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Abstract—In the last few years Machine Learning (ML) has
seen explosive growth in a wide range of research fields and
industries. With the advancements in Software Defined Radio
(SDR), which allows more intelligent, adaptive radio systems
to be built, the wireless communications field has a number
of opportunities to apply ML techniques. In this paper, a
novel approach to demodulation using a Sequence to Sequence
(Seq2Seq) model is proposed. This type of model is shown to
work effectively with PSK data and also has a number of
useful properties that are not present in other machine learning
algorithms. A basic Seq2Seq implementation for BPSK and
QPSK demodulation is presented in this paper, and learned
properties such as Automatic Modulation Classification (AMC),
and ability to adapt to different length input sequences, are
demonstrated. This is an exciting new avenue of research that
provides considerable potential for application in next generation
5G networks.

I. INTRODUCTION

The progress made in ML and deep learning has enabled

rapid growth in the fields of Computer Vision (CV), Natural

Language Processing (NLP), and other disciplines. These

fields have seen a shift towards data driven research and

engineering, where novel state-of-the-art systems use ML

algorithms and are replacing hand-crafted methods. With the

advancements in SDR and Cognitive Radio (CR), and the

opportunity of high performance processing in 5G cores, and

edge computing networks, there is now excellent potential to

exploit data driven implementations in the communications

field.

Artificial Intelligence (AI) is a hot topic when talking

about next generation wireless networks [1], and a reasoned

demonstration of Deep Learning (DL) in the radio physical

layer has been made in [2]. A great deal of research has

already been conducted to bring AI into digital radio commu-

nications, particularly in the fields of Cognitive Radio (CR) for

spectrum sensing and sharing [3], and Automatic Modulation

Classification (AMC), where using ML supervised learning

algorithms are well suited [4]. State of the art, AMC systems

have historically used expert statistical features, such as higher

order moments and cumulants [5],[6]. These methods require

the designer of a radio receiver to have an in-depth knowledge

of the signals of interest, and adding compatibility with new

radio standards to such receivers may be very costly, requiring

additional research and development.

DL is in an exciting phase currently, with the availabil-

ity of powerful Graphical Processing Units (GPUs) and the

opportunity to collect and store more data than ever before.

The strongest quality of DL models is that they can usually

be trained as end-to-end systems, learning the features and

necessary transformations required to map inputs X to desired

outputs Y . In [7], a deep Convolutional Neural Network

(CNN) was trained on raw radio data to recognize modula-

tion schemes at a comparable success rate to that of more

traditional methods [4]. Recurrent Neural Networks (RNNs)

have seen good success when applied to sequence data such

as audio or text. In [8], the authors created an FM (Frequency

Modulation) demodulator using an RNN, trained end-to-end,

to reconstruct transmitted speech signals – this approach was

demonstrated to outperform traditional FM demodulation at

low SNR. A neural network of the same architecture has

also been applied to wireless transmission traffic detection in

[9], showing good results in classifying different transmission

protocols.

Another advantage of using DL and deep neural networks

for radio receivers is the reconfigurability aspect. Conventional

receivers comprise many DSP modules and changing hardware

can be costly; however a deployed neural network is, in

essence, a set of weights. Models can be trained off-site and

offline, and once a better performing algorithm is trained and

validated it can be easily applied to an SDR receiver as a

firmware update.

This paper presents a novel approach to radio physical layer

modulation scheme classification and pulse shaped symbol

recovery (which we will refer to as BPSK/QPSK demodu-

lation), as a single module through the use of a Seq2Seq

[10] model as illustrate in Figure 1. This type of architecture

has been very successful in NLP for translation purposes

because of its ability to accumulate context and, unlike the

DL architectures mentioned previously, possesses the capabil-

ity of outputting sequences, rather than single classification

decisions. A Seq2Seq model consists of 2 RNNs connected in

an encoder-decoder structure, and uses supervised learning to

learn to map input sequences to output sequences.

The rest of this paper is laid out as follows: Section II

outlines the approach to the design of the model. The details

of how the model was trained are presented in Section III,

which includes data formatting, and hyperparameters of the

training algorithm used. Sections IV and V provide results

and discussion, and conclusions, respectively.



