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Abstract. Process mining aims at exploring the data produced by exe-
cutable business processes to mine the underlying control-flow and data-
flow. Most of the process mining algorithms assume the existence of an
event log with a certain maturity level. Unfortunately, the logs provided
by process unaware information systems often do not comply with the re-
quired maturity level, since they lack the notion of process instance, also
referred in process mining as “case id”. Without a proper identification
of the case id attribute in log files, the outcome of process mining algo-
rithms is unpredictable. This paper proposes a new approach that aims to
overcome this challenge by automatically inferring the case id attribute
from log files. The approach has been implemented as a ProM plugin and
evaluated with several real-world event logs. The results demonstrate a
high accuracy in inferring the case id attribute.

1 Introduction

The event logs produced by information systems provide insights into the exe-
cuted process instances and allow to perceive the individual behaviour of each of
them. In process mining, the control-flow is extracted from the recorded behav-
ior which represents the order in which events were executed, and the data-flow
is extracted from the correlation among events’ attributes. However, to explore
process mining capabilities to mine the individual behaviour of each process in-
stance from an event log, it is necessary to distinguish and isolate each recorded
process instances. This requirement gets more complicated in case of concur-
rent execution of process instances which is one of the fundamental principles of
designing modern BPM systems [12]. Under this circumstance, the correlation
among events becomes uncertain, as two successive events in the log may be-
long to different process instances. As solution, a case identifier (case id) should
be attributed to each single process execution. A case identifier is assigned to
events with the same attribute value for all events belonging to the same process
instance.

The availability of the case id attribute in an event log depends on its level
of maturity. The process mining manifesto [10] introduced a maturity ranking
of event logs depending on the level of logging information they provide. Among
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Automated labeling <event>

   <string key="concept:name" value="Q1"/>

   <string key="lifecycle:transition" value="start"/>

   <date key="time:timestamp" value="1970-01-01T09:18:24.685+01:00"/>

</event>
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   <string key="concept:name" value="Q1"/>

   <string key="lifecycle:transition" value="complete"/>

   <date key="time:timestamp" value="1970-01-01T09:18:24.828+01:00"/>

</event>

Extensible Event Stream

Fig. 1. Context of the approach presented in this paper

the maturity criteria used for the ranking is the notion of case id that should be
explicitly mentioned in the log. Burattin in [4] characterized companies accord-
ing to the process awareness of their working methodology and to the process
awareness of the software system they use. In this context, several process aware
companies use process unaware systems where the notion of case id is not explicit.
The approach presented in this paper is beneficial for the following types of pro-
cess unaware software systems: (a) Customer Relationship Management systems
(CRM) where the process data is spread over a complex relational database; (b)
Internet of Things (IoT) environments where sensor data is recorded on external
log files; (c) Document Management Systems (DMS) where digital documents
are stored and managed (if the company works in a process oriented manner,
metadata of each documents are likely to contain information concerning the
case id, such as client number or invoice number). The event logs produced by
those systems have a low maturity ranking since they all lack the notion of a
case id. Moreover, the log data is usually spread over dozens of attributes, mak-
ing it very impractical to manually try them all before finding a correct match
with the case id attribute. As the identification of the case id attribute is crucial
for most process mining analyses, an approach to infer the case id from such
software system logs is valuable.

The context of the approach is depicted in Figure 1. The purpose is to auto-
mate the labeling in the process of converting log files from CSV format to XES1

format. This paper addresses the challenge of inferring the case id as an initial
stride toward a generic approach allowing to infer all the other relevant event log
attributes (i.e., activity name, resource). By exploring the control-flow discovery
quality dimensions a new approach to infer the case ids from event logs (Infer
Case Id, abbreviated as ICI) is introduced and evaluated using both synthetic
and real-world event logs. The rest of the paper is structured as follows: Section 2
discusses the related work. Section 3 presents the event log labeling approach
along with the concepts used to explain it. Section 4 describes the implemen-
tation. Section 5 evaluates the proposed approach, and Section 6 discusses the
obtained results. Finally, Section 7 concludes the paper.

1 See https://standards.ieee.org/findstds/standard/1849-2016.html
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2 Related work

The challenge of inferring case ids from event logs has obtained little attention
from the BPM community. The reason is that most of the literature introducing
new process mining techniques assume the existence of labelled log files where
the case id is known beforehand. This paper drops such assumption, and goes
on a quest for automatically inferring case ids. By looking at the existing related
work, it is notable that few publications [6, 14, 5, 2] have already raised this
challenge and proposed different approaches from different perspectives to solve
the problem.

