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ABSTRACT  

 
Aqueous extracts (10, 20, 30 and 40 g/L) of Pinus 
halepensis barks, collected from Bizerte (B), 
Tabarka (T), Seliana (S) and Oueslatia (O) to 
elucidate the influence of ecological sites on 
allelopathic potential. Aqueous barks extracts from 
(S) and (O) have revealed a higher rate of phenolic 
acids than those from (T) and (B), respectively 
13.23, 13.8, 11.63 and 10.37 mg/mL. Alep pin  
barks were analyzed using HPLC/UV for the 
identification and quantification of the phenolic 
compounds, among which in particular the catechin 
acetate, the gallic acid, the rutine hydrate, luteolin 7 
glucoside and the cinnamic acid. In fact, the 
aqueous extract of barks from (S) revealed a highest 
level, respectively 2.61, 1.74, 1.61, 1.36, and 1.21 
mg/mL. The Pinus halepensis barks was analyzed 
by GC and GC-MS. As a result, 29 compounds were 
identified representing 89% made up basically by   
β-caryophyllene, α-humulene. As for allelopathic 
activity, aqueous extracts of barks significantly 
delayed germination, reduced its rate and affected 

the seedling growth mainly the (S) and (O) extracts. 
The root growth of the two targets has shown a high 
sensibility compared to the shoot lengths. Pot cultu-
res were conducted by the incorporation of barks 
powder (50 and 100 g/kg) or the irrigation with their 
aqueous extracts at 20 and 40 g/L. Pinus halepensis 
barks and its extracts have shown a high herbicide 
potent, particularly the one collected from (S) and 
(O), may be favorably used for incorporating in 
agricultural systems for sustainable weed manage-
ment. 
 
Keywords: Allelopathic potential, Barks, Phenolic 
acids, Phytochemical content, Pinus halepensis. 
 
1. INTRODUCTION  
  
 Conifer forests are allelochimical-producing, 
and have a strong allelopathic potential [1]. Pinus 
halepensis Mill is one of the major conifers in 
Algeria, Morocco and Tunisia covering approxima-
tely 1.3 million hectares, one of the principal 
essences given the zone it covers [2]. Continually 
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expanding, heliophilous, invasive, and rich in 
secondary metabolites, Pinus halepensis could 
influence the secondary succession because of       
its great allelopathic potential [2-5]. Indeed this 
potential is influenced by the abiotic factors such as 
the high temperatures, hydrous stress, light, soil 
characteristics (pH, the structure and the state of the 
nutrients, texture, the presence of contaminants), 
altitude and the latitude [6-9]. This allelopathic 
potential depends on abiotic factors such as the 
edaphic microclimate, the intensity and the duration 
of rainfall [10]. These secondary metabolites are of 
great importance for the relations between the plant 
and its environment [11]. 
 The bark of pine was a bothersome residue 
for the wood industry, abundantly available and 
cheap [12, 13], rich in polyphenols, phenolic acids 
fatty, aliphatic, and resinic acids [14-16]. Those 
secondary metabolites show an important ecological 
role in the allelopathic processes [5].  
 Many plants use chemical interactions, such 
as allelopathy [8], a principal factor in the mana-
gement, implementation and growth of plants [17]. 
They have a negative impact on the surrounding 
plants under natural conditions [18], like in the 
agrosystems [19]. Many plant-derived compounds, 
[20] have herbicide effects without causing damage 
to the environment [21]. The use of secondary 
metabolites could be effective in the management  
of weeds [22]. Indeed the improvement of the agri-
cultural output depends partly on weeding [23].    

The development of natural pesticides would make 
it possible to decrease the use of chemical pesti-
cides [24] and their negative impact on the environ-
ment [25]. 
 We conducted the work to evaluate the 
herbicide potential of the pine barks of Alep and to 
explore the influence of the ecological sites Bizerte 
(B), Tabarka (T), Seliana (S) and Oueslatia (O) on 
the production of allelochemicals. 
 
2. Materials and methods 
 
2.1. Sampling Sites 
 
 The barks of Pinus halepensis were randomly 
collected from 20 trees in a 10×10 m2 area in the 
Tunisian pine forests of Bizerte, Tabarka, Seliana, 
and Oueslatia, in January 2012. The samples were 
dried in a ventilated and lit place. Forty grams of 
each dried and grinded biomass was tempered in         
1 L distilled water at ambient temperature for 24 h. 
The extracts were filtered through a paper filter 
(Whatman N°1) 3-5 times and saved at 4 °C in the 
dark until use [22]. 
 
2.2. Climatic data 
 
 The climatic data displayed in Table 1; were 
provided by the weather services (The Tunisian 
National Institute of Meterology). 
 

 
 
Table 1. Climatic data of the four stations of sampling (According to the National institute of Meteorology). 

Climatic data Bizerte Tabarka Seliana Oueslatia 

Rainfall 450-1500 mm/an 450-1500 mm/an 150-450 mm/an 100-400 mm/an 

Altitude 21m 5 m 560 m 654 m 

Location 37°14’N 9°45’E 36°56’N 8°46’E 35°57’N 9°28’E 35°52’N 9°30’E 

Max(August) 30.3 34.7 36.3 31.6 Temp 
(°C) Min (December) 8.9 7.8 7.2 8 

 
 
2.3. Bioassays with aqueous extracts  
 
 Barks aqueous extracts were prepared by 
soaking 40 g of dried biomass for 24 h in 1L of 
sterilized distilled water, diluted to give 10, 20 and 
30 g/L [6]. They were tested on Raphanus sativus L. 

(radish) and Triticum aestivum L. (wheat), used as 
model plants in the studies on the allelopathy at the 
laboratory. Target seeds were surface sterilized with 
0.525 g/L sodium hypochlorite for 15 min, then 
rinsed four times with deionized water, imbibed in it 
at 22 °C for 12 h and carefully blotted using a 
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folded paper towel [26]. Twenty imbibed seeds of 
target species were separately placed on filter papers 
in Petri dishes, 5 mL of each extract per treatment. 
Seeds irrigated with distilled water were used as 
controls. The seeds were germinated in a growth 
chamber with 400 µmol photons m-2s-1 photosyn-
thetically active radiation (PAR) at 22/24 °C for 
14/10 h light and dark periods, respectively [6]. 
 