Fig. 1. High Level Overview of Seq2Seq Model

II. BACKGROUND

A. Signal Model

The BPSK and QPSK symbols for training and testing in

this work were all generated from a random distribution using

MATLAB, and pulse shaped using a Raised Cosine Filter with

a rolloff factor of α = 0.35, oversampling factor sps = 8 and

filter span in symbols Fspan = 8. The resultant waveforms

are then split into their real and imaginary components, and

therefore each symbol period is represented by a 2x8 matrix. A

training example consisting of 6 symbol periods is illustrated

in Figure 2.

Fig. 2. Single Training Example Overview

In terms of ML, the act of symbol extraction can be con-

sidered a classification problem with M +2 classes, where M

is the number of possible received symbols, and an additional

2 classes are set aside for the EOS (End Of Sequence) and

padding (PAD) tokens. For BPSK and QPSK combined, M =

6. Each symbol {S0, S1, ...S5} and EOS, PAD tokens can be

represented as one-hot encoded vectors such as:

















S0

S1

...

S5

EOS

PAD

















=

















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

... ... ... ...

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

















An example sequence of 6 one-hot encoded labels to

go along with the waveform shown in Figure 2 would be

represented by a 7× 8 matrix, if EOS is included.

B. Recurrent Neural Networks

RNNs are mainly used when working with sequential data,

and are most prominently used in NLP and Audio process-

ing. What differentiates them from CNNs and Multi Layer

Perceptrons (MLPs) is the presence of a hidden state, which

is updated after each time step, therefore acting as additional

memory for storing context about the input sequence. RNN

cells generally follow a basic update rule for hidden state, h,

and output y at time step t, as given in (1) and (2) respectively,

where the W terms represent the hidden state, input and output

weight matrices respectively, and b are the biases.

ht = tanh(Whht−1 +Wxxt + bh) (1)

yt = Wyht + by (2)

Because RNNs have memory, the outputs produced at time

step t do not only depend on the current input, but on all the

past inputs as well. An unrolled RNN representation is shown

in Figure 3.

Fig. 3. Overview of a Recurrent Neural Network

Regular RNNs based solely on a tanh or sigmoid activation

have somewhat fallen out of favor in recent developments,

because they have poor memory retention in cases of long

sequences due to vanishing/exploding gradients. The introduc-

tion of LSTM (Long Short-Term Memory) cells [11], which

are another type of RNN, have addressed this problem — they

support very long sequences, and allow even more advanced

models to be developed. The update rules for an LSTM cell

from [12] are defined as

it = σi(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σf (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)

yt = σy(Wxyxt +Whyht−1 +Wcyct + by) (5)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (6)

ht = yttanh(ct) (7)

where σ is the sigmoid function, i and f are respectively

the input and forget gates, c is the cell state, and all the W

terms are the corresponding weight matrices. For the purposes

of constructing the Encoder-Decoder network, the LSTM cell

can be treated just like a regular RNN cell. DL libraries such

as Tensorflow [13] will abstract the complexity such that the

interface does not change, regardless of cell type.

III. IMPLEMENTATION

A. Encoder

The encoder is an RNN made up of 2 layers of stacked

LSTM cells (cell size = 128) — this determines how large



the network is and its memory capacity. The general structure

of the encoder is shown in Fig 4.

Fig. 4. Encoder Structure

At each time step t the encoder network is fed a sample

input x(t), composed of the real and imaginary components

of the received baseband radio signal. The outputs of the

encoder network are disregarded and left unused, as the only

purpose of the network is to accumulate information about

the incoming waveform. The hidden state of each stacked

LSTM is updated after each step, and once the final sample

is processed, the hidden states are concatenated to be passed

off to the decoder. The passed hidden state should have all of

the information necessary to determine the modulation scheme

and the received bits encoded inside.

B. The Decoder

The decoder RNN cells must be of the same cell size as the

encoder (to allow hidden state sharing), however the number

of output steps need not correspond to the number of iterations

required to encode the input waveform. Each predicted output

is fed back into the decoder as the input of the next time step

to assist in predicting the next symbol as shown in Figure 5.

The GO vector in this case is just the cell sized input set to

all zeros. The network will continue outputting symbols until

it finally outputs an EOS token.