Ferreira et al., in [6], proposed an approach to transform an unlabeled log
into a labelled one using the Expectation-Maximization technique. This aims at
finding a solution that converges to a local maximum of a likelihood function.
This approach is considered by the authors as generic and executable in dif-
ferent environments. However, inferring case ids using this technique might be
subject to uncertainty because the first-order Markovian model used is unable to
represent some work-flow patterns such as loops and parallelism. An enhanced
approach, suggested by Walicki and Ferreira [14], suggests a sequence partition-
ing technique. However, the proposed technique shares the same limitations as
the previous one [6] since it is limited to only simple work-flow patterns, thus it
does not support loops and parallelism.

Bayomie et al. in [2] proposed an approach to infer the case identifiers from
unlabeled event logs. The approach requires the reference process model used to
document the business process, which is often part of the documentation package
delivered at design time. The reference process model is used to generate a causal
behavioural profile [15]. The latter is used together with time heuristics inferred
from the event log to build a decision tree where each node represents an event
from the event log and carries its conditional probability of belonging to the same
case as its parent node. Bayomie’s approach aims at generating a set of labelled
event logs listed according to a ranking score used to indicate their degree of
trust. The approach explores the data-flow correlations (time heuristics) and
control-flow correlations (causal behavioural profile) between events to group
them by process instance.

Burattin and Vigo in [5] share the same assumption as the ICI approach,
by considering the case id as a hidden attribute inside the log. The authors
justify their assumption by the fact that it is general enough for a broad range
of real-world event logs. Their proposed approach consists of filtering a set of
event attributes considered as candidates for representing the case id in an event
log. The filtering is done to reduce the search space by applying some selection
heuristics such as selecting only the attributes with specific data types (i.e.,
ignoring timestamps), and using regular expression constraints as a selection
criteria. Afterwards, the approach exploits the amount of data shared between
attributes to construct chains, such that each chain links all similar attributes’
values across the log. The case ids are then, inferred by choosing the chain
with maximal length and minimal number of crossed attributes. By reducing
the search space, the approach aims at finding a set of possible combinations
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of attribute that might represent the case id. However, it relies entirely on the
similarity of attributes; thus, its accuracy is limited to a specific range of logs.

The ICI approach presented in this paper overcomes all the challenges of the
previously cited approaches. Indeed, it does not require any reference process
model nor similar heuristics to infer the case ids. The aim is to introduce a
generic approach to infer the case id – but other attributes as well – from event
logs using the control-flow discovery quality dimensions.

3 Method

The ICI approach automates the event log labeling process. Section 3.1 provides
a formal definition of the notations used to describe the approach, Section 3.2
presents the control-flow quality dimensions, Section 3.3 highlights the underly-
ing assumptions, Section 3.4 presents the approach, and Section 3.5 illustrates
the ICI approach by providing a running example.

3.1 Preliminaries

In this section, formal definitions for sequence, event, raw event, trace, case,
and event log are provided. These definitions are combined from existing work
available in the literature [8].

Definition 1 (Sequence). Given a set A, a finite sequence over A of length
n is a mapping s ∈ ([1, n] ⊂ N) → A and can be represented as a string,
i.e., s = 〈s1, s2, . . . , sn〉, where si ∈ A. We write s ∈ A∗ to indicate that the
sequence s contains elements from A. Over a sequence s the following functions
are defined:

– Selection operator: s(i) = si, ∀ 1 ≤ i ≤ n;
– Size operator: |s| = n (i.e., the length of the sequence).

Definition 2 (Event). Given any notion of process, let A be the set of all
possible activities contained in the process, let C be the set of all possible case ids
(i.e., the set of all possible identifiers of process instances), and let D1, . . . ,Dm

be the set of additional data attributes characterizing each event executed. An
event is a tuple e = (a, c, t, d1, . . . , dm), where:

– a ∈ A represents the activity associated to the event;
– c ∈ C represents the case id;
– t ∈ N represents the timestamp;
– d1, . . . , dm is a list of additional (and optional) event attributes, where
∀ 1 ≤ i ≤ m, di ∈ Di ∪ {⊥}.

E = A×C×N×D⊥1× . . .×D⊥m is called the event universe. In an event e, the
following projection functions are defined: πa(e) = a, πc(e) = c, πt(e) = t, and
πdi

(e) = di,∀ 1 ≤ i ≤ m. If e does not contain the attribute value di for some
i ∈ [1,m] ⊂ N, πdi(e) =⊥.
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The event definition (cf. Def. 2) assumes the existence of a case id c ∈ C in
order to have the tuple e = (a, c, t, d1, . . . , dm). Since the ICI approach assumes
that the case id is unknown a-priori, it is necessary to define a Raw Event as an
event with unknown case id.