2.4. Phytochemical screening 
 
2.4.1. Total phenolic content (TPC) determination 
 
 TPC in the extracts were estimated by a 
colorimetric assay based on the procedures descri-
bed by Paras and Hardeep; Reis et al. [27, 28]. 
Basically, 1 ml of sample was mixed with Folin-
Ciocalteu reagent (5 mL, previously diluted with 
water 1:10, v/v) and sodium carbonate (75 g/L, 4 
mL). The tubes were mixed in vortex for 15 s and 
kept aside for 30 min at 40°C for color develop-
ment. Absorbance was measured at 765 nm (Analy-
tikjena spectrophotometer; Jena, Germany). TPC 
was expressed as mg gallic acid equivalent /g dry 
matter (mg GAE/g dw) using gallic acid calibration 
curve (R2 = 0.985). 
 
2.4.2. Total flavonoid content (TFd) determination 
 
 TFd were determined according to the method 
of Zhishen et al. [29] with some modifications. The 
extract (250 µl) was mixed with 1.25 mL of distilled 
water and 75 µl of a 5% NaNO2 solution. After 5 
min, 150 µl of 10% AlCl3 • H2O solution was added. 
After 6 min, 500 µl of 1 M NaOH and 275 µl of 
distilled water were added to prepare the mixture. 
The solution was mixed well and the absorbance 
was read at 510 nm. (+)-Catechin was used as 
standard and the results were expressed as mg of 
(+)-catechin equivalents (CE) per g of the dry 
matter. 
 
2.4.3. Condensed tannins content (TPA) 
determination 
 
 TPA was determined according to the method 
of Julkunen-Titto [30]. An aliquot (50 µL) of each 
extract or standard solution was mixed with 1.5 mL 
of 4% vanillin (prepared with methanol) and then 

750 µL of concentrated HCl were added. The well 
mixed solution was incubated at ambient tempera-
ture in the dark for 20 min. The absorbance against 
blank was read at 500 nm. The results were 
expressed as mg of (+)-catechin equivalents (CE) 
per g of the dry matter. 
 
2.4.4. Determination of o-diphenols 
 
 1 ml of a solution of HCl (0.5 N), 1 ml of a 
solution of a mixture of NaNO2 (10 g) and 
NaMoO4•2H2O (10 g) in 100 ml H2O, and finally     
1 ml of a solution of NaOH (1 N) were added          
to 100 µl of each aqueous extract. After 30 min,         
o-diphenols were read at 500 nm. The o-diphenols 
were expressed on a dry weight basis as mg tyrosol 
equivalents per g of the dry matter [31]. 
 
2.4.5. Identification of phenolic compounds 
(HPLC/UV) in the extracts  
 
 The presence and amount of phenolic 
compounds in the extracts were studied by reversed 
phase HPLC analysis using a binary gradient 
elution. The phenolic compounds analysis was 
carried out by Usingan Agilent Technologies 1100 
series liquid chromatography (HPLC, Palo Alto, 
CA) coupled with an UV-vis multiwavelength 
detector. The separation was carried out on a 250 
mm × 8 mm, particle size 5 µm Eurospher-100C18 
reversed phase column at ambient temperature. The 
mobile phase consisted of acetonitrile (solvent A) 
and water with 0.2% sulphuric acid (solvent B). The 
flow rate was kept at 0.8 ml min-1. The gradient 
program was as follows: 15% A/85% B, 0-12 min; 
40% A/60% B, 12-14 min; 60% A/40% B, 14-18 
min; 80%A/20% B, 18-20 min; 90% A/10% B, 20-
24 min; 100% A, 24-28 min. The injection volume 
was 20 µl, and peaks were monitored at 280 nm. 
Samples were filtered through a 0.45 µm membrane 
filter before injection. Peaks were identified by 
congruent retention times compared with standards. 
 
2.4.6. Volatile compound analyses 
 
 Supelco (Bellefonte, PA, USA) SPME devices 
coated with polydimethylsiloxane (PDMS, 100 µm) 
were used to sample the headspace of two date 
seeds inserted into a 10-mL glass vial and allowed 
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to equilibrate for 30 min. After the equilibration 
time, the fibre was exposed to the headspace for 50 
min at room temperature. Once sampling was 
finished, the fibre was withdrawn into the needles 
and transferred to the injection port of the GC-MS 
system. GC-EIMS analyses were performed with      
a Varian (Palo Alto, CA, USA) CP 3800 gas 
chromatograph equipped with a DB-5 capillary 
column (30 m x 0.25 mm x 0.25 µm; Agilent, Santa 
Clara, CA, USA) and a Varian Saturn 2000 ion    
trap mass detector. Analytical conditions were as 
follows: injector and transfer line temperatures were 
250 and 240 oC, respectively; oven temperature was 
programmed from 60 to 240 oC at 3 oC min-1; carrier 
gas was helium at 1 mL min-1; splitless injection. 
The identification of the constituents was based     
on a comparison of their retention times with    
those of authentic samples (Collection of volatile 
compounds purchased from Sigma-Aldrich Italia 
and ⁄ or Carlo Erba Italia as pure compounds or 
analytical kits; except for the two 2-tridecenes that 
have been identified by mean of their mass      
spectral data), comparing their linear retention 
indices (LRI) relative to a series of n-hydrocarbons, 
and on computer matching against commercial 
(NIST 98 and Adams) and homemade library mass 
spectra, and MS literature data [32, 33]. Moreover, 
the molecular weights of all the substances iden-
tified were confirmed by GC-CIMS, using metha-
nol as ionizing gas. Results were expressed as 
relative percentages obtained by peak area normali-
zation [34].  
 
2.5. Effect of the aqueous extracts 
 
2.5.1. Effect on germination 
 
 Germination was given including the number 
of seeds germinated at 24 hour intervals for 6 days. 
The length of the roots and the air parts of young 
seedlings of target species were measured 7 days 
after sowing [6]. The data were transformed into 
percentage of control for the analysis. The index     
of germination GI was calculated by using the 
following formula [35]. 
GI= (N1) x1 + (N2 - N1) x (1/2) + (N3 - N2) x (1/3) + ••• 
Where N1, N2, N3,…, Nn: percentage of germinated 
seeds observed after 1,2,3,…, N days. This index 
represents the delay in the germination induced by 

the extract [36]. The percentage of germination 
inhibition was determined according to the formula:  
[% germination inhibition] = [% germination control 
- % germination extract] 
 The percentage of inhibition/stimulation was 
calculated under the terms of the formula of Chung 
et al. [37]: 
[Inhibition (-) /Stimulation (+)] = [(Extracted - Control) 
/Control] x 100. 
 
