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In our previous papers [S. Odake and R. Sasaki, J. Phys. A 46, 245201 (2013) and S. Odake
and R. Sasaki, J. Approx. Theory 193, 184 (2015)], the Wronskian identities for the Hermite,
Laguerre, and Jacobi polynomials and the Casoratian identities for theAskey–Wilson polynomial
and its reduced-form polynomials were presented. These identities are naturally derived through
quantum-mechanical formulation of the classical orthogonal polynomials: ordinary quantum
mechanics for the former and discrete quantum mechanics with pure imaginary shifts for the
latter. In this paper we present the corresponding identities for the discrete quantum mechanics
with real shifts. Infinitely many Casoratian identities for the q-Racah polynomial and its reduced-
form polynomials are obtained.
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1. Introduction

New types of orthogonal polynomials, the exceptional and multi-indexed orthogonal polynomials
{PD,n(η)|n ∈ Z≥0}, have seen remarkable progress in the theory of orthogonal polynomials and
exactly solvable quantum-mechanical models [1–28]. Our approach to orthogonal polynomials is
based on the quantum-mechanical formulations: ordinary quantum mechanics (oQM), discrete quan-
tum mechanics with pure imaginary shifts (idQM) [22–25], and discrete quantum mechanics with
real shifts (rdQM) [26–28]. For oQM, the Schrödinger equations are second-order differential equa-
tions. In discrete quantum mechanics, they are replaced by second-order difference equations with
a continuous variable for idQM or a discrete variable for rdQM. The Askey scheme of the (basic)
hypergeometric orthogonal polynomials [29] is well matched to these quantum-mechanical formu-
lations: the Jacobi polynomial etc. in oQM, the Askey–Wilson polynomial etc. in idQM, and the
q-Racah polynomial etc. in rdQM. From the exactly solvable quantum-mechanical systems described
by the classical orthogonal polynomials in the Askey scheme, we can obtain new exactly solvable
quantum-mechanical systems and various exceptional orthogonal polynomials with multi-indices by
the multi-step Darboux transformations with appropriate seed solutions. One characteristic feature
of these new types of polynomials is the missing degrees. We distinguish the following two cases:
the set of missing degrees I = Z≥0\{deg Pn|n ∈ Z≥0} is case (1): I = {0, 1, . . . , � − 1}, or case
(2): I �= {0, 1, . . . , � − 1}, where � is a positive integer. The situation of case (1) is called stable in
Ref. [6]. When the virtual state wavefunctions are used as seed solutions, the deformed systems are
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exactly iso-spectral to the original system and the case (1) multi-indexed orthogonal polynomials
are obtained [8,10,12,13]. When the eigenstate and/or pseudo virtual state wavefunctions are used as
seed solutions, the deformed systems are almost iso-spectral to the original system but some states
corresponding to the seed solutions are deleted or added, respectively, and the case (2) multi-indexed
orthogonal polynomials are obtained [20,21].

For oQM and idQM, the deformed systems obtained by M -step Darboux transformations in terms
of pseudo virtual state wavefunctions (with degrees specified by D) are equivalent to those obtained
by multi-step Darboux transformations in terms of eigenstate wavefunctions (with degrees specified
by D̄) with shifted parameters [20,21]. The deformed system is characterized by the denominator
polynomial �D(η; λ) and the above equivalence is based on the proportionality of the denominator
polynomials for each deformed system:

�D(η; λ) ∝ �̄D̄(η; λ̄); (1.1)

see Refs. [20,21] for details. Here we explain the necessary notation only. Two sets D and D̄ are
defined for positive integers M and N (λ is a set of parameters and δ is its shift):

D = {d1, d2, . . . , dM } (dj ∈ Z≥0 : mutually distinct),

N ≥ max(D), d̄j
def= N − dj, λ̄

def= λ − (N + 1)δ, N̄ def= N + 1 − M , (1.2)

D̄ def= {0, 1, . . . , N }\{d̄1, d̄2, . . . , d̄M } def= {e1, e2, . . . , eN̄ }.
(Exactly speaking, D and D̄ should be treated as ordered sets. By changing the order of the dj,
�D(η; λ) changes its overall sign. For the proportional relation (1.1), however, such an overall sign
change does not matter). The proportional relation (1.1) gives the Wronskian identity for oQM and
the Casoratian identity for idQM. We write down the Casoratian identities for the Askey–Wilson
polynomial:

ϕM (x)−1 Wγ [ξ̌d1 , ξ̌d2 , . . . , ξ̌dM ](x; λ) ∝ ϕN̄ (x)−1 Wγ [P̌e1 , P̌e2 , . . . , P̌eN̄ ](x; λ̄). (1.3)

(See Appendix A.1 for definitions of ξ̌v(x; λ), P̌n(x; λ), and ϕM (x)). Here the Casorati determinant
(Casoratian) of a set of n functions {fj(x)} for idQM is defined by

Wγ [f1, f2, . . . , fn](x) def= i
1
2 n(n−1) det

(
fk
(
x + i(n+1

2 − j)γ
))

1≤j,k≤n
(1.4)

(for n = 0, we set Wγ [·](x) = 1) and γ = log q for the Askey–Wilson case. Based on the discrete
symmetry of the system, the pseudo virtual state polynomial ξ̌v(x; λ) is obtained from the eigen-
polynomial P̌n(x; λ) by twisting parameters. The Casoratian identities (1.3) represent the relation
between Casoratians of the orthogonal polynomials with twisted and shifted parameters, and dis-
play the duality between the state adding and deleting Darboux transformations. The shape-invariant
properties of the original systems play an important role.

In this paper we consider the Casoratian identities for discrete orthogonal polynomials appearing
in rdQM. A natural way to obtain them is the following: (a) define the pseudo virtual state vectors
by using discrete symmetries of the system; (b) deform the system by multi-step Darboux transfor-
mations in terms of the pseudo virtual state vectors; and (c) compare it with the deformed system
obtained by multi-step Darboux transformations in terms of the eigenvectors with shifted parameters.
We present a one-step Darboux transformation in terms of the pseudo virtual state vector by taking
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the q-Racah case as an example in Appendix B. However, calculation for multi-step cases is rather
complicated. So, instead of the natural method mentioned above, we use a “shortcut” method in
this paper. We derive the Casoratian identities for the q-Racah polynomial (3.36) from those for the
Askey–Wilson polynomial (1.3) by using the relation between the q-Racah and Askey–Wilson poly-
nomials. The discrete orthogonal polynomials in the Askey scheme are obtained from the q-Racah
polynomial in appropriate limits. The Casoratian identities for those reduced-form polynomials can
be obtained from those for the q-Racah polynomial in the same limits.

The Casoratian identities imply equivalences between the deformed systems obtained by multi-step
Darboux transformations in terms of pseudo virtual state vectors and those in terms of eigenvectors
with shifted parameters. For each (exactly solvable) rdQM system, we can construct the (exactly
solvable) birth and death process [30], which is a stationary Markov chain. The Casoratian identities
provide equivalence among such birth and death processes.

Similar Casoratian identities were studied by Curbera and Durán [31]. Their method is different
from ours and the identities are presented for the Charlier, Meixner, Krawtchouk, and Hahn poly-
nomials only, which have the sinusoidal coordinate η(x) = x. In our method various polynomials
having five types of sinusoidal coordinates [26] η(x) = x, x(x+d), 1−qx, q−x −1, (q−x −1)(1−dqx)

are covered.
This paper is organized as follows. In Sect. 2 we recapitulate the discrete quantum mechanics

with real shifts. Section 3 is the main part of this paper. After presenting the data for the original
(q-)Racah systems in Sect. 3.1, we discuss their discrete symmetries and present the pseudo virtual
state polynomials by using the twist operations in Sect. 3.2. The Casoratian identities for the (q-
)Racah polynomials are derived starting from those for the Askey–Wilson polynomial in Sect. 3.3.
In Sect. 4 the Casoratian identities for the reduced-form polynomials are presented. Section 5 is for
the summary and comments. In Appendix A some necessary data for orthogonal polynomials are
presented. In Appendix B the pseudo virtual state vectors and one-step Darboux transformation are
discussed by taking the q-Racah system as an example.

2. Discrete quantum mechanics with real shifts

In this section we recapitulate the discrete quantum mechanics with real shifts (rdQM) developed in
Refs. [26,28].

The Hamiltonian of rdQM H = (Hx,y) is a tri-diagonal real symmetric (Jacobi) matrix and its
rows and columns are indexed by integers x and y, which take values in {0, 1, . . . , N } (finite) or Z≥0

(semi-infinite):

Hx,y
def= −√B(x)D(x + 1) δx+1,y −√

B(x − 1)D(x) δx−1,y + (
B(x) + D(x)

)
δx,y. (2.1)

The potential functions B(x) and D(x) are real and positive but vanish at the boundary, D(0) = 0
for both cases and B(N ) = 0 for a finite case. In this paper we consider the case that these B(x) and
D(x) are rational functions of x or qx (0 < q < 1). For simplicity in notation, we write the matrix H
as follows:

H = −√B(x)D(x + 1) e∂ −√
B(x − 1)D(x) e−∂ + B(x) + D(x)

= −√B(x) e∂
√

D(x) −√
D(x) e−∂

√
B(x) + B(x) + D(x), (2.2)

where the matrices e±∂ are

e±∂ = ((e±∂)x,y), (e±∂)x,y
def= δx±1,y, (e∂)† = e−∂ , (2.3)
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and we suppress the unit matrix 1 = (δx,y) :
(
B(x) + D(x)

)
1 in Eq. (2.2). The notation f (x)Ag(x),

where f (x) and g(x) are functions of x and A is a matrix A = (Ax,y), stands for a matrix whose (x, y)-
element is f (x)Ax,yg(y). Note that the matrices e∂ and e−∂ are not inverse to each other: e±∂e∓∂ �= 1
for a finite system and e−∂e∂ �= 1 for a semi-infinite system. This Hamiltonian can be expressed in
a factorized form:

H = A†A, A def= √
B(x) − e∂

√
D(x), A† = √

B(x) −√
D(x) e−∂ . (2.4)

The Schrödinger equation is the eigenvalue problem for the Hermitian matrix H:

Hφn(x) = Enφn(x) (n = 0, 1, 2, . . .), 0 = E0 < E1 < E2 < · · · (2.5)

(n = 0, 1, . . . , N for a finite case). The ground state eigenvector φ0(x), which is characterized by
Aφ0(x) = 0, is chosen as

φ0(x) =
x−1∏
y=0

√
B(y)

D(y + 1)
> 0. (2.6)

We use the convention
n−1∏
k=n

∗ = 1, which means the normalization φ0(0) = 1. We remark that the

boundary condition D(0) = 0 and B(N ) = 0 for a finite case is important for the zero mode equation
Hφ0(x) = 0; cf. Eq. (B.6). For the original systems (not the deformed one) considered in this paper,
the eigenvectors have the following factorized form:

φn(x) = φ0(x)P̌n(x), P̌n(x)
def= Pn

(
η(x)

)
. (2.7)

Here Pn(η) is a polynomial of degree n in η, and the sinusoidal coordinate η(x) is one of the following
[26]: η(x) = x, ε′x(x+d), 1−qx, q−x−1, ε′(q−x−1)(1−dqx), (ε′ = ±1), which satisfy the boundary
condition η(0) = 0. We adopt the universal normalization condition [26,28] as

Pn(0) = 1
(⇔ P̌n(0) = 1

)
. (2.8)

This P̌n(x) is the eigenvector of the similarity transformed Hamiltonian H̃:

H̃ def= φ0(x)
−1 ◦ H ◦ φ0(x) = B(x)(1 − e∂) + D(x)(1 − e−∂), (2.9)

H̃P̌n(x) = EnP̌n(x). (2.10)

Explicitly, Eq. (2.10) is the difference equation for P̌n:

B(x)
(
P̌n(x) − P̌n(x + 1)

)+ D(x)
(
P̌n(x) − P̌n(x − 1)

) = EnP̌n(x). (2.11)

Since Pn is a polynomial, P̌n(x) is defined for any x ∈ R and the difference equation (2.11) is also
valid for x ∈ R. The eigenvectors are mutually orthogonal (dn > 0):

(φn, φm)
def=

xmax∑
x=0

φn(x)φm(x) =
xmax∑
x=0

φ0(x)
2P̌n(x)P̌m(x) = 1

d2
n
δnm, (2.12)

where xmax = N for a finite case, ∞ for a semi-infinite case. (Although this notation dn conflicts
with the notation of the label of the pseudo virtual vector dj in Eq. (1.2), we think this does not cause
any confusion because the former appears as 1

d2
n

δnm).
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If we find functions B′(x) and D′(x) satisfying

B(x)D(x + 1) = α2B′(x)D′(x + 1), α �= 0, (2.13)

B(x) + D(x) = α
(
B′(x) + D′(x)

)+ α′, (2.14)

where α and α′ are real constants, we obtain the following relation:

H = αH′ + α′, (2.15)

where H′ = (H′
x,y)0≤x,y≤xmax is given by

H′ = −|α|
α

√
B′(x)D′(x + 1) e∂ − |α|

α

√
B′(x − 1)D′(x) e−∂ + B′(x) + D′(x). (2.16)

For concrete examples, various quantities depend on a set of parameters λ = (λ1, λ2, . . .) and q.
The parameter q is 0 < q < 1 and qλ stands for q(λ1,λ2,...) = (qλ1 , qλ2 , . . .). The λ-dependence is
expressed as H = H(λ), A = A(λ), En = En(λ), B(x) = B(x; λ), φn(x) = φn(x; λ), P̌n(x) =
P̌n(x; λ) = Pn

(
η(x; λ); λ

)
, etc. If needed, the q-dependence is also expressed as En = En(λ; q),

B(x) = B(x; λ; q), P̌n(x) = P̌n(x; λ; q) = Pn
(
η(x; λ; q); λ; q

)
, etc.

The original systems in this paper are shape invariant [26] and they satisfy the relation

A(λ)A(λ)† = κA(λ + δ)†A(λ + δ) + E1(λ), κ > 0, (2.17)

which is a sufficient condition for exact solvability. The auxiliary functions ϕ(x; λ) [26] and ϕM (x; λ)

[27] are defined by

ϕ(x; λ)
def= η(x + 1; λ) − η(x; λ)

η(1; λ)
, (2.18)

ϕM (x; λ)
def=

∏
1≤j<k≤M

η(x + k − 1; λ) − η(x + j − 1; λ)

η(k − j; λ)

=
∏

1≤j<k≤M

ϕ
(
x + j − 1; λ + (k − j − 1)δ

)
, (2.19)

and ϕ0(x; λ) = ϕ1(x; λ) = 1.
For the orthogonal polynomials with Jackson integral measures such as the big q-Jacobi

polynomial, the two-component formulation is needed; see Ref. [28].
The symbols (a)n and (a; q)n are (q-)shifted factorials ((q-)Pochhammer symbols) [29]. They are

defined for a non-negative integer n by (a)n = ∏n−1
j=0 (a + j) and (a; q)n = ∏n−1

j=0 (1 − aqj), which
are extended to a real n by

(a)n = �(a + n)

�(a)
, (a; q)n = (a; q)∞

(aqn; q)∞
. (2.20)

Note that, for a �= 0 and n ∈ Z≥0,

(a; q−1)n = (−a)nq− 1
2 n(n−1)(a−1; q)n. (2.21)

The hypergeometric series rFs and the basic hypergeometric series rφs are

rFs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣ z

)
def=

∞∑
n=0

(a1, . . . , ar)n

(b1, . . . , bs)n

zn

n! , (2.22)
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rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣ q ; z

)
def=

∞∑
n=0

(a1, . . . , ar; q)n

(b1, . . . , bs; q)n
(−1)(1+s−r)nq(1+s−r) 1

2 n(n−1) zn

(q; q)n
, (2.23)

where (a1, . . . , ar)n
def= ∏r

k=1(ak)n and (a1, . . . , ar; q)n
def= ∏r

k=1(ak ; q)n.
The Casorati determinant (Casoratian) of a set of n functions {fj(x)} for rdQM is defined by

WC[f1, f2, . . . , fn](x) def= det (fk(x + j − 1))1≤j,k≤n (2.24)

(for n = 0, we set WC[·](x) = 1).
For well defined quantum systems, the range of parameters λ must be chosen such that the Hamil-

tonian is real symmetric. On the other hand, our main purpose in this paper is to obtain the Casoratian
identities (3.36). Both sides of Eq. (3.36) are polynomials in x or Laurent polynomials in qx and Eq.
(3.36) hold for any parameter range (except for the zeros of the denominators). So we do not bother
about the range of parameters, except for in Appendix B.

3. Casoratian identities of the (q-)Racah polynomials

In this section we consider rdQM whose eigenvectors are described by the (q-)Racah polynomials.
After discussing some discrete symmetries and pseudo virtual state polynomials, the Casoratian
identities of the (q-)Racah polynomials are presented.

3.1. Original systems

Let us consider the Racah (R) and q-Racah (qR) systems [26]. Although there are four possible
parameter choices indexed by (ε, ε′) = (±1, ±1) in general, we restrict ourselves to the (ε, ε′) =
(1, 1) case for simplicity of presentation. The set of parameters λ = (λ1, λ2, λ3, λ4), its shift δ, and
κ are

R : λ = (a, b, c, d), δ = (1, 1, 1, 1), κ = 1, (3.1)

qR : qλ = (a, b, c, d), δ = (1, 1, 1, 1), κ = q−1, (3.2)

and we take

λ3 = −N , namely c =
{

−N : R
q−N : qR.

(3.3)

We list the fundamental data:

B(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
−(x + a)(x + b)(x + c)(x + d)

(2x + d)(2x + 1 + d)
: R

−(1 − aqx)(1 − bqx)(1 − cqx)(1 − dqx)

(1 − dq2x)(1 − dq2x+1)
: qR,

(3.4)

D(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
−(x + d − a)(x + d − b)(x + d − c)x

(2x − 1 + d)(2x + d)
: R

−d̃
(1 − a−1dqx)(1 − b−1dqx)(1 − c−1dqx)(1 − qx)

(1 − dq2x−1)(1 − dq2x)
: qR,

(3.5)

En(λ) =
{

n(n + d̃) : R

(q−n − 1)(1 − d̃qn) : qR,
η(x; λ) =

{
x(x + d) : R

(q−x − 1)(1 − dqx) : qR,
(3.6)
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ϕ(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
2x + d + 1

d + 1
: R

q−x − dqx+1

1 − dq
: qR,

d̃
def=
{

a + b + c − d − 1 : R

abcd−1q−1 : qR,
(3.7)

P̌n(x; λ) = Pn
(
η(x; λ); λ

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4F3

(
−n, n + d̃, −x, x + d

a, b, c

∣∣∣∣ 1

)
: R

4φ3

(
q−n, d̃qn, q−x, dqx

a, b, c

∣∣∣∣ q ; q

)
: qR

=
{

Rn
(
η(x; λ); a − 1, d̃ − a, c − 1, d − c

)
: R

Rn
(
1 + d + η(x; λ); aq−1, d̃a−1, cq−1, dc−1|q) : qR,

(3.8)

φ0(x; λ)2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a, b, c, d)x

(d − a + 1, d − b + 1, d − c + 1, 1)x

2x + d

d
: R

(a, b, c, d ; q)x

(a−1dq, b−1dq, c−1dq, q ; q)x d̃x

1 − dq2x

1 − d
: qR,

(3.9)

where Rn
(
x(x+γ +δ+1); α, β, γ , δ

)
and Rn(q−x +γ δqx+1; α, β, γ , δ|q) are the Racah and q-Racah

polynomials in the conventional parametrization [29], respectively. Our parametrization respects
the correspondence between the (q-)Racah and (Askey–)Wilson polynomials, and symmetries in
(a, b, c, d) are transparent. The expressions on the right-hand sides of En(λ), η(x; λ), ϕ(x; λ), P̌n(x; λ),
and φ0(x; λ)2 in Eqs. (3.6)–(3.9) are also valid for real n or real x, and we regard En(λ) etc. as functions
of real n or real x by Eqs. (3.6)–(3.9). Note that φ0(x; λ)2 = 0 for x ∈ Z\{0, 1, . . . , N } due to the
factor (c)x/(1)x or (c; q)x/(q; q)x. The R and qR systems are invariant under the exchange a ↔ b.

The potential functions B(x; λ) and D(x; λ) have the following symmetries:

R, qR : B(N − x; λ′) = D(x; λ), D(N − x; λ′) = B(x; λ),

λ′ = (λ1 + λ3 − λ4, λ2 + λ3 − λ4, λ3, 2λ3 − λ4), (3.10)

qR : B(x; λ; q−1) = d̃−1B(x; λ; q), D(x; λ; q−1) = d̃−1D(x; λ; q). (3.11)

Corresponding to Eq. (3.10), the identities (1.7.6) and (1.13.26) in Ref. [29] give the relations

P̌n(N − x; λ′) = P̌n(x; λ) ×

⎧⎪⎪⎨⎪⎪⎩
(a, b)n

(1 − a + d̃, 1 − b + d̃)n
: R

cn(a, b; q)n

dn(a−1d̃q, b−1d̃q; q)n
: qR.

