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Abstract—The relay selection method is a promising technique
for improving the performance of cooperative systems. Most of
the existing studies assume that wireless channels are statistically
independent. However, in reality, channel correlation is more
likely to be non-negligible. In this study, we investigate the
dependence of the performance of cooperative systems with single
relay selection in equally correlated environments. A tight upper
bound of the system outage probability is given as a function of
the channel correlation coefficients. We show that even though
the system performance is considerably degraded in the high
signal-to-noise ratio (SNR) region when the channel correlations
are sufficiently large, yet less than one, the system still achieves
a diversity order equal to the number of available relays.

Index Terms—Cooperative communications, relay selection,
correlated channels.

I. INTRODUCTION

BECAUSE of the broadcast nature of the wireless medium,
a transmission from a source node to a destination

node can be overheard by the neighboring nodes. Cooperative
communication allows these neighbors, called relay nodes, to
forward the source information to the destination [1]. The
use of all potential relays significantly improves the system
performance; it however, entails several drawbacks such as
a decrease in the system spectral efficiency, a requirement
for strict synchronization, and an increase in complexity at
the receiver side [2]. Single relay selection was introduced
to overcome these drawbacks while maintaining the system
diversity order. The single relay selection method selects the
most suitable relay for the source-destination transmission [3].

Most of the existing studies on the relay selection of
cooperative systems assume that wireless channels are statis-
tically independent [3]-[5]. However, in reality, these channels
are more likely to be correlated, particularly when the relays
are close to each other. Since the relays may share the same
obstructions, the source-to-relay channels (as well as the relay-
to-destination channels) are correlated to each other due to the
effect of shadow fading [6].

In this work, we investigate the dependence of the outage
probability of cooperative systems with single relay selec-
tion under conditions of equally correlated source-to-relay
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channels and equally correlated relay-to-destination channels.
The equally correlated model may be used as a worst-case
benchmark or as a rough approximation by replacing every
ρij (i # j) in the correlation matrix with the corresponding
average value [7]. We first derive a tight upper bound of the
system outage probability. Then, we prove that even when
the channel correlations are sufficiently large, yet less than
one, the system achieves the same diversity order as the
system under conditions of independent channels. Note that
the considered correlation effect is path correlation, which is
different from other types of correlation forms such as antenna
correlation in multiple antennas relay networks, i.e., [8], and
correlation between the actual channel and the corresponding
estimate in relay networks under time varying channels, i.e.,
[9].

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a multi-relay system, comprising source S,
destination D, and K number of relays. Every node has
only one antenna that can be used for both transmission and
reception. A direct link between S and D is assumed to be
unavailable. Communication in the network is divided into two
phases. In the first phase, the source broadcasts its information
to the K relays. In the second phase, the selected relay uses the
amplify-and-forward (AnF) relaying protocol [1] to forward
the source signal toward the destination. The source-to-relay
channels are assumed to be correlated. The same assumption
is applied for the relay-to-destination channels. For each relay
k, its channels (source-to-relay k and relay k-to-destination)
are assumed to be independent.

Channel coefficients from S to the relays and from the
relays to D are denoted by {hSRk

}Kk=1 and {hRkD}Kk=1,
respectively. {hSRk

}Kk=1 ({hRkD}Kk=1) are modeled as cor-
related zero-mean complex Gaussian random variables with
variance δ2SR (δ2RD) [7], [10]. The cross-correlation coeffi-
cients between any hSRk

and hSRj , and hRkD and hRjD

(k # j) are ρSR and ρRD , respectively. The noise associated
with every channel is modeled as a mutually independent
AWGN with zero-mean and variance N0. We do not consider
power allocation issues as they are outside the scope of
this work. We assume that each transmitter (source or relay)
transmits information with a fixed power P . The aforemen-
tioned assumptions of the unavailable direct link, complex
Gaussian channel gains, AWGN, and the transmission power
are commonly used in cooperative system analyses, i.e., [3]-
[5].

Suppose that S communicates with D through the relay Rk,
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then the received SNR at D is as follows [4]:

γDRk
=

γSRk
γRkD

γSRk
+ γRkD + 1

≤ min {γSRk
, γRkD} , (1)

where γij = P
N0

|hij |2 denotes the instantaneous SNR over
a single hop (for i → j link). It can be verified that γSRk

(γRkD) follows an exponential distribution with parameter
λSR (λRD) where λSR = P

N0
δ2SR and λRD = P

N0
δ2RD are

average SNRs over source-to-relay and relay-to-destination
links, respectively.