2.5.2. Effect on the growth 
 
 The effect of the aqueous extracts on the 
growth was estimated by measuring the length            
of the root and the principal stem 7 days after 
germination. The results were expressed as a per-
centage of the control. The percentages of inhibition 
or stimulation induced by the various extracts were 
calculated [37]. 
 
2.6. Pot culture assay 
 
2.6.1. Powder incorporation in soil  
 
 The vegetal powder of the barks, taken from 
various sites was incorporated in soil sample to the 
proportions of 50 and 100 g/kg. The soil without 
powder was used as a control. The mixtures were 
placed in 10 cm diameter plastic pots, each contain-
ing 250 g [38]. The experiment was undertaken 
under a greenhouse. The length of the roots and the 
principal stem were measured at the end of day 20 
of culture. The treatments were randomly laid out in 
a device with three repetitions and the data were 
transformed into a percentage of the control for 
analysis [6]. 
 
2.6.2. Irrigation with the aqueous extracts   
 
 The target plants were sown in pots of 10 cm 
in diameter filled with the same soil type. The pots 
were irrigated with the aqueous extracts prepared 
from the various types of biomass of pine of Alep   
at two concentrations (20 and 40g/l). The added 
volume was of 10ml and the ground was humidi-
fied each time it desiccates. The treatments were 
randomly laid out in a device with three repetitions 
and the data were transformed into percentage of the 
control for analysis [6]. 
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2.7. Statistical analysis 
 
 The biological tests in the laboratory and the 
greenhouse were carried out with three repetitions 
and five times for the phytochemical analyses. All 
the data were reported on average ± standard 
deviation using SPSS 18 program. An ANOVA of 
LSD post hoc test was carried out with the same 
software in order to analyze the differences between 
the treatments. The Pearson correlation between the 
essays of the different sites having the same 
concentration was made for each species and each 
concentration. The averages were separated on the 
level of probability 0.05. 
 
3. Results  
 
3.1. Phytochemical screening 
 
 The contents of the Pinus halepensis barks 
collected from the four ecological sites Bizerte (B), 
Tabarka (T), Seliana (S) and Oueslatia (O) in total 
polyphenols (TPC), O-diphenols, flavonoids (TFd) 
and in condensed tannins (TPA), revealed signi-
ficant differences depending on the origin of the 
biomass (Table 2). This production of allelo-
chemicals is partially due to genetic factors and is 
partly determined by environmental conditions [39]. 
It partly accounts for the high TPC contents in the 
barks from (S) and (O) compared with those of (B) 
and (T), which are respectively 75.34 and 71.46 mg 
GAE/g dw (Table 2). Flavonoids can play a 
significant role in the protection of the plants against 
the UV-A and UV-B [40]. Their production varies 
according to the plant geographical site [41]. The 
highest content was recorded in the barks of the 
Seliana forest with 36.44 CEQ/g dw, an average of 
28.79 CEQ/g dw for The three other aqueous 
extract. Covelo et al. [39] showed that the content  
of tannins, in the pine forests, strongly depends        
on the availability of light. Indeed, the biomass      
of source (O) and (S) presents the highest content, 
respectively 6.79 and 5.85 CEmg/g dw, however  
(B) and (T) aqueous extract revealed a less rate           
of TPA, an average of 5.29 CEmg/g dw. This dissi-
milarity could be explained by the effect of the 
climatic factors [42]. 
 

3.2. Identification of phenolic compounds 
(HPLC/UV) in the barks extracts  
 
 Phenolic acids (caffeic, ferulic and cinnamic 
acids), polyphenols, tannins, flavonols (quercetin) 
are inhibitors of germination [43]. The effect of the 
phenolics compounds on germination is related to 
the regulation of endogenous auxine, the permeabi-
lity of the seed tegument and the procurement of 
oxygen to the embryo [44]. 
 In this study, HPLC showed many phenolic 
acids in the aqueous extracts of the barks of Pinus 
halepensis (Table 3). Elevated levels of phenolic 
acids is related to the mechanisms of defense of the 
plant against a microorganism attack [45], involved 
in resistance to various types of stress [46]. Indeed, 
the aqueous extracts of Pinus halepensis bark from 
(S) and (O) revealed higher rate of phenolic acids 
than those from (T) and (B), respectively of 13.23, 
13.8, 11.63 and 10.37 mg/ml; this may be explained 
by the low rainfall and high temperatures of the two 
harvesting site (S) and (O). In fact, the aqueous 
extracts from (S) and (O) revealed higher levels of 
gallic and cinnamic acids, catechine acetate, rutine 
hydrate and Luteolin 7 glucoside, compared to those 
from (B) and (T) this may be explained by the low 
rainfall and high temperatures of the two harvesting 
site Seliana and Oueslatia (Table 3). In fact, the 
aqueous extracts of barks from (S) revealed higher 
levels of gallic acid 1,74 mg/mL, cinnamic acid 1,21 
mg/mL, catechin acetate 2,61 mg/mL rutine hydrate 
1,6 mg/mL and luteolin 7 glucoside 1,36 mg/ml 
(Table 3). Such flavonoids have strong allelopathic 
potent [47]. This may explain the high potential 
inhibitory of aqueous extracts of the barks collected 
from (S) and (O) on the germination and growth of 
target plants.  
 