(3.12)

Corresponding to Eq. (3.11), the qR polynomial is invariant under q → q−1:

P̌n(x; λ; q−1) = P̌n(x; λ; q), (3.13)

which is shown by Eq. (2.21). In the conventional notation, this Eq. (3.13) is written as

Rn(q
x + γ −1δ−1q−x−1; α−1, β−1, γ −1, δ−1|q−1) = Rn(q

−x + γ δqx+1; α, β, γ , δ|q).

3.2. Discrete symmetries

Let us consider the twist operation t, which is an involution acting on x, λ, and q:

t(x, λ, q) = (
t(x), t(λ), t(q)

)
, t2 = id. (3.14)
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For the R system, the q-part should be ignored. We present twist operations (i)–(ii) and (̃i)–(̃ii), which
lead to the pseudo virtual state vectors explained in Appendix B.

First let us define twist (ii) as follows:

(ii) : t(x)
def= x + λ3 − 1, t(λ)

def= (2 − λ1 − λ3 + λ4, 2 − λ2 − λ3 + λ4, 2 − λ3, 2 − 2λ3 + λ4),

t(q)
def= q. (3.15)

By using this twist operation, the functions B′(x) and D′(x) satisfying Eqs. (2.13)–(2.14) are obtained:

(ii) : B′(x; λ)
def= B

(
x − N − 1; t(λ)

)
, D′(x; λ)

def= D
(
x − N − 1; t(λ)

)
, (3.16)

α(λ) =
{

1 : R
d̃q−1 : qR,

α′(λ) =
{

−(d̃ − 1) : R
−(1 − q)(1 − d̃q−1) : qR.

(3.17)

Explicitly B′(x) and D′(x) are

(ii) : B′(x; λ) = D(x + 1; λ) ×

⎧⎪⎪⎨⎪⎪⎩
d + 2x + 2

d + 2x
: R

d̃−1 1 − dq2x+2

1 − dq2x : qR,

D′(x; λ) = B(x − 1; λ) ×

⎧⎪⎪⎨⎪⎪⎩
d + 2x − 2

d + 2x
: R

q2d̃−1 1 − dq2x−2

1 − dq2x : qR.
(3.18)

We introduce the pseudo virtual state polynomial ξ̌v(x; λ) (v ∈ Z≥0),

(ii) : ξ̌v(x; λ)
def= P̌v

(
x − N − 1; t(λ)

)
, (3.19)

which is the polynomial part of the pseudo virtual state vector; see Appendix B. It is a polynomial of

degree v in η(x; λ), ξ̌v(x; λ)
def= ξv

(
η(x; λ); λ

)
, because η

(
t(x); t(λ)

) = aη(x; λ)+ b (a, b : constants,
a �= 0). Explicitly it is

(ii) : ξ̌v(x; λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4F3

(
−v, v + 2 − d̃, 1 − x − c, x + a + b − d̃

1 + a − d̃, 1 + b − d̃, 2 − c

∣∣∣∣ 1

)
: R

4φ3

(
q−v, d̃−1qv+2, c−1q1−x, abd̃−1qx

qad̃−1, qbd̃−1, q2c−1

∣∣∣∣ q ; q

)
: qR.

(3.20)

By applying the symmetry (3.10) to this twist (ii), we define a twist (i):

(i) : t(x)
def= −x − 1, t(λ)

def= (2 − λ1, 2 − λ2, 2 − λ3, 2 − λ4) = 2δ − λ, t(q)
def= q. (3.21)

By using this twist (i), the functions B′(x) and D′(x) satisfying Eqs. (2.13)–(2.14) are obtained:

(i) : B′(x; λ)
def= D

(−x − 1; t(λ)
)
, D′(x; λ)

def= B
(−x − 1; t(λ)

)
. (3.22)

Since the inversion of the coordinate x (x → −x −1) means the exchange of the matrices e∂ ↔ e−∂ ,
the functions B(x) and D(x) are exchanged in this definition. Explicit forms of B′(x; λ) and D′(x; λ)

are the same as in Eq. (3.18),

B′ (i)(x; λ) = B′ (ii)(x; λ), D′ (i)(x; λ) = D′ (ii)(x; λ), (3.23)
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and α(λ) and α′(λ) are given by Eq. (3.17). The pseudo virtual state polynomial ξ̌v(x; λ) (v ∈ Z≥0)
is defined by

(i) : ξ̌v(x; λ)
def= P̌v

(−x − 1; t(λ)
)
, (3.24)

which should be proportional to the twist (ii) case. In fact, we have

(i) : ξ̌v(x; λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4F3

(
−v, v + 2 − d̃, x + 1, 1 − x − d

2 − a, 2 − b, 2 − c

∣∣∣∣ 1

)
: R

4φ3

(
q−v, d̃−1qv+2, qx+1, d−1q1−x

q2a−1, q2b−1, q2c−1

∣∣∣∣ q ; q

)
: qR,

(3.25)

and

ξ̌
(ii)
v (x; λ) = ξ̌

(i)
v (x; λ) ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2 − a, 2 − b)v

(1 + a − d̃, 1 + b − d̃)v
: R

dv(q2a−1, q2b−1; q)v

cv(qad̃−1, qbd̃−1; q)v
: qR.

(3.26)

For the qR case, we can change the parameter q. By applying the symmetry (3.11) to the twists
(i)–(ii), we define the twists (̃i)–(̃ii) for qR as follows:

(̃i) : (i) with the replacement t(q)
def= q−1, (3.27)

(̃ii) : (ii) with the replacement t(q)
def= q−1, (3.28)

which give

(̃i) : B′(x; λ; q)
def= D

(−x − 1; t(λ); q−1), D′(x; λ; q)
def= B

(−x − 1; t(λ); q−1), (3.29)

(̃ii) : B′(x; λ; q)
def= B

(
x − N − 1; t(λ); q−1), D′(x; λ; q)

def= D
(
x − N − 1; t(λ); q−1), (3.30)

(̃i), (̃ii) : α(λ) = q, α′(λ) = −(1 − q)(1 − d̃q−1). (3.31)

Explicitly B′(x) and D′(x) are

(̃i), (̃ii) : α(λ)B′(x; λ) = α(i)(λ)B′ (i)(x; λ), α(λ)D′(x; λ) = α(i)(λ)D′ (i)(x; λ). (3.32)

The pseudo virtual state polynomials ξ̌v(x; λ) (v ∈ Z≥0) are defined by

(̃i) : ξ̌v(x; λ; q)
def= P̌v

(−x − 1; t(λ); q−1), (3.33)

(̃ii) : ξ̌v(x; λ; q)
def= P̌v

(
x − N − 1; t(λ); q−1), (3.34)

and Eq. (3.13) implies

ξ̌ (̃i)
v (x; λ; q) = ξ̌

(i)
v (x; λ; q), ξ̌ (̃ii)

v (x; λ; q) = ξ̌
(ii)
v (x; λ; q). (3.35)
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The twist operations (i)–(ii) and (̃i)–(̃ii) have essentially the same effects for the R and qR systems,
because the relations (3.23), (3.32), (3.26), and (3.35) imply that the pseudo virtual vectors (B.8)
obtained by these twists are same (proportional). So they lead to the same Casoratian identities (3.36).
However, they may have different effects for the reduced systems in Sect. 4, which are obtained as
appropriate limits of R and qR systems, because the symmetries (3.10)–(3.11) may no longer hold
for the reduced systems.

Since the R and qR systems are invariant under the exchange a ↔ b, twists (i)–(ii) and (̃i)–(̃ii) can
be modified by exchanging t(λ1) ↔ t(λ2).

3.3. Casoratian identities

We will present the Casoratian identities for R and qR polynomials. By using the discrete symmetries
obtained in Sect. 3.2, the pseudo virtual state vectors are defined; see Appendix B. Then the original
systems can be deformed by multi-step Darboux transformations in terms of pseudo virtual state
vectors. The original systems can also be deformed by multi-step Darboux transformations in terms
of eigenstate vectors [24]. For an appropriate choice of the index sets and shift of parameters, these
two deformed systems are found to be equivalent. We present such a calculation for the one-step
Darboux transformation in terms of the pseudo virtual state vector for the q-Racah case in Appendix
B. However, multi-step Darboux transformations in terms of pseudo virtual state vectors are rather
complicated due to the following two facts: (a) the pseudo virtual state vectors do not satisfy the
Schrödinger equation at both boundaries, (b) the size of the Hamiltonian increases at each step
(namely the (N + 1) × (N + 1) matrix becomes the (N + M + 1) × (N + M + 1) matrix after
M -step). So we present and prove the Casoratian identities for R and qR polynomials in a “shortcut”
way.

We take M , N , N̄ , dj, d̄j, ej, and λ̄ as in Eq. (1.2). Then the Casoratian identities for the R and qR
polynomials are

ϕM (x − M ; λ)−1 WC[ξ̌d1 , ξ̌d2 , . . . , ξ̌dM ](x − M ; λ)

∝ ϕN̄ (x; λ̄)−1 WC[P̌e1 , P̌e2 , . . . , P̌eN̄ ](x; λ̄). (3.36)

Note that the variable x in the first line is shifted by −M , which corresponds to the range of x in
the deformed Hamiltonian (Hd1···dM x,y)−M≤x,y≤N ; see Appendix B. Since P̌n(x; λ), ξ̌v(x; λ), and
ϕM (x; λ) are defined for real x, these identities hold for real x. For the qR case, we prove Eq. (3.36)
by translating the Casoratian identities (1.3) for the Askey–Wilson polynomial. The identities for the
R case are easily obtained from the qR case by taking the q → 1 limit. The necessary data for the
Askey–Wilson polynomial are given in Appendix A.1.

The q-Racah polynomial and the Askey–Wilson polynomial are the “same” polynomials [29]. The
replacement rule of this correspondence is

ixAW = γ (xqR + 1
2λ

qR
4 ), λAW = λqR − 1

2λ
qR
4 δqR,

namely eixAW = qxqR
d

1
2 , (a1, a2, a3, a4) = (ad− 1

2 , bd− 1
2 , cd− 1

2 , d
1
2 ). (3.37)

Under this replacement rule, we have

P̌AW
n (xAW; λAW) = d− n

2 (a, b, c; q)nP̌qR
n (xqR; λqR), (3.38)
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and

V (xAW; λAW) = −B(xqR; λqR), V ∗(xAW; λAW) = −D(xqR; λqR),

EAW
n (λAW) = EqR

n (λqR),

ηAW(xAW) = 1
2d− 1

2
(
ηqR(xqR; λqR) + 1 + d

)
, (3.39)

ϕAW(xAW) = i(dq)−
1
2 (1 − dq)ϕqR(xqR − 1

2 ; λqR).