III. SYSTEM OUTAGE PROBABILITY

In this section, we will analyze the system outage proba-
bility based on the upper bound of the received SNR at the
destination given in (1). Assuming that the Max-Min relay
selection (MMRS) method is employed, a suitable relay is
chosen as follows [4]:

R∗ = arg max
k=1,...,K

{
γDRk

}
. (2)

The corresponding end-to-end SNR at the destination is [4]:

γDR∗ = max
k=1,...,K

{
γDRk

}
. (3)

The instantaneous system capacity is defined as [5]:

C =
1

2
log2 (1 + γDR∗ ) . (4)

The outage probability is Pout = Pr[C < R0] where R0 is
the system spectral efficiency. Pout can be expressed as:

Pout = Pr
[
γDR∗ < 22R0 − 1

]
= FγDR∗

(
22R0 − 1

)
, (5)

where FγDR∗ (x) is the cumulative distribution function (CDF)
of γDR∗ . Note that, when ρSR = 1, all source-to-relay links
experience the same fading, then we only need to select a
relay that has the strongest relay-to-destination link. It is
similar for ρRD = 1 with the difference of selecting a relay
that has the strongest source-to-relay channel. Both cases are
known as the nearest neighbor selection (NNS) scheme [3].
The nearest relay is not necessarily the spatially nearest relay
to the transmitter or receiver, but the relay with the strongest
channel to the transmitter or receiver. When both ρSR = 1 and
ρRD = 1, the multi-relay network reduces to a single relay
network. Since single relay networks and multi-relay networks
with NNS are known to have a maximum diversity order of
one [1], [3], those cases are discarded in our analysis.

We now provide an approach how to derive an upper
bound of the system outage probability. Let Yk = γSRk

and
Zk = γRkD for k = {1, 2, . . . ,K}. Then, the CDF of γDR∗
can be expressed as the probability of the intersection (denoted
by
⋂

) of functions of Yk and Zk:

FγDR∗ (x) = Pr [γDR∗ ≤ x]

= Pr

[
K⋂

k=1

{min (Yk, Zk) ≤ x}
]
= Pr [V ] .

(6)

Recognizing the axioms of probability that for any event V ,
we have Pr[V ] = 1−Pr

[
V̄
]
, where ¯ denotes the complement

operation. V̄ can be express as:

V̄ =

[
K⋃

k=1

{min (Yk, Zk) > x}
]
, (7)

where
⋃

denotes the union operation. Then, using the prin-
ciple of inclusion and exclusion for probability [11] on V̄
we can decompose Pr[V ] into several simpler probabilities as
follows:

FγDR∗ (x) = 1−
K∑

m=1

(−1)
m+1

∑
n1,··· ,nm:

1≤n1<···<nm≤K

Pr

[
m⋂
i=1

Ξni

]

(8)
where Ξni denotes the event {min (Yni , Zni) > x}, which
is equal to {Yni > x ∩ Zni > x}. Since Yni and Zni are

independent, Pr

[
m⋂
i=1

Ξni

]
can be decomposed as follows:

Pr

[
m⋂
i=1

Ξni

]
= Pr

[
m⋂
i=1

{Yni > x}
]
Pr

[
m⋂
i=1

{Zni > x}
]
.

(9)
The two probabilities in the right hand-side (RHS) of Eq. (9)
can be obtained by using again the axioms of probability and
the principle of inclusion and exclusion for probability, i.e.,

Pr

[
m⋂
i=1

{Yni > x}
]
= 1−

m∑
l=1

(−1)
l+1

·∑ q1,··· ,ql:
1≤q1<···<ql≤m

Pr

[
l⋂

i=1

{Yqi ≤ x}
]
,

(10)

and the probability Pr

[
l⋂

i=1

{Yqi ≤ x}
]

is [7]:

Pr

[
l⋂

i=1

{Yni ≤ x}
]
=

∞∫
0

[
1−Q

(√
2ρSRu
1−ρSR

,
√

2x
λSR(1−ρSR)

)]l
e−udu

, (11)

where Q (α, β) is the first order Marcum Q-function. Substi-
tuting Y , ρSR, and λSR in equations (10) and (11) by Z ,

ρRD , and λRD we will obtain Pr

[
m⋂
i=1

{Zni > x}
]

. Finally,

substituting (11) and (10) into (9), (8), and (5) yields an upper
bound of the outage probability of a multi-relay system.

