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3. The circular restricted three-body problem

3.1 Definition of the circular restricted three-body problem

[VK 5; MD 3; G09]

→ The general three-body problem can be stated as follows: known the positions and velocities of three

gravitationally interacting bodies (i.e. point masses) at a given time, determine their positions and velocities

at any other time.

→ The general three-body problem is extremely complex. An interesting and relevant simplified problem is the

restricted problem, in which the mass of one of the three bodies is negligible. The motion of the two main

bodies is an unperturbed 2-body orbit.

→ Let us further simplify the problem by assuming that the (two-body) orbit of the two more massive bodies

is circular: this is the circular restricted three-body problem.

→ For convenience, let us call the bodies: primary (more massive of the primaries), secondary (less massive of

the primaries) and test particle (negligible mass body).

3.2 Units and coordinates

→ Mass units. Total mass 1, secondary mass µ2, primary mass µ1 = 1 − µ2. The mass of the test particle is

m. Often used notation µ2 = µ and µ1 = 1−µ. We use µ to indicate µ2 in this chapter (not to be confused

with the gravitational mass µ used in chapter on the two-body problem).

→ Length units. (Constant) distance between primaries is a = 1. Primary and secondary are, respectively at

distance µ and 1− µ from centre of mass.

→ Time units. It is assumed G = 1. From Kepler’s third law we have

T 2 =
4π2

G(µ1 + µ2)
a3, so T = 2π,

because a = 1, µ1 +µ2 = 1. It follows n = 2π/T = 1. Even if n = 1 we keep n (which is an angular velocity)

explicitly in the equations.
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→ Take a sidereal (i.e. non-rotating, inertial) frame of reference ξ, η, ζ, centered in the centre of mass. The

angle between (x, y) and (ξ, η) is the polar angular coordinate φ = nt. The position of the primary as a

function of time is

ξ1 = −µ cosnt, η1 = −µ sinnt, ζ1 = 0.

The position of secondary as a function of time is

ξ2 = (1− µ) cosnt, η2 = (1− µ) sinnt, ζ2 = 0.

→ Take now a synodic (i.e. rotating with the primaries) frame x, y, z, rotating with angular velocity n = 1.

In this frame the primary has x1 = −µ, y1 = 0, z1 = 0 and the secondary has x2 = 1 − µ, y2 = 0, z2 = 0,

independent of time.

3.3 Equations of motion

[VK 5.2]

→ The Hamiltonian of the test particle in the sidereal (inertial) frame is

H =
1

2m

(
pξ

2 + pη
2 + pζ

2
)
− (1− µ)m

r1
− µm

r2
,

where

r1 =
√

(ξ − ξ1)2 + (η − η1)2 + (ζ − ζ1)2 =
√

(ξ + µ cosnt)2 + (η + µ sinnt)2 + ζ2,

r2 =
√

(ξ − ξ2)2 + (η − η2)2 + (ζ − ζ2)2 =
√

[ξ − (1− µ) cosnt]2 + [η − (1− µ) sinnt]2 + ζ2.

Note that H depends explicitly on time, because ξ1 and ξ2 are functions of t, so H = H(p,q, t).

→ The coordinates x, y, z are related to ξ, η, ζ by

ξ = x cosnt− y sinnt, η = x sinnt+ y cosnt, ζ = z,

the inverse of which is

x = ξ cosnt+ η sinnt,

y = −ξ sinnt+ η cosnt,

z = ζ.

See plot of x-y,ξ-η, FIG CM3.1 (Fig. 3.1 MD).

→ The above transformation (rotation) is a canonical transformation from (q,p) to (Q,P), where q = (ξ, η, ζ),

p = (pξ, pη, pζ), Q = (x, y, z), P = (px, py, pz). The transformation is obtained by the following generating

function (see G09) of the form F = F (q,P, t):

F (ξ, η, ζ, px, py, pz, t) = (ξ cosnt+ η sinnt)px + (−ξ sinnt+ η cosnt)py + ζpz,
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because

x =
∂F

∂px
= ξ cosnt+ η sinnt,

y =
∂F

∂py
= −ξ sinnt+ η cosnt,

z =
∂F

∂pz
= ζ

The relations between the momenta are

pξ =
∂F

∂ξ
= px cosnt− py sinnt,

pη =
∂F

∂η
= px sinnt+ py cosnt,

pζ =
∂F

∂ζ
= pz,

so px
2 + py

2 + pz
2 = pξ

2 + pη
2 + pζ

2.

→ The Hamiltonian in the synodic frame is

H′ = H+
∂F

∂t
.

We have
∂F

∂t
= (−nξ sinnt+ nη cosnt)px + (−nξ cosnt− nη sinnt)py = n(ypx − xpy)

so

H′ = 1

2m
(px

2 + py
2 + pz

2) +mΦ(r1, r2) + n(ypx − xpy),

where

Φ(r1, r2) ≡ −
1− µ
r1
− µ

r2
,

and, in the synodic coordinates,

r21 = (x+ µ)2 + y2 + z2, r22 = [x− (1− µ)]2 + y2 + z2.

→ We can eliminate the test-particle mass m by performing a transformation p̃x = px/m, p̃y = py/m,

p̃z = pz/m. The equations of motion keep the canonical form with the Hamiltonian H̃ = H′/m (see

G09). This can be seen also by noting that

ṗx = −∂H
′

∂x
=⇒ ṗx

m
= −∂(H′/m)

∂x
=⇒ ˙̃px = −∂H̃

∂x

and

ẋ =
∂H′

∂px
=
∂(H′/m)

∂px/m
=⇒ ẋ =

∂H̃
∂p̃x

So we get

H̃ =
1

2
(p̃2x + p̃2y + p̃2z) + Φ(r1, r2) + n(yp̃x − xp̃y).
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→ The equations of motion are

ẋ =
∂H̃
∂p̃x

= p̃x + ny

ẏ =
∂H̃
∂p̃y

= p̃y − nx

ż =
∂H̃
∂p̃z

= p̃z

˙̃px = −∂H̃
∂x

= np̃y −
∂Φ

∂x

˙̃py = −∂H̃
∂y

= −np̃x −
∂Φ

∂y

˙̃pz = −∂H̃
∂z

= −∂Φ

∂z

→ The first three equations above can be written as p̃x = ẋ − ny, p̃y = ẏ + nx, p̃z = ż. Differentiating these

w.r.t. time we get

˙̃px = ẍ− nẏ

˙̃py = ÿ + nẋ

˙̃pz = z̈,

which, combined with the last three give

ẍ− nẏ = nẏ + n2x− ∂Φ

∂x

ÿ + nẋ = −nẋ+ n2y − ∂Φ

∂y

z̈ = −∂Φ

∂z

so

ẍ = 2nẏ + n2x− ∂Φ

∂x

ÿ = −2nẋ+ n2y − ∂Φ

∂y

z̈ = −∂Φ

∂z

so

ẍ− 2nẏ =
∂U

∂x

ÿ + 2nẋ =
∂U

∂y

z̈ =
∂U

∂z

where

U =
n2

2
(x2 + y2)− Φ

is the (positive) effective potential. 2nẏ and −2nẋ are the Coriolis terms, n2(x2 + y2)/2 is the centrifugal

potential.
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3.4 Jacobi integral

[VK G09 MD]

→ The total energy is not conserved in the restricted three-body problem (because the gravitational effect of

the test particle on the primaries is neglected). This can be seen also by noting that the Hamiltonian H
depends explicitly on time. But there is another important integral of motion: the so-called Jacobi integral

CJ ≡ −2H̃, where H̃ is the mass-normalized Hamiltonian in the synodic frame (which does not depend

explicitly on time).