The shifts δAW and δqR are consistent. The twist tAW(λAW) (A.2) gives the twist (i) tqR(i)(λqR) (3.21).
In the following we omit the superscript qR. The twisted potential function of the AW system V ′
(A.3), the pseudo virtual state energy ẼAW

v (A.4), the pseudo virtual state polynomial ξ̌AW
v (A.5), and

the auxiliary function ϕAW
M (A.6) become

V
(
xAW; tAW(λAW)

) = −D
(−x − 1; t(i)(λ)

) = −B
′(i)(x; λ),

V ∗(xAW; tAW(λAW)
) = −B

(−x − 1; t(i)(λ)
) = −D

′(i)(x; λ), (3.40)

ẼAW
v (λAW) = Ẽv(λ) = E−v−1(λ), (3.41)

ξ̌AW
v (xAW; λAW) = (qd− 1

2 )−v(q2a−1, q2b−1, q2c−1; q)vP̌v
(−x − 1; t(i)(λ)

) ∝ ξ̌
(i)
v (x; λ), (3.42)

ϕAW
M (xAW) ∝ ϕM (x − M−1

2 ; λ). (3.43)

The shifted parameters λ̄
AW

and λ̄ are also consistent. For functions fj(xAW; λAW) = gj(x; λ), the
Casoratian for idQM Wγ (1.4) and that for rdQM WC (2.24) are related by

Wγ [f1, f2, . . . , fn](xAW; λAW) = i
1
2 n(n−1)WC[g1, g2, . . . , gn](x − n−1

2 ; λ). (3.44)

By using Eqs. (3.38), (3.42)–(3.43), and (3.44), the Casoratian identities for the AW polynomial
(1.3) are rewritten as

ϕM
(
x − M−1

2 ; λ
)−1

WC[ξ̌d1 , ξ̌d2 , . . . , ξ̌dM ] (x − M−1
2 ; λ

)
∝ ϕN̄

(
x + M+1

2 ; λ̄
)−1

WC[P̌e1 , P̌e2 , . . . , P̌eN̄ ] (x + M+1
2 ; λ̄

)
. (3.45)

By the replacement x → x − M+1
2 , this gives the Casoratian identities for the qR polynomial (3.36).

Although the proportionality constants of Eq. (3.36) are not so important, we present them for the
qR case. By explicit calculation (we assume d1 < d2 < · · · < dM ), we have

ϕM (x; λ)−1 WC[ξ̌ (i)
d1

, ξ̌ (i)
d2

, . . . , ξ̌ (i)
dM

](x; λ)

=
M∏

j=1

(qd−1)dj cdj

(
t(i)(λ)

) · q−∑M
j=1(j−1)dj

∏
1≤i<j≤M

(1 − qdj−di) · q(M
3 )

M∏
i=1

(1 − dqi)M−i

× (
a monic polynomial of degree �D in η

(
x; λ + (M − 1)δ

))
, (3.46)

ϕM (x; λ)−1 WC[P̌d1 , P̌d2 , . . . , P̌dM ](x; λ)

=
M∏

j=1

cdj (λ) · q−∑M
j=1(j−1)dj

∏
1≤i<j≤M

(1 − qdj−di) · q(M
3 )

M∏
i=1

(1 − dqi)M−i

× (
a monic polynomial of degree �D in η

(
x; λ + (M − 1)δ

))
, (3.47)
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where �D = ∑M
j=1 dj − 1

2M (M − 1) and cn(λ) is the coefficient of the highest-degree term of

Pn(η; λ), cn(λ) = (d̃qn; q)n

(a, b, c; q)n
. Then the proportionality constants (we assume d1 < d2 < · · · < dM

and e1 < e2 < · · · < eN̄ ) are given by

ϕM (x − M ; λ)−1 WC[ξ̌ (i)
d1

, ξ̌ (i)
d2

, . . . , ξ̌ (i)
dM

](x − M ; λ)

= A × ϕN̄ (x; λ̄)−1 WC[P̌e1 , P̌e2 , . . . , P̌eN̄ ](x; λ̄), (3.48)

A =
∏M

j=1 cdj

(
t(i)(λ)

)
∏N̄

j=1 cej (λ̄)

∏
1≤i<j≤M (1 − qdj−di)∏
1≤i<j≤N̄ (1 − qej−ei)

∏M
i=1(1 − dqi)M−i∏N̄

i=1(1 − dq−N̄−M+i)N̄−i

× d−∑M
j=1 dj q

∑M
j=1(M+1−j)dj+∑N̄

j=1 jej− 1
6 M (M−1)(2M−1)− 1

6 (N̄−1)N̄ (N̄+1). (3.49)

Here we have used
∑N̄

j=1 ej = ∑M
j=1 dj + 1

2N (N + 1) − N M , �D̄ = �D, and η
(
x; λ̄ + (N̄ − 1)δ

) =
q−M η

(
x − M ; λ + (M − 1)δ

)+ (q−M − 1)(1 − dq−1).

4. Casoratian identities for the reduced-case polynomials

It is well known that the other members of theAskey scheme polynomials of a discrete variable can be
obtained by reductions from the (q-)Racah polynomials [29]. Not only the polynomials themselves
but also the Hamiltonians are reduced in appropriate limits (overall rescalings may be needed). Some
of the twist operations t (i)–(ii), (̃i)–(̃ii) of R and qR systems are inherited by the reduced systems.
The twist operation t is Eq. (3.14) and the q-part should be ignored for non-q-polynomials. The
twists (i)–(ii) and (̃i)–(̃ii) act on x and q as

(i) : t(x)
def= −x − 1, t(q)

def= q, (4.1)

(ii) : t(x)
def= x − N − 1, t(q)

def= q, (4.2)

(̃i) : t(x)
def= −x − 1, t(q)

def= q−1, (4.3)

(̃ii) : t(x)
def= x − N − 1, t(q)

def= q−1, (4.4)

and t(λ) will be given for each polynomial. For non-q-polynomials, the twists (̃i)–(̃ii) are irrelevant.
For infinite systems, the twists (i) and (̃i) should be applied. By using the twist operation, the
potential functions B′(x; λ) and D′(x; λ) are defined by Eqs. (3.22), (3.16), and (3.29)–(3.30), and
the pseudo virtual state polynomials ξ̌v(x; λ) are defined by Eqs. (3.24), (3.19), and (3.33)–(3.34),

which are polynomials of degree v in η(x; λ), ξ̌v(x; λ)
def= ξv

(
η(x; λ); λ

)
(or η(x; λ; q), ξ̌v(x; λ; q)

def=
ξv
(
η(x; λ; q); λ; q

)
). The pseudo virtual state energies Ẽv(λ) are defined in Eqs. (B.10)–(B.11) and

they satisfy Eq. (B.12). Then the Casoratian identities for these reduced-case polynomials have the
same form as in Eq. (3.36),

ϕM (x − M ; λ)−1 WC[ξ̌d1 , ξ̌d2 , . . . , ξ̌dM ](x − M ; λ)

∝ ϕN̄ (x; λ̄)−1 WC[P̌e1 , P̌e2 , . . . , P̌eN̄ ](x; λ̄), (4.5)

with the notation (1.2).
The fundamental data for the reduced-case polynomials are listed in Appendixes A.2–A.3. In the

following we present twist operations and explicit forms of the pseudo virtual state polynomials.
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For the (q-)Hahn, dual (q-)Hahn, (q-)Krawtchouk, and dual q-Krawtchouk cases, we have two twist
operations. Two pseudo virtual state polynomials ξ̌v(x; λ) obtained by these twists are proportional
and two pairs of potential functions (B′(x; λ), D′(x; λ)) are also proportional. Therefore the pseudo
virtual state vectors obtained by these twists are proportional and the corresponding Casoratian
identities are identical.

Some formulas inAppendix B are written under the condition α(λ) > 0. For α(λ) < 0, slight modi-
fications are needed. For example, Eq. (B.3): B′(x; λ) → α(λ)B′(x; λ) and D′(x; λ) → α(λ)D′(x; λ),
Eq. (B.5): φ̃0(x; λ) → φ̃0(x; λ) × (

sgn α(λ)
)−x, etc.

4.1. Finite cases

4.1.1. Hahn (Ha)

We have two twist operations:

(i) : t(λ)
def= (2 − λ1, 2 − λ2, −2 − λ3) = 2δ − λ, (4.6)

(ii) : t(λ)
def= (2 − λ2, 2 − λ1, −2 − λ3). (4.7)

The explicit forms of the pseudo virtual state polynomials are

(i) : ξ̌v(x; λ) = 3F2

(−v, v + 3 − a − b, x + 1

2 − a, N + 2

∣∣∣∣ 1
)

, (4.8)

(ii) : ξ̌v(x; λ) = 3F2

(−v, v + 3 − a − b, N + 1 − x

2 − b, N + 2

∣∣∣∣ 1
)

, (4.9)

which are proportional,

ξ̌ (ii)
v (x; λ) = ξ̌ (i)

v (x; λ) × (2 − a)v

(b − v − 1)v
,

(
B′ (ii)(x; λ)

D′ (ii)(x; λ)

)
=
(

B′ (i)(x; λ)

D′ (i)(x; λ)

)
, (4.10)

and α(i)(λ) = α(ii)(λ) = 1.

4.1.2. Dual Hahn (dHa)

We have two twist operations:

(i) : t(λ)
def= (2 − λ1, 2 − λ2, −2 − λ3), (4.11)

(ii) : t(λ)
def= (1 + λ2 + λ3, 1 + λ1 + λ3, −2 − λ3). (4.12)

The explicit forms of the pseudo virtual state polynomials are

(i) : ξ̌v(x; λ) = 3F2

(−v, 2 − x − a − b, x + 1

2 − a, N + 2

∣∣∣∣ 1
)

, (4.13)

(ii) : ξ̌v(x; λ) = 3F2

(−v, x + a + b + N , N + 1 − x

b + N + 1, N + 2

∣∣∣∣ 1
)

, (4.14)

which are proportional,

ξ̌ (ii)
v (x; λ) = ξ̌ (i)

v (x; λ) × (2 − a)v

(b + N + 1)v
,

(
B′ (ii)(x; λ)

D′ (ii)(x; λ)

)
=
(

B′ (i)(x; λ)

D′ (i)(x; λ)

)
, (4.15)

and α(i)(λ) = α(ii)(λ) = −1.
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4.1.3. Krawtchouk (K)

We have two twist operations:

(i) : t(λ)
def= (λ1, −2 − λ2), (4.16)

(ii) : t(λ)
def= (1 − λ1, −2 − λ2). (4.17)

The explicit forms of the pseudo virtual state polynomials are

(i) : ξ̌v(x; λ) = 2F1

(−v, x + 1

N + 2

∣∣∣∣ p−1
)

, (4.18)

(ii) : ξ̌v(x; λ) = 2F1

(−v, N + 1 − x

N + 2

∣∣∣∣ (1 − p)−1
)

, (4.19)

which are proportional,

ξ̌ (ii)
v (x; λ) = ξ̌ (i)

v (x; λ) × (1 − p−1)−v,
(

B′ (ii)(x; λ)

D′ (ii)(x; λ)

)
=
(

B′ (i)(x; λ)

D′ (i)(x; λ)

)
, (4.20)

and α(i)(λ) = α(ii)(λ) = −1.