3.3. Chemical composition 
 
 Twenty-nine compounds were identified (Table 
4), accounting for 94, 6-99, 7% of the aroma extract. 
The biomass of Pinus halepensis accumulate aroma 
compounds differently according to the geographic 
area: barks from Seliana and Oueslatia produced a 
higher numbers of monoterpene hydrocarbons, 
10.5% (Table 5).  
 The major constituents of the volatile frac-
tion from Oueslatia were β-caryophyllene (66.3%),              
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α-humulene (7.3%) (Table 4). However, barks from 
Tabarka showed a low percentage of β-caryo-
phyllene (58.4%), α-humulene (1.4%) (Table 4). 
These compounds have been reported to have 
herbicidal activities [48]. Wang et al. [49] showed 
that (E)-caryophyllene at the dose of 3 mg/L 
significantly inhibited the germination rates and 
seedling growth of Brassica campestris and 
Raphanus sativus. Singh have demonstrated that 
exposure of seedling to α-pinene act to inhibited 
seedling growth causing oxidative damage in root 
tissue [50]. Barks from Oueslatia was characterized 
by the highest amount of sesquiterpene hydro-
carbons (84.9%), made up by β-caryophyllene and 
α-humulene, and lowest amount of hydrocarbons 
monoterpenes (10.5%) (Table 4). 
 However, barks collected from Bizerte and 
Tabarka showed a low percentage, an average of 
(58.5%) for β-caryophyllene, (8.85%) for α-humu-
lene (Table 4). 
 
3.4. Effect of the aqueous extracts of Pinus 
halepensis barks on germination 
  
 In Table 6, the percentage of inhibitions 
obtained in the presence of the aqueous extracts of 
barks from the four sites. A more or less similar 
effect was recorded for the seeds of radish and 
wheat. It was noted that the inhibition, induced by 
the aqueous extracts of the barks on the germination 
of radish and wheat, increased with the augmen-
tation of concentration of these extracts. At 10 g/L 
of the aqueous extract, recorded inhibitions of the 
germination of the seeds of radish were of 11.7% 
(B), 10% (T), 21.7% (S) and 16.7% (O). However at 
30 g/L, the herbicide effect of the aqueous extracts 
was more announced and the reductions were of 
20% (B), 18.35% (T), 28.35% (S) and 33.35% (O) 
(table 6).Several studies have shown that the 
inhibition degree increases with the augmentation   
of concentrations of the extract [22]. For all the 
concentrations, the site effect was shown; the 
inhibition of germination was more important for 
the aqueous extracts from (S) and (O), while the 
weakest reduction was recorded in the presence of 
the aqueous extract of the barks from (T). At 40 g/L, 
the seeds of wheat had an almost similar sensitivity 
towards the aqueous extracts of the barks of Bizerte, 
Tabarka and Oueslatia, with an average inhibition of 

28.9%, but Seliana aqueous extract induced an 
inhibition of germination of 35% (Table 6). The 
richness of TPC, TFd, TPA and O-diphenols of the 
aqueous extract from (S) could explain the effect 
observed. Indeed, Bais et al. announced that the 
flavonoids have allelopathic effects [51]. The 
qualitative differences of these compounds in the 
extracts could contribute to different phytotoxicity 
rates [21]. 
 At 40 g/L, the germination indexes recorded 
in the presence of the four extracts were similar     
for wheat and for radish with respective averages    
of 55.52 and 55.77; 64.08 and 56.96 at 30 g/L 
(Table 7). The aqueous extracts of the barks do not 
affect only the rate of germination, but also the 
extension of germination over longer periods. 
Similar observations were noted by Tiger et al. [52]. 
The presences of allelochemicals involve a delay of 
germination by disturbing mitochondrial breathing 
and metabolic enzymes implied in glycolysis and 
oxidative pentose phosphate pathway (OPPP) [21, 
22, 53]. In addition, allelochemicals disturb peroxi-
dase, alpha-amylase activities, cellular division and 
differentiation and the metabolism of phytohormo-
nes [54]. 
 
3.5. Effect of the aqueous extracts of the Pinus 
halepensis barks on the growth 
 
3.5.1. On root growth  
 
 The lengths of the air parts or the roots are 
parameters usually used for the determination         
of allelopathic effects on the development of      
plants [52]. The results show a very significant 
effect of the aqueous extracts of the barks from        
B, T, S and O, even at weak concentrations, essen-
tially in the presence of Seliana extract (Fig. 1).    
 The reduction of the root growth of wheat 
seedlings, at 10 g/L, ranged between 75 and 85% 
and between 95 and 99% at the strongest concen-
tration, 40 g/L (Fig. 2). The growth of the roots in 
the presence of the aqueous extracts of the barks 
from the four sites, showed high inhibitions 
proportional to the concentrations (Fig. 2). Similar 
results were reported by Ladhari et al. [22]. Radish 
was shown to be more sensitive to the aqueous 
extracts of the barks of Pinus halepensis (Fig. 3). 
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Table 2. The total polyphenols (TPC), O-diphenols, Flavonoids, condensed tannins (TPA) content in the barks                          
of P. halepensis collected from the forests of Bizerte (B), Tabarka (T), Seliana (S) and Oueslatia (O). 

Site of sampling Bizerte (B) Tabarka (T) Seliana (S) Oueslatia (O) 

TPC (mg GAE/g dw) 71.76b** ± 1.05 68.64a** ± 2.03 75.34c** ± 2.04 71.46b** ± 1.09 

o-diphenols (mg eq tyrosol/g dw) 4.75a ± 1.33 5.01a** ± 0.30 5.37a ± 0.37 6.11a ± 0.51 

flavonoids ((CEQ) /g dw) 29.97a** ± 2.04 26.69a** ± 3.04 36.44b ± 0.44 29.71a ± 1.12 

TPA (CE mg /g dw) 5.55ab** ± 0.95 5.04a** ± 1.05 5.85ab** ± 0.54 6.79b** ± 0.25 

All analyses are the average of three measurements ± standard deviation. The averages with the same letters in a column 
are not significantly different with P <0.05. ** indicates a significant Pearson correlation at the level 0.01 between TPC,  
o-diphenols, Flavonoids and the TPA of the barks of the same site. 
 
 

Table 3. Phenolic acids contents (mg/mL) in the barks aqueous extracts of Pinus halepensis. 

All analyses are the average of three measurements ± standard deviation. The averages with the same letters in a column 
are not significantly different at P <0.05. * indicates a significant Pearson correlation o at the level 0.05 and ** at the level 
0.01 between compounds of the barks collected from the forests of Bizerte (B), Tabarka (T), Seliana (S) and Oueslatia (O). 
 