Definition 3 (Raw Event). A Raw Event is a tuple ê = (a, t, d1, . . . , dk),
where:

– a ∈ A represents the activity associated to the event;
– t ∈ N represents the timestamp;
– d1, . . . , dk is a list of raw event attributes.

Ê = A × N × D1 × . . . × Dk is called the raw event universe. In a raw event
ê, the following projection functions are defined: πa(ê) = a, πt(ê) = t, and
πdi

(ê) = di,∀ 1 ≤ i ≤ k. If ê does not contain the attribute value di for some
i ∈ [1, k] ⊂ N, πdi(ê) =⊥.

Definition 4 (Trace, Case). A trace is defined as a finite sequence of events
σc = 〈e1, e2, . . . , en〉 ∈ E∗ such that ∃c ∈ C ∀ 1 ≤ i ≤ |σ|, πc(ei) = c ∧ ∀ 1 ≤
j < |σc|, πt(σc(ej)) ≤ πt(σc(ej+1)). In the context of this paper, each case is a
grouping of events belonging to the same process execution and having same case
id. Thus, each case is a distinct trace. Additionally, the sequence of events in a
trace is ordered according to their timestamp.

Definition 5 (Event Log). An Event Log L is defined as a set of events such
that L ⊆ E. Please note that it is possible to group events based on their case id
in order to identify traces.

3.2 Control-flow Quality Dimensions

This section describes the control-flow quality dimensions considered by the ICI
approach. The availability of an event log allows generating different process
models depending on the discovery algorithm used. The generated models can
be evaluated based on the following four quality dimensions: Fitness, Precision,
Generalization, and Simplicity [12].

The Fitness dimension represents the ability of a process model to reproduce
the control-flow of the traces recorded in the event log [11]. Measuring Fitness
can be performed using several approaches such as the “Alignment-based Replay
Fitness” [13] and the Petri-net replay technique that allows to detect possible
mismatches [9]. The Precision dimension is used to quantify the extra behaviour
allowed by a process model that is not recorded in the log [11]. In case the process
model contains loops, this will generate infinitely many behaviours. Therefore,
counting the number of all possible traces is impossible. There exist several
approach to quantify precision such as the Escaping edges technique [3], and
alignment based technique proposed in [1]. The generalization dimension is used
to quantify the extent to which the process model can replay log traces that
are not yet recorded in the event log [11]. There exist several approaches to
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estimate generalization such as the frequency of use approach, which is based
on the assumption that a generic model is a model whose parts are all used
with the same frequency [3]. The Simplicity dimension is used to quantify the
extent to which a process model is simple. It is defined according to two main
principles: (a) The the Occam’s Razor principle which states “One should not
increase, beyond what is necessary, the number of entities required to explain
anything.” (b) The understandability of the process model by the user [3]. The
literature presents several heuristics that could be used to estimate simplicity
such as the Simplicity by activity occurrence [3]. This heuristic assumes that the
less duplicate activities there are in a process model, the more simple it is.

3.3 Assumptions

The ICI approach is built upon few assumptions. Specifically, the case id is
assumed to be explicitly mentioned in the event log. In other words, given a
raw event ê = (a, t, d1, . . . , dk) (Definition 3), a case id c is one of the raw event
attributes d1, . . . , dk. Additionally, the case id is given by the same attribute of
all raw events. In other words, if di is the case id attribute of raw event ê ∈ Ê ,
then the case id attribute of all other events in Ê is di. Finally, the event name
attribute and the timestamp attribute of the event log are know and each raw
event set refers to executions of the same process (with several instances).

Please note that all these assumptions are typically acceptable in many real
process mining projects.

3.4 Approach

The preliminaries presented in Section 3.1, the four quality dimensions described
in Section 3.2, and the assumptions presented in Section 3.3 provide a good
starting point to describe the ICI approach. The control-flow discovery allows
discovering process models reflecting the behaviours seen in an event log [11,
p. 125]. To ensure the consistency of the discovered model, the case id should be
correctly identified in the log. In case it is wrongly identified, the obtained model
would be inconsistent. For instance, by selecting a random attribute as a case id
it is most likely that the discovered control-flow would not represent the original
process model. Consequently, the discovery algorithm used will produce some
strange behaviours resulting in an inconsistent model. Luckily, the control-flow
four quality dimensions allow quantifying those behaviours.