4.1.4. q-Hahn (qHa)

We have two twist operations:

(̃i) : t(λ)
def= (2 − λ1, 2 − λ2, −2 − λ3) = 2δ − λ, (4.21)

(ii) : t(λ)
def= (2 − λ2, 2 − λ1, −2 − λ3). (4.22)

The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = 3φ2

(
q−v, a−1b−1qv+3, qx+1

q2a−1, qN+2

∣∣∣∣ q ; bqN−x
)

, (4.23)

(ii) : ξ̌v(x; λ) = 3φ2

(
q−v, a−1b−1qv+3, qN+1−x

q2b−1, qN+2

∣∣∣∣ q ; q

)
, (4.24)

which are proportional,

ξ̌ (ii)
v (x; λ) = ξ̌ (̃i)

v (x; λ) × (q2a−1; q)v

(bq−v−1; q)v
, α(ii)(λ)

(
B′ (ii)(x; λ)

D′ (ii)(x; λ)

)
= α(̃i)(λ)

(
B′ (̃i)(x; λ)

D′ (̃i)(x; λ)

)
, (4.25)

and α(̃i)(λ) = q, α(ii)(λ) = abq−2.

4.1.5. Dual q-Hahn (dqHa)

We have two twist operations:

(̃i) : t(λ)
def= (2 − λ1, 2 − λ2, −2 − λ3), (4.26)

(̃ii) : t(λ)
def= (1 + λ2 + λ3, 1 + λ1 + λ3, −2 − λ3). (4.27)

The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = 3φ2

(
q−v, a−1b−1q2−x, qx+1

q2a−1, qN+2

∣∣∣∣ q ; bqv+N+1
)

, (4.28)
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(̃ii) : ξ̌v(x; λ; q) = 3φ2

(
q−v, abqx+N , qN+1−x

bqN+1, qN+2

∣∣∣∣ q ; a−1qv+2
)

, (4.29)

which are proportional,

ξ̌ (̃ii)
v (x; λ) = ξ̌ (̃i)

v (x; λ) × (q2a−1; q)v

(bqN+1; q)v
,

(
B′ (̃ii)(x; λ)

D′ (̃ii)(x; λ)

)
=
(

B′ (̃i)(x; λ)

D′ (̃i)(x; λ)

)
, (4.30)

and α(̃i)(λ) = α(̃ii)(λ) = q.

4.1.6. Quantum q-Krawtchouk (qqK)

We have one twist operation:

(̃i) : t(λ)
def= (−λ1, −2 − λ2). (4.31)

The explicit form of the pseudo virtual state polynomial is

(̃i) : ξ̌v(x; λ; q) = 2φ1

(
q−v, qx+1

qN+2

∣∣∣∣ q ; pqN+1−x
)

. (4.32)

4.1.7. q-Krawtchouk (qK)

We have two twist operations with different t(q):

(̃i) : t(λ)
def= (2 − λ1, −2 − λ2), t(q) = q−1, (4.33)

(ii) : t(λ)
def= (2 − λ1, −2 − λ2), t(q) = q. (4.34)

The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = 3φ1

(
q−v, −p−1qv+2, qx+1

qN+2

∣∣∣∣ q ; −pqN−x−1
)

, (4.35)

(ii) : ξ̌v(x; λ) = 3φ2

(
q−v, −p−1qv+2, qN+1−x

qN+2, 0

∣∣∣∣ q ; q

)
, (4.36)

which are proportional,

ξ̌ (ii)
v (x; λ) = ξ̌ (̃i)

v (x; λ)×(−p)−vqv(v+2), α(ii)(λ)

(
B′ (ii)(x; λ)

D′ (ii)(x; λ)

)
= α(̃i)(λ)

(
B′ (̃i)(x; λ)

D′ (̃i)(x; λ)

)
, (4.37)

and α(̃i)(λ) = q, α(ii)(λ) = −pq−1.

4.1.8. Dual q-Krawtchouk (dqK)

We have two twist operations:

(̃i) : t(λ)
def= (−λ1, −2 − λ2), (4.38)

(̃ii) : t(λ)
def= (λ1, −2 − λ2). (4.39)

The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = 3φ1

(
q−v, c−1qN+1−x, qx+1

qN+2

∣∣∣∣ q ; cqv
)

, (4.40)

15/30
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/12/123A02/4781702
by Shinshu Univ Med Lib user
on 08 May 2018



PTEP 2017, 123A02 S. Odake

(̃ii) : ξ̌v(x; λ; q) = 3φ1

(
q−v, cqx+1, qN+1−x

qN+2

∣∣∣∣ q ; c−1qv
)

, (4.41)

which are proportional,

ξ̌ (̃ii)
v (x; λ) = ξ̌ (̃i)

v (x; λ) × c−v,
(

B′ (̃ii)(x; λ)

D′ (̃ii)(x; λ)

)
=
(

B′ (̃i)(x; λ)

D′ (̃i)(x; λ)

)
, (4.42)

and α(̃i)(λ) = α(̃ii)(λ) = q.

4.1.9. Affine q-Krawtchouk (aqK)

We have one twist operation:

(̃i) : t(λ)
def= (−λ1, −2 − λ2). (4.43)

The explicit form of the pseudo virtual state polynomial is

(̃i) : ξ̌v(x; λ; q) = 2φ2

(
q−v, qx+1

p−1q, qN+2

∣∣∣∣ q ; p−1qv+N+2−x
)

. (4.44)

4.2. Semi-infinite cases

4.2.1. Meixner (M)

We have one twist operation:

(i) : t(λ)
def= (2 − λ1, λ2). (4.45)

The explicit form of the pseudo virtual state polynomial is

(i) : ξ̌v(x; λ) = 2F1

(−v, x + 1

2 − β

∣∣∣∣ 1 − c−1
)

. (4.46)

4.2.2. Charlier (C)

We have one twist operation:

(i) : t(λ)
def= −λ1. (4.47)

The explicit form of the pseudo virtual state polynomial is

(i) : ξ̌v(x; λ) = 2F0

(−v, x + 1

−
∣∣∣∣ a−1

)
. (4.48)

4.2.3. Little q-Jacobi (lqJ)
We have one twist operation:

(̃i) : t(λ)
def= (−λ1, −λ2). (4.49)
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The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = (−b)−vq
1
2 v(v+1) (a

−1q; q)v

(b−1q; q)v
2φ1

(
q−v, a−1b−1qv+1

a−1q

∣∣∣∣ q ; bqx+1
)

= 3φ2

(
q−v, a−1b−1qv+1, qx+1

b−1q, 0

∣∣∣∣ q ; q

)
. (4.50)

4.2.4. q-Meixner (qM)

We have one twist operation:

(̃i) : t(λ)
def= (−λ1, −λ2). (4.51)

The explicit form of the pseudo virtual state polynomial is

(̃i) : ξ̌v(x; λ; q) = 2φ1

(
q−v, qx+1

b−1q

∣∣∣∣ q ; −b−1c−1q−x
)

. (4.52)

4.2.5. Little q-Laguerre/Wall (lqL)

We have one twist operation:

(̃i) : t(λ)
def= −λ1. (4.53)

The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = 2φ1

(
q−v, qx+1

0

∣∣∣∣ q ; a−1qv+1
)

= (−a)−vq
1
2 v(v+1)(aq−v; q)v 1φ1

(
q−v

a−1q

∣∣∣∣ q ; a−1qv+x+2
)

. (4.54)

4.2.6. Al-Salam–Carlitz II (ASCII)
We have one twist operation:

(̃i) : t(λ)
def= −λ1. (4.55)

The explicit form of the pseudo virtual state polynomial is

(̃i) : ξ̌v(x; λ; q) = 2φ1

(
q−v, qx+1

0

∣∣∣∣ q ; a−1q−x
)

. (4.56)

4.2.7. q-Bessel (qB) (alternative q-Charlier)
We have one twist operation:

(̃i) : t(λ)
def= 2 − λ1. (4.57)
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The explicit forms of the pseudo virtual state polynomials are

(̃i) : ξ̌v(x; λ; q) = qv(x+1)
2φ0

(
q−v, qx+1

−
∣∣∣∣ q ; −a−1q2v+1−x

)
= (−a)−vqv(v+2)

2φ0

(
q−v, −a−1qv+2

−
∣∣∣∣ q ; −aqx−1

)
= 3φ2

(
q−v, −a−1qv+2, qx+1

0, 0

∣∣∣∣ q ; q

)
. (4.58)

4.2.8. q-Charlier (qC)

We have one twist operation:

(̃i) : t(λ)
def= −λ1. (4.59)

The explicit form of the pseudo virtual state polynomial is

(̃i) : ξ̌v(x; λ; q) = 2φ0

(
q−v, qx+1

−
∣∣∣∣ q ; −a−1q−x−1

)
. (4.60)

5. Summary and comments

In addition to theWronskian identities for the Hermite, Laguerre, and Jacobi polynomials in oQM [20]
and the Casoratian identities for the Askey–Wilson polynomial and its reduced-form polynomials
in idQM [21], infinitely many Casoratian identities for the q-Racah polynomial and its reduced-
form polynomials in rdQM are obtained. The pseudo virtual state polynomials are defined by using
discrete symmetries of the original systems. The derivation of the Casoratian identities in this paper
is a “shortcut” way. The pseudo virtual state vectors and the one-step Darboux transformation in
terms of it for q-Racah case are discussed in Appendix B. We will report on the multi-step cases and
semi-infinite cases elsewhere. The Casoratian identities imply equivalences between the deformed
systems obtained by multi-step Darboux transformations in terms of pseudo virtual state vectors and
those in terms of eigenvectors with shifted parameters.

Curbera and Durán studied similar Casoratian identities for the Charlier, Meixner, and Hahn
polynomials [31], which have the sinusoidal coordinate η(x) = x. Their method is based on the
Krall discrete measure. Let us consider the case N = max(D) and min(D) ≥ 1. Then their map I
implies I (D) = D̄ and I (D̄) = D, and we have max(D̄) = N and min(D̄) ≥ 1. Our identities (4.5)
correspond to their Theorems 1.1, 5.1, and 7.1 as follows: Charlier: F = D̄, Meixner: F1 = D̄ and
F2 = ∅, Hahn: F1 = D̄ and F2 = F3 = ∅ (remark: I (∅) = ∅ and max(∅) = −1). The proportionality
constants are also presented.