→ Take the Hamiltonian

H̃ =
1

2
(p̃2x + p̃2y + p̃2z) + nyp̃x − nxp̃y + Φ,

substituting

p̃x = ẋ− ny, p̃y = ẏ + nx, p̃z = ż,

we get

H̃ =
1

2
(ẋ2 + ẏ2 + ż2)− n2

2
(x2 + y2) + Φ

=
1

2
(ẋ2 + ẏ2 + ż2)− U

so

−2H̃ = 2U − (ẋ2 + ẏ2 + ż2) = const = CJ,

where CJ = 2U − (ẋ2 + ẏ2 + ż2) is a constant known as the Jacobi integral.

→ CJ can be used to constrain regions allowed for the orbit, because ẋ2 + ẏ2 + ż2 = 2U − CJ ≥ 0, so we must

have U ≥ CJ/2. Note that U is positive by construction.

→ If we know at some time position and velocity of the test particle, we know the value of CJ at all times.

→ Taking ẋ = ẏ = ż = 0, for given CJ, we can construct zero-velocity surfaces (Hill surfaces), which separate

allowed and forbidden regions in the space x, y, z. Allowed regions are those for which U ≥ CJ/2

→ At fixed z we can consider zero-velocity curves, which separate allowed and forbidden regions in the space

x, y. For instance, we can look at zero-velocity curves in the z = 0 plane. See plots: FIG CM3.2a (fig. 3.8

MD), FIG CM3.2b and FIG CM3.3 (fig. 5.2 VK).

→ Drawing plots of forbidden and allowed regions for decreasing CJ, it is clear that for large values of CJ (i.e.

large forbidden areas) the system is “Hill stable”: one or two allowed regions around primary and secondary,

not connected with the outer allowed region.

→ We note some particular points in which the zero-velocity curves cross: the collinear points L1 between

primary and secondary, L2 (on the side of the secondary) and L3 (on the side of the primary). Note

that L1, L2, L3 are saddle points. Other two particular points are the minima of U : the triangular points L4

(leading) and L5 (trailing), forming equilateral triangles with the positions of the primary and the secondary.
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→ L1, L2, L3, L4, L5 are known as the Lagrangian points or libration points. We will show below that these are

equilibrium points and study their stability.

3.5 Tisserand relation

[MD 3.4]

→ Let us take the Jacobi integral CJ and write it in the inertial sidereal frame (ξ, η). It can be shown (see

Problem 3.1) that

ẋ2 + ẏ2 + ż2 = ξ̇2 + η̇2 + ζ̇2 + 2n(ηξ̇ − ξη̇) + n2(ξ2 + η2).

→ Using the above relations into the Jacobi integral

CJ = 2U − (ẋ2 + ẏ2 + ż2) =
2(1− µ)

r1
+

2µ

r2
+ n2(x2 + y2)− ẋ2 − ẏ2 − ż2,

we get

CJ =
2(1− µ)

r1
+

2µ

r2
− ξ̇2 − η̇2 − ζ̇2 + 2n(ξη̇ − ηξ̇),

because we recall that

x2 + y2 = ξ2 + η2,

as the transformation is just a rotation.

→ In several applications µ � 1. For instance in the problem Sun-Jupiter-comet, MJupiter ∼ 10−3M�, so we

can take the limit 1− µ ∼ 1. From know on we call r the Sun-comet distance: r = r1.

→ When the comet is not close to Jupiter, we can also use µ/r2 � 1/r and consider the approximation of the

two-body motion comet-Sun. In this case we can use the following relations for the two-body problem:

Ẽ =
v2

2
− G(M� +mcomet)

r
= −G(M� +mcomet)

2a
.

Here G(M� +mcomet) ≈ GM� ≈ 1− µ ≈ 1, so

v2 = ξ̇2 + η̇2 + ζ̇2 =
2

r
− 1

a
,

so

CJ =
2

r
− 2

r
+

1

a
+ 2n(ξη̇ − ηξ̇)

→ The angular momentum is

L = r× ṙ

so

mcomet(ξη̇ − ηξ̇) = Lζ = Lz = L cos i,
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where i is the inclination of the comet orbit, w.r.t. the Jupiter-Sun orbital plane. Using the two-body

relation

L̃ = L/mcomet =
√
GM�a(1− e2)

with GM� ' 1, so
L̃2

=
a(1− e2)

and

ξη̇ − ηξ̇ =
√
a(1− e2) cos i

→ Altogether (in units such that the Sun-Jupiter mean motion is n = 1) we get

CT ≈
CJ

2
=

1

2a
+
√
a(1− e2) cos i ≈ const.

This is Tisserand relation, which can be used to verify, by measuring the orbital elements, whether a comet

is new or is a new passage of a previous comet scattered by a close encounter with Jupiter.

→ See figs. 3.3 and 3.4 of MD (FIG CM3.4 and FIG CM3.5). Note that in deriving Tisserand relation we have

assumed that the orbit of the primaries is circular (in fact eJupiter ' 0.05).

→ Further discussion on the evolution of comet orbits can be found in VK 11.6.

→ Variation of orbital elements as a consequence of a close encounter is exploited in interplanetary missions.

The close passages with planets are used to modify the orbital elements of artificial satellites (e.g. Voyager,

Galileo, Cassini): in this case the mechanism is called “gravit assist” or “gravitational slingshot” (see Problem

3.2).

Problem 3.1
Write ẋ2 + ẏ2 + ż2 in sidereal coordinates ξ, η and ζ (x, y and z are the synodic coordinates).

We have
x = ξ cosnt+ η sinnt

y = −ξ sinnt+ η cosnt

z = ζ,

so
ẋ = ξ̇ cosnt+ η̇ sinnt− nξ sinnt+ nη cosnt,

ẏ = −ξ̇ sinnt+ η̇ cosnt− nξ cosnt− nη sinnt,

ż = ζ̇

It follows:
ẋ2 + ẏ2 + ż2 = ξ̇2 + η̇2 + ζ̇2 + 2n(ηξ̇ − ξη̇) + n2(ξ2 + η2).
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Problem 3.2
A spacescraft undergoes the following gravitational slingshot manoeuvre. It enters a planet gravitational

field with velocity v0 orthogonal to the planet velocity vp (in the heliocentric reference system) and it
exits from the planet gravitational field with a velocity vector v1 forming an angle ϑ with respect to v0.
Compute the final speed v1 in the heliocentric frame.