In principle, the control-flow discovery quality dimensions are meant to eval-
uate and compare the quality of different discovery algorithms [3]. This paper
goes beyond the classical use of the control-flow discovery quality dimensions
by exploiting their ability to evaluate and compare different process models ob-
tained using the same process discovery algorithm but considering different event
attributes as case id.

To Infer the case id attribute from a log file, the ICI approach relies on two
important steps. First it uses a heuristic to quantify the number of distinct values
of each attribute across the log. This step is called Compute grouping ratio for
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each attribute. Its purpose is to identify the attributes that are most likely to
represent the case id. In the second step, each log attribute is assumed to be
the case id attribute and then evaluated using the control-flow discovery quality
dimensions. This step is called Compute the quality score for each attribute. Using
the heuristic from the first step and the evaluation metrics from the second step,
the ICI approach allows to infer the real case id attribute. The remaining of this
section (Section 3.4) explains these two steps.

Compute Grouping Ratio for Each Attribute: To get close insight into
which event attribute is more likely to represent the case id, the ICI approach
computes the grouping ratio for each attribute. This is used to quantify the ex-
tent to which an attribute can be used to split events into groups, such that
each group can be identified by a unique value of the attribute. For instance, a
case id attribute is used to group events belonging to the same process execu-
tion by assigning them the same value, thus by grouping events by case id, the
obtained number of groups will correspond to the number of process executions
(cases). However, by choosing a different attribute to represent the case id (i.e.,
timestamp, event id, resource), the obtained event groups might have smaller
or larger size. Section 3.5 provides an example showing the intuition behind the
use of the grouping ratio to measure the likelihood that an attribute is the case
id.

Let L̂ be a set of raw events such that L̂ ⊆ Ê . According to Definition 3, a
raw event ê ∈ L̂ is a tuple ê = (a, t, d1, . . . , dk), with d1, . . . , dk being the list
of raw event attributes, where ∀ 1 ≤ i ≤ k, di ∈ Di. Ni is defined as the set of
unique values for Di such that Ni(L̂) = {πdi

(ê) | ê ∈ L̂}. Then, the Grouping
Ratio for Di on the raw events set L̂ is defined as:

gi(L̂) = 1− |Ni(L̂)|
|L̂|

. (1)

Where |Ni(L̂)| is the size of set Ni(L̂), and |L̂| is the size of the set L̂ that is the
total number of raw events it contains.

Compute Quality Score for Each Attribute: In this step, raw events are
transformed into events with known case id that is one of the event attributes,
and then an event log L is generated. Afterwards, a process discovery algorithm
is applied to the event log L to discover the corresponding process model. Once
the model is obtained, the quality dimension metrics are used to measure fitness,
precision, generalization, and simplicity. The measurements are summed up to-
gether with the the distance to the average grouping ratio then averaged to get
a quality score, which is used to rank the process model corresponding to each
attribute. Finally, the attribute with the highest rank is selected to be the real
case id attribute.

Let L̂ be the set of raw events (cf. Definition 3) and let L be an event log
(cf. Definition 5). L̂ can be transformed to L as follows: Let k be the number
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of the of additional data attributes D1, . . . ,Dk and let j ∈ [1, k] be the index
of the attribute considered as case id. Then, for each ê ∈ L̂, a new event e is
created such that πa(e) = πa(ê), πt(e) = πt(ê), πdi(e) = πdi(ê),∀ 1 ≤ i ≤ k, and
πc(e) = πdj (ê). Finally e is inserted into the event log L. Also, Let g(L̂) be the
average grouping ratio of the of additional data attributes D1, . . .Dk such that

g(L̂) =
∑

i∈[1,k] gi(L̂)
k . Then the distance to the average grouping ratio for an

additional data attribute Di is defined as gr(L̂, i) = 1− |gi(L̂)− g(L̂)|, where |.|
is an absolute value function.

Algorithm 1 describes the function used to infer the case id. The function
takes as input L̂ the set of raw events, and returns c the index of the case id
in the list of raw event attributes. The algorithm iterates over all the indexes
of the additional attributes (lines 3-16). For each index i ∈ [1, k], it computes
the distance to the average grouping ratio gr using the function gr(L̂, i) (line
4), then generates an event log file L using the function generateLog(L̂, i) where
Di is assumed to be the case id attribute (line 5), and applies a process dis-
covery algorithm (i.e., Inductive Miner) to generate the corresponding process
model M using the function mine(L) (line 6). Afterwards, it computes the fit-
ness, precision, generalization, and simplicity using the functions fitness(M,L),
precision(M,L), generalization(M,L), and simplicity(M,L) respectively (lines 7-
10). Finally it computes the quality score qual from the previous quality dimen-
sions and the distance to the average grouping ratio (line 11). Moreover, the
algorithm keeps track of the attribute index with highest quality score to return
it by the end of all the iterations (lines 12-15).