Among the reduced-form polynomials, the big q-Jacobi family and the discrete q-Hermite II are
not mentioned in this paper. The orthogonality relations of the big q-Jacobi family are expressed in
terms of the Jackson integral and their rdQM needs the two-component formalism [28]. The rdQM
for the discrete q-Hermite II is an infinite system, x ∈ Z. We have not completed the study of the
pseudo virtual state vectors for these two systems. It is plausible that similar Casoratian identities,
which are polynomial identities, do exist. In fact R. Sasaki has checked tentative Casoratian identities
for the big q-Jacobi family (private communication).
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In Sect. 3.2 twist operations (i)–(ii) and (̃i)–(̃ii) are presented. There are more discrete symmetries
(iii)–(iv) for R and qR, and (ĩii)–(ĩv) for qR:

(iii) : t(x)
def= −x − 1, t(λ)

def= (1 + λ1 − λ4, 1 + λ2 − λ4, 2 − λ3, 2 − λ4), t(q)
def= q, (5.1)

(iv) : t(x)
def= x + λ3 − 1, t(λ)

def= (1 + λ1 − λ3, 1 + λ2 − λ3, 2 − λ3, 2 − 2λ3 + λ4),

t(q)
def= q, (5.2)

(ĩii) : (iii) with the replacement t(q)
def= q−1, (5.3)

(ĩv) : (iv) with the replacement t(q)
def= q−1, (5.4)

all of which give the relation

Ẽv(λ) = Ev+N+1(λ). (5.5)

It is an interesting problem to clarify whether these twists give new pseudo virtual state vectors and
Casoratian identities or not.
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Appendix A. Data for orthogonal polynomials

In this appendix we present some necessary data for the orthogonal polynomials [26,29]. The
data for the Askey–Wilson polynomial are given in Appendix A.1. The data for the polynomials
appearing in finite rdQM are given in Appendix A.2 and those for semi-infinite rdQM are given in
Appendix A.3.

A.1. Askey–Wilson

The fundamental data for the Askey–Wilson polynomial are [21,29]

qλ = (a1, a2, a3, a4)
({a∗

1, a∗
2, a∗

3, a∗
4} = {a1, a2, a3, a4} as a set

)
, γ = log q,

δ = (1
2 , 1

2 , 1
2 , 1

2), κ = q−1, En(λ) = (q−n − 1)(1 − b4qn−1), b4
def= a1a2a3a4,

η(x) = cos x, ϕ(x) = 2 sin x,

P̌n(x; λ) = Pn
(
η(x); λ

) = pn
(
η(x); a1, a2, a3, a4|q

)
(A.1)

= a−n
1 (a1a2, a1a3, a1a4 ; q)n 4φ3

(
q−n, b4qn−1, a1eix, a1e−ix

a1a2, a1a3, a1a4

∣∣∣∣q ; q

)
,

V (x; λ) =
∏4

j=1(1 − ajeix)

(1 − e2ix)(1 − qe2ix)
, V ∗(x; λ) =

∏4
j=1(1 − aje−ix)

(1 − e−2ix)(1 − qe−2ix)
,

where pn(η; a1, a2, a3, a4|q) is the Askey–Wilson polynomial. Note that the Askey–Wilson system
is invariant under the permutation of aj.
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The pseudo virtual state wavefunction is defined by using the twist operation, the discrete symmetry
of the Hamiltonian [21]. The twist operation t etc. is

t(λ)
def= (1 − λ1, 1 − λ2, 1 − λ3, 1 − λ4) = 2δ − λ, (A.2)

V ′(x; λ)
def= V

(
x; t(λ)

)
, α(λ) = b4q−2, α′(λ) = −(1 − q)(1 − b4q−2), (A.3)

H(λ) = α(λ)H′(λ) + α′(λ), Ẽv(λ)
def= α(λ)Ev

(
t(λ)

)+ α′(λ) = E−v−1(λ). (A.4)

The pseudo virtual state polynomial ξ̌v(x; λ) = ξv
(
η(x); λ

)
is defined by

ξ̌v(x; λ)
def= P̌v

(
x; t(λ)

)
. (A.5)

The auxiliary function ϕM (x) (M ∈ Z≥0) is defined by

ϕM (x)
def= ϕ(x)[

M
2 ]

M−2∏
k=1

(
ϕ(x − i k

2γ )ϕ(x + i k
2γ )

)[ M−k
2 ]

=
∏

1≤j<k≤M

η
(
x + i(M+1

2 − j)γ
)− η

(
x + i(M+1

2 − k)γ
)

ϕ(i j
2γ )

× (−2)
1
2 M (M−1), (A.6)

and ϕ0(x) = ϕ1(x) = 1. Here [x] denotes the greatest integer not exceeding x.

A.2. Finite cases

Data for the polynomials appearing in finite rdQM are presented [26,29]. Although there are two
possible parameter choices indexed by ε = ±1 for the Hahn, dual Hahn, q-Hahn, and dual q-Hahn
polynomials, we take ε = 1 for simplicity of presentation.

A.2.1. Hahn (Ha)

λ = (a, b, N ), δ = (1, 1, −1), κ = 1, En(λ) = n(n + a + b − 1),

η(x) = x, ϕ(x) = 1,

P̌n(x; λ) = Qn
(
η(x); a − 1, b − 1, N

) = 3F2

(−n, n + a + b − 1, −x

a, −N

∣∣∣∣ 1
)

, (A.7)

B(x; λ) = (x + a)(N − x), D(x; λ) = x(b + N − x),

where Qn(η; α, β, N ) is the Hahn polynomial in the conventional parametrization [29]. The Hahn
polynomial is obtained from the Racah polynomial by

λR = (a, b + N + d, −N , d), d → ∞ : lim
d→∞

P̌R
n (x; λR) = P̌n(x; λ). (A.8)

A.2.2. Dual Hahn (dHa)

λ = (a, b, N ), δ = (1, 0, −1), κ = 1, En = n,

η(x; λ) = x(x + a + b − 1), ϕ(x; λ) = 2x + a + b

a + b
,

20/30
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/12/123A02/4781702
by Shinshu Univ Med Lib user
on 08 May 2018



PTEP 2017, 123A02 S. Odake

P̌n(x; λ) = Rn
(
η(x; λ); a − 1, b − 1, N

) = 3F2

(−n, x + a + b − 1, −x

a, −N

∣∣∣∣ 1
)

, (A.9)

B(x; λ) = (x + a)(x + a + b − 1)(N − x)

(2x − 1 + a + b)(2x + a + b)
, D(x; λ) = x(x + b − 1)(x + a + b + N − 1)

(2x − 2 + a + b)(2x − 1 + a + b)
,

where Rn(η; γ , δ, N ) is the dual Hahn polynomial in the conventional parametrization [29]. The dual
Hahn polynomial is obtained from the Racah polynomial by

λR = (a, b′, −N , a + b − 1), b′ → ∞ : lim
b′→∞

P̌R
n (x; λR) = P̌n(x; λ). (A.10)

A.2.3. Krawtchouk (K)

λ = (p, N ), δ = (0, −1), κ = 1, En = n, η(x) = x, ϕ(x) = 1,

P̌n(x; λ) = Kn
(
η(x); p, N

) = 2F1

(−n, −x

−N

∣∣∣∣ p−1
)

, (A.11)

B(x; λ) = p(N − x), D(x; λ) = (1 − p)x,

where Kn(η; p, N ) is the Krawtchouk polynomial. The Krawtchouk polynomial is obtained from the
Hahn polynomial by

λHa = (1 + pt, 1 + (1 − p)t, N ), t → ∞ : lim
t→∞ P̌Ha

n (x; λHa) = P̌n(x; λ). (A.12)

A.2.4. q-Hahn (qHa)

qλ = (a, b, qN ), δ = (1, 1, −1), κ = q−1, En(λ) = (q−n − 1)(1 − abqn−1),

η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = Qn
(
1 + η(x); aq−1, bq−1, N |q) = 3φ2

(
q−n, abqn−1, q−x

a, q−N

∣∣∣∣ q ; q

)
, (A.13)

B(x; λ) = (1 − aqx)(qx−N − 1), D(x; λ) = aq−1(1 − qx)(qx−N − b),

where Qn(η; α, β, N |q) is the q-Hahn polynomial in the conventional parametrization [29]. The
q-Hahn polynomial is obtained from the q-Racah polynomial by

qλqR = (a, bqN d, q−N , d), d → 0 : lim
d→0

P̌qR
n (x; λqR) = P̌n(x; λ). (A.14)

A.2.5. Dual q-Hahn (dqHa)

qλ = (a, b, qN ), δ = (1, 0, −1), κ = q−1, En = q−n − 1,

η(x; λ) = (q−x − 1)(1 − abqx−1), ϕ(x; λ) = q−x − abqx

1 − ab
,
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P̌n(x; λ) = Rn
(
1 + abq−1 + η(x; λ); aq−1, bq−1, N |q) = 3φ2

(
q−n, abqx−1, q−x

a, q−N

∣∣∣∣ q ; q

)
,

B(x; λ) = (qx−N − 1)(1 − aqx)(1 − abqx−1)

(1 − abq2x−1)(1 − abq2x)
, (A.15)

D(x; λ) = aqx−N−1 (1 − qx)(1 − abqx+N−1)(1 − bqx−1)

(1 − abq2x−2)(1 − abq2x−1)
,

where Rn(η; γ , δ, N |q) is the dual q-Hahn polynomial in the conventional parametrization [29]. The
dual q-Hahn polynomial is obtained from the q-Racah polynomial by

qλqR = (a, b′, q−N , abq−1), b′ → 0 : lim
b′→0

P̌qR
n (x; λqR) = P̌n(x; λ). (A.16)

A.2.6. Quantum q-Krawtchouk (qqK)

qλ = (p, qN ), δ = (1, −1), κ = q, En = 1 − qn, η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = Kqtm
n

(
1 + η(x); p, N ; q

) = 2φ1

(
q−n, q−x

q−N

∣∣∣∣ q ; pqn+1
)

, (A.17)

B(x; λ) = p−1qx(qx−N − 1), D(x; λ) = (1 − qx)(1 − p−1qx−N−1),

where Kqtm
n (η; p, N ; q) is the quantum q-Krawtchouk polynomial. The quantum q-Krawtchouk

polynomial is obtained from the q-Hahn polynomial by

qλqHa = (a, pq, qN ), a → ∞ : lim
a→∞ P̌qHa

n (x; λqHa) = P̌n(x; λ). (A.18)

A.2.7. q-Krawtchouk (qK)

qλ = (p, qN ), δ = (2, −1), κ = q−1, En(λ) = (q−n − 1)(1 + pqn),

η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = Kn
(
1 + η(x); p, N ; q

) = 3φ2

(
q−n, q−x, −pqn

q−N , 0

∣∣∣∣ q ; q

)
, (A.19)