In the planetcentric frame of reference the orbit is a hyperbola: the kinetic energy of the spacecraft is
the same when it enters and when it exits the planet gravitational field:

1

2
u20 =

1

2
u21,

where u0 = v0−vp and u1 = v1−vp are, respectively, the initial and final velocities of the spacecraft in
the planetcentric frame. Taking x in the direction of the motion of the planet and y in the orthogonal
direction, we have

v2p + v20,y = v21,x + v2p − 2vpv1,x + v21,y,

which, given that v0,y = v0, v1,x = v1 sinϑ and v1,y = v1 cosϑ, gives

v20 = v21 sin2 ϑ− 2vpv1 sinϑ+ v21 cosϑ,

which can be written as
v21 − 2vp sinϑv1 − v20 = 0.

The final speed in the heliocentric frame is thus

v1 = vp sinϑ+
√
v2p sin2 ϑ+ v20.

3.6 Location of the Lagrangian points

[VK]

→ We look now for equilibrium points in the synodic (rotating) frame: in these points the test particle is not

at rest (in an inertial frame), but its orbit is such that its position with resopect to the two primaries is

constant.

→ We recall that the equations of motion are

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

z̈ =
∂U

∂z

where

U =
1

2
(x2 + y2)− Φ,

Φ = −1− µ
r1
− µ

r2
,
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r21 = (x+ µ)2 + y2 + z2, r22 = [x− (1− µ)]2 + y2 + z2,

and we have used n = 1. Equilibrium points are such that ẋ = ẏ = ż = ẍ = ÿ = z̈ = 0.

→ Consider first the equation for z and write it explicitly:

z̈ = −(1− µ)z

r31
− µz

r32
= −z

(
1− µ
r31

+
µ

r32

)
,

so we must have z = 0 for equilibrium. In other words all equilibrium points are in the orbital plane of the

primaries. Therefore we restrict hereafter to the planar problem imposing z = 0.

→ So the relevant equations are

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

with

r21 = (x+ µ)2 + y2, r22 = [x− (1− µ)]2 + y2.

→ Equilibrium points are such that ∂U
∂x = ∂U

∂y = 0, so

x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
= 0

y − (1− µ)y

r31
− µy

r32
= 0

→ The equation for y can be written as

y

(
1− 1− µ

r31
− µ

r32

)
= 0,

so we have two families of solutions: y = 0 and y 6= 0

3.6.1 Collinear points

→ Let us first look at the case y = 0: in these cases the test particle is on the same straight line as the two

primaries (collinear points). The equation for x is

x− (1− µ)(x+ µ)

[(x+ µ)2]3/2
− µ(x− 1 + µ)

[(x− 1 + µ)2]3/2
= 0,

x− 1− µ
(x+ µ)2

x+ µ

|x+ µ|
− µ

(x− 1 + µ)2
x− 1 + µ

|x− 1 + µ|
= 0

→ Let us consider three intervals x < −µ (to the left of both primaries), −µ < x < 1 − µ (between the

primaries) and x > 1− µ (to the right of both primaries). The above equation becomes:

x+
1− µ

(x+ µ)2
+

µ

(x− 1 + µ)2
= 0, if x < −µ (L3)

x− 1− µ
(x+ µ)2

+
µ

(x− 1 + µ)2
= 0, if − µ < x < 1− µ (L1)

x− 1− µ
(x+ µ)2

− µ

(x− 1 + µ)2
= 0, if x > 1− µ (L2)
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→ The above three equations are 5th-order polynomial equations, which in general cannot be solved analytically.

The solutions for given µ can be found by solving numerically the equations. It turns out that each of the

three has just one real solution in the interval where it is valid. These three solutions are the x coordinates

of the collinear Lagrangian points L1, L2 and L3. We call L1 the point between the primaries, L2 on the

side of the secondary and L3 the point on the side of the primary. This choice is standard, though in the

literature there are also different choices for L1, L2, L3.

→ Show plot in Fig. 5.3 of VK (FIG CM3.6). Note that for L1 and L2,

x >
1

2
− µ

for all values of µ.

→ Distance of L1 and L2 from the secondary in the limit µ � 1. Let us define δ = x − (1 − µ), which is x

coordinate, taking as origin the location of the secondary. It can be shown (see Problem 3.3) that when

µ� 1 the x coordinates of L1 and L2 scale as δ ∝ µ1/3.

3.6.2 Triangular points

→ Let us now consider the case y 6= 0 (triangular points). For equilibrium we must have (from the y equation):

1− 1− µ
r31
− µ

r32
= 0,

which we multiply by (x+ µ), so

x+ µ− (1− µ)(x+ µ)

r31
− (x+ µ)µ

r32
= 0,

and subtract from the x equation

x− (1− µ)(x+ µ)

r31
− µ(x+ µ)

r32
+
µ

r32
= 0

to obtain

−µ+
µ

r32
= 0, =⇒ r2 = 1

→ Take again

1− 1− µ
r31
− µ

r32
= 0,

multiply by (x− 1 + µ), so

x− 1 + µ− (1− µ)(x− 1 + µ)

r31
− (x− 1 + µ)µ

r32
= 0,

and subtract from the x equation

x− (1− µ)(x+ µ− 1)

r31
− 1− µ

r31
− µ(x− 1 + µ)

r32
= 0

to obtain

1− µ− 1− µ
r31

= 0 =⇒ r1 = 1.



Celestial Mechanics - 2017-18 11

→ So r1 = r2 = 1 =distance between the primaries. These equilibrium points (L4 and L5) are the vertices of

equilateral triangles having the primaries on the other vertices ( =⇒ they are called triangular points).

→ Let us find the coordinates of L3 and L4:

(x− 1 + µ)2 + y2 = 1 i.e. r2 = 1

(x+ µ)2 + y2 = 1 i.e. r1 = 1

The first can be written as

(x+ µ)2 − 2(x+ µ) + y2 = 0,

which, combined with the second gives:

2(x+ µ) = 1, =⇒ x =
1

2
− µ,

so

y2 = 1− 1

4
=⇒ y = ±

√
3

2

→ The solutions are easily found geometrically, considering the equilateral triangle, as we know that r1 = r2 = 1:

x =
(1− µ) + (−µ)

2
=

1

2
− µ

y = ±

√
12 −

(
1

2

)2

= ±
√

3

2

Problem 3.3
Show that when µ � 1 the x coordinates of L1 and L2 scale as δ ∝ µ1/3, where δ = x − (1 − µ). [see

7.2.2 of G09]

Let us focus on L2.
δ = x− (1− µ) = x− 1 + µ > 0.

So the equation for teh x coordinate of L2 (see Section 3.6.1) becomes

δ + 1− µ− 1− µ
(δ + 1)2

− µ

δ2
= 0

δ + 1− 1

(δ + 1)2
− µ+

µ

(δ + 1)2
− µ

δ2
= 0.

Multiplying by δ2(δ + 1)2 we get

µ =
δ2 − (δ + 1)3δ2

δ2 − δ2(δ + 1)2 − (δ + 1)2
= ... =

=
δ3[δ2 + 3δ + 3]

δ4 + 2δ3 + 3δ2 + 1
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We expand the above function µ = µ(δ) in the limit δ � 1 (which is also the limit µ � 1, because
µ→ 0 if δ → 0).

µ = µ(0) + µ′(0)δ +
1

2
µ′′(0)δ2 +

1

6
µ′′′(0)δ3 + ...