Fig. 5. Decoder Structure

Since this is a classification task, each output yt goes

through a softmax layer where a probability distribution over

all possible symbols is generated. These are then used to

predict symbols in a sequence.

σ(Y )j =
eyj

∑K

k=1
eyk

(8)

where σ is the normalized output over all possible symbols for

that time step. The j index denotes the output neuron number,

while K is the number of outputs, and Y refers to the activation

values coming from the fully connected layer neurons.

C. Training

For the training set, a total of Nbpsk, Nqpsk = 8192
sequences of pulse shaped symbols were generated for each

SNR level at 0dB, 5dB, 10dB and 15dB. The training set

is then randomly shuffled and split into mini-batches of 512

sequence-label pairs per batch.

The model was trained in Tensorflow using the Adam [14]

optimizer, with a learning rate of α = 0.5 × 10−3. The loss

function selected for this task was Categorical Cross-Entropy,

a popular choice for classification problems, defined as:

Ls(y, ŷ) = −
∑

i

yi log ŷi (9)

Where Ls is the loss per classified symbol in a sequence,

while y and ŷ are the ground truth labels and predictions

created by the model, respectively. The further the predicted

output is from the desired outcome, the higher the loss value.

To obtain the total loss of a single classified sequence, an

average is taken of all the individual losses.

IV. RESULTS

The neural network was trained with input sequence lengths

of N = 3, 5, 7 and 10 symbols in order to ensure that increasing

the input window length still allowed it to reasonably fit the

data. As seen in Figure 6, sequence lengths of increasing

number of symbols can fit the training set, albeit at the expense

of longer training times to convergence as sequence length

increases.

Fig. 6. Losses at Variable Input Lengths



TABLE I
SYMBOL PREDICTION ACCURACIES

Mod N Average Acc Mod N Average Acc

BPSK 3 93.8% QPSK 3 82.1%
5 94.7% 5 86.2%
7 95.7% 7 87.0%

10 96.3% 10 87.5%

TABLE II
MODULATION CLASSIFICATION ACCURACIES

Mod N SNR = 0dB SNR = 5dB SNR = 10dB Average

BPSK 3 80.3% 95.6% 99.9% 95.2%
5 78.9% 98.1% 99.9% 96.1%
7 83.9% 98.9% 100% 97.3%

10 87.9% 99.4% 100% 98.0%

QPSK 3 57.9% 86.9% 98.6% 88.2%
5 74.6% 92.3% 99.1% 93.3%
7 75.4% 94.9% 99.9% 94.4%

10 79.4% 97.5% 100% 96.2%

The trained model is then evaluated for SNR values between

0 and 15 dB using a held out test dataset, with 16384

BPSK and QPSK examples per SNR level. The resultant

symbol accuracies for each input sequence size can be seen

in Table I. Another useful metric for this type of model is the

actual modulation classification accuracy. This was obtained

by disregarding individual symbol errors, and instead checking

whether the predicted symbol belongs to that modulation

scheme class. The modulation scheme classification accuracies

are summarized in Table II.

Curves for input sequence lengths of 10 symbols compared

to an ideally matched filter receiver can be seen in Figure 7.

Fig. 7. Accuracy for BPSK and QPSK with 10 Symbol Sequences

As the graph suggests, at low SNR levels the Seq2Seq

model does not match the performance of a matched filter,

which can be explained by low overall modulation scheme

accuracy rates at low SNR in Table II.

V. CONCLUSIONS

An implementation of a Seq2Seq model has been applied

to baseband BPSK and QPSK modulation schemes and tested

at various sequence lengths with an AWGN channel. Our pre-

liminary results show that this network can perform incredibly

well at SNR = 12dB and above, and that demodulation can

indeed be accomplished as an end-to-end learning solution

capable of outputting sequences of bits.

It was also shown that, as the input sequence length was

increased, the ability of the Seq2Seq model to predict mod-

ulation scheme steadily improved. This result is consistent

with previous AMC research, where the availability of more

samples results in better classification rates.

Our future work will include architectural improvements,

scaling up and adding more modulation schemes, as well

as introducing other perturbations such as phase and timing

errors. Demonstrating that this type of model can work with

communications data is an exciting step towards future DL-

based wireless receiver technologies.
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