In summary, as a result of the outage probability of two-
relay systems (K = 2), we provide a closed form upper bound
to give some insight on the effect of channel correlations on
the system performance.

Theorem 1: The system outage probability of two-relay
cooperative systems with single relay selection in correlated
environments can be upper bounded as:

Pout ≤ Pup = f (λSR, ρSR) f (λRD, ρRD) + 1

−2e
−A

(
1

λSR
+ 1

λRD

)
,

(12)

where

f (λi, ρi) = 2e
−A
λi − 1 + A

λi

·
[
1− e

−2A

B(λi,ρi)
{
I0

(
2A

B(λi,ρi)

)
+ I1

(
2A

B(λi,ρi)

)}]
;

(13)

with i = {SR,RD}; A = 22R0 −1; B (λi, ρi) = λi

(
1− ρ2i

)
;

In (·) is the modified Bessel function of the first kind of order
nth.

Proof: Substituting K = 2 into Eq. (8), we obtain:

FγDR∗ (x) = 1 + Pr [Y1 > x, Y2 > x]Pr [Z1 > x,Z2 > x]

−Pr [Y1 > x]Pr [Z1 > x]− Pr [Y2 > x]Pr [Z2 > x] .
(14)
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It is known that Yk (Zk) follows an exponential distribution
with parameter λSR (λRD). Consequently,{

Pr (Y1 > x) = Pr (Y2 > x) = e
−x

λSR

Pr (Z1 > x) = Pr (Z2 > x) = e
−x

λRD

. (15)

The probabilities of joint events, Pr{Y1 > x, Y2 > x} and
Pr{Z1 > x,Z2 > x}, can be obtained by using equations (10)
and (11). However, for this special case K = 2, instead of
using Eq. (11) we prefer to use the approach given in [10]:

Pr [Y1 ≤ x, Y2 ≤ x]

= 1

λ2
SR(1−ρ2

SR)

x∫
0

x∫
0

e
−u−v

B(λSR,ρSR) I0

(
2|ρSR|√uv
B(λSR,ρSR)

)
,

(16)

which gives less difficulty in deriving an asymptotic approx-
imation of the upper bound of the system outage probabil-
ity. Let u1 = u/B (λSR, ρSR) and v1 = v/B (λSR, ρSR). With

noting that I0
(
2 |ρSR| √u1v1

) ≤ I0
(
2
√
u1v1
)
, the above

probability can be upper bounded as [12]:

Pr [Y1 ≤ x, Y2 ≤ x] ≤ x
λSR

·
[
1− e

−2x

B(λSR,ρSR)
{
I0

(
2x

B(λSR,ρSR)

)
+ I1

(
2x

B(λSR,ρSR)

)}]
(17)

Similarly, an upper bound of Pr[Z1 ≤ x, Z2 ≤ x] can be
obtained by substituting Y , λSR, and ρSR with Z , λRD , and
ρRD in the inequality (17).

Finally, substituting (17) and (15) into (10) (with m = 2
and noting that Pr [Yk ≤ x] = 1−Pr [Yk > x], Pr [Zk ≤ x] =
1−Pr [Zk > x]), (14), and (5) we get (12), which completes
the proof.

Theorem 2: The two-relay systems achieve a diversity or-
der of two, with a certain amount of tolerance, when |ρSR|
and |ρRD| are less than one.

Proof: Let ti = 2A
B(λi,ρi)

, f (λi, ρi) becomes:

f (λi, ρi) = 2e
−A
λi − 1 +

A

λi

[
1− e−ti {I0 (ti) + I1 (ti)}

]
.