Let us write µ(δ) = N/D. We have D(0) = 1, D′(0) = 2, D′′(0) = 1, D′′′(0) = 2, and
N(0) = N ′(0) = N ′′(0) = 0, N ′′′(0) = 18. So µ(0) = µ′(0) = µ′′(0) = 0, µ′′′(0) = 18. For δ � 1
we have

µ(δ) =
1

6
µ′′′(0)δ3 + ... = 3δ3 +O(δ4),

so
δ = O(µ1/3)

3.7 Stability of the Lagrangian points

3.7.1 Stability of equilibrium points and stability of orbits: some definitions

[S67 5.2]

→ It is useful to define the concept of stability of equilibrium solutions and stability of orbits.

→ The concept of stability applies in general to w(t), which is a solution of a system of differential equations

ẇ = F(w, t). In the case of the motion of a particle w(t) is the orbit: w = (r,v) are the phase-space

coordinates (positions and velocities).

Stability of equilibrium points

→ Stability of equilibrium points: w = a, where a = const, is a stable equilibrium point if, for given ε > 0,

there exists a δ > 0 such that if at a reference (initial) time t0

|w(t0)− a| < δ

then, for all t > t0

|w(t)− a| < ε.

→ Linear stability: an equilibrium point is linearly stable if it is stable against all small (i.e. linear) disturbances

(|δw|/|w| � 1).

→ Non-linear stability: an equilibrium point is non-linearly stable if it is stable against all disturbances (not

necessarily small).

→ In general linear stability does not imply non-linear stability.
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Stability of orbits

→ The concept of stability of an orbit w(t) is based on the comparison of the orbit w(t) with other orbits

(called perturbed orbits) that have initial conditions slightly different from the orbit w(t).

→ We have two different definitions of the stability of orbits: “Lyapunov stability” and “orbital stability”.

→ Definition (1): “Lyapunov stability”. The orbit w(t) is Lyapunov stable if, given any ε > 0 there exists a

δ > 0 such that any perturbed orbit w′(t) satisfying |w′(t0) − w(t0)| < δ satisfies |w′(t) − w(t)| < ε for

t > t0. Lyapunov stability is based on isochronous evaluation of the deviations.

→ Definition (2): “orbital stability”. An orbit w(t) is orbitally stable if, given any ε > 0 there exist a δ > 0

such that for any perturbed orbit w′(t) satisfying |w′(t0) − w(t0)| < δ it is possible to find c such that

|w′(t)−w(t+ c)| < ε for t > t0.

3.7.2 Lagrangian points: linearized equations

[MD, R05]

→ We study here the linear stability of the Lagrangian points.

→ Let us call x0, y0 and z0 the coordinates of an equilibrium point (i.e. one of the Lagrangian points). We

introduce the coordinates

X = x− x0, Y = y − y0, Z = z − z0.

Note that Ẋ = ẋ, Ẏ = ẏ, Ż = ż, because ẋ0 = ẏ0 = ż0 = 0.

→ Let us assume that X,Y, Z are small displacements =⇒ linear perturbations =⇒ linear stability analysis.

→ We write equations for X(t) and we study the solutions. If X(t) oscillates or goes to zero the point is linearly

stable. If X(t) diverges the point is unstable. We do the same for all the other phase-space coordinates.

→ Consider a simple example: a 1-D mechanical system described by the equation ẍ = −dΦ/dx. Write the

solution in the vicinity of the equilibrium point x = x0. If Φ = 1
2(x − x0)2 the solution oscillates (x0 is

stable); if Φ = −1
2(x− x0)2 the solution diverges exponentially (x0 is unstable).

→ Let us consider the restricted three-body problem. We can expand in Taylor series the equations of motion

ẍ− 2ẏ =
∂U

∂x
,

ÿ + 2ẋ =
∂U

∂y
,

z̈ =
∂U

∂z
,

to obtain equations that describe the motion in the vicinity of the equilibrium point
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→ Expanding the derivative of U we get:

∂U

∂x
=

(
∂U

∂x

)
0

+ UxxX + UxyY + UxzZ + . . . ,

∂U

∂y
=

(
∂U

∂y

)
0

+ UxyX + UyyY + UyzZ + . . . ,

∂U

∂z
=

(
∂U

∂z

)
0

+ UxzX + UyzY + UzzZ + . . . ,

where

Uxx ≡
(
∂2U

∂x2

)
0

, Uyy ≡
(
∂2U

∂y2

)
0

, Uzz ≡
(
∂2U

∂z2

)
0

,

Uxy ≡
(
∂2U

∂x∂y

)
0

, Uxz ≡
(
∂2U

∂x∂z

)
0

, Uyz ≡
(
∂2U

∂y∂z

)
0

,

where subscript 0 means evaluated in x0, y0, z0.

→ We recall that in the equilibrium points ∂U/∂x = ∂U/∂y = ∂U/∂z = 0, so the linearized equations of

motion read

Ẍ − 2Ẏ = UxxX + UxyY + UxzZ,

Ÿ + 2Ẋ = UxyX + UyyY + UyzZ,

Z̈ = UxzX + UyzY + UzzZ.

3.7.3 Derivatives of U

r1 =

√
z2 + y2 + (x+ µ)2

r2 =

√
z2 + y2 + (x+ µ− 1)2

Φ = −(1− µ)/r1 − µ/r2 =
µ− 1√

z2 + y2 + (x+ µ)2
− µ√

z2 + y2 + (x+ µ− 1)2

U = (x2 + y2)/2− Φ = − µ− 1√
z2 + y2 + (x+ µ)2

+
µ√

z2 + y2 + (x+ µ− 1)2
+
y2 + x2

2

Ux =
∂U

∂x
=

(µ− 1) (x+ µ)(
z2 + y2 + (x+ µ)2

) 3
2

− µ (x+ µ− 1)(
z2 + y2 + (x+ µ− 1)2

) 3
2

+ x

Uxx =
∂Ux
∂x

=
µ− 1(

z2 + y2 + (x+ µ)2
) 3

2

− 3 (µ− 1) (x+ µ)2(
z2 + y2 + (x+ µ)2

) 5
2

− µ(
z2 + y2 + (x+ µ− 1)2

) 3
2

+

+
3µ (x+ µ− 1)2(

z2 + y2 + (x+ µ− 1)2
) 5

2

+ 1
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Uy =
∂U

∂y
=

(µ− 1) y(
z2 + y2 + (x+ µ)2

) 3
2

− µ y(
z2 + y2 + (x+ µ− 1)2

) 3
2

+ y

Uyy =
∂Uy
∂y

=
µ− 1(

z2 + y2 + (x+ µ)2
) 3

2

− 3 (µ− 1) y2(
z2 + y2 + (x+ µ)2

) 5
2

− µ(
z2 + y2 + (x+ µ− 1)2

) 3
2

+

+
3µ y2(

z2 + y2 + (x+ µ− 1)2
) 5

2

+ 1

Uxy =
∂Ux
∂y

=
3µ (x+ µ− 1) y(

z2 + y2 + (x+ µ− 1)2
) 5

2

− 3 (µ− 1) (x+ µ) y(
z2 + y2 + (x+ µ)2

) 5
2

Uz =
∂U

∂z
=

(µ− 1) z(
z2 + y2 + (x+ µ)2

) 3
2

− µ z(
z2 + y2 + (x+ µ− 1)2

) 3
2

Uzz =
∂Uz
∂z

=
µ− 1(

z2 + y2 + (x+ µ)2
) 3

2

− 3 (µ− 1) z2(
z2 + y2 + (x+ µ)2

) 5
2

− µ(
z2 + y2 + (x+ µ− 1)2

) 3
2

+

+
3µ z2(

z2 + y2 + (x+ µ− 1)2
) 5

2

Uxz =
∂Ux
∂z

=
3µ (x+ µ− 1) z(

z2 + y2 + (x+ µ− 1)2
) 5

2

− 3 (µ− 1) (x+ µ) z(
z2 + y2 + (x+ µ)2

) 5
2

Uyz =
∂Uy
∂z

=
3µ y z(

z2 + y2 + (x+ µ− 1)2
) 5

2

− 3 (µ− 1) y z(
z2 + y2 + (x+ µ)2

) 5
2

→ We need to evaluate the above derivatives in the equilibrium points (x0, y0, z0). It is then useful to introduce