Compounds (mg/mL) 
Barks from 
Bizerte 

Barks from 
Tabarka 

Barks from 
Seliana 

Barks from 
Oueslatia 

Gallic acid  1.71b** ± 0,1 - 1.74b**± 0.26 1.53b ± 0.43 

Catechin  acetate  - - 2.61b ± 0.3 1.31c ± 0.69 

Catechine hydrate 1.28b** ± 0.2 2.82c**  ± 0.82 - - 

Resorcinol - - - 0.6 

Chlogénic acid - 0.91 - - 

Syringic acid - 1.67b ± 0.07 - 1.7b ± 0.4 

Hydroxy phenylacetate - - 2.09 - 

Catechol 1.23 - - - 

Rutine hydrate - - 1.61b* ± 0.61 1.23b* ± 0.44 

Verbascoside 1.12b** ± 0.07 1.45b** ± 0.31 - - 

Luteolin 7 glucoside 1.31a ± 0.63 1.45a** ± 0.1 1.36a ± 0.46 1.7a** ± 0.11 

Neringenin - 0.76b** ± 0.4 - 1.21c** ± 0.21 

Apegenin 7 glucoside 2.73c** ± 0.94 - 1.01 1.31b** ± 0.31 

Fereulic acid - - 1.84 - 

m-Coumaric acid - 1.54c ± 0.5 - 0.89b ± 0.2 

Phenylacetate 0.15a** ± 0.1 - - 0.61b** ± 0.4 

Resveratrol 0.13 - - - 

Luteolin 0.11b ± 0.06 0.07b ± 0.01 - - 

Pinoresinol 0.1a** ± 0.05 0.12a** ± 0.03 0.52a ± 0.48 0.31a ± 0.1 

Naphtoresorcinol - - 0.2 - 

Cinamic acide 0.65a** ± 0.3 0.5a** ± 0.29 1.21b** ± 0.21 1.34b** ± 0.43 

Apigenin - 0.71 - - 

2,4.D Pestanal - 0.15 - - 

Flavon 0.21a** ± 0.01 0.02b** ± 0.02 0.05b** ± 0.03 0.06b** ± 0.04 

Total (mg/mL) 10.37 11.63 13.23 13.8 
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Table 4. Composition of volatiles obtained from Barks of Pinus halepensis according to their different geographical origin 
(B.B: Barks from Bizerte; B.T: Barks from Tabarka; B.S: Barks from Seliana; B.O: Barks from Oueslatia) (L.R.I: Linear 
Index Retention). 

Compound L.R.I. 
Barks from 
Bizerte 

Barks from 
Tabarka 

Barks from 
Seliana 

Barks from 
Oueslatia 

α-pinene 941 1.6 2.1 2.1 2.4 

β-pinene 982 - 0.4 0.2 0.7 

myrcene 993 1.2 0.8 1.3 1.8 

δ-3-carene 1013 - - 0.4 0.5 

p-cymene 1028 0.4 0.5 0.4 0.4 

limonene 1032 2.2 1.8 2 2.9 

terpinolene 1090 1.2 1.1 1.1 1.8 

linalool 1101 0.6 0.5 0.4 0.3 

nonanal 1104 1.9 0.8 1.7 0.5 

phenyl ethyl alcohol 1141 - 0.5 - 0.2 

camphor 1145 0.6 0.4 0.2 0.2 

4-terpineol 1178 0.8 0.9 0.9 0.8 

isobornyl acetate 1287 - 0.4 0.3 0.4 

α-cubebene 1353 1.3 1.4 1.1 0.8 

β-copaene 1430 3.6 3.5 3.2 2.6 

β-caryophyllene 1419 59.3 58.4 61.7 66.3 

β-ylangene 1422 1.6 1.4 1.4 0.9 

α-humulene 1455 8.4 9.3 10.4 7.3 

(E)-β-farnesene 1459 - - 0.3 0.3 

alloaromadendrene 1462 - - 0.3 0.2 

γ-muurolene 1478 0.5 0.7 0.5 0.3 

valencene 1493 1.6 1 1.4 0.5 

α-muurolene 1501 1.7 2.9 1.4 0.9 

δ-cadinene 1524 1.1 1.7 0.9 0.5 

caryophyllene oxide 1582 1.2 3.6 3.3 1.9 

humulene epoxide II 1607 0 0.7 0.5 0.2 

γ-muurolene 1478 0.5 0.7 0.5 0.3 

valencene 1493 1.6 1 0.4 0.5 

α-muurolene 1501 1.7 1.9 1.4 0.9 

Total identified  99.6 98.4 99.7 97.3 

 
 
Table 5. Chemical composition groups of barks of Pinus halepensis 

 
Barks  
from Bizerte 

Barks  
from Tabarka 

Barks  
from Seliana 

Barks  
from Oueslatia 

Monoterpene hydrocarbons (%) 6.6 6.7 7.5 10.5 

Oxygenated monoterpenes (%) 3.9 3 3.5 2.2 

Sesquiterpene hydrocarbons (%) 82.9 83.9 84.9 82.3 

Oxygenated sesquiterpenes (%) 1.2 4.3 3.8 2.1 

Others (%) 0 0.5 0 0.2 

Total (%) 94.6 98.4 99.7 97.3 
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Table 6. Summary table of the % of inhibition of germination of Triticum aestivum and Raphanus sativus in the presence 
of the aqueous extracts of the barks of P. halepensis from the four sources Bizerte (B), Tabarka (T), Seliana (S) and 
Oueslatia (O). 

All analyses are the average of three measurements ± standard deviation. The averages with the same letters in a column 
are not significantly different with P <0.05. * indicates a significant Pearson correlation at the level 0.05 and ** at the level 
0.01between tests having the same concentrations of each target species. 

 
Table 7. Summary table of the indices of germination of Triticum aestivum and Raphanus sativus in the presence             
of the aqueous extracts of the barks of P. halepensis from the four sources Bizerte (B), Tabarka (T), Seliana (S) and 
Oueslatia (O). 

All analyses are the average of three measurements ± standard deviation. The averages with the same letters in a column 
are not significantly different with P <0.05. * indicates a significant Pearson correlation at the level 0.05 and ** at the level 
0.01between tests having the same concentrations of each target species. 
 
 

 
Figure 1. Effect of aqueous extract of Pinus halepensis barks from Seliana on the growth of Triticum aestivum              
and Raphanus sativus. 

