation J.7),
equation J.6 can be simpli�ed to equation J.8:

FCO,out = yCO,out · Ftotal,out (J.7)

Ftotal,out =
FO2,in + FN2

1− 0.5 · yCO,out
(J.8)

The molar �ow of each of the oxidation products (CO, CO2, and SO2) was then calculated based on
the measured concentrations and calculated total �ow. The �ows of CO and CO2 were then integrated
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(using the trapezoidal rule) in the time range shown in �gure 6.15 to get the molar amount of COx

released (including subtraction of the CO2 baseline), which was 7.65 mmol, corresponding to 91.9 mg
carbon. As 0.5 g of fresh catalyst was used in this experiment, it corresponds to a carbon deposition
of 15.5 wt% on basis of the oxide precursor. In order to compare with the carbon deposition on
the remaining catalysts tested, however, it is necessary to consider the transformation of the oxide
precursor into the active sul�de phase.

The composition of the catalyst was 3.33 wt% Mo and 0.66 wt% Ni, which was assumed to be
present as MoO3 and NiO (see table 3.3). Using the molar masses in table J.1, the molar amount
of MoO3 and NiO present per 100 g of catalyst precursor can be calculated (34.7 mmol Mo and 11.2
mmol Ni per 100 g catalyst), and based on this, the mass change resulting from the transformation
into Ni-MoS2 can be estimated (see table J.2).

Table J.1: Selected molar masses in g/mol. [310]

Mo Ni O S
95.94 58.69 16.00 32.07

Table J.2: Presence of MoO3, NiO, and Ni-MoS2 in oxide and sul�de catalyst phases of NiMo#2 catalyst (see

table 3.3). Based on stoichiometry per 100 g catalyst precursor with 34.7 mmol Mo and 11.2 mmol Ni in the

oxide form.

Amount NiO MoO3 Ni (in Ni-MoS2) MoS2 Sum
Present in oxide precursor

[mmol] 11.2 34.7 0 0 45.9

[g] 0.83 4.99 0 0 5.82

Present in sul�ded sample
[mmol] 0 0 11.2 34.7 45.9

[g] 0 0 0.65 5.55 6.20

During the sul�dation of 100 g oxide precursor of NiMo#2, 5.82 g is "lost", and 6.20 g is "gained" in
the formation of the sul�de phase corresponding to a total gain of 0.38 g per 100 g precursor, which is
practically negligible, but taken into account here. The resulting mass of the 0.5 g (500.2 mg) catalyst
precursor loaded in the Phe/EG experiment is estimated to:

mcat,sulfided = mcat,fresh ·
100g + 0.38g

100g
= 0.5002g · 1.0038 = 0.5021g (J.9)

The carbon deposition thus corresponds to:

Cwt% =
mC

mC +mcat
=

91.9mg
(502.1 + 91.9)mg

· 100% = 15.4wt% (J.10)

The carbon amount includes any carbon deposited on the inner and outer surface of the reactor tube
as well as on the inner surface of the pressure shell. With a fair assumption of this area being equal to
the area of the outer surface of the reactor tube times three, this area is equal to:

SAreactor = 3 · L · 2 · π · rreactor = 6 · 0.90m · π · 0.005m = 0.085m2 (J.11)

where L is the reactor length and rreactor is the outer reactor radius. The surface area of the loaded
catalyst precursor was (see table 3.3) 38.5 m2. The potentially coked reactor surface area thus con-
stituted <0.5 % of the total coked surface area (on oxide precursor basis), and the in�uence on the
calculated coke deposition of 15.4 wt% was assumed negligible.
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