B(x; λ) = qx−N − 1, D(x; λ) = p(1 − qx),

where Kn(η; p, N ; q) is the q-Krawtchouk polynomial. The q-Krawtchouk polynomial is obtained
from the q-Hahn polynomial by

qλqHa = (a, −a−1pq, qN ), a → 0 : lim
a→0

P̌qHa
n (x; λqHa) = P̌n(x; λ). (A.20)

A.2.8. Dual q-Krawtchouk (dqK)

qλ = (c, qN ), δ = (0, −1), κ = q−1, En = q−n − 1,

η(x; λ) = (q−x − 1)(1 − cqx−N ), ϕ(x; λ) = q−x − cq1−N qx

1 − cq1−N ,
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P̌n(x; λ) = Kn
(
1 + cq−N + η(x; λ); c, N |q) = 3φ2

(
q−n, q−x, cqx−N

q−N , 0

∣∣∣∣ q ; q

)
, (A.21)

B(x; λ) = (qx−N − 1)(1 − cqx−N )

(1 − cq2x−N )(1 − cq2x+1−N )
, D(x; λ) = −cq2x−2N−1 (1 − qx)(1 − cqx)

(1 − cq2x−1−N )(1 − cq2x−N )
,

where Kn(η; c, N |q) is the dual q-Krawtchouk polynomial in the conventional parametrization [29].
The dual q-Krawtchouk polynomial is obtained from the dual q-Hahn polynomial by

qλdqHa = (a, a−1cq1−N , qN ), a → 0 : lim
a→0

P̌dqHa
n (x; λdqHa) = P̌n(x; λ). (A.22)

A.2.9. Affine q-Krawtchouk (aqK)

qλ = (p, qN ), δ = (1, −1), κ = q−1, En = q−n − 1, η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = Kaff
n

(
1 + η(x); p, N ; q

) = 3φ2

(
q−n, q−x, 0

pq, q−N

∣∣∣∣ q ; q

)
, (A.23)

B(x; λ) = (qx−N − 1)(1 − pqx+1), D(x; λ) = pqx−N (1 − qx),

where Kaff
n (η; p, N ; q) is the affine q-Krawtchouk polynomial. The affine q-Krawtchouk polynomial

is obtained from the q-Hahn polynomial by

qλqHa = (pq, b, qN ), b → 0 : lim
b→0

P̌qHa
n (x; λqHa) = P̌n(x; λ). (A.24)

A.3. Semi-infinite cases

Data for the polynomials appearing in semi-infinite rdQM are presented [26,29].

A.3.1. Meixner (M)

λ = (β, c), δ = (1, 0), κ = 1, En = n, η(x) = x, ϕ(x) = 1,

P̌n(x; λ) = Mn
(
η(x); β, c

) = 2F1

(−n, −x

β

∣∣∣∣ 1 − c−1
)

, (A.25)

B(x; λ) = c

1 − c
(x + β), D(x; λ) = 1

1 − c
x,

where Mn(η; β, c) is the Meixner polynomial. The Meixner polynomial is obtained from the Hahn
polynomial by

λHa =
(

β, 1 + 1 − c

c
N , N

)
, N → ∞ : lim

N→∞ P̌Ha
n (x; λHa) = P̌n(x; λ). (A.26)

A.3.2. Charlier (C)

λ = a, δ = 0, κ = 1, En = n, η(x) = x, ϕ(x) = 1,

P̌n(x; λ) = Cn
(
η(x); a) = 2F0

(−n, −x

−
∣∣∣∣ −a−1

)
, (A.27)

B(x; λ) = a, D(x) = x,
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where Cn(η; a) is the Charlier polynomial. The Charlier polynomial is obtained from the Meixner
polynomial by

λM = (β,
a

a + β
), β → ∞ : lim

β→∞ P̌M
n (x; λM) = P̌n(x; λ). (A.28)

A.3.3. Little q-Jacobi (lqJ)

qλ = (a, b), δ = (1, 1), κ = q−1, En(λ) = (q−n − 1)(1 − abqn+1),

η(x) = 1 − qx, ϕ(x) = qx,

P̌n(x; λ) = (−a)−nq− 1
2 n(n+1) (aq ; q)n

(bq ; q)n
pn
(
1 − η(x); a, b|q)

= (−a)−nq− 1
2 n(n+1) (aq; q)n

(bq; q)n
2φ1

(
q−n, abqn+1

aq

∣∣∣∣ q ; qx+1
)

(A.29)

= 3φ1

(
q−n, abqn+1, q−x

bq

∣∣∣∣ q ; a−1qx
)

,

B(x; λ) = a(q−x − bq), D(x) = q−x − 1,

where pn(η; a, b|q) is the little q-Jacobi polynomial in the conventional parametrization [29]. The
little q-Jacobi polynomial is obtained from the q-Hahn polynomial by

xqHa = N − x, qλqHa = (aq, bq, qN ), N → ∞ :

lim
N→∞ P̌qHa

n (xqHa; λqHa) = (−a)nq
1
2 n(n+1) (bq; q)n

(aq; q)n
P̌n(x; λ). (A.30)

A.3.4. q-Meixner (qM)

qλ = (b, c), δ = (1, −1), κ = q, En = 1 − qn, η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = Mn
(
1 + η(x); b, c; q

) = 2φ1

(
q−n, q−x

bq

∣∣∣∣ q ; −c−1qn+1
)

, (A.31)

B(x; λ) = cqx(1 − bqx+1), D(x; λ) = (1 − qx)(1 + bcqx),

where Mn(η; b, c; q) is the q-Meixner polynomial. The q-Meixner polynomial is obtained from the
q-Hahn polynomial by

qλqHa = (bq, −b−1c−1q−N , qN ), N → ∞ : lim
N→∞ P̌qHa

n (x; λqHa) = P̌n(x; λ). (A.32)

A.3.5. Little q-Laguerre/Wall (lqL)

qλ = a, δ = 1, κ = q−1, En = q−n − 1, η(x) = 1 − qx, ϕ(x) = qx,

P̌n(x; λ) = (a−1q−n; q)n pn
(
1 − η(x); a|q) = 2φ0

(
q−n, q−x

−
∣∣∣∣ q ; a−1qx

)
, (A.33)

B(x; λ) = aq−x, D(x) = q−x − 1,
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where pn(η; a|q) is the little q-Laguerre polynomial in the conventional parametrization [29]. The
little q-Laguerre polynomial is obtained from the little q-Jacobi polynomial by

qλlqJ = (a, b), b → 0 : lim
b→0

P̌lqJ
n (x; λlqJ) = P̌n(x; λ). (A.34)

A.3.6. Al-Salam–Carlitz II (ASCII)

qλ = a, δ = 0, κ = q, En = 1 − qn, η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = (−a)−nq
1
2 n(n−1) V (a)

n

(
1 + η(x); q

) = 2φ0

(
q−n, q−x

−
∣∣∣∣ q ; a−1qn

)
, (A.35)

B(x; λ) = aq2x+1, D(x; λ) = (1 − qx)(1 − aqx),

where V (a)(η; q) is the Al-Salam–Carlitz II polynomial in the conventional parametrization [29].
The Al-Salam–Carlitz II polynomial is obtained from the q-Meixner polynomial by

qλqM = (−ac−1, c), c → 0 : lim
c→0

P̌qM
n (x; λqM) = P̌n(x; λ). (A.36)

A.3.7. q-Bessel (qB) (alternative q-Charlier)

qλ = a, δ = 2, κ = q−1, En(λ) = (q−n − 1)(1 + aqn), η(x) = 1 − qx, ϕ(x) = qx,

P̌n(x; λ) = (−a)−nq−n2
yn
(
1 − η(x); a; q) = qnx

2φ1

(
q−n, q−x

0

∣∣∣∣ q ; −a−1q1−n
)

(A.37)

= (−a)−nq−n2
2φ1

(
q−n, −aqn

0

∣∣∣∣ q ; qx+1
)

= 3φ0

(
q−n, −aqn, q−x

−
∣∣∣∣ q ; −a−1qx

)
,

B(x; λ) = a, D(x) = q−x − 1,

where yn(η; a; q) is the q-Bessel polynomial (the alternative q-Charlier polynomial Kn(η; a; q)) in
the conventional parametrization [29]. The q-Bessel polynomial is obtained from the little q-Jacobi
polynomial by

qλlqJ = (a′, −aa′ −1q−1), a′ → 0 : lim
a′→0

P̌lqJ
n (x; λlqJ) = P̌n(x; λ). (A.38)

A.3.8. q-Charlier (qC)

qλ = a, δ = −1, κ = q, En = 1 − qn, η(x) = q−x − 1, ϕ(x) = q−x,

P̌n(x; λ) = Cn
(
1 + η(x); a; q) = 2φ1

(
q−n, q−x

0

∣∣∣∣ q ; −a−1qn+1
)

, (A.39)

B(x; λ) = aqx, D(x) = 1 − qx,

where Cn(η; a; q) is the q-Charlier polynomial. The q-Charlier polynomial is obtained from the
q-Meixner polynomial by

qλqM = (b, a), b → 0 : lim
b→0

P̌qM
n (x; λqM) = P̌n(x; λ). (A.40)
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Appendix B. Pseudo virtual state vectors and deformed systems

In this appendix we explain pseudo virtual state vectors and deformed systems obtained by the
one-step Darboux transformation in terms of pseudo virtual state vectors.