the following quantities:

Ã =
µ1

(r31)0
+

µ2
(r32)0

B̃ = 3

[
µ1

(r51)0
+

µ2
(r52)0

]

C̃ = 3

[
µ1(x0 − x1)

(r51)0
+
µ2(x0 − x2)

(r52)0

]

D̃ = 3

[
µ1(x0 − x1)2

(r51)0
+
µ2(x0 − x2)2

(r52)0

]
where µ1 = 1− µ, µ2 = µ, x1 = −µ2, x2 = µ1, and (· · · )0 means evaluated in the equilibrium point (x0, y0,

z0).
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→ The derivatives of U , evaluated in x0, y0, z0, read as follows

Uxx = 1− Ã+ D̃,

Uyy = 1− Ã+ B̃y20,

Uxy = C̃y0,

Uzz = −Ã+ B̃z20 ,

Uxz = C̃z0,

Uyz = B̃y0z0.

3.7.4 Linear stability analysis of Lagrangian points: method

[MD 3.7]

→ Let us first note that for each of the five Lagrangian points we have Uxz = Uyz = 0, because z0 = 0, therefore

the above equations become

Ẍ − 2Ẏ = UxxX + UxyY,

Ÿ + 2Ẋ = UxyX + UyyY,

Z̈ = UzzZ.

The Z equation is independent of the other two and it is just the equation of a harmonic oscillator, and

can be treated separately. Our stability problem reduces to solve the Z equation and the system of coupled

equations for X and Y .

→ Let us discuss the solution of the system

Ẍ − 2Ẏ = UxxX + UxyY,

Ÿ + 2Ẋ = UxyX + UyyY.

This is a system of second order ODEs. It can be reduced to a system of 4 first order ODEs for the

4-dimensional vector w = (w1, w2, w3, w4) = (X,Y, Ẋ, Ẏ ), which can be written

dX

dt
= Ẋ

dY

dt
= Ẏ

dẊ

dt
= UxxX + UxyY + 2Ẏ ,

dẎ

dt
= UxyX + UyyY − 2Ẋ,
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or, in vectorial form,

ẇ = Aw,

where

A =


0 0 1 0
0 0 0 1
Uxx Uxy 0 2
Uxy Uyy −2 0

 .

→ Eigenvalues, eigenvectors, characteristic polynomial. Given a matrix A, if Ax = λx, x is an eigenvector

and λ the corresponding eigenvalue. The system (A− λI)x = 0 has non-trivial solution (i.e. x 6= 0) if and

only if det(A− λI) = 0. When det(A− λI) = 0 is written explicitly, it is a polynomial in λ, known as the

characteristic polynomial of the matrix.

→ The system ẇ = Aw is coupled. We wish to transform it into an uncoupled system. To do so we perform

the transformation w′ = Bw, where B is a constant matrix to be specified. Therefore w = B−1w′ and

ẇ = B−1ẇ′. So the system becomes

B−1ẇ′ = AB−1w′ =⇒ ẇ′ = BAB−1w′.

If C ≡ BAB−1 is diagonal, then our system in w′ is uncoupled. We can construct B−1 using the (column)

eigenvectors so that

BAB−1 = Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 ,

where λi are the eigenvalues (see Problem 3.4).

→ Our linear system in w′ has become just

ẇ′ = Λw′, =⇒ ẇ′i = λiw
′
i,

the solutions of which are

w′i = cie
λit,

where ci are constants.

→ Let us go back to the variables w. We have

w = B−1w′ = B−1


c1e

λ1t

c2e
λ2t

c3e
λ3t

c4e
λ4t

 ,

which can be written as

wi =
4∑
j=1

Cije
λjt

for i = 1, . . . , 4, where Cij are constants depending on the ci and on the elements of B.
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→ In order to have stability each of the λi must be either purely imaginary ( =⇒ oscillations) or complex, but

with negative real part ( =⇒ exponential damping).

→ Let us specialize to our particular system derived from the linearized equations of motion around a

Lagrangian point. The matrix is

A =


0 0 1 0
0 0 0 1
Uxx Uxy 0 2
Uxy Uyy −2 0

 .

The characteristic polynomial is

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 0 1 0
0 −λ 0 1
Uxx Uxy −λ 2
Uxy Uyy −2−λ

∣∣∣∣∣∣∣∣ = 0

i.e.

λ4 + (4− Uxx − Uyy)λ2 + UxxUyy − U2
xy = 0,

which is a biquadratic equation. Defining s ≡ λ2, we have

s1,2 = −1

2
(4− Uxx − Uyy)±

1

2

[
(4− Uxx − Uyy)2 − 4(UxxUyy − U2

xy)
] 1
2 ,

so the 4 solutions are

λ1,2 = ±
{
−1

2
(4− Uxx − Uyy)−

1

2

[
(4− Uxx − Uyy)2 − 4(UxxUyy − U2

xy)
] 1
2

} 1
2

,

λ3,4 = ±
{
−1

2
(4− Uxx − Uyy) +

1

2

[
(4− Uxx − Uyy)2 − 4(UxxUyy − U2

xy)
] 1
2

} 1
2

.

→ The above eigenvalues can be real, complex or imaginary, so in general they can be written as

λ1,2 = ±(j1 + ik1), λ3,4 = ±(j2 + ik2),

where j1, j2, k1, k2 are real. Therefore for stability we must have j1 = j2 = 0, i.e. that all the λi are purely

imaginary.

3.7.5 Stability analysis: collinear points

→ In this case y0 = z0 = 0, so

Uxz = Uyz = Uxy = 0,

Uxx = 1− Ã+ D̃ = 1 + 2Ã,

Uyy = 1− Ã,

Uzz = −Ã,

because (r21)0 = (x0 − x1)2 and (r22)0 = (x0 − x2)2, so D̃ = 3Ã (see above definitions of Ã, B̃, C̃, D̃).
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→ Start from the Z equation, which becomes

Z̈ = −ÃZ,

with solution Z = Ce
√
−Ãt, which is oscillatory because Ã > 0 by definition (recall Euler’s formula

eix = cosx+ i sinx). C is an arbitrary constant.