3.5 Running Example

To illustrate the ICI approach a synthetic log file entitled Robot Process2 record-
ing the workflow of a robot process in a smart factory is used. The important
attributes in this log file are the Case Id, the Start Timestamp, the Event Name,
and the Subject Id that refers to the resource attribute. To demonstrate the ICI
approach, the Case Id which is the ground truth in this example is assumed to
be unknown, and the aim is to infer it as explained in Section 3.4. The first step
is to use Equation 1 to calculate the grouping ratio of each event attribute (log
column) in the log file. The results are shown in Table 1.

The grouping ratios presented in Table 1 provide a brief insight into which
event attributes might represent the case id. By analyzing the obtained group-
ing ratios, one can notice the following: Event Id attribute has score 0, which
is trivial since the event Id is a unique identifier for each event. Start Times-
tamp and End Timestamp have very low grouping ratios because some events
happened concurrently. However, Event Name, Event type, Subject Group, and
Object Group have very high grouping ratios. Assuming that a case id should
not group too many nor too few events one would expect that only Case Id,
Subject Id, and Object Id might represent the real case id column.

2 See https://doi.org/10.5281/zenodo.1186684

8



Algorithm 1: Infer case id

Input : L̂ the set of raw events, where D1, . . . ,Dk are all additional data
attributes available

Output: c the index of the case id in the list of raw event attributes
1 best← 0 // Initialize highest score

2 c← ⊥
// Iterate over all the indexes of the additional attributes

D1, . . . ,Dk

3 foreach i ∈ [1, k] do

4 gr← gr(L̂, i) // Compute the distance to the average grouping ratio

5 L←generateLog(L̂, i) // Generate log file using Di as case id

6 M ←mine(L) // Apply process discovery algorithm

// Compute all quality dimensions

7 f ← fitness(M,L)
8 p← precision(M,L)
9 g ← generalization(M,L)

10 s← simplicity(M,L)

11 qual← (gr + f + p + g + s)/5 // Compute quality score

12 if qual > best then
13 c← j // Consider j as the index of the new candidate case id

14 best← qual

15 end

16 end
17 return c

Table 1. Grouping ratios for Robot Process log attributes

CaseId EventId StartT EndT E.Name E.Type S.Group S.Id O.Group O.Id

0.7693 0.0000 0.0079 0.1696 0.9992 0.9997 0.9997 0.9861 0.9997 0.9333

The second step is to compute the quality score for the attributes in the set
of raw events as shown in Table 2. In this step, each attribute is considered as
candidate case id. For the sake of simplicity it is assumed that the event name
attribute and the start timestamp attribute are known; thus they are excluded
from the set of possible attributes. For each candidate case id attribute, the cor-
responding process model is generated using a process discovery algorithm. In
this paper, the “Inductive Miner with Infrequent and all operators (IMfa)” [7]
is used. IMfa is considered as one of the least biased discovery algorithms to-
ward the four quality dimensions. Then, the distance to the average grouping
ratio (Gr) is calculated from the grouping ratios (G). Afterwards, the control-
flow discovery quality dimension metrics (Fr, Pi, Sm, and Gv) are computed
for each attribute and the quality scores (Quality) are derived. In this paper,
the control-flow discovery quality dimensions are calculated using the metrics
presented in [3]: the fitness, the precision, the generalization and the simplicity
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Table 2. Quality scores for each candidate case id

Attribute G Gr Fr Pi Sm Gv Quality Rank

Case Id 0.7693 0.9172 0.9998 1.0000 1.0000 0.9726 0.9779 1
Event Id 0.0000 0.3136 1.0000 1.0000 1.0000 0.9747 0.8577 5
End Timesstamp 0.1696 0.4832 0.9543 0.9171 1.0000 0.9767 0.8663 4
Event Type 0.9997 0.6867 0.7975 0.4927 1.0000 0.8450 0.7644 6
Subject Group 0.9997 0.6867 0.7975 0.4927 1.0000 0.8450 0.7644 6
Subject Id 0.9861 0.7004 0.9997 0.8077 1.0000 0.9596 0.8935 2
Object Group 0.9997 0.6867 0.7975 0.4927 1.0000 0.8450 0.7644 6
Object Id 0.9333 0.7532 0.9991 0.7343 1.0000 0.9738 0.8921 3

Fig. 2. ICI plugin Architecture

are calculated using Alignment-based Replay Fitness, Escaping edges, Frequency
of use, and Simplicity by activity occurrence metrics respectively.