% inhibitions of germination 
Site of sampling 

Bizerte Tabarka Seliana Oueslatia 

10 g/L 11.7a** ± 1.02 10a** ± 1.81 21.7a** ± 0.87 16.7a** ± 0,95 

20 g/L 23.35a ± 2.39 23.45c** ± 0.43 30b** ± 2.93 28.34b ± 1.76 

30 g/L 20a* ± 1.6 18.35b* ± 0.97 28.35b ± 1.35 33.35c ± 3.36 

        w
h

eat 

40 g/L 30b ± 2.9 28.35d ± 2.25 35c ± 2.31 28.34b ± 1.36 

10 g/L 11.67a** ± 0.67 10a** ± 0.78 16.7a** ± 2.34 13.35a** ± 0.35 

20 g/L 16.34b** ± 0.91 14.35b** ± 2.35 20b ± 1.43 18b ± 0.61 

30 g/L 23.35c ± 3.35 22.35c ± 0.42 26.7c** ± 0.72 28.34c** ± 0.83 

        rad
ish

 

40 g/L 30d* ± 0.49 28.7d* ± 0.46 30d** ± 0.35 29.34c** ± 2.76 

Indices of germination (GI) 
Site of sampling 

Bizerte Tabarka Seliana Oueslatia 

10 g/L 74.53c ± 3.1 80.61c** ± 3 58.75b ± 3.04 65.55b** ± 2.04 

20 g/L 64.21b ± 2 66.27b** ± 2.7 60.27b ± 1.09 54.56a** ± 4.36 

30 g/L 67.49b ± 3.51 66.7b ± 1.07 59.85b ± 4.08 62.3b ± 0.7 

        w
h

eat     40 g/L 54.44a ± 4 58.6a ± 0.95 52.48a** ± 2.02 56.59a** ± 0.84 

10 g/L 81.93d** ± 1.05 75.56c ± 5.07 73.65c** ± 2.04 73.35a** ± 3.77 

20 g/L 52.88c ± 3.01 61.98b** ± 0.27 66.25b** ± 0.09 66.45a** ± 2.96 

30 g/L 61.66b** ± 2.05 54a** ± 5 55a** ± 2.04 57.2a** ± 1.63 

        rad
ish

 
40 g/L 55.33a** ± 3.05 57.41a* ± 4.01 55.43a** ± 1.94 56.92b* ± 0.94 
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 Indeed, Prati and Bossdorf indicated that the 
degree of allelopathic interference is specific to the 
species and can even vary within the same species 
[55]. At 10 g/L, the barks aqueous extract caused an 
inhibition ranging between 87 and 92% (Fig. 3). At 
40 g/L, inhibitions exceeded 94% and reached 97% 
in the presence of the aqueous extract from (S). In 
all tests, the site effect was elucidated and a higher 
toxicity rate was attributed to the extracts from (S) 
and (O) (fig.1). These extracts are richer in TPC, 
TPA, TFd and o-diphenols. The allelopathic effect 
is due mainly to phenolic compounds [56]. 
 
3.5.2. On the air parts growth   
 
 At 10 g/L, the recorded reductions in the 
growth of the air parts of wheat, in the presence of 
the aqueous extracts of the barks of Pinus 
halepensis, were respectively of 6%, 4%, 20% and 
14% for the extracts of the barks from Bizerte, 
Tabarka, Seliana and Oueslatia (Fig. 2). At 40 g/L, 
inhibitions of the seedlings growth ranged between 
70% and 82%. Once again, the air parts of radish 

were more vulnerable, compared to those of wheat 
and inhibitions exceeded 40% at the weakest 
concentration (Fig. 2). It reached 59% in the 
presence of the extract from (S). At the highest 
concentration, the reductions of the air parts were 
between 91% and 97%. The roots of the two target 
species (wheat and radish) were more affected 
compared to the shoots (fig.1). Indeed, during the 
absorption of water, a low amount of the solution is 
available for the stem cells and the leaves [6], that’s 
why they are less affected than the roots. The 
allelochemicals in the aqueous extracts reduce the 
length of the seedlings by the inhibition of the 
cellular division and elongation, acting on the 
expression and the synthesis of the DNA and the 
RNA [57, 58]. The aqueous extracts of the barks 
from (S) and (O) were most toxic on the air parts 
which can be partly explained by their richness in 
phenolic compounds compared to those from (B) 
and (T). Indeed the production and release of 
allelochemicals depend on temperature and rainfall 
[6]. These allelochemicals act on the meristematic 
cells by the reduction in lengthening [59]. 

 
 

 
  

Figure 2. Summary table of the effect of the aqueous extracts of barks of Pinus halepensis from the four sources                
B, T, S and O on the growth of the roots and of the air parts of the seedlings of Triticum aestivum. 
All analyses are the average of three measurements ± standard deviation. The averages with the same letters in a column 
are not significantly different with P <0, 05. * indicates a significant Pearson correlation at the level 0.05 and ** at the 
level 0.01between tests   having tests the same concentrations of each target species. 
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Figure 3. Summary table of the effect of the aqueous extracts of barks of Pinus halepensis from the four sources                   
B, T, S and O on the growth of the roots and of the air parts of the seedlings of Raphanus sativus. 
All analyses are the average of three measurements ± standard deviation. The averages with the same letters in a column 
are not significantly different with P <0, 05. * indicates a significant Pearson correlation at the level 0.05 and ** at the 
level 0.01between tests   having tests the same concentrations of each target species. 

 
 
3.6. Activity in soil 
 
3.6.1. Effects of the irrigation with aqueous 
extracts from P. halepensis barks on seedlings 
growth 
 
 Aqueous extracts of the P. halepensis barks, 
from (B, T, S, and O), were prepared at two 
concentrations (20 and 40 g/L), and were used to 
irrigate the pots where the two target plants wheat 
and radish were cultivated. In fact, Omezzine et al. 
used cultures in pots in order to show the effects of 
aqueous extracts to show reproducibility of results 
under natural conditions and to evaluate the 
biological activity of allelochemical compounds 
released by the vegetal residues [6]. In our work, the 
irrigation with the barks aqueous extract involved     
a very marked reduction in the growth of the roots 
of wheat, especially at 40 g/L (Fig. 4). Inhibition 
increased proportionally with the augmentation of 
concentration of the extract. Indeed, the extracts of 