→ Let’s move now to the X − Y system: the characteristic polynomial becomes

λ4 + (2− Ã)λ2 + (1 + 2Ã)(1− Ã) = 0,

i.e.

s2 + (2− Ã)s+ (1 + 2Ã)(1− Ã) = 0,

where s = λ2. We know that the solutions s1 and s2 satisfy Viète’s formula

s1s2 = (1 + 2Ã)(1− Ã),

because in general

ax2 + bx+ c = a(x− x1)(x− x2) =⇒ x1x2 = c/a,

so

(λ1λ2)(λ3λ4) = (1 + 2Ã)(1− Ã),

i.e.

λ21λ
2
3 = (1 + 2Ã)(1− Ã),

because λ2 = −λ1 and λ4 = −λ3. For stability all the λi must be purely imaginary, so λ21 < 0 and λ23 < 0,

so a necessary condition for stability is

(1− Ã)(1 + 2Ã) > 0,

i.e. Ã < 1, because Ã > 0. Note that Ã < 1 is a necessary (but not sufficient) condition for stability.

→ Substituting in Ã the values of x0 for the three collinear points L1, L2 and L3 (and recalling that µ < 1
2 we

find in all cases Ã > 1 (see Problem 3.5).

→ So we conclude that all the collinear Lagrangian points are unstable for all values of µ.

3.7.6 Stability analysis: triangular points

→ The triangular points L4 and L5 have (r1)0 = (r2)0 = 1; y0 = ±
√

3/2 and x0 = 1
2 − µ = 1

2 − µ2; z0 = 0.

Therefore,

Ã = 1, B̃ = 3, C̃ =
3

2
(1− 2µ), D̃ =

3

4
.

and

Uxx = 1− Ã+ D̃ =
3

4
,
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Uyy = 1− Ã+ B̃y20 =
9

4
,

Uxy = C̃y0 = ±3
√

3

4
(1− 2µ),

Uzz = −Ã+ B̃z20 = −1,

Uxz = C̃z0 = 0,

Uyz = B̃y0z0 = 0.

→ The Z equation of motion is

Z̈ = −Z,

with solution Z = Ce
√
−1t, which is oscillatory (C is an arbitrary constant).

→ Let’s move now to the X − Y system: the characteristic polynomial is

λ4 + (4− Uxx − Uyy)λ2 + UxxUyy − U2
xy = 0,

so

λ4 + λ2 +
27

4
µ(1− µ) = 0,

i.e.

s2 + s+
27

4
µ(1− µ) = 0,

where s = λ2.

→ The solutions are

s1,2 =
−1±

√
∆

2
,

with

∆ = 1− 27µ(1− µ).

Let us consider separately two cases ∆ ≥ 0 and ∆ < 0

→ If ∆ ≥ 0, s1,2 are real and for stability we just have to impose that s1,2 < 0, i.e.

−1 +
√

∆ < 0, i.e. 27µ(1− µ) > 0, (always).

Note that the condition on s1, −1−
√

∆ < 0, is less restrictive. So for ∆ ≥ 0 we always have stability.

→ If ∆ < 0

s1,2 =
−1± i

√
|∆|

2
,

so we can write λ1 = a1 + ib1 and λ2 = −a1 − ib1. Similarly λ3 = a2 + ib2 and λ4 = −a2 − ib2. We have

λ21 = (a1 + ib1)
2 = s1 = −1

2
− i

√
|∆|
2

,
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so

a21 − b21 + i2a1b1 = −1

2
− i

√
|∆|
2

,

which cannot be satisfied if a1 = 0. Therefore, a1 6= 0. If a1 > 0, λ1 has positive real part ( =⇒ instability);

but if a1 < 0, λ2 has positive real part ( =⇒ instability). So we always have instability for ∆ < 0.

→ Summarizing, the necessary and sufficient condition for linear stability is ∆ ≥ 0, i.e.

1− 27µ(1− µ) ≥ 0

µ2 − µ+
1

27
≥ 0,

this is satisfied for

µ ≤ 1

2
− 1

2

√
23/27 ' 0.03852 ≡ µ0.

(we recall that by definition µ < 1
2).

→ We conclude that for µ < µ0 the triangular points are linearly stable. µ0 is known as Gascheau’s value or

Routh’s value.

→ Linear stability does not necessarily imply non-linear stability, but it has been shown that for µ < µ0 the

triangular points are also non-linearly stable [S67].

Problem 3.4
Given a 2× 2 matrix A show that BAB−1 = Λ where is the diagonal matrix with the eigenvalue of A

on the diagonal and B−1 is constructed from the column eigenvectors of A.

The inverse of a given 2× 2 matrix

M =

(
a b
c d

)
is

M−1 =
1

ad− bc

(
d −b
−c a

)
.

Now let’s construct

B−1 =

(
x1 y1
x2 y2

)
,

where (x1, x2) and (y1, y2) are eigenvectors of A, which is a given 2× 2 matrix.

B = (B−1)−1 =
1

x1y2 − x2y1

(
y2 −y1
−x2 x1

)
,

so

AB−1 =

(
λ1x1 λ2y1
λ1x2 λ2y2

)
,

BAB−1 =
1

x1y2 − x2y1

(
λ1(x1y2 − x2y1) λ2(y1y2 − y1y2)
λ1(−x1x2 + x1x2) λ2(−x2y1 + x1y2)

)
=

(
λ1 0
0 λ2

)
= Λ
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Problem 3.5
Show that for the collinear points L1, L2 and L3 we have Ã > 1 always.

By definition

Ã =
µ1

(r31)0
+

µ2
(r32)0

=
1− µ
|x0 + µ|3

+
µ

|x0 + µ− 1|3
.

We know that at the equilibrium points

(Ux)0 = −(1− µ) (x0 + µ)(
(x0 + µ)2

) 3
2

− µ (x0 + µ− 1)(
(x+ µ− 1)2

) 3
2

+ x0 = 0

which can be written as

1− Ã =
µ(1− µ)

x0

[
1

|x0 + µ|3
− 1

|x0 + µ− 1|3

]
so the condition Ã < 1, i.e. 1− Ã > 0 can be written as

1

x0

[
1

|x0 + µ|3
− 1

|x0 + µ− 1|3

]
> 0,

i.e.
1

x0

[
1

[(x0 + µ)2]3/2
− 1

[(x0 + µ− 1)2]3/2

]
> 0,

(x0 + µ− 1)2 − (x0 + µ)2

x0
> 0

If x0 > 0 (L1 and L2) the condition is

−2(x0 + µ) + 1 > 0, i.e. x0 <
1

2
− µ,

which we have seen is never the case for Lagrangian points L1 and L2 (see FIG CM3.6). If x0 < 0 (L3)
the condition is

−2(x0 + µ) + 1 < 0, i.e. x0 >
1

2
− µ > 0,

which of course is not the case because we are considering x0 < 0.