(18)
Typically, ti ∼ 0 and thus I0 (ti) � 1. Using the following
relation [13]:

I1 (ti) = I0 (ti)
ti
2
e

−t2i
8 , (19)

and noting that e
−t2

8 � 1, f (λi, ρi) can be approximated as:

f (λi, ρi) � 1 +
A

λi

[
1− e−t

{
1 +

t

2

}]
� 1 +

A

2λi
ti (20)

Consequently, the upper bound of the system outage proba-
bility given in (12) can be approximated as:

Pup � 1

λ2
SR

(
A2

1− ρ2SR

+
A2

L2 (1− ρ2RD)

)
, (21)

where L = λRD/λSR
. For |ρSR| and |ρRD| are less than one,

Pup is proportional to λ−2
SR, the system achieves a diversity

order of two.
The outage probability of two-relay cooperative systems with
single relay selection under conditions of independent chan-
nels was presented in [14]:

P I
out =

[
1− exp

{
−A

λSR + λRD

λSRλRD

}]2
, (22)

5 10 15 20 25 30 35 40 45 50
10-5

10-4

10-3

10-2

10-1

100

Average SNR

O
ut

ag
e 

Pr
ob

ab
ili

ty
 w

ith
 T

w
o 

R
el

ay
s

 

 

Correlated Channels
Correlated Channels Upper Bound
Correlated-Upper Bound Approx.
Independent Channels
Independent Channels Approx.

ρ
SR

 = 0.99
ρ

RD
 = 0.99

Fig. 1. Outage probability of two-relay systems versus average SNR.

which can be asymptotically approximated as:

P I
out �

1

λ2
SR

A2

(
1 +

1

L

)2

(23)

From equations (21) and (23), it is clear that the channel
correlations do not affect the system diversity order. Note that
the RHS of Eq. (21) is an approximation of the upper bound of
the system outage probability under conditions of correlated
channels, whereas the RHS of Eq. (23) is an approximation
of the exact system outage probability under conditions of
independent channels. In short, when ρSR = ρRD = 0 in Eq.
(21), the approximation of the upper bound is not the same
as Eq. (23).

Finally, as another example, we present the upper bound of
the system outage probability for the case of K = 3 in Eq.
(24) at the top of next page.

IV. SIMULATION RESULTS

In this section, we provide numerical and simulation results
to validate our analysis. The simulation setting follows the
system model in Section II with R0 = 2 bit/s/Hz and L = 1.

Fig.1 illustrates the relation between the outage probability
of two-relay systems and the channel correlations. It first
shows that the derived result given in (12) is a very tight upper
bound of the system outage probability. Secondly, although
the system outage probability considerably degrades when the
channel correlations approach one, the system still maintains
a diversity order of two.

In Fig. 2, we simulate the outage probability of two-relay
systems versus the channel correlations for several average
SNR values. In the simulation setting, we set ρSR = ρRD.
As expected, the system outage probability decreases when
SNR increases. For small values of ρSR and ρRD, the effect
of the channel correlations on the system outage probability is
negligible. However, when the channel correlations approach
one, the system outage probability degrades steeply.

Fig. 3 gives a comparison between the simulation and the
analysis upper bound of the outage probability for three-relay
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PK=3
out ≤ 1− 3e

−A
(

1
λSR

+ 1
λRD

)
+ 3f (λSR, ρSR) f (λRD, ρRD)− g (λSR, ρSR) g (λRD, ρRD) , (24)

where

g (λi, ρi) = 3e
−A
λi + 3

(
f (λi, ρi)− 2e

−A
λi + 1

)
− 2−

∞∫
0

[
1−Q

(√
2ρiu

1− ρi
,

√
2A

λi (1− ρi)

)]3
e−udu. (25)
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Fig. 2. Outage probability of two-relay systems versus channel correlation.

systems. It first confirms that the systems still achieve a diver-
sity order equal to the number of available relays. Secondly, it
shows that the system performance gain of moving from two
relays to three relays is much less than that of moving from
one relay to two relays, i.e., 2 (dB) in comparison with 10
(dB) at 10−3 of the system outage probability.

V. CONCLUSION

We studied the dependence of the outage probability of
cooperative systems with single relay selection on channel
correlation. A tight upper bound of the system outage prob-
ability was given as a function of the channel correlation
coefficients. We showed that the system outage probability
degraded noticeably when the channel correlations approach
one. However, the system still achieved the same diversity
order as the system under conditions of independent channels.
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