By ranking the obtained quality scores shown in Table 2, the Case Id at-
tribute represents the best candidate as real case id because it has the highest
quality score. This example illustrates the ICI approach and demonstrates its
ability to provide accurate results on a synthetic log file. The next section eval-
uates the ICI approach on real-world event log files.

4 Implementation

An overview of the ICI plugin architecture is depicted in Figure 2. The ICI plu-
gin requires as input a Raw Event Set in the CSV format, and an initial mapping
with the timestamp and event name attributes. The aim is to infer the case id
attribute among the log attributes using the approach introduced in Section 3.
For this purpose, the followings three components have been implemented: (a)
Test assignment which iterates over the log attributes, and constructs an event
log where the case id corresponds to one of the log attributes (cf. Algorithm
1, Line 5); (b) Mining which provides the event log to a mining algorithm and
returns the corresponding model (cf. Algorithm 1, Line 6); (c) Evaluation which
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evaluates the model using the control-flow discovery quality dimensions (cf. Al-
gorithm 1, Lines 7-10). By end of this process, the event log with the highest
quality score is chosen.

The ICI plugin integrates two main packages from the open-source process
mining framework ProM3 that are the Inductive Miner4 which implements the
IMfa algorithm, and the Evolutionary Tree Miner5 which implements the neces-
sary metrics used to evaluate the control-flow four quality dimensions. The ICI
plugin is embedded with the CSV Importer Plugin6.

As mentioned in Section 3.4 choosing the wrong attribute to represent the
case id causes inconsistencies with the mining algorithm. These inconsistencies
are amplified when choosing an attribute with too low or too high grouping ratio.
As solution, the ICI plugin allows choosing a sample of the event log instead of
using the full event log to infer the case id, which reduces the plugin execution
time and avoids memory overheads due to the inconsistencies in the mining
algorithm. A sample can be selected from the top n entries of the log or from a
random selection of n entries in the log.

The ICI plugin (called “Infer Case ID“ in ProM) is available as part of
the CSV Importer package7. It can be installed using the ProM Package Man-
ager. A video demonstration of the plugin is available at https://youtu.be/

OKyuc3mEG1I.

5 Evaluation

To evaluate the ICI approach on a larger scale, several real-world event logs
were obtained from the 4TU public database8. With the purpose of having a
ground truth to evaluate the accuracy of ICI approach, the event logs used
are all labelled : the real case id attribute is known. This section reports the
results obtained by applying the ICI approach on several real-world log files.
Section 5.1 explains the evaluation procedure and presents the used data sets,
and Section 5.2 reports the evaluation results.

5.1 Evaluation Procedure and Data Sets

Most of the event logs obtained from the 4TU database are available in XES
format, thus, the attribute labels are already known. The process mining tool
Disco9 was used to convert the event logs from XES to CSV format. The sample

3 See http://www.promtools.org/
4 See https://svn.win.tue.nl/repos/prom/Packages/InductiveMiner/
5 See https://svn.win.tue.nl/repos/prom/Packages/EvolutionaryTreeMiner/
6 See https://svn.win.tue.nl/repos/prom/Packages/CSVImporter/
7 Currently available in ProM Nightly Build at http://www.promtools.org/doku.

php?id=nightly
8 See the collection of real-world event logs at 4TU Center for Research Data http:

//data.4tu.nl/repository/collection:event_logs_real
9 See https://fluxicon.com/disco/
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used in the evaluation consists of the top 10000 events ordered by timestamp
(in an ascending order) for each event log. The plugin was executed with the
following system configuration: 12Gb of RAM, and 1 processor with 4 cores.

The data sets considered to evaluate the ICI approach are the following: BPI
challenge 2012, BPI challenge 2013 incidents, BPI challenge 2014 Detail Inci-
dent Activity, BPI challanges 2017, Credit requirements, Helpdesk anonymized10

and Receipt phase of an environmental permit application process (WABO)
CoSeLoG project. These event logs are available in the Real Event Logs collec-
tion11 of the 4TU database.