3.8 Motion around Lagrangian points

3.8.1 Motion near L4 and L5

[MD 3.8]

→ Let us consider now the case of stable triangular points L4 and L5 (µ ≤ 0.03852 ≡ µ0)

→ For small (linear) displacements, the characteristic frequencies of oscillation are |λ1,2| and |λ3,4|, i.e. the

moduli of the eigenvalues found above, because the time evolution is described by a sum of terms ∝ eλit .
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→ Let’s write these eigenvalues explicitly:

λ1,2 = ±
√
s1 = ±

√
−1−

√
1− 27µ(1− µ)

2

λ3,4 = ±
√
s2 = ±

√
−1 +

√
1− 27µ(1− µ)

2

In the relevant limit of small µ (expanding λi as a function of µ) we have√
1− 27µ(1− µ) ' 1 +

1

2
(−27µ) = 1− 27

2
µ

and, therefore,

λ1,2 = ±
√
−1 +

27

4
µ

λ3,4 = ±
√
−27

4
µ

→ The solution of the linearized equation is in the form X(t) ∝
∑

iCie
i|λi|t (and similarly for Y ), so the

characteristic periods are Ti = 2π/|λi| and the motion around each of the triangular points is determined

by the combination of oscillations with period T1,2 = 2π/|λ1,2| and oscillations with period T3,4 = 2π/|λ3,4|.
For small µ, |λ1,2| ∼ 1 (short period: T1,2 ∼ 2π) and |λ3,4| � 1 (long period, T3,4 � 2π).

→ We recall that we have adopted units in which, for the motion of the secondary around the primary, the

mean motion is n = 1 and the period is 2π. Therefore the motion of the test particle around L4 or L5 is

described by a short-period oscillation (epicyclic motion) with period ∼ 2π (similar to the period of the

primaries) combined with a long-period oscillation (libration) with period � 2π.

→ This motion can also be seen as an epicyclic motion, in which the motion of the guiding centre (or epicentre)

with period � 2π is combined with short period oscillations around the guiding centre (see Figs. 3.14 and

3.15 in MD; FIG CM3.7 and FIG CM3.8).

→ The linear and non linear stability of orbits around the triangular points has been investigated for various

values of µ. For instance, there are stable infinitesimal orbits around L4 or L5 not only for µ ≤ µ0, but also

for µ0 < µ < µ1, where µ1 = 0.044 [S67].

3.8.2 Tadpole and horseshoe orbits

[MD 3.9; VK]

→ The results obtained from the linear analysis hold only for small displacements around L4 and L5. Orbits

around these points with larger displacements can be studied by numerical integration of the equations of

motion.

→ The numerical result is that there are two kinds of orbits: tadpole orbits (around either L4 or L5) and

horseshoe orbits (encompassing both L4 and L5).
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→ By increasing the value of the Jacobi integral CJ we go from a tadpole orbit around, say, L4 to two joint

tadpole orbits (around L4 and L5) finally to a full horseshoe orbit.

→ See Figs. 3.16 and 3.17 MD (FIG CM3.9 and FIG CM3.10). See also Fig. 5.4 in VK (FIG CM3.11).

→ The shape of the zero-velocity curves are similar to tadpole and horseshoe orbit (see Fig. 3.9 in MD; FIG

CM3.12). However, we recall that zero-velocity curves (ZVCs) just indicate forbidden regions and do not

define orbits. In particular ZVCs do not say anything about whether the orbit is stable. See also Fig. 9.11

in MD (FIG CM3.13)

3.8.3 Motion near the collinear points

[S67]

→ We have seen that for all values of µ the collinear points L1, L2 and L3 are linearly unstable.

→ There exist perturbations with specific initial conditions giving trigonometric functions as solutions (i.e.

oscillating solutions).

→ There are periodic (2D, in the plane of the primaries, x − y) orbits around the collinear points, called

“Lyapunov orbits” (e.g. Howell 2001).

→ There are periodic (3D) orbits around the collinear points, called “halo orbits” (Farquhar R.W., 1968 ,PhD

thesis; Howell K., 2001).

→ There are quasi periodic (3D) orbits around the collinear points, called “Lissajous orbits” (see Howell &

Pernicka 1988, Cel. Mech 41, 107; Howell 2001). Lissajous figures in x − y, x − z, y − z planes. Lissajous

figures, e.g. in the x-y plane are obtained by equations in the form

x(t) = A sin(at), y(t) = B sin(bt+ c).

See Fig. 4 of Howell (2001): FIG CM3.14.

→ All these finite or infinitesimal orbits around the collinear points are also generally found to be unstable

[S67]. However, these orbits can be used (and are actually used) by space missions such as space telescopes

provided corrections to the orbits are applied to contrast the instability with station-keeping methods.

3.9 Hill’s approximation

[MD 3.13]

→ When µ� 1 the orbit of the infinitesimal body (test particle) is basically Keplerian (w.r.t. to the primary)

when the test particle is far from the secondary. The orbit is significantly perturbed only when the test

particle is close to the secondary. It is then useful to derive equations that describe the motion of the test

particle near the secondary. These equations were first derived by Hill (1878) for application to lunar theory.
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3.9.1 Hill’s equations

→ Let us start from the planar (z = 0) equations of motion of the circular restricted 3-body problem:

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

where

U =
1

2
(x2 + y2)− Φ,

Φ(r1, r2) ≡ −
1− µ
r1
− µ

r2
,

r21 = (x+ µ)2 + y2, r22 = [x− (1− µ)]2 + y2,

and we have used n = 1. So

ẍ− 2ẏ − x = −(1− µ)(x+ µ)

r31
− µ[x− (1− µ)]

r32

ÿ + 2ẋ− y = −(1− µ)y

r31
− µy

r32
.

→ Now, let us shift the origin of the coordinate system to the location of the secondary, using x′ = x− 1 + µ,

y′ = y (because the secondary is located at x = 1− µ). Substituting x = x′ + 1− µ and y = y′ we get:

ẍ′ − 2ẏ′ = x′ + 1− µ− (1− µ)(x′ + 1)

r31
− µx′

r32

ÿ′ + 2ẋ′ = y′ − y′(1− µ)

r31
− µy′

r32
,

where

r21 = (x′ + 1)2 + y′2, r22 = x′2 + y′2 ≡ ∆2.

→ We then take the limit µ � 1, so 1 − µ ≈ 1 + µ ≈ 1, but we keep term of the order of x′ ∼ µ1/3 > µ

(µ� |x′| � 1). We get

ẍ′ − 2ẏ′ = x′ + 1− x′ + 1

r31
− µx′

r32
,

ÿ′ + 2ẋ′ − y′ = − y
′

r31
− µy′

r32
,

where we have also assumed x′+µ ≈ x′, because we are interested only in the region close to the secondary,

at distances from the secondary of the order of the distances of L1 and L2 (of the order of x′ ∼ µ1/3).

→ We can now expand the above equation in the limit x′ ∼ y′ ∼ ∆ ∼ O(µ1/3)� 1. Note that the assumption

that these quantities are of the order of µ1/3 is justified if we consider distance from the equilibrium point of
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the order of the distances to L1 and L2, which are O(µ1/3) (see section on location of collinear Lagrangian

points). We perform a Taylor expansion in the variables x′ and y′ of the kind

f(x′, y′) = f(0, 0) + fx′(0, 0)x′ + fy′(0, 0)y′ + · · · .