the barks at 20 g/L caused reductions in wheat roots 
growth ranging from 75.9% to 85.5% (Table 7). For 
the radish roots, which are more sensitive to the 
extracts, inhibitions were comprised between 94.5%  
and 99.2%, which proves a different behavior of the 
roots according to the species targets in the presence 
of the allelochemicals with a strong sensitivity of 
radish (table 7). The extract coming from Seliana 
was the most toxic and that of Tabarka was the 
least. At 40 g/L there was an almost total stop of 
radish root growth in the presence of the extracts 
from the four sites. At this concentration, the 
ecological site effect appeared in wheat and the 
extracts from (S) and (O) proved their higher toxic 
power higher. The respective length reduction of the 
roots of wheat and radish were of 95.1% and 92.4% 
(table 7). Compared to that of the roots, the growth 
of the shoots of wheat and radish were less affected 
by the irrigation with the aqueous extracts of the 
Pinus halepensis barks. At 20 g/L, the reduction did 
not exceed 24.6%, in the presence of the aqueous 
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extract from S and growth inhibition (10.8%) was 
induced by the extract from (B). At 40 g/L, the site 
effect of the aqueous extracts of the barks showed 
that the one prepared from the biomass of Seliana 
was most toxic on the growth with inhibition of 
62.6%. An average of 51.5% was recorded for the 
extracts from the other sources. At the same concen-

tration, the reduction of the growth of the radish 
shoots for the extract from (S) was of 84.7% 
compared to the average of 73.1% of the aqueous 
extracts of the barks from Bizerte, Tabarka and 
Oueslatia (Table 7). Our results are in agreement 
with those shown by Omezzine et al and Seal et al. 
[6, 60]. 

 
 

Figure 4. Culture of Triticum aestivum and Raphanus sativus on soil  irrigated with aqueous extract 
of barks of P. halepensis from the four sites  (B, T, S and O), 20 days after incorporation. 

 
 
Table 7. Summary table of the effect of irrigation with aqueous extracts of the barks of Pinus halepensis, from the four 
sources, Bizerte, Tabarka, Seliana and Oueslatia incorporated in the soil  at 20 g/L and 40 g/L, on the growth of the roots 
and the air parts of the seedlings of  Triticum aestivum and Raphanus sativus. 

% inhibitions of roots growth % inhibitions of shoots growth 

Bizerte Tabarka Seliana Oueslatia Bizerte Tabarka Seliana Oueslatia 
Aqueous 
Extract 
(g/L) Triticum aestivum 

20 75.9c**±2.4 78.7c**±1.5 85.5c**±1.4 82.1c**±1.2 10.8a*±0.4 16.4a*±1.2 24.6a**±1.3 20.9a**±0.9 

40 85.3d*±2.9 79.7c*±0.9 95.1d*±0.9 92.4d±0.5 51.5b*±1.2 50.1b*±1.1 62.6b**±2.6 53.2b**±0.2 

                      Raphanus sativus 

20 96.6c**±2.4 94.5c±1.5 99.2c**±1.4 96.6c**±1.1 38.6a±0.4 44.5a**±1.2 58.9a**±1.3 38.6a**±0.9 

40 97.3d±2.9 97.7c**±0.9 99.8d**±1.0 97.9d**±0.5 74.4b±1.2 70.9b**±1.1 84.7b*±2.6 74.4b**±0.2 

All the analyses are the average of three measurements ± standard deviation. The averages with the same letters in               
a column are not significantly different with P <0.05. *indicates a significant Pearson correlation at level 0.05 and ** at 
level 0.01 between tests having t the same concentrations of each target species 

 
 
3.6.2. Effect of the incorporation of P. halepensis 
bark powder in the soil on the growth of the target 
plants 
 
 The powder of the P. halepensis barks of the 
four sources (B, T, S, and O) was mixed with a soil 
sample in two amounts (50 g/kg and 100 g/kg) in 

order to see whether the effects recorded in 
bioassays are reproducible in experiments in pots. 
The same target plants were retained (wheat and 
radish). 
 The results related to the effect of the 
incorporation of the powder in the soil, on the 
growth of wheat and radish showed that the biomass 
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of the pine of Alep is very toxic (Table 8) with 
reductions ranging from 98.8% to 100% in the 
presence of the powders from B, T, S and O.       
The effects of the four types of biomasses are 
comparable for the two target plants and the 
sensitivity of the air parts was similar to that of the 
roots. The richness of the Pinus halepensis barks 
powder in polyphenols, flavonoids and allelo-

chemical substances, explains the strong herbicide 
power of this biomass. Our results are in agreement 
with those reported in bibliography. Once in the 
ground, allelochemicals interfere with the neigh-
bouring plants [61, 62] act in the stage the pre-      
and post-emergence of seedlings, and on the bank   
of seeds [11]. 
 

 
 
Table 8. Summary table of the effect of the powder of the barks of Pinus halepensis from the four sources, Bizerte, 
Tabarka, Seliana and Oueslatia incorporated in the soil  at 50g/kg and 100 g/kg, on the growth of the roots  and  the air 
parts of the seedlings of Triticum aestivum   and Raphanus sativus. 

Bizerte Tabarka Seliana Oueslatia Bizerte Tabarka Seliana Oueslatia Dose 
(g/kg) % inhibitions of the shoots growth wheat % inhibitions of the roots growth wheat 

50  99.9a*±0,1 99.7a**±0,2 99.8a**±0.2 99.9a**±0.2 99.8a*±0.6 99.6a*±0.0 99.7a*±0.4 99.7a*±0.4 

100  100a 99.5a**±0,3 100a** 100a** 100b** 99.6a±0.18 100b 100b 

                 % inhibitions of the shoots growth radish % inhibitions of the roots growth radish 

50 99.7a**±0.3 100b** 100a 98.9a**±0.0 99.8a*± 0.8 100b 100b 98.8a*± 0.7 

100 100a 100b 100a** 100a** 100b 100b 100b 100b 

All the analyses are the average of three measurements ± standard deviation. The averages with the same letters in             
a column are not significantly different with P <0, 05. ** At the level 0.01 between tests having the same concentrations  
of each target species. 