5.2 Results

The evaluation results are reported in Table 3. For each log file event attribute
the following ratios are computed: grouping ratio for the full log file (G full),
grouping ratio of the sample used in the evaluation (G sample), distance to
average grouping ratio of the sample (Gr), alignment-based replay fitness (Fr),
precision using escaping edges improved technique (Pi), generalization using
frequency of use technique (Gv), simplicity using activity occurrence technique
(Sm) and quality score (Quality S.). The obtained quality scores are ranked
to infer the log attribute with the highest rank. Note that the quality score
calculation considers the grouping ratio of the sample instead of the grouping
ratio of the full log. However, both grouping ratios (sample and full) are reported
to emphasis on the fact that the grouping ratio of the sample used does not differ
much from the grouping ratio of the original log file.

To demonstrate the accuracy of the ICI approach, the real case id attribute
(considered as ground truth) should always have the highest rank among the
other attributes. For sake of brevity, only the top three attributes with the
highest rank are reported in Table 3. The evaluation results show that the case
id attribute always has the highest quality score. The results are discussed in
details in Section 6. The complete version of the evaluation results including the
quality scores of all the attributes considered for each event log is available at
https://doi.org/10.5281/zenodo.1186678.

6 Discussion

This section discusses the evaluation of the ICI approach based on the data
shown in Table 3. Clearly, the ICI approach demonstrates a high accuracy in in-
ferring the case id in all the event logs considered for the evaluation. However, it
is still important to highlight few cases where the quality score of other event at-
tributes is very close to the case id attribute score. For instance, in BPI challenge
2013, the quality scores for Case ID attribute and Resource attribute are 0.8834
and 0.8745 respectively. To explain this small difference in the quality scores,

10 See https://data.mendeley.com/datasets/nm9xkzhpm4/1
11 See http://data.4tu.nl/repository/collection:event_logs_real
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Table 3. Quality scores of the three top ranked attributes of each event log. (refer to
Section 5.1 for the full names the event logs.)

Log file Attribute G full G sample Gr Fr Pi Sm Gv Quality S. Rank

Case ID 0.9501 0.9210 0.9267 0.9097 0.7346 1.0000 0.9170 0.8976 1
BPI challenge 2012 (case) AMOUNT REQ 0.9976 0.9881 0.8596 0.9998 0.4074 1.0000 0.9076 0.8349 2

concept:name 0.9999 0.9976 0.8501 0.9109 0.6615 1.0000 0.5169 0.7879 3

Case ID 0.8847 0.9045 0.9993 0.9926 0.4574 1.0000 0.9678 0.8834 1
BPI challenge 2013 Resource 0.9780 0.9223 0.9815 0.9910 0.4358 1.0000 0.9640 0.8745 2

impact 0.9999 0.9996 0.9042 0.9588 0.6001 1.0000 0.8457 0.8618 3

Incident ID 0.9471 0.9471 0.8049 0.9977 0.3541 1.0000 0.8922 0.8098 1
BPI challenge 2014 IncidentActivity Number 0.0000 0.0000 0.2480 1.0000 1.0000 1.0000 0.7271 0.7950 2

Assignment Group 0.9886 0.9886 0.7634 0.9861 0.2568 1.0000 0.8846 0.7782 3

Case ID 0.9439 0.9084 0.9246 0.9806 0.7591 1.0000 0.9370 0.9203 1
BPI challanges 2017 (case) RequestedAmount 0.9988 0.9901 0.8429 0.9858 0.5070 1.0000 0.9489 0.8569 2

EventID 0.0000 0.0912 0.2582 1.0000 1.0000 1.0000 0.9135 0.8343 3

Case ID 0.8750 0.8712 0.7327 0.9916 1.0000 1.0000 0.9718 0.9392 1
Credit requirements Complete Timestamp 0.0127 0.0123 0.4084 0.9983 0.8900 1.0000 0.9821 0.8558 2

Resource 0.9999 0.9992 0.6047 0.9442 0.6677 1.0000 0.4905 0.7414 3

Case ID 0.8168 0.8180 0.8870 0.9643 0.9729 1.0000 0.9494 0.9547 1
Helpdesk anonymized customer 0.9832 0.9727 0.9583 0.9302 0.5364 1.0000 0.8786 0.8607 2

product 0.9990 0.9984 0.9326 0.9401 0.4979 1.0000 0.8761 0.8493 3

Case ID 0.8327 0.8327 0.9850 0.9843 0.7017 1.0000 0.8838 0.9110 1
Receipt env. Permit (case) responsible 0.9953 0.9953 0.8223 0.9967 0.2582 1.0000 0.8714 0.7897 2

org:group 0.9987 0.9987 0.8190 0.9795 0.3507 1.0000 0.7992 0.7897 3

Table 4. Quality scores for BPI challenge 2013 with a sample size of 40000 events