For the term

−x
′ + 1

r31

we have f(0, 0) = −1, fx′(0, 0) = 2, fy′(0, 0) = 0, so we get

−x
′ + 1

r31
≈ −1 + 2x′,

For the term

− y
′

r31

we have f(0, 0) = 0, fx′(0, 0) = 0, fy′(0, 0) = −1, so we get

− y
′

r31
≈ −y′.

The final equations of motion (Hill’s equations) are

ẍ′ − 2ẏ′ =
(

3− µ

∆3

)
x′

ÿ′ + 2ẋ′ = −µy
′

∆3
.

→ Dropping for simplicity the primes we can write

ẍ− 2ẏ =
∂UH

∂x
,

ÿ + 2ẋ =
∂UH

∂y
,

where

UH ≡
3

2
x2 +

µ

∆

and ∆2 = x2 + y2.

→ We can find the location of the Lagrangian points L1 and L2 in the Hill’s approximation by imposing in

Hill’s equations ẍ = ẋ = 0 = ÿ = ẏ = 0 and x 6= 0. We get:

y = 0, x = ±∆H, ∆ = ∆H,

so L1 and L2, in this approximation, lie on Hill’s sphere (so, at the same distance from the secondary).

→ The force along x vanishes when 3∆3 = µ, so we define the Hill’s sphere as the sphere around the secondary

of radius ∆H =
(µ
3

)1/3
(known as Hill’s radius).

→ In Hill’s approximation it is straightforward to compute the approximate distance between the secondary

and L1 or L2 (see Problem 3.6).
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Problem 3.6
Compute the distance from the Earth of the Earth-Sun L1 and L2 points in Hill’s approximation

We have M� ' 1.99 × 1030 kg , MEarth ' 5.97 × 1024 kg , so µ = MEarth/M� ' 3 × 10−6 and Hill’s
approximation is justified µ� 1.

The average Sun-Earth distance is a = 1 AU = 1.49× 1011m.

Let us define d1 and d2 the distances of, respectively, L1 and L2 from the Earth. In Hill’s approximation

d1 = d2 = ∆H =
(µ

3

)1/3
,

in units such that a = 1. In physical units

d1 = d2 = ∆Ha =
(µ

3

)1/3
a ' 0.01a ' 1.49× 109 m,

so the distance to L1 and L2 is about 1.5 millions of kilometers.

3.10 Lagrangian points: applications

[S67 5.6; MD 3.11, 3.12]

→ In 1772 Lagrange showed that the five libration points were solutions of the Sun-Jupiter restricted problem

(Euler discovered the three collinear points a few years before). In 1906 started the discovery of the Trojan

group of asteroids with the detection of the asteroid named “588 Achilles”. As of January 2015 there are

6178 known Jupiter Trojan asteroids including both Greeks (leading, L4) and Trojans (trailing, L5).

→ Trojans move on tadpole orbits. Show Fig. 3.23 of MD (FIG CM3.15).

→ There are known Trojan asteroids also in the Sun-Mars (first discovered, Eureka 1990), Sun-Venus, Sun-

Uranus and Sun-Neptune systems.

→ Sun-Earth system: 2010 TK7 Trojan (2010), librating around L5. Another companion of the Earth is

Cruithne (discovered in 1986; orbit determined in 1997) in a horseshoe libration, which is not a Trojan

(because the orbit is not a tadpole orbit).

→ Coorbital satellites (or Trojan satellites or Trojan moons): located at L4 or L5 of planet-satellite system.

For example Saturn-Tethys (two known: Telesto and Calipso) or Saturn-Dione (two known: Helene and

Polydeuces). There are no known Trojan moons in Jupiter: maybe related to relative width of tadpole and

horseshoe orbit (and so to involved mass ratios).

→ Janus and Epimetheus. [MD] In 1980 two satellites of Saturn (Janus and Epimetheus) were discovered by

the Voyager 1. They were initially thought to be possibly described by a restricted three-body problem

Saturn (primary), Janus (secondary) and Epimetheus (test particle). If so Epimetheus was expected to
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move on a horseshoe orbit. We now know the masses of the two satellites: Janus 1.98×1018 kg, Epimetheus

5.5× 1017 kg, so their masses are actually comparable (mass ratio ∼ 1/4). Saturn mass is 5.68× 1026 kg, so

for Janus µ ∼ 10−9.

→ As the masses are comparable, mutual perturbations are important and a single horseshoe orbit must not

be expected. In fact Janus and Epimetheus librate on their horseshoe paths centered on points 180o apart

in longitude: these points are fixed in the rotating frame. Show Fig. 3.26 of MD (FIG CM3.16). The

longitudinal excursions and the radial widths of the paths are inversely proportional to the mass (Murray &

Dermott 1981). They approach each other and reach maximum separation periodically: they are sometimes

called “the dancing moons” (see images from Cassini mission).

→ We have seen that with special initial conditions it is possible to find periodic or quasi periodic orbits close

to the collinear equilibrium points. These kinds of orbits are used for the artificial satellites placed near L1

(SOHO, halo orbit) and L2 of Sun-Earth: WMAP, Herschel, Planck, GAIA and in the future JWST and

Euclid. Herschel and GAIA on Lissajous orbits. JWST on halo orbit.

→ Gaia is in a Lissajous Orbit, which describes a Lissajous Curve around the Libration Point with components

in the plane of the two primary bodies of the Lagrange System and a component perpendicular to it. The

orbit period is about 180 days and the size of the orbit is 263,000 x 707,000 x 370,000 km.

→ Lissajous orbits around a Libration Point are dynamically unstable, requiring some effort to model as small

departures from equilibrium grow exponentially as time progresses.

→ Once per month, Gaia has to perform orbit maintenance procedures which will be small engine maneuvers

to make sure orbital parameters around L2 stay within predicted models. (Spaceflight101.com)

→ Close binary stars. A close binary can be considered in terms of the circular restricted three-body problem,

in which the two primaries are the two stars and the test particle is any parcel of material which is in orbit

around the stars. Approximations: the stars are considered point masses and the orbit is assumed circular.

→ We have seen that the zero-velocity curves (ZVCs) are, depending on the value of the Jacobi integral CJ,

separate lobes, an 8-shaped curve (crossing in L1) or a single curve around both stars

→ Though approximately calculated (using the circular restricted 3-body problem), the Roche lobe is actually

a physical limit to the size of each star in a binary. The outer layers (or atmosphere) of a star filling the

Roche lobe tend to be stripped and accreted through L1 onto the companion star.

→ Tidal stripping. Consider a satellite (galaxy or globular cluster of mass Msat orbiting within a host galaxy

of mass Mhost. Restricted three-body problem approximation. Primary: host. Secondary: satellite. Test

particle: star of the satellite.
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→ L1 and L2 mark the size of the volume around the satellite within which particles are bound to the satellite.

In the limit Msat � Mhost the tidal truncation radius is the distance of L1 and L2 from the satellite’s

centre:

rt =

(
Msat

3Mhost

)1/3

d, (3.2)

where d is the separation between the centres of the satellite and of the host system.

→ In the case of extended host and satellite, if we identify Msat with the mass of the satellite within rt, and

Mhost with the mass of the host within d, the above equation can be rewritten as

ρsat = 3ρhost, (3.3)

where ρsat is the average density of the satellite within rt and ρhost is the average density of the satellite

within d.
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