 
 

4. Conclusion 
 
 The objective of this study was to evaluate 
the allelopathic potential of the Pinus halepensis 
barks collected from the pine forests of Bizerte (B), 
Tabarka (T), Seliana (S) and Oueslatia (O). Indeed 
the two littoral sites (B) and (T) are characterized by 
a rainfall higher than 1100 mm/year, whereas the 
two other continental sites (S) and (O) receive only 
400 mm/year. The average temperatures of Bizerte 
and Tabarka are of 11.7°C in winter and 24.6°C in 
summer whereas for the two other sites they are     
of 12.3°C and 28°C. The aqueous extract of the 
Pinus halepensis barks from (O), prepared at a 
concentration of 40 g/L, caused an inhibition of 
33.35% of the radish seeds germination. At the same 
concentration the aqueous extract from (S) induced 
a reduction of 30% of the germination of the wheat 
seeds. The ecological site showed a high toxicity 
effect of the continental extracts (S and O) 
compared to aqueous extracts of the littoral sites (B 
and T). Aqueous extracts of the Pinus halepensis 
barks from (S) and (O) have a higher toxicity level 

and are richer in TPC, TPA, and TFd and in o-
diphenols than those from (B) and (T). Phenols, the 
derivatives of the benzoic and cinnamic acids, 
flavonoids and tannins are substances having an 
allelopathic activity [63]. However these chemical 
products are not toxic for the donor plant [57]. Pine 
bark is rich in phenolic compounds [64]. The       
main tannin structures found in maritime pine     
bark are catechin/epicatechin, epigallocatechin and 
epicatechin gallate [65]. Indeed, several species of 
pine showed a strong allelopathic potential [1]. The 
results showed a very high allelopathic potential in 
the aqueous extracts of the barks of the pine of Alep 
from (O) inhibiting the root growth of wheat by up 
to 99% at a concentration of 40 g/L and of 97% for 
the roots of radish. The inhibitions induced by the 
aqueous extracts of the barks on the germination of 
radish and wheat increased with the increasing 
concentrations. The root growth is an excellent 
indicator of the phytotoxic effect of allelochemicals 
[6, 52]. Exposed directly to the aqueous extract,  
rich in allelochemicals, the root cells are more 
affected [21]. A higher permeability of the roots to 
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allelochemicals was demonstrated when compared 
to that of the air parts [66]. That’s because they are 
the first to absorb environmental allelochemicals 
[67]. The air parts of the two target species (wheat 
and radish) were less affected, compared to the 
roots. At 40 g/L growth inhibitions of the air parts 
of wheat ranged between 70% and 82%, with a 
maximum reduction in the presence of the aqueous 
extract from (S). The same extract at the same 
concentration was the most harmful for the growth 
of radish with an inhibition of 97%. A wealth of 
rutin hydrate and luteolin 7 glucoside for aqueous 
extracts from (S) and (O), the average concentra-
tion was respectively 1.42, 1.53 mg/mL. Results of 
previous studies showed that the length reduction of 
the air parts and the roots was directly related to the 
action of allelochemicals, which is a proof of their 
effect [11]. This reduction can be attributed to the 
reduced rate of cellular division and the elongation 
of the cells due to the presence of allelochemicals in 
the aqueous extracts [22] which act on cellular 
differentiation, the absorption of ions and water, 
breathing, photosynthesis, enzymatic function, and 
the transduction of the signal as well as the form of 
the genes [54]. A strong inhibition of seedling 
growth by aqueous extracts from (S) and (O) may 
be due to the wealth of cinnamic and gallic acids. 
The average is respectively 1.63 and 1.27 mg/mL. 
The cultures in pots irrigated with the aqueous 
extracts of the Pinus halepensis barks from B, T, S 
and O, significantly inhibited the growth of the 
seedlings of Wheat and Radish. Cultures in pots 
were opted in order to demonstrate the effects  
which could be reproduced under natural conditions 
[68] and to evaluate the biological activity of 
allelochemical compounds released by the vegetal 
residues [21]. At 20 g/L, the aqueous extracts of the 
barks (S) induced inhibitions of the Wheat roots by 
up to 85.5%, it was of 96.6% for those of Radish in 
the presence of the extract from (O) compared to the 
controls. At the same concentration, the air parts 
were less affected by the irrigation with the aqueous 
extracts of the barks of the Alep pine. These results 
corroborate with those of Omezzine et al. [21] 
which proved that the roots are more sensitive than 
the air parts with a much higher phytotoxicity when 
the concentration increases. The high toxicity of the 
aqueous extract of the barks collected from the 
Oueslatia can be explained by the fact that the 

effectiveness of allelopathic compounds in the     
soil is very dependent on the biotic and abiotic 
conditions [69]. The results relating to the effect of 
the incorporation of the powder on the soil, on the 
growth of Wheat and Radish showed that the 
biomass of the Alep pine is very toxic with 
reductions ranging between 98.8% et 100% in the 
presence of the powders from B, T, S and O. 
 The richness of the Pinus halepensis barks 
residues in polyphenols and flavonoids, allelo-
chemical substances, explains the strong herbicide 
power of this biomass. In fact our results are in 
agreement with those reported in the bibliography. 
Once in the soil, the allelochemicals interfere with 
the neighboring plants [64, 70] acting on the pre   
and post-emergence stages, and on the bank of  
seeds [11, 71]. Similar results showed that the 
incorporation of the residues in the soil or the 
irrigation with aqueous extracts of Inula crithmoides 
L. of Pine Wollemi, fruit peels of the coffee           
[6, 11, 60] led to the inhibition of the growth of 
several plant species. Compared with in vitro 
results, the allelopathic tests in vivo, in the soil, 
were less toxic and the growth of the target species 
was less affected. The soil micro-organisms can also 
play a part in the allelochemical released in the 
ground [69, 72]. The major constituents of the 
volatile fraction of green needles collected from 
Oueslatia were β-caryophyllene, α-humulene, com-
pounds have been reported to have herbicidal 
activities, by reductions of the growth of the shoots 
and roots. Allelochemicals causes several damages 
[73, 74]. 
 Our results showed the strong herbicide 
power of the aqueous extracts in vitro, which was 
proven by the test in vivo by the irrigation with the 
aqueous extracts or the incorporation in the soil of 
the vegetal powder which could be used like an 
organic herbicide. 
 Indeed, as a reaction to the increase in the 
resistance of weeds to the pesticides of synthesis 
[63], there has been a growing interest in the          
last decades in compounds having allelopathic 
properties [52] which can lead to the discovery of 
natural weed herbicides which do not damage to        
the environment [20, 75] but are effective against 
weeds that have become resistant to many synthetic 
herbicides [23]. 
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