We illustrate them by taking the qR twist (i) case as an example. We consider the following
parameter range:

c = q−N , 0 < ac < d < 1, qd < b < 1, (B.1)

for which the Hamiltonian is well defined, namely real symmetric, and the constant α(λ) is positive.
Potential functions B′(x; λ) and D′(x; λ) are given by Eq. (3.23). We restrict the parameter range:

ac < dq, b < q, d < q2. (B.2)

Then B′(x; λ) and D′(x; λ) satisfy

B′(x; λ) > 0 (x = 0, 1, . . . , N ), B′(−1; λ) = 0,

D′(x; λ) > 0 (x = 0, 1, . . . , N ), D′(N + 1; λ) = 0. (B.3)

By further restricting the parameter range, we obtain the positivity of the pseudo virtual state
polynomial (3.25) in the extended domain:

ξ̌v(x; λ) > 0 (x = −1, 0, . . . , N + 1). (B.4)

The range of v may be restricted. After Eq. (2.6), let us define φ̃0(x; λ) by

φ̃0(x; λ)
def=

x−1∏
y=0

√
B′(x; λ)

D′(x + 1; λ)
> 0, (B.5)

which is an “almost” zero mode of H′ (2.16):

H′(λ)φ̃0(x; λ) = D′(0; λ)φ̃0(0; λ)δx0 + B′(N ; λ)φ̃0(N ; λ)δxN . (B.6)

Explicitly it is

φ̃0(x; λ) = 1 − dq2x

1 − d

1

qxφ0(x; λ)
. (B.7)

We define the pseudo virtual state vector φ̃v(x; λ) as follows:

φ̃v(x; λ)
def= φ̃0(x; λ)ξ̌v(x; λ). (B.8)

This pseudo virtual state vector satisfies

H(λ)φ̃v(x; λ) = Ẽv(λ)φ̃v(x; λ) + α(λ)D′(0; λ)φ̃0(0; λ)ξ̌v(−1; λ)δx0

+ α(λ)B′(N ; λ)φ̃0(N ; λ)ξ̌v(N + 1; λ)δxN , (B.9)
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where the pseudo virtual state energy Ẽv(λ) is defined by (we also present it for twists (ii) and (̃i)–(̃ii))

(i), (ii) : Ẽv(λ)
def= α(λ)Ev

(
t(λ)

)+ α′(λ), (B.10)

(̃i), (̃ii) : Ẽv(λ; q)
def= α(λ; q)Ev

(
t(λ); q−1)+ α′(λ; q). (B.11)

Namely the pseudo virtual state vector almost satisfies the Schrödinger equation, except for both
boundaries x = 0 and x = N . This is in good contrast to the virtual state vector in rdQM [12,13]1,
which fails to satisfy the Schrödinger equation at only one of the boundaries. We remark that the
pseudo virtual state energies Ẽv(λ) for (i)–(ii) and (̃i)–(̃ii) give the same value,

Ẽv(λ) = E−v−1(λ), (B.12)

which is important for the equivalence between the state adding and deleting Darboux transformations
[20,21].

Let us introduce potential functions B̂d1(x; λ) and D̂d1(x; λ) determined by one of the pseudo virtual
state polynomials ξ̌d1(x; λ):

B̂d1(x; λ)
def= α(λ)B′(x; λ)

ξ̌d1(x + 1; λ)

ξ̌d1(x; λ)
, D̂d1(x; λ)

def= α(λ)D′(x; λ)
ξ̌d1(x − 1; λ)

ξ̌d1(x; λ)
, (B.13)

which satisfy

B̂d1(x; λ) > 0 (x = 0, 1, . . . , N ), B̂d1(−1; λ) = 0,

D̂d1(x; λ) > 0 (x = 0, 1, . . . , N ), D̂d1(N + 1; λ) = 0, (B.14)

B(x; λ)D(x + 1; λ) = B̂d1(x; λ)D̂d1(x + 1; λ),

B(x; λ) + D(x; λ) = B̂d1(x; λ) + D̂d1(x; λ) + Ẽd1(λ). (B.15)

The original Hamiltonian H(λ) is rewritten by using them:

H(λ) = −
√

B̂d1(x; λ)D̂d1(x + 1; λ) e∂ −
√

B̂d1(x − 1; λ)D̂d1(x; λ) e−∂

+ B̂d1(x; λ) + D̂d1(x; λ) + Ẽd1(λ) (B.16)⎛⎝=
(√

B̂d1(x; λ) −
√

D̂d1(x; λ) e−∂

)(√
B̂d1(x; λ) − e∂

√
D̂d1(x; λ)

)
+D̂d1(0; λ)δx0 + Ẽd1(λ)

⎞⎠.

For this (N + 1) × (N + 1) matrix H = (Hx,y)0≤x,y≤N , we define a deformed Hamiltonian Hd1(λ),
which is an (N + 2) × (N + 2) matrix Hd1 = (Hd1 x,y)−1≤x,y≤N :

Hd1(λ)
def= −

√
B̂d1(x + 1; λ)D̂d1(x + 1; λ) e∂ −

√
B̂d1(x; λ)D̂d1(x; λ) e−∂

+ B̂d1(x; λ) + D̂d1(x + 1; λ) + Ẽd1(λ) (B.17)(
=
(√

B̂d1(x; λ) − e∂

√
D̂d1(x; λ)

)(√
B̂d1(x; λ) −

√
D̂d1(x; λ) e−∂

)
+ Ẽd1(λ)

)
.

1 In Refs. [12,13], the type I and type II virtual state vectors do not satisfy the Schrödinger equation at x = N
and x = 0 respectively. For the type II virtual state vector, see Ref. [13].

27/30
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/12/123A02/4781702
by Shinshu Univ Med Lib user
on 08 May 2018



PTEP 2017, 123A02 S. Odake

Note that, on the RHS, only B̂d1(x; λ) and D̂d1(x; λ) for x = 0, 1, . . . , N appear due to B̂d1(−1; λ) =
D̂d1(N + 1; λ) = 0, and ξ̌d1(x; λ) for x = −1, 0, . . . , N + 1 appears. The deformed Hamiltonian
Hd1(λ) has N + 2 eigenvectors; N + 1 eigenvectors φd1 n(x; λ) (n = 0, 1, . . . , N ) are inherited from
the eigenvectors φn(x; λ) for the original Hamiltonian H(λ), and a new eigenvector �̆d1;d1(x; λ) with
the pseudo virtual energy Ẽd1(λ) is added:

Hd1(λ)φd1 n(x; λ) = En(λ)φd1 n(x; λ) (n = 0, 1, . . . , N ), (B.18)

Hd1(λ)�̆d1;d1(x; λ) = Ẽd1(λ)�̆d1;d1(x; λ). (B.19)

Here φd1 n(x; λ) and �̆d1;d1(x; λ) are given by

φd1 n(x; λ)
def=
√

B̂d1(x; λ) φn(x; λ) −
√

D̂d1(x + 1; λ) φn(x + 1; λ), (B.20)

�̆d1;d1(x; λ)
def= φ0(x + 1; λ − δ)√

ξ̌d1(x; λ)ξ̌d1(x + 1; λ)

, (B.21)

which are defined for x = −1, 0, . . . , N . We remark that Eq. (B.20) is rewritten as

φd1 n(x; λ) = −√
α(λ)B′(x; λ) φ̃0(x; λ)√

ξ̌d1(x; λ)ξ̌d1(x + 1; λ)

WC[ξ̌d1 , νP̌n](x; λ), ν(x; λ)
def= φ0(x; λ)

φ̃0(x; λ)
. (B.22)

This deformed Hamiltonian Hd1(λ) can be rewritten in the standard form:

Hd1(λ) = −√Bd1(x; λ)Dd1(x + 1; λ) e∂ −√
Bd1(x − 1; λ)Dd1(x; λ) e−∂

+ Bd1(x; λ) + Dd1(x; λ) + Ẽd1(λ) (B.23)

=
(√

Bd1(x; λ) −√
Dd1(x; λ) e−∂

) (√
Bd1(x; λ) − e∂

√
Dd1(x; λ)

)
+ Ẽd1(λ).

Here potential functions Bd1(x; λ) and Dd1(x; λ) are

Bd1(x; λ)
def= α(λ)D′(x + 1; λ)

ξ̌d1(x; λ)

ξ̌d1(x + 1; λ)
, Dd1(x; λ)

def= α(λ)B′(x; λ)
ξ̌d1(x + 1; λ)

ξ̌d1(x; λ)
, (B.24)

which satisfy

Bd1(x; λ) > 0 (x = −1, 0, . . . , N − 1), Bd1(N ; λ) = 0,

Dd1(x; λ) > 0 (x = 0, 1, . . . , N ), Dd1(−1; λ) = 0. (B.25)

Repeating this deformation procedure M times (the parameter range should be restricted appro-
priately), we can obtain deformed Hamiltonians Hd1···dM (λ). They are (N + M + 1) × (N + M + 1)

matrices Hd1···dM = (Hd1···dM x,y)−M≤x,y≤N and their eigenvalues are En(λ) (n = 0, 1, . . . , N ) and
Ẽdj (j = 1, 2, . . . , M ). We will report on this subject in detail elsewhere.

Next let us consider the equivalence between the above one-step deformation in terms of the
pseudo virtual state vector with d1 = � and the �-step deformation in terms of the eigenvectors with
shifted parameters. For simplicity we take N = max(D). The multi-step Darboux transformations
in terms of the eigenvectors were studied in Ref. [27]. Simple examples, in which the eigenvectors
φ1, φ2, . . . , φ� are deleted, are given in its Appendix A. Equations (A.16), (A.24), and (A.26) in Ref.
[27] for the q-Racah case give:

ϕ�(x; λ)−1WC[P̌1, P̌2, . . . , P̌�](x; λ) ∝ P̌�

(−x; −λ − (� − 1)δ),
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namely,

ξ̌�(x − 1; λ) ∝ ϕ�

(
x; λ − (� + 1)δ

)−1WC[P̌1, P̌2, . . . , P̌�]
(
x; λ − (� + 1)δ

)
. (B.26)

This is the special case of the Casoratian identities (3.36) with M = 1, N = �, D = {�}, and
D̄ = {1, 2, . . . , �}. Let us denote the potential functions of the deformed system in Appendix A of
Ref. [27] as BKA{1,2,...,�}(x; λ) = BRef. [27]

� (x; λ) and DKA{1,2,...,�}(x; λ) = DRef. [27]
� (x; λ). The Hamiltonian

of the deformed system in Appendix A of Ref. [27] is

HKA{1,2,...,�}(λ) = (HKA{1,2,...,�} ; x,y(λ)
)

0≤x,y≤N−�
,

HKA{1,2,...,�}(λ) = −
√

BKA{1,2,...,�}(x; λ)DKA{1,2,...,�}(x + 1; λ) e∂

−
√

BKA{1,2,...,�}(x − 1; λ)DKA{1,2,...,�}(x; λ) e−∂

+ BKA{1,2,...,�}(x; λ) + DKA{1,2,...,�}(x; λ). (B.27)

Then Eqs. (A.26), (A.29), and (A.30) in Ref. [27] give

ξ̌�(x; λ) = ξ̌
Ref. [27]
�

(
x + 1; λ − (� + 1)δ

)
,

B�(x; λ) = κ−�−1BKA{1,2,...,�}
(
x + 1; λ − (� + 1)δ

)
, (B.28)

D�(x; λ) = κ−�−1DKA{1,2,...,�}
(
x + 1; λ − (� + 1)δ

)
.

Therefore we have

H� ; x,y(λ) − Ẽ�(λ)δx,y = κ−�−1HKA{1,2,...,�} ; x+1,y+1

(
λ − (� + 1)δ

)
, (B.29)

namely(
H� ; x,y(λ) − Ẽ�(λ)δx,y

)
−1≤x,y≤N

=κ−�−1
(
HKA{1,2,...,�} ; x+1,y+1

(
λ − (� + 1)δ

))
−1≤x,y≤N

. (B.30)

This establishes the equivalence of the two systems.
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