Log file Attribute G sample Gr Fr Pi Sm Gv Quality Rank

Case ID 0.8666 0.9624 0.9641 0.8205 1.0000 0.9480 0.9390 1
BPI Chal. 2013 (40000 events) Resource 0.9674 0.9368 0.9001 0.4056 1.0000 0.8938 0.8273 2

product 0.9846 0.9196 0.9996 0.2387 1.0000 0.9709 0.8258 3

the process mining tool Disco was used. By inspecting the statistics provided
by the tool for the process model where the case id corresponds the real case id
attribute, the number of cases and resources are 954 and 776 respectively, which
can also be noticed from the grouping ratios of Case ID attribute and Resource
attribute that are 0.9045 and 0.9223 respectively. This small difference in the
quality score can be explained with the fact that the sample of the event log
used considers only the top 10000 events which is not enough to perceive the
overall behaviour of the model. Alternatively, a large sample of 40000 events is
applied to the BPI challenge 2013 event log. The corresponding quality scores
are shown in Table 4.

As shown in Table 4, by increasing the event log sample size, the difference
between the quality scores for Case ID attribute and Resource attribute in-
creased significantly (0.9390 and 0.8273 respectively). In a perfect scenario, one
would use the full event log to preserve its overall behaviour. However, memory
overhead issues might happen especially while dealing with large event logs.

BPI challenge 2014 represents another example where the difference in qual-
ity scores between Case ID attribute and IncidentActivityNumber attribute is
insignificant (0.8098, and 0.7950 respectively). However, the grouping ratio of
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IncidentActivityNumber attribute is 0; hence, the attribute contains only unique
values. Consequently, the generated model would appear like a flower model
where all the log traces can be replayed, thus, the fitness will certainly be equal
to 1. [11, p. 151]. To avoid such cases, the attributes with a grouping ratio equals
to 0 could be filtered out before running the ICI plugin.

The evaluation results demonstrate that the ICI approach is accurate on sev-
eral event logs. However, more event logs should be tried-out and other control-
flow discovery algorithms should be used. Nevertheless, the results shown in Sec-
tion 5.2 are promising and provides a clear insight into the aspects that should
be enhanced. Mainly, the following challenges should be addressed: (a) Filtering
out the log attributes with too low or too high grouping ratios. By overcoming
this challenge, the memory overhead issues will be avoided. Moreover, the at-
tributes with Boolean values will be ignored. Such attributes always have higher
grouping ratio, which impacts negatively on the distance to average grouping
ratio in case several log attributes are Booleans. (b) Defining an optimal sample
size proportional to each event log characteristics (i.e., number of resources).
Indeed, The accuracy of the ICI approach depends on the sample of the log used
to compute the quality score and its ability to preserve the overall behaviour,
which can be quantified by the control-fow discovery quality dimensions and the
grouping ratio. Please note that the sample size used in this evaluation has been
chosen to preserve the overall behaviour of the log. However, it cannot guarantee
that the same sample size is valid for all other log files.

7 Conclusion and Future Work

To sum up, the ICI approach proposes a new technique to automatically infer
the case id from an event log by exploring the control-flow discovery quality
dimensions capabilities. Unlike the existing techniques mentioned in Section 2,
the ICI approach does not require any domain-specific heuristics. Under the as-
sumption that a case id is explicitly mentioned in the event log, the ICI approach
allowed to correctly identify the case id in a synthetic log. The approach was
evaluated using several real-world event logs obtained from a public database to
demonstrate its accuracy on a large scale. The results show a high potential for
inferring the case id despite the challenges discussed in Section 6.

As future work, the challenges related to memory overhead and optimal sam-
ple size have the highest priority. Moreover. several heuristics could be applied
to filter out the candidate event attributes based on their data types (i.e., ignor-
ing timestamp attributes and Boolean attributes) and based on their grouping
ratios. In addition, the availability of domain knowledge will help to reduce the
search space and enhance the performance of the ICI approach by enabling a
pre-selection of the event attributes that are most likely to contain the case id.
Furthermore, the ICI approach could be easily generalized to infer the case id
from a combination of log attributes. In term of feasibility, the approach could be
illustrated in a practical use-case fitting into one of the application areas men-
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tioned in Section 1. Finally, the ICI algorithm could be tried-out using other
control-flow discovery algorithms and quality metrics.
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